1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright 2020 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 * Copyright 2020 Oxide Computer Company 29 * Copyright (c) 2020 Carlos Neira <cneirabustos@gmail.com> 30 */ 31 /* 32 * Copyright (c) 2010, Intel Corporation. 33 * All rights reserved. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/t_lock.h> 38 #include <sys/param.h> 39 #include <sys/sysmacros.h> 40 #include <sys/signal.h> 41 #include <sys/systm.h> 42 #include <sys/user.h> 43 #include <sys/mman.h> 44 #include <sys/vm.h> 45 #include <sys/conf.h> 46 #include <sys/avintr.h> 47 #include <sys/autoconf.h> 48 #include <sys/disp.h> 49 #include <sys/class.h> 50 #include <sys/bitmap.h> 51 52 #include <sys/privregs.h> 53 54 #include <sys/proc.h> 55 #include <sys/buf.h> 56 #include <sys/kmem.h> 57 #include <sys/mem.h> 58 #include <sys/kstat.h> 59 60 #include <sys/reboot.h> 61 62 #include <sys/cred.h> 63 #include <sys/vnode.h> 64 #include <sys/file.h> 65 66 #include <sys/procfs.h> 67 68 #include <sys/vfs.h> 69 #include <sys/cmn_err.h> 70 #include <sys/utsname.h> 71 #include <sys/debug.h> 72 #include <sys/kdi.h> 73 74 #include <sys/dumphdr.h> 75 #include <sys/bootconf.h> 76 #include <sys/memlist_plat.h> 77 #include <sys/varargs.h> 78 #include <sys/promif.h> 79 #include <sys/prom_debug.h> 80 #include <sys/modctl.h> 81 82 #include <sys/sunddi.h> 83 #include <sys/sunndi.h> 84 #include <sys/ndi_impldefs.h> 85 #include <sys/ddidmareq.h> 86 #include <sys/psw.h> 87 #include <sys/regset.h> 88 #include <sys/clock.h> 89 #include <sys/pte.h> 90 #include <sys/tss.h> 91 #include <sys/stack.h> 92 #include <sys/trap.h> 93 #include <sys/fp.h> 94 #include <vm/kboot_mmu.h> 95 #include <vm/anon.h> 96 #include <vm/as.h> 97 #include <vm/page.h> 98 #include <vm/seg.h> 99 #include <vm/seg_dev.h> 100 #include <vm/seg_kmem.h> 101 #include <vm/seg_kpm.h> 102 #include <vm/seg_map.h> 103 #include <vm/seg_vn.h> 104 #include <vm/seg_kp.h> 105 #include <sys/memnode.h> 106 #include <vm/vm_dep.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/smp_impldefs.h> 116 #include <sys/x86_archext.h> 117 #include <sys/cpuvar.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/cpc_impl.h> 123 #include <sys/cpu_module.h> 124 #include <sys/smbios.h> 125 #include <sys/debug_info.h> 126 #include <sys/bootinfo.h> 127 #include <sys/ddi_periodic.h> 128 #include <sys/systeminfo.h> 129 #include <sys/multiboot.h> 130 #include <sys/ramdisk.h> 131 #include <sys/tsc.h> 132 #include <sys/clock.h> 133 134 #ifdef __xpv 135 136 #include <sys/hypervisor.h> 137 #include <sys/xen_mmu.h> 138 #include <sys/evtchn_impl.h> 139 #include <sys/gnttab.h> 140 #include <sys/xpv_panic.h> 141 #include <xen/sys/xenbus_comms.h> 142 #include <xen/public/physdev.h> 143 144 extern void xen_late_startup(void); 145 146 struct xen_evt_data cpu0_evt_data; 147 148 #else /* __xpv */ 149 #include <sys/memlist_impl.h> 150 151 extern void mem_config_init(void); 152 #endif /* __xpv */ 153 154 extern void progressbar_init(void); 155 extern void brand_init(void); 156 extern void pcf_init(void); 157 extern void pg_init(void); 158 extern void ssp_init(void); 159 160 extern int size_pse_array(pgcnt_t, int); 161 162 #if defined(_SOFT_HOSTID) 163 164 static int32_t set_soft_hostid(void); 165 static char hostid_file[] = "/etc/hostid"; 166 167 #endif 168 169 void *gfx_devinfo_list; 170 171 #if !defined(__xpv) 172 extern void immu_startup(void); 173 #endif 174 175 /* 176 * XXX make declaration below "static" when drivers no longer use this 177 * interface. 178 */ 179 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 180 181 /* 182 * segkp 183 */ 184 extern int segkp_fromheap; 185 186 static void kvm_init(void); 187 static void startup_init(void); 188 static void startup_memlist(void); 189 static void startup_kmem(void); 190 static void startup_modules(void); 191 static void startup_vm(void); 192 #ifndef __xpv 193 static void startup_tsc(void); 194 #endif 195 static void startup_end(void); 196 static void layout_kernel_va(void); 197 198 /* 199 * Declare these as initialized data so we can patch them. 200 */ 201 202 /* 203 * For now we can handle memory with physical addresses up to about 204 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 205 * half the VA space for seg_kpm. When systems get bigger than 64TB this 206 * code will need revisiting. There is an implicit assumption that there 207 * are no *huge* holes in the physical address space too. 208 */ 209 #define TERABYTE (1ul << 40) 210 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 211 #define PHYSMEM PHYSMEM_MAX64 212 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 213 214 215 pgcnt_t physmem = PHYSMEM; 216 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 217 218 extern char *kobj_file_buf; 219 extern int kobj_file_bufsize; /* set in /etc/system */ 220 221 /* Global variables for MP support. Used in mp_startup */ 222 caddr_t rm_platter_va = 0; 223 uint32_t rm_platter_pa; 224 225 int auto_lpg_disable = 1; 226 227 /* 228 * Some CPUs have holes in the middle of the 64-bit virtual address range. 229 */ 230 uintptr_t hole_start, hole_end; 231 232 /* 233 * kpm mapping window 234 */ 235 caddr_t kpm_vbase; 236 size_t kpm_size; 237 static int kpm_desired; 238 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 239 240 /* 241 * Configuration parameters set at boot time. 242 */ 243 244 caddr_t econtig; /* end of first block of contiguous kernel */ 245 246 struct bootops *bootops = 0; /* passed in from boot */ 247 struct bootops **bootopsp; 248 struct boot_syscalls *sysp; /* passed in from boot */ 249 250 char bootblock_fstype[16]; 251 252 char kern_bootargs[OBP_MAXPATHLEN]; 253 char kern_bootfile[OBP_MAXPATHLEN]; 254 255 /* 256 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 257 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 258 * zio buffers from their own segment, otherwise they are allocated from the 259 * heap. The optimization of allocating zio buffers from their own segment is 260 * only valid on 64-bit kernels. 261 */ 262 int segzio_fromheap = 0; 263 264 /* 265 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 266 * post-boot. 267 */ 268 int disable_smap = 0; 269 270 /* 271 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 272 * depends on number of BOP_ALLOC calls made and requested size, memory size 273 * combination and whether boot.bin memory needs to be freed. 274 */ 275 #define POSS_NEW_FRAGMENTS 12 276 277 /* 278 * VM data structures 279 */ 280 long page_hashsz; /* Size of page hash table (power of two) */ 281 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 282 struct page *pp_base; /* Base of initial system page struct array */ 283 struct page **page_hash; /* Page hash table */ 284 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 285 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 286 int pse_shift; /* log2(pse_table_size) */ 287 struct seg ktextseg; /* Segment used for kernel executable image */ 288 struct seg kvalloc; /* Segment used for "valloc" mapping */ 289 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 290 struct seg kmapseg; /* Segment used for generic kernel mappings */ 291 struct seg kdebugseg; /* Segment used for the kernel debugger */ 292 293 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 294 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 295 296 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 297 298 extern struct seg kvseg_core; /* Segment used for the core heap */ 299 struct seg kpmseg; /* Segment used for physical mapping */ 300 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 301 302 caddr_t segkp_base; /* Base address of segkp */ 303 caddr_t segzio_base; /* Base address of segzio */ 304 pgcnt_t segkpsize; /* size of segkp segment in pages */ 305 caddr_t segkvmm_base; 306 pgcnt_t segkvmmsize; 307 pgcnt_t segziosize; 308 309 /* 310 * A static DR page_t VA map is reserved that can map the page structures 311 * for a domain's entire RA space. The pages that back this space are 312 * dynamically allocated and need not be physically contiguous. The DR 313 * map size is derived from KPM size. 314 * This mechanism isn't used by x86 yet, so just stubs here. 315 */ 316 int ppvm_enable = 0; /* Static virtual map for page structs */ 317 page_t *ppvm_base = NULL; /* Base of page struct map */ 318 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 319 320 /* 321 * VA range available to the debugger 322 */ 323 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 324 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 325 326 struct memseg *memseg_base; 327 struct vnode unused_pages_vp; 328 329 #define FOURGB 0x100000000LL 330 331 struct memlist *memlist; 332 333 caddr_t s_text; /* start of kernel text segment */ 334 caddr_t e_text; /* end of kernel text segment */ 335 caddr_t s_data; /* start of kernel data segment */ 336 caddr_t e_data; /* end of kernel data segment */ 337 caddr_t modtext; /* start of loadable module text reserved */ 338 caddr_t e_modtext; /* end of loadable module text reserved */ 339 caddr_t moddata; /* start of loadable module data reserved */ 340 caddr_t e_moddata; /* end of loadable module data reserved */ 341 342 struct memlist *phys_install; /* Total installed physical memory */ 343 struct memlist *phys_avail; /* Total available physical memory */ 344 struct memlist *bios_rsvd; /* Bios reserved memory */ 345 346 /* 347 * kphysm_init returns the number of pages that were processed 348 */ 349 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 350 351 #define IO_PROP_SIZE 64 /* device property size */ 352 353 /* 354 * a couple useful roundup macros 355 */ 356 #define ROUND_UP_PAGE(x) \ 357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 358 #define ROUND_UP_LPAGE(x) \ 359 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 360 #define ROUND_UP_4MEG(x) \ 361 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 362 #define ROUND_UP_TOPLEVEL(x) \ 363 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 364 365 /* 366 * 32-bit Kernel's Virtual memory layout. 