1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 extern void pg_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 #if defined(__amd64) && !defined(__xpv) 155 extern void immu_startup(void); 156 #endif 157 158 /* 159 * XXX make declaration below "static" when drivers no longer use this 160 * interface. 161 */ 162 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 163 164 /* 165 * segkp 166 */ 167 extern int segkp_fromheap; 168 169 static void kvm_init(void); 170 static void startup_init(void); 171 static void startup_memlist(void); 172 static void startup_kmem(void); 173 static void startup_modules(void); 174 static void startup_vm(void); 175 static void startup_end(void); 176 static void layout_kernel_va(void); 177 178 /* 179 * Declare these as initialized data so we can patch them. 180 */ 181 #ifdef __i386 182 183 /* 184 * Due to virtual address space limitations running in 32 bit mode, restrict 185 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 186 * 187 * If the physical max memory size of 64g were allowed to be configured, the 188 * size of user virtual address space will be less than 1g. A limited user 189 * address space greatly reduces the range of applications that can run. 190 * 191 * If more physical memory than PHYSMEM is required, users should preferably 192 * run in 64 bit mode which has far looser virtual address space limitations. 193 * 194 * If 64 bit mode is not available (as in IA32) and/or more physical memory 195 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 196 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 197 * should also be carefully tuned to balance out the need of the user 198 * application while minimizing the risk of kernel heap exhaustion due to 199 * kernelbase being set too high. 200 */ 201 #define PHYSMEM 0x400000 202 203 #else /* __amd64 */ 204 205 /* 206 * For now we can handle memory with physical addresses up to about 207 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 208 * half the VA space for seg_kpm. When systems get bigger than 64TB this 209 * code will need revisiting. There is an implicit assumption that there 210 * are no *huge* holes in the physical address space too. 211 */ 212 #define TERABYTE (1ul << 40) 213 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 214 #define PHYSMEM PHYSMEM_MAX64 215 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 216 217 #endif /* __amd64 */ 218 219 pgcnt_t physmem = PHYSMEM; 220 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 221 222 char *kobj_file_buf; 223 int kobj_file_bufsize; /* set in /etc/system */ 224 225 /* Global variables for MP support. Used in mp_startup */ 226 caddr_t rm_platter_va = 0; 227 uint32_t rm_platter_pa; 228 229 int auto_lpg_disable = 1; 230 231 /* 232 * Some CPUs have holes in the middle of the 64-bit virtual address range. 233 */ 234 uintptr_t hole_start, hole_end; 235 236 /* 237 * kpm mapping window 238 */ 239 caddr_t kpm_vbase; 240 size_t kpm_size; 241 static int kpm_desired; 242 #ifdef __amd64 243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 244 #endif 245 246 /* 247 * Configuration parameters set at boot time. 248 */ 249 250 caddr_t econtig; /* end of first block of contiguous kernel */ 251 252 struct bootops *bootops = 0; /* passed in from boot */ 253 struct bootops **bootopsp; 254 struct boot_syscalls *sysp; /* passed in from boot */ 255 256 char bootblock_fstype[16]; 257 258 char kern_bootargs[OBP_MAXPATHLEN]; 259 char kern_bootfile[OBP_MAXPATHLEN]; 260 261 /* 262 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 263 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 264 * zio buffers from their own segment, otherwise they are allocated from the 265 * heap. The optimization of allocating zio buffers from their own segment is 266 * only valid on 64-bit kernels. 267 */ 268 #if defined(__amd64) 269 int segzio_fromheap = 0; 270 #else 271 int segzio_fromheap = 1; 272 #endif 273 274 /* 275 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 276 * depends on number of BOP_ALLOC calls made and requested size, memory size 277 * combination and whether boot.bin memory needs to be freed. 