1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/mem.h> 51 #include <sys/kstat.h> 52 53 #include <sys/reboot.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 61 #include <sys/vfs.h> 62 #include <sys/cmn_err.h> 63 #include <sys/utsname.h> 64 #include <sys/debug.h> 65 #include <sys/kdi.h> 66 67 #include <sys/dumphdr.h> 68 #include <sys/bootconf.h> 69 #include <sys/memlist_plat.h> 70 #include <sys/varargs.h> 71 #include <sys/promif.h> 72 #include <sys/modctl.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/sunndi.h> 76 #include <sys/ndi_impldefs.h> 77 #include <sys/ddidmareq.h> 78 #include <sys/psw.h> 79 #include <sys/regset.h> 80 #include <sys/clock.h> 81 #include <sys/pte.h> 82 #include <sys/tss.h> 83 #include <sys/stack.h> 84 #include <sys/trap.h> 85 #include <sys/fp.h> 86 #include <vm/kboot_mmu.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_dev.h> 92 #include <vm/seg_kmem.h> 93 #include <vm/seg_kpm.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_vn.h> 96 #include <vm/seg_kp.h> 97 #include <sys/memnode.h> 98 #include <vm/vm_dep.h> 99 #include <sys/thread.h> 100 #include <sys/sysconf.h> 101 #include <sys/vm_machparam.h> 102 #include <sys/archsystm.h> 103 #include <sys/machsystm.h> 104 #include <vm/hat.h> 105 #include <vm/hat_i86.h> 106 #include <sys/pmem.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/x86_archext.h> 109 #include <sys/cpuvar.h> 110 #include <sys/segments.h> 111 #include <sys/clconf.h> 112 #include <sys/kobj.h> 113 #include <sys/kobj_lex.h> 114 #include <sys/cpc_impl.h> 115 #include <sys/cpu_module.h> 116 #include <sys/smbios.h> 117 #include <sys/debug_info.h> 118 #include <sys/bootinfo.h> 119 #include <sys/ddi_timer.h> 120 #include <sys/systeminfo.h> 121 #include <sys/multiboot.h> 122 123 #ifdef __xpv 124 125 #include <sys/hypervisor.h> 126 #include <sys/xen_mmu.h> 127 #include <sys/evtchn_impl.h> 128 #include <sys/gnttab.h> 129 #include <sys/xpv_panic.h> 130 #include <xen/sys/xenbus_comms.h> 131 #include <xen/public/physdev.h> 132 133 extern void xen_late_startup(void); 134 135 struct xen_evt_data cpu0_evt_data; 136 137 #else /* __xpv */ 138 #include <sys/memlist_impl.h> 139 140 extern void mem_config_init(void); 141 #endif /* __xpv */ 142 143 extern void progressbar_init(void); 144 extern void brand_init(void); 145 extern void pcf_init(void); 146 extern void pg_init(void); 147 148 extern int size_pse_array(pgcnt_t, int); 149 150 #if defined(_SOFT_HOSTID) 151 152 #include <sys/rtc.h> 153 154 static int32_t set_soft_hostid(void); 155 static char hostid_file[] = "/etc/hostid"; 156 157 #endif 158 159 void *gfx_devinfo_list; 160 161 #if defined(__amd64) && !defined(__xpv) 162 extern void immu_startup(void); 163 #endif 164 165 /* 166 * XXX make declaration below "static" when drivers no longer use this 167 * interface. 168 */ 169 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 170 171 /* 172 * segkp 173 */ 174 extern int segkp_fromheap; 175 176 static void kvm_init(void); 177 static void startup_init(void); 178 static void startup_memlist(void); 179 static void startup_kmem(void); 180 static void startup_modules(void); 181 static void startup_vm(void); 182 static void startup_end(void); 183 static void layout_kernel_va(void); 184 185 /* 186 * Declare these as initialized data so we can patch them. 187 */ 188 #ifdef __i386 189 190 /* 191 * Due to virtual address space limitations running in 32 bit mode, restrict 192 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 193 * 194 * If the physical max memory size of 64g were allowed to be configured, the 195 * size of user virtual address space will be less than 1g. A limited user 196 * address space greatly reduces the range of applications that can run. 197 * 198 * If more physical memory than PHYSMEM is required, users should preferably 199 * run in 64 bit mode which has far looser virtual address space limitations. 200 * 201 * If 64 bit mode is not available (as in IA32) and/or more physical memory 202 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 203 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 204 * should also be carefully tuned to balance out the need of the user 205 * application while minimizing the risk of kernel heap exhaustion due to 206 * kernelbase being set too high. 207 */ 208 #define PHYSMEM 0x400000 209 210 #else /* __amd64 */ 211 212 /* 213 * For now we can handle memory with physical addresses up to about 214 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 215 * half the VA space for seg_kpm. When systems get bigger than 64TB this 216 * code will need revisiting. There is an implicit assumption that there 217 * are no *huge* holes in the physical address space too. 218 */ 219 #define TERABYTE (1ul << 40) 220 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 221 #define PHYSMEM PHYSMEM_MAX64 222 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 223 224 #endif /* __amd64 */ 225 226 pgcnt_t physmem = PHYSMEM; 227 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 228 229 char *kobj_file_buf; 230 int kobj_file_bufsize; /* set in /etc/system */ 231 232 /* Global variables for MP support. Used in mp_startup */ 233 caddr_t rm_platter_va = 0; 234 uint32_t rm_platter_pa; 235 236 int auto_lpg_disable = 1; 237 238 /* 239 * Some CPUs have holes in the middle of the 64-bit virtual address range. 240 */ 241 uintptr_t hole_start, hole_end; 242 243 /* 244 * kpm mapping window 245 */ 246 caddr_t kpm_vbase; 247 size_t kpm_size; 248 static int kpm_desired; 249 #ifdef __amd64 250 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 251 #endif 252 253 /* 254 * Configuration parameters set at boot time. 255 */ 256 257 caddr_t econtig; /* end of first block of contiguous kernel */ 258 259 struct bootops *bootops = 0; /* passed in from boot */ 260 struct bootops **bootopsp; 261 struct boot_syscalls *sysp; /* passed in from boot */ 262 263 char bootblock_fstype[16]; 264 265 char kern_bootargs[OBP_MAXPATHLEN]; 266 char kern_bootfile[OBP_MAXPATHLEN]; 267 268 /* 269 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 270 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 271 * zio buffers from their own segment, otherwise they are allocated from the 272 * heap. The optimization of allocating zio buffers from their own segment is 273 * only valid on 64-bit kernels. 274 */ 275 #if defined(__amd64) 276 int segzio_fromheap = 0; 277 #else 278 int segzio_fromheap = 1; 279 #endif 280 281 /* 282 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 283 * depends on number of BOP_ALLOC calls made and requested size, memory size 284 * combination and whether boot.bin memory needs to be freed. 285 */ 286 #define POSS_NEW_FRAGMENTS 12 287 288 /* 289 * VM data structures 290 */ 291 long page_hashsz; /* Size of page hash table (power of two) */ 292 struct page *pp_base; /* Base of initial system page struct array */ 293 struct page **page_hash; /* Page hash table */ 294 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 295 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 296 int pse_shift; /* log2(pse_table_size) */ 297 struct seg ktextseg; /* Segment used for kernel executable image */ 298 struct seg kvalloc; /* Segment used for "valloc" mapping */ 299 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 300 struct seg kmapseg; /* Segment used for generic kernel mappings */ 301 struct seg kdebugseg; /* Segment used for the kernel debugger */ 302 303 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 304 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 305 306 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 307 308 #if defined(__amd64) 309 struct seg kvseg_core; /* Segment used for the core heap */ 310 struct seg kpmseg; /* Segment used for physical mapping */ 311 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 312 #else 313 struct seg *segkpm = NULL; /* Unused on IA32 */ 314 #endif 315 316 caddr_t segkp_base; /* Base address of segkp */ 317 caddr_t segzio_base; /* Base address of segzio */ 318 #if defined(__amd64) 319 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 320 #else 321 pgcnt_t segkpsize = 0; 322 #endif 323 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 324 325 /* 326 * A static DR page_t VA map is reserved that can map the page structures 327 * for a domain's entire RA space. The pages that back this space are 328 * dynamically allocated and need not be physically contiguous. The DR 329 * map size is derived from KPM size. 330 * This mechanism isn't used by x86 yet, so just stubs here. 331 */ 332 int ppvm_enable = 0; /* Static virtual map for page structs */ 333 page_t *ppvm_base = NULL; /* Base of page struct map */ 334 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 335 336 /* 337 * VA range available to the debugger 338 */ 339 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 340 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 341 342 struct memseg *memseg_base; 343 struct vnode unused_pages_vp; 344 345 #define FOURGB 0x100000000LL 346 347 struct memlist *memlist; 348 349 caddr_t s_text; /* start of kernel text segment */ 350 caddr_t e_text; /* end of kernel text segment */ 351 caddr_t s_data; /* start of kernel data segment */ 352 caddr_t e_data; /* end of kernel data segment */ 353 caddr_t modtext; /* start of loadable module text reserved */ 354 caddr_t e_modtext; /* end of loadable module text reserved */ 355 caddr_t moddata; /* start of loadable module data reserved */ 356 caddr_t e_moddata; /* end of loadable module data reserved */ 357 358 struct memlist *phys_install; /* Total installed physical memory */ 359 struct memlist *phys_avail; /* Total available physical memory */ 360 struct memlist *bios_rsvd; /* Bios reserved memory */ 361 362 /* 363 * kphysm_init returns the number of pages that were processed 364 */ 365 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 366 367 #define IO_PROP_SIZE 64 /* device property size */ 368 369 /* 370 * a couple useful roundup macros 371 */ 372 #define ROUND_UP_PAGE(x) \ 373 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 374 #define ROUND_UP_LPAGE(x) \ 375 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 376 #define ROUND_UP_4MEG(x) \ 377 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 378 #define ROUND_UP_TOPLEVEL(x) \ 379 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 380 381 /* 382 * 32-bit Kernel's Virtual memory layout. 