1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright 2020 Joyent, Inc.
27 * Copyright (c) 2015 by Delphix. All rights reserved.
28 * Copyright 2022 Oxide Computer Company
29 * Copyright (c) 2020 Carlos Neira <cneirabustos@gmail.com>
30 * Copyright 2022 Oxide Computer Co.
31 */
32 /*
33 * Copyright (c) 2010, Intel Corporation.
34 * All rights reserved.
35 */
36
37 #include <sys/types.h>
38 #include <sys/t_lock.h>
39 #include <sys/param.h>
40 #include <sys/sysmacros.h>
41 #include <sys/signal.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/mman.h>
45 #include <sys/vm.h>
46 #include <sys/conf.h>
47 #include <sys/avintr.h>
48 #include <sys/autoconf.h>
49 #include <sys/disp.h>
50 #include <sys/class.h>
51 #include <sys/bitmap.h>
52
53 #include <sys/privregs.h>
54
55 #include <sys/proc.h>
56 #include <sys/buf.h>
57 #include <sys/kmem.h>
58 #include <sys/mem.h>
59 #include <sys/kstat.h>
60
61 #include <sys/reboot.h>
62
63 #include <sys/cred.h>
64 #include <sys/vnode.h>
65 #include <sys/file.h>
66
67 #include <sys/procfs.h>
68
69 #include <sys/vfs.h>
70 #include <sys/cmn_err.h>
71 #include <sys/utsname.h>
72 #include <sys/debug.h>
73 #include <sys/kdi.h>
74
75 #include <sys/dumphdr.h>
76 #include <sys/bootconf.h>
77 #include <sys/memlist_plat.h>
78 #include <sys/varargs.h>
79 #include <sys/promif.h>
80 #include <sys/prom_debug.h>
81 #include <sys/modctl.h>
82
83 #include <sys/sunddi.h>
84 #include <sys/sunndi.h>
85 #include <sys/ndi_impldefs.h>
86 #include <sys/ddidmareq.h>
87 #include <sys/psw.h>
88 #include <sys/regset.h>
89 #include <sys/clock.h>
90 #include <sys/pte.h>
91 #include <sys/tss.h>
92 #include <sys/stack.h>
93 #include <sys/trap.h>
94 #include <sys/fp.h>
95 #include <vm/kboot_mmu.h>
96 #include <vm/anon.h>
97 #include <vm/as.h>
98 #include <vm/page.h>
99 #include <vm/seg.h>
100 #include <vm/seg_dev.h>
101 #include <vm/seg_kmem.h>
102 #include <vm/seg_kpm.h>
103 #include <vm/seg_map.h>
104 #include <vm/seg_vn.h>
105 #include <vm/seg_kp.h>
106 #include <sys/memnode.h>
107 #include <vm/vm_dep.h>
108 #include <sys/thread.h>
109 #include <sys/sysconf.h>
110 #include <sys/vm_machparam.h>
111 #include <sys/archsystm.h>
112 #include <sys/machsystm.h>
113 #include <vm/hat.h>
114 #include <vm/hat_i86.h>
115 #include <sys/pmem.h>
116 #include <sys/smp_impldefs.h>
117 #include <sys/x86_archext.h>
118 #include <sys/cpuvar.h>
119 #include <sys/segments.h>
120 #include <sys/clconf.h>
121 #include <sys/kobj.h>
122 #include <sys/kobj_lex.h>
123 #include <sys/cpc_impl.h>
124 #include <sys/cpu_module.h>
125 #include <sys/smbios.h>
126 #include <sys/debug_info.h>
127 #include <sys/bootinfo.h>
128 #include <sys/ddi_periodic.h>
129 #include <sys/systeminfo.h>
130 #include <sys/multiboot.h>
131 #include <sys/ramdisk.h>
132 #include <sys/tsc.h>
133 #include <sys/clock.h>
134
135 #ifdef __xpv
136
137 #include <sys/hypervisor.h>
138 #include <sys/xen_mmu.h>
139 #include <sys/evtchn_impl.h>
140 #include <sys/gnttab.h>
141 #include <sys/xpv_panic.h>
142 #include <xen/sys/xenbus_comms.h>
143 #include <xen/public/physdev.h>
144
145 extern void xen_late_startup(void);
146
147 struct xen_evt_data cpu0_evt_data;
148
149 #else /* __xpv */
150 #include <sys/memlist_impl.h>
151
152 extern void mem_config_init(void);
153 #endif /* __xpv */
154
155 extern void progressbar_init(void);
156 extern void brand_init(void);
157 extern void pcf_init(void);
158 extern void pg_init(void);
159 extern void ssp_init(void);
160
161 extern int size_pse_array(pgcnt_t, int);
162
163 #if defined(_SOFT_HOSTID)
164
165 static int32_t set_soft_hostid(void);
166 static char hostid_file[] = "/etc/hostid";
167
168 #endif
169
170 void *gfx_devinfo_list;
171
172 #if !defined(__xpv)
173 extern void immu_startup(void);
174 #endif
175
176 /*
177 * XXX make declaration below "static" when drivers no longer use this
178 * interface.
179 */
180 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
181
182 /*
183 * segkp
184 */
185 extern int segkp_fromheap;
186
187 static void kvm_init(void);
188 static void startup_init(void);
189 static void startup_memlist(void);
190 static void startup_kmem(void);
191 static void startup_modules(void);
192 static void startup_vm(void);
193 #ifndef __xpv
194 static void startup_tsc(void);
195 #endif
196 static void startup_end(void);
197 static void layout_kernel_va(void);
198
199 /*
200 * Declare these as initialized data so we can patch them.
201 */
202
203 /*
204 * For now we can handle memory with physical addresses up to about
205 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
206 * half the VA space for seg_kpm. When systems get bigger than 64TB this
207 * code will need revisiting. There is an implicit assumption that there
208 * are no *huge* holes in the physical address space too.
209 */
210 #define TERABYTE (1ul << 40)
211 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
212 #define PHYSMEM PHYSMEM_MAX64
213 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
214
215
216 pgcnt_t physmem = PHYSMEM;
217 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
218
219 extern char *kobj_file_buf;
220 extern int kobj_file_bufsize; /* set in /etc/system */
221
222 /* Global variables for MP support. Used in mp_startup */
223 caddr_t rm_platter_va = 0;
224 uint32_t rm_platter_pa;
225
226 int auto_lpg_disable = 1;
227
228 /*
229 * Some CPUs have holes in the middle of the 64-bit virtual address range.
230 */
231 uintptr_t hole_start, hole_end;
232
233 /*
234 * kpm mapping window
235 */
236 caddr_t kpm_vbase;
237 size_t kpm_size;
238 static int kpm_desired;
239 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
240
241 /*
242 * Configuration parameters set at boot time.
243 */
244
245 caddr_t econtig; /* end of first block of contiguous kernel */
246
247 struct bootops *bootops = 0; /* passed in from boot */
248 struct bootops **bootopsp;
249 struct boot_syscalls *sysp; /* passed in from boot */
250
251 char bootblock_fstype[16];
252
253 char kern_bootargs[OBP_MAXPATHLEN];
254 char kern_bootfile[OBP_MAXPATHLEN];
255
256 /*
257 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
258 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
259 * zio buffers from their own segment, otherwise they are allocated from the
260 * heap. The optimization of allocating zio buffers from their own segment is
261 * only valid on 64-bit kernels.
262 */
263 int segzio_fromheap = 0;
264
265 /*
266 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
267 * post-boot.
268 */
269 int disable_smap = 0;
270
271 /*
272 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
273 * depends on number of BOP_ALLOC calls made and requested size, memory size
274 * combination and whether boot.bin memory needs to be freed.
275 */
276 #define POSS_NEW_FRAGMENTS 12
277
278 /*
279 * VM data structures
280 */
281 long page_hashsz; /* Size of page hash table (power of two) */
282 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
283 struct page *pp_base; /* Base of initial system page struct array */
284 struct page **page_hash; /* Page hash table */
285 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
286 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
287 int pse_shift; /* log2(pse_table_size) */
288 struct seg ktextseg; /* Segment used for kernel executable image */
289 struct seg kvalloc; /* Segment used for "valloc" mapping */
290 struct seg kpseg; /* Segment used for pageable kernel virt mem */
291 struct seg kmapseg; /* Segment used for generic kernel mappings */
292 struct seg kdebugseg; /* Segment used for the kernel debugger */
293
294 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
295 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
296
297 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
298
299 extern struct seg kvseg_core; /* Segment used for the core heap */
300 struct seg kpmseg; /* Segment used for physical mapping */
301 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
302
303 caddr_t segkp_base; /* Base address of segkp */
304 caddr_t segzio_base; /* Base address of segzio */
305 pgcnt_t segkpsize; /* size of segkp segment in pages */
306 caddr_t segkvmm_base;
307 pgcnt_t segkvmmsize;
308 pgcnt_t segziosize;
309
310 /*
311 * A static DR page_t VA map is reserved that can map the page structures
312 * for a domain's entire RA space. The pages that back this space are
313 * dynamically allocated and need not be physically contiguous. The DR
314 * map size is derived from KPM size.
315 * This mechanism isn't used by x86 yet, so just stubs here.
316 */
317 int ppvm_enable = 0; /* Static virtual map for page structs */
318 page_t *ppvm_base = NULL; /* Base of page struct map */
319 pgcnt_t ppvm_size = 0; /* Size of page struct map */
320
321 /*
322 * VA range available to the debugger
323 */
324 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
325 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
326
327 struct memseg *memseg_base;
328 struct vnode unused_pages_vp;
329
330 #define FOURGB 0x100000000LL
331
332 struct memlist *memlist;
333
334 caddr_t s_text; /* start of kernel text segment */
335 caddr_t e_text; /* end of kernel text segment */
336 caddr_t s_data; /* start of kernel data segment */
337 caddr_t e_data; /* end of kernel data segment */
338 caddr_t modtext; /* start of loadable module text reserved */
339 caddr_t e_modtext; /* end of loadable module text reserved */
340 caddr_t moddata; /* start of loadable module data reserved */
341 caddr_t e_moddata; /* end of loadable module data reserved */
342
343 struct memlist *phys_install; /* Total installed physical memory */
344 struct memlist *phys_avail; /* Total available physical memory */
345 struct memlist *bios_rsvd; /* Bios reserved memory */
346
347 /*
348 * kphysm_init returns the number of pages that were processed
349 */
350 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
351
352 #define IO_PROP_SIZE 64 /* device property size */
353
354 /*
355 * a couple useful roundup macros
356 */
357 #define ROUND_UP_PAGE(x) \
358 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
359 #define ROUND_UP_LPAGE(x) \
360 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
361 #define ROUND_UP_4MEG(x) \
362 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
363 #define ROUND_UP_TOPLEVEL(x) \
364 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
365
366 /*
367 * 32-bit Kernel's Virtual memory layout.
