1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2018 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2010, Intel Corporation. 31 * All rights reserved. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/t_lock.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/signal.h> 39 #include <sys/systm.h> 40 #include <sys/user.h> 41 #include <sys/mman.h> 42 #include <sys/vm.h> 43 #include <sys/conf.h> 44 #include <sys/avintr.h> 45 #include <sys/autoconf.h> 46 #include <sys/disp.h> 47 #include <sys/class.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/privregs.h> 51 52 #include <sys/proc.h> 53 #include <sys/buf.h> 54 #include <sys/kmem.h> 55 #include <sys/mem.h> 56 #include <sys/kstat.h> 57 58 #include <sys/reboot.h> 59 60 #include <sys/cred.h> 61 #include <sys/vnode.h> 62 #include <sys/file.h> 63 64 #include <sys/procfs.h> 65 66 #include <sys/vfs.h> 67 #include <sys/cmn_err.h> 68 #include <sys/utsname.h> 69 #include <sys/debug.h> 70 #include <sys/kdi.h> 71 72 #include <sys/dumphdr.h> 73 #include <sys/bootconf.h> 74 #include <sys/memlist_plat.h> 75 #include <sys/varargs.h> 76 #include <sys/promif.h> 77 #include <sys/modctl.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/sunndi.h> 81 #include <sys/ndi_impldefs.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/psw.h> 84 #include <sys/regset.h> 85 #include <sys/clock.h> 86 #include <sys/pte.h> 87 #include <sys/tss.h> 88 #include <sys/stack.h> 89 #include <sys/trap.h> 90 #include <sys/fp.h> 91 #include <vm/kboot_mmu.h> 92 #include <vm/anon.h> 93 #include <vm/as.h> 94 #include <vm/page.h> 95 #include <vm/seg.h> 96 #include <vm/seg_dev.h> 97 #include <vm/seg_kmem.h> 98 #include <vm/seg_kpm.h> 99 #include <vm/seg_map.h> 100 #include <vm/seg_vn.h> 101 #include <vm/seg_kp.h> 102 #include <sys/memnode.h> 103 #include <vm/vm_dep.h> 104 #include <sys/thread.h> 105 #include <sys/sysconf.h> 106 #include <sys/vm_machparam.h> 107 #include <sys/archsystm.h> 108 #include <sys/machsystm.h> 109 #include <vm/hat.h> 110 #include <vm/hat_i86.h> 111 #include <sys/pmem.h> 112 #include <sys/smp_impldefs.h> 113 #include <sys/x86_archext.h> 114 #include <sys/cpuvar.h> 115 #include <sys/segments.h> 116 #include <sys/clconf.h> 117 #include <sys/kobj.h> 118 #include <sys/kobj_lex.h> 119 #include <sys/cpc_impl.h> 120 #include <sys/cpu_module.h> 121 #include <sys/smbios.h> 122 #include <sys/debug_info.h> 123 #include <sys/bootinfo.h> 124 #include <sys/ddi_periodic.h> 125 #include <sys/systeminfo.h> 126 #include <sys/multiboot.h> 127 #include <sys/ramdisk.h> 128 129 #ifdef __xpv 130 131 #include <sys/hypervisor.h> 132 #include <sys/xen_mmu.h> 133 #include <sys/evtchn_impl.h> 134 #include <sys/gnttab.h> 135 #include <sys/xpv_panic.h> 136 #include <xen/sys/xenbus_comms.h> 137 #include <xen/public/physdev.h> 138 139 extern void xen_late_startup(void); 140 141 struct xen_evt_data cpu0_evt_data; 142 143 #else /* __xpv */ 144 #include <sys/memlist_impl.h> 145 146 extern void mem_config_init(void); 147 #endif /* __xpv */ 148 149 extern void progressbar_init(void); 150 extern void brand_init(void); 151 extern void pcf_init(void); 152 extern void pg_init(void); 153 extern void ssp_init(void); 154 155 extern int size_pse_array(pgcnt_t, int); 156 157 #if defined(_SOFT_HOSTID) 158 159 #include <sys/rtc.h> 160 161 static int32_t set_soft_hostid(void); 162 static char hostid_file[] = "/etc/hostid"; 163 164 #endif 165 166 void *gfx_devinfo_list; 167 168 #if defined(__amd64) && !defined(__xpv) 169 extern void immu_startup(void); 170 #endif 171 172 /* 173 * XXX make declaration below "static" when drivers no longer use this 174 * interface. 175 */ 176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 177 178 /* 179 * segkp 180 */ 181 extern int segkp_fromheap; 182 183 static void kvm_init(void); 184 static void startup_init(void); 185 static void startup_memlist(void); 186 static void startup_kmem(void); 187 static void startup_modules(void); 188 static void startup_vm(void); 189 static void startup_end(void); 190 static void layout_kernel_va(void); 191 192 /* 193 * Declare these as initialized data so we can patch them. 194 */ 195 #ifdef __i386 196 197 /* 198 * Due to virtual address space limitations running in 32 bit mode, restrict 199 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 200 * 201 * If the physical max memory size of 64g were allowed to be configured, the 202 * size of user virtual address space will be less than 1g. A limited user 203 * address space greatly reduces the range of applications that can run. 204 * 205 * If more physical memory than PHYSMEM is required, users should preferably 206 * run in 64 bit mode which has far looser virtual address space limitations. 207 * 208 * If 64 bit mode is not available (as in IA32) and/or more physical memory 209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 211 * should also be carefully tuned to balance out the need of the user 212 * application while minimizing the risk of kernel heap exhaustion due to 213 * kernelbase being set too high. 214 */ 215 #define PHYSMEM 0x400000 216 217 #else /* __amd64 */ 218 219 /* 220 * For now we can handle memory with physical addresses up to about 221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 222 * half the VA space for seg_kpm. When systems get bigger than 64TB this 223 * code will need revisiting. There is an implicit assumption that there 224 * are no *huge* holes in the physical address space too. 225 */ 226 #define TERABYTE (1ul << 40) 227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 228 #define PHYSMEM PHYSMEM_MAX64 229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 230 231 #endif /* __amd64 */ 232 233 pgcnt_t physmem = PHYSMEM; 234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 235 236 char *kobj_file_buf; 237 int kobj_file_bufsize; /* set in /etc/system */ 238 239 /* Global variables for MP support. Used in mp_startup */ 240 caddr_t rm_platter_va = 0; 241 uint32_t rm_platter_pa; 242 243 int auto_lpg_disable = 1; 244 245 /* 246 * Some CPUs have holes in the middle of the 64-bit virtual address range. 247 */ 248 uintptr_t hole_start, hole_end; 249 250 /* 251 * kpm mapping window 252 */ 253 caddr_t kpm_vbase; 254 size_t kpm_size; 255 static int kpm_desired; 256 #ifdef __amd64 257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 258 #endif 259 260 /* 261 * Configuration parameters set at boot time. 262 */ 263 264 caddr_t econtig; /* end of first block of contiguous kernel */ 265 266 struct bootops *bootops = 0; /* passed in from boot */ 267 struct bootops **bootopsp; 268 struct boot_syscalls *sysp; /* passed in from boot */ 269 270 char bootblock_fstype[16]; 271 272 char kern_bootargs[OBP_MAXPATHLEN]; 273 char kern_bootfile[OBP_MAXPATHLEN]; 274 275 /* 276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 278 * zio buffers from their own segment, otherwise they are allocated from the 279 * heap. The optimization of allocating zio buffers from their own segment is 280 * only valid on 64-bit kernels. 281 */ 282 #if defined(__amd64) 283 int segzio_fromheap = 0; 284 #else 285 int segzio_fromheap = 1; 286 #endif 287 288 /* 289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 290 * post-boot. 291 */ 292 int disable_smap = 0; 293 294 /* 295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 296 * depends on number of BOP_ALLOC calls made and requested size, memory size 297 * combination and whether boot.bin memory needs to be freed. 298 */ 299 #define POSS_NEW_FRAGMENTS 12 300 301 /* 302 * VM data structures 303 */ 304 long page_hashsz; /* Size of page hash table (power of two) */ 305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 306 struct page *pp_base; /* Base of initial system page struct array */ 307 struct page **page_hash; /* Page hash table */ 308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 310 int pse_shift; /* log2(pse_table_size) */ 311 struct seg ktextseg; /* Segment used for kernel executable image */ 312 struct seg kvalloc; /* Segment used for "valloc" mapping */ 313 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 314 struct seg kmapseg; /* Segment used for generic kernel mappings */ 315 struct seg kdebugseg; /* Segment used for the kernel debugger */ 316 317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 319 320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 321 322 struct seg kvseg_core; /* Segment used for the core heap */ 323 struct seg kpmseg; /* Segment used for physical mapping */ 324 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 325 326 caddr_t segkp_base; /* Base address of segkp */ 327 caddr_t segzio_base; /* Base address of segzio */ 328 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 329 caddr_t segkvmm_base; 330 pgcnt_t segkvmmsize; 331 pgcnt_t segziosize; 332 333 /* 334 * A static DR page_t VA map is reserved that can map the page structures 335 * for a domain's entire RA space. The pages that back this space are 336 * dynamically allocated and need not be physically contiguous. The DR 337 * map size is derived from KPM size. 338 * This mechanism isn't used by x86 yet, so just stubs here. 339 */ 340 int ppvm_enable = 0; /* Static virtual map for page structs */ 341 page_t *ppvm_base = NULL; /* Base of page struct map */ 342 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 343 344 /* 345 * VA range available to the debugger 346 */ 347 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 348 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 349 350 struct memseg *memseg_base; 351 struct vnode unused_pages_vp; 352 353 #define FOURGB 0x100000000LL 354 355 struct memlist *memlist; 356 357 caddr_t s_text; /* start of kernel text segment */ 358 caddr_t e_text; /* end of kernel text segment */ 359 caddr_t s_data; /* start of kernel data segment */ 360 caddr_t e_data; /* end of kernel data segment */ 361 caddr_t modtext; /* start of loadable module text reserved */ 362 caddr_t e_modtext; /* end of loadable module text reserved */ 363 caddr_t moddata; /* start of loadable module data reserved */ 364 caddr_t e_moddata; /* end of loadable module data reserved */ 365 366 struct memlist *phys_install; /* Total installed physical memory */ 367 struct memlist *phys_avail; /* Total available physical memory */ 368 struct memlist *bios_rsvd; /* Bios reserved memory */ 369 370 /* 371 * kphysm_init returns the number of pages that were processed 372 */ 373 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 374 375 #define IO_PROP_SIZE 64 /* device property size */ 376 377 /* 378 * a couple useful roundup macros 379 */ 380 #define ROUND_UP_PAGE(x) \ 381 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 382 #define ROUND_UP_LPAGE(x) \ 383 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 384 #define ROUND_UP_4MEG(x) \ 385 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 386 #define ROUND_UP_TOPLEVEL(x) \ 387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 388 389 /* 390 * 32-bit Kernel's Virtual memory layout. 