383 * +-----------------------+ 384 * | | 385 * 0xFFC00000 -|-----------------------|- ARGSBASE 386 * | debugger | 387 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 388 * | Kernel Data | 389 * 0xFEC00000 -|-----------------------| 390 * | Kernel Text | 391 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 392 * |--- GDT ---|- GDT page (GDT_VA) 393 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 394 * | | 395 * | page_t structures | 396 * | memsegs, memlists, | 397 * | page hash, etc. | 398 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 399 * | | (segkp is just an arena in the heap) 400 * | | 401 * | kvseg | 402 * | | 403 * | | 404 * --- -|-----------------------|- kernelheap (floating) 405 * | Segkmap | 406 * 0xC3002000 -|-----------------------|- segmap_start (floating) 407 * | Red Zone | 408 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 409 * | | || 410 * | Shared objects | \/ 411 * | | 412 * : : 413 * | user data | 414 * |-----------------------| 415 * | user text | 416 * 0x08048000 -|-----------------------| 417 * | user stack | 418 * : : 419 * | invalid | 420 * 0x00000000 +-----------------------+ 421 * 422 * 423 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 424 * +-----------------------+ 425 * | | 426 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 427 * | debugger (?) | 428 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 429 * | unused | 430 * +-----------------------+ 431 * | Kernel Data | 432 * 0xFFFFFFFF.FBC00000 |-----------------------| 433 * | Kernel Text | 434 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 435 * |--- GDT ---|- GDT page (GDT_VA) 436 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 437 * | | 438 * | Core heap | (used for loadable modules) 439 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 440 * | Kernel | 441 * | heap | 442 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 443 * | segmap | 444 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 445 * | device mappings | 446 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 447 * | segzio | 448 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 449 * | segkp | 450 * --- |-----------------------|- segkp_base (floating) 451 * | page_t structures | valloc_base + valloc_sz 452 * | memsegs, memlists, | 453 * | page hash, etc. | 454 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 455 * | segkpm | 456 * 0xFFFFFE00.00000000 |-----------------------| 457 * | Red Zone | 458 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 459 * | User stack |- User space memory 460 * | | 461 * | shared objects, etc | (grows downwards) 462 * : : 463 * | | 464 * 0xFFFF8000.00000000 |-----------------------| 465 * | | 466 * | VA Hole / unused | 467 * | | 468 * 0x00008000.00000000 |-----------------------| 469 * | | 470 * | | 471 * : : 472 * | user heap | (grows upwards) 473 * | | 474 * | user data | 475 * |-----------------------| 476 * | user text | 477 * 0x00000000.04000000 |-----------------------| 478 * | invalid | 479 * 0x00000000.00000000 +-----------------------+ 480 * 481 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 482 * kernel, except that userlimit is raised to 0xfe000000 483 * 484 * Floating values: 485 * 486 * valloc_base: start of the kernel's memory management/tracking data 487 * structures. This region contains page_t structures for 488 * physical memory, memsegs, memlists, and the page hash. 489 * 490 * core_base: start of the kernel's "core" heap area on 64-bit systems. 491 * This area is intended to be used for global data as well as for module 492 * text/data that does not fit into the nucleus pages. The core heap is 493 * restricted to a 2GB range, allowing every address within it to be 494 * accessed using rip-relative addressing 495 * 496 * ekernelheap: end of kernelheap and start of segmap. 497 * 498 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 499 * above a red zone that separates the user's address space from the 500 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 501 * 502 * segmap_start: start of segmap. The length of segmap can be modified 503 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 504 * on 64-bit systems. 505 * 506 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 507 * decreased by 2X the size required for page_t. This allows the kernel 508 * heap to grow in size with physical memory. With sizeof(page_t) == 80 509 * bytes, the following shows the values of kernelbase and kernel heap 510 * sizes for different memory configurations (assuming default segmap and 511 * segkp sizes). 512 * 513 * mem size for kernelbase kernel heap 514 * size page_t's size 515 * ---- --------- ---------- ----------- 516 * 1gb 0x01400000 0xd1800000 684MB 517 * 2gb 0x02800000 0xcf000000 704MB 518 * 4gb 0x05000000 0xca000000 744MB 519 * 6gb 0x07800000 0xc5000000 784MB 520 * 8gb 0x0a000000 0xc0000000 824MB 521 * 16gb 0x14000000 0xac000000 984MB 522 * 32gb 0x28000000 0x84000000 1304MB 523 * 64gb 0x50000000 0x34000000 1944MB (*) 524 * 525 * kernelbase is less than the abi minimum of 0xc0000000 for memory 526 * configurations above 8gb. 527 * 528 * (*) support for memory configurations above 32gb will require manual tuning 529 * of kernelbase to balance out the need of user applications. 530 */ 531 532 /* real-time-clock initialization parameters */ 533 extern time_t process_rtc_config_file(void); 534 535 uintptr_t kernelbase; 536 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 537 uintptr_t eprom_kernelbase; 538 size_t segmapsize; 539 uintptr_t segmap_start; 540 int segmapfreelists; 541 pgcnt_t npages; 542 pgcnt_t orig_npages; 543 size_t core_size; /* size of "core" heap */ 544 uintptr_t core_base; /* base address of "core" heap */ 545 546 /* 547 * List of bootstrap pages. We mark these as allocated in startup. 548 * release_bootstrap() will free them when we're completely done with 549 * the bootstrap. 550 */ 551 static page_t *bootpages; 552 553 /* 554 * boot time pages that have a vnode from the ramdisk will keep that forever. 555 */ 556 static page_t *rd_pages; 557 558 /* 559 * Lower 64K 560 */ 561 static page_t *lower_pages = NULL; 562 static int lower_pages_count = 0; 563 564 struct system_hardware system_hardware; 565 566 /* 567 * Enable some debugging messages concerning memory usage... 568 */ 569 static void 570 print_memlist(char *title, struct memlist *mp) 571 { 572 prom_printf("MEMLIST: %s:\n", title); 573 while (mp != NULL) { 574 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 575 mp->ml_address, mp->ml_size); 576 mp = mp->ml_next; 577 } 578 } 579 580 /* 581 * XX64 need a comment here.. are these just default values, surely 582 * we read the "cpuid" type information to figure this out. 583 */ 584 int l2cache_sz = 0x80000; 585 int l2cache_linesz = 0x40; 586 int l2cache_assoc = 1; 587 588 static size_t textrepl_min_gb = 10; 589 590 /* 591 * on 64 bit we use a predifined VA range for mapping devices in the kernel 592 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 593 */ 594 #ifdef __amd64 595 596 vmem_t *device_arena; 597 uintptr_t toxic_addr = (uintptr_t)NULL; 598 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 599 600 #else /* __i386 */ 601 602 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 603 size_t toxic_bit_map_len = 0; /* in bits */ 604 605 #endif /* __i386 */ 606 607 /* 608 * Simple boot time debug facilities 609 */ 610 static char *prm_dbg_str[] = { 611 "%s:%d: '%s' is 0x%x\n", 612 "%s:%d: '%s' is 0x%llx\n" 613 }; 614 615 int prom_debug; 616 617 #define PRM_DEBUG(q) if (prom_debug) \ 618 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 619 #define PRM_POINT(q) if (prom_debug) \ 620 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 621 622 /* 623 * This structure is used to keep track of the intial allocations 624 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 625 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 626 */ 627 #define NUM_ALLOCATIONS 8 628 int num_allocations = 0; 629 struct { 630 void **al_ptr; 631 size_t al_size; 632 } allocations[NUM_ALLOCATIONS]; 633 size_t valloc_sz = 0; 634 uintptr_t valloc_base; 635 636 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 637 size = ROUND_UP_PAGE(size); \ 638 if (num_allocations == NUM_ALLOCATIONS) \ 639 panic("too many ADD_TO_ALLOCATIONS()"); \ 640 allocations[num_allocations].al_ptr = (void**)&ptr; \ 641 allocations[num_allocations].al_size = size; \ 642 valloc_sz += size; \ 643 ++num_allocations; \ 644 } 645 646 /* 647 * Allocate all the initial memory needed by the page allocator. 648 */ 649 static void 650 perform_allocations(void) 651 { 652 caddr_t mem; 653 int i; 654 int valloc_align; 655 656 PRM_DEBUG(valloc_base); 657 PRM_DEBUG(valloc_sz); 658 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 659 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 660 if (mem != (caddr_t)valloc_base) 661 panic("BOP_ALLOC() failed"); 662 bzero(mem, valloc_sz); 663 for (i = 0; i < num_allocations; ++i) { 664 *allocations[i].al_ptr = (void *)mem; 665 mem += allocations[i].al_size; 666 } 667 } 668 669 /* 670 * Our world looks like this at startup time. 671 * 672 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 673 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 674 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 675 * addresses are fixed in the binary at link time. 676 * 677 * On the text page: 678 * unix/genunix/krtld/module text loads. 679 * 680 * On the data page: 681 * unix/genunix/krtld/module data loads. 682 * 683 * Machine-dependent startup code 684 */ 685 void 686 startup(void) 687 { 688 #if !defined(__xpv) 689 extern void startup_pci_bios(void); 690 #endif 691 extern cpuset_t cpu_ready_set; 692 693 /* 694 * Make sure that nobody tries to use sekpm until we have 695 * initialized it properly. 696 */ 697 #if defined(__amd64) 698 kpm_desired = 1; 699 #endif 700 kpm_enable = 0; 701 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 702 703 #if defined(__xpv) /* XXPV fix me! */ 704 { 705 extern int segvn_use_regions; 706 segvn_use_regions = 0; 707 } 708 #endif 709 progressbar_init(); 710 startup_init(); 711 #if defined(__xpv) 712 startup_xen_version(); 713 #endif 714 startup_memlist(); 715 startup_kmem(); 716 startup_vm(); 717 #if !defined(__xpv) 718 /* 719 * Note we need to do this even on fast reboot in order to access 720 * the irq routing table (used for pci labels). 721 */ 722 startup_pci_bios(); 723 #endif 724 #if defined(__xpv) 725 startup_xen_mca(); 726 #endif 727 startup_modules(); 728 729 startup_end(); 730 } 731 732 static void 733 startup_init() 734 { 735 PRM_POINT("startup_init() starting..."); 736 737 /* 738 * Complete the extraction of cpuid data 739 */ 740 cpuid_pass2(CPU); 741 742 (void) check_boot_version(BOP_GETVERSION(bootops)); 743 744 /* 745 * Check for prom_debug in boot environment 746 */ 747 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 748 ++prom_debug; 749 PRM_POINT("prom_debug found in boot enviroment"); 750 } 751 752 /* 753 * Collect node, cpu and memory configuration information. 754 */ 755 get_system_configuration(); 756 757 /* 758 * Halt if this is an unsupported processor. 759 */ 760 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 761 printf("\n486 processor (\"%s\") detected.