368 * +-----------------------+
369 * | |
370 * 0xFFC00000 -|-----------------------|- ARGSBASE
371 * | debugger |
372 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
373 * | Kernel Data |
374 * 0xFEC00000 -|-----------------------|
375 * | Kernel Text |
376 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
377 * |--- GDT ---|- GDT page (GDT_VA)
378 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
379 * | |
380 * | page_t structures |
381 * | memsegs, memlists, |
382 * | page hash, etc. |
383 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
384 * | | (segkp is just an arena in the heap)
385 * | |
386 * | kvseg |
387 * | |
388 * | |
389 * --- -|-----------------------|- kernelheap (floating)
390 * | Segkmap |
391 * 0xC3002000 -|-----------------------|- segmap_start (floating)
392 * | Red Zone |
393 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
394 * | | ||
395 * | Shared objects | \/
396 * | |
397 * : :
398 * | user data |
399 * |-----------------------|
400 * | user text |
401 * 0x08048000 -|-----------------------|
402 * | user stack |
403 * : :
404 * | invalid |
405 * 0x00000000 +-----------------------+
406 *
407 *
408 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
409 * +-----------------------+
410 * | |
411 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
412 * | debugger (?) |
413 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
414 * | unused |
415 * +-----------------------+
416 * | Kernel Data |
417 * 0xFFFFFFFF.FBC00000 |-----------------------|
418 * | Kernel Text |
419 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
420 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
421 * |--- GDT ---|- GDT page (GDT_VA)
422 * |--- IDT ---|- IDT page (IDT_VA)
423 * |--- LDT ---|- LDT pages (LDT_VA)
424 * | |
425 * | Core heap | (used for loadable modules)
426 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
427 * | Kernel |
428 * | heap |
429 * | |
430 * | |
431 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
432 * | segmap |
433 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
434 * | device mappings |
435 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
436 * | segzio |
437 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
438 * | segkvmm |
439 * | |
440 * | |
441 * | |
442 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating)
443 * | segkp |
444 * |-----------------------|- segkp_base (floating)
445 * | page_t structures | valloc_base + valloc_sz
446 * | memsegs, memlists, |
447 * | page hash, etc. |
448 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB)
449 * | segkpm |
450 * | |
451 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB)
452 * | Red Zone |
453 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB)
454 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB)
455 * | User stack |- User space memory
456 * | |
457 * | shared objects, etc | (grows downwards)
458 * : :
459 * | |
460 * 0xFFFF8000.00000000 |-----------------------|
461 * | |
462 * | VA Hole / unused |
463 * | |
464 * 0x00008000.00000000 |-----------------------|
465 * | |
466 * | |
467 * : :
468 * | user heap | (grows upwards)
469 * | |
470 * | user data |
471 * |-----------------------|
472 * | user text |
473 * 0x00000000.04000000 |-----------------------|
474 * | invalid |
475 * 0x00000000.00000000 +-----------------------+
476 *
477 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
478 * kernel, except that userlimit is raised to 0xfe000000
479 *
480 * Floating values:
481 *
482 * valloc_base: start of the kernel's memory management/tracking data
483 * structures. This region contains page_t structures for
484 * physical memory, memsegs, memlists, and the page hash.
485 *
486 * core_base: start of the kernel's "core" heap area on 64-bit systems.
487 * This area is intended to be used for global data as well as for module
488 * text/data that does not fit into the nucleus pages. The core heap is
489 * restricted to a 2GB range, allowing every address within it to be
490 * accessed using rip-relative addressing
491 *
492 * ekernelheap: end of kernelheap and start of segmap.
493 *
494 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
495 * above a red zone that separates the user's address space from the
496 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
497 *
498 * segmap_start: start of segmap. The length of segmap can be modified
499 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
500 * on 64-bit systems.
501 *
502 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
503 * decreased by 2X the size required for page_t. This allows the kernel
504 * heap to grow in size with physical memory. With sizeof(page_t) == 80
505 * bytes, the following shows the values of kernelbase and kernel heap
506 * sizes for different memory configurations (assuming default segmap and
507 * segkp sizes).
508 *
509 * mem size for kernelbase kernel heap
510 * size page_t's size
511 * ---- --------- ---------- -----------
512 * 1gb 0x01400000 0xd1800000 684MB
513 * 2gb 0x02800000 0xcf000000 704MB
514 * 4gb 0x05000000 0xca000000 744MB
515 * 6gb 0x07800000 0xc5000000 784MB
516 * 8gb 0x0a000000 0xc0000000 824MB
517 * 16gb 0x14000000 0xac000000 984MB
518 * 32gb 0x28000000 0x84000000 1304MB
519 * 64gb 0x50000000 0x34000000 1944MB (*)
520 *
521 * kernelbase is less than the abi minimum of 0xc0000000 for memory
522 * configurations above 8gb.
523 *
524 * (*) support for memory configurations above 32gb will require manual tuning
525 * of kernelbase to balance out the need of user applications.
526 */
527
528 /* real-time-clock initialization parameters */
529 extern time_t process_rtc_config_file(void);
530
531 uintptr_t kernelbase;
532 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
533 uintptr_t eprom_kernelbase;
534 size_t segmapsize;
535 uintptr_t segmap_start;
536 int segmapfreelists;
537 pgcnt_t npages;
538 pgcnt_t orig_npages;
539 size_t core_size; /* size of "core" heap */
540 uintptr_t core_base; /* base address of "core" heap */
541
542 /*
543 * List of bootstrap pages. We mark these as allocated in startup.
544 * release_bootstrap() will free them when we're completely done with
545 * the bootstrap.
546 */
547 static page_t *bootpages;
548
549 /*
550 * boot time pages that have a vnode from the ramdisk will keep that forever.
551 */
552 static page_t *rd_pages;
553
554 /*
555 * Lower 64K
556 */
557 static page_t *lower_pages = NULL;
558 static int lower_pages_count = 0;
559
560 struct system_hardware system_hardware;
561
562 /*
563 * Enable some debugging messages concerning memory usage...
564 */
565 static void
print_memlist(char * title,struct memlist * mp)566 print_memlist(char *title, struct memlist *mp)
567 {
568 prom_printf("MEMLIST: %s:\n", title);
569 while (mp != NULL) {
570 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
571 mp->ml_address, mp->ml_size);
572 mp = mp->ml_next;
573 }
574 }
575
576 /*
577 * XX64 need a comment here.. are these just default values, surely
578 * we read the "cpuid" type information to figure this out.
579 */
580 int l2cache_sz = 0x80000;
581 int l2cache_linesz = 0x40;
582 int l2cache_assoc = 1;
583
584 static size_t textrepl_min_gb = 10;
585
586 /*
587 * on 64 bit we use a predifined VA range for mapping devices in the kernel
588 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
589 */
590
591 vmem_t *device_arena;
592 uintptr_t toxic_addr = (uintptr_t)NULL;
593 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
594
595
596 int prom_debug;
597
598 /*
599 * This structure is used to keep track of the intial allocations
600 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
601 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
602 */
603 #define NUM_ALLOCATIONS 8
604 int num_allocations = 0;
605 struct {
606 void **al_ptr;
607 size_t al_size;
608 } allocations[NUM_ALLOCATIONS];
609 size_t valloc_sz = 0;
610 uintptr_t valloc_base;
611
612 #define ADD_TO_ALLOCATIONS(ptr, size) { \
613 size = ROUND_UP_PAGE(size); \
614 if (num_allocations == NUM_ALLOCATIONS) \
615 panic("too many ADD_TO_ALLOCATIONS()"); \
616 allocations[num_allocations].al_ptr = (void**)&ptr; \
617 allocations[num_allocations].al_size = size; \
618 valloc_sz += size; \
619 ++num_allocations; \
620 }
621
622 /*
623 * Allocate all the initial memory needed by the page allocator.
624 */
625 static void
perform_allocations(void)626 perform_allocations(void)
627 {
628 caddr_t mem;
629 int i;
630 int valloc_align;
631
632 PRM_DEBUG(valloc_base);
633 PRM_DEBUG(valloc_sz);
634 valloc_align = mmu.level_size[mmu.max_page_level > 0];
635 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
636 if (mem != (caddr_t)valloc_base)
637 panic("BOP_ALLOC() failed");
638 bzero(mem, valloc_sz);
639 for (i = 0; i < num_allocations; ++i) {
640 *allocations[i].al_ptr = (void *)mem;
641 mem += allocations[i].al_size;
642 }
643 }
644
645 /*
646 * Set up and enable SMAP now before we start other CPUs, but after the kernel's
647 * VM has been set up so we can use hot_patch_kernel_text().
648 *
649 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
650 * replace the four byte word at the patch point. See uts/intel/ml/copy.s
651 * for more information on what's going on here.
652 */
653 static void
startup_smap(void)654 startup_smap(void)
655 {
656 int i;
657 uint32_t inst;
658 uint8_t *instp;
659 char sym[128];
660 struct modctl *modp;
661
662 extern int _smap_enable_patch_count;
663 extern int _smap_disable_patch_count;
664
665 if (disable_smap != 0)
666 remove_x86_feature(x86_featureset, X86FSET_SMAP);
667
668 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
669 return;
670
671 for (i = 0; i < _smap_enable_patch_count; i++) {
672 int sizep;
673
674 VERIFY3U(i, <, _smap_enable_patch_count);
675 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
676 sizeof (sym));
677 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
678 VERIFY(instp != 0);
679 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
680 hot_patch_kernel_text((caddr_t)instp, inst, 4);
681 }
682
683 for (i = 0; i < _smap_disable_patch_count; i++) {
684 int sizep;
685
686 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
687 i) < sizeof (sym));
688 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
689 VERIFY(instp != 0);
690 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
691 hot_patch_kernel_text((caddr_t)instp, inst, 4);
692 }
693
694 /*
695 * Hotinline calls to smap_enable and smap_disable within
696 * unix module. Hotinlines in other modules are done on
697 * mod_load().
698 */
699 modp = mod_hold_by_name("unix");
700 do_hotinlines(modp->mod_mp);
701 mod_release_mod(modp);
702
703 setcr4(getcr4() | CR4_SMAP);
704 smap_enable();
705 }
706
707 /*
708 * Our world looks like this at startup time.
709 *
710 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
711 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
712 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
713 * addresses are fixed in the binary at link time.
714 *
715 * On the text page:
716 * unix/genunix/krtld/module text loads.
717 *
718 * On the data page:
719 * unix/genunix/krtld/module data loads.
720 *
721 * Machine-dependent startup code
722 */
723 void
startup(void)724 startup(void)
725 {
726 #if !defined(__xpv)
727 extern void startup_pci_bios(void);
728 #endif
729 extern cpuset_t cpu_ready_set;
730
731 /*
732 * Make sure that nobody tries to use sekpm until we have
733 * initialized it properly.
734 */
735 kpm_desired = 1;
736 kpm_enable = 0;
737 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
738
739 #if defined(__xpv) /* XXPV fix me! */
740 {
741 extern int segvn_use_regions;
742 segvn_use_regions = 0;
743 }
744 #endif
745 ssp_init();
746 progressbar_init();
747 startup_init();
748 #if defined(__xpv)
749 startup_xen_version();
750 #endif
751 startup_memlist();
752 startup_kmem();
753 startup_vm();
754 #if !defined(__xpv)
755 /*
756 * Up until this point, we cannot use any time delay functions
757 * (e.g. tenmicrosec()). Once the TSC is setup, we can. This is
758 * purposely done after the VM system as been setup to allow
759 * calibration sources which might require mapping for access
760 * (e.g. the HPET), but still early enough to allow the rest of
761 * the startup code to make use of the TSC (via tenmicrosec() or
762 * the default TSC-based gethrtime()) as required.
763 */
764 startup_tsc();
765
766 /*
767 * Note we need to do this even on fast reboot in order to access
768 * the irq routing table (used for pci labels).
769 */
770 startup_pci_bios();
771 startup_smap();
772 #endif
773 #if defined(__xpv)
774 startup_xen_mca();
775 #endif
776 startup_modules();
777
778 startup_end();
779 }
780
781 static void
startup_init()782 startup_init()
783 {
784 PRM_POINT("startup_init() starting...");
785
786 /*
787 * Complete the extraction of cpuid data
788 */
789 cpuid_execpass(CPU, CPUID_PASS_EXTENDED, NULL);
790
791 (void) check_boot_version(BOP_GETVERSION(bootops));
792
793 /*
794 * Check for prom_debug in boot environment
795 */
796 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
797 ++prom_debug;
798 PRM_POINT("prom_debug found in boot enviroment");
799 }
800
801 /*
802 * Collect node, cpu and memory configuration information.