278 */ 279 #define POSS_NEW_FRAGMENTS 12 280 281 /* 282 * VM data structures 283 */ 284 long page_hashsz; /* Size of page hash table (power of two) */ 285 struct page *pp_base; /* Base of initial system page struct array */ 286 struct page **page_hash; /* Page hash table */ 287 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 288 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 289 int pse_shift; /* log2(pse_table_size) */ 290 struct seg ktextseg; /* Segment used for kernel executable image */ 291 struct seg kvalloc; /* Segment used for "valloc" mapping */ 292 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 293 struct seg kmapseg; /* Segment used for generic kernel mappings */ 294 struct seg kdebugseg; /* Segment used for the kernel debugger */ 295 296 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 297 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 298 299 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 300 301 #if defined(__amd64) 302 struct seg kvseg_core; /* Segment used for the core heap */ 303 struct seg kpmseg; /* Segment used for physical mapping */ 304 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 305 #else 306 struct seg *segkpm = NULL; /* Unused on IA32 */ 307 #endif 308 309 caddr_t segkp_base; /* Base address of segkp */ 310 caddr_t segzio_base; /* Base address of segzio */ 311 #if defined(__amd64) 312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 313 #else 314 pgcnt_t segkpsize = 0; 315 #endif 316 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 317 318 /* 319 * VA range available to the debugger 320 */ 321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 322 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 323 324 struct memseg *memseg_base; 325 struct vnode unused_pages_vp; 326 327 #define FOURGB 0x100000000LL 328 329 struct memlist *memlist; 330 331 caddr_t s_text; /* start of kernel text segment */ 332 caddr_t e_text; /* end of kernel text segment */ 333 caddr_t s_data; /* start of kernel data segment */ 334 caddr_t e_data; /* end of kernel data segment */ 335 caddr_t modtext; /* start of loadable module text reserved */ 336 caddr_t e_modtext; /* end of loadable module text reserved */ 337 caddr_t moddata; /* start of loadable module data reserved */ 338 caddr_t e_moddata; /* end of loadable module data reserved */ 339 340 struct memlist *phys_install; /* Total installed physical memory */ 341 struct memlist *phys_avail; /* Total available physical memory */ 342 struct memlist *bios_rsvd; /* Bios reserved memory */ 343 344 /* 345 * kphysm_init returns the number of pages that were processed 346 */ 347 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 348 349 #define IO_PROP_SIZE 64 /* device property size */ 350 351 /* 352 * a couple useful roundup macros 353 */ 354 #define ROUND_UP_PAGE(x) \ 355 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 356 #define ROUND_UP_LPAGE(x) \ 357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 358 #define ROUND_UP_4MEG(x) \ 359 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 360 #define ROUND_UP_TOPLEVEL(x) \ 361 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 362 363 /* 364 * 32-bit Kernel's Virtual memory layout. 365 * +-----------------------+ 366 * | | 367 * 0xFFC00000 -|-----------------------|- ARGSBASE 368 * | debugger | 369 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 370 * | Kernel Data | 371 * 0xFEC00000 -|-----------------------| 372 * | Kernel Text | 373 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 374 * |--- GDT ---|- GDT page (GDT_VA) 375 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 376 * | | 377 * | page_t structures | 378 * | memsegs, memlists, | 379 * | page hash, etc. | 380 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 381 * | | (segkp is just an arena in the heap) 382 * | | 383 * | kvseg | 384 * | | 385 * | | 386 * --- -|-----------------------|- kernelheap (floating) 387 * | Segkmap | 388 * 0xC3002000 -|-----------------------|- segmap_start (floating) 389 * | Red Zone | 390 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 391 * | | || 392 * | Shared objects | \/ 393 * | | 394 * : : 395 * | user data | 396 * |-----------------------| 397 * | user text | 398 * 0x08048000 -|-----------------------| 399 * | user stack | 400 * : : 401 * | invalid | 402 * 0x00000000 +-----------------------+ 403 * 404 * 405 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 406 * +-----------------------+ 407 * | | 408 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 409 * | debugger (?) | 410 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 411 * | unused | 412 * +-----------------------+ 413 * | Kernel Data | 414 * 0xFFFFFFFF.FBC00000 |-----------------------| 415 * | Kernel Text | 416 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 417 * |--- GDT ---|- GDT page (GDT_VA) 418 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 419 * | | 420 * | Core heap | (used for loadable modules) 421 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 422 * | Kernel | 423 * | heap | 424 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 425 * | segmap | 426 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 427 * | device mappings | 428 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 429 * | segzio | 430 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 431 * | segkp | 432 * --- |-----------------------|- segkp_base (floating) 433 * | page_t structures | valloc_base + valloc_sz 434 * | memsegs, memlists, | 435 * | page hash, etc. | 436 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 437 * | segkpm | 438 * 0xFFFFFE00.00000000 |-----------------------| 439 * | Red Zone | 440 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 441 * | User stack |- User space memory 442 * | | 443 * | shared objects, etc | (grows downwards) 444 * : : 445 * | | 446 * 0xFFFF8000.00000000 |-----------------------| 447 * | | 448 * | VA Hole / unused | 449 * | | 450 * 0x00008000.00000000 |-----------------------| 451 * | | 452 * | | 453 * : : 454 * | user heap | (grows upwards) 455 * | | 456 * | user data | 457 * |-----------------------| 458 * | user text | 459 * 0x00000000.04000000 |-----------------------| 460 * | invalid | 461 * 0x00000000.00000000 +-----------------------+ 462 * 463 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 464 * kernel, except that userlimit is raised to 0xfe000000 465 * 466 * Floating values: 467 * 468 * valloc_base: start of the kernel's memory management/tracking data 469 * structures. This region contains page_t structures for 470 * physical memory, memsegs, memlists, and the page hash. 471 * 472 * core_base: start of the kernel's "core" heap area on 64-bit systems. 473 * This area is intended to be used for global data as well as for module 474 * text/data that does not fit into the nucleus pages. The core heap is 475 * restricted to a 2GB range, allowing every address within it to be 476 * accessed using rip-relative addressing 477 * 478 * ekernelheap: end of kernelheap and start of segmap. 479 * 480 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 481 * above a red zone that separates the user's address space from the 482 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 483 * 484 * segmap_start: start of segmap. The length of segmap can be modified 485 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 486 * on 64-bit systems. 487 * 488 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 489 * decreased by 2X the size required for page_t. This allows the kernel 490 * heap to grow in size with physical memory. With sizeof(page_t) == 80 491 * bytes, the following shows the values of kernelbase and kernel heap 492 * sizes for different memory configurations (assuming default segmap and 493 * segkp sizes). 494 * 495 * mem size for kernelbase kernel heap 496 * size page_t's size 497 * ---- --------- ---------- ----------- 498 * 1gb 0x01400000 0xd1800000 684MB 499 * 2gb 0x02800000 0xcf000000 704MB 500 * 4gb 0x05000000 0xca000000 744MB 501 * 6gb 0x07800000 0xc5000000 784MB 502 * 8gb 0x0a000000 0xc0000000 824MB 503 * 16gb 0x14000000 0xac000000 984MB 504 * 32gb 0x28000000 0x84000000 1304MB 505 * 64gb 0x50000000 0x34000000 1944MB (*) 506 * 507 * kernelbase is less than the abi minimum of 0xc0000000 for memory 508 * configurations above 8gb. 509 * 510 * (*) support for memory configurations above 32gb will require manual tuning 511 * of kernelbase to balance out the need of user applications. 512 */ 513 514 /* real-time-clock initialization parameters */ 515 extern time_t process_rtc_config_file(void); 516 517 uintptr_t kernelbase; 518 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 519 uintptr_t eprom_kernelbase; 520 size_t segmapsize; 521 uintptr_t segmap_start; 522 int segmapfreelists; 523 pgcnt_t npages; 524 pgcnt_t orig_npages; 525 size_t core_size; /* size of "core" heap */ 526 uintptr_t core_base; /* base address of "core" heap */ 527 528 /* 529 * List of bootstrap pages. We mark these as allocated in startup. 530 * release_bootstrap() will free them when we're completely done with 531 * the bootstrap. 532 */ 533 static page_t *bootpages; 534 535 /* 536 * boot time pages that have a vnode from the ramdisk will keep that forever. 537 */ 538 static page_t *rd_pages; 539 540 /* 541 * Lower 64K 542 */ 543 static page_t *lower_pages = NULL; 544 static int lower_pages_count = 0; 545 546 struct system_hardware system_hardware; 547 548 /* 549 * Enable some debugging messages concerning memory usage... 550 */ 551 static void 552 print_memlist(char *title, struct memlist *mp) 553 { 554 prom_printf("MEMLIST: %s:\n", title); 555 while (mp != NULL) { 556 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 557 mp->ml_address, mp->ml_size); 558 mp = mp->ml_next; 559 } 560 } 561 562 /* 563 * XX64 need a comment here.. are these just default values, surely 564 * we read the "cpuid" type information to figure this out. 565 */ 566 int l2cache_sz = 0x80000; 567 int l2cache_linesz = 0x40; 568 int l2cache_assoc = 1; 569 570 static size_t textrepl_min_gb = 10; 571 572 /* 573 * on 64 bit we use a predifined VA range for mapping devices in the kernel 574 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 575 */ 576 #ifdef __amd64 577 578 vmem_t *device_arena; 579 