1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2019 Joyent, Inc.
14 * Copyright 2022 Oxide Computer Company
15 */
16
17 /*
18 * Generic Intel Integrated Memory Controller (IMC) Driver
19 *
20 * This driver talks to the CPU's IMC to understand the detailed topology of the
21 * processor and to determine how to map between physical addresses to the
22 * corresponding DIMM. This driver supports the following generations of Intel
23 * chips:
24 *
25 * - Sandy Bridge
26 * - Ivy Bridge
27 * - Haswell
28 * - Broadwell
29 * - Skylake / Cascade Lake
30 *
31 * Memory Decoding
32 * ---------------
33 *
34 * For more detailed summaries of the memory decoding process, please refer to
35 * the Intel External Design Specifications for the corresponding processor.
36 * What follows is a rough overview of how the memory decoding system works.
37 *
38 * First, we'd like to define the following concepts:
39 *
40 * SYSTEM ADDRESS
41 *
42 * This is a physical address that the operating system normally uses. This
43 * address may refer to DRAM, it may refer to memory mapped PCI
44 * configuration space or device registers, or it may refer to other parts
45 * of the system's memory map, such as the extended advanced programmable
46 * interrupt controller (xAPIC), etc.
47 *
48 * DIMM
49 *
50 * Dual-inline memory module. This refers to a physical stick of volatile
51 * memory that is inserted into a slot on the motherboard.
52 *
53 * RANK
54 *
55 * A potential sub-division of a DIMM. A DIMM's memory capacity is divided
56 * into a number of equal sized ranks. For example, an 8 GiB DIMM, may have
57 * 1 8 GiB rank, 2 4 GiB ranks, or 4 2 GiB ranks.
58 *
59 * RANK ADDRESS
60 *
61 * An address that exists in the context of a given rank on a DIMM. All
62 * ranks have overlapping addresses, so the address 0x400 exists on all
63 * ranks on a given DIMM.
64 *
65 * CHANNEL
66 *
67 * Multiple DIMMs may be combined into a single channel. The channel
68 * represents the combined memory of all the DIMMs. A given channel only
69 * ever exists on a socket and is bound to a single memory controller.
70 *
71 * CHANNEL ADDRESS
72 *
73 * This is an address that exists logically on a channel. Each address on a
74 * channel maps to a corresponding DIMM that exists on that channel. The
75 * address space on one channel is independent from that on another. This
76 * means that address 0x1000 can exist on each memory channel in the
77 * system.
78 *
79 * INTERLEAVE
80 *
81 * There are several different cases where interleaving occurs on the
82 * system. For example, addresses may be interleaved across sockets,
83 * memory channels, or DIMM ranks. When addresses are interleaved, then
84 * some number of bits in an address are used to select which target to go
85 * to (usually through a look up table). The effect of interleaving is that
86 * addresses that are next to one another may not all go to the same
87 * device. The following image shows a non-interleaving case.
88 *
89 * 0x0fff +-----+ +-----+ 0x7ff
90 * | |\___________/| |
91 * | | __________ | (b) |
92 * | | / \| |
93 * 0x0800 |=====|= +-----+ 0x000 +-----+ 0x7ff
94 * | | \______________________________/| |
95 * | | _______________________________ | (a) |
96 * | |/ \| |
97 * 0x0000 +-----+ +-----+ 0x000
98 *
99 * In this example of non-interleaving, addresses 0x0000 to 0x07ff go to
100 * device (a). While, addresses 0x08000 to 0xfff, go to device (b).
101 * However, each range is divided into the same number of components.
102 *
103 * If instead, we were to look at that with interleaving, what we might say
104 * is that rather than splitting the range in half, we might say that if
105 * the address has bit 8 set (0x100), then it goes to (b), otherwise it
106 * goes to (a). This means that addresses 0x000 to 0x0ff, would go to (a).
107 * 0x100 to 0x1ff would go to (b). 0x200 to 0x2ff would go back to (a)
108 * again, and then 0x300 to 0x2ff would go back to (b). This would continue
109 * for a while. This would instead look something more like:
110 *
111 *
112 * 0x0fff +-----+ A: 0x7ff +---------+ B: 0x7ff +---------+
113 * | (b) | | e00-eff | | f00-fff |
114 * 0x0f00 |-----| 0x700 +---------+ 0x700 +---------+
115 * | (a) | | c00-cff | | d00-dff |
116 * 0x0e00 ~~~~~~~ 0x600 +---------+ 0x600 +---------+
117 * *** | a00-aff | | b00-bff |
118 * 0x0400 ~~~~~~~ 0x500 +---------+ 0x500 +---------+
119 * | (b) | | 800-8ff | | 900-9ff |
120 * 0x0300 |-----| 0x400 +---------+ 0x400 +---------+
121 * | (a) | | 600-6ff | | 700-7ff |
122 * 0x0200 |-----| 0x300 +---------+ 0x300 +---------+
123 * | (b) | | 400-4ff | | 500-5ff |
124 * 0x0100 |-----| 0x200 +---------+ 0x200 +---------+
125 * | (a) | | 200-2ff | | 300-3ff |
126 * 0x0000 +-----+ 0x100 +---------+ 0x100 +---------+
127 * | 000-0ff | | 100-1ff |
128 * 0x000 +---------+ 0x000 +---------+
129 *
130 * In this example we've performed two-way interleaving. The number of ways
131 * that something can interleave varies based on what we're interleaving
132 * between.
133 *
134 * MEMORY CONTROLLER
135 *
136 * A given processor die (see uts/i86pc/os/cpuid.c) contains a number of
137 * memory controllers. Usually 1 or two. Each memory controller supports a
138 * given number of DIMMs, which are divided across multiple channels.
139 *
140 * TARGET ADDRESS DECODER
141 *
142 * The target address decoder (TAD) is responsible for taking a system
143 * address and transforming it into a channel address based on the rules
144 * that are present. Each memory controller has a corresponding TAD. The
145 * TAD is often contained in a device called a 'Home Agent'.
146 *
147 * SYSTEM ADDRESS DECODER
148 *
149 * The system address decoder (SAD) is responsible for taking a system
150 * address and directing it to the right place, whether this be memory or
151 * otherwise. There is a single memory controller per socket (see
152 * uts/i86pc/os/cpuid.c) that is shared between all the cores currently.
153 *
154 * NODE IDENTIFIER
155 *
156 * The node identifier is used to uniquely identify an element in the
157 * various routing topologies on the die (see uts/i86pc/os/cpuid.c for the
158 * definition of 'die'). One can roughly think about this as a unique
159 * identifier for the socket itself. In general, the primary node ID for a
160 * socket should map to the socket APIC ID.
161 *
162 * Finding Devices
163 * ---------------
164 *
165 * There is a bit of a chicken and egg problem on Intel systems and in the
166 * device driver interface. The information that we need in the system is spread
167 * out amongst a large number of different PCI devices that the processor
168 * exposes. The number of such devices can vary based on the processor
169 * generation and the specific SKU in the processor. To deal with this, we break
170 * the driver into two different components: a stub driver and the full driver.
171 *
172 * The stub driver has aliases for all known PCI devices that we might attach to
173 * in a given generation on the system. This driver is called 'imcstub'. When a
174 * stub attaches, it just registers itself with the main driver, upon which it
175 * has a module dependency.
176 *
177 * The main driver, 'imc', is a pseudo-device driver. When it first attaches, it
178 * kicks off a scan of the device tree which takes place in a task queue. Once
179 * there, it determines the number of devices that it expects to exist by
180 * walking the tree and comparing it against the generation-specific table.
181 *
182 * If all devices are found, we'll go ahead and read through all the devices and
183 * build a map of all the information we need to understand the topology of the
184 * system and to be able to decode addresses. We do this here, because we can be
185 * asked to perform decoding in dangerous contexts (after taking an MCE, panic,
186 * etc) where we don't want to have to rely on the broader kernel functioning at
187 * this point in time.
188 *
189 * Once our topology is built, we'll create minor nodes which are used by the
190 * fault management architecture to query for information and register our
191 * decoding functionality with the kernel.
192 *
193 * PCI Numbering
194 * -------------
195 *
196 * For each device that we care about, Intel defines the device and function
197 * that we can expect to find the information and PCI configuration space
198 * registers that we care about at. However, the PCI bus is not well defined.
199 * Devices that are on the same socket use the same set of bus numbers; however,
200 * some sockets have multiple device numbers that they'll use to represent
201 * different classes. These bus numbers are programmed by systems firmware as
202 * part of powering on the system. This means, that we need the ability to
203 * map together these disparate ranges ourselves.
204 *
205 * There is a device called a utility box (UBOX), which exists per-socket and
206 * maps the different sockets together. We use this to determine which devices
207 * correspond to which sockets.
208 *
209 * Mapping Sockets
210 * ---------------
211 *
212 * Another wrinkle is that the way that the OS sees the numbering of the CPUs is
213 * generally based on the APIC ID (see uts/i86pc/os/cpuid.c for more
214 * information). However, to map to the corresponding socket, we need to look at
215 * the socket's node ID. The order of PCI buses in the system is not required to
216 * have any relation to the socket ID. Therefore, we have to have yet another
217 * indirection table in the imc_t.
218 *
219 * Exposing Data
220 * -------------
221 *
222 * We expose topology data to FMA using the OS-private memory controller
223 * interfaces. By creating minor nodes of the type, 'ddi_mem_ctrl', there are a
224 * number of specific interfaces that we can then implement. The ioctl API asks
225 * us for a snapshot of data, which basically has us go through and send an
226 * nvlist_t to userland. This nvlist_t is constructed as part of the scan
227 * process. This nvlist uses the version 1 format, which more explicitly encodes
228 * the topology in a series of nested nvlists.
229 *
230 * In addition, the tool /usr/lib/fm/fmd/mcdecode can be used to query the
231 * decoder and ask it to perform decoding.
232 *
233 * Decoding Addresses
234 * ------------------
235 *
236 * The decoding logic can be found in common/imc/imc_decode.c. This file is
237 * shared between the kernel and userland to allow for easier testing and
238 * additional flexibility in operation. The decoding process happens in a few
239 * different phases.
240 *
241 * The first phase, is to determine which memory controller on which socket is
242 * responsible for this data. To determine this, we use the system address
243 * decoder and walk the rules, looking for the correct target. There are various
244 * manipulations to the address that exist which are used to determine which
245 * index we use. The way that we interpret the output of the rule varies
246 * somewhat based on the generation. Sandy Bridge just has a node ID which
247 * points us to the socket with its single IMC. On Ivy Bridge through Broadwell,
248 * the memory controller to use is also encoded in part of the node ID. Finally,
249 * on Skylake, the SAD tells us which socket to look at. The socket in question
250 * then has a routing table which tells us which channel on which memory
251 * controller that is local to that socket.
252 *
253 * Once we have the target memory controller, we walk the list of target address
254 * decoder rules. These rules can help tell us which channel we care about
255 * (which is required on Sandy Bridge through Broadwell) and then describe some
256 * amount of the interleaving rules which are used to turn the system address
257 * into a channel address.
258 *
259 * Once we know the channel and the channel address, we walk the rank interleave
260 * rules which help us determine which DIMM and the corresponding rank on it
261 * that the corresponding channel address is on. It also has logic that we need
262 * to use to determine how to transform a channel address into an address on
263 * that specific rank. Once we have that, then the initial decoding is done.
264 *
265 * The logic in imc_decode.c is abstracted away from the broader kernel CMI
266 * logic. This is on purpose and allows us not only an easier time unit testing
267 * the logic, but also allows us to express more high fidelity errors that are
268 * translated into a much smaller subset. This logic is exercised in the
269 * 'imc_test' program which is built in 'test/os-tests/tests/imc'.
270 *
271 * Limitations
272 * -----------
273 *
274 * Currently, this driver has the following limitations:
275 *
276 * o It doesn't decode the row and column addresses.
277 * o It doesn't encode from a DIMM address to a system address.
278 * o It doesn't properly support lockstep and mirroring modes on Sandy Bridge -
279 * Broadwell platforms.
280 * o It doesn't support virtual lockstep and adaptive mirroring on Purley
281 * platforms.
282 * o It doesn't properly handle Intel Optane (3D-X Point) NVDIMMs.
283 * o It doesn't know how to decode three way channel interleaving.
284 *
285 * None of these are intrinsic problems to the driver, it's mostly a matter of
286 * having proper documentation and testing.
287 */
288
289 #include <sys/modctl.h>
290 #include <sys/conf.h>
291 #include <sys/devops.h>
292 #include <sys/ddi.h>
293 #include <sys/sunddi.h>
294 #include <sys/types.h>
295 #include <sys/file.h>
296 #include <sys/errno.h>
297 #include <sys/open.h>
298 #include <sys/cred.h>
299 #include <sys/pci.h>
300 #include <sys/sysmacros.h>
301 #include <sys/avl.h>
302 #include <sys/stat.h>
303 #include <sys/policy.h>
304
305 #include <sys/cpu_module.h>
306 #include <sys/mc.h>
307 #include <sys/mc_intel.h>
308
309 #include "imc.h"
310
311 /*
312 * These tables contain generational data that varies between processor
313 * generation such as the maximum number of sockets, memory controllers, and the
314 * offsets of the various registers.
315 */
316
317 static const imc_gen_data_t imc_gen_data_snb = {
318 .igd_max_sockets = 4,
319 .igd_max_imcs = 2,
320 .igd_max_channels = 4,
321 .igd_max_dimms = 3,
322 .igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
323 .igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
324 IMC_REG_MC_MTR2 },
325 .igd_mcmtr_offset = 0x7c,
326 .igd_tolm_offset = 0x80,
327 .igd_tohm_low_offset = 0x84,
328 .igd_sad_dram_offset = 0x80,
329 .igd_sad_ndram_rules = 10,
330 .igd_sad_nodeid_offset = 0x40,
331 .igd_tad_nrules = 12,
332 .igd_tad_rule_offset = 0x40,
333 .igd_tad_chan_offset = 0x90,
334 .igd_tad_sysdef = 0x80,
335 .igd_tad_sysdef2 = 0x84,
336 .igd_mc_mirror = 0xac,
337 .igd_rir_nways = 5,
338 .igd_rir_way_offset = 0x108,
339 .igd_rir_nileaves = 8,
340 .igd_rir_ileave_offset = 0x120,
341 .igd_ubox_cpubusno_offset = 0xd0,
342 };
343
344 static const imc_gen_data_t imc_gen_data_ivb = {
345 .igd_max_sockets = 4,
346 .igd_max_imcs = 2,
347 .igd_max_channels = 4,
348 .igd_max_dimms = 3,
349 .igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
350 .igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
351 IMC_REG_MC_MTR2 },
352 .igd_mcmtr_offset = 0x7c,
353 .igd_tolm_offset = 0x80,
354 .igd_tohm_low_offset = 0x84,
355 .igd_sad_dram_offset = 0x60,
356 .igd_sad_ndram_rules = 20,
357 .igd_sad_nodeid_offset = 0x40,
358 .igd_tad_nrules = 12,
359 .igd_tad_rule_offset = 0x40,
360 .igd_tad_chan_offset = 0x90,
361 .igd_tad_sysdef = 0x80,
362 .igd_tad_sysdef2 = 0x84,
363 .igd_mc_mirror = 0xac,
364 .igd_rir_nways = 5,
365 .igd_rir_way_offset = 0x108,
366 .igd_rir_nileaves = 8,
367 .igd_rir_ileave_offset = 0x120,
368 .igd_ubox_cpubusno_offset = 0xd0,
369 };
370
371 static const imc_gen_data_t imc_gen_data_has_brd = {
372 .igd_max_sockets = 4,
373 .igd_max_imcs = 2,
374 .igd_max_channels = 4,
375 .igd_max_dimms = 3,
376 .igd_max_ranks = IMC_MTR_DDR_RANKS_MAX_HAS_SKX,
377 .igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1,
378 IMC_REG_MC_MTR2 },
379 .igd_mcmtr_offset = 0x7c,
380 .igd_tolm_offset = 0xd0,
381 .igd_tohm_low_offset = 0xd4,
382 .igd_tohm_hi_offset = 0xd8,
383 .igd_sad_dram_offset = 0x60,
384 .igd_sad_ndram_rules = 20,
385 .igd_sad_nodeid_offset = 0x40,
386 .igd_tad_nrules = 12,
387 .igd_tad_rule_offset = 0x40,
388 .igd_tad_chan_offset = 0x90,
389 .igd_tad_sysdef = 0x80,
390 .igd_tad_sysdef2 = 0x84,
391 .igd_mc_mirror = 0xac,
392 .igd_rir_nways = 5,
393 .igd_rir_way_offset = 0x108,
394 .igd_rir_nileaves = 8,
395 .igd_rir_ileave_offset = 0x120,
396 .igd_ubox_cpubusno_offset = 0xd0,
397 };
398
399 static const imc_gen_data_t imc_gen_data_skx = {
400 .igd_max_sockets = 8,
401 .igd_max_imcs = 2,
402 .igd_max_channels = 3,
403 .igd_max_dimms = 2,
404 .igd_max_ranks = IMC_MTR_DDR_RANKS_MAX,
405 .igd_mtr_offsets = { IMC_REG_MC_MTR0, IMC_REG_MC_MTR1 },
406 .igd_mcmtr_offset = 0x87c,
407 .igd_topo_offset = 0x88,
408 .igd_tolm_offset = 0xd0,
409 .igd_tohm_low_offset = 0xd4,
410 .igd_tohm_hi_offset = 0xd8,
411 .igd_sad_dram_offset = 0x60,
412 .igd_sad_ndram_rules = 24,
413 .igd_sad_nodeid_offset = 0xc0,
414 .igd_tad_nrules = 8,
415 .igd_tad_rule_offset = 0x850,
416 .igd_tad_chan_offset = 0x90,
417 .igd_rir_nways = 4,
418 .igd_rir_way_offset = 0x108,
419 .igd_rir_nileaves = 4,
420 .igd_rir_ileave_offset = 0x120,
421 .igd_ubox_cpubusno_offset = 0xcc,
422 };
423
424 /*
425 * This table contains all of the devices that we're looking for from a stub
426 * perspective. These are organized by generation. Different generations behave
427 * in slightly different ways. For example, Sandy Bridge through Broadwell use
428 * unique PCI IDs for each PCI device/function combination that appears. Whereas
429 * Skylake based systems use the same PCI ID; however, different device/function
430 * values indicate that the IDs are used for different purposes.