803 */
804 get_system_configuration();
805
806 /*
807 * Halt if this is an unsupported processor.
808 */
809 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
810 printf("\n486 processor (\"%s\") detected.\n",
811 CPU->cpu_brandstr);
812 halt("This processor is not supported by this release "
813 "of Solaris.");
814 }
815
816 PRM_POINT("startup_init() done");
817 }
818
819 /*
820 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
821 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
822 * also filters out physical page zero. There is some reliance on the
823 * boot loader allocating only a few contiguous physical memory chunks.
824 */
825 static void
avail_filter(uint64_t * addr,uint64_t * size)826 avail_filter(uint64_t *addr, uint64_t *size)
827 {
828 uintptr_t va;
829 uintptr_t next_va;
830 pfn_t pfn;
831 uint64_t pfn_addr;
832 uint64_t pfn_eaddr;
833 uint_t prot;
834 size_t len;
835 uint_t change;
836
837 if (prom_debug)
838 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
839 *addr, *size);
840
841 /*
842 * page zero is required for BIOS.. never make it available
843 */
844 if (*addr == 0) {
845 *addr += MMU_PAGESIZE;
846 *size -= MMU_PAGESIZE;
847 }
848
849 /*
850 * First we trim from the front of the range. Since kbm_probe()
851 * walks ranges in virtual order, but addr/size are physical, we need
852 * to the list until no changes are seen. This deals with the case
853 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
854 * but w < v.
855 */
856 do {
857 change = 0;
858 for (va = KERNEL_TEXT;
859 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
860 va = next_va) {
861
862 next_va = va + len;
863 pfn_addr = pfn_to_pa(pfn);
864 pfn_eaddr = pfn_addr + len;
865
866 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
867 change = 1;
868 while (*size > 0 && len > 0) {
869 *addr += MMU_PAGESIZE;
870 *size -= MMU_PAGESIZE;
871 len -= MMU_PAGESIZE;
872 }
873 }
874 }
875 if (change && prom_debug)
876 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
877 *addr, *size);
878 } while (change);
879
880 /*
881 * Trim pages from the end of the range.
882 */
883 for (va = KERNEL_TEXT;
884 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
885 va = next_va) {
886
887 next_va = va + len;
888 pfn_addr = pfn_to_pa(pfn);
889
890 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
891 *size = pfn_addr - *addr;
892 }
893
894 if (prom_debug)
895 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
896 *addr, *size);
897 }
898
899 static void
kpm_init()900 kpm_init()
901 {
902 struct segkpm_crargs b;
903
904 /*
905 * These variables were all designed for sfmmu in which segkpm is
906 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
907 * might use 2+ page sizes on a single machine, so none of these
908 * variables have a single correct value. They are set up as if we
909 * always use a 4KB pagesize, which should do no harm. In the long
910 * run, we should get rid of KPM's assumption that only a single
911 * pagesize is used.
912 */
913 kpm_pgshft = MMU_PAGESHIFT;
914 kpm_pgsz = MMU_PAGESIZE;
915 kpm_pgoff = MMU_PAGEOFFSET;
916 kpmp2pshft = 0;
917 kpmpnpgs = 1;
918 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
919
920 PRM_POINT("about to create segkpm");
921 rw_enter(&kas.a_lock, RW_WRITER);
922
923 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
924 panic("cannot attach segkpm");
925
926 b.prot = PROT_READ | PROT_WRITE;
927 b.nvcolors = 1;
928
929 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
930 panic("segkpm_create segkpm");
931
932 rw_exit(&kas.a_lock);
933
934 kpm_enable = 1;
935
936 /*
937 * As the KPM was disabled while setting up the system, go back and fix
938 * CPU zero's access to its user page table. This is a bit gross, but
939 * we have a chicken and egg problem otherwise.
940 */
941 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL);
942 CPU->cpu_hat_info->hci_user_l3ptes =
943 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn);
944 }
945
946 /*
947 * The debug info page provides enough information to allow external
948 * inspectors (e.g. when running under a hypervisor) to bootstrap
949 * themselves into allowing full-blown kernel debugging.
950 */
951 static void
init_debug_info(void)952 init_debug_info(void)
953 {
954 caddr_t mem;
955 debug_info_t *di;
956
957 #ifndef __lint
958 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
959 #endif
960
961 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
962 MMU_PAGESIZE);
963
964 if (mem != (caddr_t)DEBUG_INFO_VA)
965 panic("BOP_ALLOC() failed");
966 bzero(mem, MMU_PAGESIZE);
967
968 di = (debug_info_t *)mem;
969
970 di->di_magic = DEBUG_INFO_MAGIC;
971 di->di_version = DEBUG_INFO_VERSION;
972 di->di_modules = (uintptr_t)&modules;
973 di->di_s_text = (uintptr_t)s_text;
974 di->di_e_text = (uintptr_t)e_text;
975 di->di_s_data = (uintptr_t)s_data;
976 di->di_e_data = (uintptr_t)e_data;
977 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
978 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
979 }
980
981 /*
982 * Build the memlists and other kernel essential memory system data structures.
983 * This is everything at valloc_base.
984 */
985 static void
startup_memlist(void)986 startup_memlist(void)
987 {
988 size_t memlist_sz;
989 size_t memseg_sz;
990 size_t pagehash_sz;
991 size_t pp_sz;
992 uintptr_t va;
993 size_t len;
994 uint_t prot;
995 pfn_t pfn;
996 int memblocks;
997 pfn_t rsvd_high_pfn;
998 pgcnt_t rsvd_pgcnt;
999 size_t rsvdmemlist_sz;
1000 int rsvdmemblocks;
1001 caddr_t pagecolor_mem;
1002 size_t pagecolor_memsz;
1003 caddr_t page_ctrs_mem;
1004 size_t page_ctrs_size;
1005 size_t pse_table_alloc_size;
1006 struct memlist *current;
1007 extern void startup_build_mem_nodes(struct memlist *);
1008
1009 /* XX64 fix these - they should be in include files */
1010 extern size_t page_coloring_init(uint_t, int, int);
1011 extern void page_coloring_setup(caddr_t);
1012
1013 PRM_POINT("startup_memlist() starting...");
1014
1015 /*
1016 * Use leftover large page nucleus text/data space for loadable modules.
1017 * Use at most MODTEXT/MODDATA.
1018 */
1019 len = kbm_nucleus_size;
1020 ASSERT(len > MMU_PAGESIZE);
1021
1022 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1023 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1024 if (e_moddata - moddata > MODDATA)
1025 e_moddata = moddata + MODDATA;
1026
1027 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1028 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1029 if (e_modtext - modtext > MODTEXT)
1030 e_modtext = modtext + MODTEXT;
1031
1032 econtig = e_moddata;
1033
1034 PRM_DEBUG(modtext);
1035 PRM_DEBUG(e_modtext);
1036 PRM_DEBUG(moddata);
1037 PRM_DEBUG(e_moddata);
1038 PRM_DEBUG(econtig);
1039
1040 /*
1041 * Examine the boot loader physical memory map to find out:
1042 * - total memory in system - physinstalled
1043 * - the max physical address - physmax
1044 * - the number of discontiguous segments of memory.
1045 */
1046 if (prom_debug)
1047 print_memlist("boot physinstalled",
1048 bootops->boot_mem->physinstalled);
1049 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1050 &physinstalled, &memblocks);
1051 PRM_DEBUG(physmax);
1052 PRM_DEBUG(physinstalled);
1053 PRM_DEBUG(memblocks);
1054
1055 /*
1056 * We no longer support any form of memory DR.
1057 */
1058 plat_dr_physmax = 0;
1059
1060 /*
1061 * Examine the bios reserved memory to find out:
1062 * - the number of discontiguous segments of memory.
1063 */
1064 if (prom_debug)
1065 print_memlist("boot reserved mem",
1066 bootops->boot_mem->rsvdmem);
1067 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1068 &rsvd_pgcnt, &rsvdmemblocks);
1069 PRM_DEBUG(rsvd_high_pfn);
1070 PRM_DEBUG(rsvd_pgcnt);
1071 PRM_DEBUG(rsvdmemblocks);
1072
1073 /*
1074 * Initialize hat's mmu parameters.
1075 * Check for enforce-prot-exec in boot environment. It's used to
1076 * enable/disable support for the page table entry NX bit.
1077 * The default is to enforce PROT_EXEC on processors that support NX.
1078 * Boot seems to round up the "len", but 8 seems to be big enough.
1079 */
1080 mmu_init();
1081
1082
1083 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1084
1085 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1086 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1087 char value[8];
1088
1089 if (len < 8)
1090 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1091 else
1092 (void) strcpy(value, "");
1093 if (strcmp(value, "off") == 0)
1094 mmu.pt_nx = 0;
1095 }
1096 PRM_DEBUG(mmu.pt_nx);
1097
1098 /*
1099 * We will need page_t's for every page in the system, except for
1100 * memory mapped at or above above the start of the kernel text segment.
1101 *
1102 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1103 */
1104 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1105 obp_pages = 0;
1106 va = KERNEL_TEXT;
1107 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1108 npages -= len >> MMU_PAGESHIFT;
1109 if (va >= (uintptr_t)e_moddata)
1110 obp_pages += len >> MMU_PAGESHIFT;
1111 va += len;
1112 }
1113 PRM_DEBUG(npages);
1114 PRM_DEBUG(obp_pages);
1115
1116 /*
1117 * If physmem is patched to be non-zero, use it instead of the computed
1118 * value unless it is larger than the actual amount of memory on hand.
1119 */
1120 if (physmem == 0 || physmem > npages) {
1121 physmem = npages;
1122 } else if (physmem < npages) {
1123 orig_npages = npages;
1124 npages = physmem;
1125 }
1126 PRM_DEBUG(physmem);
1127
1128 /*
1129 * We now compute the sizes of all the initial allocations for
1130 * structures the kernel needs in order do kmem_alloc(). These
1131 * include:
1132 * memsegs
1133 * memlists
1134 * page hash table
1135 * page_t's
1136 * page coloring data structs
1137 */
1138 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1139 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1140 PRM_DEBUG(memseg_sz);
1141
1142 /*
1143 * Reserve space for memlists. There's no real good way to know exactly
1144 * how much room we'll need, but this should be a good upper bound.
1145 */
1146 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1147 (memblocks + POSS_NEW_FRAGMENTS));
1148 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1149 PRM_DEBUG(memlist_sz);
1150
1151 /*
1152 * Reserve space for bios reserved memlists.
1153 */
1154 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1155 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1156 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1157 PRM_DEBUG(rsvdmemlist_sz);
1158
1159 /* LINTED */
1160 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1161 /*
1162 * The page structure hash table size is a power of 2
1163 * such that the average hash chain length is PAGE_HASHAVELEN.
1164 */
1165 page_hashsz = npages / PAGE_HASHAVELEN;
1166 page_hashsz_shift = highbit(page_hashsz);
1167 page_hashsz = 1 << page_hashsz_shift;
1168 pagehash_sz = sizeof (struct page *) * page_hashsz;
1169 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1170 PRM_DEBUG(pagehash_sz);
1171
1172 /*
1173 * Set aside room for the page structures themselves.
1174 */
1175 PRM_DEBUG(npages);
1176 pp_sz = sizeof (struct page) * npages;
1177 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1178 PRM_DEBUG(pp_sz);
1179
1180 /*
1181 * determine l2 cache info and memory size for page coloring
1182 */
1183 (void) getl2cacheinfo(CPU,
1184 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1185 pagecolor_memsz =
1186 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1187 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1188 PRM_DEBUG(pagecolor_memsz);
1189
1190 page_ctrs_size = page_ctrs_sz();
1191 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1192 PRM_DEBUG(page_ctrs_size);
1193
1194 /*
1195 * Allocate the array that protects pp->p_selock.