367 * +-----------------------+ 368 * | | 369 * 0xFFC00000 -|-----------------------|- ARGSBASE 370 * | debugger | 371 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 372 * | Kernel Data | 373 * 0xFEC00000 -|-----------------------| 374 * | Kernel Text | 375 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 376 * |--- GDT ---|- GDT page (GDT_VA) 377 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 378 * | | 379 * | page_t structures | 380 * | memsegs, memlists, | 381 * | page hash, etc. | 382 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 383 * | | (segkp is just an arena in the heap) 384 * | | 385 * | kvseg | 386 * | | 387 * | | 388 * --- -|-----------------------|- kernelheap (floating) 389 * | Segkmap | 390 * 0xC3002000 -|-----------------------|- segmap_start (floating) 391 * | Red Zone | 392 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 393 * | | || 394 * | Shared objects | \/ 395 * | | 396 * : : 397 * | user data | 398 * |-----------------------| 399 * | user text | 400 * 0x08048000 -|-----------------------| 401 * | user stack | 402 * : : 403 * | invalid | 404 * 0x00000000 +-----------------------+ 405 * 406 * 407 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 408 * +-----------------------+ 409 * | | 410 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 411 * | debugger (?) | 412 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 413 * | unused | 414 * +-----------------------+ 415 * | Kernel Data | 416 * 0xFFFFFFFF.FBC00000 |-----------------------| 417 * | Kernel Text | 418 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 419 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 420 * |--- GDT ---|- GDT page (GDT_VA) 421 * |--- IDT ---|- IDT page (IDT_VA) 422 * |--- LDT ---|- LDT pages (LDT_VA) 423 * | | 424 * | Core heap | (used for loadable modules) 425 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 426 * | Kernel | 427 * | heap | 428 * | | 429 * | | 430 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 431 * | segmap | 432 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 433 * | device mappings | 434 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 435 * | segzio | 436 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 437 * | segkvmm | 438 * | | 439 * | | 440 * | | 441 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating) 442 * | segkp | 443 * |-----------------------|- segkp_base (floating) 444 * | page_t structures | valloc_base + valloc_sz 445 * | memsegs, memlists, | 446 * | page hash, etc. | 447 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB) 448 * | segkpm | 449 * | | 450 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB) 451 * | Red Zone | 452 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 453 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB) 454 * | User stack |- User space memory 455 * | | 456 * | shared objects, etc | (grows downwards) 457 * : : 458 * | | 459 * 0xFFFF8000.00000000 |-----------------------| 460 * | | 461 * | VA Hole / unused | 462 * | | 463 * 0x00008000.00000000 |-----------------------| 464 * | | 465 * | | 466 * : : 467 * | user heap | (grows upwards) 468 * | | 469 * | user data | 470 * |-----------------------| 471 * | user text | 472 * 0x00000000.04000000 |-----------------------| 473 * | invalid | 474 * 0x00000000.00000000 +-----------------------+ 475 * 476 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 477 * kernel, except that userlimit is raised to 0xfe000000 478 * 479 * Floating values: 480 * 481 * valloc_base: start of the kernel's memory management/tracking data 482 * structures. This region contains page_t structures for 483 * physical memory, memsegs, memlists, and the page hash. 484 * 485 * core_base: start of the kernel's "core" heap area on 64-bit systems. 486 * This area is intended to be used for global data as well as for module 487 * text/data that does not fit into the nucleus pages. The core heap is 488 * restricted to a 2GB range, allowing every address within it to be 489 * accessed using rip-relative addressing 490 * 491 * ekernelheap: end of kernelheap and start of segmap. 492 * 493 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 494 * above a red zone that separates the user's address space from the 495 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 496 * 497 * segmap_start: start of segmap. The length of segmap can be modified 498 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 499 * on 64-bit systems. 500 * 501 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 502 * decreased by 2X the size required for page_t. This allows the kernel 503 * heap to grow in size with physical memory. With sizeof(page_t) == 80 504 * bytes, the following shows the values of kernelbase and kernel heap 505 * sizes for different memory configurations (assuming default segmap and 506 * segkp sizes). 507 * 508 * mem size for kernelbase kernel heap 509 * size page_t's size 510 * ---- --------- ---------- ----------- 511 * 1gb 0x01400000 0xd1800000 684MB 512 * 2gb 0x02800000 0xcf000000 704MB 513 * 4gb 0x05000000 0xca000000 744MB 514 * 6gb 0x07800000 0xc5000000 784MB 515 * 8gb 0x0a000000 0xc0000000 824MB 516 * 16gb 0x14000000 0xac000000 984MB 517 * 32gb 0x28000000 0x84000000 1304MB 518 * 64gb 0x50000000 0x34000000 1944MB (*) 519 * 520 * kernelbase is less than the abi minimum of 0xc0000000 for memory 521 * configurations above 8gb. 522 * 523 * (*) support for memory configurations above 32gb will require manual tuning 524 * of kernelbase to balance out the need of user applications. 525 */ 526 527 /* real-time-clock initialization parameters */ 528 extern time_t process_rtc_config_file(void); 529 530 uintptr_t kernelbase; 531 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 532 uintptr_t eprom_kernelbase; 533 size_t segmapsize; 534 uintptr_t segmap_start; 535 int segmapfreelists; 536 pgcnt_t npages; 537 pgcnt_t orig_npages; 538 size_t core_size; /* size of "core" heap */ 539 uintptr_t core_base; /* base address of "core" heap */ 540 541 /* 542 * List of bootstrap pages. We mark these as allocated in startup. 543 * release_bootstrap() will free them when we're completely done with 544 * the bootstrap. 545 */ 546 static page_t *bootpages; 547 548 /* 549 * boot time pages that have a vnode from the ramdisk will keep that forever. 550 */ 551 static page_t *rd_pages; 552 553 /* 554 * Lower 64K 555 */ 556 static page_t *lower_pages = NULL; 557 static int lower_pages_count = 0; 558 559 struct system_hardware system_hardware; 560 561 /* 562 * Enable some debugging messages concerning memory usage... 563 */ 564 static void 565 print_memlist(char *title, struct memlist *mp) 566 { 567 prom_printf("MEMLIST: %s:\n", title); 568 while (mp != NULL) { 569 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 570 mp->ml_address, mp->ml_size); 571 mp = mp->ml_next; 572 } 573 } 574 575 /* 576 * XX64 need a comment here.. are these just default values, surely 577 * we read the "cpuid" type information to figure this out. 578 */ 579 int l2cache_sz = 0x80000; 580 int l2cache_linesz = 0x40; 581 int l2cache_assoc = 1; 582 583 static size_t textrepl_min_gb = 10; 584 585 /* 586 * on 64 bit we use a predifined VA range for mapping devices in the kernel 587 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 588 */ 589 590 vmem_t *device_arena; 591 uintptr_t toxic_addr = (uintptr_t)NULL; 592 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 593 594 595 int prom_debug; 596 597 /* 598 * This structure is used to keep track of the intial allocations 599 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 600 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 601 */ 602 #define NUM_ALLOCATIONS 8 603 int num_allocations = 0; 604 struct { 605 void **al_ptr; 606 size_t al_size; 607 } allocations[NUM_ALLOCATIONS]; 608 size_t valloc_sz = 0; 609 uintptr_t valloc_base; 610 611 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 612 size = ROUND_UP_PAGE(size); \ 613 if (num_allocations == NUM_ALLOCATIONS) \ 614 panic("too many ADD_TO_ALLOCATIONS()"); \ 615 allocations[num_allocations].al_ptr = (void**)&ptr; \ 616 allocations[num_allocations].al_size = size; \ 617 valloc_sz += size; \ 618 ++num_allocations; \ 619 } 620 621 /* 622 * Allocate all the initial memory needed by the page allocator. 623 */ 624 static void 625 perform_allocations(void) 626 { 627 caddr_t mem; 628 int i; 629 int valloc_align; 630 631 PRM_DEBUG(valloc_base); 632 PRM_DEBUG(valloc_sz); 633 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 634 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 635 if (mem != (caddr_t)valloc_base) 636 panic("BOP_ALLOC() failed"); 637 bzero(mem, valloc_sz); 638 for (i = 0; i < num_allocations; ++i) { 639 *allocations[i].al_ptr = (void *)mem; 640 mem += allocations[i].al_size; 641 } 642 } 643 644 /* 645 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 646 * VM has been set up so we can use hot_patch_kernel_text(). 647 * 648 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 649 * replace the four byte word at the patch point. See uts/intel/ml/copy.s 650 * for more information on what's going on here. 651 */ 652 static void 653 startup_smap(void) 654 { 655 int i; 656 uint32_t inst; 657 uint8_t *instp; 658 char sym[128]; 659 struct modctl *modp; 660 661 extern int _smap_enable_patch_count; 662 extern int _smap_disable_patch_count; 663 664 if (disable_smap != 0) 665 remove_x86_feature(x86_featureset, X86FSET_SMAP); 666 667 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 668 return; 669 670 for (i = 0; i < _smap_enable_patch_count; i++) { 671 int sizep; 672 673 VERIFY3U(i, <, _smap_enable_patch_count); 674 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 675 sizeof (sym)); 676 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 677 VERIFY(instp != 0); 678 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 679 hot_patch_kernel_text((caddr_t)instp, inst, 4); 680 } 681 682 for (i = 0; i < _smap_disable_patch_count; i++) { 683 int sizep; 684 685 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 686 i) < sizeof (sym)); 687 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 688 VERIFY(instp != 0); 689 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 690 hot_patch_kernel_text((caddr_t)instp, inst, 4); 691 } 692 693 /* 694 * Hotinline calls to smap_enable and smap_disable within 695 * unix module. Hotinlines in other modules are done on 696 * mod_load(). 697 */ 698 modp = mod_hold_by_name("unix"); 699 do_hotinlines(modp->mod_mp); 700 mod_release_mod(modp); 701 702 setcr4(getcr4() | CR4_SMAP); 703 smap_enable(); 704 } 705 706 /* 707 * Our world looks like this at startup time. 708 * 709 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 710 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 711 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 712 * addresses are fixed in the binary at link time. 713 * 714 * On the text page: 715 * unix/genunix/krtld/module text loads. 716 * 717 * On the data page: 718 * unix/genunix/krtld/module data loads. 719 * 720 * Machine-dependent startup code 721 */ 722 void 723 startup(void) 724 { 725 #if !defined(__xpv) 726 extern void startup_pci_bios(void); 727 #endif 728 extern cpuset_t cpu_ready_set; 729 730 /* 731 * Make sure that nobody tries to use sekpm until we have 732 * initialized it properly. 733 */ 734 kpm_desired = 1; 735 kpm_enable = 0; 736 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 737 738 #if defined(__xpv) /* XXPV fix me! */ 739 { 740 extern int segvn_use_regions; 741 segvn_use_regions = 0; 742 } 743 #endif 744 ssp_init(); 745 progressbar_init(); 746 startup_init(); 747 #if defined(__xpv) 748 startup_xen_version(); 749 #endif 750 startup_memlist(); 751 startup_kmem(); 752 startup_vm(); 753 #if !defined(__xpv) 754 /* 755 * Up until this point, we cannot use any time delay functions 756 * (e.g. tenmicrosec()). Once the TSC is setup, we can. This is 757 * purposely done after the VM system as been setup to allow 758 * calibration sources which might require mapping for access 759 * (e.g. the HPET), but still early enough to allow the rest of 760 * the startup code to make use of the TSC (via tenmicrosec() or 761 * the default TSC-based gethrtime()) as required. 