391 * +-----------------------+ 392 * | | 393 * 0xFFC00000 -|-----------------------|- ARGSBASE 394 * | debugger | 395 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 396 * | Kernel Data | 397 * 0xFEC00000 -|-----------------------| 398 * | Kernel Text | 399 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 400 * |--- GDT ---|- GDT page (GDT_VA) 401 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 402 * | | 403 * | page_t structures | 404 * | memsegs, memlists, | 405 * | page hash, etc. | 406 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 407 * | | (segkp is just an arena in the heap) 408 * | | 409 * | kvseg | 410 * | | 411 * | | 412 * --- -|-----------------------|- kernelheap (floating) 413 * | Segkmap | 414 * 0xC3002000 -|-----------------------|- segmap_start (floating) 415 * | Red Zone | 416 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 417 * | | || 418 * | Shared objects | \/ 419 * | | 420 * : : 421 * | user data | 422 * |-----------------------| 423 * | user text | 424 * 0x08048000 -|-----------------------| 425 * | user stack | 426 * : : 427 * | invalid | 428 * 0x00000000 +-----------------------+ 429 * 430 * 431 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 432 * +-----------------------+ 433 * | | 434 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 435 * | debugger (?) | 436 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 437 * | unused | 438 * +-----------------------+ 439 * | Kernel Data | 440 * 0xFFFFFFFF.FBC00000 |-----------------------| 441 * | Kernel Text | 442 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 443 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 444 * |--- GDT ---|- GDT page (GDT_VA) 445 * |--- IDT ---|- IDT page (IDT_VA) 446 * |--- LDT ---|- LDT pages (LDT_VA) 447 * | | 448 * | Core heap | (used for loadable modules) 449 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 450 * | Kernel | 451 * | heap | 452 * | | 453 * | | 454 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 455 * | segmap | 456 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 457 * | device mappings | 458 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 459 * | segzio | 460 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 461 * | segkvmm | 462 * | | 463 * | | 464 * | | 465 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating) 466 * | segkp | 467 * |-----------------------|- segkp_base (floating) 468 * | page_t structures | valloc_base + valloc_sz 469 * | memsegs, memlists, | 470 * | page hash, etc. | 471 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB) 472 * | segkpm | 473 * | | 474 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB) 475 * | Red Zone | 476 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 477 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB) 478 * | User stack |- User space memory 479 * | | 480 * | shared objects, etc | (grows downwards) 481 * : : 482 * | | 483 * 0xFFFF8000.00000000 |-----------------------| 484 * | | 485 * | VA Hole / unused | 486 * | | 487 * 0x00008000.00000000 |-----------------------| 488 * | | 489 * | | 490 * : : 491 * | user heap | (grows upwards) 492 * | | 493 * | user data | 494 * |-----------------------| 495 * | user text | 496 * 0x00000000.04000000 |-----------------------| 497 * | invalid | 498 * 0x00000000.00000000 +-----------------------+ 499 * 500 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 501 * kernel, except that userlimit is raised to 0xfe000000 502 * 503 * Floating values: 504 * 505 * valloc_base: start of the kernel's memory management/tracking data 506 * structures. This region contains page_t structures for 507 * physical memory, memsegs, memlists, and the page hash. 508 * 509 * core_base: start of the kernel's "core" heap area on 64-bit systems. 510 * This area is intended to be used for global data as well as for module 511 * text/data that does not fit into the nucleus pages. The core heap is 512 * restricted to a 2GB range, allowing every address within it to be 513 * accessed using rip-relative addressing 514 * 515 * ekernelheap: end of kernelheap and start of segmap. 516 * 517 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 518 * above a red zone that separates the user's address space from the 519 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 520 * 521 * segmap_start: start of segmap. The length of segmap can be modified 522 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 523 * on 64-bit systems. 524 * 525 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 526 * decreased by 2X the size required for page_t. This allows the kernel 527 * heap to grow in size with physical memory. With sizeof(page_t) == 80 528 * bytes, the following shows the values of kernelbase and kernel heap 529 * sizes for different memory configurations (assuming default segmap and 530 * segkp sizes). 531 * 532 * mem size for kernelbase kernel heap 533 * size page_t's size 534 * ---- --------- ---------- ----------- 535 * 1gb 0x01400000 0xd1800000 684MB 536 * 2gb 0x02800000 0xcf000000 704MB 537 * 4gb 0x05000000 0xca000000 744MB 538 * 6gb 0x07800000 0xc5000000 784MB 539 * 8gb 0x0a000000 0xc0000000 824MB 540 * 16gb 0x14000000 0xac000000 984MB 541 * 32gb 0x28000000 0x84000000 1304MB 542 * 64gb 0x50000000 0x34000000 1944MB (*) 543 * 544 * kernelbase is less than the abi minimum of 0xc0000000 for memory 545 * configurations above 8gb. 546 * 547 * (*) support for memory configurations above 32gb will require manual tuning 548 * of kernelbase to balance out the need of user applications. 549 */ 550 551 /* real-time-clock initialization parameters */ 552 extern time_t process_rtc_config_file(void); 553 554 uintptr_t kernelbase; 555 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 556 uintptr_t eprom_kernelbase; 557 size_t segmapsize; 558 uintptr_t segmap_start; 559 int segmapfreelists; 560 pgcnt_t npages; 561 pgcnt_t orig_npages; 562 size_t core_size; /* size of "core" heap */ 563 uintptr_t core_base; /* base address of "core" heap */ 564 565 /* 566 * List of bootstrap pages. We mark these as allocated in startup. 567 * release_bootstrap() will free them when we're completely done with 568 * the bootstrap. 569 */ 570 static page_t *bootpages; 571 572 /* 573 * boot time pages that have a vnode from the ramdisk will keep that forever. 574 */ 575 static page_t *rd_pages; 576 577 /* 578 * Lower 64K 579 */ 580 static page_t *lower_pages = NULL; 581 static int lower_pages_count = 0; 582 583 struct system_hardware system_hardware; 584 585 /* 586 * Enable some debugging messages concerning memory usage... 587 */ 588 static void 589 print_memlist(char *title, struct memlist *mp) 590 { 591 prom_printf("MEMLIST: %s:\n", title); 592 while (mp != NULL) { 593 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 594 mp->ml_address, mp->ml_size); 595 mp = mp->ml_next; 596 } 597 } 598 599 /* 600 * XX64 need a comment here.. are these just default values, surely 601 * we read the "cpuid" type information to figure this out. 602 */ 603 int l2cache_sz = 0x80000; 604 int l2cache_linesz = 0x40; 605 int l2cache_assoc = 1; 606 607 static size_t textrepl_min_gb = 10; 608 609 /* 610 * on 64 bit we use a predifined VA range for mapping devices in the kernel 611 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 612 */ 613 #ifdef __amd64 614 615 vmem_t *device_arena; 616 uintptr_t toxic_addr = (uintptr_t)NULL; 617 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 618 619 #else /* __i386 */ 620 621 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 622 size_t toxic_bit_map_len = 0; /* in bits */ 623 624 #endif /* __i386 */ 625 626 /* 627 * Simple boot time debug facilities 628 */ 629 static char *prm_dbg_str[] = { 630 "%s:%d: '%s' is 0x%x\n", 631 "%s:%d: '%s' is 0x%llx\n" 632 }; 633 634 int prom_debug; 635 636 #define PRM_DEBUG(q) if (prom_debug) \ 637 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 638 #define PRM_POINT(q) if (prom_debug) \ 639 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 640 641 /* 642 * This structure is used to keep track of the intial allocations 643 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 644 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 645 */ 646 #define NUM_ALLOCATIONS 8 647 int num_allocations = 0; 648 struct { 649 void **al_ptr; 650 size_t al_size; 651 } allocations[NUM_ALLOCATIONS]; 652 size_t valloc_sz = 0; 653 uintptr_t valloc_base; 654 655 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 656 size = ROUND_UP_PAGE(size); \ 657 if (num_allocations == NUM_ALLOCATIONS) \ 658 panic("too many ADD_TO_ALLOCATIONS()"); \ 659 allocations[num_allocations].al_ptr = (void**)&ptr; \ 660 allocations[num_allocations].al_size = size; \ 661 valloc_sz += size; \ 662 ++num_allocations; \ 663 } 664 665 /* 666 * Allocate all the initial memory needed by the page allocator. 667 */ 668 static void 669 perform_allocations(void) 670 { 671 caddr_t mem; 672 int i; 673 int valloc_align; 674 675 PRM_DEBUG(valloc_base); 676 PRM_DEBUG(valloc_sz); 677 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 678 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 679 if (mem != (caddr_t)valloc_base) 680 panic("BOP_ALLOC() failed"); 681 bzero(mem, valloc_sz); 682 for (i = 0; i < num_allocations; ++i) { 683 *allocations[i].al_ptr = (void *)mem; 684 mem += allocations[i].al_size; 685 } 686 } 687 688 /* 689 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 690 * VM has been set up so we can use hot_patch_kernel_text(). 691 * 692 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 693 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s 694 * for more information on what's going on here. 695 */ 696 static void 697 startup_smap(void) 698 { 699 int i; 700 uint32_t inst; 701 uint8_t *instp; 702 char sym[128]; 703 struct modctl *modp; 704 705 extern int _smap_enable_patch_count; 706 extern int _smap_disable_patch_count; 707 708 if (disable_smap != 0) 709 remove_x86_feature(x86_featureset, X86FSET_SMAP); 710 711 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 712 return; 713 714 for (i = 0; i < _smap_enable_patch_count; i++) { 715 int sizep; 716 717 VERIFY3U(i, <, _smap_enable_patch_count); 718 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 719 sizeof (sym)); 720 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 721 VERIFY(instp != 0); 722 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 723 hot_patch_kernel_text((caddr_t)instp, inst, 4); 724 } 725 726 for (i = 0; i < _smap_disable_patch_count; i++) { 727 int sizep; 728 729 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 730 i) < sizeof (sym)); 731 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 732 VERIFY(instp != 0); 733 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 734 hot_patch_kernel_text((caddr_t)instp, inst, 4); 735 } 736 737 /* 738 * Hotinline calls to smap_enable and smap_disable within 739 * unix module. Hotinlines in other modules are done on 740 * mod_load(). 741 */ 742 modp = mod_hold_by_name("unix"); 743 do_hotinlines(modp->mod_mp); 744 mod_release_mod(modp); 745 746 setcr4(getcr4() | CR4_SMAP); 747 smap_enable(); 748 } 749 750 /* 751 * Our world looks like this at startup time. 752 * 753 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 754 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 755 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 756 * addresses are fixed in the binary at link time. 757 * 758 * On the text page: 759 * unix/genunix/krtld/module text loads. 760 * 761 * On the data page: 762 * unix/genunix/krtld/module data loads. 763 * 764 * Machine-dependent startup code 765 */ 766 void 767 startup(void) 768 { 769 #if !defined(__xpv) 770 extern void startup_pci_bios(void); 771 #endif 772 extern cpuset_t cpu_ready_set; 773 774 /* 775 * Make sure that nobody tries to use sekpm until we have 776 * initialized it properly. 777 */ 778 #if defined(__amd64) 779 kpm_desired = 1; 780 #endif 781 kpm_enable = 0; 782 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 783 784 #if defined(__xpv) /* XXPV fix me! */ 785 { 786 extern int segvn_use_regions; 787 segvn_use_regions = 0; 788 } 789 #endif 790 ssp_init(); 791 progressbar_init(); 792 startup_init(); 793 #if defined(__xpv) 794 startup_xen_version(); 795 #endif 796 startup_memlist(); 797 startup_kmem(); 798 startup_vm(); 799 #if !defined(__xpv) 800 /* 801 * Note we need to do this even on fast reboot in order to access 802 * the irq routing table (used for pci labels). 