1196 */
1197 pse_shift = size_pse_array(physmem, max_ncpus);
1198 pse_table_size = 1 << pse_shift;
1199 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1200 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1201
1202 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1203 valloc_base = VALLOC_BASE;
1204
1205 /*
1206 * The signicant memory-sized regions are roughly sized as follows in
1207 * the default layout with max physmem:
1208 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE)
1209 * segzio: 1.5x physmem
1210 * segkvmm: 4x physmem
1211 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem
1212 *
1213 * The idea is that we leave enough room to avoid fragmentation issues,
1214 * so we would like the VA arenas to have some extra.
1215 *
1216 * Ignoring the loose change of segkp, valloc, and such, this means that
1217 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to
1218 * about (2Tb / 7.0), rounded down to 256Gb in the check below.
1219 *
1220 * Note that KPM lives below VALLOC_BASE, but we want to include it in
1221 * adjustments, hence the 8 below.
1222 *
1223 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and
1224 * _userlimit) down to accommodate the VA requirements above.
1225 */
1226 if (physmax + 1 > mmu_btop(TERABYTE / 4)) {
1227 uint64_t physmem_bytes = mmu_ptob(physmax + 1);
1228 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4));
1229
1230 PRM_DEBUG(adjustment);
1231
1232 /*
1233 * segkpm_base is always aligned on a L3 PTE boundary.
1234 */
1235 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE);
1236
1237 /*
1238 * But make sure we leave some space for user apps above hole.
1239 */
1240 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1241
1242 ASSERT(segkpm_base <= SEGKPM_BASE);
1243
1244 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG);
1245 if (valloc_base < segkpm_base)
1246 panic("not enough kernel VA to support memory size");
1247 }
1248
1249 PRM_DEBUG(segkpm_base);
1250 PRM_DEBUG(valloc_base);
1251
1252 /*
1253 * do all the initial allocations
1254 */
1255 perform_allocations();
1256
1257 /*
1258 * Build phys_install and phys_avail in kernel memspace.
1259 * - phys_install should be all memory in the system.
1260 * - phys_avail is phys_install minus any memory mapped before this
1261 * point above KERNEL_TEXT.
1262 */
1263 current = phys_install = memlist;
1264 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1265 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1266 panic("physinstalled was too big!");
1267 if (prom_debug)
1268 print_memlist("phys_install", phys_install);
1269
1270 phys_avail = current;
1271 PRM_POINT("Building phys_avail:\n");
1272 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1273 avail_filter);
1274 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1275 panic("physavail was too big!");
1276 if (prom_debug)
1277 print_memlist("phys_avail", phys_avail);
1278 #ifndef __xpv
1279 /*
1280 * Free unused memlist items, which may be used by memory DR driver
1281 * at runtime.
1282 */
1283 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1284 memlist_free_block((caddr_t)current,
1285 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1286 }
1287 #endif
1288
1289 /*
1290 * Build bios reserved memspace
1291 */
1292 current = bios_rsvd;
1293 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1294 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1295 panic("bios_rsvd was too big!");
1296 if (prom_debug)
1297 print_memlist("bios_rsvd", bios_rsvd);
1298 #ifndef __xpv
1299 /*
1300 * Free unused memlist items, which may be used by memory DR driver
1301 * at runtime.
1302 */
1303 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1304 memlist_free_block((caddr_t)current,
1305 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1306 }
1307 #endif
1308
1309 /*
1310 * setup page coloring
1311 */
1312 page_coloring_setup(pagecolor_mem);
1313 page_lock_init(); /* currently a no-op */
1314
1315 /*
1316 * free page list counters
1317 */
1318 (void) page_ctrs_alloc(page_ctrs_mem);
1319
1320 /*
1321 * Size the pcf array based on the number of cpus in the box at
1322 * boot time.
1323 */
1324
1325 pcf_init();
1326
1327 /*
1328 * Initialize the page structures from the memory lists.
1329 */
1330 availrmem_initial = availrmem = freemem = 0;
1331 PRM_POINT("Calling kphysm_init()...");
1332 npages = kphysm_init(pp_base, npages);
1333 PRM_POINT("kphysm_init() done");
1334 PRM_DEBUG(npages);
1335
1336 init_debug_info();
1337
1338 /*
1339 * Now that page_t's have been initialized, remove all the
1340 * initial allocation pages from the kernel free page lists.
1341 */
1342 boot_mapin((caddr_t)valloc_base, valloc_sz);
1343 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1344 PRM_POINT("startup_memlist() done");
1345
1346 PRM_DEBUG(valloc_sz);
1347
1348 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1349 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1350 extern size_t textrepl_size_thresh;
1351 textrepl_size_thresh = (16 << 20) - 1;
1352 }
1353 }
1354
1355 /*
1356 * Layout the kernel's part of address space and initialize kmem allocator.
1357 */
1358 static void
startup_kmem(void)1359 startup_kmem(void)
1360 {
1361 extern void page_set_colorequiv_arr(void);
1362 #if !defined(__xpv)
1363 extern uint64_t kpti_kbase;
1364 #endif
1365
1366 PRM_POINT("startup_kmem() starting...");
1367
1368 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1369 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1370 "systems.");
1371 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1372 core_base = (uintptr_t)COREHEAP_BASE;
1373 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1374
1375 PRM_DEBUG(core_base);
1376 PRM_DEBUG(core_size);
1377 PRM_DEBUG(kernelbase);
1378
1379 ekernelheap = (char *)core_base;
1380 PRM_DEBUG(ekernelheap);
1381
1382 /*
1383 * Now that we know the real value of kernelbase,
1384 * update variables that were initialized with a value of
1385 * KERNELBASE (in common/conf/param.c).
1386 *
1387 * XXX The problem with this sort of hackery is that the
1388 * compiler just may feel like putting the const declarations
1389 * (in param.c) into the .text section. Perhaps they should
1390 * just be declared as variables there?
1391 */
1392
1393 *(uintptr_t *)&_kernelbase = kernelbase;
1394 *(uintptr_t *)&_userlimit = kernelbase;
1395 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1396 #if !defined(__xpv)
1397 kpti_kbase = kernelbase;
1398 #endif
1399 PRM_DEBUG(_kernelbase);
1400 PRM_DEBUG(_userlimit);
1401 PRM_DEBUG(_userlimit32);
1402
1403 /* We have to re-do this now that we've modified _userlimit. */
1404 mmu_calc_user_slots();
1405
1406 layout_kernel_va();
1407
1408 /*
1409 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1410 */
1411 kernelheap_init(kernelheap, ekernelheap,
1412 kernelheap + MMU_PAGESIZE,
1413 (void *)core_base, (void *)(core_base + core_size));
1414
1415 #if defined(__xpv)
1416 /*
1417 * Link pending events struct into cpu struct
1418 */
1419 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1420 #endif
1421 /*
1422 * Initialize kernel memory allocator.
1423 */
1424 kmem_init();
1425
1426 /*
1427 * Factor in colorequiv to check additional 'equivalent' bins
1428 */
1429 page_set_colorequiv_arr();
1430
1431 /*
1432 * print this out early so that we know what's going on
1433 */
1434 print_x86_featureset(x86_featureset);
1435
1436 /*
1437 * Initialize bp_mapin().
1438 */
1439 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1440
1441 /*
1442 * orig_npages is non-zero if physmem has been configured for less
1443 * than the available memory.
1444 */
1445 if (orig_npages) {
1446 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1447 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1448 npages, orig_npages);
1449 }
1450
1451 #ifdef KERNELBASE_ABI_MIN
1452 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1453 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1454 "i386 ABI compliant.", (uintptr_t)kernelbase);
1455 }
1456 #endif
1457
1458 #ifndef __xpv
1459 if (plat_dr_support_memory()) {
1460 mem_config_init();
1461 }
1462 #else /* __xpv */
1463 /*
1464 * Some of the xen start information has to be relocated up
1465 * into the kernel's permanent address space.
1466 */
1467 PRM_POINT("calling xen_relocate_start_info()");
1468 xen_relocate_start_info();
1469 PRM_POINT("xen_relocate_start_info() done");
1470
1471 /*
1472 * (Update the vcpu pointer in our cpu structure to point into
1473 * the relocated shared info.)
1474 */
1475 CPU->cpu_m.mcpu_vcpu_info =
1476 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1477 #endif /* __xpv */
1478
1479 PRM_POINT("startup_kmem() done");
1480 }
1481
1482 #ifndef __xpv
1483 /*
1484 * If we have detected that we are running in an HVM environment, we need
1485 * to prepend the PV driver directory to the module search path.
1486 */
1487 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1488 static void
update_default_path()1489 update_default_path()
1490 {
1491 char *current, *newpath;
1492 int newlen;
1493
1494 /*
1495 * We are about to resync with krtld. krtld will reset its
1496 * internal module search path iff Solaris has set default_path.
1497 * We want to be sure we're prepending this new directory to the
1498 * right search path.
1499 */
1500 current = (default_path == NULL) ? kobj_module_path : default_path;
1501
1502 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1503 newpath = kmem_alloc(newlen, KM_SLEEP);
1504 (void) strcpy(newpath, HVM_MOD_DIR);
1505 (void) strcat(newpath, " ");
1506 (void) strcat(newpath, current);
1507
1508 default_path = newpath;
1509 }
1510 #endif
1511
1512 static void
startup_modules(void)1513 startup_modules(void)
1514 {
1515 int cnt;
1516 extern void prom_setup(void);
1517 int32_t v, h;
1518 char d[11];
1519 char *cp;
1520 cmi_hdl_t hdl;
1521
1522 PRM_POINT("startup_modules() starting...");
1523
1524 #ifndef __xpv
1525 if ((get_hwenv() & HW_XEN_HVM) != 0)
1526 update_default_path();
1527 #endif
1528
1529 /*
1530 * Read the GMT lag from /etc/rtc_config.
1531 */
1532 sgmtl(process_rtc_config_file());
1533
1534 /*
1535 * Calculate default settings of system parameters based upon
1536 * maxusers, yet allow to be overridden via the /etc/system file.
1537 */
1538 param_calc(0);
1539
1540 mod_setup();
1541
1542 /*
1543 * Initialize system parameters.
1544 */
1545 param_init();
1546
1547 /*
1548 * Initialize the default brands
1549 */
1550 brand_init();
1551
1552 /*
1553 * maxmem is the amount of physical memory we're playing with.
1554 */
1555 maxmem = physmem;
1556
1557 /*
1558 * Initialize segment management stuff.
1559 */
1560 seg_init();
1561
1562 if (modload("fs", "specfs") == -1)
1563 halt("Can't load specfs");
1564
1565 if (modload("fs", "devfs") == -1)
1566 halt("Can't load devfs");
1567
1568 if (modload("fs", "dev") == -1)
1569 halt("Can't load dev");
1570
1571 if (modload("fs", "procfs") == -1)
1572 halt("Can't load procfs");
1573
1574 (void) modloadonly("sys", "lbl_edition");
1575
1576 dispinit();
1577
1578 /* Read cluster configuration data. */
1579 clconf_init();
1580
1581 #if defined(__xpv)
1582 (void) ec_init();
1583 gnttab_init();
1584 (void) xs_early_init();
1585 #endif /* __xpv */
1586
1587 /*
1588 * Create a kernel device tree. First, create rootnex and
1589 * then invoke bus specific code to probe devices.
1590 */
1591 setup_ddi();
1592
1593 #ifdef __xpv
1594 if (DOMAIN_IS_INITDOMAIN(xen_info))
1595 #endif
1596 {
1597 id_t smid;
1598 smbios_system_t smsys;
1599 smbios_info_t sminfo;
1600 char *mfg;
1601 /*
1602 * Load the System Management BIOS into the global ksmbios
1603 * handle, if an SMBIOS is present on this system.