431 */
432 /* BEGIN CSTYLED */
433 static const imc_stub_table_t imc_stub_table[] = {
434 /* Sandy Bridge */
435 { IMC_GEN_SANDY, IMC_TYPE_MC0_MAIN0, 0x3ca8, 15, 0, "IMC 0 Main 0" },
436 { IMC_GEN_SANDY, IMC_TYPE_MC0_MAIN1, 0x3c71, 15, 1, "IMC 0 Main 0" },
437 { IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL0, 0x3caa, 15, 2, "IMC 0 Channel 0 Info" },
438 { IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL1, 0x3cab, 15, 3, "IMC 0 Channel 1 Info" },
439 { IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL2, 0x3cac, 15, 4, "IMC 0 Channel 2 Info" },
440 { IMC_GEN_SANDY, IMC_TYPE_MC0_CHANNEL3, 0x3cad, 15, 5, "IMC 0 Channel 3 Info" },
441 { IMC_GEN_SANDY, IMC_TYPE_SAD_DRAM, 0x3cf4, 12, 6, "SAD DRAM Rules" },
442 { IMC_GEN_SANDY, IMC_TYPE_SAD_MMIO, 0x3cf5, 13, 6, "SAD MMIO Rules" },
443 { IMC_GEN_SANDY, IMC_TYPE_SAD_MISC, 0x3cf6, 12, 7, "SAD Memory Map" },
444 { IMC_GEN_SANDY, IMC_TYPE_UBOX, 0x3ce0, 11, 0, "UBox" },
445 { IMC_GEN_SANDY, IMC_TYPE_UBOX_CPUBUSNO, 0x3ce3, 11, 3, "UBox Scratch" },
446 { IMC_GEN_SANDY, IMC_TYPE_HA0, 0x3ca0, 14, 0, "Home Agent" },
447 /* Ivy Bridge */
448 { IMC_GEN_IVY, IMC_TYPE_MC0_MAIN0, 0x0ea8, 15, 0, "IMC 0 Main 0" },
449 { IMC_GEN_IVY, IMC_TYPE_MC0_MAIN1, 0x0e71, 15, 1, "IMC 0 Main 1" },
450 { IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL0, 0x0eaa, 15, 2, "IMC 0 Channel 0 Info" },
451 { IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL1, 0x0eab, 15, 3, "IMC 0 Channel 1 Info" },
452 { IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL2, 0x0eac, 15, 4, "IMC 0 Channel 2 Info" },
453 { IMC_GEN_IVY, IMC_TYPE_MC0_CHANNEL3, 0x0ead, 15, 5, "IMC 0 Channel 3 Info" },
454 { IMC_GEN_IVY, IMC_TYPE_MC1_MAIN0, 0x0e68, 29, 0, "IMC 1 Main 0" },
455 { IMC_GEN_IVY, IMC_TYPE_MC1_MAIN1, 0x0e79, 29, 1, "IMC 1 Main 1" },
456 { IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL0, 0x0e6a, 15, 2, "IMC 1 Channel 0 Info" },
457 { IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL1, 0x0e6b, 15, 3, "IMC 1 Channel 1 Info" },
458 { IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL2, 0x0e6c, 15, 4, "IMC 1 Channel 2 Info" },
459 { IMC_GEN_IVY, IMC_TYPE_MC1_CHANNEL3, 0x0e6d, 15, 5, "IMC 1 Channel 3 Info" },
460 { IMC_GEN_IVY, IMC_TYPE_SAD_DRAM, 0x0ec8, 22, 0, "SAD DRAM Rules" },
461 { IMC_GEN_IVY, IMC_TYPE_SAD_MMIO, 0x0ec9, 22, 1, "SAD MMIO Rules" },
462 { IMC_GEN_IVY, IMC_TYPE_SAD_MISC, 0x0eca, 22, 2, "SAD Memory Map" },
463 { IMC_GEN_IVY, IMC_TYPE_UBOX, 0x0e1e, 11, 0, "UBox" },
464 { IMC_GEN_IVY, IMC_TYPE_UBOX_CPUBUSNO, 0x0e1f, 11, 3, "UBox Scratch" },
465 { IMC_GEN_IVY, IMC_TYPE_HA0, 0x0ea0, 14, 0, "Home Agent 0" },
466 { IMC_GEN_IVY, IMC_TYPE_HA1, 0x0e60, 28, 0, "Home Agent 1" },
467 /* Haswell */
468 { IMC_GEN_HASWELL, IMC_TYPE_MC0_MAIN0, 0x2fa8, 19, 0, "IMC 0 Main 0" },
469 { IMC_GEN_HASWELL, IMC_TYPE_MC0_MAIN1, 0x2f71, 19, 1, "IMC 0 Main 1" },
470 { IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL0, 0x2faa, 19, 2, "IMC 0 Channel 0 Info" },
471 { IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL1, 0x2fab, 19, 3, "IMC 0 Channel 1 Info" },
472 { IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL2, 0x2fac, 19, 4, "IMC 0 Channel 2 Info" },
473 { IMC_GEN_HASWELL, IMC_TYPE_MC0_CHANNEL3, 0x2fad, 19, 5, "IMC 0 Channel 3 Info" },
474 { IMC_GEN_HASWELL, IMC_TYPE_MC1_MAIN0, 0x2f68, 22, 0, "IMC 1 Main 0" },
475 { IMC_GEN_HASWELL, IMC_TYPE_MC1_MAIN1, 0x2f79, 22, 1, "IMC 1 Main 1" },
476 { IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL0, 0x2f6a, 22, 2, "IMC 1 Channel 0 Info" },
477 { IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL1, 0x2f6b, 22, 3, "IMC 1 Channel 1 Info" },
478 { IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL2, 0x2f6c, 22, 4, "IMC 1 Channel 2 Info" },
479 { IMC_GEN_HASWELL, IMC_TYPE_MC1_CHANNEL3, 0x2f6d, 22, 5, "IMC 1 Channel 3 Info" },
480 { IMC_GEN_HASWELL, IMC_TYPE_SAD_DRAM, 0x2ffc, 15, 4, "SAD DRAM Rules" },
481 { IMC_GEN_HASWELL, IMC_TYPE_SAD_MMIO, 0x2ffd, 15, 5, "SAD MMIO Rules" },
482 { IMC_GEN_HASWELL, IMC_TYPE_VTD_MISC, 0x2f28, 5, 0, "Misc. Vritualization" },
483 { IMC_GEN_HASWELL, IMC_TYPE_UBOX, 0x2f1e, 16, 5, "UBox" },
484 { IMC_GEN_HASWELL, IMC_TYPE_UBOX_CPUBUSNO, 0x2f1f, 16, 7, "UBox Scratch" },
485 { IMC_GEN_HASWELL, IMC_TYPE_HA0, 0x2fa0, 18, 0, "Home Agent 0" },
486 { IMC_GEN_HASWELL, IMC_TYPE_HA1, 0x2f60, 18, 4, "Home Agent 1" },
487 /* Broadwell Devices */
488 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_MAIN0, 0x6fa8, 19, 0, "IMC 0 Main 0" },
489 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_MAIN1, 0x6f71, 19, 1, "IMC 0 Main 1" },
490 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL0, 0x6faa, 19, 2, "IMC 0 Channel 0 Info" },
491 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL1, 0x6fab, 19, 3, "IMC 0 Channel 1 Info" },
492 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL2, 0x6fac, 19, 4, "IMC 0 Channel 2 Info" },
493 { IMC_GEN_BROADWELL, IMC_TYPE_MC0_CHANNEL3, 0x6fad, 19, 5, "IMC 0 Channel 3 Info" },
494 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_MAIN0, 0x6f68, 22, 0, "IMC 1 Main 0" },
495 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_MAIN1, 0x6f79, 22, 1, "IMC 1 Main 1" },
496 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL0, 0x6f6a, 22, 2, "IMC 1 Channel 0 Info" },
497 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL1, 0x6f6b, 22, 3, "IMC 1 Channel 1 Info" },
498 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL2, 0x6f6c, 22, 4, "IMC 1 Channel 2 Info" },
499 { IMC_GEN_BROADWELL, IMC_TYPE_MC1_CHANNEL3, 0x6f6d, 22, 5, "IMC 1 Channel 3 Info" },
500 { IMC_GEN_BROADWELL, IMC_TYPE_SAD_DRAM, 0x6ffc, 15, 4, "SAD DRAM Rules" },
501 { IMC_GEN_BROADWELL, IMC_TYPE_SAD_MMIO, 0x6ffd, 15, 5, "SAD MMIO Rules" },
502 { IMC_GEN_BROADWELL, IMC_TYPE_VTD_MISC, 0x6f28, 5, 0, "Misc. Vritualization" },
503 { IMC_GEN_BROADWELL, IMC_TYPE_UBOX, 0x6f1e, 16, 5, "UBox" },
504 { IMC_GEN_BROADWELL, IMC_TYPE_UBOX_CPUBUSNO, 0x6f1f, 16, 7, "UBox Scratch" },
505 { IMC_GEN_BROADWELL, IMC_TYPE_HA0, 0x6fa0, 18, 0, "Home Agent 0" },
506 { IMC_GEN_BROADWELL, IMC_TYPE_HA1, 0x6f60, 18, 4, "Home Agent 1" },
507 /* Skylake and Cascade Lake Devices */
508 { IMC_GEN_SKYLAKE, IMC_TYPE_MC0_M2M, 0x2066, 8, 0, "IMC 0 M2M" },
509 { IMC_GEN_SKYLAKE, IMC_TYPE_MC1_M2M, 0x2066, 9, 0, "IMC 0 M2M" },
510 { IMC_GEN_SKYLAKE, IMC_TYPE_MC0_MAIN0, 0x2040, 10, 0, "IMC 0 Main / Channel 0" },
511 { IMC_GEN_SKYLAKE, IMC_TYPE_MC1_MAIN0, 0x2040, 12, 0, "IMC 0 Main / Channel 0" },
512 { IMC_GEN_SKYLAKE, IMC_TYPE_MC0_CHANNEL1, 0x2044, 10, 4, "IMC 0 Channel 1" },
513 { IMC_GEN_SKYLAKE, IMC_TYPE_MC0_CHANNEL2, 0x2048, 11, 0, "IMC 0 Channel 2" },
514 { IMC_GEN_SKYLAKE, IMC_TYPE_MC1_CHANNEL1, 0x2044, 12, 4, "IMC 1 Channel 1" },
515 { IMC_GEN_SKYLAKE, IMC_TYPE_MC1_CHANNEL2, 0x2048, 13, 0, "IMC 1 Channel 2" },
516 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_DRAM, 0x2054, 29, 0, "SAD DRAM Rules" },
517 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MMIO, 0x2055, 29, 1, "SAD MMIO Rules" },
518 { IMC_GEN_SKYLAKE, IMC_TYPE_VTD_MISC, 0x2024, 5, 0, "Misc. Virtualization" },
519
520 /*
521 * There is one SAD MC Route type device per core! Because of this a
522 * wide array of device and functions are allocated. For now, we list
523 * all 28 of them out.
524 */
525 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 0, "Per-Core SAD" },
526 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 1, "Per-Core SAD" },
527 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 2, "Per-Core SAD" },
528 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 3, "Per-Core SAD" },
529 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 4, "Per-Core SAD" },
530 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 5, "Per-Core SAD" },
531 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 6, "Per-Core SAD" },
532 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 14, 7, "Per-Core SAD" },
533 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 0, "Per-Core SAD" },
534 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 1, "Per-Core SAD" },
535 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 2, "Per-Core SAD" },
536 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 3, "Per-Core SAD" },
537 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 4, "Per-Core SAD" },
538 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 5, "Per-Core SAD" },
539 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 6, "Per-Core SAD" },
540 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 15, 7, "Per-Core SAD" },
541 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 0, "Per-Core SAD" },
542 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 1, "Per-Core SAD" },
543 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 2, "Per-Core SAD" },
544 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 3, "Per-Core SAD" },
545 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 4, "Per-Core SAD" },
546 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 5, "Per-Core SAD" },
547 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 6, "Per-Core SAD" },
548 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 16, 7, "Per-Core SAD" },
549 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 0, "Per-Core SAD" },
550 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 1, "Per-Core SAD" },
551 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 2, "Per-Core SAD" },
552 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 3, "Per-Core SAD" },
553 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 4, "Per-Core SAD" },
554 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 5, "Per-Core SAD" },
555 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 6, "Per-Core SAD" },
556 { IMC_GEN_SKYLAKE, IMC_TYPE_SAD_MCROUTE, 0x208e, 17, 7, "Per-Core SAD" },
557
558 { IMC_GEN_SKYLAKE, IMC_TYPE_UBOX, 0x2014, 8, 0, "UBox" },
559 { IMC_GEN_SKYLAKE, IMC_TYPE_UBOX_CPUBUSNO, 0x2016, 8, 2, "DECS" },
560 };
561 /* END CSTYLED */
562
563 #define IMC_PCI_VENDOR_INTC 0x8086
564
565 /*
566 * Our IMC data is global and statically set up during a combination of
567 * _init(9E) and attach(9E). While we have a module dependency between the PCI
568 * stub driver, imcstub, and this pseudo-driver, imc, the dependencies don't
569 * guarantee that the imc driver has finished attaching. As such we make sure
570 * that it can operate without it being attached in any way.
571 */
572 static imc_t *imc_data = NULL;
573
574 /*
575 * By default we should not allow the stubs to detach as we don't have a good
576 * way of forcing them to attach again. This is provided in case someone does
577 * want to allow the driver to unload.