762 */ 763 startup_tsc(); 764 765 /* 766 * Note we need to do this even on fast reboot in order to access 767 * the irq routing table (used for pci labels). 768 */ 769 startup_pci_bios(); 770 startup_smap(); 771 #endif 772 #if defined(__xpv) 773 startup_xen_mca(); 774 #endif 775 startup_modules(); 776 777 startup_end(); 778 } 779 780 static void 781 startup_init() 782 { 783 PRM_POINT("startup_init() starting..."); 784 785 /* 786 * Complete the extraction of cpuid data 787 */ 788 cpuid_pass2(CPU); 789 790 (void) check_boot_version(BOP_GETVERSION(bootops)); 791 792 /* 793 * Check for prom_debug in boot environment 794 */ 795 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 796 ++prom_debug; 797 PRM_POINT("prom_debug found in boot enviroment"); 798 } 799 800 /* 801 * Collect node, cpu and memory configuration information. 802 */ 803 get_system_configuration(); 804 805 /* 806 * Halt if this is an unsupported processor. 807 */ 808 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 809 printf("\n486 processor (\"%s\") detected.\n", 810 CPU->cpu_brandstr); 811 halt("This processor is not supported by this release " 812 "of Solaris."); 813 } 814 815 PRM_POINT("startup_init() done"); 816 } 817 818 /* 819 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 820 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 821 * also filters out physical page zero. There is some reliance on the 822 * boot loader allocating only a few contiguous physical memory chunks. 823 */ 824 static void 825 avail_filter(uint64_t *addr, uint64_t *size) 826 { 827 uintptr_t va; 828 uintptr_t next_va; 829 pfn_t pfn; 830 uint64_t pfn_addr; 831 uint64_t pfn_eaddr; 832 uint_t prot; 833 size_t len; 834 uint_t change; 835 836 if (prom_debug) 837 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 838 *addr, *size); 839 840 /* 841 * page zero is required for BIOS.. never make it available 842 */ 843 if (*addr == 0) { 844 *addr += MMU_PAGESIZE; 845 *size -= MMU_PAGESIZE; 846 } 847 848 /* 849 * First we trim from the front of the range. Since kbm_probe() 850 * walks ranges in virtual order, but addr/size are physical, we need 851 * to the list until no changes are seen. This deals with the case 852 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 853 * but w < v. 854 */ 855 do { 856 change = 0; 857 for (va = KERNEL_TEXT; 858 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 859 va = next_va) { 860 861 next_va = va + len; 862 pfn_addr = pfn_to_pa(pfn); 863 pfn_eaddr = pfn_addr + len; 864 865 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 866 change = 1; 867 while (*size > 0 && len > 0) { 868 *addr += MMU_PAGESIZE; 869 *size -= MMU_PAGESIZE; 870 len -= MMU_PAGESIZE; 871 } 872 } 873 } 874 if (change && prom_debug) 875 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 876 *addr, *size); 877 } while (change); 878 879 /* 880 * Trim pages from the end of the range. 881 */ 882 for (va = KERNEL_TEXT; 883 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 884 va = next_va) { 885 886 next_va = va + len; 887 pfn_addr = pfn_to_pa(pfn); 888 889 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 890 *size = pfn_addr - *addr; 891 } 892 893 if (prom_debug) 894 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 895 *addr, *size); 896 } 897 898 static void 899 kpm_init() 900 { 901 struct segkpm_crargs b; 902 903 /* 904 * These variables were all designed for sfmmu in which segkpm is 905 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 906 * might use 2+ page sizes on a single machine, so none of these 907 * variables have a single correct value. They are set up as if we 908 * always use a 4KB pagesize, which should do no harm. In the long 909 * run, we should get rid of KPM's assumption that only a single 910 * pagesize is used. 911 */ 912 kpm_pgshft = MMU_PAGESHIFT; 913 kpm_pgsz = MMU_PAGESIZE; 914 kpm_pgoff = MMU_PAGEOFFSET; 915 kpmp2pshft = 0; 916 kpmpnpgs = 1; 917 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 918 919 PRM_POINT("about to create segkpm"); 920 rw_enter(&kas.a_lock, RW_WRITER); 921 922 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 923 panic("cannot attach segkpm"); 924 925 b.prot = PROT_READ | PROT_WRITE; 926 b.nvcolors = 1; 927 928 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 929 panic("segkpm_create segkpm"); 930 931 rw_exit(&kas.a_lock); 932 933 kpm_enable = 1; 934 935 /* 936 * As the KPM was disabled while setting up the system, go back and fix 937 * CPU zero's access to its user page table. This is a bit gross, but 938 * we have a chicken and egg problem otherwise. 939 */ 940 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 941 CPU->cpu_hat_info->hci_user_l3ptes = 942 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 943 } 944 945 /* 946 * The debug info page provides enough information to allow external 947 * inspectors (e.g. when running under a hypervisor) to bootstrap 948 * themselves into allowing full-blown kernel debugging. 949 */ 950 static void 951 init_debug_info(void) 952 { 953 caddr_t mem; 954 debug_info_t *di; 955 956 #ifndef __lint 957 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 958 #endif 959 960 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 961 MMU_PAGESIZE); 962 963 if (mem != (caddr_t)DEBUG_INFO_VA) 964 panic("BOP_ALLOC() failed"); 965 bzero(mem, MMU_PAGESIZE); 966 967 di = (debug_info_t *)mem; 968 969 di->di_magic = DEBUG_INFO_MAGIC; 970 di->di_version = DEBUG_INFO_VERSION; 971 di->di_modules = (uintptr_t)&modules; 972 di->di_s_text = (uintptr_t)s_text; 973 di->di_e_text = (uintptr_t)e_text; 974 di->di_s_data = (uintptr_t)s_data; 975 di->di_e_data = (uintptr_t)e_data; 976 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 977 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 978 } 979 980 /* 981 * Build the memlists and other kernel essential memory system data structures. 982 * This is everything at valloc_base. 983 */ 984 static void 985 startup_memlist(void) 986 { 987 size_t memlist_sz; 988 size_t memseg_sz; 989 size_t pagehash_sz; 990 size_t pp_sz; 991 uintptr_t va; 992 size_t len; 993 uint_t prot; 994 pfn_t pfn; 995 int memblocks; 996 pfn_t rsvd_high_pfn; 997 pgcnt_t rsvd_pgcnt; 998 size_t rsvdmemlist_sz; 999 int rsvdmemblocks; 1000 caddr_t pagecolor_mem; 1001 size_t pagecolor_memsz; 1002 caddr_t page_ctrs_mem; 1003 size_t page_ctrs_size; 1004 size_t pse_table_alloc_size; 1005 struct memlist *current; 1006 extern void startup_build_mem_nodes(struct memlist *); 1007 1008 /* XX64 fix these - they should be in include files */ 1009 extern size_t page_coloring_init(uint_t, int, int); 1010 extern void page_coloring_setup(caddr_t); 1011 1012 PRM_POINT("startup_memlist() starting..."); 1013 1014 /* 1015 * Use leftover large page nucleus text/data space for loadable modules. 1016 * Use at most MODTEXT/MODDATA. 1017 */ 1018 len = kbm_nucleus_size; 1019 ASSERT(len > MMU_PAGESIZE); 1020 1021 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1022 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1023 if (e_moddata - moddata > MODDATA) 1024 e_moddata = moddata + MODDATA; 1025 1026 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1027 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1028 if (e_modtext - modtext > MODTEXT) 1029 e_modtext = modtext + MODTEXT; 1030 1031 econtig = e_moddata; 1032 1033 PRM_DEBUG(modtext); 1034 PRM_DEBUG(e_modtext); 1035 PRM_DEBUG(moddata); 1036 PRM_DEBUG(e_moddata); 1037 PRM_DEBUG(econtig); 1038 1039 /* 1040 * Examine the boot loader physical memory map to find out: 1041 * - total memory in system - physinstalled 1042 * - the max physical address - physmax 1043 * - the number of discontiguous segments of memory. 1044 */ 1045 if (prom_debug) 1046 print_memlist("boot physinstalled", 1047 bootops->boot_mem->physinstalled); 1048 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1049 &physinstalled, &memblocks); 1050 PRM_DEBUG(physmax); 1051 PRM_DEBUG(physinstalled); 1052 PRM_DEBUG(memblocks); 1053 1054 /* 1055 * We no longer support any form of memory DR. 1056 */ 1057 plat_dr_physmax = 0; 1058 1059 /* 1060 * Examine the bios reserved memory to find out: 1061 * - the number of discontiguous segments of memory. 1062 */ 1063 if (prom_debug) 1064 print_memlist("boot reserved mem", 1065 bootops->boot_mem->rsvdmem); 1066 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1067 &rsvd_pgcnt, &rsvdmemblocks); 1068 PRM_DEBUG(rsvd_high_pfn); 1069 PRM_DEBUG(rsvd_pgcnt); 1070 PRM_DEBUG(rsvdmemblocks); 1071 1072 /* 1073 * Initialize hat's mmu parameters. 1074 * Check for enforce-prot-exec in boot environment. It's used to 1075 * enable/disable support for the page table entry NX bit. 1076 * The default is to enforce PROT_EXEC on processors that support NX. 1077 * Boot seems to round up the "len", but 8 seems to be big enough. 1078 */ 1079 mmu_init(); 1080 1081 1082 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1083 1084 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1085 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1086 char value[8]; 1087 1088 if (len < 8) 1089 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1090 else 1091 (void) strcpy(value, ""); 1092 if (strcmp(value, "off") == 0) 1093 mmu.pt_nx = 0; 1094 } 1095 PRM_DEBUG(mmu.pt_nx); 1096 1097 /* 1098 * We will need page_t's for every page in the system, except for 1099 * memory mapped at or above above the start of the kernel text segment. 1100 * 1101 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1102 */ 1103 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1104 obp_pages = 0; 1105 va = KERNEL_TEXT; 1106 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1107 npages -= len >> MMU_PAGESHIFT; 1108 if (va >= (uintptr_t)e_moddata) 1109 obp_pages += len >> MMU_PAGESHIFT; 1110 va += len; 1111 } 1112 PRM_DEBUG(npages); 1113 PRM_DEBUG(obp_pages); 1114 1115 /* 1116 * If physmem is patched to be non-zero, use it instead of the computed 1117 * value unless it is larger than the actual amount of memory on hand. 1118 */ 1119 if (physmem == 0 || physmem > npages) { 1120 physmem = npages; 1121 } else if (physmem < npages) { 1122 orig_npages = npages; 1123 npages = physmem; 1124 } 1125 PRM_DEBUG(physmem); 1126 1127 /* 1128 * We now compute the sizes of all the initial allocations for 1129 * structures the kernel needs in order do kmem_alloc(). These 1130 * include: 1131 * memsegs 1132 * memlists 1133 * page hash table 1134 * page_t's 1135 * page coloring data structs 1136 */ 1137 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1138 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1139 PRM_DEBUG(memseg_sz); 1140 1141 /* 1142 * Reserve space for memlists. There's no real good way to know exactly 1143 * how much room we'll need, but this should be a good upper bound. 1144 */ 1145 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1146 (memblocks + POSS_NEW_FRAGMENTS)); 1147 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1148 PRM_DEBUG(memlist_sz); 1149 1150 /* 1151 * Reserve space for bios reserved memlists. 