\n", 762 CPU->cpu_brandstr); 763 halt("This processor is not supported by this release " 764 "of Solaris."); 765 } 766 767 PRM_POINT("startup_init() done"); 768 } 769 770 /* 771 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 772 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 773 * also filters out physical page zero. There is some reliance on the 774 * boot loader allocating only a few contiguous physical memory chunks. 775 */ 776 static void 777 avail_filter(uint64_t *addr, uint64_t *size) 778 { 779 uintptr_t va; 780 uintptr_t next_va; 781 pfn_t pfn; 782 uint64_t pfn_addr; 783 uint64_t pfn_eaddr; 784 uint_t prot; 785 size_t len; 786 uint_t change; 787 788 if (prom_debug) 789 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 790 *addr, *size); 791 792 /* 793 * page zero is required for BIOS.. never make it available 794 */ 795 if (*addr == 0) { 796 *addr += MMU_PAGESIZE; 797 *size -= MMU_PAGESIZE; 798 } 799 800 /* 801 * First we trim from the front of the range. Since kbm_probe() 802 * walks ranges in virtual order, but addr/size are physical, we need 803 * to the list until no changes are seen. This deals with the case 804 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 805 * but w < v. 806 */ 807 do { 808 change = 0; 809 for (va = KERNEL_TEXT; 810 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 811 va = next_va) { 812 813 next_va = va + len; 814 pfn_addr = pfn_to_pa(pfn); 815 pfn_eaddr = pfn_addr + len; 816 817 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 818 change = 1; 819 while (*size > 0 && len > 0) { 820 *addr += MMU_PAGESIZE; 821 *size -= MMU_PAGESIZE; 822 len -= MMU_PAGESIZE; 823 } 824 } 825 } 826 if (change && prom_debug) 827 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 828 *addr, *size); 829 } while (change); 830 831 /* 832 * Trim pages from the end of the range. 833 */ 834 for (va = KERNEL_TEXT; 835 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 836 va = next_va) { 837 838 next_va = va + len; 839 pfn_addr = pfn_to_pa(pfn); 840 841 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 842 *size = pfn_addr - *addr; 843 } 844 845 if (prom_debug) 846 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 847 *addr, *size); 848 } 849 850 static void 851 kpm_init() 852 { 853 struct segkpm_crargs b; 854 855 /* 856 * These variables were all designed for sfmmu in which segkpm is 857 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 858 * might use 2+ page sizes on a single machine, so none of these 859 * variables have a single correct value. They are set up as if we 860 * always use a 4KB pagesize, which should do no harm. In the long 861 * run, we should get rid of KPM's assumption that only a single 862 * pagesize is used. 863 */ 864 kpm_pgshft = MMU_PAGESHIFT; 865 kpm_pgsz = MMU_PAGESIZE; 866 kpm_pgoff = MMU_PAGEOFFSET; 867 kpmp2pshft = 0; 868 kpmpnpgs = 1; 869 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 870 871 PRM_POINT("about to create segkpm"); 872 rw_enter(&kas.a_lock, RW_WRITER); 873 874 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 875 panic("cannot attach segkpm"); 876 877 b.prot = PROT_READ | PROT_WRITE; 878 b.nvcolors = 1; 879 880 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 881 panic("segkpm_create segkpm"); 882 883 rw_exit(&kas.a_lock); 884 } 885 886 /* 887 * The debug info page provides enough information to allow external 888 * inspectors (e.g. when running under a hypervisor) to bootstrap 889 * themselves into allowing full-blown kernel debugging. 890 */ 891 static void 892 init_debug_info(void) 893 { 894 caddr_t mem; 895 debug_info_t *di; 896 897 #ifndef __lint 898 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 899 #endif 900 901 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 902 MMU_PAGESIZE); 903 904 if (mem != (caddr_t)DEBUG_INFO_VA) 905 panic("BOP_ALLOC() failed"); 906 bzero(mem, MMU_PAGESIZE); 907 908 di = (debug_info_t *)mem; 909 910 di->di_magic = DEBUG_INFO_MAGIC; 911 di->di_version = DEBUG_INFO_VERSION; 912 di->di_modules = (uintptr_t)&modules; 913 di->di_s_text = (uintptr_t)s_text; 914 di->di_e_text = (uintptr_t)e_text; 915 di->di_s_data = (uintptr_t)s_data; 916 di->di_e_data = (uintptr_t)e_data; 917 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 918 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 919 } 920 921 /* 922 * Build the memlists and other kernel essential memory system data structures. 923 * This is everything at valloc_base. 924 */ 925 static void 926 startup_memlist(void) 927 { 928 size_t memlist_sz; 929 size_t memseg_sz; 930 size_t pagehash_sz; 931 size_t pp_sz; 932 uintptr_t va; 933 size_t len; 934 uint_t prot; 935 pfn_t pfn; 936 int memblocks; 937 pfn_t rsvd_high_pfn; 938 pgcnt_t rsvd_pgcnt; 939 size_t rsvdmemlist_sz; 940 int rsvdmemblocks; 941 caddr_t pagecolor_mem; 942 size_t pagecolor_memsz; 943 caddr_t page_ctrs_mem; 944 size_t page_ctrs_size; 945 size_t pse_table_alloc_size; 946 struct memlist *current; 947 extern void startup_build_mem_nodes(struct memlist *); 948 949 /* XX64 fix these - they should be in include files */ 950 extern size_t page_coloring_init(uint_t, int, int); 951 extern void page_coloring_setup(caddr_t); 952 953 PRM_POINT("startup_memlist() starting..."); 954 955 /* 956 * Use leftover large page nucleus text/data space for loadable modules. 957 * Use at most MODTEXT/MODDATA. 958 */ 959 len = kbm_nucleus_size; 960 ASSERT(len > MMU_PAGESIZE); 961 962 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 963 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 964 if (e_moddata - moddata > MODDATA) 965 e_moddata = moddata + MODDATA; 966 967 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 968 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 969 if (e_modtext - modtext > MODTEXT) 970 e_modtext = modtext + MODTEXT; 971 972 econtig = e_moddata; 973 974 PRM_DEBUG(modtext); 975 PRM_DEBUG(e_modtext); 976 PRM_DEBUG(moddata); 977 PRM_DEBUG(e_moddata); 978 PRM_DEBUG(econtig); 979 980 /* 981 * Examine the boot loader physical memory map to find out: 982 * - total memory in system - physinstalled 983 * - the max physical address - physmax 984 * - the number of discontiguous segments of memory. 985 */ 986 if (prom_debug) 987 print_memlist("boot physinstalled", 988 bootops->boot_mem->physinstalled); 989 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 990 &physinstalled, &memblocks); 991 PRM_DEBUG(physmax); 992 PRM_DEBUG(physinstalled); 993 PRM_DEBUG(memblocks); 994 995 /* 996 * Compute maximum physical address for memory DR operations. 997 * Memory DR operations are unsupported on xpv or 32bit OSes. 998 */ 999 #ifdef __amd64 1000 if (plat_dr_support_memory()) { 1001 if (plat_dr_physmax == 0) { 1002 uint_t pabits = UINT_MAX; 1003 1004 cpuid_get_addrsize(CPU, &pabits, NULL); 1005 plat_dr_physmax = btop(1ULL << pabits); 1006 } 1007 if (plat_dr_physmax > PHYSMEM_MAX64) 1008 plat_dr_physmax = PHYSMEM_MAX64; 1009 } else 1010 #endif 1011 plat_dr_physmax = 0; 1012 1013 /* 1014 * Examine the bios reserved memory to find out: 1015 * - the number of discontiguous segments of memory. 1016 */ 1017 if (prom_debug) 1018 print_memlist("boot reserved mem", 1019 bootops->boot_mem->rsvdmem); 1020 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1021 &rsvd_pgcnt, &rsvdmemblocks); 1022 PRM_DEBUG(rsvd_high_pfn); 1023 PRM_DEBUG(rsvd_pgcnt); 1024 PRM_DEBUG(rsvdmemblocks); 1025 1026 /* 1027 * Initialize hat's mmu parameters. 1028 * Check for enforce-prot-exec in boot environment. It's used to 1029 * enable/disable support for the page table entry NX bit. 1030 * The default is to enforce PROT_EXEC on processors that support NX. 1031 * Boot seems to round up the "len", but 8 seems to be big enough. 1032 */ 1033 mmu_init(); 1034 1035 #ifdef __i386 1036 /* 1037 * physmax is lowered if there is more memory than can be 1038 * physically addressed in 32 bit (PAE/non-PAE) modes. 1039 */ 1040 if (mmu.pae_hat) { 1041 if (PFN_ABOVE64G(physmax)) { 1042 physinstalled -= (physmax - (PFN_64G - 1)); 1043 physmax = PFN_64G - 1; 1044 } 1045 } else { 1046 if (PFN_ABOVE4G(physmax)) { 1047 physinstalled -= (physmax - (PFN_4G - 1)); 1048 physmax = PFN_4G - 1; 1049 } 1050 } 1051 #endif 1052 1053 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1054 1055 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1056 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1057 char value[8]; 1058 1059 if (len < 8) 1060 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1061 else 1062 (void) strcpy(value, ""); 1063 if (strcmp(value, "off") == 0) 1064 mmu.pt_nx = 0; 1065 } 1066 PRM_DEBUG(mmu.pt_nx); 1067 1068 /* 1069 * We will need page_t's for every page in the system, except for 1070 * memory mapped at or above above the start of the kernel text segment. 1071 * 1072 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1073 */ 1074 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1075 obp_pages = 0; 1076 va = KERNEL_TEXT; 1077 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1078 npages -= len >> MMU_PAGESHIFT; 1079 if (va >= (uintptr_t)e_moddata) 1080 obp_pages += len >> MMU_PAGESHIFT; 1081 va += len; 1082 } 1083 PRM_DEBUG(npages); 1084 PRM_DEBUG(obp_pages); 1085 1086 /* 1087 * If physmem is patched to be non-zero, use it instead of the computed 1088 * value unless it is larger than the actual amount of memory on hand. 1089 */ 1090 if (physmem == 0 || physmem > npages) { 1091 physmem = npages; 1092 } else if (physmem < npages) { 1093 orig_npages = npages; 1094 npages = physmem; 1095 } 1096 PRM_DEBUG(physmem); 1097 1098 /* 1099 * We now compute the sizes of all the initial allocations for 1100 * structures the kernel needs in order do kmem_alloc(). These 1101 * include: 1102 * memsegs 1103 * memlists 1104 * page hash table 1105 * page_t's 1106 * page coloring data structs 1107 */ 1108 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1109 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1110 PRM_DEBUG(memseg_sz); 1111 1112 /* 1113 * Reserve space for memlists. There's no real good way to know exactly 1114 * how much room we'll need, but this should be a good upper bound. 1115 */ 1116 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1117 (memblocks + POSS_NEW_FRAGMENTS)); 1118 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1119 PRM_DEBUG(memlist_sz); 1120 1121 /* 1122 * Reserve space for bios reserved memlists. 1123 */ 1124 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1125 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1126 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1127 PRM_DEBUG(rsvdmemlist_sz); 1128 1129 /* 1130 * The page structure hash table size is a power of 2 1131 * such that the average hash chain length is PAGE_HASHAVELEN. 1132 */ 1133 page_hashsz = npages / PAGE_HASHAVELEN; 1134 page_hashsz = 1 << highbit(page_hashsz); 1135 pagehash_sz = sizeof (struct page *) * page_hashsz; 1136 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1137 PRM_DEBUG(pagehash_sz); 1138 1139 /* 1140 * Set aside room for the page structures themselves. 