1604 * Also set "si-hw-provider" property, if not already set.
1605 */
1606 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1607 if (ksmbios != NULL &&
1608 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1609 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1610 mfg = (char *)sminfo.smbi_manufacturer;
1611 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1612 extern char hw_provider[];
1613 int i;
1614 for (i = 0; i < SYS_NMLN; i++) {
1615 if (isprint(mfg[i]))
1616 hw_provider[i] = mfg[i];
1617 else {
1618 hw_provider[i] = '\0';
1619 break;
1620 }
1621 }
1622 hw_provider[SYS_NMLN - 1] = '\0';
1623 }
1624 }
1625 }
1626
1627
1628 /*
1629 * Originally clconf_init() apparently needed the hostid. But
1630 * this no longer appears to be true - it uses its own nodeid.
1631 * By placing the hostid logic here, we are able to make use of
1632 * the SMBIOS UUID.
1633 */
1634 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1635 cmn_err(CE_WARN, "Unable to set hostid");
1636 } else {
1637 for (v = h, cnt = 0; cnt < 10; cnt++) {
1638 d[cnt] = (char)(v % 10);
1639 v /= 10;
1640 if (v == 0)
1641 break;
1642 }
1643 for (cp = hw_serial; cnt >= 0; cnt--)
1644 *cp++ = d[cnt] + '0';
1645 *cp = 0;
1646 }
1647
1648 /*
1649 * Set up the CPU module subsystem for the boot cpu in the native
1650 * case, and all physical cpu resource in the xpv dom0 case.
1651 * Modifies the device tree, so this must be done after
1652 * setup_ddi().
1653 */
1654 #ifdef __xpv
1655 /*
1656 * If paravirtualized and on dom0 then we initialize all physical
1657 * cpu handles now; if paravirtualized on a domU then do not
1658 * initialize.
1659 */
1660 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1661 xen_mc_lcpu_cookie_t cpi;
1662
1663 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1664 cpi = xen_physcpu_next(cpi)) {
1665 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1666 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1667 xen_physcpu_strandid(cpi))) != NULL &&
1668 is_x86_feature(x86_featureset, X86FSET_MCA))
1669 cmi_mca_init(hdl);
1670 }
1671 }
1672 #else
1673 /*
1674 * Initialize a handle for the boot cpu - others will initialize
1675 * as they startup.
1676 */
1677 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1678 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1679 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1680 cmi_mca_init(hdl);
1681 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1682 }
1683 #endif /* __xpv */
1684
1685 /*
1686 * Fake a prom tree such that /dev/openprom continues to work
1687 */
1688 PRM_POINT("startup_modules: calling prom_setup...");
1689 prom_setup();
1690 PRM_POINT("startup_modules: done");
1691
1692 /*
1693 * Load all platform specific modules
1694 */
1695 PRM_POINT("startup_modules: calling psm_modload...");
1696 psm_modload();
1697
1698 PRM_POINT("startup_modules() done");
1699 }
1700
1701 /*
1702 * claim a "setaside" boot page for use in the kernel
1703 */
1704 page_t *
boot_claim_page(pfn_t pfn)1705 boot_claim_page(pfn_t pfn)
1706 {
1707 page_t *pp;
1708
1709 pp = page_numtopp_nolock(pfn);
1710 ASSERT(pp != NULL);
1711
1712 if (PP_ISBOOTPAGES(pp)) {
1713 if (pp->p_next != NULL)
1714 pp->p_next->p_prev = pp->p_prev;
1715 if (pp->p_prev == NULL)
1716 bootpages = pp->p_next;
1717 else
1718 pp->p_prev->p_next = pp->p_next;
1719 } else {
1720 /*
1721 * htable_attach() expects a base pagesize page
1722 */
1723 if (pp->p_szc != 0)
1724 page_boot_demote(pp);
1725 pp = page_numtopp(pfn, SE_EXCL);
1726 }
1727 return (pp);
1728 }
1729
1730 /*
1731 * Walk through the pagetables looking for pages mapped in by boot. If the
1732 * setaside flag is set the pages are expected to be returned to the
1733 * kernel later in boot, so we add them to the bootpages list.
1734 */
1735 static void
protect_boot_range(uintptr_t low,uintptr_t high,int setaside)1736 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1737 {
1738 uintptr_t va = low;
1739 size_t len;
1740 uint_t prot;
1741 pfn_t pfn;
1742 page_t *pp;
1743 pgcnt_t boot_protect_cnt = 0;
1744
1745 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1746 if (va + len >= high)
1747 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1748 "legal range.", len, (void *)va);
1749
1750 while (len > 0) {
1751 pp = page_numtopp_alloc(pfn);
1752 if (pp != NULL) {
1753 if (setaside == 0)
1754 panic("Unexpected mapping by boot. "
1755 "addr=%p pfn=%lx\n",
1756 (void *)va, pfn);
1757
1758 pp->p_next = bootpages;
1759 pp->p_prev = NULL;
1760 PP_SETBOOTPAGES(pp);
1761 if (bootpages != NULL) {
1762 bootpages->p_prev = pp;
1763 }
1764 bootpages = pp;
1765 ++boot_protect_cnt;
1766 }
1767
1768 ++pfn;
1769 len -= MMU_PAGESIZE;
1770 va += MMU_PAGESIZE;
1771 }
1772 }
1773 PRM_DEBUG(boot_protect_cnt);
1774 }
1775
1776 /*
1777 * Establish the final size of the kernel's heap, size of segmap, segkp, etc.
1778 */
1779 static void
layout_kernel_va(void)1780 layout_kernel_va(void)
1781 {
1782 const size_t physmem_size = mmu_ptob(physmem);
1783 size_t size;
1784
1785 PRM_POINT("layout_kernel_va() starting...");
1786
1787 kpm_vbase = (caddr_t)segkpm_base;
1788 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1789 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1790 panic("not enough room for kpm!");
1791 PRM_DEBUG(kpm_size);
1792 PRM_DEBUG(kpm_vbase);
1793
1794 segkp_base = (caddr_t)valloc_base + valloc_sz;
1795 if (!segkp_fromheap) {
1796 size = mmu_ptob(segkpsize);
1797 /*
1798 * Determine size of segkp
1799 * Users can change segkpsize through eeprom.
1800 */
1801 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) {
1802 size = SEGKPDEFSIZE;
1803 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1804 "segkpsize has been reset to %ld pages",
1805 mmu_btop(size));
1806 }
1807 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size));
1808 segkpsize = mmu_btop(ROUND_UP_LPAGE(size));
1809 }
1810 PRM_DEBUG(segkp_base);
1811 PRM_DEBUG(segkpsize);
1812
1813 /*
1814 * segkvmm: backing for vmm guest memory. Like segzio, we have a
1815 * separate segment for two reasons: it makes it easy to skip our pages
1816 * on kernel crash dumps, and it helps avoid fragmentation. With this
1817 * segment, we're expecting significantly-sized allocations only; we'll
1818 * default to 4x the size of physmem.
1819 */
1820 segkvmm_base = segkp_base + mmu_ptob(segkpsize);
1821 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4);
1822
1823 size = MAX(size, SEGVMMMINSIZE);
1824 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size));
1825
1826 PRM_DEBUG(segkvmmsize);
1827 PRM_DEBUG(segkvmm_base);
1828
1829 /*
1830 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem.
1831 */
1832 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize);
1833 if (segzio_fromheap) {
1834 segziosize = 0;
1835 } else {
1836 size = (segziosize != 0) ? mmu_ptob(segziosize) :
1837 (physmem_size * 3) / 2;
1838
1839 size = MAX(size, SEGZIOMINSIZE);
1840 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1841 }
1842 PRM_DEBUG(segziosize);
1843 PRM_DEBUG(segzio_base);
1844
1845 /*
1846 * Put the range of VA for device mappings next, kmdb knows to not
1847 * grep in this range of addresses.
1848 */
1849 toxic_addr =
1850 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1851 PRM_DEBUG(toxic_addr);
1852 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1853
1854 /*
1855 * Users can change segmapsize through eeprom. If the variable
1856 * is tuned through eeprom, there is no upper bound on the
1857 * size of segmap.
1858 */
1859 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1860
1861 PRM_DEBUG(segmap_start);
1862 PRM_DEBUG(segmapsize);
1863 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1864 PRM_DEBUG(kernelheap);
1865 PRM_POINT("layout_kernel_va() done...");
1866 }
1867
1868 /*
1869 * Finish initializing the VM system, now that we are no longer
1870 * relying on the boot time memory allocators.
1871 */
1872 static void
startup_vm(void)1873 startup_vm(void)
1874 {
1875 struct segmap_crargs a;
1876
1877 extern int use_brk_lpg, use_stk_lpg;
1878
1879 PRM_POINT("startup_vm() starting...");
1880
1881 /*
1882 * Initialize the hat layer.
1883 */
1884 hat_init();
1885
1886 /*
1887 * Do final allocations of HAT data structures that need to
1888 * be allocated before quiescing the boot loader.
1889 */
1890 PRM_POINT("Calling hat_kern_alloc()...");
1891 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1892 PRM_POINT("hat_kern_alloc() done");
1893
1894 #ifndef __xpv
1895 /*
1896 * Setup Page Attribute Table
1897 */
1898 pat_sync();
1899 #endif
1900
1901 /*
1902 * The next two loops are done in distinct steps in order
1903 * to be sure that any page that is doubly mapped (both above
1904 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1905 * Note this may never happen, but it might someday.
1906 */
1907 bootpages = NULL;
1908 PRM_POINT("Protecting boot pages");
1909
1910 /*
1911 * Protect any pages mapped above KERNEL_TEXT that somehow have
1912 * page_t's. This can only happen if something weird allocated
1913 * in this range (like kadb/kmdb).
1914 */
1915 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1916
1917 /*
1918 * Before we can take over memory allocation/mapping from the boot
1919 * loader we must remove from our free page lists any boot allocated
1920 * pages that stay mapped until release_bootstrap().
1921 */
1922 protect_boot_range(0, kernelbase, 1);
1923
1924
1925 /*
1926 * Switch to running on regular HAT (not boot_mmu)
1927 */
1928 PRM_POINT("Calling hat_kern_setup()...");
1929 hat_kern_setup();
1930
1931 /*
1932 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1933 */
1934 bop_no_more_mem();
1935
1936 PRM_POINT("hat_kern_setup() done");
1937
1938 hat_cpu_online(CPU);
1939
1940 /*
1941 * Initialize VM system
1942 */
1943 PRM_POINT("Calling kvm_init()...");
1944 kvm_init();
1945 PRM_POINT("kvm_init() done");
1946
1947 /*
1948 * Tell kmdb that the VM system is now working
1949 */
1950 if (boothowto & RB_DEBUG)
1951 kdi_dvec_vmready();
1952
1953 #if defined(__xpv)
1954 /*
1955 * Populate the I/O pool on domain 0
1956 */
1957 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1958 extern long populate_io_pool(void);
1959 long init_io_pool_cnt;
1960
1961 PRM_POINT("Populating reserve I/O page pool");
1962 init_io_pool_cnt = populate_io_pool();
1963 PRM_DEBUG(init_io_pool_cnt);
1964 }
1965 #endif
1966 /*
1967 * Mangle the brand string etc.
1968 */
1969 cpuid_execpass(CPU, CPUID_PASS_DYNAMIC, NULL);
1970
1971 /*
1972 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1973 */
1974 device_arena = vmem_create("device", (void *)toxic_addr,
1975 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1976
1977 /*
1978 * Now that we've got more VA, as well as the ability to allocate from
1979 * it, tell the debugger.