1152 */ 1153 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1154 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1155 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1156 PRM_DEBUG(rsvdmemlist_sz); 1157 1158 /* LINTED */ 1159 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1160 /* 1161 * The page structure hash table size is a power of 2 1162 * such that the average hash chain length is PAGE_HASHAVELEN. 1163 */ 1164 page_hashsz = npages / PAGE_HASHAVELEN; 1165 page_hashsz_shift = highbit(page_hashsz); 1166 page_hashsz = 1 << page_hashsz_shift; 1167 pagehash_sz = sizeof (struct page *) * page_hashsz; 1168 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1169 PRM_DEBUG(pagehash_sz); 1170 1171 /* 1172 * Set aside room for the page structures themselves. 1173 */ 1174 PRM_DEBUG(npages); 1175 pp_sz = sizeof (struct page) * npages; 1176 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1177 PRM_DEBUG(pp_sz); 1178 1179 /* 1180 * determine l2 cache info and memory size for page coloring 1181 */ 1182 (void) getl2cacheinfo(CPU, 1183 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1184 pagecolor_memsz = 1185 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1186 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1187 PRM_DEBUG(pagecolor_memsz); 1188 1189 page_ctrs_size = page_ctrs_sz(); 1190 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1191 PRM_DEBUG(page_ctrs_size); 1192 1193 /* 1194 * Allocate the array that protects pp->p_selock. 1195 */ 1196 pse_shift = size_pse_array(physmem, max_ncpus); 1197 pse_table_size = 1 << pse_shift; 1198 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1199 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1200 1201 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1202 valloc_base = VALLOC_BASE; 1203 1204 /* 1205 * The signicant memory-sized regions are roughly sized as follows in 1206 * the default layout with max physmem: 1207 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE) 1208 * segzio: 1.5x physmem 1209 * segkvmm: 4x physmem 1210 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem 1211 * 1212 * The idea is that we leave enough room to avoid fragmentation issues, 1213 * so we would like the VA arenas to have some extra. 1214 * 1215 * Ignoring the loose change of segkp, valloc, and such, this means that 1216 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to 1217 * about (2Tb / 7.0), rounded down to 256Gb in the check below. 1218 * 1219 * Note that KPM lives below VALLOC_BASE, but we want to include it in 1220 * adjustments, hence the 8 below. 1221 * 1222 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and 1223 * _userlimit) down to accommodate the VA requirements above. 1224 */ 1225 if (physmax + 1 > mmu_btop(TERABYTE / 4)) { 1226 uint64_t physmem_bytes = mmu_ptob(physmax + 1); 1227 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4)); 1228 1229 PRM_DEBUG(adjustment); 1230 1231 /* 1232 * segkpm_base is always aligned on a L3 PTE boundary. 1233 */ 1234 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE); 1235 1236 /* 1237 * But make sure we leave some space for user apps above hole. 1238 */ 1239 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1240 1241 ASSERT(segkpm_base <= SEGKPM_BASE); 1242 1243 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG); 1244 if (valloc_base < segkpm_base) 1245 panic("not enough kernel VA to support memory size"); 1246 } 1247 1248 PRM_DEBUG(segkpm_base); 1249 PRM_DEBUG(valloc_base); 1250 1251 /* 1252 * do all the initial allocations 1253 */ 1254 perform_allocations(); 1255 1256 /* 1257 * Build phys_install and phys_avail in kernel memspace. 1258 * - phys_install should be all memory in the system. 1259 * - phys_avail is phys_install minus any memory mapped before this 1260 * point above KERNEL_TEXT. 1261 */ 1262 current = phys_install = memlist; 1263 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1264 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1265 panic("physinstalled was too big!"); 1266 if (prom_debug) 1267 print_memlist("phys_install", phys_install); 1268 1269 phys_avail = current; 1270 PRM_POINT("Building phys_avail:\n"); 1271 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1272 avail_filter); 1273 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1274 panic("physavail was too big!"); 1275 if (prom_debug) 1276 print_memlist("phys_avail", phys_avail); 1277 #ifndef __xpv 1278 /* 1279 * Free unused memlist items, which may be used by memory DR driver 1280 * at runtime. 1281 */ 1282 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1283 memlist_free_block((caddr_t)current, 1284 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1285 } 1286 #endif 1287 1288 /* 1289 * Build bios reserved memspace 1290 */ 1291 current = bios_rsvd; 1292 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1293 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1294 panic("bios_rsvd was too big!"); 1295 if (prom_debug) 1296 print_memlist("bios_rsvd", bios_rsvd); 1297 #ifndef __xpv 1298 /* 1299 * Free unused memlist items, which may be used by memory DR driver 1300 * at runtime. 1301 */ 1302 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1303 memlist_free_block((caddr_t)current, 1304 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1305 } 1306 #endif 1307 1308 /* 1309 * setup page coloring 1310 */ 1311 page_coloring_setup(pagecolor_mem); 1312 page_lock_init(); /* currently a no-op */ 1313 1314 /* 1315 * free page list counters 1316 */ 1317 (void) page_ctrs_alloc(page_ctrs_mem); 1318 1319 /* 1320 * Size the pcf array based on the number of cpus in the box at 1321 * boot time. 1322 */ 1323 1324 pcf_init(); 1325 1326 /* 1327 * Initialize the page structures from the memory lists. 1328 */ 1329 availrmem_initial = availrmem = freemem = 0; 1330 PRM_POINT("Calling kphysm_init()..."); 1331 npages = kphysm_init(pp_base, npages); 1332 PRM_POINT("kphysm_init() done"); 1333 PRM_DEBUG(npages); 1334 1335 init_debug_info(); 1336 1337 /* 1338 * Now that page_t's have been initialized, remove all the 1339 * initial allocation pages from the kernel free page lists. 1340 */ 1341 boot_mapin((caddr_t)valloc_base, valloc_sz); 1342 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1343 PRM_POINT("startup_memlist() done"); 1344 1345 PRM_DEBUG(valloc_sz); 1346 1347 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1348 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1349 extern size_t textrepl_size_thresh; 1350 textrepl_size_thresh = (16 << 20) - 1; 1351 } 1352 } 1353 1354 /* 1355 * Layout the kernel's part of address space and initialize kmem allocator. 1356 */ 1357 static void 1358 startup_kmem(void) 1359 { 1360 extern void page_set_colorequiv_arr(void); 1361 #if !defined(__xpv) 1362 extern uint64_t kpti_kbase; 1363 #endif 1364 1365 PRM_POINT("startup_kmem() starting..."); 1366 1367 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1368 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1369 "systems."); 1370 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1371 core_base = (uintptr_t)COREHEAP_BASE; 1372 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1373 1374 PRM_DEBUG(core_base); 1375 PRM_DEBUG(core_size); 1376 PRM_DEBUG(kernelbase); 1377 1378 ekernelheap = (char *)core_base; 1379 PRM_DEBUG(ekernelheap); 1380 1381 /* 1382 * Now that we know the real value of kernelbase, 1383 * update variables that were initialized with a value of 1384 * KERNELBASE (in common/conf/param.c). 1385 * 1386 * XXX The problem with this sort of hackery is that the 1387 * compiler just may feel like putting the const declarations 1388 * (in param.c) into the .text section. Perhaps they should 1389 * just be declared as variables there? 1390 */ 1391 1392 *(uintptr_t *)&_kernelbase = kernelbase; 1393 *(uintptr_t *)&_userlimit = kernelbase; 1394 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1395 #if !defined(__xpv) 1396 kpti_kbase = kernelbase; 1397 #endif 1398 PRM_DEBUG(_kernelbase); 1399 PRM_DEBUG(_userlimit); 1400 PRM_DEBUG(_userlimit32); 1401 1402 /* We have to re-do this now that we've modified _userlimit. */ 1403 mmu_calc_user_slots(); 1404 1405 layout_kernel_va(); 1406 1407 /* 1408 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1409 */ 1410 kernelheap_init(kernelheap, ekernelheap, 1411 kernelheap + MMU_PAGESIZE, 1412 (void *)core_base, (void *)(core_base + core_size)); 1413 1414 #if defined(__xpv) 1415 /* 1416 * Link pending events struct into cpu struct 1417 */ 1418 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1419 #endif 1420 /* 1421 * Initialize kernel memory allocator. 1422 */ 1423 kmem_init(); 1424 1425 /* 1426 * Factor in colorequiv to check additional 'equivalent' bins 1427 */ 1428 page_set_colorequiv_arr(); 1429 1430 /* 1431 * print this out early so that we know what's going on 1432 */ 1433 print_x86_featureset(x86_featureset); 1434 1435 /* 1436 * Initialize bp_mapin(). 1437 */ 1438 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1439 1440 /* 1441 * orig_npages is non-zero if physmem has been configured for less 1442 * than the available memory. 1443 */ 1444 if (orig_npages) { 1445 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1446 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1447 npages, orig_npages); 1448 } 1449 1450 #ifdef KERNELBASE_ABI_MIN 1451 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1452 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1453 "i386 ABI compliant.", (uintptr_t)kernelbase); 1454 } 1455 #endif 1456 1457 #ifndef __xpv 1458 if (plat_dr_support_memory()) { 1459 mem_config_init(); 1460 } 1461 #else /* __xpv */ 1462 /* 1463 * Some of the xen start information has to be relocated up 1464 * into the kernel's permanent address space. 1465 */ 1466 PRM_POINT("calling xen_relocate_start_info()"); 1467 xen_relocate_start_info(); 1468 PRM_POINT("xen_relocate_start_info() done"); 1469 1470 /* 1471 * (Update the vcpu pointer in our cpu structure to point into 1472 * the relocated shared info.) 1473 */ 1474 CPU->cpu_m.mcpu_vcpu_info = 1475 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1476 #endif /* __xpv */ 1477 1478 PRM_POINT("startup_kmem() done"); 1479 } 1480 1481 #ifndef __xpv 1482 /* 1483 * If we have detected that we are running in an HVM environment, we need 1484 * to prepend the PV driver directory to the module search path. 1485 */ 1486 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1487 static void 1488 update_default_path() 1489 { 1490 char *current, *newpath; 1491 int newlen; 1492 1493 /* 1494 * We are about to resync with krtld. krtld will reset its 1495 * internal module search path iff Solaris has set default_path. 1496 * We want to be sure we're prepending this new directory to the 1497 * right search path. 1498 */ 1499 current = (default_path == NULL) ? kobj_module_path : default_path; 1500 1501 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1502 newpath = kmem_alloc(newlen, KM_SLEEP); 1503 (void) strcpy(newpath, HVM_MOD_DIR); 1504 (void) strcat(newpath, " "); 1505 (void) strcat(newpath, current); 1506 1507 default_path = newpath; 1508 } 1509 #endif 1510 1511 static void 1512 startup_modules(void) 1513 { 1514 int cnt; 1515 extern void prom_setup(void); 1516 int32_t v, h; 1517 char d[11]; 1518 char *cp; 1519 cmi_hdl_t hdl; 1520 1521 PRM_POINT("startup_modules() starting..."); 1522 1523 #ifndef __xpv 1524 if ((get_hwenv() & HW_XEN_HVM) != 0) 1525 update_default_path(); 1526 #endif 1527 1528 /* 1529 * Read the GMT lag from /etc/rtc_config. 