578 */
579 int imc_allow_detach = 0;
580
581 static void
imc_set_gen_data(imc_t * imc)582 imc_set_gen_data(imc_t *imc)
583 {
584 switch (imc->imc_gen) {
585 case IMC_GEN_SANDY:
586 imc->imc_gen_data = &imc_gen_data_snb;
587 break;
588 case IMC_GEN_IVY:
589 imc->imc_gen_data = &imc_gen_data_ivb;
590 break;
591 case IMC_GEN_HASWELL:
592 case IMC_GEN_BROADWELL:
593 imc->imc_gen_data = &imc_gen_data_has_brd;
594 break;
595 case IMC_GEN_SKYLAKE:
596 imc->imc_gen_data = &imc_gen_data_skx;
597 break;
598 default:
599 dev_err(imc->imc_dip, CE_PANIC, "imc driver programmer error: "
600 "set to unknown generation: %u", imc->imc_gen);
601 }
602 }
603
604 /*
605 * If our device (dev_info_t) does not have a non-zero unit address, then
606 * devfsadmd will not pay attention to us at all. Therefore we need to set the
607 * unit address below, before we create minor nodes.
608 *
609 * The rest of the system expects us to have one minor node per socket. The
610 * minor node ID should be the ID of the socket.
611 */
612 static boolean_t
imc_create_minors(imc_t * imc)613 imc_create_minors(imc_t *imc)
614 {
615 uint_t i;
616
617 ddi_set_name_addr(imc->imc_dip, "1");
618 for (i = 0; i < imc->imc_nsockets; i++) {
619 char buf[MAXNAMELEN];
620
621 if (snprintf(buf, sizeof (buf), "mc-imc-%u", i) >=
622 sizeof (buf)) {
623 goto fail;
624 }
625
626 if (ddi_create_minor_node(imc->imc_dip, buf, S_IFCHR, i,
627 "ddi_mem_ctrl", 0) != DDI_SUCCESS) {
628 dev_err(imc->imc_dip, CE_WARN, "failed to create "
629 "minor node %u: %s", i, buf);
630 goto fail;
631 }
632 }
633 return (B_TRUE);
634
635 fail:
636 ddi_remove_minor_node(imc->imc_dip, NULL);
637 return (B_FALSE);
638 }
639
640 /*
641 * Check the current MC route value for this SAD. On Skylake systems there is
642 * one per core. Every core should agree. If not, we will not trust the SAD
643 * MCROUTE values and this will cause system address decoding to fail on
644 * skylake.
645 */
646 static void
imc_mcroute_check(imc_t * imc,imc_sad_t * sad,imc_stub_t * stub)647 imc_mcroute_check(imc_t *imc, imc_sad_t *sad, imc_stub_t *stub)
648 {
649 uint32_t val;
650
651 val = pci_config_get32(stub->istub_cfgspace,
652 IMC_REG_SKX_SAD_MC_ROUTE_TABLE);
653 if (val == PCI_EINVAL32) {
654 sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
655 return;
656 }
657
658 if ((sad->isad_flags & IMC_SAD_MCROUTE_VALID) == 0 && val != 0) {
659 sad->isad_flags |= IMC_SAD_MCROUTE_VALID;
660 sad->isad_mcroute.ismc_raw_mcroute = val;
661 return;
662 }
663
664 /*
665 * Occasionally we see MC ROUTE table entries with a value of zero.
666 * We should ignore those for now.
667 */
668 if (val != sad->isad_mcroute.ismc_raw_mcroute && val != 0) {
669 dev_err(imc->imc_dip, CE_WARN, "SAD MC_ROUTE_TABLE mismatch "
670 "with socket. SAD has val 0x%x, system has %x\n",
671 val, sad->isad_mcroute.ismc_raw_mcroute);
672 sad->isad_valid |= IMC_SAD_V_BAD_MCROUTE;
673 }
674 }
675
676 /*
677 * On Skylake, many of the devices that we care about are on separate PCI Buses.
678 * These can be mapped together by the DECS register. However, we need to know
679 * how to map different buses together so that we can more usefully associate
680 * information. The set of buses is all present in the DECS register. We'll
681 * effectively assign sockets to buses. This is also still something that comes
682 * up on pre-Skylake systems as well.
683 */
684 static boolean_t
imc_map_buses(imc_t * imc)685 imc_map_buses(imc_t *imc)
686 {
687 imc_stub_t *stub;
688 uint_t nsock;
689
690 /*
691 * Find the UBOX_DECS registers so we can establish socket mappings. On
692 * Skylake, there are three different sets of buses that we need to
693 * cover all of our devices, while there are only two before that.
694 */
695 for (nsock = 0, stub = avl_first(&imc->imc_stubs); stub != NULL;
696 stub = AVL_NEXT(&imc->imc_stubs, stub)) {
697 uint32_t busno;
698
699 if (stub->istub_table->imcs_type != IMC_TYPE_UBOX_CPUBUSNO) {
700 continue;
701 }
702
703 busno = pci_config_get32(stub->istub_cfgspace,
704 imc->imc_gen_data->igd_ubox_cpubusno_offset);
705 if (busno == PCI_EINVAL32) {
706 dev_err(imc->imc_dip, CE_WARN, "failed to read "
707 "UBOX_DECS CPUBUSNO0: invalid PCI read");
708 return (B_FALSE);
709 }
710
711 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
712 imc->imc_sockets[nsock].isock_nbus = 3;
713 imc->imc_sockets[nsock].isock_bus[0] =
714 IMC_UBOX_CPUBUSNO_0(busno);
715 imc->imc_sockets[nsock].isock_bus[1] =
716 IMC_UBOX_CPUBUSNO_1(busno);
717 imc->imc_sockets[nsock].isock_bus[2] =
718 IMC_UBOX_CPUBUSNO_2(busno);
719 } else {
720 imc->imc_sockets[nsock].isock_bus[0] =
721 IMC_UBOX_CPUBUSNO_0(busno);
722 imc->imc_sockets[nsock].isock_bus[1] =
723 IMC_UBOX_CPUBUSNO_1(busno);
724 imc->imc_sockets[nsock].isock_nbus = 2;
725 }
726 nsock++;
727 }
728 imc->imc_nsockets = nsock;
729
730 return (B_TRUE);
731 }
732
733 /*
734 * For a given stub that we've found, map it to its corresponding socket based
735 * on the PCI bus that it has.
736 */
737 static imc_socket_t *
imc_map_find_socket(imc_t * imc,imc_stub_t * stub)738 imc_map_find_socket(imc_t *imc, imc_stub_t *stub)
739 {
740 uint_t i;
741
742 for (i = 0; i < imc->imc_nsockets; i++) {
743 uint_t bus;
744
745 for (bus = 0; bus < imc->imc_sockets[i].isock_nbus; bus++) {
746 if (imc->imc_sockets[i].isock_bus[bus] ==
747 stub->istub_bus) {
748 return (&imc->imc_sockets[i]);
749 }
750 }
751 }
752
753 return (NULL);
754 }
755
756 static boolean_t
imc_map_stubs(imc_t * imc)757 imc_map_stubs(imc_t *imc)
758 {
759 imc_stub_t *stub;
760
761 if (!imc_map_buses(imc)) {
762 return (B_FALSE);
763 }
764
765 stub = avl_first(&imc->imc_stubs);
766 for (stub = avl_first(&imc->imc_stubs); stub != NULL;
767 stub = AVL_NEXT(&imc->imc_stubs, stub)) {
768 imc_socket_t *sock = imc_map_find_socket(imc, stub);
769
770 if (sock == NULL) {
771 dev_err(imc->imc_dip, CE_WARN, "found stub type %u "
772 "PCI%x,%x with bdf %u/%u/%u that does not match a "
773 "known PCI bus for any of %u sockets",
774 stub->istub_table->imcs_type, stub->istub_vid,
775 stub->istub_did, stub->istub_bus, stub->istub_dev,
776 stub->istub_func, imc->imc_nsockets);
777 continue;
778 }
779
780 /*
781 * We don't have to worry about duplicates here. We check to
782 * make sure that we have unique bdfs here.
783 */
784 switch (stub->istub_table->imcs_type) {
785 case IMC_TYPE_MC0_M2M:
786 sock->isock_imcs[0].icn_m2m = stub;
787 break;
788 case IMC_TYPE_MC1_M2M:
789 sock->isock_imcs[1].icn_m2m = stub;
790 break;
791 case IMC_TYPE_MC0_MAIN0:
792 sock->isock_nimc++;
793 sock->isock_imcs[0].icn_main0 = stub;
794
795 /*
796 * On Skylake, the MAIN0 does double duty as channel
797 * zero and as the TAD.
798 */
799 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
800 sock->isock_imcs[0].icn_nchannels++;
801 sock->isock_imcs[0].icn_channels[0].ich_desc =
802 stub;
803 sock->isock_tad[0].itad_stub = stub;
804 sock->isock_ntad++;
805 }
806 break;
807 case IMC_TYPE_MC0_MAIN1:
808 sock->isock_imcs[0].icn_main1 = stub;
809 break;
810 case IMC_TYPE_MC1_MAIN0:
811 sock->isock_nimc++;
812 sock->isock_imcs[1].icn_main0 = stub;
813
814 /*
815 * On Skylake, the MAIN0 does double duty as channel
816 * zero and as the TAD.
817 */
818 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
819 sock->isock_imcs[1].icn_nchannels++;
820 sock->isock_imcs[1].icn_channels[0].ich_desc =
821 stub;
822 sock->isock_tad[1].itad_stub = stub;
823 sock->isock_ntad++;
824 }
825 break;
826 case IMC_TYPE_MC1_MAIN1:
827 sock->isock_imcs[1].icn_main1 = stub;
828 break;
829 case IMC_TYPE_MC0_CHANNEL0:
830 sock->isock_imcs[0].icn_nchannels++;
831 sock->isock_imcs[0].icn_channels[0].ich_desc = stub;
832 break;
833 case IMC_TYPE_MC0_CHANNEL1:
834 sock->isock_imcs[0].icn_nchannels++;
835 sock->isock_imcs[0].icn_channels[1].ich_desc = stub;
836 break;
837 case IMC_TYPE_MC0_CHANNEL2:
838 sock->isock_imcs[0].icn_nchannels++;
839 sock->isock_imcs[0].icn_channels[2].ich_desc = stub;
840 break;
841 case IMC_TYPE_MC0_CHANNEL3:
842 sock->isock_imcs[0].icn_nchannels++;
843 sock->isock_imcs[0].icn_channels[3].ich_desc = stub;
844 break;
845 case IMC_TYPE_MC1_CHANNEL0:
846 sock->isock_imcs[1].icn_nchannels++;
847 sock->isock_imcs[1].icn_channels[0].ich_desc = stub;
848 break;
849 case IMC_TYPE_MC1_CHANNEL1:
850 sock->isock_imcs[1].icn_nchannels++;
851 sock->isock_imcs[1].icn_channels[1].ich_desc = stub;
852 break;
853 case IMC_TYPE_MC1_CHANNEL2:
854 sock->isock_imcs[1].icn_nchannels++;
855 sock->isock_imcs[1].icn_channels[2].ich_desc = stub;
856 break;
857 case IMC_TYPE_MC1_CHANNEL3:
858 sock->isock_imcs[1].icn_nchannels++;
859 sock->isock_imcs[1].icn_channels[3].ich_desc = stub;
860 break;
861 case IMC_TYPE_SAD_DRAM:
862 sock->isock_sad.isad_dram = stub;
863 break;
864 case IMC_TYPE_SAD_MMIO:
865 sock->isock_sad.isad_mmio = stub;
866 break;
867 case IMC_TYPE_SAD_MISC:
868 sock->isock_sad.isad_tolh = stub;
869 break;
870 case IMC_TYPE_VTD_MISC:
871 /*
872 * Some systems have multiple VT-D Misc. entry points
873 * in the system. In this case, only use the first one
874 * we find.
875 */
876 if (imc->imc_gvtd_misc == NULL) {
877 imc->imc_gvtd_misc = stub;
878 }
879 break;
880 case IMC_TYPE_SAD_MCROUTE:
881 ASSERT3U(imc->imc_gen, >=, IMC_GEN_SKYLAKE);
882 imc_mcroute_check(imc, &sock->isock_sad, stub);
883 break;
884 case IMC_TYPE_UBOX:
885 sock->isock_ubox = stub;
886 break;
887 case IMC_TYPE_HA0:
888 sock->isock_ntad++;
889 sock->isock_tad[0].itad_stub = stub;
890 break;
891 case IMC_TYPE_HA1:
892 sock->isock_ntad++;
893 sock->isock_tad[1].itad_stub = stub;
894 break;
895 case IMC_TYPE_UBOX_CPUBUSNO:
896 sock->isock_cpubusno = stub;
897 break;
898 default:
899 /*
900 * Attempt to still attach if we can.
901 */
902 dev_err(imc->imc_dip, CE_WARN, "Encountered unknown "
903 "IMC type (%u) on PCI %x,%x",
904 stub->istub_table->imcs_type,
905 stub->istub_vid, stub->istub_did);
906 break;
907 }
908 }
909
910 return (B_TRUE);
911 }
912
913 /*
914 * Go through and fix up various aspects of the stubs mappings on systems. The
915 * following are a list of what we need to fix up:
916 *
917 * 1. On Haswell and newer systems, there is only one global VT-d device. We
918 * need to go back and map that to all of the per-socket imc_sad_t entries.
919 */
920 static void
imc_fixup_stubs(imc_t * imc)921 imc_fixup_stubs(imc_t *imc)
922 {
923 if (imc->imc_gen >= IMC_GEN_HASWELL) {
924 uint_t i;
925
926 for (i = 0; i < imc->imc_nsockets; i++) {
927 ASSERT3P(imc->imc_sockets[i].isock_sad.isad_tolh,
928 ==, NULL);
929 imc->imc_sockets[i].isock_sad.isad_tolh =
930 imc->imc_gvtd_misc;
931 }
932 }
933 }
934
935 /*
936 * In the wild we've hit a few odd cases where not all devices are exposed that
937 * we might expect by firmware. In particular we've seen and validate the
938 * following cases:
939 *
940 * o We don't find all of the channel devices that we expect, e.g. we have the
941 * stubs for channels 1-3, but not 0. That has been seen on an Intel S2600CW
942 * with an E5-2630v3.
943 */
944 static boolean_t
imc_validate_stubs(imc_t * imc)945 imc_validate_stubs(imc_t *imc)
946 {
947 for (uint_t sock = 0; sock < imc->imc_nsockets; sock++) {
948 imc_socket_t *socket = &imc->imc_sockets[sock];
949
950 for (uint_t mc = 0; mc < socket->isock_nimc; mc++) {
951 imc_mc_t *mcp = &socket->isock_imcs[mc];
952
953 for (uint_t chan = 0; chan < mcp->icn_nchannels;
954 chan++) {
955 if (mcp->icn_channels[chan].ich_desc == NULL) {
956 dev_err(imc->imc_dip, CE_WARN,
957 "!missing device for socket %u/"
958 "imc %u/channel %u", sock, mc,
959 chan);
960 return (B_FALSE);
961 }
962 }
963 }
964 }
965
966 return (B_TRUE);
967 }
968
969 /*
970 * Attempt to map all of the discovered sockets to the corresponding APIC based
971 * socket. We do these mappings by getting the node id of the socket and
972 * adjusting it to make sure that no home agent is present in it. We use the
973 * UBOX to avoid any home agent related bits that are present in other
974 * registers.
975 */
976 static void
imc_map_sockets(imc_t * imc)977 imc_map_sockets(imc_t *imc)
978 {
979 uint_t i;
980
981 for (i = 0; i < imc->imc_nsockets; i++) {
982 uint32_t nodeid;
983 ddi_acc_handle_t h;
984
985 h = imc->imc_sockets[i].isock_ubox->istub_cfgspace;
986 nodeid = pci_config_get32(h,
987 imc->imc_gen_data->igd_sad_nodeid_offset);
988 if (nodeid == PCI_EINVAL32) {
989 imc->imc_sockets[i].isock_valid |=
990 IMC_SOCKET_V_BAD_NODEID;
991 continue;
992 }
993
994 imc->imc_sockets[i].isock_nodeid = IMC_NODEID_UBOX_MASK(nodeid);
995 imc->imc_spointers[nodeid] = &imc->imc_sockets[i];
996 }
997 }
998
999 /*
1000 * Decode the MTR, accounting for variances between processor generations.
1001 */
1002 static void
imc_decode_mtr(imc_t * imc,imc_mc_t * icn,imc_dimm_t * dimm,uint32_t mtr)1003 imc_decode_mtr(imc_t *imc, imc_mc_t *icn, imc_dimm_t *dimm, uint32_t mtr)
1004 {
1005 uint8_t disable;
1006
1007 /*
1008 * Check present first, before worrying about anything else.