1980 */
1981 if (boothowto & RB_DEBUG)
1982 kdi_dvec_memavail();
1983
1984 #if !defined(__xpv)
1985 /*
1986 * Map page pfn=0 for drivers, such as kd, that need to pick up
1987 * parameters left there by controllers/BIOS.
1988 */
1989 PRM_POINT("setup up p0_va");
1990 p0_va = i86devmap(0, 1, PROT_READ);
1991 PRM_DEBUG(p0_va);
1992 #endif
1993
1994 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1995 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1996
1997 /*
1998 * disable automatic large pages for small memory systems or
1999 * when the disable flag is set.
2000 *
2001 * Do not yet consider page sizes larger than 2m/4m.
2002 */
2003 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2004 max_uheap_lpsize = LEVEL_SIZE(1);
2005 max_ustack_lpsize = LEVEL_SIZE(1);
2006 max_privmap_lpsize = LEVEL_SIZE(1);
2007 max_uidata_lpsize = LEVEL_SIZE(1);
2008 max_utext_lpsize = LEVEL_SIZE(1);
2009 max_shm_lpsize = LEVEL_SIZE(1);
2010 }
2011 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2012 auto_lpg_disable) {
2013 use_brk_lpg = 0;
2014 use_stk_lpg = 0;
2015 }
2016 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2017
2018 PRM_POINT("Calling hat_init_finish()...");
2019 hat_init_finish();
2020 PRM_POINT("hat_init_finish() done");
2021
2022 /*
2023 * Initialize the segkp segment type.
2024 */
2025 rw_enter(&kas.a_lock, RW_WRITER);
2026 PRM_POINT("Attaching segkp");
2027 if (segkp_fromheap) {
2028 segkp->s_as = &kas;
2029 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2030 segkp) < 0) {
2031 panic("startup: cannot attach segkp");
2032 /*NOTREACHED*/
2033 }
2034 PRM_POINT("Doing segkp_create()");
2035 if (segkp_create(segkp) != 0) {
2036 panic("startup: segkp_create failed");
2037 /*NOTREACHED*/
2038 }
2039 PRM_DEBUG(segkp);
2040 rw_exit(&kas.a_lock);
2041
2042 /*
2043 * kpm segment
2044 */
2045 segmap_kpm = 0;
2046 if (kpm_desired)
2047 kpm_init();
2048
2049 /*
2050 * Now create segmap segment.
2051 */
2052 rw_enter(&kas.a_lock, RW_WRITER);
2053 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2054 panic("cannot attach segmap");
2055 /*NOTREACHED*/
2056 }
2057 PRM_DEBUG(segmap);
2058
2059 a.prot = PROT_READ | PROT_WRITE;
2060 a.shmsize = 0;
2061 a.nfreelist = segmapfreelists;
2062
2063 if (segmap_create(segmap, (caddr_t)&a) != 0)
2064 panic("segmap_create segmap");
2065 rw_exit(&kas.a_lock);
2066
2067 setup_vaddr_for_ppcopy(CPU);
2068
2069 segdev_init();
2070 #if defined(__xpv)
2071 if (DOMAIN_IS_INITDOMAIN(xen_info))
2072 #endif
2073 pmem_init();
2074
2075 PRM_POINT("startup_vm() done");
2076 }
2077
2078 /*
2079 * Load a tod module for the non-standard tod part found on this system.
2080 */
2081 static void
load_tod_module(char * todmod)2082 load_tod_module(char *todmod)
2083 {
2084 if (modload("tod", todmod) == -1)
2085 halt("Can't load TOD module");
2086 }
2087
2088 #ifndef __xpv
2089 static void
startup_tsc(void)2090 startup_tsc(void)
2091 {
2092 uint64_t tsc_freq;
2093
2094 PRM_POINT("startup_tsc() starting...");
2095
2096 tsc_freq = tsc_calibrate();
2097 PRM_DEBUG(tsc_freq);
2098
2099 tsc_hrtimeinit(tsc_freq);
2100 }
2101 #endif
2102
2103 static void
startup_end(void)2104 startup_end(void)
2105 {
2106 int i;
2107 extern void setx86isalist(void);
2108 extern void cpu_event_init(void);
2109
2110 PRM_POINT("startup_end() starting...");
2111
2112 /*
2113 * Perform tasks that get done after most of the VM
2114 * initialization has been done but before the clock
2115 * and other devices get started.
2116 */
2117 kern_setup1();
2118
2119 /*
2120 * Perform CPC initialization for this CPU.
2121 */
2122 kcpc_hw_init(CPU);
2123
2124 /*
2125 * Initialize cpu event framework.
2126 */
2127 cpu_event_init();
2128
2129 #if defined(OPTERON_ERRATUM_147)
2130 if (opteron_erratum_147)
2131 patch_erratum_147();
2132 #endif
2133 /*
2134 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2135 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2136 */
2137 if (tod_module_name != NULL) {
2138 PRM_POINT("load_tod_module()");
2139 load_tod_module(tod_module_name);
2140 }
2141
2142 #if defined(__xpv)
2143 /*
2144 * Forceload interposing TOD module for the hypervisor.
2145 */
2146 PRM_POINT("load_tod_module()");
2147 load_tod_module("xpvtod");
2148 #endif
2149
2150 /*
2151 * Configure the system.
2152 */
2153 PRM_POINT("Calling configure()...");
2154 configure(); /* set up devices */
2155 PRM_POINT("configure() done");
2156
2157 /*
2158 * We can now setup for XSAVE because fpu_probe is done in configure().
2159 */
2160 if (fp_save_mech == FP_XSAVE) {
2161 PRM_POINT("xsave_setup_msr()");
2162 xsave_setup_msr(CPU);
2163 }
2164
2165 /*
2166 * Set the isa_list string to the defined instruction sets we
2167 * support.
2168 */
2169 setx86isalist();
2170 PRM_POINT("cpu_intr_alloc()");
2171 cpu_intr_alloc(CPU, NINTR_THREADS);
2172 PRM_POINT("psm_install()");
2173 psm_install();
2174
2175 /*
2176 * We're done with bootops. We don't unmap the bootstrap yet because
2177 * we're still using bootsvcs.
2178 */
2179 PRM_POINT("NULLing out bootops");
2180 *bootopsp = (struct bootops *)NULL;
2181 bootops = (struct bootops *)NULL;
2182
2183 #if defined(__xpv)
2184 ec_init_debug_irq();
2185 xs_domu_init();
2186 #endif
2187
2188 #if !defined(__xpv)
2189 /*
2190 * Intel IOMMU has been setup/initialized in ddi_impl.c
2191 * Start it up now.
2192 */
2193 immu_startup();
2194
2195 /*
2196 * Now that we're no longer going to drop into real mode for a BIOS call
2197 * via bootops, we can enable PCID (which requires CR0.PG).
2198 */
2199 enable_pcid();
2200 #endif
2201
2202 PRM_POINT("Enabling interrupts");
2203 (*picinitf)();
2204 sti();
2205 #if defined(__xpv)
2206 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2207 xen_late_startup();
2208 #endif
2209
2210 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2211 "softlevel1", NULL, NULL); /* XXX to be moved later */
2212
2213 /*
2214 * Register software interrupt handlers for ddi_periodic_add(9F).
2215 * Software interrupts up to the level 10 are supported.
2216 */
2217 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2218 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2219 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic",
2220 (caddr_t)(uintptr_t)i, NULL);
2221 }
2222
2223 #if !defined(__xpv)
2224 if (modload("drv", "amd_iommu") < 0) {
2225 PRM_POINT("No AMD IOMMU present\n");
2226 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2227 "amd_iommu")) == NULL) {
2228 PRM_POINT("AMD IOMMU failed to attach\n");
2229 }
2230 #endif
2231 post_startup_cpu_fixups();
2232
2233 PRM_POINT("startup_end() done");
2234 }
2235
2236 /*
2237 * Don't remove the following 2 variables. They are necessary
2238 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2239 */
2240 char *_hs1107 = hw_serial;
2241 ulong_t _bdhs34;
2242
2243 void
post_startup(void)2244 post_startup(void)
2245 {
2246 extern void cpupm_init(cpu_t *);
2247 extern void cpu_event_init_cpu(cpu_t *);
2248
2249 /*
2250 * Set the system wide, processor-specific flags to be passed
2251 * to userland via the aux vector for performance hints and
2252 * instruction set extensions.
2253 */
2254 bind_hwcap();
2255
2256 #ifdef __xpv
2257 if (DOMAIN_IS_INITDOMAIN(xen_info))
2258 #endif
2259 {
2260 #if defined(__xpv)
2261 xpv_panic_init();
2262 #else
2263 /*
2264 * Startup the memory scrubber.
2265 * XXPV This should be running somewhere ..
2266 */
2267 if ((get_hwenv() & HW_VIRTUAL) == 0)
2268 memscrub_init();
2269 #endif
2270 }
2271
2272 /*
2273 * Complete CPU module initialization
2274 */
2275 cmi_post_startup();
2276
2277 /*
2278 * Perform forceloading tasks for /etc/system.
2279 */
2280 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2281
2282 /*
2283 * ON4.0: Force /proc module in until clock interrupt handle fixed
2284 * ON4.0: This must be fixed or restated in /etc/systems.
2285 */
2286 (void) modload("fs", "procfs");
2287
2288 (void) i_ddi_attach_hw_nodes("pit_beep");
2289
2290 maxmem = freemem;
2291
2292 cpu_event_init_cpu(CPU);
2293 cpupm_init(CPU);
2294 (void) mach_cpu_create_device_node(CPU, NULL);
2295
2296 pg_init();
2297 }
2298
2299 static int
pp_in_range(page_t * pp,uint64_t low_addr,uint64_t high_addr)2300 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2301 {
2302 return ((pp->p_pagenum >= btop(low_addr)) &&
2303 (pp->p_pagenum < btopr(high_addr)));
2304 }
2305
2306 static int
pp_in_module(page_t * pp,const rd_existing_t * modranges)2307 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2308 {
2309 uint_t i;
2310
2311 for (i = 0; modranges[i].phys != 0; i++) {
2312 if (pp_in_range(pp, modranges[i].phys,
2313 modranges[i].phys + modranges[i].size))
2314 return (1);
2315 }
2316
2317 return (0);
2318 }
2319
2320 void
release_bootstrap(void)2321 release_bootstrap(void)
2322 {
2323 int root_is_ramdisk;
2324 page_t *pp;
2325 extern void kobj_boot_unmountroot(void);
2326 extern dev_t rootdev;
2327 uint_t i;
2328 char propname[32];
2329 rd_existing_t *modranges;
2330 #if !defined(__xpv)
2331 pfn_t pfn;
2332 #endif
2333
2334 /*
2335 * Save the bootfs module ranges so that we can reserve them below
2336 * for the real bootfs.
2337 */
2338 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2339 KM_SLEEP);
2340 for (i = 0; ; i++) {
2341 uint64_t start, size;
2342
2343 modranges[i].phys = 0;
2344
2345 (void) snprintf(propname, sizeof (propname),
2346 "module-addr-%u", i);
2347 if (do_bsys_getproplen(NULL, propname) <= 0)
2348 break;
2349 (void) do_bsys_getprop(NULL, propname, &start);
2350
2351 (void) snprintf(propname, sizeof (propname),
2352 "module-size-%u", i);
2353 if (do_bsys_getproplen(NULL, propname) <= 0)
2354 break;
2355 (void) do_bsys_getprop(NULL, propname, &size);
2356
2357 modranges[i].phys = start;
2358 modranges[i].size = size;
2359 }
2360
2361 /* unmount boot ramdisk and release kmem usage */
2362 kobj_boot_unmountroot();
2363
2364 /*
2365 * We're finished using the boot loader so free its pages.