1530 */ 1531 sgmtl(process_rtc_config_file()); 1532 1533 /* 1534 * Calculate default settings of system parameters based upon 1535 * maxusers, yet allow to be overridden via the /etc/system file. 1536 */ 1537 param_calc(0); 1538 1539 mod_setup(); 1540 1541 /* 1542 * Initialize system parameters. 1543 */ 1544 param_init(); 1545 1546 /* 1547 * Initialize the default brands 1548 */ 1549 brand_init(); 1550 1551 /* 1552 * maxmem is the amount of physical memory we're playing with. 1553 */ 1554 maxmem = physmem; 1555 1556 /* 1557 * Initialize segment management stuff. 1558 */ 1559 seg_init(); 1560 1561 if (modload("fs", "specfs") == -1) 1562 halt("Can't load specfs"); 1563 1564 if (modload("fs", "devfs") == -1) 1565 halt("Can't load devfs"); 1566 1567 if (modload("fs", "dev") == -1) 1568 halt("Can't load dev"); 1569 1570 if (modload("fs", "procfs") == -1) 1571 halt("Can't load procfs"); 1572 1573 (void) modloadonly("sys", "lbl_edition"); 1574 1575 dispinit(); 1576 1577 /* Read cluster configuration data. */ 1578 clconf_init(); 1579 1580 #if defined(__xpv) 1581 (void) ec_init(); 1582 gnttab_init(); 1583 (void) xs_early_init(); 1584 #endif /* __xpv */ 1585 1586 /* 1587 * Create a kernel device tree. First, create rootnex and 1588 * then invoke bus specific code to probe devices. 1589 */ 1590 setup_ddi(); 1591 1592 #ifdef __xpv 1593 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1594 #endif 1595 { 1596 id_t smid; 1597 smbios_system_t smsys; 1598 smbios_info_t sminfo; 1599 char *mfg; 1600 /* 1601 * Load the System Management BIOS into the global ksmbios 1602 * handle, if an SMBIOS is present on this system. 1603 * Also set "si-hw-provider" property, if not already set. 1604 */ 1605 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1606 if (ksmbios != NULL && 1607 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1608 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1609 mfg = (char *)sminfo.smbi_manufacturer; 1610 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1611 extern char hw_provider[]; 1612 int i; 1613 for (i = 0; i < SYS_NMLN; i++) { 1614 if (isprint(mfg[i])) 1615 hw_provider[i] = mfg[i]; 1616 else { 1617 hw_provider[i] = '\0'; 1618 break; 1619 } 1620 } 1621 hw_provider[SYS_NMLN - 1] = '\0'; 1622 } 1623 } 1624 } 1625 1626 1627 /* 1628 * Originally clconf_init() apparently needed the hostid. But 1629 * this no longer appears to be true - it uses its own nodeid. 1630 * By placing the hostid logic here, we are able to make use of 1631 * the SMBIOS UUID. 1632 */ 1633 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1634 cmn_err(CE_WARN, "Unable to set hostid"); 1635 } else { 1636 for (v = h, cnt = 0; cnt < 10; cnt++) { 1637 d[cnt] = (char)(v % 10); 1638 v /= 10; 1639 if (v == 0) 1640 break; 1641 } 1642 for (cp = hw_serial; cnt >= 0; cnt--) 1643 *cp++ = d[cnt] + '0'; 1644 *cp = 0; 1645 } 1646 1647 /* 1648 * Set up the CPU module subsystem for the boot cpu in the native 1649 * case, and all physical cpu resource in the xpv dom0 case. 1650 * Modifies the device tree, so this must be done after 1651 * setup_ddi(). 1652 */ 1653 #ifdef __xpv 1654 /* 1655 * If paravirtualized and on dom0 then we initialize all physical 1656 * cpu handles now; if paravirtualized on a domU then do not 1657 * initialize. 1658 */ 1659 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1660 xen_mc_lcpu_cookie_t cpi; 1661 1662 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1663 cpi = xen_physcpu_next(cpi)) { 1664 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1665 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1666 xen_physcpu_strandid(cpi))) != NULL && 1667 is_x86_feature(x86_featureset, X86FSET_MCA)) 1668 cmi_mca_init(hdl); 1669 } 1670 } 1671 #else 1672 /* 1673 * Initialize a handle for the boot cpu - others will initialize 1674 * as they startup. 1675 */ 1676 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1677 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1678 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1679 cmi_mca_init(hdl); 1680 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1681 } 1682 #endif /* __xpv */ 1683 1684 /* 1685 * Fake a prom tree such that /dev/openprom continues to work 1686 */ 1687 PRM_POINT("startup_modules: calling prom_setup..."); 1688 prom_setup(); 1689 PRM_POINT("startup_modules: done"); 1690 1691 /* 1692 * Load all platform specific modules 1693 */ 1694 PRM_POINT("startup_modules: calling psm_modload..."); 1695 psm_modload(); 1696 1697 PRM_POINT("startup_modules() done"); 1698 } 1699 1700 /* 1701 * claim a "setaside" boot page for use in the kernel 1702 */ 1703 page_t * 1704 boot_claim_page(pfn_t pfn) 1705 { 1706 page_t *pp; 1707 1708 pp = page_numtopp_nolock(pfn); 1709 ASSERT(pp != NULL); 1710 1711 if (PP_ISBOOTPAGES(pp)) { 1712 if (pp->p_next != NULL) 1713 pp->p_next->p_prev = pp->p_prev; 1714 if (pp->p_prev == NULL) 1715 bootpages = pp->p_next; 1716 else 1717 pp->p_prev->p_next = pp->p_next; 1718 } else { 1719 /* 1720 * htable_attach() expects a base pagesize page 1721 */ 1722 if (pp->p_szc != 0) 1723 page_boot_demote(pp); 1724 pp = page_numtopp(pfn, SE_EXCL); 1725 } 1726 return (pp); 1727 } 1728 1729 /* 1730 * Walk through the pagetables looking for pages mapped in by boot. If the 1731 * setaside flag is set the pages are expected to be returned to the 1732 * kernel later in boot, so we add them to the bootpages list. 1733 */ 1734 static void 1735 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1736 { 1737 uintptr_t va = low; 1738 size_t len; 1739 uint_t prot; 1740 pfn_t pfn; 1741 page_t *pp; 1742 pgcnt_t boot_protect_cnt = 0; 1743 1744 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1745 if (va + len >= high) 1746 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1747 "legal range.", len, (void *)va); 1748 1749 while (len > 0) { 1750 pp = page_numtopp_alloc(pfn); 1751 if (pp != NULL) { 1752 if (setaside == 0) 1753 panic("Unexpected mapping by boot. " 1754 "addr=%p pfn=%lx\n", 1755 (void *)va, pfn); 1756 1757 pp->p_next = bootpages; 1758 pp->p_prev = NULL; 1759 PP_SETBOOTPAGES(pp); 1760 if (bootpages != NULL) { 1761 bootpages->p_prev = pp; 1762 } 1763 bootpages = pp; 1764 ++boot_protect_cnt; 1765 } 1766 1767 ++pfn; 1768 len -= MMU_PAGESIZE; 1769 va += MMU_PAGESIZE; 1770 } 1771 } 1772 PRM_DEBUG(boot_protect_cnt); 1773 } 1774 1775 /* 1776 * Establish the final size of the kernel's heap, size of segmap, segkp, etc. 1777 */ 1778 static void 1779 layout_kernel_va(void) 1780 { 1781 const size_t physmem_size = mmu_ptob(physmem); 1782 size_t size; 1783 1784 PRM_POINT("layout_kernel_va() starting..."); 1785 1786 kpm_vbase = (caddr_t)segkpm_base; 1787 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1788 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1789 panic("not enough room for kpm!"); 1790 PRM_DEBUG(kpm_size); 1791 PRM_DEBUG(kpm_vbase); 1792 1793 segkp_base = (caddr_t)valloc_base + valloc_sz; 1794 if (!segkp_fromheap) { 1795 size = mmu_ptob(segkpsize); 1796 /* 1797 * Determine size of segkp 1798 * Users can change segkpsize through eeprom. 1799 */ 1800 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) { 1801 size = SEGKPDEFSIZE; 1802 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1803 "segkpsize has been reset to %ld pages", 1804 mmu_btop(size)); 1805 } 1806 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size)); 1807 segkpsize = mmu_btop(ROUND_UP_LPAGE(size)); 1808 } 1809 PRM_DEBUG(segkp_base); 1810 PRM_DEBUG(segkpsize); 1811 1812 /* 1813 * segkvmm: backing for vmm guest memory. Like segzio, we have a 1814 * separate segment for two reasons: it makes it easy to skip our pages 1815 * on kernel crash dumps, and it helps avoid fragmentation. With this 1816 * segment, we're expecting significantly-sized allocations only; we'll 1817 * default to 4x the size of physmem. 1818 */ 1819 segkvmm_base = segkp_base + mmu_ptob(segkpsize); 1820 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4); 1821 1822 size = MAX(size, SEGVMMMINSIZE); 1823 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size)); 1824 1825 PRM_DEBUG(segkvmmsize); 1826 PRM_DEBUG(segkvmm_base); 1827 1828 /* 1829 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem. 1830 */ 1831 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize); 1832 if (segzio_fromheap) { 1833 segziosize = 0; 1834 } else { 1835 size = (segziosize != 0) ? mmu_ptob(segziosize) : 1836 (physmem_size * 3) / 2; 1837 1838 size = MAX(size, SEGZIOMINSIZE); 1839 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1840 } 1841 PRM_DEBUG(segziosize); 1842 PRM_DEBUG(segzio_base); 1843 1844 /* 1845 * Put the range of VA for device mappings next, kmdb knows to not 1846 * grep in this range of addresses. 1847 */ 1848 toxic_addr = 1849 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1850 PRM_DEBUG(toxic_addr); 1851 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1852 1853 /* 1854 * Users can change segmapsize through eeprom. If the variable 1855 * is tuned through eeprom, there is no upper bound on the 1856 * size of segmap. 1857 */ 1858 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1859 1860 PRM_DEBUG(segmap_start); 1861 PRM_DEBUG(segmapsize); 1862 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1863 PRM_DEBUG(kernelheap); 1864 PRM_POINT("layout_kernel_va() done..."); 1865 } 1866 1867 /* 1868 * Finish initializing the VM system, now that we are no longer 1869 * relying on the boot time memory allocators. 1870 */ 1871 static void 1872 startup_vm(void) 1873 { 1874 struct segmap_crargs a; 1875 1876 extern int use_brk_lpg, use_stk_lpg; 1877 1878 PRM_POINT("startup_vm() starting..."); 1879 1880 /* 1881 * Initialize the hat layer. 1882 */ 1883 hat_init(); 1884 1885 /* 1886 * Do final allocations of HAT data structures that need to 1887 * be allocated before quiescing the boot loader. 1888 */ 1889 PRM_POINT("Calling hat_kern_alloc()..."); 1890 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1891 PRM_POINT("hat_kern_alloc() done"); 1892 1893 #ifndef __xpv 1894 /* 1895 * Setup Page Attribute Table 1896 */ 1897 pat_sync(); 1898 #endif 1899 1900 /* 1901 * The next two loops are done in distinct steps in order 1902 * to be sure that any page that is doubly mapped (both above 1903 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1904 * Note this may never happen, but it might someday. 1905 */ 1906 bootpages = NULL; 1907 PRM_POINT("Protecting boot pages"); 1908 1909 /* 1910 * Protect any pages mapped above KERNEL_TEXT that somehow have 1911 * page_t's. This can only happen if something weird allocated 1912 * in this range (like kadb/kmdb). 