803 */ 804 startup_pci_bios(); 805 startup_smap(); 806 #endif 807 #if defined(__xpv) 808 startup_xen_mca(); 809 #endif 810 startup_modules(); 811 812 startup_end(); 813 } 814 815 static void 816 startup_init() 817 { 818 PRM_POINT("startup_init() starting..."); 819 820 /* 821 * Complete the extraction of cpuid data 822 */ 823 cpuid_pass2(CPU); 824 825 (void) check_boot_version(BOP_GETVERSION(bootops)); 826 827 /* 828 * Check for prom_debug in boot environment 829 */ 830 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 831 ++prom_debug; 832 PRM_POINT("prom_debug found in boot enviroment"); 833 } 834 835 /* 836 * Collect node, cpu and memory configuration information. 837 */ 838 get_system_configuration(); 839 840 /* 841 * Halt if this is an unsupported processor. 842 */ 843 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 844 printf("\n486 processor (\"%s\") detected.\n", 845 CPU->cpu_brandstr); 846 halt("This processor is not supported by this release " 847 "of Solaris."); 848 } 849 850 PRM_POINT("startup_init() done"); 851 } 852 853 /* 854 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 855 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 856 * also filters out physical page zero. There is some reliance on the 857 * boot loader allocating only a few contiguous physical memory chunks. 858 */ 859 static void 860 avail_filter(uint64_t *addr, uint64_t *size) 861 { 862 uintptr_t va; 863 uintptr_t next_va; 864 pfn_t pfn; 865 uint64_t pfn_addr; 866 uint64_t pfn_eaddr; 867 uint_t prot; 868 size_t len; 869 uint_t change; 870 871 if (prom_debug) 872 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 873 *addr, *size); 874 875 /* 876 * page zero is required for BIOS.. never make it available 877 */ 878 if (*addr == 0) { 879 *addr += MMU_PAGESIZE; 880 *size -= MMU_PAGESIZE; 881 } 882 883 /* 884 * First we trim from the front of the range. Since kbm_probe() 885 * walks ranges in virtual order, but addr/size are physical, we need 886 * to the list until no changes are seen. This deals with the case 887 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 888 * but w < v. 889 */ 890 do { 891 change = 0; 892 for (va = KERNEL_TEXT; 893 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 894 va = next_va) { 895 896 next_va = va + len; 897 pfn_addr = pfn_to_pa(pfn); 898 pfn_eaddr = pfn_addr + len; 899 900 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 901 change = 1; 902 while (*size > 0 && len > 0) { 903 *addr += MMU_PAGESIZE; 904 *size -= MMU_PAGESIZE; 905 len -= MMU_PAGESIZE; 906 } 907 } 908 } 909 if (change && prom_debug) 910 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 911 *addr, *size); 912 } while (change); 913 914 /* 915 * Trim pages from the end of the range. 916 */ 917 for (va = KERNEL_TEXT; 918 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 919 va = next_va) { 920 921 next_va = va + len; 922 pfn_addr = pfn_to_pa(pfn); 923 924 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 925 *size = pfn_addr - *addr; 926 } 927 928 if (prom_debug) 929 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 930 *addr, *size); 931 } 932 933 static void 934 kpm_init() 935 { 936 struct segkpm_crargs b; 937 938 /* 939 * These variables were all designed for sfmmu in which segkpm is 940 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 941 * might use 2+ page sizes on a single machine, so none of these 942 * variables have a single correct value. They are set up as if we 943 * always use a 4KB pagesize, which should do no harm. In the long 944 * run, we should get rid of KPM's assumption that only a single 945 * pagesize is used. 946 */ 947 kpm_pgshft = MMU_PAGESHIFT; 948 kpm_pgsz = MMU_PAGESIZE; 949 kpm_pgoff = MMU_PAGEOFFSET; 950 kpmp2pshft = 0; 951 kpmpnpgs = 1; 952 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 953 954 PRM_POINT("about to create segkpm"); 955 rw_enter(&kas.a_lock, RW_WRITER); 956 957 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 958 panic("cannot attach segkpm"); 959 960 b.prot = PROT_READ | PROT_WRITE; 961 b.nvcolors = 1; 962 963 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 964 panic("segkpm_create segkpm"); 965 966 rw_exit(&kas.a_lock); 967 968 kpm_enable = 1; 969 970 /* 971 * As the KPM was disabled while setting up the system, go back and fix 972 * CPU zero's access to its user page table. This is a bit gross, but 973 * we have a chicken and egg problem otherwise. 974 */ 975 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 976 CPU->cpu_hat_info->hci_user_l3ptes = 977 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 978 } 979 980 /* 981 * The debug info page provides enough information to allow external 982 * inspectors (e.g. when running under a hypervisor) to bootstrap 983 * themselves into allowing full-blown kernel debugging. 984 */ 985 static void 986 init_debug_info(void) 987 { 988 caddr_t mem; 989 debug_info_t *di; 990 991 #ifndef __lint 992 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 993 #endif 994 995 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 996 MMU_PAGESIZE); 997 998 if (mem != (caddr_t)DEBUG_INFO_VA) 999 panic("BOP_ALLOC() failed"); 1000 bzero(mem, MMU_PAGESIZE); 1001 1002 di = (debug_info_t *)mem; 1003 1004 di->di_magic = DEBUG_INFO_MAGIC; 1005 di->di_version = DEBUG_INFO_VERSION; 1006 di->di_modules = (uintptr_t)&modules; 1007 di->di_s_text = (uintptr_t)s_text; 1008 di->di_e_text = (uintptr_t)e_text; 1009 di->di_s_data = (uintptr_t)s_data; 1010 di->di_e_data = (uintptr_t)e_data; 1011 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 1012 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 1013 } 1014 1015 /* 1016 * Build the memlists and other kernel essential memory system data structures. 1017 * This is everything at valloc_base. 1018 */ 1019 static void 1020 startup_memlist(void) 1021 { 1022 size_t memlist_sz; 1023 size_t memseg_sz; 1024 size_t pagehash_sz; 1025 size_t pp_sz; 1026 uintptr_t va; 1027 size_t len; 1028 uint_t prot; 1029 pfn_t pfn; 1030 int memblocks; 1031 pfn_t rsvd_high_pfn; 1032 pgcnt_t rsvd_pgcnt; 1033 size_t rsvdmemlist_sz; 1034 int rsvdmemblocks; 1035 caddr_t pagecolor_mem; 1036 size_t pagecolor_memsz; 1037 caddr_t page_ctrs_mem; 1038 size_t page_ctrs_size; 1039 size_t pse_table_alloc_size; 1040 struct memlist *current; 1041 extern void startup_build_mem_nodes(struct memlist *); 1042 1043 /* XX64 fix these - they should be in include files */ 1044 extern size_t page_coloring_init(uint_t, int, int); 1045 extern void page_coloring_setup(caddr_t); 1046 1047 PRM_POINT("startup_memlist() starting..."); 1048 1049 /* 1050 * Use leftover large page nucleus text/data space for loadable modules. 1051 * Use at most MODTEXT/MODDATA. 1052 */ 1053 len = kbm_nucleus_size; 1054 ASSERT(len > MMU_PAGESIZE); 1055 1056 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1057 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1058 if (e_moddata - moddata > MODDATA) 1059 e_moddata = moddata + MODDATA; 1060 1061 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1062 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1063 if (e_modtext - modtext > MODTEXT) 1064 e_modtext = modtext + MODTEXT; 1065 1066 econtig = e_moddata; 1067 1068 PRM_DEBUG(modtext); 1069 PRM_DEBUG(e_modtext); 1070 PRM_DEBUG(moddata); 1071 PRM_DEBUG(e_moddata); 1072 PRM_DEBUG(econtig); 1073 1074 /* 1075 * Examine the boot loader physical memory map to find out: 1076 * - total memory in system - physinstalled 1077 * - the max physical address - physmax 1078 * - the number of discontiguous segments of memory. 1079 */ 1080 if (prom_debug) 1081 print_memlist("boot physinstalled", 1082 bootops->boot_mem->physinstalled); 1083 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1084 &physinstalled, &memblocks); 1085 PRM_DEBUG(physmax); 1086 PRM_DEBUG(physinstalled); 1087 PRM_DEBUG(memblocks); 1088 1089 /* 1090 * We no longer support any form of memory DR. 1091 */ 1092 plat_dr_physmax = 0; 1093 1094 /* 1095 * Examine the bios reserved memory to find out: 1096 * - the number of discontiguous segments of memory. 1097 */ 1098 if (prom_debug) 1099 print_memlist("boot reserved mem", 1100 bootops->boot_mem->rsvdmem); 1101 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1102 &rsvd_pgcnt, &rsvdmemblocks); 1103 PRM_DEBUG(rsvd_high_pfn); 1104 PRM_DEBUG(rsvd_pgcnt); 1105 PRM_DEBUG(rsvdmemblocks); 1106 1107 /* 1108 * Initialize hat's mmu parameters. 1109 * Check for enforce-prot-exec in boot environment. It's used to 1110 * enable/disable support for the page table entry NX bit. 1111 * The default is to enforce PROT_EXEC on processors that support NX. 1112 * Boot seems to round up the "len", but 8 seems to be big enough. 1113 */ 1114 mmu_init(); 1115 1116 #ifdef __i386 1117 /* 1118 * physmax is lowered if there is more memory than can be 1119 * physically addressed in 32 bit (PAE/non-PAE) modes. 1120 */ 1121 if (mmu.pae_hat) { 1122 if (PFN_ABOVE64G(physmax)) { 1123 physinstalled -= (physmax - (PFN_64G - 1)); 1124 physmax = PFN_64G - 1; 1125 } 1126 } else { 1127 if (PFN_ABOVE4G(physmax)) { 1128 physinstalled -= (physmax - (PFN_4G - 1)); 1129 physmax = PFN_4G - 1; 1130 } 1131 } 1132 #endif 1133 1134 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1135 1136 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1137 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1138 char value[8]; 1139 1140 if (len < 8) 1141 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1142 else 1143 (void) strcpy(value, ""); 1144 if (strcmp(value, "off") == 0) 1145 mmu.pt_nx = 0; 1146 } 1147 PRM_DEBUG(mmu.pt_nx); 1148 1149 /* 1150 * We will need page_t's for every page in the system, except for 1151 * memory mapped at or above above the start of the kernel text segment. 1152 * 1153 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1154 */ 1155 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1156 obp_pages = 0; 1157 va = KERNEL_TEXT; 1158 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1159 npages -= len >> MMU_PAGESHIFT; 1160 if (va >= (uintptr_t)e_moddata) 1161 obp_pages += len >> MMU_PAGESHIFT; 1162 va += len; 1163 } 1164 PRM_DEBUG(npages); 1165 PRM_DEBUG(obp_pages); 1166 1167 /* 1168 * If physmem is patched to be non-zero, use it instead of the computed 1169 * value unless it is larger than the actual amount of memory on hand. 1170 */ 1171 if (physmem == 0 || physmem > npages) { 1172 physmem = npages; 1173 } else if (physmem < npages) { 1174 orig_npages = npages; 1175 npages = physmem; 1176 } 1177 PRM_DEBUG(physmem); 1178 1179 /* 1180 * We now compute the sizes of all the initial allocations for 1181 * structures the kernel needs in order do kmem_alloc(). These 1182 * include: 1183 * memsegs 1184 * memlists 1185 * page hash table 1186 * page_t's 1187 * page coloring data structs 1188 */ 1189 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1190 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1191 PRM_DEBUG(memseg_sz); 1192 1193 /* 1194 * Reserve space for memlists. There's no real good way to know exactly 1195 * how much room we'll need, but this should be a good upper bound. 1196 */ 1197 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1198 (memblocks + POSS_NEW_FRAGMENTS)); 1199 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1200 PRM_DEBUG(memlist_sz); 1201 1202 /* 1203 * Reserve space for bios reserved memlists. 1204 */ 1205 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1206 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1207 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1208 PRM_DEBUG(rsvdmemlist_sz); 1209 1210 /* LINTED */ 1211 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1212 /* 1213 * The page structure hash table size is a power of 2 1214 * such that the average hash chain length is PAGE_HASHAVELEN. 1215 */ 1216 page_hashsz = npages / PAGE_HASHAVELEN; 1217 page_hashsz_shift = highbit(page_hashsz); 1218 page_hashsz = 1 << page_hashsz_shift; 1219 pagehash_sz = sizeof (struct page *) * page_hashsz; 1220 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1221 PRM_DEBUG(pagehash_sz); 1222 1223 /* 1224 * Set aside room for the page structures themselves. 