1009 */
1010 if (imc->imc_gen < IMC_GEN_SKYLAKE &&
1011 IMC_MTR_PRESENT_SNB_BRD(mtr) == 0) {
1012 dimm->idimm_present = B_FALSE;
1013 return;
1014 } else if (imc->imc_gen >= IMC_GEN_SKYLAKE &&
1015 IMC_MTR_PRESENT_SKYLAKE(mtr) == 0) {
1016 dimm->idimm_present = B_FALSE;
1017 return;
1018 }
1019
1020 dimm->idimm_present = B_TRUE;
1021 dimm->idimm_ncolumns = IMC_MTR_CA_WIDTH(mtr) + IMC_MTR_CA_BASE;
1022 if (dimm->idimm_ncolumns < IMC_MTR_CA_MIN ||
1023 dimm->idimm_ncolumns > IMC_MTR_CA_MAX) {
1024 dimm->idimm_valid |= IMC_DIMM_V_BAD_COLUMNS;
1025 }
1026
1027 dimm->idimm_nrows = IMC_MTR_RA_WIDTH(mtr) + IMC_MTR_RA_BASE;
1028 if (dimm->idimm_nrows < IMC_MTR_RA_MIN ||
1029 dimm->idimm_nrows > IMC_MTR_RA_MAX) {
1030 dimm->idimm_valid |= IMC_DIMM_V_BAD_ROWS;
1031 }
1032
1033 /*
1034 * Determine Density, this information is not present on Sandy Bridge.
1035 */
1036 switch (imc->imc_gen) {
1037 case IMC_GEN_IVY:
1038 dimm->idimm_density = 1U << IMC_MTR_DENSITY_IVY_BRD(mtr);
1039 break;
1040 case IMC_GEN_HASWELL:
1041 case IMC_GEN_BROADWELL:
1042 switch (IMC_MTR_DENSITY_IVY_BRD(mtr)) {
1043 case 0:
1044 default:
1045 dimm->idimm_density = 0;
1046 dimm->idimm_valid |= IMC_DIMM_V_BAD_DENSITY;
1047 break;
1048 case 1:
1049 dimm->idimm_density = 2;
1050 break;
1051 case 2:
1052 dimm->idimm_density = 4;
1053 break;
1054 case 3:
1055 dimm->idimm_density = 8;
1056 break;
1057 }
1058 break;
1059 case IMC_GEN_SKYLAKE:
1060 switch (IMC_MTR_DENSITY_SKX(mtr)) {
1061 case 0:
1062 default:
1063 dimm->idimm_density = 0;
1064 dimm->idimm_valid |= IMC_DIMM_V_BAD_DENSITY;
1065 break;
1066 case 1:
1067 dimm->idimm_density = 2;
1068 break;
1069 case 2:
1070 dimm->idimm_density = 4;
1071 break;
1072 case 3:
1073 dimm->idimm_density = 8;
1074 break;
1075 case 4:
1076 dimm->idimm_density = 16;
1077 break;
1078 case 5:
1079 dimm->idimm_density = 12;
1080 break;
1081 }
1082 break;
1083 case IMC_GEN_UNKNOWN:
1084 case IMC_GEN_SANDY:
1085 dimm->idimm_density = 0;
1086 break;
1087 }
1088
1089 /*
1090 * The values of width are the same on IVY->SKX, but the bits are
1091 * different. This doesn't exist on SNB.
1092 */
1093 if (imc->imc_gen > IMC_GEN_SANDY) {
1094 uint8_t width;
1095
1096 if (imc->imc_gen >= IMC_GEN_BROADWELL) {
1097 width = IMC_MTR_WIDTH_BRD_SKX(mtr);
1098 } else {
1099 width = IMC_MTR_WIDTH_IVB_HAS(mtr);
1100 }
1101 switch (width) {
1102 case 0:
1103 dimm->idimm_width = 4;
1104 break;
1105 case 1:
1106 dimm->idimm_width = 8;
1107 break;
1108 case 2:
1109 dimm->idimm_width = 16;
1110 break;
1111 default:
1112 dimm->idimm_width = 0;
1113 dimm->idimm_valid |= IMC_DIMM_V_BAD_WIDTH;
1114 break;
1115 }
1116 } else {
1117 dimm->idimm_width = 0;
1118 }
1119
1120 dimm->idimm_nranks = 1 << IMC_MTR_DDR_RANKS(mtr);
1121 switch (imc->imc_gen) {
1122 case IMC_GEN_HASWELL:
1123 case IMC_GEN_BROADWELL:
1124 case IMC_GEN_SKYLAKE:
1125 if (dimm->idimm_nranks > IMC_MTR_DDR_RANKS_MAX_HAS_SKX) {
1126 dimm->idimm_nranks = 0;
1127 dimm->idimm_valid |= IMC_DIMM_V_BAD_RANKS;
1128 }
1129 break;
1130 default:
1131 if (dimm->idimm_nranks > IMC_MTR_DDR_RANKS_MAX) {
1132 dimm->idimm_nranks = 0;
1133 dimm->idimm_valid |= IMC_DIMM_V_BAD_RANKS;
1134 }
1135 }
1136
1137 disable = IMC_MTR_RANK_DISABLE(mtr);
1138 dimm->idimm_ranks_disabled[0] = (disable & 0x1) != 0;
1139 dimm->idimm_ranks_disabled[1] = (disable & 0x2) != 0;
1140 dimm->idimm_ranks_disabled[2] = (disable & 0x4) != 0;
1141 dimm->idimm_ranks_disabled[3] = (disable & 0x8) != 0;
1142
1143 /*
1144 * Only Haswell and later have this information.
1145 */
1146 if (imc->imc_gen >= IMC_GEN_HASWELL) {
1147 dimm->idimm_hdrl = IMC_MTR_HDRL_HAS_SKX(mtr) != 0;
1148 dimm->idimm_hdrl_parity = IMC_MTR_HDRL_PARITY_HAS_SKX(mtr) != 0;
1149 dimm->idimm_3dsranks = IMC_MTR_3DSRANKS_HAS_SKX(mtr);
1150 if (dimm->idimm_3dsranks != 0) {
1151 dimm->idimm_3dsranks = 1 << dimm->idimm_3dsranks;
1152 }
1153 }
1154
1155
1156 if (icn->icn_dimm_type == IMC_DIMM_DDR4) {
1157 dimm->idimm_nbanks = 16;
1158 } else {
1159 dimm->idimm_nbanks = 8;
1160 }
1161
1162 /*
1163 * To calculate the DIMM size we need first take the number of rows and
1164 * columns. This gives us the number of slots per chip. In a given rank
1165 * there are nbanks of these. There are nrank entries of those. Each of
1166 * these slots can fit a byte.
1167 */
1168 dimm->idimm_size = dimm->idimm_nbanks * dimm->idimm_nranks * 8 *
1169 (1ULL << (dimm->idimm_ncolumns + dimm->idimm_nrows));
1170 }
1171
1172 static void
imc_fill_dimms(imc_t * imc,imc_mc_t * icn,imc_channel_t * chan)1173 imc_fill_dimms(imc_t *imc, imc_mc_t *icn, imc_channel_t *chan)
1174 {
1175 uint_t i;
1176
1177 /*
1178 * There's one register for each DIMM that might be present, we always
1179 * read that information to determine information about the DIMMs.
1180 */
1181 chan->ich_ndimms = imc->imc_gen_data->igd_max_dimms;
1182 for (i = 0; i < imc->imc_gen_data->igd_max_dimms; i++) {
1183 uint32_t mtr;
1184 imc_dimm_t *dimm = &chan->ich_dimms[i];
1185
1186 bzero(dimm, sizeof (imc_dimm_t));
1187 mtr = pci_config_get32(chan->ich_desc->istub_cfgspace,
1188 imc->imc_gen_data->igd_mtr_offsets[i]);
1189 dimm->idimm_mtr = mtr;
1190 /*
1191 * We don't really expect to get a bad PCIe read. However, if we
1192 * do, treat that for the moment as though the DIMM is bad.
1193 */
1194 if (mtr == PCI_EINVAL32) {
1195 dimm->idimm_valid |= IMC_DIMM_V_BAD_PCI_READ;
1196 continue;
1197 }
1198
1199 imc_decode_mtr(imc, icn, dimm, mtr);
1200 }
1201 }
1202
1203 static boolean_t
imc_fill_controller(imc_t * imc,imc_mc_t * icn)1204 imc_fill_controller(imc_t *imc, imc_mc_t *icn)
1205 {
1206 uint32_t mcmtr;
1207
1208 mcmtr = pci_config_get32(icn->icn_main0->istub_cfgspace,
1209 imc->imc_gen_data->igd_mcmtr_offset);
1210 if (mcmtr == PCI_EINVAL32) {
1211 icn->icn_invalid = B_TRUE;
1212 return (B_FALSE);
1213 }
1214
1215 icn->icn_closed = IMC_MCMTR_CLOSED_PAGE(mcmtr) != 0;
1216 if (imc->imc_gen < IMC_GEN_SKYLAKE) {
1217 icn->icn_lockstep = IMC_MCMTR_LOCKSTEP(mcmtr) != 0;
1218 } else {
1219 icn->icn_lockstep = B_FALSE;
1220 }
1221
1222 icn->icn_ecc = IMC_MCMTR_ECC_ENABLED(mcmtr) != 0;
1223
1224 /*
1225 * SNB and IVB only support DDR3. Haswell and Broadwell may support
1226 * DDR4, depends on the SKU. Skylake only supports DDR4.
1227 */
1228 switch (imc->imc_gen) {
1229 case IMC_GEN_SANDY:
1230 case IMC_GEN_IVY:
1231 icn->icn_dimm_type = IMC_DIMM_DDR3;
1232 break;
1233 case IMC_GEN_HASWELL:
1234 case IMC_GEN_BROADWELL:
1235 if (IMC_MCMTR_DDR4_HAS_BRD(mcmtr)) {
1236 icn->icn_dimm_type = IMC_DIMM_DDR4;
1237 } else {
1238 icn->icn_dimm_type = IMC_DIMM_DDR3;
1239 }
1240 break;
1241 default:
1242 /*
1243 * Skylake and on are all DDR4.
1244 */
1245 icn->icn_dimm_type = IMC_DIMM_DDR4;
1246 break;
1247 }
1248
1249 if (imc->imc_gen >= IMC_GEN_SKYLAKE && icn->icn_m2m != NULL) {
1250 icn->icn_topo = pci_config_get32(icn->icn_m2m->istub_cfgspace,
1251 imc->imc_gen_data->igd_topo_offset);
1252 }
1253
1254 return (B_TRUE);
1255 }
1256
1257 /*
1258 * Walk the IMC data and fill in the information on DIMMs and the memory
1259 * controller configurations.
1260 */
1261 static void
imc_fill_data(imc_t * imc)1262 imc_fill_data(imc_t *imc)
1263 {
1264 uint_t csock, cmc, cchan;
1265
1266 for (csock = 0; csock < imc->imc_nsockets; csock++) {
1267 imc_socket_t *sock = &imc->imc_sockets[csock];
1268
1269 for (cmc = 0; cmc < sock->isock_nimc; cmc++) {
1270 imc_mc_t *icn = &sock->isock_imcs[cmc];
1271
1272 if (!imc_fill_controller(imc, icn))
1273 continue;
1274
1275 for (cchan = 0; cchan < icn->icn_nchannels; cchan++) {
1276 imc_fill_dimms(imc, icn,
1277 &icn->icn_channels[cchan]);
1278 }
1279 }
1280 }
1281 }
1282
1283 static nvlist_t *
imc_nvl_create_dimm(imc_t * imc,imc_dimm_t * dimm)1284 imc_nvl_create_dimm(imc_t *imc, imc_dimm_t *dimm)
1285 {
1286 nvlist_t *nvl;
1287
1288 nvl = fnvlist_alloc();
1289 fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_PRESENT,
1290 dimm->idimm_present);
1291 if (!dimm->idimm_present) {
1292 return (nvl);
1293 }
1294
1295 fnvlist_add_uint64(nvl, MCINTEL_NVLIST_V1_DIMM_SIZE, dimm->idimm_size);
1296 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_NCOLS,
1297 dimm->idimm_ncolumns);
1298 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_NROWS,
1299 dimm->idimm_nrows);
1300
1301 if (imc->imc_gen > IMC_GEN_SANDY) {
1302 fnvlist_add_uint64(nvl, MCINTEL_NVLIST_V1_DIMM_DENSITY,
1303 dimm->idimm_density * (1ULL << 30));
1304 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_WIDTH,
1305 dimm->idimm_width);
1306 }
1307 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_RANKS,
1308 dimm->idimm_nranks);
1309 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_BANKS,
1310 dimm->idimm_nbanks);
1311 fnvlist_add_boolean_array(nvl, MCINTEL_NVLIST_V1_DIMM_RDIS,
1312 dimm->idimm_ranks_disabled, IMC_MAX_RANK_DISABLE);
1313
1314 if (imc->imc_gen >= IMC_GEN_HASWELL) {
1315 fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_HDRL,
1316 dimm->idimm_hdrl);
1317 fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_DIMM_HDRLP,
1318 dimm->idimm_hdrl_parity);
1319 if (dimm->idimm_3dsranks > 0) {
1320 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_DIMM_3DRANK,
1321 dimm->idimm_3dsranks);
1322 }
1323 }
1324
1325 return (nvl);
1326 }
1327
1328 static nvlist_t *
imc_nvl_create_channel(imc_t * imc,imc_channel_t * chan)1329 imc_nvl_create_channel(imc_t *imc, imc_channel_t *chan)
1330 {
1331 nvlist_t *nvl;
1332 nvlist_t *dimms[IMC_MAX_DIMMPERCHAN];
1333 uint_t i;
1334
1335 nvl = fnvlist_alloc();
1336 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_CHAN_NDPC,
1337 imc->imc_gen_data->igd_max_dimms);
1338 for (i = 0; i < imc->imc_gen_data->igd_max_dimms; i++) {
1339 dimms[i] = imc_nvl_create_dimm(imc, &chan->ich_dimms[i]);
1340 }
1341
1342 fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_CHAN_DIMMS,
1343 dimms, i);
1344
1345 for (; i > 0; i--) {
1346 nvlist_free(dimms[i-1]);
1347 }
1348
1349 return (nvl);
1350 }
1351
1352 static nvlist_t *
imc_nvl_create_mc(imc_t * imc,imc_mc_t * icn)1353 imc_nvl_create_mc(imc_t *imc, imc_mc_t *icn)
1354 {
1355 nvlist_t *nvl;
1356 nvlist_t *channels[IMC_MAX_CHANPERMC];
1357 uint_t i;
1358
1359 nvl = fnvlist_alloc();
1360 fnvlist_add_uint32(nvl, MCINTEL_NVLIST_V1_MC_NCHAN, icn->icn_nchannels);
1361 fnvlist_add_boolean_value(nvl, MCINTEL_NVLIST_V1_MC_ECC,
1362 icn->icn_ecc);
1363 if (icn->icn_lockstep) {
1364 fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_CHAN_MODE,
1365 MCINTEL_NVLIST_V1_MC_CHAN_MODE_LOCK);
1366 } else {
1367 fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_CHAN_MODE,
1368 MCINTEL_NVLIST_V1_MC_CHAN_MODE_INDEP);
1369
1370 }
1371
1372 if (icn->icn_closed) {
1373 fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_POLICY,
1374 MCINTEL_NVLIST_V1_MC_POLICY_CLOSED);
1375 } else {
1376 fnvlist_add_string(nvl, MCINTEL_NVLIST_V1_MC_POLICY,
1377 MCINTEL_NVLIST_V1_MC_POLICY_OPEN);
1378 }
1379
1380 for (i = 0; i < icn->icn_nchannels; i++) {
1381 channels[i] = imc_nvl_create_channel(imc,
1382 &icn->icn_channels[i]);
1383 }
1384 fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_MC_CHANNELS,
1385 channels, icn->icn_nchannels);
1386 for (i = 0; i < icn->icn_nchannels; i++) {
1387 nvlist_free(channels[i]);
1388 }
1389
1390 return (nvl);
1391 }
1392
1393 static void
imc_nvl_pack(imc_socket_t * sock,boolean_t sleep)1394 imc_nvl_pack(imc_socket_t *sock, boolean_t sleep)
1395 {
1396 char *buf = NULL;
1397 size_t len = 0;
1398 int kmflag;
1399
1400 if (sock->isock_nvl == NULL)
1401 return;
1402
1403 if (sock->isock_buf != NULL)
1404 return;
1405
1406 if (sleep) {
1407 kmflag = KM_SLEEP;
1408 } else {
1409 kmflag = KM_NOSLEEP_LAZY;
1410 }
1411
1412 if (nvlist_pack(sock->isock_nvl, &buf, &len, NV_ENCODE_XDR,
1413 kmflag) != 0) {
1414 return;
1415 }
1416
1417 sock->isock_buf = buf;
1418 sock->isock_buflen = len;
1419 sock->isock_gen++;
1420 }
1421
1422 static void
imc_decoder_pack(imc_t * imc)1423 imc_decoder_pack(imc_t *imc)
1424 {
1425 char *buf = NULL;
1426 size_t len = 0;
1427
1428 if (imc->imc_decoder_buf != NULL)
1429 return;
1430
1431 if (imc->imc_decoder_dump == NULL) {
1432 imc->imc_decoder_dump = imc_dump_decoder(imc);
1433 }
1434
1435 if (nvlist_pack(imc->imc_decoder_dump, &buf, &len, NV_ENCODE_XDR,
1436 KM_NOSLEEP_LAZY) != 0) {
1437 return;
1438 }
1439
1440 imc->imc_decoder_buf = buf;
1441 imc->imc_decoder_len = len;
1442 }
1443
1444 static void
imc_nvl_create(imc_t * imc)1445 imc_nvl_create(imc_t *imc)
1446 {
1447 uint_t csock;
1448 for (csock = 0; csock < imc->imc_nsockets; csock++) {
1449 uint_t i;
1450 nvlist_t *nvl;
1451 nvlist_t *mcs[IMC_MAX_IMCPERSOCK];
1452 imc_socket_t *sock = &imc->imc_sockets[csock];
1453
1454 nvl = fnvlist_alloc();
1455 fnvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
1456 MCINTEL_NVLIST_VERS1);
1457 fnvlist_add_uint8(nvl, MCINTEL_NVLIST_V1_NMC,
1458 sock->isock_nimc);
1459
1460 for (i = 0; i < sock->isock_nimc; i++) {
1461 mcs[i] = imc_nvl_create_mc(imc, &sock->isock_imcs[i]);
1462 }
1463
1464 fnvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_V1_MCS,
1465 mcs, sock->isock_nimc);
1466
1467 for (i = 0; i < sock->isock_nimc; i++) {
1468 nvlist_free(mcs[i]);
1469 }
1470
1471 sock->isock_nvl = nvl;
1472 imc_nvl_pack(sock, B_TRUE);
1473 }
1474 }
1475
1476 /*
1477 * Determine the top of low and high memory. These determine whether transaction
1478 * addresses target main memory or not. Unfortunately, the way that these are
1479 * stored and fetched changes with different generations.