1141 */ 1142 PRM_DEBUG(npages); 1143 pp_sz = sizeof (struct page) * npages; 1144 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1145 PRM_DEBUG(pp_sz); 1146 1147 /* 1148 * determine l2 cache info and memory size for page coloring 1149 */ 1150 (void) getl2cacheinfo(CPU, 1151 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1152 pagecolor_memsz = 1153 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1154 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1155 PRM_DEBUG(pagecolor_memsz); 1156 1157 page_ctrs_size = page_ctrs_sz(); 1158 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1159 PRM_DEBUG(page_ctrs_size); 1160 1161 /* 1162 * Allocate the array that protects pp->p_selock. 1163 */ 1164 pse_shift = size_pse_array(physmem, max_ncpus); 1165 pse_table_size = 1 << pse_shift; 1166 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1167 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1168 1169 #if defined(__amd64) 1170 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1171 valloc_base = VALLOC_BASE; 1172 1173 /* 1174 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1175 * for values of physmax up to 1 Terabyte. They need adjusting when 1176 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1177 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1178 */ 1179 if (physmax + 1 > mmu_btop(TERABYTE) || 1180 plat_dr_physmax > mmu_btop(TERABYTE)) { 1181 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1182 1183 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1184 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1185 } 1186 1187 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1188 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1189 1190 /* make sure we leave some space for user apps above hole */ 1191 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1192 if (segkpm_base > SEGKPM_BASE) 1193 segkpm_base = SEGKPM_BASE; 1194 PRM_DEBUG(segkpm_base); 1195 1196 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1197 if (valloc_base < segkpm_base) 1198 panic("not enough kernel VA to support memory size"); 1199 PRM_DEBUG(valloc_base); 1200 } 1201 #else /* __i386 */ 1202 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1203 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1204 PRM_DEBUG(valloc_base); 1205 #endif /* __i386 */ 1206 1207 /* 1208 * do all the initial allocations 1209 */ 1210 perform_allocations(); 1211 1212 /* 1213 * Build phys_install and phys_avail in kernel memspace. 1214 * - phys_install should be all memory in the system. 1215 * - phys_avail is phys_install minus any memory mapped before this 1216 * point above KERNEL_TEXT. 1217 */ 1218 current = phys_install = memlist; 1219 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1220 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1221 panic("physinstalled was too big!"); 1222 if (prom_debug) 1223 print_memlist("phys_install", phys_install); 1224 1225 phys_avail = current; 1226 PRM_POINT("Building phys_avail:\n"); 1227 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1228 avail_filter); 1229 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1230 panic("physavail was too big!"); 1231 if (prom_debug) 1232 print_memlist("phys_avail", phys_avail); 1233 #ifndef __xpv 1234 /* 1235 * Free unused memlist items, which may be used by memory DR driver 1236 * at runtime. 1237 */ 1238 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1239 memlist_free_block((caddr_t)current, 1240 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1241 } 1242 #endif 1243 1244 /* 1245 * Build bios reserved memspace 1246 */ 1247 current = bios_rsvd; 1248 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1249 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1250 panic("bios_rsvd was too big!"); 1251 if (prom_debug) 1252 print_memlist("bios_rsvd", bios_rsvd); 1253 #ifndef __xpv 1254 /* 1255 * Free unused memlist items, which may be used by memory DR driver 1256 * at runtime. 1257 */ 1258 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1259 memlist_free_block((caddr_t)current, 1260 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1261 } 1262 #endif 1263 1264 /* 1265 * setup page coloring 1266 */ 1267 page_coloring_setup(pagecolor_mem); 1268 page_lock_init(); /* currently a no-op */ 1269 1270 /* 1271 * free page list counters 1272 */ 1273 (void) page_ctrs_alloc(page_ctrs_mem); 1274 1275 /* 1276 * Size the pcf array based on the number of cpus in the box at 1277 * boot time. 1278 */ 1279 1280 pcf_init(); 1281 1282 /* 1283 * Initialize the page structures from the memory lists. 1284 */ 1285 availrmem_initial = availrmem = freemem = 0; 1286 PRM_POINT("Calling kphysm_init()..."); 1287 npages = kphysm_init(pp_base, npages); 1288 PRM_POINT("kphysm_init() done"); 1289 PRM_DEBUG(npages); 1290 1291 init_debug_info(); 1292 1293 /* 1294 * Now that page_t's have been initialized, remove all the 1295 * initial allocation pages from the kernel free page lists. 1296 */ 1297 boot_mapin((caddr_t)valloc_base, valloc_sz); 1298 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1299 PRM_POINT("startup_memlist() done"); 1300 1301 PRM_DEBUG(valloc_sz); 1302 1303 #if defined(__amd64) 1304 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1305 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1306 extern size_t textrepl_size_thresh; 1307 textrepl_size_thresh = (16 << 20) - 1; 1308 } 1309 #endif 1310 } 1311 1312 /* 1313 * Layout the kernel's part of address space and initialize kmem allocator. 1314 */ 1315 static void 1316 startup_kmem(void) 1317 { 1318 extern void page_set_colorequiv_arr(void); 1319 const char *fmt = "?features: %b\n"; 1320 1321 PRM_POINT("startup_kmem() starting..."); 1322 1323 #if defined(__amd64) 1324 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1325 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1326 "systems."); 1327 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1328 core_base = (uintptr_t)COREHEAP_BASE; 1329 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1330 #else /* __i386 */ 1331 /* 1332 * We configure kernelbase based on: 1333 * 1334 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1335 * KERNELBASE_MAX. we large page align eprom_kernelbase 1336 * 1337 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1338 * On large memory systems we must lower kernelbase to allow 1339 * enough room for page_t's for all of memory. 1340 * 1341 * The value set here, might be changed a little later. 1342 */ 1343 if (eprom_kernelbase) { 1344 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1345 if (kernelbase > KERNELBASE_MAX) 1346 kernelbase = KERNELBASE_MAX; 1347 } else { 1348 kernelbase = (uintptr_t)KERNELBASE; 1349 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1350 } 1351 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1352 core_base = valloc_base; 1353 core_size = 0; 1354 #endif /* __i386 */ 1355 1356 PRM_DEBUG(core_base); 1357 PRM_DEBUG(core_size); 1358 PRM_DEBUG(kernelbase); 1359 1360 #if defined(__i386) 1361 segkp_fromheap = 1; 1362 #endif /* __i386 */ 1363 1364 ekernelheap = (char *)core_base; 1365 PRM_DEBUG(ekernelheap); 1366 1367 /* 1368 * Now that we know the real value of kernelbase, 1369 * update variables that were initialized with a value of 1370 * KERNELBASE (in common/conf/param.c). 1371 * 1372 * XXX The problem with this sort of hackery is that the 1373 * compiler just may feel like putting the const declarations 1374 * (in param.c) into the .text section. Perhaps they should 1375 * just be declared as variables there? 1376 */ 1377 1378 *(uintptr_t *)&_kernelbase = kernelbase; 1379 *(uintptr_t *)&_userlimit = kernelbase; 1380 #if defined(__amd64) 1381 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1382 #else 1383 *(uintptr_t *)&_userlimit32 = _userlimit; 1384 #endif 1385 PRM_DEBUG(_kernelbase); 1386 PRM_DEBUG(_userlimit); 1387 PRM_DEBUG(_userlimit32); 1388 1389 layout_kernel_va(); 1390 1391 #if defined(__i386) 1392 /* 1393 * If segmap is too large we can push the bottom of the kernel heap 1394 * higher than the base. Or worse, it could exceed the top of the 1395 * VA space entirely, causing it to wrap around. 1396 */ 1397 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1398 panic("too little address space available for kernelheap," 1399 " use eeprom for lower kernelbase or smaller segmapsize"); 1400 #endif /* __i386 */ 1401 1402 /* 1403 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1404 */ 1405 kernelheap_init(kernelheap, ekernelheap, 1406 kernelheap + MMU_PAGESIZE, 1407 (void *)core_base, (void *)(core_base + core_size)); 1408 1409 #if defined(__xpv) 1410 /* 1411 * Link pending events struct into cpu struct 1412 */ 1413 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1414 #endif 1415 /* 1416 * Initialize kernel memory allocator. 1417 */ 1418 kmem_init(); 1419 1420 /* 1421 * Factor in colorequiv to check additional 'equivalent' bins 1422 */ 1423 page_set_colorequiv_arr(); 1424 1425 /* 1426 * print this out early so that we know what's going on 1427 */ 1428 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1429 1430 /* 1431 * Initialize bp_mapin(). 1432 */ 1433 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1434 1435 /* 1436 * orig_npages is non-zero if physmem has been configured for less 1437 * than the available memory. 1438 */ 1439 if (orig_npages) { 1440 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1441 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1442 npages, orig_npages); 1443 } 1444 #if defined(__i386) 1445 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1446 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1447 "System using 0x%lx", 1448 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1449 #endif 1450 1451 #ifdef KERNELBASE_ABI_MIN 1452 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1453 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1454 "i386 ABI compliant.", (uintptr_t)kernelbase); 1455 } 1456 #endif 1457 1458 #ifndef __xpv 1459 if (plat_dr_support_memory()) { 1460 mem_config_init(); 1461 } 1462 #else /* __xpv */ 1463 /* 1464 * Some of the xen start information has to be relocated up 1465 * into the kernel's permanent address space. 