1225 */ 1226 PRM_DEBUG(npages); 1227 pp_sz = sizeof (struct page) * npages; 1228 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1229 PRM_DEBUG(pp_sz); 1230 1231 /* 1232 * determine l2 cache info and memory size for page coloring 1233 */ 1234 (void) getl2cacheinfo(CPU, 1235 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1236 pagecolor_memsz = 1237 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1238 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1239 PRM_DEBUG(pagecolor_memsz); 1240 1241 page_ctrs_size = page_ctrs_sz(); 1242 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1243 PRM_DEBUG(page_ctrs_size); 1244 1245 /* 1246 * Allocate the array that protects pp->p_selock. 1247 */ 1248 pse_shift = size_pse_array(physmem, max_ncpus); 1249 pse_table_size = 1 << pse_shift; 1250 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1251 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1252 1253 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1254 valloc_base = VALLOC_BASE; 1255 1256 /* 1257 * The signicant memory-sized regions are roughly sized as follows in 1258 * the default layout with max physmem: 1259 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE) 1260 * segzio: 1.5x physmem 1261 * segkvmm: 4x physmem 1262 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem 1263 * 1264 * The idea is that we leave enough room to avoid fragmentation issues, 1265 * so we would like the VA arenas to have some extra. 1266 * 1267 * Ignoring the loose change of segkp, valloc, and such, this means that 1268 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to 1269 * about (2Tb / 7.0), rounded down to 256Gb in the check below. 1270 * 1271 * Note that KPM lives below VALLOC_BASE, but we want to include it in 1272 * adjustments, hence the 8 below. 1273 * 1274 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and 1275 * _userlimit) down to accommodate the VA requirements above. 1276 */ 1277 if (physmax + 1 > mmu_btop(TERABYTE / 4)) { 1278 uint64_t physmem_bytes = mmu_ptob(physmax + 1); 1279 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4)); 1280 1281 PRM_DEBUG(adjustment); 1282 1283 /* 1284 * segkpm_base is always aligned on a L3 PTE boundary. 1285 */ 1286 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE); 1287 1288 /* 1289 * But make sure we leave some space for user apps above hole. 1290 */ 1291 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1292 1293 ASSERT(segkpm_base <= SEGKPM_BASE); 1294 1295 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG); 1296 if (valloc_base < segkpm_base) 1297 panic("not enough kernel VA to support memory size"); 1298 } 1299 1300 PRM_DEBUG(segkpm_base); 1301 PRM_DEBUG(valloc_base); 1302 1303 /* 1304 * do all the initial allocations 1305 */ 1306 perform_allocations(); 1307 1308 /* 1309 * Build phys_install and phys_avail in kernel memspace. 1310 * - phys_install should be all memory in the system. 1311 * - phys_avail is phys_install minus any memory mapped before this 1312 * point above KERNEL_TEXT. 1313 */ 1314 current = phys_install = memlist; 1315 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1316 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1317 panic("physinstalled was too big!"); 1318 if (prom_debug) 1319 print_memlist("phys_install", phys_install); 1320 1321 phys_avail = current; 1322 PRM_POINT("Building phys_avail:\n"); 1323 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1324 avail_filter); 1325 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1326 panic("physavail was too big!"); 1327 if (prom_debug) 1328 print_memlist("phys_avail", phys_avail); 1329 #ifndef __xpv 1330 /* 1331 * Free unused memlist items, which may be used by memory DR driver 1332 * at runtime. 1333 */ 1334 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1335 memlist_free_block((caddr_t)current, 1336 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1337 } 1338 #endif 1339 1340 /* 1341 * Build bios reserved memspace 1342 */ 1343 current = bios_rsvd; 1344 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1345 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1346 panic("bios_rsvd was too big!"); 1347 if (prom_debug) 1348 print_memlist("bios_rsvd", bios_rsvd); 1349 #ifndef __xpv 1350 /* 1351 * Free unused memlist items, which may be used by memory DR driver 1352 * at runtime. 1353 */ 1354 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1355 memlist_free_block((caddr_t)current, 1356 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1357 } 1358 #endif 1359 1360 /* 1361 * setup page coloring 1362 */ 1363 page_coloring_setup(pagecolor_mem); 1364 page_lock_init(); /* currently a no-op */ 1365 1366 /* 1367 * free page list counters 1368 */ 1369 (void) page_ctrs_alloc(page_ctrs_mem); 1370 1371 /* 1372 * Size the pcf array based on the number of cpus in the box at 1373 * boot time. 1374 */ 1375 1376 pcf_init(); 1377 1378 /* 1379 * Initialize the page structures from the memory lists. 1380 */ 1381 availrmem_initial = availrmem = freemem = 0; 1382 PRM_POINT("Calling kphysm_init()..."); 1383 npages = kphysm_init(pp_base, npages); 1384 PRM_POINT("kphysm_init() done"); 1385 PRM_DEBUG(npages); 1386 1387 init_debug_info(); 1388 1389 /* 1390 * Now that page_t's have been initialized, remove all the 1391 * initial allocation pages from the kernel free page lists. 1392 */ 1393 boot_mapin((caddr_t)valloc_base, valloc_sz); 1394 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1395 PRM_POINT("startup_memlist() done"); 1396 1397 PRM_DEBUG(valloc_sz); 1398 1399 #if defined(__amd64) 1400 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1401 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1402 extern size_t textrepl_size_thresh; 1403 textrepl_size_thresh = (16 << 20) - 1; 1404 } 1405 #endif 1406 } 1407 1408 /* 1409 * Layout the kernel's part of address space and initialize kmem allocator. 1410 */ 1411 static void 1412 startup_kmem(void) 1413 { 1414 extern void page_set_colorequiv_arr(void); 1415 #if !defined(__xpv) 1416 extern uint64_t kpti_kbase; 1417 #endif 1418 1419 PRM_POINT("startup_kmem() starting..."); 1420 1421 #if defined(__amd64) 1422 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1423 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1424 "systems."); 1425 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1426 core_base = (uintptr_t)COREHEAP_BASE; 1427 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1428 #else /* __i386 */ 1429 /* 1430 * We configure kernelbase based on: 1431 * 1432 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1433 * KERNELBASE_MAX. we large page align eprom_kernelbase 1434 * 1435 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1436 * On large memory systems we must lower kernelbase to allow 1437 * enough room for page_t's for all of memory. 1438 * 1439 * The value set here, might be changed a little later. 1440 */ 1441 if (eprom_kernelbase) { 1442 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1443 if (kernelbase > KERNELBASE_MAX) 1444 kernelbase = KERNELBASE_MAX; 1445 } else { 1446 kernelbase = (uintptr_t)KERNELBASE; 1447 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1448 } 1449 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1450 core_base = valloc_base; 1451 core_size = 0; 1452 #endif /* __i386 */ 1453 1454 PRM_DEBUG(core_base); 1455 PRM_DEBUG(core_size); 1456 PRM_DEBUG(kernelbase); 1457 1458 #if defined(__i386) 1459 segkp_fromheap = 1; 1460 #endif /* __i386 */ 1461 1462 ekernelheap = (char *)core_base; 1463 PRM_DEBUG(ekernelheap); 1464 1465 /* 1466 * Now that we know the real value of kernelbase, 1467 * update variables that were initialized with a value of 1468 * KERNELBASE (in common/conf/param.c). 1469 * 1470 * XXX The problem with this sort of hackery is that the 1471 * compiler just may feel like putting the const declarations 1472 * (in param.c) into the .text section. Perhaps they should 1473 * just be declared as variables there? 1474 */ 1475 1476 *(uintptr_t *)&_kernelbase = kernelbase; 1477 *(uintptr_t *)&_userlimit = kernelbase; 1478 #if defined(__amd64) 1479 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1480 #if !defined(__xpv) 1481 kpti_kbase = kernelbase; 1482 #endif 1483 #else 1484 *(uintptr_t *)&_userlimit32 = _userlimit; 1485 #endif 1486 PRM_DEBUG(_kernelbase); 1487 PRM_DEBUG(_userlimit); 1488 PRM_DEBUG(_userlimit32); 1489 1490 /* We have to re-do this now that we've modified _userlimit. */ 1491 mmu_calc_user_slots(); 1492 1493 layout_kernel_va(); 1494 1495 #if defined(__i386) 1496 /* 1497 * If segmap is too large we can push the bottom of the kernel heap 1498 * higher than the base. Or worse, it could exceed the top of the 1499 * VA space entirely, causing it to wrap around. 1500 */ 1501 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1502 panic("too little address space available for kernelheap," 1503 " use eeprom for lower kernelbase or smaller segmapsize"); 1504 #endif /* __i386 */ 1505 1506 /* 1507 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1508 */ 1509 kernelheap_init(kernelheap, ekernelheap, 1510 kernelheap + MMU_PAGESIZE, 1511 (void *)core_base, (void *)(core_base + core_size)); 1512 1513 #if defined(__xpv) 1514 /* 1515 * Link pending events struct into cpu struct 1516 */ 1517 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1518 #endif 1519 /* 1520 * Initialize kernel memory allocator. 1521 */ 1522 kmem_init(); 1523 1524 /* 1525 * Factor in colorequiv to check additional 'equivalent' bins 1526 */ 1527 page_set_colorequiv_arr(); 1528 1529 /* 1530 * print this out early so that we know what's going on 1531 */ 1532 print_x86_featureset(x86_featureset); 1533 1534 /* 1535 * Initialize bp_mapin(). 1536 */ 1537 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1538 1539 /* 1540 * orig_npages is non-zero if physmem has been configured for less 1541 * than the available memory. 1542 */ 1543 if (orig_npages) { 1544 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1545 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1546 npages, orig_npages); 1547 } 1548 #if defined(__i386) 1549 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1550 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1551 "System using 0x%lx", 1552 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1553 #endif 1554 1555 #ifdef KERNELBASE_ABI_MIN 1556 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1557 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1558 "i386 ABI compliant.", (uintptr_t)kernelbase); 1559 } 1560 #endif 1561 1562 #ifndef __xpv 1563 if (plat_dr_support_memory()) { 1564 mem_config_init(); 1565 } 1566 #else /* __xpv */ 1567 /* 1568 * Some of the xen start information has to be relocated up 1569 * into the kernel's permanent address space. 1570 */ 1571 PRM_POINT("calling xen_relocate_start_info()"); 1572 xen_relocate_start_info(); 1573 PRM_POINT("xen_relocate_start_info() done"); 1574 1575 /* 1576 * (Update the vcpu pointer in our cpu structure to point into 1577 * the relocated shared info.) 1578 */ 1579 CPU->cpu_m.mcpu_vcpu_info = 1580 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1581 #endif /* __xpv */ 1582 1583 PRM_POINT("startup_kmem() done"); 1584 } 1585 1586 #ifndef __xpv 1587 /* 1588 * If we have detected that we are running in an HVM environment, we need 1589 * to prepend the PV driver directory to the module search path. 1590 */ 1591 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1592 static void 1593 update_default_path() 1594 { 1595 char *current, *newpath; 1596 int newlen; 1597 1598 /* 1599 * We are about to resync with krtld. krtld will reset its 1600 * internal module search path iff Solaris has set default_path. 1601 * We want to be sure we're prepending this new directory to the 1602 * right search path. 1603 */ 1604 current = (default_path == NULL) ? kobj_module_path : default_path; 1605 1606 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1607 newpath = kmem_alloc(newlen, KM_SLEEP); 1608 (void) strcpy(newpath, HVM_MOD_DIR); 1609 (void) strcat(newpath, " "); 1610 (void) strcat(newpath, current); 1611 1612 default_path = newpath; 1613 } 1614 #endif 1615 1616 static void 1617 startup_modules(void) 1618 { 1619 int cnt; 1620 extern void prom_setup(void); 1621 int32_t v, h; 1622 char d[11]; 1623 char *cp; 1624 cmi_hdl_t hdl; 1625 1626 PRM_POINT("startup_modules() starting..."); 1627 1628 #ifndef __xpv 1629 /* 1630 * Initialize ten-micro second timer so that drivers will 1631 * not get short changed in their init phase. This was 1632 * not getting called until clkinit which, on fast cpu's 1633 * caused the drv_usecwait to be way too short. 