1913 */ 1914 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1915 1916 /* 1917 * Before we can take over memory allocation/mapping from the boot 1918 * loader we must remove from our free page lists any boot allocated 1919 * pages that stay mapped until release_bootstrap(). 1920 */ 1921 protect_boot_range(0, kernelbase, 1); 1922 1923 1924 /* 1925 * Switch to running on regular HAT (not boot_mmu) 1926 */ 1927 PRM_POINT("Calling hat_kern_setup()..."); 1928 hat_kern_setup(); 1929 1930 /* 1931 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1932 */ 1933 bop_no_more_mem(); 1934 1935 PRM_POINT("hat_kern_setup() done"); 1936 1937 hat_cpu_online(CPU); 1938 1939 /* 1940 * Initialize VM system 1941 */ 1942 PRM_POINT("Calling kvm_init()..."); 1943 kvm_init(); 1944 PRM_POINT("kvm_init() done"); 1945 1946 /* 1947 * Tell kmdb that the VM system is now working 1948 */ 1949 if (boothowto & RB_DEBUG) 1950 kdi_dvec_vmready(); 1951 1952 #if defined(__xpv) 1953 /* 1954 * Populate the I/O pool on domain 0 1955 */ 1956 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1957 extern long populate_io_pool(void); 1958 long init_io_pool_cnt; 1959 1960 PRM_POINT("Populating reserve I/O page pool"); 1961 init_io_pool_cnt = populate_io_pool(); 1962 PRM_DEBUG(init_io_pool_cnt); 1963 } 1964 #endif 1965 /* 1966 * Mangle the brand string etc. 1967 */ 1968 cpuid_pass3(CPU); 1969 1970 /* 1971 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1972 */ 1973 device_arena = vmem_create("device", (void *)toxic_addr, 1974 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1975 1976 /* 1977 * Now that we've got more VA, as well as the ability to allocate from 1978 * it, tell the debugger. 1979 */ 1980 if (boothowto & RB_DEBUG) 1981 kdi_dvec_memavail(); 1982 1983 #if !defined(__xpv) 1984 /* 1985 * Map page pfn=0 for drivers, such as kd, that need to pick up 1986 * parameters left there by controllers/BIOS. 1987 */ 1988 PRM_POINT("setup up p0_va"); 1989 p0_va = i86devmap(0, 1, PROT_READ); 1990 PRM_DEBUG(p0_va); 1991 #endif 1992 1993 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1994 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1995 1996 /* 1997 * disable automatic large pages for small memory systems or 1998 * when the disable flag is set. 1999 * 2000 * Do not yet consider page sizes larger than 2m/4m. 2001 */ 2002 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2003 max_uheap_lpsize = LEVEL_SIZE(1); 2004 max_ustack_lpsize = LEVEL_SIZE(1); 2005 max_privmap_lpsize = LEVEL_SIZE(1); 2006 max_uidata_lpsize = LEVEL_SIZE(1); 2007 max_utext_lpsize = LEVEL_SIZE(1); 2008 max_shm_lpsize = LEVEL_SIZE(1); 2009 } 2010 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2011 auto_lpg_disable) { 2012 use_brk_lpg = 0; 2013 use_stk_lpg = 0; 2014 } 2015 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2016 2017 PRM_POINT("Calling hat_init_finish()..."); 2018 hat_init_finish(); 2019 PRM_POINT("hat_init_finish() done"); 2020 2021 /* 2022 * Initialize the segkp segment type. 2023 */ 2024 rw_enter(&kas.a_lock, RW_WRITER); 2025 PRM_POINT("Attaching segkp"); 2026 if (segkp_fromheap) { 2027 segkp->s_as = &kas; 2028 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2029 segkp) < 0) { 2030 panic("startup: cannot attach segkp"); 2031 /*NOTREACHED*/ 2032 } 2033 PRM_POINT("Doing segkp_create()"); 2034 if (segkp_create(segkp) != 0) { 2035 panic("startup: segkp_create failed"); 2036 /*NOTREACHED*/ 2037 } 2038 PRM_DEBUG(segkp); 2039 rw_exit(&kas.a_lock); 2040 2041 /* 2042 * kpm segment 2043 */ 2044 segmap_kpm = 0; 2045 if (kpm_desired) 2046 kpm_init(); 2047 2048 /* 2049 * Now create segmap segment. 2050 */ 2051 rw_enter(&kas.a_lock, RW_WRITER); 2052 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2053 panic("cannot attach segmap"); 2054 /*NOTREACHED*/ 2055 } 2056 PRM_DEBUG(segmap); 2057 2058 a.prot = PROT_READ | PROT_WRITE; 2059 a.shmsize = 0; 2060 a.nfreelist = segmapfreelists; 2061 2062 if (segmap_create(segmap, (caddr_t)&a) != 0) 2063 panic("segmap_create segmap"); 2064 rw_exit(&kas.a_lock); 2065 2066 setup_vaddr_for_ppcopy(CPU); 2067 2068 segdev_init(); 2069 #if defined(__xpv) 2070 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2071 #endif 2072 pmem_init(); 2073 2074 PRM_POINT("startup_vm() done"); 2075 } 2076 2077 /* 2078 * Load a tod module for the non-standard tod part found on this system. 2079 */ 2080 static void 2081 load_tod_module(char *todmod) 2082 { 2083 if (modload("tod", todmod) == -1) 2084 halt("Can't load TOD module"); 2085 } 2086 2087 #ifndef __xpv 2088 static void 2089 startup_tsc(void) 2090 { 2091 uint64_t tsc_freq; 2092 2093 PRM_POINT("startup_tsc() starting..."); 2094 2095 tsc_freq = tsc_calibrate(); 2096 PRM_DEBUG(tsc_freq); 2097 2098 tsc_hrtimeinit(tsc_freq); 2099 } 2100 #endif 2101 2102 static void 2103 startup_end(void) 2104 { 2105 int i; 2106 extern void setx86isalist(void); 2107 extern void cpu_event_init(void); 2108 2109 PRM_POINT("startup_end() starting..."); 2110 2111 /* 2112 * Perform tasks that get done after most of the VM 2113 * initialization has been done but before the clock 2114 * and other devices get started. 2115 */ 2116 kern_setup1(); 2117 2118 /* 2119 * Perform CPC initialization for this CPU. 2120 */ 2121 kcpc_hw_init(CPU); 2122 2123 /* 2124 * Initialize cpu event framework. 2125 */ 2126 cpu_event_init(); 2127 2128 #if defined(OPTERON_WORKAROUND_6323525) 2129 if (opteron_workaround_6323525) 2130 patch_workaround_6323525(); 2131 #endif 2132 /* 2133 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2134 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2135 */ 2136 if (tod_module_name != NULL) { 2137 PRM_POINT("load_tod_module()"); 2138 load_tod_module(tod_module_name); 2139 } 2140 2141 #if defined(__xpv) 2142 /* 2143 * Forceload interposing TOD module for the hypervisor. 2144 */ 2145 PRM_POINT("load_tod_module()"); 2146 load_tod_module("xpvtod"); 2147 #endif 2148 2149 /* 2150 * Configure the system. 2151 */ 2152 PRM_POINT("Calling configure()..."); 2153 configure(); /* set up devices */ 2154 PRM_POINT("configure() done"); 2155 2156 /* 2157 * We can now setup for XSAVE because fpu_probe is done in configure(). 2158 */ 2159 if (fp_save_mech == FP_XSAVE) { 2160 PRM_POINT("xsave_setup_msr()"); 2161 xsave_setup_msr(CPU); 2162 } 2163 2164 /* 2165 * Set the isa_list string to the defined instruction sets we 2166 * support. 2167 */ 2168 setx86isalist(); 2169 PRM_POINT("cpu_intr_alloc()"); 2170 cpu_intr_alloc(CPU, NINTR_THREADS); 2171 PRM_POINT("psm_install()"); 2172 psm_install(); 2173 2174 /* 2175 * We're done with bootops. We don't unmap the bootstrap yet because 2176 * we're still using bootsvcs. 2177 */ 2178 PRM_POINT("NULLing out bootops"); 2179 *bootopsp = (struct bootops *)NULL; 2180 bootops = (struct bootops *)NULL; 2181 2182 #if defined(__xpv) 2183 ec_init_debug_irq(); 2184 xs_domu_init(); 2185 #endif 2186 2187 #if !defined(__xpv) 2188 /* 2189 * Intel IOMMU has been setup/initialized in ddi_impl.c 2190 * Start it up now. 2191 */ 2192 immu_startup(); 2193 2194 /* 2195 * Now that we're no longer going to drop into real mode for a BIOS call 2196 * via bootops, we can enable PCID (which requires CR0.PG). 2197 */ 2198 enable_pcid(); 2199 #endif 2200 2201 PRM_POINT("Enabling interrupts"); 2202 (*picinitf)(); 2203 sti(); 2204 #if defined(__xpv) 2205 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2206 xen_late_startup(); 2207 #endif 2208 2209 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2210 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2211 2212 /* 2213 * Register software interrupt handlers for ddi_periodic_add(9F). 2214 * Software interrupts up to the level 10 are supported. 2215 */ 2216 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2217 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2218 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2219 (caddr_t)(uintptr_t)i, NULL); 2220 } 2221 2222 #if !defined(__xpv) 2223 if (modload("drv", "amd_iommu") < 0) { 2224 PRM_POINT("No AMD IOMMU present\n"); 2225 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2226 "amd_iommu")) == NULL) { 2227 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2228 } 2229 #endif 2230 post_startup_cpu_fixups(); 2231 2232 PRM_POINT("startup_end() done"); 2233 } 2234 2235 /* 2236 * Don't remove the following 2 variables. They are necessary 2237 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2238 */ 2239 char *_hs1107 = hw_serial; 2240 ulong_t _bdhs34; 2241 2242 void 2243 post_startup(void) 2244 { 2245 extern void cpupm_init(cpu_t *); 2246 extern void cpu_event_init_cpu(cpu_t *); 2247 2248 /* 2249 * Set the system wide, processor-specific flags to be passed 2250 * to userland via the aux vector for performance hints and 2251 * instruction set extensions. 2252 */ 2253 bind_hwcap(); 2254 2255 #ifdef __xpv 2256 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2257 #endif 2258 { 2259 #if defined(__xpv) 2260 xpv_panic_init(); 2261 #else 2262 /* 2263 * Startup the memory scrubber. 2264 * XXPV This should be running somewhere .. 2265 */ 2266 if ((get_hwenv() & HW_VIRTUAL) == 0) 2267 memscrub_init(); 2268 #endif 2269 } 2270 2271 /* 2272 * Complete CPU module initialization 2273 */ 2274 cmi_post_startup(); 2275 2276 /* 2277 * Perform forceloading tasks for /etc/system. 2278 */ 2279 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2280 2281 /* 2282 * ON4.0: Force /proc module in until clock interrupt handle fixed 2283 * ON4.0: This must be fixed or restated in /etc/systems. 2284 */ 2285 (void) modload("fs", "procfs"); 2286 2287 (void) i_ddi_attach_hw_nodes("pit_beep"); 2288 2289 maxmem = freemem; 2290 2291 cpu_event_init_cpu(CPU); 2292 cpupm_init(CPU); 2293 (void) mach_cpu_create_device_node(CPU, NULL); 2294 2295 pg_init(); 2296 } 2297 2298 static int 2299 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2300 { 2301 return ((pp->p_pagenum >= btop(low_addr)) && 2302 (pp->p_pagenum < btopr(high_addr))); 2303 } 2304 2305 static int 2306 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2307 { 2308 uint_t i; 2309 2310 for (i = 0; modranges[i].phys != 0; i++) { 2311 if (pp_in_range(pp, modranges[i].phys, 2312 modranges[i].phys + modranges[i].size)) 2313 return (1); 2314 } 2315 2316 return (0); 2317 } 2318 2319 void 2320 release_bootstrap(void) 2321 { 2322 int root_is_ramdisk; 2323 page_t *pp; 2324 extern void kobj_boot_unmountroot(void); 2325 extern dev_t rootdev; 2326 uint_t i; 2327 char propname[32]; 2328 rd_existing_t *modranges; 2329 #if !defined(__xpv) 2330 pfn_t pfn; 2331 #endif 2332 2333 /* 2334 * Save the bootfs module ranges so that we can reserve them below 2335 * for the real bootfs. 2336 */ 2337 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2338 KM_SLEEP); 2339 for (i = 0; ; i++) { 2340 uint64_t start, size; 2341 2342 modranges[i].phys = 0; 2343 2344 (void) snprintf(propname, sizeof (propname), 2345 "module-addr-%u", i); 2346 if (do_bsys_getproplen(NULL, propname) <= 0) 2347 break; 2348 (void) do_bsys_getprop(NULL, propname, &start); 2349 2350 (void) snprintf(propname, sizeof (propname), 2351 "module-size-%u", i); 2352 if (do_bsys_getproplen(NULL, propname) <= 0) 2353 break; 2354 (void) do_bsys_getprop(NULL, propname, &size); 2355 2356 modranges[i].phys = start; 2357 modranges[i].size = size; 2358 } 2359 2360 /* unmount boot ramdisk and release kmem usage */ 2361 kobj_boot_unmountroot(); 2362 2363 /* 2364 * We're finished using the boot loader so free its pages. 