1480 */
1481 static void
imc_sad_read_tohm(imc_t * imc,imc_sad_t * sad)1482 imc_sad_read_tohm(imc_t *imc, imc_sad_t *sad)
1483 {
1484 uint32_t tolm, tohm_low, tohm_hi;
1485
1486 tolm = pci_config_get32(sad->isad_tolh->istub_cfgspace,
1487 imc->imc_gen_data->igd_tolm_offset);
1488 tohm_low = pci_config_get32(sad->isad_tolh->istub_cfgspace,
1489 imc->imc_gen_data->igd_tohm_low_offset);
1490 if (imc->imc_gen_data->igd_tohm_hi_offset != 0) {
1491 tohm_hi = pci_config_get32(sad->isad_tolh->istub_cfgspace,
1492 imc->imc_gen_data->igd_tohm_hi_offset);
1493 } else {
1494 tohm_hi = 0;
1495 }
1496
1497 if (tolm == PCI_EINVAL32 || tohm_low == PCI_EINVAL32 ||
1498 tohm_hi == PCI_EINVAL32) {
1499 sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
1500 return;
1501 }
1502
1503 switch (imc->imc_gen) {
1504 case IMC_GEN_SANDY:
1505 case IMC_GEN_IVY:
1506 sad->isad_tolm = ((uint64_t)tolm & IMC_TOLM_SNB_IVY_MASK) <<
1507 IMC_TOLM_SNB_IVY_SHIFT;
1508 sad->isad_tohm = ((uint64_t)tohm_low & IMC_TOHM_SNB_IVY_MASK) <<
1509 IMC_TOLM_SNB_IVY_SHIFT;
1510 break;
1511 case IMC_GEN_HASWELL:
1512 case IMC_GEN_BROADWELL:
1513 case IMC_GEN_SKYLAKE:
1514 sad->isad_tolm = (uint64_t)tolm & IMC_TOLM_HAS_SKX_MASK;
1515 sad->isad_tohm = ((uint64_t)tohm_low &
1516 IMC_TOHM_LOW_HAS_SKX_MASK) | ((uint64_t)tohm_hi << 32);
1517
1518 /*
1519 * Adjust the values to turn them into an exclusive range.
1520 */
1521 sad->isad_tolm += IMC_TOLM_HAS_SKY_EXCL;
1522 sad->isad_tohm += IMC_TOHM_HAS_SKY_EXCL;
1523 break;
1524 default:
1525 dev_err(imc->imc_dip, CE_PANIC, "imc driver programmer error: "
1526 "set to unknown generation: %u", imc->imc_gen);
1527 return;
1528 }
1529 }
1530
1531 static void
imc_sad_fill_rule(imc_t * imc,imc_sad_t * sad,imc_sad_rule_t * rule,uint32_t raw)1532 imc_sad_fill_rule(imc_t *imc, imc_sad_t *sad, imc_sad_rule_t *rule,
1533 uint32_t raw)
1534 {
1535 uint_t attr;
1536 uint64_t limit;
1537 bzero(rule, sizeof (imc_sad_rule_t));
1538
1539 rule->isr_raw_dram = raw;
1540 rule->isr_enable = IMC_SAD_DRAM_RULE_ENABLE(raw) != 0;
1541 if (imc->imc_gen < IMC_GEN_SKYLAKE) {
1542 switch (IMC_SAD_DRAM_INTERLEAVE_SNB_BRD(raw)) {
1543 case IMC_SAD_DRAM_INTERLEAVE_SNB_BRD_8t6:
1544 rule->isr_imode = IMC_SAD_IMODE_8t6;
1545 break;
1546 case IMC_SAD_DRAM_INTERLEAVE_SNB_BRD_8t6XOR:
1547 rule->isr_imode = IMC_SAD_IMODE_8t6XOR;
1548 break;
1549 }
1550 } else {
1551 switch (IMC_SAD_DRAM_INTERLEAVE_SKX(raw)) {
1552 case IMC_SAD_DRAM_INTERLEAVE_SKX_8t6:
1553 rule->isr_imode = IMC_SAD_IMODE_8t6;
1554 break;
1555 case IMC_SAD_DRAM_INTERLEAVE_SKX_10t8:
1556 rule->isr_imode = IMC_SAD_IMODE_10t8;
1557 break;
1558 case IMC_SAD_DRAM_INTERLEAVE_SKX_14t12:
1559 rule->isr_imode = IMC_SAD_IMODE_14t12;
1560 break;
1561 case IMC_SAD_DRAM_INTERLEAVE_SKX_32t30:
1562 rule->isr_imode = IMC_SAD_IMODE_32t30;
1563 break;
1564 }
1565 }
1566
1567 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
1568 attr = IMC_SAD_DRAM_ATTR_SKX(raw);
1569 } else {
1570 attr = IMC_SAD_DRAM_ATTR_SNB_BRD(raw);
1571 }
1572
1573 switch (attr) {
1574 case IMC_SAD_DRAM_ATTR_DRAM:
1575 rule->isr_type = IMC_SAD_TYPE_DRAM;
1576 break;
1577 case IMC_SAD_DRAM_ATTR_MMCFG:
1578 rule->isr_type = IMC_SAD_TYPE_MMCFG;
1579 break;
1580 case IMC_SAD_DRAM_ATTR_NXM:
1581 if (imc->imc_gen < IMC_GEN_SKYLAKE) {
1582 sad->isad_valid |= IMC_SAD_V_BAD_DRAM_ATTR;
1583 }
1584 rule->isr_type = IMC_SAD_TYPE_NXM;
1585 break;
1586 default:
1587 sad->isad_valid |= IMC_SAD_V_BAD_DRAM_ATTR;
1588 break;
1589 }
1590
1591 /*
1592 * Fetch the limit which represents bits 45:26 and then adjust this so
1593 * that it is exclusive.
1594 */
1595 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
1596 limit = IMC_SAD_DRAM_LIMIT_SKX(raw);
1597 } else {
1598 limit = IMC_SAD_DRAM_LIMIT_SNB_BRD(raw);
1599 }
1600 rule->isr_limit = (limit << IMC_SAD_DRAM_LIMIT_SHIFT) +
1601 IMC_SAD_DRAM_LIMIT_EXCLUSIVE;
1602
1603 /*
1604 * The rest of this does not apply to Sandy Bridge.
1605 */
1606 if (imc->imc_gen == IMC_GEN_SANDY)
1607 return;
1608
1609 if (imc->imc_gen >= IMC_GEN_IVY && imc->imc_gen < IMC_GEN_SKYLAKE) {
1610 rule->isr_a7mode = IMC_SAD_DRAM_A7_IVB_BRD(raw) != 0;
1611 return;
1612 }
1613
1614 switch (IMC_SAD_DRAM_MOD23_SKX(raw)) {
1615 case IMC_SAD_DRAM_MOD23_MOD3:
1616 rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD3;
1617 break;
1618 case IMC_SAD_DRAM_MOD23_MOD2_C01:
1619 rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_01;
1620 break;
1621 case IMC_SAD_DRAM_MOD23_MOD2_C12:
1622 rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_12;
1623 break;
1624 case IMC_SAD_DRAM_MOD23_MOD2_C02:
1625 rule->isr_mod_type = IMC_SAD_MOD_TYPE_MOD2_02;
1626 break;
1627 }
1628
1629 rule->isr_need_mod3 = IMC_SAD_DRAM_MOD3_SKX(raw) != 0;
1630 switch (IMC_SAD_DRAM_MOD3_SKX(raw)) {
1631 case IMC_SAD_DRAM_MOD3_MODE_45t6:
1632 rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t6;
1633 break;
1634 case IMC_SAD_DRAM_MOD3_MODE_45t8:
1635 rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t8;
1636 break;
1637 case IMC_SAD_DRAM_MOD3_MODE_45t12:
1638 rule->isr_mod_mode = IMC_SAD_MOD_MODE_45t12;
1639 break;
1640 default:
1641 sad->isad_valid |= IMC_SAD_V_BAD_MOD3;
1642 break;
1643 }
1644 }
1645
1646 static void
imc_sad_fill_rule_interleave(imc_t * imc,imc_sad_rule_t * rule,uint32_t raw)1647 imc_sad_fill_rule_interleave(imc_t *imc, imc_sad_rule_t *rule, uint32_t raw)
1648 {
1649 uint_t i;
1650 uint32_t mlen, mbase, skipbits, skipafter;
1651
1652 rule->isr_raw_interleave = raw;
1653
1654 /*
1655 * Right now all architectures always have the maximum number of SAD
1656 * interleave targets.
1657 */
1658 rule->isr_ntargets = IMC_MAX_SAD_INTERLEAVE;
1659
1660 /*
1661 * Sandy Bridge has a gap in the interleave list due to the fact that it
1662 * uses a smaller length.
1663 */
1664 if (imc->imc_gen > IMC_GEN_SANDY) {
1665 mlen = IMC_SAD_ILEAVE_IVB_SKX_LEN;
1666 mbase = IMC_SAD_ILEAVE_IVB_SKX_MASK;
1667 skipbits = skipafter = 0;
1668 } else {
1669 mlen = IMC_SAD_ILEAVE_SNB_LEN;
1670 mbase = IMC_SAD_ILEAVE_SNB_MASK;
1671 skipbits = 2;
1672 skipafter = 4;
1673 }
1674
1675 for (i = 0; i < rule->isr_ntargets; i++) {
1676 uint32_t mask, shift;
1677
1678 shift = i * mlen;
1679 if (i >= skipafter)
1680 shift += skipbits;
1681 mask = mbase << shift;
1682 rule->isr_targets[i] = (raw & mask) >> shift;
1683 }
1684 }
1685
1686 static void
imc_sad_read_dram_rules(imc_t * imc,imc_sad_t * sad)1687 imc_sad_read_dram_rules(imc_t *imc, imc_sad_t *sad)
1688 {
1689 uint_t i;
1690 off_t off;
1691
1692 sad->isad_nrules = imc->imc_gen_data->igd_sad_ndram_rules;
1693 for (i = 0, off = imc->imc_gen_data->igd_sad_dram_offset;
1694 i < sad->isad_nrules; i++, off += sizeof (uint64_t)) {
1695 uint32_t dram, interleave;
1696 imc_sad_rule_t *rule = &sad->isad_rules[i];
1697
1698 dram = pci_config_get32(sad->isad_dram->istub_cfgspace, off);
1699 interleave = pci_config_get32(sad->isad_dram->istub_cfgspace,
1700 off + 4);
1701
1702 if (dram == PCI_EINVAL32 || interleave == PCI_EINVAL32) {
1703 sad->isad_valid |= IMC_SAD_V_BAD_PCI_READ;
1704 return;
1705 }
1706
1707 imc_sad_fill_rule(imc, sad, rule, dram);
1708 imc_sad_fill_rule_interleave(imc, rule, interleave);
1709 }
1710 }
1711
1712 static void
imc_sad_decode_mcroute(imc_t * imc,imc_sad_t * sad)1713 imc_sad_decode_mcroute(imc_t *imc, imc_sad_t *sad)
1714 {
1715 uint_t i;
1716 imc_sad_mcroute_table_t *mc = &sad->isad_mcroute;
1717
1718 if (imc->imc_gen < IMC_GEN_SKYLAKE)
1719 return;
1720 if (sad->isad_valid != 0)
1721 return;
1722
1723 mc->ismc_nroutes = IMC_MAX_SAD_MCROUTES;
1724 for (i = 0; i < IMC_MAX_SAD_MCROUTES; i++) {
1725 uint_t chanoff, ringoff;
1726
1727 ringoff = i * IMC_MC_ROUTE_RING_BITS;
1728 chanoff = i * IMC_MC_ROUTE_CHAN_BITS + IMC_MC_ROUTE_CHAN_OFFSET;
1729
1730 mc->ismc_mcroutes[i].ismce_imc = (mc->ismc_raw_mcroute >>
1731 ringoff) & IMC_MC_ROUTE_RING_MASK;
1732 mc->ismc_mcroutes[i].ismce_pchannel = (mc->ismc_raw_mcroute >>
1733 chanoff) & IMC_MC_ROUTE_CHAN_MASK;
1734 }
1735 }
1736
1737 /*
1738 * Initialize the SAD. To do this we have to do a few different things:
1739 *
1740 * 1. Determine where the top of low and high memory is.
1741 * 2. Read and decode all of the rules for the SAD
1742 * 3. On systems with a route table, decode the raw routes
1743 *
1744 * At this point in time, we treat TOLM and TOHM as a per-socket construct, even
1745 * though it really should be global, this just makes life a bit simpler.