1634 */ 1635 microfind(); 1636 1637 if ((get_hwenv() & HW_XEN_HVM) != 0) 1638 update_default_path(); 1639 #endif 1640 1641 /* 1642 * Read the GMT lag from /etc/rtc_config. 1643 */ 1644 sgmtl(process_rtc_config_file()); 1645 1646 /* 1647 * Calculate default settings of system parameters based upon 1648 * maxusers, yet allow to be overridden via the /etc/system file. 1649 */ 1650 param_calc(0); 1651 1652 mod_setup(); 1653 1654 /* 1655 * Initialize system parameters. 1656 */ 1657 param_init(); 1658 1659 /* 1660 * Initialize the default brands 1661 */ 1662 brand_init(); 1663 1664 /* 1665 * maxmem is the amount of physical memory we're playing with. 1666 */ 1667 maxmem = physmem; 1668 1669 /* 1670 * Initialize segment management stuff. 1671 */ 1672 seg_init(); 1673 1674 if (modload("fs", "specfs") == -1) 1675 halt("Can't load specfs"); 1676 1677 if (modload("fs", "devfs") == -1) 1678 halt("Can't load devfs"); 1679 1680 if (modload("fs", "dev") == -1) 1681 halt("Can't load dev"); 1682 1683 if (modload("fs", "procfs") == -1) 1684 halt("Can't load procfs"); 1685 1686 (void) modloadonly("sys", "lbl_edition"); 1687 1688 dispinit(); 1689 1690 /* Read cluster configuration data. */ 1691 clconf_init(); 1692 1693 #if defined(__xpv) 1694 (void) ec_init(); 1695 gnttab_init(); 1696 (void) xs_early_init(); 1697 #endif /* __xpv */ 1698 1699 /* 1700 * Create a kernel device tree. First, create rootnex and 1701 * then invoke bus specific code to probe devices. 1702 */ 1703 setup_ddi(); 1704 1705 #ifdef __xpv 1706 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1707 #endif 1708 { 1709 id_t smid; 1710 smbios_system_t smsys; 1711 smbios_info_t sminfo; 1712 char *mfg; 1713 /* 1714 * Load the System Management BIOS into the global ksmbios 1715 * handle, if an SMBIOS is present on this system. 1716 * Also set "si-hw-provider" property, if not already set. 1717 */ 1718 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1719 if (ksmbios != NULL && 1720 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1721 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1722 mfg = (char *)sminfo.smbi_manufacturer; 1723 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1724 extern char hw_provider[]; 1725 int i; 1726 for (i = 0; i < SYS_NMLN; i++) { 1727 if (isprint(mfg[i])) 1728 hw_provider[i] = mfg[i]; 1729 else { 1730 hw_provider[i] = '\0'; 1731 break; 1732 } 1733 } 1734 hw_provider[SYS_NMLN - 1] = '\0'; 1735 } 1736 } 1737 } 1738 1739 1740 /* 1741 * Originally clconf_init() apparently needed the hostid. But 1742 * this no longer appears to be true - it uses its own nodeid. 1743 * By placing the hostid logic here, we are able to make use of 1744 * the SMBIOS UUID. 1745 */ 1746 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1747 cmn_err(CE_WARN, "Unable to set hostid"); 1748 } else { 1749 for (v = h, cnt = 0; cnt < 10; cnt++) { 1750 d[cnt] = (char)(v % 10); 1751 v /= 10; 1752 if (v == 0) 1753 break; 1754 } 1755 for (cp = hw_serial; cnt >= 0; cnt--) 1756 *cp++ = d[cnt] + '0'; 1757 *cp = 0; 1758 } 1759 1760 /* 1761 * Set up the CPU module subsystem for the boot cpu in the native 1762 * case, and all physical cpu resource in the xpv dom0 case. 1763 * Modifies the device tree, so this must be done after 1764 * setup_ddi(). 1765 */ 1766 #ifdef __xpv 1767 /* 1768 * If paravirtualized and on dom0 then we initialize all physical 1769 * cpu handles now; if paravirtualized on a domU then do not 1770 * initialize. 1771 */ 1772 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1773 xen_mc_lcpu_cookie_t cpi; 1774 1775 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1776 cpi = xen_physcpu_next(cpi)) { 1777 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1778 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1779 xen_physcpu_strandid(cpi))) != NULL && 1780 is_x86_feature(x86_featureset, X86FSET_MCA)) 1781 cmi_mca_init(hdl); 1782 } 1783 } 1784 #else 1785 /* 1786 * Initialize a handle for the boot cpu - others will initialize 1787 * as they startup. 1788 */ 1789 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1790 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1791 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1792 cmi_mca_init(hdl); 1793 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1794 } 1795 #endif /* __xpv */ 1796 1797 /* 1798 * Fake a prom tree such that /dev/openprom continues to work 1799 */ 1800 PRM_POINT("startup_modules: calling prom_setup..."); 1801 prom_setup(); 1802 PRM_POINT("startup_modules: done"); 1803 1804 /* 1805 * Load all platform specific modules 1806 */ 1807 PRM_POINT("startup_modules: calling psm_modload..."); 1808 psm_modload(); 1809 1810 PRM_POINT("startup_modules() done"); 1811 } 1812 1813 /* 1814 * claim a "setaside" boot page for use in the kernel 1815 */ 1816 page_t * 1817 boot_claim_page(pfn_t pfn) 1818 { 1819 page_t *pp; 1820 1821 pp = page_numtopp_nolock(pfn); 1822 ASSERT(pp != NULL); 1823 1824 if (PP_ISBOOTPAGES(pp)) { 1825 if (pp->p_next != NULL) 1826 pp->p_next->p_prev = pp->p_prev; 1827 if (pp->p_prev == NULL) 1828 bootpages = pp->p_next; 1829 else 1830 pp->p_prev->p_next = pp->p_next; 1831 } else { 1832 /* 1833 * htable_attach() expects a base pagesize page 1834 */ 1835 if (pp->p_szc != 0) 1836 page_boot_demote(pp); 1837 pp = page_numtopp(pfn, SE_EXCL); 1838 } 1839 return (pp); 1840 } 1841 1842 /* 1843 * Walk through the pagetables looking for pages mapped in by boot. If the 1844 * setaside flag is set the pages are expected to be returned to the 1845 * kernel later in boot, so we add them to the bootpages list. 1846 */ 1847 static void 1848 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1849 { 1850 uintptr_t va = low; 1851 size_t len; 1852 uint_t prot; 1853 pfn_t pfn; 1854 page_t *pp; 1855 pgcnt_t boot_protect_cnt = 0; 1856 1857 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1858 if (va + len >= high) 1859 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1860 "legal range.", len, (void *)va); 1861 1862 while (len > 0) { 1863 pp = page_numtopp_alloc(pfn); 1864 if (pp != NULL) { 1865 if (setaside == 0) 1866 panic("Unexpected mapping by boot. " 1867 "addr=%p pfn=%lx\n", 1868 (void *)va, pfn); 1869 1870 pp->p_next = bootpages; 1871 pp->p_prev = NULL; 1872 PP_SETBOOTPAGES(pp); 1873 if (bootpages != NULL) { 1874 bootpages->p_prev = pp; 1875 } 1876 bootpages = pp; 1877 ++boot_protect_cnt; 1878 } 1879 1880 ++pfn; 1881 len -= MMU_PAGESIZE; 1882 va += MMU_PAGESIZE; 1883 } 1884 } 1885 PRM_DEBUG(boot_protect_cnt); 1886 } 1887 1888 /* 1889 * Establish the final size of the kernel's heap, size of segmap, segkp, etc. 1890 */ 1891 static void 1892 layout_kernel_va(void) 1893 { 1894 const size_t physmem_size = mmu_ptob(physmem); 1895 size_t size; 1896 1897 PRM_POINT("layout_kernel_va() starting..."); 1898 1899 kpm_vbase = (caddr_t)segkpm_base; 1900 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1901 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1902 panic("not enough room for kpm!"); 1903 PRM_DEBUG(kpm_size); 1904 PRM_DEBUG(kpm_vbase); 1905 1906 segkp_base = (caddr_t)valloc_base + valloc_sz; 1907 if (!segkp_fromheap) { 1908 size = mmu_ptob(segkpsize); 1909 1910 /* 1911 * determine size of segkp 1912 */ 1913 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) { 1914 size = SEGKPDEFSIZE; 1915 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1916 "segkpsize has been reset to %ld pages", 1917 mmu_btop(size)); 1918 } 1919 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size)); 1920 1921 segkpsize = mmu_btop(ROUND_UP_LPAGE(size)); 1922 } 1923 PRM_DEBUG(segkp_base); 1924 PRM_DEBUG(segkpsize); 1925 1926 /* 1927 * segkvmm: backing for vmm guest memory. Like segzio, we have a 1928 * separate segment for two reasons: it makes it easy to skip our pages 1929 * on kernel crash dumps, and it helps avoid fragmentation. With this 1930 * segment, we're expecting significantly-sized allocations only; we'll 1931 * default to 4x the size of physmem. 1932 */ 1933 segkvmm_base = segkp_base + mmu_ptob(segkpsize); 1934 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4); 1935 1936 size = MAX(size, SEGVMMMINSIZE); 1937 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size)); 1938 1939 PRM_DEBUG(segkvmmsize); 1940 PRM_DEBUG(segkvmm_base); 1941 1942 /* 1943 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem. 1944 */ 1945 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize); 1946 if (segzio_fromheap) { 1947 segziosize = 0; 1948 } else { 1949 size = (segziosize != 0) ? mmu_ptob(segziosize) : 1950 (physmem_size * 3) / 2; 1951 1952 size = MAX(size, SEGZIOMINSIZE); 1953 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1954 } 1955 PRM_DEBUG(segziosize); 1956 PRM_DEBUG(segzio_base); 1957 1958 /* 1959 * Put the range of VA for device mappings next, kmdb knows to not 1960 * grep in this range of addresses. 1961 */ 1962 toxic_addr = 1963 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1964 PRM_DEBUG(toxic_addr); 1965 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1966 1967 /* 1968 * Users can change segmapsize through eeprom. If the variable 1969 * is tuned through eeprom, there is no upper bound on the 1970 * size of segmap. 1971 */ 1972 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1973 1974 PRM_DEBUG(segmap_start); 1975 PRM_DEBUG(segmapsize); 1976 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1977 PRM_DEBUG(kernelheap); 1978 PRM_POINT("layout_kernel_va() done..."); 1979 } 1980 1981 /* 1982 * Finish initializing the VM system, now that we are no longer 1983 * relying on the boot time memory allocators. 1984 */ 1985 static void 1986 startup_vm(void) 1987 { 1988 struct segmap_crargs a; 1989 1990 extern int use_brk_lpg, use_stk_lpg; 1991 1992 PRM_POINT("startup_vm() starting..."); 1993 1994 /* 1995 * Initialize the hat layer. 1996 */ 1997 hat_init(); 1998 1999 /* 2000 * Do final allocations of HAT data structures that need to 2001 * be allocated before quiescing the boot loader. 2002 */ 2003 PRM_POINT("Calling hat_kern_alloc()..."); 2004 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 2005 PRM_POINT("hat_kern_alloc() done"); 2006 2007 #ifndef __xpv 2008 /* 2009 * Setup Page Attribute Table 2010 */ 2011 pat_sync(); 2012 #endif 2013 2014 /* 2015 * The next two loops are done in distinct steps in order 2016 * to be sure that any page that is doubly mapped (both above 2017 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 2018 * Note this may never happen, but it might someday. 2019 */ 2020 bootpages = NULL; 2021 PRM_POINT("Protecting boot pages"); 2022 2023 /* 2024 * Protect any pages mapped above KERNEL_TEXT that somehow have 2025 * page_t's. This can only happen if something weird allocated 2026 * in this range (like kadb/kmdb). 2027 */ 2028 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 2029 2030 /* 2031 * Before we can take over memory allocation/mapping from the boot 2032 * loader we must remove from our free page lists any boot allocated 2033 * pages that stay mapped until release_bootstrap(). 