1466 */ 1467 PRM_POINT("calling xen_relocate_start_info()"); 1468 xen_relocate_start_info(); 1469 PRM_POINT("xen_relocate_start_info() done"); 1470 1471 /* 1472 * (Update the vcpu pointer in our cpu structure to point into 1473 * the relocated shared info.) 1474 */ 1475 CPU->cpu_m.mcpu_vcpu_info = 1476 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1477 #endif /* __xpv */ 1478 1479 PRM_POINT("startup_kmem() done"); 1480 } 1481 1482 #ifndef __xpv 1483 /* 1484 * If we have detected that we are running in an HVM environment, we need 1485 * to prepend the PV driver directory to the module search path. 1486 */ 1487 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1488 static void 1489 update_default_path() 1490 { 1491 char *current, *newpath; 1492 int newlen; 1493 1494 /* 1495 * We are about to resync with krtld. krtld will reset its 1496 * internal module search path iff Solaris has set default_path. 1497 * We want to be sure we're prepending this new directory to the 1498 * right search path. 1499 */ 1500 current = (default_path == NULL) ? kobj_module_path : default_path; 1501 1502 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1503 newpath = kmem_alloc(newlen, KM_SLEEP); 1504 (void) strcpy(newpath, HVM_MOD_DIR); 1505 (void) strcat(newpath, " "); 1506 (void) strcat(newpath, current); 1507 1508 default_path = newpath; 1509 } 1510 #endif 1511 1512 static void 1513 startup_modules(void) 1514 { 1515 int cnt; 1516 extern void prom_setup(void); 1517 int32_t v, h; 1518 char d[11]; 1519 char *cp; 1520 cmi_hdl_t hdl; 1521 1522 PRM_POINT("startup_modules() starting..."); 1523 1524 #ifndef __xpv 1525 /* 1526 * Initialize ten-micro second timer so that drivers will 1527 * not get short changed in their init phase. This was 1528 * not getting called until clkinit which, on fast cpu's 1529 * caused the drv_usecwait to be way too short. 1530 */ 1531 microfind(); 1532 1533 if (get_hwenv() == HW_XEN_HVM) 1534 update_default_path(); 1535 #endif 1536 1537 /* 1538 * Read the GMT lag from /etc/rtc_config. 1539 */ 1540 sgmtl(process_rtc_config_file()); 1541 1542 /* 1543 * Calculate default settings of system parameters based upon 1544 * maxusers, yet allow to be overridden via the /etc/system file. 1545 */ 1546 param_calc(0); 1547 1548 mod_setup(); 1549 1550 /* 1551 * Initialize system parameters. 1552 */ 1553 param_init(); 1554 1555 /* 1556 * Initialize the default brands 1557 */ 1558 brand_init(); 1559 1560 /* 1561 * maxmem is the amount of physical memory we're playing with. 1562 */ 1563 maxmem = physmem; 1564 1565 /* 1566 * Initialize segment management stuff. 1567 */ 1568 seg_init(); 1569 1570 if (modload("fs", "specfs") == -1) 1571 halt("Can't load specfs"); 1572 1573 if (modload("fs", "devfs") == -1) 1574 halt("Can't load devfs"); 1575 1576 if (modload("fs", "dev") == -1) 1577 halt("Can't load dev"); 1578 1579 if (modload("fs", "procfs") == -1) 1580 halt("Can't load procfs"); 1581 1582 (void) modloadonly("sys", "lbl_edition"); 1583 1584 dispinit(); 1585 1586 /* 1587 * This is needed here to initialize hw_serial[] for cluster booting. 1588 */ 1589 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1590 cmn_err(CE_WARN, "Unable to set hostid"); 1591 } else { 1592 for (v = h, cnt = 0; cnt < 10; cnt++) { 1593 d[cnt] = (char)(v % 10); 1594 v /= 10; 1595 if (v == 0) 1596 break; 1597 } 1598 for (cp = hw_serial; cnt >= 0; cnt--) 1599 *cp++ = d[cnt] + '0'; 1600 *cp = 0; 1601 } 1602 1603 /* Read cluster configuration data. */ 1604 clconf_init(); 1605 1606 #if defined(__xpv) 1607 (void) ec_init(); 1608 gnttab_init(); 1609 (void) xs_early_init(); 1610 #endif /* __xpv */ 1611 1612 /* 1613 * Create a kernel device tree. First, create rootnex and 1614 * then invoke bus specific code to probe devices. 1615 */ 1616 setup_ddi(); 1617 1618 #ifdef __xpv 1619 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1620 #endif 1621 { 1622 /* 1623 * Load the System Management BIOS into the global ksmbios 1624 * handle, if an SMBIOS is present on this system. 1625 */ 1626 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1627 } 1628 1629 1630 /* 1631 * Set up the CPU module subsystem for the boot cpu in the native 1632 * case, and all physical cpu resource in the xpv dom0 case. 1633 * Modifies the device tree, so this must be done after 1634 * setup_ddi(). 1635 */ 1636 #ifdef __xpv 1637 /* 1638 * If paravirtualized and on dom0 then we initialize all physical 1639 * cpu handles now; if paravirtualized on a domU then do not 1640 * initialize. 1641 */ 1642 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1643 xen_mc_lcpu_cookie_t cpi; 1644 1645 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1646 cpi = xen_physcpu_next(cpi)) { 1647 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1648 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1649 xen_physcpu_strandid(cpi))) != NULL && 1650 (x86_feature & X86_MCA)) 1651 cmi_mca_init(hdl); 1652 } 1653 } 1654 #else 1655 /* 1656 * Initialize a handle for the boot cpu - others will initialize 1657 * as they startup. Do not do this if we know we are in an HVM domU. 1658 */ 1659 if ((get_hwenv() != HW_XEN_HVM) && 1660 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1661 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1662 (x86_feature & X86_MCA)) { 1663 cmi_mca_init(hdl); 1664 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1665 } 1666 #endif /* __xpv */ 1667 1668 /* 1669 * Fake a prom tree such that /dev/openprom continues to work 1670 */ 1671 PRM_POINT("startup_modules: calling prom_setup..."); 1672 prom_setup(); 1673 PRM_POINT("startup_modules: done"); 1674 1675 /* 1676 * Load all platform specific modules 1677 */ 1678 PRM_POINT("startup_modules: calling psm_modload..."); 1679 psm_modload(); 1680 1681 PRM_POINT("startup_modules() done"); 1682 } 1683 1684 /* 1685 * claim a "setaside" boot page for use in the kernel 1686 */ 1687 page_t * 1688 boot_claim_page(pfn_t pfn) 1689 { 1690 page_t *pp; 1691 1692 pp = page_numtopp_nolock(pfn); 1693 ASSERT(pp != NULL); 1694 1695 if (PP_ISBOOTPAGES(pp)) { 1696 if (pp->p_next != NULL) 1697 pp->p_next->p_prev = pp->p_prev; 1698 if (pp->p_prev == NULL) 1699 bootpages = pp->p_next; 1700 else 1701 pp->p_prev->p_next = pp->p_next; 1702 } else { 1703 /* 1704 * htable_attach() expects a base pagesize page 1705 */ 1706 if (pp->p_szc != 0) 1707 page_boot_demote(pp); 1708 pp = page_numtopp(pfn, SE_EXCL); 1709 } 1710 return (pp); 1711 } 1712 1713 /* 1714 * Walk through the pagetables looking for pages mapped in by boot. If the 1715 * setaside flag is set the pages are expected to be returned to the 1716 * kernel later in boot, so we add them to the bootpages list. 1717 */ 1718 static void 1719 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1720 { 1721 uintptr_t va = low; 1722 size_t len; 1723 uint_t prot; 1724 pfn_t pfn; 1725 page_t *pp; 1726 pgcnt_t boot_protect_cnt = 0; 1727 1728 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1729 if (va + len >= high) 1730 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1731 "legal range.", len, (void *)va); 1732 1733 while (len > 0) { 1734 pp = page_numtopp_alloc(pfn); 1735 if (pp != NULL) { 1736 if (setaside == 0) 1737 panic("Unexpected mapping by boot. " 1738 "addr=%p pfn=%lx\n", 1739 (void *)va, pfn); 1740 1741 pp->p_next = bootpages; 1742 pp->p_prev = NULL; 1743 PP_SETBOOTPAGES(pp); 1744 if (bootpages != NULL) { 1745 bootpages->p_prev = pp; 1746 } 1747 bootpages = pp; 1748 ++boot_protect_cnt; 1749 } 1750 1751 ++pfn; 1752 len -= MMU_PAGESIZE; 1753 va += MMU_PAGESIZE; 1754 } 1755 } 1756 PRM_DEBUG(boot_protect_cnt); 1757 } 1758 1759 /* 1760 * 1761 */ 1762 static void 1763 layout_kernel_va(void) 1764 { 1765 PRM_POINT("layout_kernel_va() starting..."); 1766 /* 1767 * Establish the final size of the kernel's heap, size of segmap, 1768 * segkp, etc. 1769 */ 1770 1771 #if defined(__amd64) 1772 1773 kpm_vbase = (caddr_t)segkpm_base; 1774 if (physmax + 1 < plat_dr_physmax) { 1775 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1776 } else { 1777 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1778 } 1779 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1780 panic("not enough room for kpm!"); 1781 PRM_DEBUG(kpm_size); 1782 PRM_DEBUG(kpm_vbase); 1783 1784 /* 1785 * By default we create a seg_kp in 64 bit kernels, it's a little 1786 * faster to access than embedding it in the heap. 1787 */ 1788 segkp_base = (caddr_t)valloc_base + valloc_sz; 1789 if (!segkp_fromheap) { 1790 size_t sz = mmu_ptob(segkpsize); 1791 1792 /* 1793 * determine size of segkp 1794 */ 1795 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1796 sz = SEGKPDEFSIZE; 1797 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1798 "segkpsize has been reset to %ld pages", 1799 mmu_btop(sz)); 1800 } 1801 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1802 1803 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1804 } 1805 PRM_DEBUG(segkp_base); 1806 PRM_DEBUG(segkpsize); 1807 1808 /* 1809 * segzio is used for ZFS cached data. It uses a distinct VA 1810 * segment (from kernel heap) so that we can easily tell not to 1811 * include it in kernel crash dumps on 64 bit kernels. The trick is 1812 * to give it lots of VA, but not constrain the kernel heap. 1813 * We scale the size of segzio linearly with physmem up to 1814 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1815 */ 1816 segzio_base = segkp_base + mmu_ptob(segkpsize); 1817 if (segzio_fromheap) { 1818 segziosize = 0; 1819 } else { 1820 size_t physmem_size = mmu_ptob(physmem); 1821 size_t size = (segziosize == 0) ? 1822 physmem_size : mmu_ptob(segziosize); 1823 1824 if (size < SEGZIOMINSIZE) 1825 size = SEGZIOMINSIZE; 1826 if (size > SEGZIOMAXSIZE) { 1827 size = SEGZIOMAXSIZE; 1828 if (physmem_size > size) 1829 size += (physmem_size - size) / 2; 1830 } 1831 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1832 } 1833 PRM_DEBUG(segziosize); 1834 PRM_DEBUG(segzio_base); 1835 1836 /* 1837 * Put the range of VA for device mappings next, kmdb knows to not 1838 * grep in this range of addresses. 1839 */ 1840 toxic_addr = 1841 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1842 PRM_DEBUG(toxic_addr); 1843 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1844 #else /* __i386 */ 1845 segmap_start = ROUND_UP_LPAGE(kernelbase); 1846 #endif /* __i386 */ 1847 PRM_DEBUG(segmap_start); 1848 1849 /* 1850 * Users can change segmapsize through eeprom. If the variable 1851 * is tuned through eeprom, there is no upper bound on the 1852 * size of segmap. 1853 */ 1854 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1855 1856 #if defined(__i386) 1857 /* 1858 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1859 * the bottom of the kernel's address range. Set aside space for a 1860 * small red zone just below the start of segmap. 1861 */ 1862 segmap_start += KERNEL_REDZONE_SIZE; 1863 segmapsize -= KERNEL_REDZONE_SIZE; 1864 #endif 1865 1866 PRM_DEBUG(segmap_start); 1867 PRM_DEBUG(segmapsize); 1868 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1869 PRM_DEBUG(kernelheap); 1870 PRM_POINT("layout_kernel_va() done..."); 1871 } 1872 1873 /* 1874 * Finish initializing the VM system, now that we are no longer 1875 * relying on the boot time memory allocators. 1876 */ 1877 static void 1878 startup_vm(void) 1879 { 1880 struct segmap_crargs a; 1881 1882 extern int use_brk_lpg, use_stk_lpg; 1883 1884 PRM_POINT("startup_vm() starting..."); 1885 1886 /* 1887 * Initialize the hat layer. 1888 */ 1889 hat_init(); 1890 1891 /* 1892 * Do final allocations of HAT data structures that need to 1893 * be allocated before quiescing the boot loader. 