2366 */
2367 PRM_POINT("Unmapping lower boot pages");
2368
2369 clear_boot_mappings(0, _userlimit);
2370
2371 postbootkernelbase = kernelbase;
2372
2373 /*
2374 * If root isn't on ramdisk, destroy the hardcoded
2375 * ramdisk node now and release the memory. Else,
2376 * ramdisk memory is kept in rd_pages.
2377 */
2378 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2379 if (!root_is_ramdisk) {
2380 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2381 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2382 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2383 (void) ddi_remove_child(dip, 0);
2384 }
2385
2386 PRM_POINT("Releasing boot pages");
2387 while (bootpages) {
2388 extern uint64_t ramdisk_start, ramdisk_end;
2389 pp = bootpages;
2390 bootpages = pp->p_next;
2391
2392
2393 /* Keep pages for the lower 64K */
2394 if (pp_in_range(pp, 0, 0x40000)) {
2395 pp->p_next = lower_pages;
2396 lower_pages = pp;
2397 lower_pages_count++;
2398 continue;
2399 }
2400
2401 if ((root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2402 ramdisk_end)) || pp_in_module(pp, modranges)) {
2403 pp->p_next = rd_pages;
2404 rd_pages = pp;
2405 continue;
2406 }
2407 pp->p_next = (struct page *)0;
2408 pp->p_prev = (struct page *)0;
2409 PP_CLRBOOTPAGES(pp);
2410 page_free(pp, 1);
2411 }
2412 PRM_POINT("Boot pages released");
2413
2414 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2415
2416 #if !defined(__xpv)
2417 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2418 /*
2419 * Find 1 page below 1 MB so that other processors can boot up or
2420 * so that any processor can resume.
2421 * Make sure it has a kernel VA as well as a 1:1 mapping.
2422 * We should have just free'd one up.
2423 */
2424
2425 /*
2426 * 0x10 pages is 64K. Leave the bottom 64K alone
2427 * for BIOS.
2428 */
2429 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2430 if (page_numtopp_alloc(pfn) == NULL)
2431 continue;
2432 rm_platter_va = i86devmap(pfn, 1,
2433 PROT_READ | PROT_WRITE | PROT_EXEC);
2434 rm_platter_pa = ptob(pfn);
2435 break;
2436 }
2437 if (pfn == btop(1*1024*1024) && use_mp)
2438 panic("No page below 1M available for starting "
2439 "other processors or for resuming from system-suspend");
2440 #endif /* !__xpv */
2441 }
2442
2443 /*
2444 * Initialize the platform-specific parts of a page_t.
2445 */
2446 void
add_physmem_cb(page_t * pp,pfn_t pnum)2447 add_physmem_cb(page_t *pp, pfn_t pnum)
2448 {
2449 pp->p_pagenum = pnum;
2450 pp->p_mapping = NULL;
2451 pp->p_embed = 0;
2452 pp->p_share = 0;
2453 pp->p_mlentry = 0;
2454 }
2455
2456 /*
2457 * kphysm_init() initializes physical memory.
2458 */
2459 static pgcnt_t
kphysm_init(page_t * pp,pgcnt_t npages)2460 kphysm_init(page_t *pp, pgcnt_t npages)
2461 {
2462 struct memlist *pmem;
2463 struct memseg *cur_memseg;
2464 pfn_t base_pfn;
2465 pfn_t end_pfn;
2466 pgcnt_t num;
2467 pgcnt_t pages_done = 0;
2468 uint64_t addr;
2469 uint64_t size;
2470 extern pfn_t ddiphysmin;
2471 extern int mnode_xwa;
2472 int ms = 0, me = 0;
2473
2474 ASSERT(page_hash != NULL && page_hashsz != 0);
2475
2476 cur_memseg = memseg_base;
2477 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2478 /*
2479 * In a 32 bit kernel can't use higher memory if we're
2480 * not booting in PAE mode. This check takes care of that.
2481 */
2482 addr = pmem->ml_address;
2483 size = pmem->ml_size;
2484 if (btop(addr) > physmax)
2485 continue;
2486
2487 /*
2488 * align addr and size - they may not be at page boundaries
2489 */
2490 if ((addr & MMU_PAGEOFFSET) != 0) {
2491 addr += MMU_PAGEOFFSET;
2492 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2493 size -= addr - pmem->ml_address;
2494 }
2495
2496 /* only process pages below or equal to physmax */
2497 if ((btop(addr + size) - 1) > physmax)
2498 size = ptob(physmax - btop(addr) + 1);
2499
2500 num = btop(size);
2501 if (num == 0)
2502 continue;
2503
2504 if (num > npages)
2505 num = npages;
2506
2507 npages -= num;
2508 pages_done += num;
2509 base_pfn = btop(addr);
2510
2511 if (prom_debug)
2512 prom_printf("MEMSEG addr=0x%" PRIx64
2513 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2514 addr, num, base_pfn, base_pfn + num);
2515
2516 /*
2517 * Ignore pages below ddiphysmin to simplify ddi memory
2518 * allocation with non-zero addr_lo requests.
2519 */
2520 if (base_pfn < ddiphysmin) {
2521 if (base_pfn + num <= ddiphysmin)
2522 continue;
2523 pp += (ddiphysmin - base_pfn);
2524 num -= (ddiphysmin - base_pfn);
2525 base_pfn = ddiphysmin;
2526 }
2527
2528 /*
2529 * mnode_xwa is greater than 1 when large pages regions can
2530 * cross memory node boundaries. To prevent the formation
2531 * of these large pages, configure the memsegs based on the
2532 * memory node ranges which had been made non-contiguous.
2533 */
2534 end_pfn = base_pfn + num - 1;
2535 if (mnode_xwa > 1) {
2536 ms = PFN_2_MEM_NODE(base_pfn);
2537 me = PFN_2_MEM_NODE(end_pfn);
2538
2539 if (ms != me) {
2540 /*
2541 * current range spans more than 1 memory node.
2542 * Set num to only the pfn range in the start
2543 * memory node.
2544 */
2545 num = mem_node_config[ms].physmax - base_pfn
2546 + 1;
2547 ASSERT(end_pfn > mem_node_config[ms].physmax);
2548 }
2549 }
2550
2551 for (;;) {
2552 /*
2553 * Build the memsegs entry
2554 */
2555 cur_memseg->pages = pp;
2556 cur_memseg->epages = pp + num;
2557 cur_memseg->pages_base = base_pfn;
2558 cur_memseg->pages_end = base_pfn + num;
2559
2560 /*
2561 * Insert into memseg list in decreasing pfn range
2562 * order. Low memory is typically more fragmented such
2563 * that this ordering keeps the larger ranges at the
2564 * front of the list for code that searches memseg.
2565 * This ASSERTS that the memsegs coming in from boot
2566 * are in increasing physical address order and not
2567 * contiguous.
2568 */
2569 if (memsegs != NULL) {
2570 ASSERT(cur_memseg->pages_base >=
2571 memsegs->pages_end);
2572 cur_memseg->next = memsegs;
2573 }
2574 memsegs = cur_memseg;
2575
2576 /*
2577 * add_physmem() initializes the PSM part of the page
2578 * struct by calling the PSM back with add_physmem_cb().
2579 * In addition it coalesces pages into larger pages as
2580 * it initializes them.
2581 */
2582 add_physmem(pp, num, base_pfn);
2583 cur_memseg++;
2584 availrmem_initial += num;
2585 availrmem += num;
2586
2587 pp += num;
2588 if (ms >= me)
2589 break;
2590
2591 /* process next memory node range */
2592 ms++;
2593 base_pfn = mem_node_config[ms].physbase;
2594
2595 if (mnode_xwa > 1) {
2596 num = MIN(mem_node_config[ms].physmax,
2597 end_pfn) - base_pfn + 1;
2598 } else {
2599 num = mem_node_config[ms].physmax -
2600 base_pfn + 1;
2601 }
2602 }
2603 }
2604
2605 PRM_DEBUG(availrmem_initial);
2606 PRM_DEBUG(availrmem);
2607 PRM_DEBUG(freemem);
2608 build_pfn_hash();
2609 return (pages_done);
2610 }
2611
2612 /*
2613 * Kernel VM initialization.
2614 */
2615 static void
kvm_init(void)2616 kvm_init(void)
2617 {
2618 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2619
2620 /*
2621 * Put the kernel segments in kernel address space.
2622 */
2623 rw_enter(&kas.a_lock, RW_WRITER);
2624 as_avlinit(&kas);
2625
2626 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2627 (void) segkmem_create(&ktextseg);
2628
2629 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2630 (void) segkmem_create(&kvalloc);
2631
2632 (void) seg_attach(&kas, kernelheap,
2633 ekernelheap - kernelheap, &kvseg);
2634 (void) segkmem_create(&kvseg);
2635
2636 if (core_size > 0) {
2637 PRM_POINT("attaching kvseg_core");
2638 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2639 &kvseg_core);
2640 (void) segkmem_create(&kvseg_core);
2641 }
2642
2643 PRM_POINT("attaching segkvmm");
2644 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg);
2645 (void) segkmem_create(&kvmmseg);
2646 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize));
2647
2648 if (segziosize > 0) {
2649 PRM_POINT("attaching segzio");
2650 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2651 &kzioseg);
2652 (void) segkmem_create(&kzioseg);
2653
2654 /* create zio area covering new segment */
2655 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2656 }
2657
2658 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2659 (void) segkmem_create(&kdebugseg);
2660
2661 rw_exit(&kas.a_lock);
2662
2663 /*
2664 * Ensure that the red zone at kernelbase is never accessible.
2665 */
2666 PRM_POINT("protecting redzone");
2667 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2668
2669 /*
2670 * Make the text writable so that it can be hot patched by DTrace.
2671 */
2672 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2673 PROT_READ | PROT_WRITE | PROT_EXEC);
2674
2675 /*
2676 * Make data writable until end.
2677 */
2678 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2679 PROT_READ | PROT_WRITE | PROT_EXEC);
2680 }
2681
2682 #ifndef __xpv
2683 /*
2684 * Solaris adds an entry for Write Combining caching to the PAT
2685 */
2686 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2687
2688 void
pat_sync(void)2689 pat_sync(void)
2690 {
2691 ulong_t cr0, cr0_orig, cr4;
2692
2693 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2694 return;
2695 cr0_orig = cr0 = getcr0();
2696 cr4 = getcr4();
2697
2698 /* disable caching and flush all caches and TLBs */
2699 cr0 |= CR0_CD;
2700 cr0 &= ~CR0_NW;
2701 setcr0(cr0);
2702 invalidate_cache();
2703 if (cr4 & CR4_PGE) {
2704 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2705 setcr4(cr4);
2706 } else {
2707 reload_cr3();
2708 }
2709
2710 /* add our entry to the PAT */
2711 wrmsr(REG_PAT, pat_attr_reg);
2712
2713 /* flush TLBs and cache again, then reenable cr0 caching */
2714 if (cr4 & CR4_PGE) {
2715 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2716 setcr4(cr4);
2717 } else {
2718 reload_cr3();
2719 }
2720 invalidate_cache();
2721 setcr0(cr0_orig);
2722 }
2723
2724 #endif /* !__xpv */
2725
2726 #if defined(_SOFT_HOSTID)
2727 /*
2728 * On platforms that do not have a hardware serial number, attempt
2729 * to set one based on the contents of /etc/hostid. If this file does
2730 * not exist, assume that we are to generate a new hostid and set
2731 * it in the kernel, for subsequent saving by a userland process
2732 * once the system is up and the root filesystem is mounted r/w.
2733 *
2734 * In order to gracefully support upgrade on OpenSolaris, if
2735 * /etc/hostid does not exist, we will attempt to get a serial number
2736 * using the legacy method (/kernel/misc/sysinit).