2034 */ 2035 protect_boot_range(0, kernelbase, 1); 2036 2037 2038 /* 2039 * Switch to running on regular HAT (not boot_mmu) 2040 */ 2041 PRM_POINT("Calling hat_kern_setup()..."); 2042 hat_kern_setup(); 2043 2044 /* 2045 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 2046 */ 2047 bop_no_more_mem(); 2048 2049 PRM_POINT("hat_kern_setup() done"); 2050 2051 hat_cpu_online(CPU); 2052 2053 /* 2054 * Initialize VM system 2055 */ 2056 PRM_POINT("Calling kvm_init()..."); 2057 kvm_init(); 2058 PRM_POINT("kvm_init() done"); 2059 2060 /* 2061 * Tell kmdb that the VM system is now working 2062 */ 2063 if (boothowto & RB_DEBUG) 2064 kdi_dvec_vmready(); 2065 2066 #if defined(__xpv) 2067 /* 2068 * Populate the I/O pool on domain 0 2069 */ 2070 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2071 extern long populate_io_pool(void); 2072 long init_io_pool_cnt; 2073 2074 PRM_POINT("Populating reserve I/O page pool"); 2075 init_io_pool_cnt = populate_io_pool(); 2076 PRM_DEBUG(init_io_pool_cnt); 2077 } 2078 #endif 2079 /* 2080 * Mangle the brand string etc. 2081 */ 2082 cpuid_pass3(CPU); 2083 2084 #if defined(__amd64) 2085 2086 /* 2087 * Create the device arena for toxic (to dtrace/kmdb) mappings. 2088 */ 2089 device_arena = vmem_create("device", (void *)toxic_addr, 2090 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 2091 2092 #else /* __i386 */ 2093 2094 /* 2095 * allocate the bit map that tracks toxic pages 2096 */ 2097 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 2098 PRM_DEBUG(toxic_bit_map_len); 2099 toxic_bit_map = 2100 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2101 ASSERT(toxic_bit_map != NULL); 2102 PRM_DEBUG(toxic_bit_map); 2103 2104 #endif /* __i386 */ 2105 2106 2107 /* 2108 * Now that we've got more VA, as well as the ability to allocate from 2109 * it, tell the debugger. 2110 */ 2111 if (boothowto & RB_DEBUG) 2112 kdi_dvec_memavail(); 2113 2114 #if !defined(__xpv) 2115 /* 2116 * Map page pfn=0 for drivers, such as kd, that need to pick up 2117 * parameters left there by controllers/BIOS. 2118 */ 2119 PRM_POINT("setup up p0_va"); 2120 p0_va = i86devmap(0, 1, PROT_READ); 2121 PRM_DEBUG(p0_va); 2122 #endif 2123 2124 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2125 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2126 2127 /* 2128 * disable automatic large pages for small memory systems or 2129 * when the disable flag is set. 2130 * 2131 * Do not yet consider page sizes larger than 2m/4m. 2132 */ 2133 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2134 max_uheap_lpsize = LEVEL_SIZE(1); 2135 max_ustack_lpsize = LEVEL_SIZE(1); 2136 max_privmap_lpsize = LEVEL_SIZE(1); 2137 max_uidata_lpsize = LEVEL_SIZE(1); 2138 max_utext_lpsize = LEVEL_SIZE(1); 2139 max_shm_lpsize = LEVEL_SIZE(1); 2140 } 2141 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2142 auto_lpg_disable) { 2143 use_brk_lpg = 0; 2144 use_stk_lpg = 0; 2145 } 2146 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2147 2148 PRM_POINT("Calling hat_init_finish()..."); 2149 hat_init_finish(); 2150 PRM_POINT("hat_init_finish() done"); 2151 2152 /* 2153 * Initialize the segkp segment type. 2154 */ 2155 rw_enter(&kas.a_lock, RW_WRITER); 2156 PRM_POINT("Attaching segkp"); 2157 if (segkp_fromheap) { 2158 segkp->s_as = &kas; 2159 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2160 segkp) < 0) { 2161 panic("startup: cannot attach segkp"); 2162 /*NOTREACHED*/ 2163 } 2164 PRM_POINT("Doing segkp_create()"); 2165 if (segkp_create(segkp) != 0) { 2166 panic("startup: segkp_create failed"); 2167 /*NOTREACHED*/ 2168 } 2169 PRM_DEBUG(segkp); 2170 rw_exit(&kas.a_lock); 2171 2172 /* 2173 * kpm segment 2174 */ 2175 segmap_kpm = 0; 2176 if (kpm_desired) 2177 kpm_init(); 2178 2179 /* 2180 * Now create segmap segment. 2181 */ 2182 rw_enter(&kas.a_lock, RW_WRITER); 2183 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2184 panic("cannot attach segmap"); 2185 /*NOTREACHED*/ 2186 } 2187 PRM_DEBUG(segmap); 2188 2189 a.prot = PROT_READ | PROT_WRITE; 2190 a.shmsize = 0; 2191 a.nfreelist = segmapfreelists; 2192 2193 if (segmap_create(segmap, (caddr_t)&a) != 0) 2194 panic("segmap_create segmap"); 2195 rw_exit(&kas.a_lock); 2196 2197 setup_vaddr_for_ppcopy(CPU); 2198 2199 segdev_init(); 2200 #if defined(__xpv) 2201 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2202 #endif 2203 pmem_init(); 2204 2205 PRM_POINT("startup_vm() done"); 2206 } 2207 2208 /* 2209 * Load a tod module for the non-standard tod part found on this system. 2210 */ 2211 static void 2212 load_tod_module(char *todmod) 2213 { 2214 if (modload("tod", todmod) == -1) 2215 halt("Can't load TOD module"); 2216 } 2217 2218 static void 2219 startup_end(void) 2220 { 2221 int i; 2222 extern void setx86isalist(void); 2223 extern void cpu_event_init(void); 2224 2225 PRM_POINT("startup_end() starting..."); 2226 2227 /* 2228 * Perform tasks that get done after most of the VM 2229 * initialization has been done but before the clock 2230 * and other devices get started. 2231 */ 2232 kern_setup1(); 2233 2234 /* 2235 * Perform CPC initialization for this CPU. 2236 */ 2237 kcpc_hw_init(CPU); 2238 2239 /* 2240 * Initialize cpu event framework. 2241 */ 2242 cpu_event_init(); 2243 2244 #if defined(OPTERON_WORKAROUND_6323525) 2245 if (opteron_workaround_6323525) 2246 patch_workaround_6323525(); 2247 #endif 2248 /* 2249 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2250 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2251 */ 2252 if (tod_module_name != NULL) { 2253 PRM_POINT("load_tod_module()"); 2254 load_tod_module(tod_module_name); 2255 } 2256 2257 #if defined(__xpv) 2258 /* 2259 * Forceload interposing TOD module for the hypervisor. 2260 */ 2261 PRM_POINT("load_tod_module()"); 2262 load_tod_module("xpvtod"); 2263 #endif 2264 2265 /* 2266 * Configure the system. 2267 */ 2268 PRM_POINT("Calling configure()..."); 2269 configure(); /* set up devices */ 2270 PRM_POINT("configure() done"); 2271 2272 /* 2273 * We can now setup for XSAVE because fpu_probe is done in configure(). 2274 */ 2275 if (fp_save_mech == FP_XSAVE) { 2276 xsave_setup_msr(CPU); 2277 } 2278 2279 /* 2280 * Set the isa_list string to the defined instruction sets we 2281 * support. 2282 */ 2283 setx86isalist(); 2284 cpu_intr_alloc(CPU, NINTR_THREADS); 2285 psm_install(); 2286 2287 /* 2288 * We're done with bootops. We don't unmap the bootstrap yet because 2289 * we're still using bootsvcs. 2290 */ 2291 PRM_POINT("NULLing out bootops"); 2292 *bootopsp = (struct bootops *)NULL; 2293 bootops = (struct bootops *)NULL; 2294 2295 #if defined(__xpv) 2296 ec_init_debug_irq(); 2297 xs_domu_init(); 2298 #endif 2299 2300 #if !defined(__xpv) 2301 /* 2302 * Intel IOMMU has been setup/initialized in ddi_impl.c 2303 * Start it up now. 2304 */ 2305 immu_startup(); 2306 2307 /* 2308 * Now that we're no longer going to drop into real mode for a BIOS call 2309 * via bootops, we can enable PCID (which requires CR0.PG). 2310 */ 2311 enable_pcid(); 2312 #endif 2313 2314 PRM_POINT("Enabling interrupts"); 2315 (*picinitf)(); 2316 sti(); 2317 #if defined(__xpv) 2318 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2319 xen_late_startup(); 2320 #endif 2321 2322 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2323 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2324 2325 /* 2326 * Register software interrupt handlers for ddi_periodic_add(9F). 2327 * Software interrupts up to the level 10 are supported. 2328 */ 2329 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2330 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2331 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2332 (caddr_t)(uintptr_t)i, NULL); 2333 } 2334 2335 #if !defined(__xpv) 2336 if (modload("drv", "amd_iommu") < 0) { 2337 PRM_POINT("No AMD IOMMU present\n"); 2338 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2339 "amd_iommu")) == NULL) { 2340 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2341 } 2342 #endif 2343 post_startup_cpu_fixups(); 2344 2345 PRM_POINT("startup_end() done"); 2346 } 2347 2348 /* 2349 * Don't remove the following 2 variables. They are necessary 2350 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2351 */ 2352 char *_hs1107 = hw_serial; 2353 ulong_t _bdhs34; 2354 2355 void 2356 post_startup(void) 2357 { 2358 extern void cpupm_init(cpu_t *); 2359 extern void cpu_event_init_cpu(cpu_t *); 2360 2361 /* 2362 * Set the system wide, processor-specific flags to be passed 2363 * to userland via the aux vector for performance hints and 2364 * instruction set extensions. 2365 */ 2366 bind_hwcap(); 2367 2368 #ifdef __xpv 2369 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2370 #endif 2371 { 2372 #if defined(__xpv) 2373 xpv_panic_init(); 2374 #else 2375 /* 2376 * Startup the memory scrubber. 2377 * XXPV This should be running somewhere .. 2378 */ 2379 if ((get_hwenv() & HW_VIRTUAL) == 0) 2380 memscrub_init(); 2381 #endif 2382 } 2383 2384 /* 2385 * Complete CPU module initialization 2386 */ 2387 cmi_post_startup(); 2388 2389 /* 2390 * Perform forceloading tasks for /etc/system. 2391 */ 2392 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2393 2394 /* 2395 * ON4.0: Force /proc module in until clock interrupt handle fixed 2396 * ON4.0: This must be fixed or restated in /etc/systems. 2397 */ 2398 (void) modload("fs", "procfs"); 2399 2400 (void) i_ddi_attach_hw_nodes("pit_beep"); 2401 2402 #if defined(__i386) 2403 /* 2404 * Check for required functional Floating Point hardware, 2405 * unless FP hardware explicitly disabled. 2406 */ 2407 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2408 halt("No working FP hardware found"); 2409 #endif 2410 2411 maxmem = freemem; 2412 2413 cpu_event_init_cpu(CPU); 2414 cpupm_init(CPU); 2415 (void) mach_cpu_create_device_node(CPU, NULL); 2416 2417 pg_init(); 2418 } 2419 2420 static int 2421 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2422 { 2423 return ((pp->p_pagenum >= btop(low_addr)) && 2424 (pp->p_pagenum < btopr(high_addr))); 2425 } 2426 2427 static int 2428 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2429 { 2430 uint_t i; 2431 2432 for (i = 0; modranges[i].phys != 0; i++) { 2433 if (pp_in_range(pp, modranges[i].phys, 2434 modranges[i].phys + modranges[i].size)) 2435 return (1); 2436 } 2437 2438 return (0); 2439 } 2440 2441 void 2442 release_bootstrap(void) 2443 { 2444 int root_is_ramdisk; 2445 page_t *pp; 2446 extern void kobj_boot_unmountroot(void); 2447 extern dev_t rootdev; 2448 uint_t i; 2449 char propname[32]; 2450 rd_existing_t *modranges; 2451 #if !defined(__xpv) 2452 pfn_t pfn; 2453 #endif 2454 2455 /* 2456 * Save the bootfs module ranges so that we can reserve them below 2457 * for the real bootfs. 2458 */ 2459 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2460 KM_SLEEP); 2461 for (i = 0; ; i++) { 2462 uint64_t start, size; 2463 2464 modranges[i].phys = 0; 2465 2466 (void) snprintf(propname, sizeof (propname), 2467 "module-addr-%u", i); 2468 if (do_bsys_getproplen(NULL, propname) <= 0) 2469 break; 2470 (void) do_bsys_getprop(NULL, propname, &start); 2471 2472 (void) snprintf(propname, sizeof (propname), 2473 "module-size-%u", i); 2474 if (do_bsys_getproplen(NULL, propname) <= 0) 2475 break; 2476 (void) do_bsys_getprop(NULL, propname, &size); 2477 2478 modranges[i].phys = start; 2479 modranges[i].size = size; 2480 } 2481 2482 /* unmount boot ramdisk and release kmem usage */ 2483 kobj_boot_unmountroot(); 2484 2485 /* 2486 * We're finished using the boot loader so free its pages. 2487 */ 2488 PRM_POINT("Unmapping lower boot pages"); 2489 2490 clear_boot_mappings(0, _userlimit); 2491 2492 postbootkernelbase = kernelbase; 2493 2494 /* 2495 * If root isn't on ramdisk, destroy the hardcoded 2496 * ramdisk node now and release the memory. Else, 2497 * ramdisk memory is kept in rd_pages. 