2365 */ 2366 PRM_POINT("Unmapping lower boot pages"); 2367 2368 clear_boot_mappings(0, _userlimit); 2369 2370 postbootkernelbase = kernelbase; 2371 2372 /* 2373 * If root isn't on ramdisk, destroy the hardcoded 2374 * ramdisk node now and release the memory. Else, 2375 * ramdisk memory is kept in rd_pages. 2376 */ 2377 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2378 if (!root_is_ramdisk) { 2379 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2380 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2381 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2382 (void) ddi_remove_child(dip, 0); 2383 } 2384 2385 PRM_POINT("Releasing boot pages"); 2386 while (bootpages) { 2387 extern uint64_t ramdisk_start, ramdisk_end; 2388 pp = bootpages; 2389 bootpages = pp->p_next; 2390 2391 2392 /* Keep pages for the lower 64K */ 2393 if (pp_in_range(pp, 0, 0x40000)) { 2394 pp->p_next = lower_pages; 2395 lower_pages = pp; 2396 lower_pages_count++; 2397 continue; 2398 } 2399 2400 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2401 ramdisk_end) || pp_in_module(pp, modranges)) { 2402 pp->p_next = rd_pages; 2403 rd_pages = pp; 2404 continue; 2405 } 2406 pp->p_next = (struct page *)0; 2407 pp->p_prev = (struct page *)0; 2408 PP_CLRBOOTPAGES(pp); 2409 page_free(pp, 1); 2410 } 2411 PRM_POINT("Boot pages released"); 2412 2413 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2414 2415 #if !defined(__xpv) 2416 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2417 /* 2418 * Find 1 page below 1 MB so that other processors can boot up or 2419 * so that any processor can resume. 2420 * Make sure it has a kernel VA as well as a 1:1 mapping. 2421 * We should have just free'd one up. 2422 */ 2423 2424 /* 2425 * 0x10 pages is 64K. Leave the bottom 64K alone 2426 * for BIOS. 2427 */ 2428 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2429 if (page_numtopp_alloc(pfn) == NULL) 2430 continue; 2431 rm_platter_va = i86devmap(pfn, 1, 2432 PROT_READ | PROT_WRITE | PROT_EXEC); 2433 rm_platter_pa = ptob(pfn); 2434 break; 2435 } 2436 if (pfn == btop(1*1024*1024) && use_mp) 2437 panic("No page below 1M available for starting " 2438 "other processors or for resuming from system-suspend"); 2439 #endif /* !__xpv */ 2440 } 2441 2442 /* 2443 * Initialize the platform-specific parts of a page_t. 2444 */ 2445 void 2446 add_physmem_cb(page_t *pp, pfn_t pnum) 2447 { 2448 pp->p_pagenum = pnum; 2449 pp->p_mapping = NULL; 2450 pp->p_embed = 0; 2451 pp->p_share = 0; 2452 pp->p_mlentry = 0; 2453 } 2454 2455 /* 2456 * kphysm_init() initializes physical memory. 2457 */ 2458 static pgcnt_t 2459 kphysm_init(page_t *pp, pgcnt_t npages) 2460 { 2461 struct memlist *pmem; 2462 struct memseg *cur_memseg; 2463 pfn_t base_pfn; 2464 pfn_t end_pfn; 2465 pgcnt_t num; 2466 pgcnt_t pages_done = 0; 2467 uint64_t addr; 2468 uint64_t size; 2469 extern pfn_t ddiphysmin; 2470 extern int mnode_xwa; 2471 int ms = 0, me = 0; 2472 2473 ASSERT(page_hash != NULL && page_hashsz != 0); 2474 2475 cur_memseg = memseg_base; 2476 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2477 /* 2478 * In a 32 bit kernel can't use higher memory if we're 2479 * not booting in PAE mode. This check takes care of that. 2480 */ 2481 addr = pmem->ml_address; 2482 size = pmem->ml_size; 2483 if (btop(addr) > physmax) 2484 continue; 2485 2486 /* 2487 * align addr and size - they may not be at page boundaries 2488 */ 2489 if ((addr & MMU_PAGEOFFSET) != 0) { 2490 addr += MMU_PAGEOFFSET; 2491 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2492 size -= addr - pmem->ml_address; 2493 } 2494 2495 /* only process pages below or equal to physmax */ 2496 if ((btop(addr + size) - 1) > physmax) 2497 size = ptob(physmax - btop(addr) + 1); 2498 2499 num = btop(size); 2500 if (num == 0) 2501 continue; 2502 2503 if (num > npages) 2504 num = npages; 2505 2506 npages -= num; 2507 pages_done += num; 2508 base_pfn = btop(addr); 2509 2510 if (prom_debug) 2511 prom_printf("MEMSEG addr=0x%" PRIx64 2512 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2513 addr, num, base_pfn, base_pfn + num); 2514 2515 /* 2516 * Ignore pages below ddiphysmin to simplify ddi memory 2517 * allocation with non-zero addr_lo requests. 2518 */ 2519 if (base_pfn < ddiphysmin) { 2520 if (base_pfn + num <= ddiphysmin) 2521 continue; 2522 pp += (ddiphysmin - base_pfn); 2523 num -= (ddiphysmin - base_pfn); 2524 base_pfn = ddiphysmin; 2525 } 2526 2527 /* 2528 * mnode_xwa is greater than 1 when large pages regions can 2529 * cross memory node boundaries. To prevent the formation 2530 * of these large pages, configure the memsegs based on the 2531 * memory node ranges which had been made non-contiguous. 2532 */ 2533 end_pfn = base_pfn + num - 1; 2534 if (mnode_xwa > 1) { 2535 ms = PFN_2_MEM_NODE(base_pfn); 2536 me = PFN_2_MEM_NODE(end_pfn); 2537 2538 if (ms != me) { 2539 /* 2540 * current range spans more than 1 memory node. 2541 * Set num to only the pfn range in the start 2542 * memory node. 2543 */ 2544 num = mem_node_config[ms].physmax - base_pfn 2545 + 1; 2546 ASSERT(end_pfn > mem_node_config[ms].physmax); 2547 } 2548 } 2549 2550 for (;;) { 2551 /* 2552 * Build the memsegs entry 2553 */ 2554 cur_memseg->pages = pp; 2555 cur_memseg->epages = pp + num; 2556 cur_memseg->pages_base = base_pfn; 2557 cur_memseg->pages_end = base_pfn + num; 2558 2559 /* 2560 * Insert into memseg list in decreasing pfn range 2561 * order. Low memory is typically more fragmented such 2562 * that this ordering keeps the larger ranges at the 2563 * front of the list for code that searches memseg. 2564 * This ASSERTS that the memsegs coming in from boot 2565 * are in increasing physical address order and not 2566 * contiguous. 2567 */ 2568 if (memsegs != NULL) { 2569 ASSERT(cur_memseg->pages_base >= 2570 memsegs->pages_end); 2571 cur_memseg->next = memsegs; 2572 } 2573 memsegs = cur_memseg; 2574 2575 /* 2576 * add_physmem() initializes the PSM part of the page 2577 * struct by calling the PSM back with add_physmem_cb(). 2578 * In addition it coalesces pages into larger pages as 2579 * it initializes them. 2580 */ 2581 add_physmem(pp, num, base_pfn); 2582 cur_memseg++; 2583 availrmem_initial += num; 2584 availrmem += num; 2585 2586 pp += num; 2587 if (ms >= me) 2588 break; 2589 2590 /* process next memory node range */ 2591 ms++; 2592 base_pfn = mem_node_config[ms].physbase; 2593 2594 if (mnode_xwa > 1) { 2595 num = MIN(mem_node_config[ms].physmax, 2596 end_pfn) - base_pfn + 1; 2597 } else { 2598 num = mem_node_config[ms].physmax - 2599 base_pfn + 1; 2600 } 2601 } 2602 } 2603 2604 PRM_DEBUG(availrmem_initial); 2605 PRM_DEBUG(availrmem); 2606 PRM_DEBUG(freemem); 2607 build_pfn_hash(); 2608 return (pages_done); 2609 } 2610 2611 /* 2612 * Kernel VM initialization. 2613 */ 2614 static void 2615 kvm_init(void) 2616 { 2617 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2618 2619 /* 2620 * Put the kernel segments in kernel address space. 2621 */ 2622 rw_enter(&kas.a_lock, RW_WRITER); 2623 as_avlinit(&kas); 2624 2625 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2626 (void) segkmem_create(&ktextseg); 2627 2628 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2629 (void) segkmem_create(&kvalloc); 2630 2631 (void) seg_attach(&kas, kernelheap, 2632 ekernelheap - kernelheap, &kvseg); 2633 (void) segkmem_create(&kvseg); 2634 2635 if (core_size > 0) { 2636 PRM_POINT("attaching kvseg_core"); 2637 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2638 &kvseg_core); 2639 (void) segkmem_create(&kvseg_core); 2640 } 2641 2642 PRM_POINT("attaching segkvmm"); 2643 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg); 2644 (void) segkmem_create(&kvmmseg); 2645 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize)); 2646 2647 if (segziosize > 0) { 2648 PRM_POINT("attaching segzio"); 2649 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2650 &kzioseg); 2651 (void) segkmem_create(&kzioseg); 2652 2653 /* create zio area covering new segment */ 2654 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2655 } 2656 2657 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2658 (void) segkmem_create(&kdebugseg); 2659 2660 rw_exit(&kas.a_lock); 2661 2662 /* 2663 * Ensure that the red zone at kernelbase is never accessible. 2664 */ 2665 PRM_POINT("protecting redzone"); 2666 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2667 2668 /* 2669 * Make the text writable so that it can be hot patched by DTrace. 2670 */ 2671 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2672 PROT_READ | PROT_WRITE | PROT_EXEC); 2673 2674 /* 2675 * Make data writable until end. 2676 */ 2677 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2678 PROT_READ | PROT_WRITE | PROT_EXEC); 2679 } 2680 2681 #ifndef __xpv 2682 /* 2683 * Solaris adds an entry for Write Combining caching to the PAT 2684 */ 2685 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2686 2687 void 2688 pat_sync(void) 2689 { 2690 ulong_t cr0, cr0_orig, cr4; 2691 2692 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2693 return; 2694 cr0_orig = cr0 = getcr0(); 2695 cr4 = getcr4(); 2696 2697 /* disable caching and flush all caches and TLBs */ 2698 cr0 |= CR0_CD; 2699 cr0 &= ~CR0_NW; 2700 setcr0(cr0); 2701 invalidate_cache(); 2702 if (cr4 & CR4_PGE) { 2703 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2704 setcr4(cr4); 2705 } else { 2706 reload_cr3(); 2707 } 2708 2709 /* add our entry to the PAT */ 2710 wrmsr(REG_PAT, pat_attr_reg); 2711 2712 /* flush TLBs and cache again, then reenable cr0 caching */ 2713 if (cr4 & CR4_PGE) { 2714 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2715 setcr4(cr4); 2716 } else { 2717 reload_cr3(); 2718 } 2719 invalidate_cache(); 2720 setcr0(cr0_orig); 2721 } 2722 2723 #endif /* !__xpv */ 2724 2725 #if defined(_SOFT_HOSTID) 2726 /* 2727 * On platforms that do not have a hardware serial number, attempt 2728 * to set one based on the contents of /etc/hostid. If this file does 2729 * not exist, assume that we are to generate a new hostid and set 2730 * it in the kernel, for subsequent saving by a userland process 2731 * once the system is up and the root filesystem is mounted r/w. 2732 * 2733 * In order to gracefully support upgrade on OpenSolaris, if 2734 * /etc/hostid does not exist, we will attempt to get a serial number 2735 * using the legacy method (/kernel/misc/sysinit). 2736 * 2737 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2738 * a hardware serial number. Note that we don't automatically trust 2739 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2740 * UUIDs in violation of the standard), we check against a blacklist. 2741 * 2742 * In an attempt to make the hostid less prone to abuse 2743 * (for license circumvention, etc), we store it in /etc/hostid 2744 * in rot47 format. 