1746 */
1747 static void
imc_decoder_init_sad(imc_t * imc)1748 imc_decoder_init_sad(imc_t *imc)
1749 {
1750 uint_t i;
1751
1752 for (i = 0; i < imc->imc_nsockets; i++) {
1753 imc_sad_read_tohm(imc, &imc->imc_sockets[i].isock_sad);
1754 imc_sad_read_dram_rules(imc, &imc->imc_sockets[i].isock_sad);
1755 imc_sad_decode_mcroute(imc, &imc->imc_sockets[i].isock_sad);
1756 }
1757 }
1758
1759 static void
imc_tad_fill_rule(imc_t * imc,imc_tad_t * tad,imc_tad_rule_t * prev,imc_tad_rule_t * rule,uint32_t val)1760 imc_tad_fill_rule(imc_t *imc, imc_tad_t *tad, imc_tad_rule_t *prev,
1761 imc_tad_rule_t *rule, uint32_t val)
1762 {
1763 uint64_t limit;
1764
1765 limit = IMC_TAD_LIMIT(val);
1766 rule->itr_limit = (limit << IMC_TAD_LIMIT_SHIFT) +
1767 IMC_TAD_LIMIT_EXCLUSIVE;
1768 rule->itr_raw = val;
1769
1770 switch (IMC_TAD_SOCK_WAY(val)) {
1771 case IMC_TAD_SOCK_WAY_1:
1772 rule->itr_sock_way = 1;
1773 break;
1774 case IMC_TAD_SOCK_WAY_2:
1775 rule->itr_sock_way = 2;
1776 break;
1777 case IMC_TAD_SOCK_WAY_4:
1778 rule->itr_sock_way = 4;
1779 break;
1780 case IMC_TAD_SOCK_WAY_8:
1781 rule->itr_sock_way = 8;
1782 break;
1783 }
1784
1785 rule->itr_chan_way = IMC_TAD_CHAN_WAY(val) + 1;
1786 rule->itr_sock_gran = IMC_TAD_GRAN_64B;
1787 rule->itr_chan_gran = IMC_TAD_GRAN_64B;
1788
1789 /*
1790 * Starting with Skylake the targets that are used are no longer part of
1791 * the TAD. Those come from the IMC route table.
1792 */
1793 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
1794 rule->itr_ntargets = 0;
1795 return;
1796 }
1797
1798 rule->itr_ntargets = IMC_TAD_SNB_BRD_NTARGETS;
1799 rule->itr_targets[0] = IMC_TAD_TARG0(val);
1800 rule->itr_targets[1] = IMC_TAD_TARG1(val);
1801 rule->itr_targets[2] = IMC_TAD_TARG2(val);
1802 rule->itr_targets[3] = IMC_TAD_TARG3(val);
1803
1804 if (prev == NULL) {
1805 rule->itr_base = 0;
1806 } else {
1807 rule->itr_base = prev->itr_limit + 1;
1808 }
1809 }
1810
1811 static void
imc_tad_fill_skx(imc_t * imc,imc_tad_t * tad,imc_tad_rule_t * rule,uint32_t val)1812 imc_tad_fill_skx(imc_t *imc, imc_tad_t *tad, imc_tad_rule_t *rule,
1813 uint32_t val)
1814 {
1815 uint64_t base;
1816
1817 rule->itr_raw_gran = val;
1818 base = IMC_TAD_BASE_BASE(val);
1819 rule->itr_base = base << IMC_TAD_BASE_SHIFT;
1820
1821 switch (IMC_TAD_BASE_CHAN_GRAN(val)) {
1822 case IMC_TAD_BASE_CHAN_GRAN_64B:
1823 rule->itr_sock_gran = IMC_TAD_GRAN_64B;
1824 break;
1825 case IMC_TAD_BASE_CHAN_GRAN_256B:
1826 rule->itr_sock_gran = IMC_TAD_GRAN_256B;
1827 break;
1828 case IMC_TAD_BASE_CHAN_GRAN_4KB:
1829 rule->itr_sock_gran = IMC_TAD_GRAN_4KB;
1830 break;
1831 default:
1832 tad->itad_valid |= IMC_TAD_V_BAD_CHAN_GRAN;
1833 return;
1834 }
1835
1836 switch (IMC_TAD_BASE_SOCK_GRAN(val)) {
1837 case IMC_TAD_BASE_SOCK_GRAN_64B:
1838 rule->itr_sock_gran = IMC_TAD_GRAN_64B;
1839 break;
1840 case IMC_TAD_BASE_SOCK_GRAN_256B:
1841 rule->itr_sock_gran = IMC_TAD_GRAN_256B;
1842 break;
1843 case IMC_TAD_BASE_SOCK_GRAN_4KB:
1844 rule->itr_sock_gran = IMC_TAD_GRAN_4KB;
1845 break;
1846 case IMC_TAD_BASE_SOCK_GRAN_1GB:
1847 rule->itr_sock_gran = IMC_TAD_GRAN_1GB;
1848 break;
1849 }
1850 }
1851
1852 /*
1853 * When mirroring is enabled, at least in Sandy Bridge to Broadwell, it's
1854 * suggested that the channel wayness will take this into account and therefore
1855 * should be accurately reflected.
1856 */
1857 static void
imc_tad_read_rules(imc_t * imc,imc_tad_t * tad)1858 imc_tad_read_rules(imc_t *imc, imc_tad_t *tad)
1859 {
1860 uint_t i;
1861 off_t baseoff;
1862 imc_tad_rule_t *prev;
1863
1864 tad->itad_nrules = imc->imc_gen_data->igd_tad_nrules;
1865 for (i = 0, baseoff = imc->imc_gen_data->igd_tad_rule_offset,
1866 prev = NULL; i < tad->itad_nrules;
1867 i++, baseoff += sizeof (uint32_t)) {
1868 uint32_t val;
1869 off_t off;
1870 imc_tad_rule_t *rule = &tad->itad_rules[i];
1871
1872 /*
1873 * On Skylake, the TAD rules are split among two registers. The
1874 * latter set mimics what exists on pre-Skylake.
1875 */
1876 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
1877 off = baseoff + IMC_SKX_WAYNESS_OFFSET;
1878 } else {
1879 off = baseoff;
1880 }
1881
1882 val = pci_config_get32(tad->itad_stub->istub_cfgspace, off);
1883 if (val == PCI_EINVAL32) {
1884 tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
1885 return;
1886 }
1887
1888 imc_tad_fill_rule(imc, tad, prev, rule, val);
1889 prev = rule;
1890 if (imc->imc_gen < IMC_GEN_SKYLAKE)
1891 continue;
1892
1893 val = pci_config_get32(tad->itad_stub->istub_cfgspace, baseoff);
1894 if (val == PCI_EINVAL32) {
1895 tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
1896 return;
1897 }
1898
1899 imc_tad_fill_skx(imc, tad, rule, val);
1900 }
1901 }
1902
1903 /*
1904 * Check for features which change how decoding works.
1905 */
1906 static void
imc_tad_read_features(imc_t * imc,imc_tad_t * tad,imc_mc_t * mc)1907 imc_tad_read_features(imc_t *imc, imc_tad_t *tad, imc_mc_t *mc)
1908 {
1909 uint32_t val;
1910
1911 /*
1912 * Determine whether or not lockstep mode or mirroring are enabled.
1913 * These change the behavior of how we're supposed to interpret channel
1914 * wayness. Lockstep is available in the TAD's features. Mirroring is
1915 * available on the IMC's features. This isn't present in Skylake+. On
1916 * Skylake Mirorring is a property of the SAD rule and there is no
1917 * lockstep.
1918 */
1919 switch (imc->imc_gen) {
1920 case IMC_GEN_SANDY:
1921 case IMC_GEN_IVY:
1922 case IMC_GEN_HASWELL:
1923 case IMC_GEN_BROADWELL:
1924 val = pci_config_get32(tad->itad_stub->istub_cfgspace,
1925 imc->imc_gen_data->igd_tad_sysdef);
1926 if (val == PCI_EINVAL32) {
1927 tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
1928 return;
1929 }
1930 if (IMC_TAD_SYSDEF_LOCKSTEP(val)) {
1931 tad->itad_flags |= IMC_TAD_FLAG_LOCKSTEP;
1932 }
1933
1934 val = pci_config_get32(mc->icn_main1->istub_cfgspace,
1935 imc->imc_gen_data->igd_mc_mirror);
1936 if (val == PCI_EINVAL32) {
1937 tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
1938 return;
1939 }
1940 if (IMC_MC_MIRROR_SNB_BRD(val)) {
1941 tad->itad_flags |= IMC_TAD_FLAG_MIRROR;
1942 }
1943 break;
1944 default:
1945 break;
1946 }
1947
1948 /*
1949 * Now, go through and look at values that'll change how we do the
1950 * channel index and adddress calculation. These are only present
1951 * between Ivy Bridge and Broadwell. They don't exist on Sandy Bridge
1952 * and they don't exist on Skylake+.
1953 */
1954 switch (imc->imc_gen) {
1955 case IMC_GEN_IVY:
1956 case IMC_GEN_HASWELL:
1957 case IMC_GEN_BROADWELL:
1958 val = pci_config_get32(tad->itad_stub->istub_cfgspace,
1959 imc->imc_gen_data->igd_tad_sysdef2);
1960 if (val == PCI_EINVAL32) {
1961 tad->itad_valid |= IMC_TAD_V_BAD_PCI_READ;
1962 return;
1963 }
1964 if (IMC_TAD_SYSDEF2_SHIFTUP(val)) {
1965 tad->itad_flags |= IMC_TAD_FLAG_CHANSHIFT;
1966 }
1967 if (IMC_TAD_SYSDEF2_SHIFTUP(val)) {
1968 tad->itad_flags |= IMC_TAD_FLAG_CHANHASH;
1969 }
1970 break;
1971 default:
1972 break;
1973 }
1974 }
1975
1976 /*
1977 * Read the IMC channel interleave records
1978 */
1979 static void
imc_tad_read_interleave(imc_t * imc,imc_channel_t * chan)1980 imc_tad_read_interleave(imc_t *imc, imc_channel_t *chan)
1981 {
1982 uint_t i;
1983 off_t off;
1984
1985 chan->ich_ntad_offsets = imc->imc_gen_data->igd_tad_nrules;
1986 for (i = 0, off = imc->imc_gen_data->igd_tad_chan_offset;
1987 i < chan->ich_ntad_offsets; i++, off += sizeof (uint32_t)) {
1988 uint32_t val;
1989 uint64_t offset;
1990
1991 val = pci_config_get32(chan->ich_desc->istub_cfgspace,
1992 off);
1993 if (val == PCI_EINVAL32) {
1994 chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
1995 return;
1996 }
1997
1998 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
1999 offset = IMC_TADCHAN_OFFSET_SKX(val);
2000 } else {
2001 offset = IMC_TADCHAN_OFFSET_SNB_BRD(val);
2002 }
2003
2004 chan->ich_tad_offsets[i] = offset << IMC_TADCHAN_OFFSET_SHIFT;
2005 chan->ich_tad_offsets_raw[i] = val;
2006 }
2007 }
2008
2009 static void
imc_decoder_init_tad(imc_t * imc)2010 imc_decoder_init_tad(imc_t *imc)
2011 {
2012 uint_t i;
2013
2014 for (i = 0; i < imc->imc_nsockets; i++) {
2015 uint_t j;
2016
2017 for (j = 0; j < imc->imc_sockets[i].isock_ntad; j++) {
2018 imc_tad_read_features(imc,
2019 &imc->imc_sockets[i].isock_tad[j],
2020 &imc->imc_sockets[i].isock_imcs[j]);
2021 imc_tad_read_rules(imc,
2022 &imc->imc_sockets[i].isock_tad[j]);
2023 }
2024 }
2025
2026 for (i = 0; i < imc->imc_nsockets; i++) {
2027 uint_t j;
2028 imc_socket_t *sock = &imc->imc_sockets[i];
2029
2030 for (j = 0; j < imc->imc_sockets[i].isock_nimc; j++) {
2031 uint_t k;
2032 imc_mc_t *mc = &sock->isock_imcs[j];
2033
2034 for (k = 0; k < mc->icn_nchannels; k++) {
2035 imc_channel_t *chan = &mc->icn_channels[k];
2036 imc_tad_read_interleave(imc, chan);
2037 }
2038 }
2039 }
2040 }
2041
2042 static void
imc_rir_read_ileave_offsets(imc_t * imc,imc_channel_t * chan,imc_rank_ileave_t * rank,uint_t rirno,boolean_t contig)2043 imc_rir_read_ileave_offsets(imc_t *imc, imc_channel_t *chan,
2044 imc_rank_ileave_t *rank, uint_t rirno, boolean_t contig)
2045 {
2046 uint_t i;
2047 off_t off, incr;
2048
2049 /*
2050 * Rank interleave offset registers come in two forms. Either they are
2051 * contiguous for a given wayness, meaning that all of the entries for
2052 * wayness zero are contiguous, or they are sparse, meaning that there
2053 * is a bank for entry zero for all wayness, then entry one for all
2054 * wayness, etc.
2055 */
2056 if (contig) {
2057 off = imc->imc_gen_data->igd_rir_ileave_offset +
2058 (rirno * imc->imc_gen_data->igd_rir_nileaves *
2059 sizeof (uint32_t));
2060 incr = sizeof (uint32_t);
2061 } else {
2062 off = imc->imc_gen_data->igd_rir_ileave_offset +
2063 (rirno * sizeof (uint32_t));
2064 incr = imc->imc_gen_data->igd_rir_nileaves * sizeof (uint32_t);
2065 }
2066 for (i = 0; i < rank->irle_nentries; i++, off += incr) {
2067 uint32_t val;
2068 uint64_t offset;
2069 imc_rank_ileave_entry_t *ent = &rank->irle_entries[i];
2070
2071 val = pci_config_get32(chan->ich_desc->istub_cfgspace, off);
2072 if (val == PCI_EINVAL32) {
2073 chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
2074 return;
2075 }
2076
2077 switch (imc->imc_gen) {
2078 case IMC_GEN_BROADWELL:
2079 ent->irle_target = IMC_RIR_OFFSET_TARGET_BRD(val);
2080 break;
2081 default:
2082 ent->irle_target = IMC_RIR_OFFSET_TARGET(val);
2083 break;
2084 }
2085 if (imc->imc_gen >= IMC_GEN_HASWELL) {
2086 offset = IMC_RIR_OFFSET_OFFSET_HAS_SKX(val);
2087 } else {
2088 offset = IMC_RIR_OFFSET_OFFSET_SNB_IVB(val);
2089 }
2090 ent->irle_offset = offset << IMC_RIR_OFFSET_SHIFT;
2091 }
2092 }
2093
2094 static void
imc_rir_read_wayness(imc_t * imc,imc_channel_t * chan)2095 imc_rir_read_wayness(imc_t *imc, imc_channel_t *chan)
2096 {
2097 uint_t i;
2098 off_t off;
2099
2100 chan->ich_nrankileaves = imc->imc_gen_data->igd_rir_nways;
2101 for (i = 0, off = imc->imc_gen_data->igd_rir_way_offset;
2102 i < chan->ich_nrankileaves; i++, off += sizeof (uint32_t)) {
2103 uint32_t val;
2104 uint64_t lim;
2105 imc_rank_ileave_t *ent = &chan->ich_rankileaves[i];
2106
2107 val = pci_config_get32(chan->ich_desc->istub_cfgspace, off);
2108 if (val == PCI_EINVAL32) {
2109 chan->ich_valid |= IMC_CHANNEL_V_BAD_PCI_READ;
2110 return;
2111 }
2112
2113 ent->irle_raw = val;
2114 ent->irle_enabled = IMC_RIR_WAYNESS_ENABLED(val) != 0;
2115 ent->irle_nways = 1 << IMC_RIR_WAYNESS_WAY(val);
2116 ent->irle_nwaysbits = IMC_RIR_WAYNESS_WAY(val);
2117 if (imc->imc_gen >= IMC_GEN_HASWELL) {
2118 lim = IMC_RIR_LIMIT_HAS_SKX(val);
2119 } else {
2120 lim = IMC_RIR_LIMIT_SNB_IVB(val);
2121 }
2122
2123 ent->irle_limit = (lim << IMC_RIR_LIMIT_SHIFT) +
2124 IMC_RIR_LIMIT_EXCLUSIVE;
2125
2126 ent->irle_nentries = imc->imc_gen_data->igd_rir_nileaves;
2127 if (imc->imc_gen >= IMC_GEN_SKYLAKE) {
2128 imc_rir_read_ileave_offsets(imc, chan, ent, i, B_FALSE);
2129 } else {
2130 imc_rir_read_ileave_offsets(imc, chan, ent, i, B_TRUE);
2131 }
2132 }
2133 }
2134
2135 static void
imc_decoder_init_rir(imc_t * imc)2136 imc_decoder_init_rir(imc_t *imc)
2137 {
2138 uint_t i;
2139
2140 for (i = 0; i < imc->imc_nsockets; i++) {
2141 uint_t j;
2142 imc_socket_t *sock = &imc->imc_sockets[i];
2143
2144 for (j = 0; j < imc->imc_sockets[i].isock_nimc; j++) {
2145 uint_t k;
2146 imc_mc_t *mc = &sock->isock_imcs[j];
2147
2148 for (k = 0; k < mc->icn_nchannels; k++) {
2149 imc_channel_t *chan = &mc->icn_channels[k];
2150 imc_rir_read_wayness(imc, chan);
2151 }
2152 }
2153 }
2154 }
2155
2156 static cmi_errno_t
imc_mc_patounum(void * arg,uint64_t pa,uint8_t valid_hi,uint8_t valid_lo,uint32_t synd,int syndtype,mc_unum_t * unump)2157 imc_mc_patounum(void *arg, uint64_t pa, uint8_t valid_hi, uint8_t valid_lo,
2158 uint32_t synd, int syndtype, mc_unum_t *unump)
2159 {
2160 imc_t *imc = arg;
2161 uint_t i;
2162 imc_decode_state_t dec;
2163
2164 bzero(&dec, sizeof (dec));
2165 if (!imc_decode_pa(imc, pa, &dec)) {
2166 switch (dec.ids_fail) {
2167 case IMC_DECODE_F_LEGACY_RANGE:
2168 case IMC_DECODE_F_OUTSIDE_DRAM:
2169 return (CMIERR_MC_NOTDIMMADDR);
2170 default:
2171 return (CMIERR_MC_BADSTATE);
2172 }
2173 }
2174
2175 unump->unum_board = 0;
2176 /*
2177 * The chip id needs to be in the order that the OS expects it, which
2178 * may not be our order.