2498 */ 2499 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2500 if (!root_is_ramdisk) { 2501 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2502 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2503 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2504 (void) ddi_remove_child(dip, 0); 2505 } 2506 2507 PRM_POINT("Releasing boot pages"); 2508 while (bootpages) { 2509 extern uint64_t ramdisk_start, ramdisk_end; 2510 pp = bootpages; 2511 bootpages = pp->p_next; 2512 2513 2514 /* Keep pages for the lower 64K */ 2515 if (pp_in_range(pp, 0, 0x40000)) { 2516 pp->p_next = lower_pages; 2517 lower_pages = pp; 2518 lower_pages_count++; 2519 continue; 2520 } 2521 2522 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2523 ramdisk_end) || pp_in_module(pp, modranges)) { 2524 pp->p_next = rd_pages; 2525 rd_pages = pp; 2526 continue; 2527 } 2528 pp->p_next = (struct page *)0; 2529 pp->p_prev = (struct page *)0; 2530 PP_CLRBOOTPAGES(pp); 2531 page_free(pp, 1); 2532 } 2533 PRM_POINT("Boot pages released"); 2534 2535 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2536 2537 #if !defined(__xpv) 2538 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2539 /* 2540 * Find 1 page below 1 MB so that other processors can boot up or 2541 * so that any processor can resume. 2542 * Make sure it has a kernel VA as well as a 1:1 mapping. 2543 * We should have just free'd one up. 2544 */ 2545 2546 /* 2547 * 0x10 pages is 64K. Leave the bottom 64K alone 2548 * for BIOS. 2549 */ 2550 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2551 if (page_numtopp_alloc(pfn) == NULL) 2552 continue; 2553 rm_platter_va = i86devmap(pfn, 1, 2554 PROT_READ | PROT_WRITE | PROT_EXEC); 2555 rm_platter_pa = ptob(pfn); 2556 break; 2557 } 2558 if (pfn == btop(1*1024*1024) && use_mp) 2559 panic("No page below 1M available for starting " 2560 "other processors or for resuming from system-suspend"); 2561 #endif /* !__xpv */ 2562 } 2563 2564 /* 2565 * Initialize the platform-specific parts of a page_t. 2566 */ 2567 void 2568 add_physmem_cb(page_t *pp, pfn_t pnum) 2569 { 2570 pp->p_pagenum = pnum; 2571 pp->p_mapping = NULL; 2572 pp->p_embed = 0; 2573 pp->p_share = 0; 2574 pp->p_mlentry = 0; 2575 } 2576 2577 /* 2578 * kphysm_init() initializes physical memory. 2579 */ 2580 static pgcnt_t 2581 kphysm_init(page_t *pp, pgcnt_t npages) 2582 { 2583 struct memlist *pmem; 2584 struct memseg *cur_memseg; 2585 pfn_t base_pfn; 2586 pfn_t end_pfn; 2587 pgcnt_t num; 2588 pgcnt_t pages_done = 0; 2589 uint64_t addr; 2590 uint64_t size; 2591 extern pfn_t ddiphysmin; 2592 extern int mnode_xwa; 2593 int ms = 0, me = 0; 2594 2595 ASSERT(page_hash != NULL && page_hashsz != 0); 2596 2597 cur_memseg = memseg_base; 2598 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2599 /* 2600 * In a 32 bit kernel can't use higher memory if we're 2601 * not booting in PAE mode. This check takes care of that. 2602 */ 2603 addr = pmem->ml_address; 2604 size = pmem->ml_size; 2605 if (btop(addr) > physmax) 2606 continue; 2607 2608 /* 2609 * align addr and size - they may not be at page boundaries 2610 */ 2611 if ((addr & MMU_PAGEOFFSET) != 0) { 2612 addr += MMU_PAGEOFFSET; 2613 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2614 size -= addr - pmem->ml_address; 2615 } 2616 2617 /* only process pages below or equal to physmax */ 2618 if ((btop(addr + size) - 1) > physmax) 2619 size = ptob(physmax - btop(addr) + 1); 2620 2621 num = btop(size); 2622 if (num == 0) 2623 continue; 2624 2625 if (num > npages) 2626 num = npages; 2627 2628 npages -= num; 2629 pages_done += num; 2630 base_pfn = btop(addr); 2631 2632 if (prom_debug) 2633 prom_printf("MEMSEG addr=0x%" PRIx64 2634 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2635 addr, num, base_pfn, base_pfn + num); 2636 2637 /* 2638 * Ignore pages below ddiphysmin to simplify ddi memory 2639 * allocation with non-zero addr_lo requests. 2640 */ 2641 if (base_pfn < ddiphysmin) { 2642 if (base_pfn + num <= ddiphysmin) 2643 continue; 2644 pp += (ddiphysmin - base_pfn); 2645 num -= (ddiphysmin - base_pfn); 2646 base_pfn = ddiphysmin; 2647 } 2648 2649 /* 2650 * mnode_xwa is greater than 1 when large pages regions can 2651 * cross memory node boundaries. To prevent the formation 2652 * of these large pages, configure the memsegs based on the 2653 * memory node ranges which had been made non-contiguous. 2654 */ 2655 end_pfn = base_pfn + num - 1; 2656 if (mnode_xwa > 1) { 2657 ms = PFN_2_MEM_NODE(base_pfn); 2658 me = PFN_2_MEM_NODE(end_pfn); 2659 2660 if (ms != me) { 2661 /* 2662 * current range spans more than 1 memory node. 2663 * Set num to only the pfn range in the start 2664 * memory node. 2665 */ 2666 num = mem_node_config[ms].physmax - base_pfn 2667 + 1; 2668 ASSERT(end_pfn > mem_node_config[ms].physmax); 2669 } 2670 } 2671 2672 for (;;) { 2673 /* 2674 * Build the memsegs entry 2675 */ 2676 cur_memseg->pages = pp; 2677 cur_memseg->epages = pp + num; 2678 cur_memseg->pages_base = base_pfn; 2679 cur_memseg->pages_end = base_pfn + num; 2680 2681 /* 2682 * Insert into memseg list in decreasing pfn range 2683 * order. Low memory is typically more fragmented such 2684 * that this ordering keeps the larger ranges at the 2685 * front of the list for code that searches memseg. 2686 * This ASSERTS that the memsegs coming in from boot 2687 * are in increasing physical address order and not 2688 * contiguous. 2689 */ 2690 if (memsegs != NULL) { 2691 ASSERT(cur_memseg->pages_base >= 2692 memsegs->pages_end); 2693 cur_memseg->next = memsegs; 2694 } 2695 memsegs = cur_memseg; 2696 2697 /* 2698 * add_physmem() initializes the PSM part of the page 2699 * struct by calling the PSM back with add_physmem_cb(). 2700 * In addition it coalesces pages into larger pages as 2701 * it initializes them. 2702 */ 2703 add_physmem(pp, num, base_pfn); 2704 cur_memseg++; 2705 availrmem_initial += num; 2706 availrmem += num; 2707 2708 pp += num; 2709 if (ms >= me) 2710 break; 2711 2712 /* process next memory node range */ 2713 ms++; 2714 base_pfn = mem_node_config[ms].physbase; 2715 2716 if (mnode_xwa > 1) { 2717 num = MIN(mem_node_config[ms].physmax, 2718 end_pfn) - base_pfn + 1; 2719 } else { 2720 num = mem_node_config[ms].physmax - 2721 base_pfn + 1; 2722 } 2723 } 2724 } 2725 2726 PRM_DEBUG(availrmem_initial); 2727 PRM_DEBUG(availrmem); 2728 PRM_DEBUG(freemem); 2729 build_pfn_hash(); 2730 return (pages_done); 2731 } 2732 2733 /* 2734 * Kernel VM initialization. 2735 */ 2736 static void 2737 kvm_init(void) 2738 { 2739 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2740 2741 /* 2742 * Put the kernel segments in kernel address space. 2743 */ 2744 rw_enter(&kas.a_lock, RW_WRITER); 2745 as_avlinit(&kas); 2746 2747 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2748 (void) segkmem_create(&ktextseg); 2749 2750 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2751 (void) segkmem_create(&kvalloc); 2752 2753 (void) seg_attach(&kas, kernelheap, 2754 ekernelheap - kernelheap, &kvseg); 2755 (void) segkmem_create(&kvseg); 2756 2757 if (core_size > 0) { 2758 PRM_POINT("attaching kvseg_core"); 2759 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2760 &kvseg_core); 2761 (void) segkmem_create(&kvseg_core); 2762 } 2763 2764 PRM_POINT("attaching segkvmm"); 2765 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg); 2766 (void) segkmem_create(&kvmmseg); 2767 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize)); 2768 2769 if (segziosize > 0) { 2770 PRM_POINT("attaching segzio"); 2771 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2772 &kzioseg); 2773 (void) segkmem_create(&kzioseg); 2774 2775 /* create zio area covering new segment */ 2776 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2777 } 2778 2779 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2780 (void) segkmem_create(&kdebugseg); 2781 2782 rw_exit(&kas.a_lock); 2783 2784 /* 2785 * Ensure that the red zone at kernelbase is never accessible. 2786 */ 2787 PRM_POINT("protecting redzone"); 2788 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2789 2790 /* 2791 * Make the text writable so that it can be hot patched by DTrace. 2792 */ 2793 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2794 PROT_READ | PROT_WRITE | PROT_EXEC); 2795 2796 /* 2797 * Make data writable until end. 2798 */ 2799 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2800 PROT_READ | PROT_WRITE | PROT_EXEC); 2801 } 2802 2803 #ifndef __xpv 2804 /* 2805 * Solaris adds an entry for Write Combining caching to the PAT 2806 */ 2807 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2808 2809 void 2810 pat_sync(void) 2811 { 2812 ulong_t cr0, cr0_orig, cr4; 2813 2814 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2815 return; 2816 cr0_orig = cr0 = getcr0(); 2817 cr4 = getcr4(); 2818 2819 /* disable caching and flush all caches and TLBs */ 2820 cr0 |= CR0_CD; 2821 cr0 &= ~CR0_NW; 2822 setcr0(cr0); 2823 invalidate_cache(); 2824 if (cr4 & CR4_PGE) { 2825 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2826 setcr4(cr4); 2827 } else { 2828 reload_cr3(); 2829 } 2830 2831 /* add our entry to the PAT */ 2832 wrmsr(REG_PAT, pat_attr_reg); 2833 2834 /* flush TLBs and cache again, then reenable cr0 caching */ 2835 if (cr4 & CR4_PGE) { 2836 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2837 setcr4(cr4); 2838 } else { 2839 reload_cr3(); 2840 } 2841 invalidate_cache(); 2842 setcr0(cr0_orig); 2843 } 2844 2845 #endif /* !__xpv */ 2846 2847 #if defined(_SOFT_HOSTID) 2848 /* 2849 * On platforms that do not have a hardware serial number, attempt 2850 * to set one based on the contents of /etc/hostid. If this file does 2851 * not exist, assume that we are to generate a new hostid and set 2852 * it in the kernel, for subsequent saving by a userland process 2853 * once the system is up and the root filesystem is mounted r/w. 2854 * 2855 * In order to gracefully support upgrade on OpenSolaris, if 2856 * /etc/hostid does not exist, we will attempt to get a serial number 2857 * using the legacy method (/kernel/misc/sysinit). 2858 * 2859 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2860 * a hardware serial number. Note that we don't automatically trust 2861 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2862 * UUIDs in violation of the standard), we check against a blacklist. 2863 * 2864 * In an attempt to make the hostid less prone to abuse 2865 * (for license circumvention, etc), we store it in /etc/hostid 2866 * in rot47 format. 2867 */ 2868 extern volatile unsigned long tenmicrodata; 2869 static int atoi(char *); 2870 2871 /* 2872 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2873 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2874 * array can be updated.) 2875 */ 2876 int smbios_broken_uuid = 0; 2877 2878 /* 2879 * List of known bad UUIDs. This is just the lower 32-bit values, since 2880 * that's what we use for the host id. If your hostid falls here, you need 2881 * to contact your hardware OEM for a fix for your BIOS. 2882 */ 2883 static unsigned char 2884 smbios_uuid_blacklist[][16] = { 2885 2886 { /* Reported bad UUID (Google search) */ 2887 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2888 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2889 }, 2890 { /* Known bad DELL UUID */ 2891 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2892 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2893 }, 2894 { /* Uninitialized flash */ 2895 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2896 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2897 }, 2898 { /* All zeros */ 2899 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2900 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2901 }, 2902 }; 2903 2904 static int32_t 2905 uuid_to_hostid(const uint8_t *uuid) 2906 { 2907 /* 2908 * Although the UUIDs are 128-bits, they may not distribute entropy 2909 * evenly. We would like to use SHA or MD5, but those are located 2910 * in loadable modules and not available this early in boot. As we 2911 * don't need the values to be cryptographically strong, we just 2912 * generate 32-bit vaue by xor'ing the various sequences together, 2913 * which ensures that the entire UUID contributes to the hostid. 