1894 */ 1895 PRM_POINT("Calling hat_kern_alloc()..."); 1896 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1897 PRM_POINT("hat_kern_alloc() done"); 1898 1899 #ifndef __xpv 1900 /* 1901 * Setup Page Attribute Table 1902 */ 1903 pat_sync(); 1904 #endif 1905 1906 /* 1907 * The next two loops are done in distinct steps in order 1908 * to be sure that any page that is doubly mapped (both above 1909 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1910 * Note this may never happen, but it might someday. 1911 */ 1912 bootpages = NULL; 1913 PRM_POINT("Protecting boot pages"); 1914 1915 /* 1916 * Protect any pages mapped above KERNEL_TEXT that somehow have 1917 * page_t's. This can only happen if something weird allocated 1918 * in this range (like kadb/kmdb). 1919 */ 1920 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1921 1922 /* 1923 * Before we can take over memory allocation/mapping from the boot 1924 * loader we must remove from our free page lists any boot allocated 1925 * pages that stay mapped until release_bootstrap(). 1926 */ 1927 protect_boot_range(0, kernelbase, 1); 1928 1929 1930 /* 1931 * Switch to running on regular HAT (not boot_mmu) 1932 */ 1933 PRM_POINT("Calling hat_kern_setup()..."); 1934 hat_kern_setup(); 1935 1936 /* 1937 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1938 */ 1939 bop_no_more_mem(); 1940 1941 PRM_POINT("hat_kern_setup() done"); 1942 1943 hat_cpu_online(CPU); 1944 1945 /* 1946 * Initialize VM system 1947 */ 1948 PRM_POINT("Calling kvm_init()..."); 1949 kvm_init(); 1950 PRM_POINT("kvm_init() done"); 1951 1952 /* 1953 * Tell kmdb that the VM system is now working 1954 */ 1955 if (boothowto & RB_DEBUG) 1956 kdi_dvec_vmready(); 1957 1958 #if defined(__xpv) 1959 /* 1960 * Populate the I/O pool on domain 0 1961 */ 1962 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1963 extern long populate_io_pool(void); 1964 long init_io_pool_cnt; 1965 1966 PRM_POINT("Populating reserve I/O page pool"); 1967 init_io_pool_cnt = populate_io_pool(); 1968 PRM_DEBUG(init_io_pool_cnt); 1969 } 1970 #endif 1971 /* 1972 * Mangle the brand string etc. 1973 */ 1974 cpuid_pass3(CPU); 1975 1976 #if defined(__amd64) 1977 1978 /* 1979 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1980 */ 1981 device_arena = vmem_create("device", (void *)toxic_addr, 1982 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1983 1984 #else /* __i386 */ 1985 1986 /* 1987 * allocate the bit map that tracks toxic pages 1988 */ 1989 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1990 PRM_DEBUG(toxic_bit_map_len); 1991 toxic_bit_map = 1992 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1993 ASSERT(toxic_bit_map != NULL); 1994 PRM_DEBUG(toxic_bit_map); 1995 1996 #endif /* __i386 */ 1997 1998 1999 /* 2000 * Now that we've got more VA, as well as the ability to allocate from 2001 * it, tell the debugger. 2002 */ 2003 if (boothowto & RB_DEBUG) 2004 kdi_dvec_memavail(); 2005 2006 /* 2007 * The following code installs a special page fault handler (#pf) 2008 * to work around a pentium bug. 2009 */ 2010 #if !defined(__amd64) && !defined(__xpv) 2011 if (x86_type == X86_TYPE_P5) { 2012 desctbr_t idtr; 2013 gate_desc_t *newidt; 2014 2015 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 2016 panic("failed to install pentium_pftrap"); 2017 2018 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 2019 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 2020 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 2021 2022 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 2023 PROT_READ | PROT_EXEC); 2024 2025 CPU->cpu_idt = newidt; 2026 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 2027 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 2028 wr_idtr(&idtr); 2029 } 2030 #endif /* !__amd64 */ 2031 2032 #if !defined(__xpv) 2033 /* 2034 * Map page pfn=0 for drivers, such as kd, that need to pick up 2035 * parameters left there by controllers/BIOS. 2036 */ 2037 PRM_POINT("setup up p0_va"); 2038 p0_va = i86devmap(0, 1, PROT_READ); 2039 PRM_DEBUG(p0_va); 2040 #endif 2041 2042 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2043 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2044 2045 /* 2046 * disable automatic large pages for small memory systems or 2047 * when the disable flag is set. 2048 * 2049 * Do not yet consider page sizes larger than 2m/4m. 2050 */ 2051 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2052 max_uheap_lpsize = LEVEL_SIZE(1); 2053 max_ustack_lpsize = LEVEL_SIZE(1); 2054 max_privmap_lpsize = LEVEL_SIZE(1); 2055 max_uidata_lpsize = LEVEL_SIZE(1); 2056 max_utext_lpsize = LEVEL_SIZE(1); 2057 max_shm_lpsize = LEVEL_SIZE(1); 2058 } 2059 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2060 auto_lpg_disable) { 2061 use_brk_lpg = 0; 2062 use_stk_lpg = 0; 2063 } 2064 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2065 2066 PRM_POINT("Calling hat_init_finish()..."); 2067 hat_init_finish(); 2068 PRM_POINT("hat_init_finish() done"); 2069 2070 /* 2071 * Initialize the segkp segment type. 2072 */ 2073 rw_enter(&kas.a_lock, RW_WRITER); 2074 PRM_POINT("Attaching segkp"); 2075 if (segkp_fromheap) { 2076 segkp->s_as = &kas; 2077 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2078 segkp) < 0) { 2079 panic("startup: cannot attach segkp"); 2080 /*NOTREACHED*/ 2081 } 2082 PRM_POINT("Doing segkp_create()"); 2083 if (segkp_create(segkp) != 0) { 2084 panic("startup: segkp_create failed"); 2085 /*NOTREACHED*/ 2086 } 2087 PRM_DEBUG(segkp); 2088 rw_exit(&kas.a_lock); 2089 2090 /* 2091 * kpm segment 2092 */ 2093 segmap_kpm = 0; 2094 if (kpm_desired) { 2095 kpm_init(); 2096 kpm_enable = 1; 2097 } 2098 2099 /* 2100 * Now create segmap segment. 2101 */ 2102 rw_enter(&kas.a_lock, RW_WRITER); 2103 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2104 panic("cannot attach segmap"); 2105 /*NOTREACHED*/ 2106 } 2107 PRM_DEBUG(segmap); 2108 2109 a.prot = PROT_READ | PROT_WRITE; 2110 a.shmsize = 0; 2111 a.nfreelist = segmapfreelists; 2112 2113 if (segmap_create(segmap, (caddr_t)&a) != 0) 2114 panic("segmap_create segmap"); 2115 rw_exit(&kas.a_lock); 2116 2117 setup_vaddr_for_ppcopy(CPU); 2118 2119 segdev_init(); 2120 #if defined(__xpv) 2121 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2122 #endif 2123 pmem_init(); 2124 2125 PRM_POINT("startup_vm() done"); 2126 } 2127 2128 /* 2129 * Load a tod module for the non-standard tod part found on this system. 2130 */ 2131 static void 2132 load_tod_module(char *todmod) 2133 { 2134 if (modload("tod", todmod) == -1) 2135 halt("Can't load TOD module"); 2136 } 2137 2138 static void 2139 startup_end(void) 2140 { 2141 int i; 2142 extern void setx86isalist(void); 2143 extern void cpu_event_init(void); 2144 2145 PRM_POINT("startup_end() starting..."); 2146 2147 /* 2148 * Perform tasks that get done after most of the VM 2149 * initialization has been done but before the clock 2150 * and other devices get started. 2151 */ 2152 kern_setup1(); 2153 2154 /* 2155 * Perform CPC initialization for this CPU. 2156 */ 2157 kcpc_hw_init(CPU); 2158 2159 /* 2160 * Initialize cpu event framework. 2161 */ 2162 cpu_event_init(); 2163 2164 #if defined(OPTERON_WORKAROUND_6323525) 2165 if (opteron_workaround_6323525) 2166 patch_workaround_6323525(); 2167 #endif 2168 /* 2169 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2170 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2171 */ 2172 if (tod_module_name != NULL) { 2173 PRM_POINT("load_tod_module()"); 2174 load_tod_module(tod_module_name); 2175 } 2176 2177 #if defined(__xpv) 2178 /* 2179 * Forceload interposing TOD module for the hypervisor. 2180 */ 2181 PRM_POINT("load_tod_module()"); 2182 load_tod_module("xpvtod"); 2183 #endif 2184 2185 /* 2186 * Configure the system. 2187 */ 2188 PRM_POINT("Calling configure()..."); 2189 configure(); /* set up devices */ 2190 PRM_POINT("configure() done"); 2191 2192 /* 2193 * Set the isa_list string to the defined instruction sets we 2194 * support. 2195 */ 2196 setx86isalist(); 2197 cpu_intr_alloc(CPU, NINTR_THREADS); 2198 psm_install(); 2199 2200 /* 2201 * We're done with bootops. We don't unmap the bootstrap yet because 2202 * we're still using bootsvcs. 2203 */ 2204 PRM_POINT("NULLing out bootops"); 2205 *bootopsp = (struct bootops *)NULL; 2206 bootops = (struct bootops *)NULL; 2207 2208 #if defined(__xpv) 2209 ec_init_debug_irq(); 2210 xs_domu_init(); 2211 #endif 2212 2213 #if defined(__amd64) && !defined(__xpv) 2214 /* 2215 * Intel IOMMU has been setup/initialized in ddi_impl.c 2216 * Start it up now. 2217 */ 2218 immu_startup(); 2219 #endif 2220 2221 PRM_POINT("Enabling interrupts"); 2222 (*picinitf)(); 2223 sti(); 2224 #if defined(__xpv) 2225 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2226 xen_late_startup(); 2227 #endif 2228 2229 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2230 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2231 2232 /* 2233 * Register these software interrupts for ddi timer. 2234 * Software interrupts up to the level 10 are supported. 2235 */ 2236 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2237 char name[sizeof ("timer_softintr") + 2]; 2238 (void) sprintf(name, "timer_softintr%02d", i); 2239 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2240 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2241 } 2242 2243 #if !defined(__xpv) 2244 if (modload("drv", "amd_iommu") < 0) { 2245 PRM_POINT("No AMD IOMMU present\n"); 2246 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2247 "amd_iommu")) == NULL) { 2248 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2249 } 2250 #endif 2251 post_startup_cpu_fixups(); 2252 2253 PRM_POINT("startup_end() done"); 2254 } 2255 2256 /* 2257 * Don't remove the following 2 variables. They are necessary 2258 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2259 */ 2260 char *_hs1107 = hw_serial; 2261 ulong_t _bdhs34; 2262 2263 void 2264 post_startup(void) 2265 { 2266 extern void cpupm_init(cpu_t *); 2267 extern void cpu_event_init_cpu(cpu_t *); 2268 2269 /* 2270 * Set the system wide, processor-specific flags to be passed 2271 * to userland via the aux vector for performance hints and 2272 * instruction set extensions. 2273 */ 2274 bind_hwcap(); 2275 2276 #ifdef __xpv 2277 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2278 #endif 2279 { 2280 #if defined(__xpv) 2281 xpv_panic_init(); 2282 #else 2283 /* 2284 * Startup the memory scrubber. 2285 * XXPV This should be running somewhere .. 2286 */ 2287 if (get_hwenv() != HW_XEN_HVM) 2288 memscrub_init(); 2289 #endif 2290 } 2291 2292 /* 2293 * Complete CPU module initialization 2294 */ 2295 cmi_post_startup(); 2296 2297 /* 2298 * Perform forceloading tasks for /etc/system. 2299 */ 2300 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2301 2302 /* 2303 * ON4.0: Force /proc module in until clock interrupt handle fixed 2304 * ON4.0: This must be fixed or restated in /etc/systems. 2305 */ 2306 (void) modload("fs", "procfs"); 2307 2308 (void) i_ddi_attach_hw_nodes("pit_beep"); 2309 2310 #if defined(__i386) 2311 /* 2312 * Check for required functional Floating Point hardware, 2313 * unless FP hardware explicitly disabled. 