2179 */
2180 for (i = 0; i < imc->imc_nsockets; i++) {
2181 if (imc->imc_spointers[i] == dec.ids_socket)
2182 break;
2183 }
2184 if (i == imc->imc_nsockets) {
2185 return (CMIERR_MC_BADSTATE);
2186 }
2187 unump->unum_chip = i;
2188 unump->unum_mc = dec.ids_tadid;
2189 unump->unum_chan = dec.ids_channelid;
2190 unump->unum_cs = dec.ids_dimmid;
2191 unump->unum_rank = dec.ids_rankid;
2192 unump->unum_offset = dec.ids_rankaddr;
2193 for (i = 0; i < MC_UNUM_NDIMM; i++) {
2194 unump->unum_dimms[i] = MC_INVALNUM;
2195 }
2196
2197 return (CMI_SUCCESS);
2198 }
2199
2200 static cmi_errno_t
imc_mc_unumtopa(void * arg,mc_unum_t * unum,nvlist_t * nvl,uint64_t * pa)2201 imc_mc_unumtopa(void *arg, mc_unum_t *unum, nvlist_t *nvl, uint64_t *pa)
2202 {
2203 return (CMIERR_UNKNOWN);
2204 }
2205
2206 static const cmi_mc_ops_t imc_mc_ops = {
2207 .cmi_mc_patounum = imc_mc_patounum,
2208 .cmi_mc_unumtopa = imc_mc_unumtopa
2209 };
2210
2211 /*
2212 * This is where we really finish attaching and become open for business. This
2213 * occurs once we have all of the expected stubs attached. Here's where all of
2214 * the real fun begins.
2215 */
2216 static void
imc_attach_complete(void * arg)2217 imc_attach_complete(void *arg)
2218 {
2219 imc_t *imc = arg;
2220 cmi_errno_t err;
2221
2222 imc_set_gen_data(imc);
2223
2224 /*
2225 * On SKX and newer, we can fail to map PCI buses at this point due to
2226 * bad PCIe reads.
2227 */
2228 if (!imc_map_stubs(imc)) {
2229 goto done;
2230 }
2231
2232 if (!imc_validate_stubs(imc)) {
2233 imc->imc_flags |= IMC_F_VALIDATE_FAILED;
2234 goto done;
2235 }
2236
2237 imc_fixup_stubs(imc);
2238 imc_map_sockets(imc);
2239
2240 if (!imc_create_minors(imc)) {
2241 goto done;
2242 }
2243
2244 imc_fill_data(imc);
2245 imc_nvl_create(imc);
2246
2247 /*
2248 * Gather additional information that we need so that we can properly
2249 * initialize the memory decoder and encoder.
2250 */
2251 imc_decoder_init_sad(imc);
2252 imc_decoder_init_tad(imc);
2253 imc_decoder_init_rir(imc);
2254
2255 /*
2256 * Register decoder functions. This may fail. If so, try and complain
2257 * loudly, but stay active to allow other data to be useful. Register a
2258 * global handle.
2259 */
2260 if ((err = cmi_mc_register_global(&imc_mc_ops, imc)) != CMI_SUCCESS) {
2261 imc->imc_flags |= IMC_F_MCREG_FAILED;
2262 dev_err(imc->imc_dip, CE_WARN, "failed to register memory "
2263 "decoding operations: 0x%x", err);
2264 }
2265
2266 done:
2267 mutex_enter(&imc->imc_lock);
2268 imc->imc_flags &= IMC_F_ATTACH_DISPATCHED;
2269 imc->imc_flags |= IMC_F_ATTACH_COMPLETE;
2270 mutex_exit(&imc->imc_lock);
2271 }
2272
2273 static int
imc_stub_comparator(const void * l,const void * r)2274 imc_stub_comparator(const void *l, const void *r)
2275 {
2276 const imc_stub_t *sl = l, *sr = r;
2277 if (sl->istub_bus > sr->istub_bus)
2278 return (1);
2279 if (sl->istub_bus < sr->istub_bus)
2280 return (-1);
2281 if (sl->istub_dev > sr->istub_dev)
2282 return (1);
2283 if (sl->istub_dev < sr->istub_dev)
2284 return (-1);
2285 if (sl->istub_func > sr->istub_func)
2286 return (1);
2287 if (sl->istub_func < sr->istub_func)
2288 return (-1);
2289 return (0);
2290 }
2291
2292 static int
imc_stub_scan_cb(dev_info_t * dip,void * arg)2293 imc_stub_scan_cb(dev_info_t *dip, void *arg)
2294 {
2295 int vid, did;
2296 const imc_stub_table_t *table;
2297 imc_t *imc = arg;
2298 int *regs;
2299 uint_t i, nregs;
2300
2301 if (dip == ddi_root_node()) {
2302 return (DDI_WALK_CONTINUE);
2303 }
2304
2305 /*
2306 * Get the dev info name. PCI devices will always be children of PCI
2307 * devices today on x86. If we reach something that has a device name
2308 * that's not PCI, then we can prune it's children.
2309 */
2310 if (strncmp("pci", ddi_get_name(dip), 3) != 0) {
2311 return (DDI_WALK_PRUNECHILD);
2312 }
2313
2314 /*
2315 * Get the device and vendor ID and see if this is something the imc
2316 * knows about or cares about.
2317 */
2318 vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2319 "vendor-id", PCI_EINVAL16);
2320 did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2321 "device-id", PCI_EINVAL16);
2322 if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) {
2323 return (DDI_WALK_CONTINUE);
2324 }
2325
2326 if (vid != IMC_PCI_VENDOR_INTC) {
2327 return (DDI_WALK_PRUNECHILD);
2328 }
2329
2330 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2331 "reg", ®s, &nregs) != DDI_PROP_SUCCESS) {
2332 return (DDI_WALK_CONTINUE);
2333 }
2334
2335 if (nregs == 0) {
2336 ddi_prop_free(regs);
2337 return (DDI_WALK_CONTINUE);
2338 }
2339
2340
2341 table = NULL;
2342 for (i = 0; i < ARRAY_SIZE(imc_stub_table); i++) {
2343 if (imc_stub_table[i].imcs_devid == did &&
2344 imc_stub_table[i].imcs_pcidev == PCI_REG_DEV_G(regs[0]) &&
2345 imc_stub_table[i].imcs_pcifunc == PCI_REG_FUNC_G(regs[0])) {
2346 table = &imc_stub_table[i];
2347 break;
2348 }
2349 }
2350 ddi_prop_free(regs);
2351
2352 /*
2353 * Not a match, not interesting.
2354 */
2355 if (table == NULL) {
2356 return (DDI_WALK_CONTINUE);
2357 }
2358
2359 mutex_enter(&imc->imc_lock);
2360 imc->imc_nscanned++;
2361 mutex_exit(&imc->imc_lock);
2362
2363 return (DDI_WALK_CONTINUE);
2364 }
2365
2366 /*
2367 * From here, go through and see how many of the devices that we know about.
2368 */
2369 static void
imc_stub_scan(void * arg)2370 imc_stub_scan(void *arg)
2371 {
2372 imc_t *imc = arg;
2373 boolean_t dispatch = B_FALSE;
2374
2375 /*
2376 * Zero out the scan results in case we've been detached and reattached.
2377 */
2378 mutex_enter(&imc->imc_lock);
2379 imc->imc_nscanned = 0;
2380 mutex_exit(&imc->imc_lock);
2381
2382 ddi_walk_devs(ddi_root_node(), imc_stub_scan_cb, imc);
2383
2384 mutex_enter(&imc->imc_lock);
2385 imc->imc_flags |= IMC_F_SCAN_COMPLETE;
2386 imc->imc_flags &= ~IMC_F_SCAN_DISPATCHED;
2387
2388 /*
2389 * If the scan found no nodes, then that means that we're on a hardware
2390 * platform that we don't support. Therefore, there's no reason to do
2391 * anything here.
2392 */
2393 if (imc->imc_nscanned == 0) {
2394 imc->imc_flags |= IMC_F_UNSUP_PLATFORM;
2395 mutex_exit(&imc->imc_lock);
2396 return;
2397 }
2398
2399 if (avl_numnodes(&imc->imc_stubs) == imc->imc_nscanned) {
2400 imc->imc_flags |= IMC_F_ATTACH_DISPATCHED;
2401 dispatch = B_TRUE;
2402 }
2403
2404 mutex_exit(&imc->imc_lock);
2405
2406 if (dispatch) {
2407 (void) ddi_taskq_dispatch(imc->imc_taskq, imc_attach_complete,
2408 imc, DDI_SLEEP);
2409 }
2410 }
2411
2412 /*
2413 * By default, refuse to allow stubs to detach.
2414 */
2415 int
imc_detach_stub(dev_info_t * dip,ddi_detach_cmd_t cmd)2416 imc_detach_stub(dev_info_t *dip, ddi_detach_cmd_t cmd)
2417 {
2418 imc_stub_t *stub;
2419 imc_t *imc = imc_data;
2420
2421 mutex_enter(&imc->imc_lock);
2422
2423 /*
2424 * By default, we do not allow stubs to detach. However, if the driver
2425 * has attached to devices on a platform it doesn't recognize or
2426 * support or if the override flag has been set, then allow detach to
2427 * proceed.
2428 */
2429 if ((imc->imc_flags & IMC_F_UNSUP_PLATFORM) == 0 &&
2430 imc_allow_detach == 0) {
2431 mutex_exit(&imc->imc_lock);
2432 return (DDI_FAILURE);
2433 }
2434
2435 for (stub = avl_first(&imc->imc_stubs); stub != NULL;
2436 stub = AVL_NEXT(&imc->imc_stubs, stub)) {
2437 if (stub->istub_dip == dip) {
2438 break;
2439 }
2440 }
2441
2442 /*
2443 * A device was attached to us that we somehow don't know about. Allow
2444 * this to proceed.
2445 */
2446 if (stub == NULL) {
2447 mutex_exit(&imc->imc_lock);
2448 return (DDI_SUCCESS);
2449 }
2450
2451 pci_config_teardown(&stub->istub_cfgspace);
2452 avl_remove(&imc->imc_stubs, stub);
2453 kmem_free(stub, sizeof (imc_stub_t));
2454 mutex_exit(&imc->imc_lock);
2455
2456 return (DDI_SUCCESS);
2457 }
2458
2459 int
imc_attach_stub(dev_info_t * dip,ddi_attach_cmd_t cmd)2460 imc_attach_stub(dev_info_t *dip, ddi_attach_cmd_t cmd)
2461 {
2462 imc_stub_t *stub, *lookup;
2463 int did, vid, *regs;
2464 uint_t i, nregs;
2465 const imc_stub_table_t *table;
2466 avl_index_t idx;
2467 boolean_t dispatch = B_FALSE;
2468 imc_t *imc = imc_data;
2469
2470 if (cmd != DDI_ATTACH) {
2471 return (DDI_FAILURE);
2472 }
2473
2474 /*
2475 * We've been asked to attach a stub. First, determine if this is even a
2476 * PCI device that we should care about. Then, append it to our global
2477 * list and kick off the configuration task. Note that we do this
2478 * configuration task in a taskq so that we don't interfere with the
2479 * normal attach / detach path processing.
2480 */
2481 if (strncmp("pci", ddi_get_name(dip), 3) != 0) {
2482 return (DDI_FAILURE);
2483 }
2484
2485 /*
2486 * Get the device and vendor ID and see if this is something the imc
2487 * knows about or cares about.
2488 */
2489 vid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2490 "vendor-id", PCI_EINVAL16);
2491 did = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2492 "device-id", PCI_EINVAL16);
2493 if (vid == PCI_EINVAL16 || did == PCI_EINVAL16) {
2494 return (DDI_FAILURE);
2495 }
2496
2497 /*
2498 * Only accept INTC parts on the imc driver.
2499 */
2500 if (vid != IMC_PCI_VENDOR_INTC) {
2501 return (DDI_FAILURE);
2502 }
2503
2504 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2505 "reg", ®s, &nregs) != DDI_PROP_SUCCESS) {
2506 return (DDI_FAILURE);
2507 }
2508
2509 if (nregs == 0) {
2510 ddi_prop_free(regs);
2511 return (DDI_FAILURE);
2512 }
2513
2514 /*
2515 * Determine if this matches a known device.
2516 */
2517 table = NULL;
2518 for (i = 0; i < ARRAY_SIZE(imc_stub_table); i++) {
2519 if (imc_stub_table[i].imcs_devid == did &&
2520 imc_stub_table[i].imcs_pcidev == PCI_REG_DEV_G(regs[0]) &&
2521 imc_stub_table[i].imcs_pcifunc == PCI_REG_FUNC_G(regs[0])) {
2522 table = &imc_stub_table[i];
2523 break;
2524 }
2525 }
2526
2527 if (i == ARRAY_SIZE(imc_stub_table)) {
2528 ddi_prop_free(regs);
2529 return (DDI_FAILURE);
2530 }
2531
2532 /*
2533 * We've found something. Make sure the generation matches our current
2534 * one. If it does, construct the entry and append it to the list.