2914 */ 2915 uint32_t id = 0; 2916 2917 /* first check against the blacklist */ 2918 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2919 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2920 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2921 "Contact BIOS manufacturer for repair.\n"); 2922 return ((int32_t)HW_INVALID_HOSTID); 2923 } 2924 } 2925 2926 for (int i = 0; i < 16; i++) 2927 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2928 2929 /* Make sure return value is positive */ 2930 return (id & 0x7fffffff); 2931 } 2932 2933 static int32_t 2934 set_soft_hostid(void) 2935 { 2936 struct _buf *file; 2937 char tokbuf[MAXNAMELEN]; 2938 token_t token; 2939 int done = 0; 2940 u_longlong_t tmp; 2941 int i; 2942 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2943 unsigned char *c; 2944 hrtime_t tsc; 2945 smbios_system_t smsys; 2946 2947 /* 2948 * If /etc/hostid file not found, we'd like to get a pseudo 2949 * random number to use at the hostid. A nice way to do this 2950 * is to read the real time clock. To remain xen-compatible, 2951 * we can't poke the real hardware, so we use tsc_read() to 2952 * read the real time clock. However, there is an ominous 2953 * warning in tsc_read that says it can return zero, so we 2954 * deal with that possibility by falling back to using the 2955 * (hopefully random enough) value in tenmicrodata. 2956 */ 2957 2958 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2959 /* 2960 * hostid file not found - try to load sysinit module 2961 * and see if it has a nonzero hostid value...use that 2962 * instead of generating a new hostid here if so. 2963 */ 2964 if ((i = modload("misc", "sysinit")) != -1) { 2965 if (strlen(hw_serial) > 0) 2966 hostid = (int32_t)atoi(hw_serial); 2967 (void) modunload(i); 2968 } 2969 2970 /* 2971 * We try to use the SMBIOS UUID. But not if it is blacklisted 2972 * in /etc/system. 2973 */ 2974 if ((hostid == HW_INVALID_HOSTID) && 2975 (smbios_broken_uuid == 0) && 2976 (ksmbios != NULL) && 2977 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 2978 (smsys.smbs_uuidlen >= 16)) { 2979 hostid = uuid_to_hostid(smsys.smbs_uuid); 2980 } 2981 2982 /* 2983 * Generate a "random" hostid using the clock. These 2984 * hostids will change on each boot if the value is not 2985 * saved to a persistent /etc/hostid file. 2986 */ 2987 if (hostid == HW_INVALID_HOSTID) { 2988 tsc = tsc_read(); 2989 if (tsc == 0) /* tsc_read can return zero sometimes */ 2990 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2991 else 2992 hostid = (int32_t)tsc & 0x0CFFFFF; 2993 } 2994 } else { 2995 /* hostid file found */ 2996 while (!done) { 2997 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2998 2999 switch (token) { 3000 case POUND: 3001 /* 3002 * skip comments 3003 */ 3004 kobj_find_eol(file); 3005 break; 3006 case STRING: 3007 /* 3008 * un-rot47 - obviously this 3009 * nonsense is ascii-specific 3010 */ 3011 for (c = (unsigned char *)tokbuf; 3012 *c != '\0'; c++) { 3013 *c += 47; 3014 if (*c > '~') 3015 *c -= 94; 3016 else if (*c < '!') 3017 *c += 94; 3018 } 3019 /* 3020 * now we should have a real number 3021 */ 3022 3023 if (kobj_getvalue(tokbuf, &tmp) != 0) 3024 kobj_file_err(CE_WARN, file, 3025 "Bad value %s for hostid", 3026 tokbuf); 3027 else 3028 hostid = (int32_t)tmp; 3029 3030 break; 3031 case EOF: 3032 done = 1; 3033 /* FALLTHROUGH */ 3034 case NEWLINE: 3035 kobj_newline(file); 3036 break; 3037 default: 3038 break; 3039 3040 } 3041 } 3042 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 3043 kobj_file_err(CE_WARN, file, 3044 "hostid missing or corrupt"); 3045 3046 kobj_close_file(file); 3047 } 3048 /* 3049 * hostid is now the value read from /etc/hostid, or the 3050 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 3051 * set. 3052 */ 3053 return (hostid); 3054 } 3055 3056 static int 3057 atoi(char *p) 3058 { 3059 int i = 0; 3060 3061 while (*p != '\0') 3062 i = 10 * i + (*p++ - '0'); 3063 3064 return (i); 3065 } 3066 3067 #endif /* _SOFT_HOSTID */ 3068 3069 void 3070 get_system_configuration(void) 3071 { 3072 char prop[32]; 3073 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 3074 3075 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 3076 BOP_GETPROP(bootops, "nodes", prop) < 0 || 3077 kobj_getvalue(prop, &nodes_ll) == -1 || 3078 nodes_ll > MAXNODES || 3079 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 3080 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 3081 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 3082 system_hardware.hd_nodes = 1; 3083 system_hardware.hd_cpus_per_node = 0; 3084 } else { 3085 system_hardware.hd_nodes = (int)nodes_ll; 3086 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 3087 } 3088 3089 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 3090 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 3091 kobj_getvalue(prop, &lvalue) == -1) 3092 eprom_kernelbase = 0; 3093 else 3094 eprom_kernelbase = (uintptr_t)lvalue; 3095 3096 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 3097 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 3098 kobj_getvalue(prop, &lvalue) == -1) 3099 segmapsize = SEGMAPDEFAULT; 3100 else 3101 segmapsize = (uintptr_t)lvalue; 3102 3103 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 3104 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 3105 kobj_getvalue(prop, &lvalue) == -1) 3106 segmapfreelists = 0; /* use segmap driver default */ 3107 else 3108 segmapfreelists = (int)lvalue; 3109 3110 /* physmem used to be here, but moved much earlier to fakebop.c */ 3111 } 3112 3113 /* 3114 * Add to a memory list. 3115 * start = start of new memory segment 3116 * len = length of new memory segment in bytes 3117 * new = pointer to a new struct memlist 3118 * memlistp = memory list to which to add segment. 3119 */ 3120 void 3121 memlist_add( 3122 uint64_t start, 3123 uint64_t len, 3124 struct memlist *new, 3125 struct memlist **memlistp) 3126 { 3127 struct memlist *cur; 3128 uint64_t end = start + len; 3129 3130 new->ml_address = start; 3131 new->ml_size = len; 3132 3133 cur = *memlistp; 3134 3135 while (cur) { 3136 if (cur->ml_address >= end) { 3137 new->ml_next = cur; 3138 *memlistp = new; 3139 new->ml_prev = cur->ml_prev; 3140 cur->ml_prev = new; 3141 return; 3142 } 3143 ASSERT(cur->ml_address + cur->ml_size <= start); 3144 if (cur->ml_next == NULL) { 3145 cur->ml_next = new; 3146 new->ml_prev = cur; 3147 new->ml_next = NULL; 3148 return; 3149 } 3150 memlistp = &cur->ml_next; 3151 cur = cur->ml_next; 3152 } 3153 } 3154 3155 void 3156 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3157 { 3158 size_t tsize = e_modtext - modtext; 3159 size_t dsize = e_moddata - moddata; 3160 3161 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3162 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3163 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3164 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3165 } 3166 3167 caddr_t 3168 kobj_text_alloc(vmem_t *arena, size_t size) 3169 { 3170 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3171 } 3172 3173 /*ARGSUSED*/ 3174 caddr_t 3175 kobj_texthole_alloc(caddr_t addr, size_t size) 3176 { 3177 panic("unexpected call to kobj_texthole_alloc()"); 3178 /*NOTREACHED*/ 3179 return (0); 3180 } 3181 3182 /*ARGSUSED*/ 3183 void 3184 kobj_texthole_free(caddr_t addr, size_t size) 3185 { 3186 panic("unexpected call to kobj_texthole_free()"); 3187 } 3188 3189 /* 3190 * This is called just after configure() in startup(). 3191 * 3192 * The ISALIST concept is a bit hopeless on Intel, because 3193 * there's no guarantee of an ever-more-capable processor 3194 * given that various parts of the instruction set may appear 3195 * and disappear between different implementations. 3196 * 3197 * While it would be possible to correct it and even enhance 3198 * it somewhat, the explicit hardware capability bitmask allows 3199 * more flexibility. 3200 * 3201 * So, we just leave this alone. 3202 */ 3203 void 3204 setx86isalist(void) 3205 { 3206 char *tp; 3207 size_t len; 3208 extern char *isa_list; 3209 3210 #define TBUFSIZE 1024 3211 3212 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3213 *tp = '\0'; 3214 3215 #if defined(__amd64) 3216 (void) strcpy(tp, "amd64 "); 3217 #endif 3218 3219 switch (x86_vendor) { 3220 case X86_VENDOR_Intel: 3221 case X86_VENDOR_AMD: 3222 case X86_VENDOR_TM: 3223 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3224 /* 3225 * Pentium Pro or later 3226 */ 3227 (void) strcat(tp, "pentium_pro"); 3228 (void) strcat(tp, 3229 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3230 "+mmx pentium_pro " : " "); 3231 } 3232 /*FALLTHROUGH*/ 3233 case X86_VENDOR_Cyrix: 3234 /* 3235 * The Cyrix 6x86 does not have any Pentium features 3236 * accessible while not at privilege level 0. 3237 */ 3238 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3239 (void) strcat(tp, "pentium"); 3240 (void) strcat(tp, 3241 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3242 "+mmx pentium " : " "); 3243 } 3244 break; 3245 default: 3246 break; 3247 } 3248 (void) strcat(tp, "i486 i386 i86"); 3249 len = strlen(tp) + 1; /* account for NULL at end of string */ 3250 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3251 kmem_free(tp, TBUFSIZE); 3252 3253 #undef TBUFSIZE 3254 } 3255 3256 3257 #ifdef __amd64 3258 3259 void * 3260 device_arena_alloc(size_t size, int vm_flag) 3261 { 3262 return (vmem_alloc(device_arena, size, vm_flag)); 3263 } 3264 3265 void 3266 device_arena_free(void *vaddr, size_t size) 3267 { 3268 vmem_free(device_arena, vaddr, size); 3269 } 3270 3271 #else /* __i386 */ 3272 3273 void * 3274 device_arena_alloc(size_t size, int vm_flag) 3275 { 3276 caddr_t vaddr; 3277 uintptr_t v; 3278 size_t start; 3279 size_t end; 3280 3281 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3282 if (vaddr == NULL) 3283 return (NULL); 3284 3285 v = (uintptr_t)vaddr; 3286 ASSERT(v >= kernelbase); 3287 ASSERT(v + size <= valloc_base); 3288 3289 start = btop(v - kernelbase); 3290 end = btop(v + size - 1 - kernelbase); 3291 ASSERT(start < toxic_bit_map_len); 3292 ASSERT(end < toxic_bit_map_len); 3293 3294 while (start <= end) { 3295 BT_ATOMIC_SET(toxic_bit_map, start); 3296 ++start; 3297 } 3298 return (vaddr); 3299 } 3300 3301 void 3302 device_arena_free(void *vaddr, size_t size) 3303 { 3304 uintptr_t v = (uintptr_t)vaddr; 3305 size_t start; 3306 size_t end; 3307 3308 ASSERT(v >= kernelbase); 3309 ASSERT(v + size <= valloc_base); 3310 3311 start = btop(v - kernelbase); 3312 end = btop(v + size - 1 - kernelbase); 3313 ASSERT(start < toxic_bit_map_len); 3314 ASSERT(end < toxic_bit_map_len); 3315 3316 while (start <= end) { 3317 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3318 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3319 ++start; 3320 } 3321 vmem_free(heap_arena, vaddr, size); 3322 } 3323 3324 /* 3325 * returns 1st address in range that is in device arena, or NULL 3326 * if len is not NULL it returns the length of the toxic range 3327 */ 3328 void * 3329 device_arena_contains(void *vaddr, size_t size, size_t *len) 3330 { 3331 uintptr_t v = (uintptr_t)vaddr; 3332 uintptr_t eaddr = v + size; 3333 size_t start; 3334 size_t end; 3335 3336 /* 3337 * if called very early by kmdb, just return NULL 3338 */ 3339 if (toxic_bit_map == NULL) 3340 return (NULL); 3341 3342 /* 3343 * First check if we're completely outside the bitmap range. 3344 */ 3345 if (v >= valloc_base || eaddr < kernelbase) 3346 return (NULL); 3347 3348 /* 3349 * Trim ends of search to look at only what the bitmap covers. 3350 */ 3351 if (v < kernelbase) 3352 v = kernelbase; 3353 start = btop(v - kernelbase); 3354 end = btop(eaddr - kernelbase); 3355 if (end >= toxic_bit_map_len) 3356 end = toxic_bit_map_len; 3357 3358 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3359 return (NULL); 3360 3361 v = kernelbase + ptob(start); 3362 if (len != NULL) 3363 *len = ptob(end - start); 3364 return ((void *)v); 3365 } 3366 3367 #endif /* __i386 */ 3368