2737 *
2738 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2739 * a hardware serial number. Note that we don't automatically trust
2740 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2741 * UUIDs in violation of the standard), we check against a blacklist.
2742 *
2743 * In an attempt to make the hostid less prone to abuse
2744 * (for license circumvention, etc), we store it in /etc/hostid
2745 * in rot47 format.
2746 */
2747 static int atoi(char *);
2748
2749 /*
2750 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2751 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2752 * array can be updated.)
2753 */
2754 int smbios_broken_uuid = 0;
2755
2756 /*
2757 * List of known bad UUIDs. This is just the lower 32-bit values, since
2758 * that's what we use for the host id. If your hostid falls here, you need
2759 * to contact your hardware OEM for a fix for your BIOS.
2760 */
2761 static unsigned char
2762 smbios_uuid_blacklist[][16] = {
2763
2764 { /* Reported bad UUID (Google search) */
2765 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2766 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2767 },
2768 { /* Known bad DELL UUID */
2769 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2770 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2771 },
2772 { /* Uninitialized flash */
2773 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2774 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2775 },
2776 { /* All zeros */
2777 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2778 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2779 },
2780 };
2781
2782 static int32_t
uuid_to_hostid(const uint8_t * uuid)2783 uuid_to_hostid(const uint8_t *uuid)
2784 {
2785 /*
2786 * Although the UUIDs are 128-bits, they may not distribute entropy
2787 * evenly. We would like to use SHA or MD5, but those are located
2788 * in loadable modules and not available this early in boot. As we
2789 * don't need the values to be cryptographically strong, we just
2790 * generate 32-bit vaue by xor'ing the various sequences together,
2791 * which ensures that the entire UUID contributes to the hostid.
2792 */
2793 uint32_t id = 0;
2794
2795 /* first check against the blacklist */
2796 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2797 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2798 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2799 "Contact BIOS manufacturer for repair.\n");
2800 return ((int32_t)HW_INVALID_HOSTID);
2801 }
2802 }
2803
2804 for (int i = 0; i < 16; i++)
2805 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2806
2807 /* Make sure return value is positive */
2808 return (id & 0x7fffffff);
2809 }
2810
2811 static int32_t
set_soft_hostid(void)2812 set_soft_hostid(void)
2813 {
2814 struct _buf *file;
2815 char tokbuf[MAXNAMELEN];
2816 token_t token;
2817 int done = 0;
2818 u_longlong_t tmp;
2819 int i;
2820 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2821 unsigned char *c;
2822 smbios_system_t smsys;
2823
2824 /*
2825 * If /etc/hostid file not found, we'd like to get a pseudo
2826 * random number to use at the hostid. A nice way to do this
2827 * is to read the real time clock. To remain xen-compatible,
2828 * we can't poke the real hardware, so we use tsc_read() to
2829 * read the real time clock.
2830 */
2831
2832 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2833 /*
2834 * hostid file not found - try to load sysinit module
2835 * and see if it has a nonzero hostid value...use that
2836 * instead of generating a new hostid here if so.
2837 */
2838 if ((i = modload("misc", "sysinit")) != -1) {
2839 if (strlen(hw_serial) > 0)
2840 hostid = (int32_t)atoi(hw_serial);
2841 (void) modunload(i);
2842 }
2843
2844 /*
2845 * We try to use the SMBIOS UUID. But not if it is blacklisted
2846 * in /etc/system.
2847 */
2848 if ((hostid == HW_INVALID_HOSTID) &&
2849 (smbios_broken_uuid == 0) &&
2850 (ksmbios != NULL) &&
2851 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
2852 (smsys.smbs_uuidlen >= 16)) {
2853 hostid = uuid_to_hostid(smsys.smbs_uuid);
2854 }
2855
2856 /*
2857 * Generate a "random" hostid using the clock. These
2858 * hostids will change on each boot if the value is not
2859 * saved to a persistent /etc/hostid file.
2860 */
2861 if (hostid == HW_INVALID_HOSTID) {
2862 hostid = tsc_read() & 0x0CFFFFF;
2863 }
2864 } else {
2865 /* hostid file found */
2866 while (!done) {
2867 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2868
2869 switch (token) {
2870 case POUND:
2871 /*
2872 * skip comments
2873 */
2874 kobj_find_eol(file);
2875 break;
2876 case STRING:
2877 /*
2878 * un-rot47 - obviously this
2879 * nonsense is ascii-specific
2880 */
2881 for (c = (unsigned char *)tokbuf;
2882 *c != '\0'; c++) {
2883 *c += 47;
2884 if (*c > '~')
2885 *c -= 94;
2886 else if (*c < '!')
2887 *c += 94;
2888 }
2889 /*
2890 * now we should have a real number
2891 */
2892
2893 if (kobj_getvalue(tokbuf, &tmp) != 0)
2894 kobj_file_err(CE_WARN, file,
2895 "Bad value %s for hostid",
2896 tokbuf);
2897 else
2898 hostid = (int32_t)tmp;
2899
2900 break;
2901 case EOF:
2902 done = 1;
2903 /* FALLTHROUGH */
2904 case NEWLINE:
2905 kobj_newline(file);
2906 break;
2907 default:
2908 break;
2909
2910 }
2911 }
2912 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2913 kobj_file_err(CE_WARN, file,
2914 "hostid missing or corrupt");
2915
2916 kobj_close_file(file);
2917 }
2918 /*
2919 * hostid is now the value read from /etc/hostid, or the
2920 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2921 * set.
2922 */
2923 return (hostid);
2924 }
2925
2926 static int
atoi(char * p)2927 atoi(char *p)
2928 {
2929 int i = 0;
2930
2931 while (*p != '\0')
2932 i = 10 * i + (*p++ - '0');
2933
2934 return (i);
2935 }
2936
2937 #endif /* _SOFT_HOSTID */
2938
2939 void
get_system_configuration(void)2940 get_system_configuration(void)
2941 {
2942 char prop[32];
2943 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2944
2945 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2946 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2947 kobj_getvalue(prop, &nodes_ll) == -1 ||
2948 nodes_ll > MAXNODES ||
2949 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2950 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2951 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2952 system_hardware.hd_nodes = 1;
2953 system_hardware.hd_cpus_per_node = 0;
2954 } else {
2955 system_hardware.hd_nodes = (int)nodes_ll;
2956 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2957 }
2958
2959 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2960 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2961 kobj_getvalue(prop, &lvalue) == -1)
2962 eprom_kernelbase = 0;
2963 else
2964 eprom_kernelbase = (uintptr_t)lvalue;
2965
2966 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2967 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2968 kobj_getvalue(prop, &lvalue) == -1)
2969 segmapsize = SEGMAPDEFAULT;
2970 else
2971 segmapsize = (uintptr_t)lvalue;
2972
2973 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2974 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2975 kobj_getvalue(prop, &lvalue) == -1)
2976 segmapfreelists = 0; /* use segmap driver default */
2977 else
2978 segmapfreelists = (int)lvalue;
2979
2980 if (BOP_GETPROPLEN(bootops, "segkpsize") > sizeof (prop) ||
2981 BOP_GETPROP(bootops, "segkpsize", prop) < 0 ||
2982 kobj_getvalue(prop, &lvalue) == -1)
2983 segkpsize = mmu_btop(SEGKPDEFSIZE);
2984 else
2985 segkpsize = mmu_btop((size_t)lvalue);
2986
2987 /* physmem used to be here, but moved much earlier to fakebop.c */
2988 }
2989
2990 /*
2991 * Add to a memory list.
2992 * start = start of new memory segment
2993 * len = length of new memory segment in bytes
2994 * new = pointer to a new struct memlist
2995 * memlistp = memory list to which to add segment.
2996 */
2997 void
memlist_add(uint64_t start,uint64_t len,struct memlist * new,struct memlist ** memlistp)2998 memlist_add(
2999 uint64_t start,
3000 uint64_t len,
3001 struct memlist *new,
3002 struct memlist **memlistp)
3003 {
3004 struct memlist *cur;
3005 uint64_t end = start + len;
3006
3007 new->ml_address = start;
3008 new->ml_size = len;
3009
3010 cur = *memlistp;
3011
3012 while (cur) {
3013 if (cur->ml_address >= end) {
3014 new->ml_next = cur;
3015 *memlistp = new;
3016 new->ml_prev = cur->ml_prev;
3017 cur->ml_prev = new;
3018 return;
3019 }
3020 ASSERT(cur->ml_address + cur->ml_size <= start);
3021 if (cur->ml_next == NULL) {
3022 cur->ml_next = new;
3023 new->ml_prev = cur;
3024 new->ml_next = NULL;
3025 return;
3026 }
3027 memlistp = &cur->ml_next;
3028 cur = cur->ml_next;
3029 }
3030 }
3031
3032 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)3033 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3034 {
3035 size_t tsize = e_modtext - modtext;
3036 size_t dsize = e_moddata - moddata;
3037
3038 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3039 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3040 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3041 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3042 }
3043
3044 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)3045 kobj_text_alloc(vmem_t *arena, size_t size)
3046 {
3047 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3048 }
3049
3050 /*ARGSUSED*/
3051 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)3052 kobj_texthole_alloc(caddr_t addr, size_t size)
3053 {
3054 panic("unexpected call to kobj_texthole_alloc()");
3055 /*NOTREACHED*/
3056 return (0);
3057 }
3058
3059 /*ARGSUSED*/
3060 void
kobj_texthole_free(caddr_t addr,size_t size)3061 kobj_texthole_free(caddr_t addr, size_t size)
3062 {
3063 panic("unexpected call to kobj_texthole_free()");
3064 }
3065
3066 /*
3067 * This is called just after configure() in startup().
3068 *
3069 * The ISALIST concept is a bit hopeless on Intel, because
3070 * there's no guarantee of an ever-more-capable processor
3071 * given that various parts of the instruction set may appear
3072 * and disappear between different implementations.
3073 *
3074 * While it would be possible to correct it and even enhance
3075 * it somewhat, the explicit hardware capability bitmask allows
3076 * more flexibility.
3077 *
3078 * So, we just leave this alone.
3079 */
3080 void
setx86isalist(void)3081 setx86isalist(void)
3082 {
3083 char *tp;
3084 size_t len;
3085 extern char *isa_list;
3086
3087 #define TBUFSIZE 1024
3088
3089 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3090 *tp = '\0';
3091
3092 (void) strcpy(tp, "amd64 ");
3093
3094 switch (x86_vendor) {
3095 case X86_VENDOR_Intel:
3096 case X86_VENDOR_AMD:
3097 case X86_VENDOR_HYGON:
3098 case X86_VENDOR_TM:
3099 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3100 /*
3101 * Pentium Pro or later
3102 */
3103 (void) strcat(tp, "pentium_pro");
3104 (void) strcat(tp,
3105 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3106 "+mmx pentium_pro " : " ");
3107 }
3108 /*FALLTHROUGH*/
3109 case X86_VENDOR_Cyrix:
3110 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID));
3111 (void) strcat(tp, "pentium");
3112 (void) strcat(tp,
3113 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3114 "+mmx pentium " : " ");
3115 break;
3116 default:
3117 break;
3118 }
3119 (void) strcat(tp, "i486 i386 i86");
3120 len = strlen(tp) + 1; /* account for NULL at end of string */
3121 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3122 kmem_free(tp, TBUFSIZE);
3123
3124 #undef TBUFSIZE
3125 }
3126
3127 void *
device_arena_alloc(size_t size,int vm_flag)3128 device_arena_alloc(size_t size, int vm_flag)
3129 {
3130 return (vmem_alloc(device_arena, size, vm_flag));
3131 }
3132
3133 void
device_arena_free(void * vaddr,size_t size)3134 device_arena_free(void *vaddr, size_t size)
3135 {
3136 vmem_free(device_arena, vaddr, size);
3137 }
3138