2314 */ 2315 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2316 halt("No working FP hardware found"); 2317 #endif 2318 2319 maxmem = freemem; 2320 2321 cpu_event_init_cpu(CPU); 2322 cpupm_init(CPU); 2323 (void) mach_cpu_create_device_node(CPU, NULL); 2324 2325 pg_init(); 2326 } 2327 2328 static int 2329 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2330 { 2331 return ((pp->p_pagenum >= btop(low_addr)) && 2332 (pp->p_pagenum < btopr(high_addr))); 2333 } 2334 2335 void 2336 release_bootstrap(void) 2337 { 2338 int root_is_ramdisk; 2339 page_t *pp; 2340 extern void kobj_boot_unmountroot(void); 2341 extern dev_t rootdev; 2342 #if !defined(__xpv) 2343 pfn_t pfn; 2344 #endif 2345 2346 /* unmount boot ramdisk and release kmem usage */ 2347 kobj_boot_unmountroot(); 2348 2349 /* 2350 * We're finished using the boot loader so free its pages. 2351 */ 2352 PRM_POINT("Unmapping lower boot pages"); 2353 2354 clear_boot_mappings(0, _userlimit); 2355 2356 postbootkernelbase = kernelbase; 2357 2358 /* 2359 * If root isn't on ramdisk, destroy the hardcoded 2360 * ramdisk node now and release the memory. Else, 2361 * ramdisk memory is kept in rd_pages. 2362 */ 2363 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2364 if (!root_is_ramdisk) { 2365 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2366 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2367 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2368 (void) ddi_remove_child(dip, 0); 2369 } 2370 2371 PRM_POINT("Releasing boot pages"); 2372 while (bootpages) { 2373 extern uint64_t ramdisk_start, ramdisk_end; 2374 pp = bootpages; 2375 bootpages = pp->p_next; 2376 2377 2378 /* Keep pages for the lower 64K */ 2379 if (pp_in_range(pp, 0, 0x40000)) { 2380 pp->p_next = lower_pages; 2381 lower_pages = pp; 2382 lower_pages_count++; 2383 continue; 2384 } 2385 2386 2387 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2388 ramdisk_end)) { 2389 pp->p_next = rd_pages; 2390 rd_pages = pp; 2391 continue; 2392 } 2393 pp->p_next = (struct page *)0; 2394 pp->p_prev = (struct page *)0; 2395 PP_CLRBOOTPAGES(pp); 2396 page_free(pp, 1); 2397 } 2398 PRM_POINT("Boot pages released"); 2399 2400 #if !defined(__xpv) 2401 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2402 /* 2403 * Find 1 page below 1 MB so that other processors can boot up or 2404 * so that any processor can resume. 2405 * Make sure it has a kernel VA as well as a 1:1 mapping. 2406 * We should have just free'd one up. 2407 */ 2408 2409 /* 2410 * 0x10 pages is 64K. Leave the bottom 64K alone 2411 * for BIOS. 2412 */ 2413 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2414 if (page_numtopp_alloc(pfn) == NULL) 2415 continue; 2416 rm_platter_va = i86devmap(pfn, 1, 2417 PROT_READ | PROT_WRITE | PROT_EXEC); 2418 rm_platter_pa = ptob(pfn); 2419 break; 2420 } 2421 if (pfn == btop(1*1024*1024) && use_mp) 2422 panic("No page below 1M available for starting " 2423 "other processors or for resuming from system-suspend"); 2424 #endif /* !__xpv */ 2425 } 2426 2427 /* 2428 * Initialize the platform-specific parts of a page_t. 2429 */ 2430 void 2431 add_physmem_cb(page_t *pp, pfn_t pnum) 2432 { 2433 pp->p_pagenum = pnum; 2434 pp->p_mapping = NULL; 2435 pp->p_embed = 0; 2436 pp->p_share = 0; 2437 pp->p_mlentry = 0; 2438 } 2439 2440 /* 2441 * kphysm_init() initializes physical memory. 2442 */ 2443 static pgcnt_t 2444 kphysm_init( 2445 page_t *pp, 2446 pgcnt_t npages) 2447 { 2448 struct memlist *pmem; 2449 struct memseg *cur_memseg; 2450 pfn_t base_pfn; 2451 pfn_t end_pfn; 2452 pgcnt_t num; 2453 pgcnt_t pages_done = 0; 2454 uint64_t addr; 2455 uint64_t size; 2456 extern pfn_t ddiphysmin; 2457 extern int mnode_xwa; 2458 int ms = 0, me = 0; 2459 2460 ASSERT(page_hash != NULL && page_hashsz != 0); 2461 2462 cur_memseg = memseg_base; 2463 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2464 /* 2465 * In a 32 bit kernel can't use higher memory if we're 2466 * not booting in PAE mode. This check takes care of that. 2467 */ 2468 addr = pmem->ml_address; 2469 size = pmem->ml_size; 2470 if (btop(addr) > physmax) 2471 continue; 2472 2473 /* 2474 * align addr and size - they may not be at page boundaries 2475 */ 2476 if ((addr & MMU_PAGEOFFSET) != 0) { 2477 addr += MMU_PAGEOFFSET; 2478 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2479 size -= addr - pmem->ml_address; 2480 } 2481 2482 /* only process pages below or equal to physmax */ 2483 if ((btop(addr + size) - 1) > physmax) 2484 size = ptob(physmax - btop(addr) + 1); 2485 2486 num = btop(size); 2487 if (num == 0) 2488 continue; 2489 2490 if (num > npages) 2491 num = npages; 2492 2493 npages -= num; 2494 pages_done += num; 2495 base_pfn = btop(addr); 2496 2497 if (prom_debug) 2498 prom_printf("MEMSEG addr=0x%" PRIx64 2499 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2500 addr, num, base_pfn, base_pfn + num); 2501 2502 /* 2503 * Ignore pages below ddiphysmin to simplify ddi memory 2504 * allocation with non-zero addr_lo requests. 2505 */ 2506 if (base_pfn < ddiphysmin) { 2507 if (base_pfn + num <= ddiphysmin) 2508 continue; 2509 pp += (ddiphysmin - base_pfn); 2510 num -= (ddiphysmin - base_pfn); 2511 base_pfn = ddiphysmin; 2512 } 2513 2514 /* 2515 * mnode_xwa is greater than 1 when large pages regions can 2516 * cross memory node boundaries. To prevent the formation 2517 * of these large pages, configure the memsegs based on the 2518 * memory node ranges which had been made non-contiguous. 2519 */ 2520 if (mnode_xwa > 1) { 2521 2522 end_pfn = base_pfn + num - 1; 2523 ms = PFN_2_MEM_NODE(base_pfn); 2524 me = PFN_2_MEM_NODE(end_pfn); 2525 2526 if (ms != me) { 2527 /* 2528 * current range spans more than 1 memory node. 2529 * Set num to only the pfn range in the start 2530 * memory node. 2531 */ 2532 num = mem_node_config[ms].physmax - base_pfn 2533 + 1; 2534 ASSERT(end_pfn > mem_node_config[ms].physmax); 2535 } 2536 } 2537 2538 for (;;) { 2539 /* 2540 * Build the memsegs entry 2541 */ 2542 cur_memseg->pages = pp; 2543 cur_memseg->epages = pp + num; 2544 cur_memseg->pages_base = base_pfn; 2545 cur_memseg->pages_end = base_pfn + num; 2546 2547 /* 2548 * Insert into memseg list in decreasing pfn range 2549 * order. Low memory is typically more fragmented such 2550 * that this ordering keeps the larger ranges at the 2551 * front of the list for code that searches memseg. 2552 * This ASSERTS that the memsegs coming in from boot 2553 * are in increasing physical address order and not 2554 * contiguous. 2555 */ 2556 if (memsegs != NULL) { 2557 ASSERT(cur_memseg->pages_base >= 2558 memsegs->pages_end); 2559 cur_memseg->next = memsegs; 2560 } 2561 memsegs = cur_memseg; 2562 2563 /* 2564 * add_physmem() initializes the PSM part of the page 2565 * struct by calling the PSM back with add_physmem_cb(). 2566 * In addition it coalesces pages into larger pages as 2567 * it initializes them. 2568 */ 2569 add_physmem(pp, num, base_pfn); 2570 cur_memseg++; 2571 availrmem_initial += num; 2572 availrmem += num; 2573 2574 pp += num; 2575 if (ms >= me) 2576 break; 2577 2578 /* process next memory node range */ 2579 ms++; 2580 base_pfn = mem_node_config[ms].physbase; 2581 num = MIN(mem_node_config[ms].physmax, 2582 end_pfn) - base_pfn + 1; 2583 } 2584 } 2585 2586 PRM_DEBUG(availrmem_initial); 2587 PRM_DEBUG(availrmem); 2588 PRM_DEBUG(freemem); 2589 build_pfn_hash(); 2590 return (pages_done); 2591 } 2592 2593 /* 2594 * Kernel VM initialization. 2595 */ 2596 static void 2597 kvm_init(void) 2598 { 2599 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2600 2601 /* 2602 * Put the kernel segments in kernel address space. 2603 */ 2604 rw_enter(&kas.a_lock, RW_WRITER); 2605 as_avlinit(&kas); 2606 2607 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2608 (void) segkmem_create(&ktextseg); 2609 2610 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2611 (void) segkmem_create(&kvalloc); 2612 2613 (void) seg_attach(&kas, kernelheap, 2614 ekernelheap - kernelheap, &kvseg); 2615 (void) segkmem_create(&kvseg); 2616 2617 if (core_size > 0) { 2618 PRM_POINT("attaching kvseg_core"); 2619 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2620 &kvseg_core); 2621 (void) segkmem_create(&kvseg_core); 2622 } 2623 2624 if (segziosize > 0) { 2625 PRM_POINT("attaching segzio"); 2626 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2627 &kzioseg); 2628 (void) segkmem_zio_create(&kzioseg); 2629 2630 /* create zio area covering new segment */ 2631 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2632 } 2633 2634 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2635 (void) segkmem_create(&kdebugseg); 2636 2637 rw_exit(&kas.a_lock); 2638 2639 /* 2640 * Ensure that the red zone at kernelbase is never accessible. 2641 */ 2642 PRM_POINT("protecting redzone"); 2643 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2644 2645 /* 2646 * Make the text writable so that it can be hot patched by DTrace. 2647 */ 2648 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2649 PROT_READ | PROT_WRITE | PROT_EXEC); 2650 2651 /* 2652 * Make data writable until end. 2653 */ 2654 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2655 PROT_READ | PROT_WRITE | PROT_EXEC); 2656 } 2657 2658 #ifndef __xpv 2659 /* 2660 * Solaris adds an entry for Write Combining caching to the PAT 2661 */ 2662 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2663 2664 void 2665 pat_sync(void) 2666 { 2667 ulong_t cr0, cr0_orig, cr4; 2668 2669 if (!(x86_feature & X86_PAT)) 2670 return; 2671 cr0_orig = cr0 = getcr0(); 2672 cr4 = getcr4(); 2673 2674 /* disable caching and flush all caches and TLBs */ 2675 cr0 |= CR0_CD; 2676 cr0 &= ~CR0_NW; 2677 setcr0(cr0); 2678 invalidate_cache(); 2679 if (cr4 & CR4_PGE) { 2680 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2681 setcr4(cr4); 2682 } else { 2683 reload_cr3(); 2684 } 2685 2686 /* add our entry to the PAT */ 2687 wrmsr(REG_PAT, pat_attr_reg); 2688 2689 /* flush TLBs and cache again, then reenable cr0 caching */ 2690 if (cr4 & CR4_PGE) { 2691 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2692 setcr4(cr4); 2693 } else { 2694 reload_cr3(); 2695 } 2696 invalidate_cache(); 2697 setcr0(cr0_orig); 2698 } 2699 2700 #endif /* !__xpv */ 2701 2702 #if defined(_SOFT_HOSTID) 2703 /* 2704 * On platforms that do not have a hardware serial number, attempt 2705 * to set one based on the contents of /etc/hostid. If this file does 2706 * not exist, assume that we are to generate a new hostid and set 2707 * it in the kernel, for subsequent saving by a userland process 2708 * once the system is up and the root filesystem is mounted r/w. 2709 * 2710 * In order to gracefully support upgrade on OpenSolaris, if 2711 * /etc/hostid does not exist, we will attempt to get a serial number 2712 * using the legacy method (/kernel/misc/sysinit). 