2745 */ 2746 static int atoi(char *); 2747 2748 /* 2749 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2750 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2751 * array can be updated.) 2752 */ 2753 int smbios_broken_uuid = 0; 2754 2755 /* 2756 * List of known bad UUIDs. This is just the lower 32-bit values, since 2757 * that's what we use for the host id. If your hostid falls here, you need 2758 * to contact your hardware OEM for a fix for your BIOS. 2759 */ 2760 static unsigned char 2761 smbios_uuid_blacklist[][16] = { 2762 2763 { /* Reported bad UUID (Google search) */ 2764 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2765 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2766 }, 2767 { /* Known bad DELL UUID */ 2768 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2769 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2770 }, 2771 { /* Uninitialized flash */ 2772 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2773 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2774 }, 2775 { /* All zeros */ 2776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2777 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2778 }, 2779 }; 2780 2781 static int32_t 2782 uuid_to_hostid(const uint8_t *uuid) 2783 { 2784 /* 2785 * Although the UUIDs are 128-bits, they may not distribute entropy 2786 * evenly. We would like to use SHA or MD5, but those are located 2787 * in loadable modules and not available this early in boot. As we 2788 * don't need the values to be cryptographically strong, we just 2789 * generate 32-bit vaue by xor'ing the various sequences together, 2790 * which ensures that the entire UUID contributes to the hostid. 2791 */ 2792 uint32_t id = 0; 2793 2794 /* first check against the blacklist */ 2795 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2796 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2797 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2798 "Contact BIOS manufacturer for repair.\n"); 2799 return ((int32_t)HW_INVALID_HOSTID); 2800 } 2801 } 2802 2803 for (int i = 0; i < 16; i++) 2804 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2805 2806 /* Make sure return value is positive */ 2807 return (id & 0x7fffffff); 2808 } 2809 2810 static int32_t 2811 set_soft_hostid(void) 2812 { 2813 struct _buf *file; 2814 char tokbuf[MAXNAMELEN]; 2815 token_t token; 2816 int done = 0; 2817 u_longlong_t tmp; 2818 int i; 2819 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2820 unsigned char *c; 2821 hrtime_t tsc; 2822 smbios_system_t smsys; 2823 2824 /* 2825 * If /etc/hostid file not found, we'd like to get a pseudo 2826 * random number to use at the hostid. A nice way to do this 2827 * is to read the real time clock. To remain xen-compatible, 2828 * we can't poke the real hardware, so we use tsc_read() to 2829 * read the real time clock. 2830 */ 2831 2832 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2833 /* 2834 * hostid file not found - try to load sysinit module 2835 * and see if it has a nonzero hostid value...use that 2836 * instead of generating a new hostid here if so. 2837 */ 2838 if ((i = modload("misc", "sysinit")) != -1) { 2839 if (strlen(hw_serial) > 0) 2840 hostid = (int32_t)atoi(hw_serial); 2841 (void) modunload(i); 2842 } 2843 2844 /* 2845 * We try to use the SMBIOS UUID. But not if it is blacklisted 2846 * in /etc/system. 2847 */ 2848 if ((hostid == HW_INVALID_HOSTID) && 2849 (smbios_broken_uuid == 0) && 2850 (ksmbios != NULL) && 2851 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 2852 (smsys.smbs_uuidlen >= 16)) { 2853 hostid = uuid_to_hostid(smsys.smbs_uuid); 2854 } 2855 2856 /* 2857 * Generate a "random" hostid using the clock. These 2858 * hostids will change on each boot if the value is not 2859 * saved to a persistent /etc/hostid file. 2860 */ 2861 if (hostid == HW_INVALID_HOSTID) { 2862 hostid = tsc_read() & 0x0CFFFFF; 2863 } 2864 } else { 2865 /* hostid file found */ 2866 while (!done) { 2867 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2868 2869 switch (token) { 2870 case POUND: 2871 /* 2872 * skip comments 2873 */ 2874 kobj_find_eol(file); 2875 break; 2876 case STRING: 2877 /* 2878 * un-rot47 - obviously this 2879 * nonsense is ascii-specific 2880 */ 2881 for (c = (unsigned char *)tokbuf; 2882 *c != '\0'; c++) { 2883 *c += 47; 2884 if (*c > '~') 2885 *c -= 94; 2886 else if (*c < '!') 2887 *c += 94; 2888 } 2889 /* 2890 * now we should have a real number 2891 */ 2892 2893 if (kobj_getvalue(tokbuf, &tmp) != 0) 2894 kobj_file_err(CE_WARN, file, 2895 "Bad value %s for hostid", 2896 tokbuf); 2897 else 2898 hostid = (int32_t)tmp; 2899 2900 break; 2901 case EOF: 2902 done = 1; 2903 /* FALLTHROUGH */ 2904 case NEWLINE: 2905 kobj_newline(file); 2906 break; 2907 default: 2908 break; 2909 2910 } 2911 } 2912 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2913 kobj_file_err(CE_WARN, file, 2914 "hostid missing or corrupt"); 2915 2916 kobj_close_file(file); 2917 } 2918 /* 2919 * hostid is now the value read from /etc/hostid, or the 2920 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2921 * set. 2922 */ 2923 return (hostid); 2924 } 2925 2926 static int 2927 atoi(char *p) 2928 { 2929 int i = 0; 2930 2931 while (*p != '\0') 2932 i = 10 * i + (*p++ - '0'); 2933 2934 return (i); 2935 } 2936 2937 #endif /* _SOFT_HOSTID */ 2938 2939 void 2940 get_system_configuration(void) 2941 { 2942 char prop[32]; 2943 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2944 2945 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2946 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2947 kobj_getvalue(prop, &nodes_ll) == -1 || 2948 nodes_ll > MAXNODES || 2949 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2950 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2951 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2952 system_hardware.hd_nodes = 1; 2953 system_hardware.hd_cpus_per_node = 0; 2954 } else { 2955 system_hardware.hd_nodes = (int)nodes_ll; 2956 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2957 } 2958 2959 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2960 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2961 kobj_getvalue(prop, &lvalue) == -1) 2962 eprom_kernelbase = 0; 2963 else 2964 eprom_kernelbase = (uintptr_t)lvalue; 2965 2966 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2967 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2968 kobj_getvalue(prop, &lvalue) == -1) 2969 segmapsize = SEGMAPDEFAULT; 2970 else 2971 segmapsize = (uintptr_t)lvalue; 2972 2973 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2974 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2975 kobj_getvalue(prop, &lvalue) == -1) 2976 segmapfreelists = 0; /* use segmap driver default */ 2977 else 2978 segmapfreelists = (int)lvalue; 2979 2980 if (BOP_GETPROPLEN(bootops, "segkpsize") > sizeof (prop) || 2981 BOP_GETPROP(bootops, "segkpsize", prop) < 0 || 2982 kobj_getvalue(prop, &lvalue) == -1) 2983 segkpsize = mmu_btop(SEGKPDEFSIZE); 2984 else 2985 segkpsize = mmu_btop((size_t)lvalue); 2986 2987 /* physmem used to be here, but moved much earlier to fakebop.c */ 2988 } 2989 2990 /* 2991 * Add to a memory list. 2992 * start = start of new memory segment 2993 * len = length of new memory segment in bytes 2994 * new = pointer to a new struct memlist 2995 * memlistp = memory list to which to add segment. 2996 */ 2997 void 2998 memlist_add( 2999 uint64_t start, 3000 uint64_t len, 3001 struct memlist *new, 3002 struct memlist **memlistp) 3003 { 3004 struct memlist *cur; 3005 uint64_t end = start + len; 3006 3007 new->ml_address = start; 3008 new->ml_size = len; 3009 3010 cur = *memlistp; 3011 3012 while (cur) { 3013 if (cur->ml_address >= end) { 3014 new->ml_next = cur; 3015 *memlistp = new; 3016 new->ml_prev = cur->ml_prev; 3017 cur->ml_prev = new; 3018 return; 3019 } 3020 ASSERT(cur->ml_address + cur->ml_size <= start); 3021 if (cur->ml_next == NULL) { 3022 cur->ml_next = new; 3023 new->ml_prev = cur; 3024 new->ml_next = NULL; 3025 return; 3026 } 3027 memlistp = &cur->ml_next; 3028 cur = cur->ml_next; 3029 } 3030 } 3031 3032 void 3033 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3034 { 3035 size_t tsize = e_modtext - modtext; 3036 size_t dsize = e_moddata - moddata; 3037 3038 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3039 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3040 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3041 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3042 } 3043 3044 caddr_t 3045 kobj_text_alloc(vmem_t *arena, size_t size) 3046 { 3047 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3048 } 3049 3050 /*ARGSUSED*/ 3051 caddr_t 3052 kobj_texthole_alloc(caddr_t addr, size_t size) 3053 { 3054 panic("unexpected call to kobj_texthole_alloc()"); 3055 /*NOTREACHED*/ 3056 return (0); 3057 } 3058 3059 /*ARGSUSED*/ 3060 void 3061 kobj_texthole_free(caddr_t addr, size_t size) 3062 { 3063 panic("unexpected call to kobj_texthole_free()"); 3064 } 3065 3066 /* 3067 * This is called just after configure() in startup(). 3068 * 3069 * The ISALIST concept is a bit hopeless on Intel, because 3070 * there's no guarantee of an ever-more-capable processor 3071 * given that various parts of the instruction set may appear 3072 * and disappear between different implementations. 3073 * 3074 * While it would be possible to correct it and even enhance 3075 * it somewhat, the explicit hardware capability bitmask allows 3076 * more flexibility. 3077 * 3078 * So, we just leave this alone. 3079 */ 3080 void 3081 setx86isalist(void) 3082 { 3083 char *tp; 3084 size_t len; 3085 extern char *isa_list; 3086 3087 #define TBUFSIZE 1024 3088 3089 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3090 *tp = '\0'; 3091 3092 (void) strcpy(tp, "amd64 "); 3093 3094 switch (x86_vendor) { 3095 case X86_VENDOR_Intel: 3096 case X86_VENDOR_AMD: 3097 case X86_VENDOR_HYGON: 3098 case X86_VENDOR_TM: 3099 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3100 /* 3101 * Pentium Pro or later 3102 */ 3103 (void) strcat(tp, "pentium_pro"); 3104 (void) strcat(tp, 3105 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3106 "+mmx pentium_pro " : " "); 3107 } 3108 /*FALLTHROUGH*/ 3109 case X86_VENDOR_Cyrix: 3110 /* 3111 * The Cyrix 6x86 does not have any Pentium features 3112 * accessible while not at privilege level 0. 3113 */ 3114 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3115 (void) strcat(tp, "pentium"); 3116 (void) strcat(tp, 3117 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3118 "+mmx pentium " : " "); 3119 } 3120 break; 3121 default: 3122 break; 3123 } 3124 (void) strcat(tp, "i486 i386 i86"); 3125 len = strlen(tp) + 1; /* account for NULL at end of string */ 3126 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3127 kmem_free(tp, TBUFSIZE); 3128 3129 #undef TBUFSIZE 3130 } 3131 3132 void * 3133 device_arena_alloc(size_t size, int vm_flag) 3134 { 3135 return (vmem_alloc(device_arena, size, vm_flag)); 3136 } 3137 3138 void 3139 device_arena_free(void *vaddr, size_t size) 3140 { 3141 vmem_free(device_arena, vaddr, size); 3142 } 3143