2535 */
2536 mutex_enter(&imc->imc_lock);
2537 if (imc->imc_gen != IMC_GEN_UNKNOWN && imc->imc_gen !=
2538 table->imcs_gen) {
2539 mutex_exit(&imc->imc_lock);
2540 ddi_prop_free(regs);
2541 dev_err(dip, CE_WARN, "Encountered IMC stub device (%u/%u) "
2542 "that has different hardware generation (%u) from current "
2543 "generation (%u)", vid, did, table->imcs_gen, imc->imc_gen);
2544 return (DDI_FAILURE);
2545 } else {
2546 imc->imc_gen = table->imcs_gen;
2547 }
2548 mutex_exit(&imc->imc_lock);
2549
2550 stub = kmem_zalloc(sizeof (imc_stub_t), KM_SLEEP);
2551 stub->istub_dip = dip;
2552 stub->istub_vid = vid;
2553 stub->istub_did = did;
2554 stub->istub_bus = PCI_REG_BUS_G(regs[0]);
2555 stub->istub_dev = PCI_REG_DEV_G(regs[0]);
2556 stub->istub_func = PCI_REG_FUNC_G(regs[0]);
2557 ddi_prop_free(regs);
2558 stub->istub_table = table;
2559
2560 if (pci_config_setup(dip, &stub->istub_cfgspace) != DDI_SUCCESS) {
2561 kmem_free(stub, sizeof (stub));
2562 dev_err(dip, CE_WARN, "Failed to set up PCI config space "
2563 "for IMC stub device %s (%u/%u)", ddi_node_name(dip),
2564 vid, did);
2565 return (DDI_FAILURE);
2566 }
2567
2568 mutex_enter(&imc->imc_lock);
2569 if ((lookup = avl_find(&imc->imc_stubs, stub, &idx)) != NULL) {
2570 dev_err(dip, CE_WARN, "IMC stub %s (%u/%u) has duplicate "
2571 "bdf %u/%u/%u with %s (%u/%u), not attaching",
2572 ddi_node_name(imc->imc_dip), vid, did,
2573 stub->istub_bus, stub->istub_dev, stub->istub_func,
2574 ddi_node_name(lookup->istub_dip), lookup->istub_vid,
2575 lookup->istub_did);
2576 mutex_exit(&imc->imc_lock);
2577 pci_config_teardown(&stub->istub_cfgspace);
2578 kmem_free(stub, sizeof (stub));
2579
2580 return (DDI_FAILURE);
2581 }
2582 avl_insert(&imc->imc_stubs, stub, idx);
2583
2584 if ((imc->imc_flags & IMC_F_ALL_FLAGS) == IMC_F_SCAN_COMPLETE &&
2585 avl_numnodes(&imc->imc_stubs) == imc->imc_nscanned) {
2586 imc->imc_flags |= IMC_F_ATTACH_DISPATCHED;
2587 dispatch = B_TRUE;
2588 }
2589 mutex_exit(&imc->imc_lock);
2590
2591 if (dispatch) {
2592 (void) ddi_taskq_dispatch(imc->imc_taskq, imc_attach_complete,
2593 imc, DDI_SLEEP);
2594 }
2595
2596 return (DDI_SUCCESS);
2597 }
2598
2599 static int
imc_open(dev_t * devp,int flag,int otyp,cred_t * credp)2600 imc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
2601 {
2602 imc_t *imc = imc_data;
2603
2604 if ((flag & (FEXCL | FNDELAY)) != 0)
2605 return (EINVAL);
2606
2607 if (otyp != OTYP_CHR)
2608 return (EINVAL);
2609
2610 mutex_enter(&imc->imc_lock);
2611
2612 if ((imc->imc_flags & IMC_F_UNSUP_PLATFORM) != 0) {
2613 mutex_exit(&imc->imc_lock);
2614 return (ENOTSUP);
2615 }
2616
2617 /*
2618 * It's possible that someone has come in during the window between when
2619 * we've created the minor node and when we've finished doing work.
2620 */
2621 if ((imc->imc_flags & IMC_F_ATTACH_COMPLETE) == 0) {
2622 mutex_exit(&imc->imc_lock);
2623 return (EAGAIN);
2624 }
2625
2626 /*
2627 * It's not clear how someone would get a minor that we didn't create.
2628 * But be paranoid and make sure.
2629 */
2630 if (getminor(*devp) >= imc->imc_nsockets) {
2631 mutex_exit(&imc->imc_lock);
2632 return (EINVAL);
2633 }
2634
2635 /*
2636 * Make sure this socket entry has been filled in.
2637 */
2638 if (imc->imc_spointers[getminor(*devp)] == NULL) {
2639 mutex_exit(&imc->imc_lock);
2640 return (EINVAL);
2641 }
2642
2643 mutex_exit(&imc->imc_lock);
2644
2645 return (0);
2646 }
2647
2648 static void
imc_ioctl_decode(imc_t * imc,mc_encode_ioc_t * encode)2649 imc_ioctl_decode(imc_t *imc, mc_encode_ioc_t *encode)
2650 {
2651 imc_decode_state_t dec;
2652 uint_t i;
2653
2654 bzero(&dec, sizeof (dec));
2655 if (!imc_decode_pa(imc, encode->mcei_pa, &dec)) {
2656 encode->mcei_err = (uint32_t)dec.ids_fail;
2657 encode->mcei_errdata = dec.ids_fail_data;
2658 return;
2659 }
2660
2661 encode->mcei_errdata = 0;
2662 encode->mcei_err = 0;
2663 encode->mcei_board = 0;
2664 for (i = 0; i < imc->imc_nsockets; i++) {
2665 if (imc->imc_spointers[i] == dec.ids_socket)
2666 break;
2667 }
2668 encode->mcei_chip = i;
2669 /*
2670 * These Intel platforms are all monolithic dies, so set the die to
2671 * zero.
2672 */
2673 encode->mcei_die = 0;
2674 encode->mcei_mc = dec.ids_tadid;
2675 encode->mcei_chan_addr = dec.ids_chanaddr;
2676 encode->mcei_chan = dec.ids_channelid;
2677 encode->mcei_dimm = dec.ids_dimmid;
2678 encode->mcei_rank_addr = dec.ids_rankaddr;
2679 encode->mcei_rank = dec.ids_rankid;
2680 encode->mcei_row = UINT32_MAX;
2681 encode->mcei_column = UINT32_MAX;
2682 encode->mcei_cs = encode->mcei_rm = UINT8_MAX;
2683 encode->mcei_bank = encode->mcei_bank_group = UINT8_MAX;
2684 encode->mcei_subchan = UINT8_MAX;
2685 }
2686
2687 static int
imc_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)2688 imc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
2689 int *rvalp)
2690 {
2691 int ret;
2692 minor_t m;
2693 mc_snapshot_info_t info;
2694 mc_encode_ioc_t encode;
2695 imc_t *imc = imc_data;
2696 imc_socket_t *sock;
2697
2698 mutex_enter(&imc->imc_lock);
2699 m = getminor(dev);
2700 if (m >= imc->imc_nsockets) {
2701 ret = EINVAL;
2702 goto done;
2703 }
2704 sock = imc->imc_spointers[m];
2705 if (sock == NULL) {
2706 ret = EINVAL;
2707 goto done;
2708 }
2709
2710 /*
2711 * Note, other memory controller drivers don't check mode for reading
2712 * data nor do they care who can read it from a credential perspective.
2713 * As such we don't either at this time.
2714 */
2715 switch (cmd) {
2716 case MC_IOC_SNAPSHOT_INFO:
2717 imc_nvl_pack(sock, B_FALSE);
2718 if (sock->isock_buf == NULL) {
2719 ret = EIO;
2720 break;
2721 }
2722
2723 info.mcs_size = sock->isock_buflen;
2724 info.mcs_gen = sock->isock_gen;
2725
2726 if (ddi_copyout(&info, (void *)arg, sizeof (info), mode) != 0) {
2727 ret = EFAULT;
2728 break;
2729 }
2730
2731 ret = 0;
2732 break;
2733 case MC_IOC_SNAPSHOT:
2734 imc_nvl_pack(sock, B_FALSE);
2735 if (sock->isock_buf == NULL) {
2736 ret = EIO;
2737 break;
2738 }
2739
2740 if (ddi_copyout(sock->isock_buf, (void *)arg,
2741 sock->isock_buflen, mode) != 0) {
2742 ret = EFAULT;
2743 break;
2744 }
2745
2746 ret = 0;
2747 break;
2748 case MC_IOC_DECODE_SNAPSHOT_INFO:
2749 imc_decoder_pack(imc);
2750 if (imc->imc_decoder_buf == NULL) {
2751 ret = EIO;
2752 break;
2753 }
2754
2755 info.mcs_size = imc->imc_decoder_len;
2756 info.mcs_gen = imc->imc_spointers[0]->isock_gen;
2757
2758 if (ddi_copyout(&info, (void *)arg, sizeof (info), mode) != 0) {
2759 ret = EFAULT;
2760 break;
2761 }
2762
2763 ret = 0;
2764 break;
2765 case MC_IOC_DECODE_SNAPSHOT:
2766 imc_decoder_pack(imc);
2767 if (imc->imc_decoder_buf == NULL) {
2768 ret = EIO;
2769 break;
2770 }
2771
2772 if (ddi_copyout(imc->imc_decoder_buf, (void *)arg,
2773 imc->imc_decoder_len, mode) != 0) {
2774 ret = EFAULT;
2775 break;
2776 }
2777
2778 ret = 0;
2779 break;
2780 case MC_IOC_DECODE_PA:
2781 if (crgetzoneid(credp) != GLOBAL_ZONEID ||
2782 drv_priv(credp) != 0) {
2783 ret = EPERM;
2784 break;
2785 }
2786
2787 if (ddi_copyin((void *)arg, &encode, sizeof (encode),
2788 mode & FKIOCTL) != 0) {
2789 ret = EPERM;
2790 break;
2791 }
2792
2793 imc_ioctl_decode(imc, &encode);
2794 ret = 0;
2795
2796 if (ddi_copyout(&encode, (void *)arg, sizeof (encode),
2797 mode & FKIOCTL) != 0) {
2798 ret = EPERM;
2799 break;
2800 }
2801 break;
2802 default:
2803 ret = EINVAL;
2804 goto done;
2805 }
2806
2807 done:
2808 mutex_exit(&imc->imc_lock);
2809 return (ret);
2810 }
2811
2812 static int
imc_close(dev_t dev,int flag,int otyp,cred_t * credp)2813 imc_close(dev_t dev, int flag, int otyp, cred_t *credp)
2814 {
2815 return (0);
2816 }
2817
2818 static int
imc_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)2819 imc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2820 {
2821 if (cmd != DDI_ATTACH) {
2822 return (DDI_FAILURE);
2823 }
2824
2825 if (imc_data == NULL || imc_data->imc_dip != NULL) {
2826 return (DDI_FAILURE);
2827 }
2828
2829 mutex_enter(&imc_data->imc_lock);
2830 if ((imc_data->imc_taskq = ddi_taskq_create(dip, "imc", 1,
2831 TASKQ_DEFAULTPRI, 0)) == NULL) {
2832 mutex_exit(&imc_data->imc_lock);
2833 return (DDI_FAILURE);
2834 }
2835
2836 imc_data->imc_dip = dip;
2837 imc_data->imc_flags |= IMC_F_SCAN_DISPATCHED;
2838 mutex_exit(&imc_data->imc_lock);
2839
2840 (void) ddi_taskq_dispatch(imc_data->imc_taskq, imc_stub_scan, imc_data,
2841 DDI_SLEEP);
2842
2843 return (DDI_SUCCESS);
2844 }
2845
2846 /*
2847 * We only export a single instance.
2848 */
2849 static int
imc_getinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** resultp)2850 imc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **resultp)
2851 {
2852 /*
2853 * getinfo(9E) shouldn't be called if we're not attached. But be
2854 * paranoid.
2855 */
2856 if (imc_data == NULL || imc_data->imc_dip == NULL) {
2857 return (DDI_FAILURE);
2858 }
2859
2860 switch (infocmd) {
2861 case DDI_INFO_DEVT2DEVINFO:
2862 *resultp = imc_data->imc_dip;
2863 break;
2864 case DDI_INFO_DEVT2INSTANCE:
2865 *resultp = (void *)0;
2866 break;
2867 default:
2868 return (DDI_FAILURE);
2869 }
2870
2871 return (DDI_SUCCESS);
2872 }
2873
2874 static int
imc_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)2875 imc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2876 {
2877 if (cmd != DDI_DETACH) {
2878 return (DDI_FAILURE);
2879 }
2880
2881 if (imc_data == NULL || imc_data->imc_dip) {
2882 return (DDI_FAILURE);
2883 }
2884
2885 mutex_enter(&imc_data->imc_lock);
2886
2887 /*
2888 * While a scan or attach is outstanding, don't allow us to detach.
2889 */
2890 if ((imc_data->imc_flags &
2891 (IMC_F_SCAN_DISPATCHED | IMC_F_ATTACH_DISPATCHED)) != 0) {
2892 mutex_exit(&imc_data->imc_lock);
2893 return (DDI_FAILURE);
2894 }
2895
2896 /*
2897 * Because the stub driver depends on the imc driver, we shouldn't be
2898 * able to have any entries in this list when we detach. However, we
2899 * check just to make sure.
2900 */
2901 if (!avl_is_empty(&imc_data->imc_stubs)) {
2902 mutex_exit(&imc_data->imc_lock);
2903 return (DDI_FAILURE);
2904 }
2905
2906 nvlist_free(imc_data->imc_decoder_dump);
2907 imc_data->imc_decoder_dump = NULL;
2908 if (imc_data->imc_decoder_buf != NULL) {
2909 kmem_free(imc_data->imc_decoder_buf, imc_data->imc_decoder_len);
2910 imc_data->imc_decoder_buf = NULL;
2911 imc_data->imc_decoder_len = 0;
2912 }
2913
2914 ddi_remove_minor_node(imc_data->imc_dip, NULL);
2915 imc_data->imc_dip = NULL;
2916 mutex_exit(&imc_data->imc_lock);
2917
2918 ddi_taskq_wait(imc_data->imc_taskq);
2919 ddi_taskq_destroy(imc_data->imc_taskq);
2920 imc_data->imc_taskq = NULL;
2921
2922 return (DDI_SUCCESS);
2923 }
2924
2925 static void
imc_free(void)2926 imc_free(void)
2927 {
2928 if (imc_data == NULL) {
2929 return;
2930 }
2931
2932 VERIFY(avl_is_empty(&imc_data->imc_stubs));
2933 avl_destroy(&imc_data->imc_stubs);
2934 mutex_destroy(&imc_data->imc_lock);
2935 kmem_free(imc_data, sizeof (imc_t));
2936 imc_data = NULL;
2937 }
2938
2939 static void
imc_alloc(void)2940 imc_alloc(void)
2941 {
2942 imc_data = kmem_zalloc(sizeof (imc_t), KM_SLEEP);
2943
2944 mutex_init(&imc_data->imc_lock, NULL, MUTEX_DRIVER, NULL);
2945 avl_create(&imc_data->imc_stubs, imc_stub_comparator,
2946 sizeof (imc_stub_t), offsetof(imc_stub_t, istub_link));
2947 }
2948
2949 static struct cb_ops imc_cb_ops = {
2950 .cb_open = imc_open,
2951 .cb_close = imc_close,
2952 .cb_strategy = nodev,
2953 .cb_print = nodev,
2954 .cb_dump = nodev,
2955 .cb_read = nodev,
2956 .cb_write = nodev,
2957 .cb_ioctl = imc_ioctl,
2958 .cb_devmap = nodev,
2959 .cb_mmap = nodev,
2960 .cb_segmap = nodev,
2961 .cb_chpoll = nochpoll,
2962 .cb_prop_op = ddi_prop_op,
2963 .cb_flag = D_MP,
2964 .cb_rev = CB_REV,
2965 .cb_aread = nodev,
2966 .cb_awrite = nodev
2967 };
2968
2969 static struct dev_ops imc_dev_ops = {
2970 .devo_rev = DEVO_REV,
2971 .devo_refcnt = 0,
2972 .devo_getinfo = imc_getinfo,
2973 .devo_identify = nulldev,
2974 .devo_probe = nulldev,
2975 .devo_attach = imc_attach,
2976 .devo_detach = imc_detach,
2977 .devo_reset = nodev,
2978 .devo_cb_ops = &imc_cb_ops,
2979 .devo_quiesce = ddi_quiesce_not_needed
2980 };
2981
2982 static struct modldrv imc_modldrv = {
2983 .drv_modops = &mod_driverops,
2984 .drv_linkinfo = "Intel Integrated Memory Controller Driver",
2985 .drv_dev_ops = &imc_dev_ops
2986 };
2987
2988 static struct modlinkage imc_modlinkage = {
2989 .ml_rev = MODREV_1,
2990 .ml_linkage = { &imc_modldrv, NULL }
2991 };
2992
2993 int
_init(void)2994 _init(void)
2995 {
2996 int ret;
2997
2998 if ((ret = mod_install(&imc_modlinkage)) == 0) {
2999 imc_alloc();
3000 }
3001
3002 return (ret);
3003 }
3004
3005 int
_info(struct modinfo * modinfop)3006 _info(struct modinfo *modinfop)
3007 {
3008 return (mod_info(&imc_modlinkage, modinfop));
3009 }
3010
3011 int
_fini(void)3012 _fini(void)
3013 {
3014 int ret;
3015
3016 if ((ret = mod_remove(&imc_modlinkage)) == 0) {
3017 imc_free();
3018 }
3019 return (ret);
3020 }
3021