2713 * 2714 * In an attempt to make the hostid less prone to abuse 2715 * (for license circumvention, etc), we store it in /etc/hostid 2716 * in rot47 format. 2717 */ 2718 extern volatile unsigned long tenmicrodata; 2719 static int atoi(char *); 2720 2721 static int32_t 2722 set_soft_hostid(void) 2723 { 2724 struct _buf *file; 2725 char tokbuf[MAXNAMELEN]; 2726 token_t token; 2727 int done = 0; 2728 u_longlong_t tmp; 2729 int i; 2730 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2731 unsigned char *c; 2732 hrtime_t tsc; 2733 2734 /* 2735 * If /etc/hostid file not found, we'd like to get a pseudo 2736 * random number to use at the hostid. A nice way to do this 2737 * is to read the real time clock. To remain xen-compatible, 2738 * we can't poke the real hardware, so we use tsc_read() to 2739 * read the real time clock. However, there is an ominous 2740 * warning in tsc_read that says it can return zero, so we 2741 * deal with that possibility by falling back to using the 2742 * (hopefully random enough) value in tenmicrodata. 2743 */ 2744 2745 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2746 /* 2747 * hostid file not found - try to load sysinit module 2748 * and see if it has a nonzero hostid value...use that 2749 * instead of generating a new hostid here if so. 2750 */ 2751 if ((i = modload("misc", "sysinit")) != -1) { 2752 if (strlen(hw_serial) > 0) 2753 hostid = (int32_t)atoi(hw_serial); 2754 (void) modunload(i); 2755 } 2756 if (hostid == HW_INVALID_HOSTID) { 2757 tsc = tsc_read(); 2758 if (tsc == 0) /* tsc_read can return zero sometimes */ 2759 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2760 else 2761 hostid = (int32_t)tsc & 0x0CFFFFF; 2762 } 2763 } else { 2764 /* hostid file found */ 2765 while (!done) { 2766 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2767 2768 switch (token) { 2769 case POUND: 2770 /* 2771 * skip comments 2772 */ 2773 kobj_find_eol(file); 2774 break; 2775 case STRING: 2776 /* 2777 * un-rot47 - obviously this 2778 * nonsense is ascii-specific 2779 */ 2780 for (c = (unsigned char *)tokbuf; 2781 *c != '\0'; c++) { 2782 *c += 47; 2783 if (*c > '~') 2784 *c -= 94; 2785 else if (*c < '!') 2786 *c += 94; 2787 } 2788 /* 2789 * now we should have a real number 2790 */ 2791 2792 if (kobj_getvalue(tokbuf, &tmp) != 0) 2793 kobj_file_err(CE_WARN, file, 2794 "Bad value %s for hostid", 2795 tokbuf); 2796 else 2797 hostid = (int32_t)tmp; 2798 2799 break; 2800 case EOF: 2801 done = 1; 2802 /* FALLTHROUGH */ 2803 case NEWLINE: 2804 kobj_newline(file); 2805 break; 2806 default: 2807 break; 2808 2809 } 2810 } 2811 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2812 kobj_file_err(CE_WARN, file, 2813 "hostid missing or corrupt"); 2814 2815 kobj_close_file(file); 2816 } 2817 /* 2818 * hostid is now the value read from /etc/hostid, or the 2819 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2820 * set. 2821 */ 2822 return (hostid); 2823 } 2824 2825 static int 2826 atoi(char *p) 2827 { 2828 int i = 0; 2829 2830 while (*p != '\0') 2831 i = 10 * i + (*p++ - '0'); 2832 2833 return (i); 2834 } 2835 2836 #endif /* _SOFT_HOSTID */ 2837 2838 void 2839 get_system_configuration(void) 2840 { 2841 char prop[32]; 2842 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2843 2844 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2845 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2846 kobj_getvalue(prop, &nodes_ll) == -1 || 2847 nodes_ll > MAXNODES || 2848 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2849 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2850 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2851 system_hardware.hd_nodes = 1; 2852 system_hardware.hd_cpus_per_node = 0; 2853 } else { 2854 system_hardware.hd_nodes = (int)nodes_ll; 2855 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2856 } 2857 2858 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2859 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2860 kobj_getvalue(prop, &lvalue) == -1) 2861 eprom_kernelbase = NULL; 2862 else 2863 eprom_kernelbase = (uintptr_t)lvalue; 2864 2865 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2866 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2867 kobj_getvalue(prop, &lvalue) == -1) 2868 segmapsize = SEGMAPDEFAULT; 2869 else 2870 segmapsize = (uintptr_t)lvalue; 2871 2872 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2873 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2874 kobj_getvalue(prop, &lvalue) == -1) 2875 segmapfreelists = 0; /* use segmap driver default */ 2876 else 2877 segmapfreelists = (int)lvalue; 2878 2879 /* physmem used to be here, but moved much earlier to fakebop.c */ 2880 } 2881 2882 /* 2883 * Add to a memory list. 2884 * start = start of new memory segment 2885 * len = length of new memory segment in bytes 2886 * new = pointer to a new struct memlist 2887 * memlistp = memory list to which to add segment. 2888 */ 2889 void 2890 memlist_add( 2891 uint64_t start, 2892 uint64_t len, 2893 struct memlist *new, 2894 struct memlist **memlistp) 2895 { 2896 struct memlist *cur; 2897 uint64_t end = start + len; 2898 2899 new->ml_address = start; 2900 new->ml_size = len; 2901 2902 cur = *memlistp; 2903 2904 while (cur) { 2905 if (cur->ml_address >= end) { 2906 new->ml_next = cur; 2907 *memlistp = new; 2908 new->ml_prev = cur->ml_prev; 2909 cur->ml_prev = new; 2910 return; 2911 } 2912 ASSERT(cur->ml_address + cur->ml_size <= start); 2913 if (cur->ml_next == NULL) { 2914 cur->ml_next = new; 2915 new->ml_prev = cur; 2916 new->ml_next = NULL; 2917 return; 2918 } 2919 memlistp = &cur->ml_next; 2920 cur = cur->ml_next; 2921 } 2922 } 2923 2924 void 2925 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2926 { 2927 size_t tsize = e_modtext - modtext; 2928 size_t dsize = e_moddata - moddata; 2929 2930 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2931 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2932 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2933 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2934 } 2935 2936 caddr_t 2937 kobj_text_alloc(vmem_t *arena, size_t size) 2938 { 2939 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2940 } 2941 2942 /*ARGSUSED*/ 2943 caddr_t 2944 kobj_texthole_alloc(caddr_t addr, size_t size) 2945 { 2946 panic("unexpected call to kobj_texthole_alloc()"); 2947 /*NOTREACHED*/ 2948 return (0); 2949 } 2950 2951 /*ARGSUSED*/ 2952 void 2953 kobj_texthole_free(caddr_t addr, size_t size) 2954 { 2955 panic("unexpected call to kobj_texthole_free()"); 2956 } 2957 2958 /* 2959 * This is called just after configure() in startup(). 2960 * 2961 * The ISALIST concept is a bit hopeless on Intel, because 2962 * there's no guarantee of an ever-more-capable processor 2963 * given that various parts of the instruction set may appear 2964 * and disappear between different implementations. 2965 * 2966 * While it would be possible to correct it and even enhance 2967 * it somewhat, the explicit hardware capability bitmask allows 2968 * more flexibility. 2969 * 2970 * So, we just leave this alone. 2971 */ 2972 void 2973 setx86isalist(void) 2974 { 2975 char *tp; 2976 size_t len; 2977 extern char *isa_list; 2978 2979 #define TBUFSIZE 1024 2980 2981 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2982 *tp = '\0'; 2983 2984 #if defined(__amd64) 2985 (void) strcpy(tp, "amd64 "); 2986 #endif 2987 2988 switch (x86_vendor) { 2989 case X86_VENDOR_Intel: 2990 case X86_VENDOR_AMD: 2991 case X86_VENDOR_TM: 2992 if (x86_feature & X86_CMOV) { 2993 /* 2994 * Pentium Pro or later 2995 */ 2996 (void) strcat(tp, "pentium_pro"); 2997 (void) strcat(tp, x86_feature & X86_MMX ? 2998 "+mmx pentium_pro " : " "); 2999 } 3000 /*FALLTHROUGH*/ 3001 case X86_VENDOR_Cyrix: 3002 /* 3003 * The Cyrix 6x86 does not have any Pentium features 3004 * accessible while not at privilege level 0. 3005 */ 3006 if (x86_feature & X86_CPUID) { 3007 (void) strcat(tp, "pentium"); 3008 (void) strcat(tp, x86_feature & X86_MMX ? 3009 "+mmx pentium " : " "); 3010 } 3011 break; 3012 default: 3013 break; 3014 } 3015 (void) strcat(tp, "i486 i386 i86"); 3016 len = strlen(tp) + 1; /* account for NULL at end of string */ 3017 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3018 kmem_free(tp, TBUFSIZE); 3019 3020 #undef TBUFSIZE 3021 } 3022 3023 3024 #ifdef __amd64 3025 3026 void * 3027 device_arena_alloc(size_t size, int vm_flag) 3028 { 3029 return (vmem_alloc(device_arena, size, vm_flag)); 3030 } 3031 3032 void 3033 device_arena_free(void *vaddr, size_t size) 3034 { 3035 vmem_free(device_arena, vaddr, size); 3036 } 3037 3038 #else /* __i386 */ 3039 3040 void * 3041 device_arena_alloc(size_t size, int vm_flag) 3042 { 3043 caddr_t vaddr; 3044 uintptr_t v; 3045 size_t start; 3046 size_t end; 3047 3048 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3049 if (vaddr == NULL) 3050 return (NULL); 3051 3052 v = (uintptr_t)vaddr; 3053 ASSERT(v >= kernelbase); 3054 ASSERT(v + size <= valloc_base); 3055 3056 start = btop(v - kernelbase); 3057 end = btop(v + size - 1 - kernelbase); 3058 ASSERT(start < toxic_bit_map_len); 3059 ASSERT(end < toxic_bit_map_len); 3060 3061 while (start <= end) { 3062 BT_ATOMIC_SET(toxic_bit_map, start); 3063 ++start; 3064 } 3065 return (vaddr); 3066 } 3067 3068 void 3069 device_arena_free(void *vaddr, size_t size) 3070 { 3071 uintptr_t v = (uintptr_t)vaddr; 3072 size_t start; 3073 size_t end; 3074 3075 ASSERT(v >= kernelbase); 3076 ASSERT(v + size <= valloc_base); 3077 3078 start = btop(v - kernelbase); 3079 end = btop(v + size - 1 - kernelbase); 3080 ASSERT(start < toxic_bit_map_len); 3081 ASSERT(end < toxic_bit_map_len); 3082 3083 while (start <= end) { 3084 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3085 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3086 ++start; 3087 } 3088 vmem_free(heap_arena, vaddr, size); 3089 } 3090 3091 /* 3092 * returns 1st address in range that is in device arena, or NULL 3093 * if len is not NULL it returns the length of the toxic range 3094 */ 3095 void * 3096 device_arena_contains(void *vaddr, size_t size, size_t *len) 3097 { 3098 uintptr_t v = (uintptr_t)vaddr; 3099 uintptr_t eaddr = v + size; 3100 size_t start; 3101 size_t end; 3102 3103 /* 3104 * if called very early by kmdb, just return NULL 3105 */ 3106 if (toxic_bit_map == NULL) 3107 return (NULL); 3108 3109 /* 3110 * First check if we're completely outside the bitmap range. 3111 */ 3112 if (v >= valloc_base || eaddr < kernelbase) 3113 return (NULL); 3114 3115 /* 3116 * Trim ends of search to look at only what the bitmap covers. 3117 */ 3118 if (v < kernelbase) 3119 v = kernelbase; 3120 start = btop(v - kernelbase); 3121 end = btop(eaddr - kernelbase); 3122 if (end >= toxic_bit_map_len) 3123 end = toxic_bit_map_len; 3124 3125 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3126 return (NULL); 3127 3128 v = kernelbase + ptob(start); 3129 if (len != NULL) 3130 *len = ptob(end - start); 3131 return ((void *)v); 3132 } 3133 3134 #endif /* __i386 */ 3135