uintptr_t toxic_addr = (uintptr_t)NULL; 580 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 581 582 #else /* __i386 */ 583 584 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 585 size_t toxic_bit_map_len = 0; /* in bits */ 586 587 #endif /* __i386 */ 588 589 /* 590 * Simple boot time debug facilities 591 */ 592 static char *prm_dbg_str[] = { 593 "%s:%d: '%s' is 0x%x\n", 594 "%s:%d: '%s' is 0x%llx\n" 595 }; 596 597 int prom_debug; 598 599 #define PRM_DEBUG(q) if (prom_debug) \ 600 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 601 #define PRM_POINT(q) if (prom_debug) \ 602 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 603 604 /* 605 * This structure is used to keep track of the intial allocations 606 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 607 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 608 */ 609 #define NUM_ALLOCATIONS 8 610 int num_allocations = 0; 611 struct { 612 void **al_ptr; 613 size_t al_size; 614 } allocations[NUM_ALLOCATIONS]; 615 size_t valloc_sz = 0; 616 uintptr_t valloc_base; 617 618 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 619 size = ROUND_UP_PAGE(size); \ 620 if (num_allocations == NUM_ALLOCATIONS) \ 621 panic("too many ADD_TO_ALLOCATIONS()"); \ 622 allocations[num_allocations].al_ptr = (void**)&ptr; \ 623 allocations[num_allocations].al_size = size; \ 624 valloc_sz += size; \ 625 ++num_allocations; \ 626 } 627 628 /* 629 * Allocate all the initial memory needed by the page allocator. 630 */ 631 static void 632 perform_allocations(void) 633 { 634 caddr_t mem; 635 int i; 636 int valloc_align; 637 638 PRM_DEBUG(valloc_base); 639 PRM_DEBUG(valloc_sz); 640 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 641 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 642 if (mem != (caddr_t)valloc_base) 643 panic("BOP_ALLOC() failed"); 644 bzero(mem, valloc_sz); 645 for (i = 0; i < num_allocations; ++i) { 646 *allocations[i].al_ptr = (void *)mem; 647 mem += allocations[i].al_size; 648 } 649 } 650 651 /* 652 * Our world looks like this at startup time. 653 * 654 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 655 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 656 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 657 * addresses are fixed in the binary at link time. 658 * 659 * On the text page: 660 * unix/genunix/krtld/module text loads. 661 * 662 * On the data page: 663 * unix/genunix/krtld/module data loads. 664 * 665 * Machine-dependent startup code 666 */ 667 void 668 startup(void) 669 { 670 #if !defined(__xpv) 671 extern void startup_pci_bios(void); 672 extern int post_fastreboot; 673 #endif 674 extern cpuset_t cpu_ready_set; 675 676 /* 677 * Make sure that nobody tries to use sekpm until we have 678 * initialized it properly. 679 */ 680 #if defined(__amd64) 681 kpm_desired = 1; 682 #endif 683 kpm_enable = 0; 684 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 685 686 #if defined(__xpv) /* XXPV fix me! */ 687 { 688 extern int segvn_use_regions; 689 segvn_use_regions = 0; 690 } 691 #endif 692 progressbar_init(); 693 startup_init(); 694 #if defined(__xpv) 695 startup_xen_version(); 696 #endif 697 startup_memlist(); 698 startup_kmem(); 699 startup_vm(); 700 #if !defined(__xpv) 701 if (!post_fastreboot) 702 startup_pci_bios(); 703 #endif 704 #if defined(__xpv) 705 startup_xen_mca(); 706 #endif 707 startup_modules(); 708 709 startup_end(); 710 progressbar_start(); 711 } 712 713 static void 714 startup_init() 715 { 716 PRM_POINT("startup_init() starting..."); 717 718 /* 719 * Complete the extraction of cpuid data 720 */ 721 cpuid_pass2(CPU); 722 723 (void) check_boot_version(BOP_GETVERSION(bootops)); 724 725 /* 726 * Check for prom_debug in boot environment 727 */ 728 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 729 ++prom_debug; 730 PRM_POINT("prom_debug found in boot enviroment"); 731 } 732 733 /* 734 * Collect node, cpu and memory configuration information. 735 */ 736 get_system_configuration(); 737 738 /* 739 * Halt if this is an unsupported processor. 740 */ 741 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 742 printf("\n486 processor (\"%s\") detected.\n", 743 CPU->cpu_brandstr); 744 halt("This processor is not supported by this release " 745 "of Solaris."); 746 } 747 748 PRM_POINT("startup_init() done"); 749 } 750 751 /* 752 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 753 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 754 * also filters out physical page zero. There is some reliance on the 755 * boot loader allocating only a few contiguous physical memory chunks. 756 */ 757 static void 758 avail_filter(uint64_t *addr, uint64_t *size) 759 { 760 uintptr_t va; 761 uintptr_t next_va; 762 pfn_t pfn; 763 uint64_t pfn_addr; 764 uint64_t pfn_eaddr; 765 uint_t prot; 766 size_t len; 767 uint_t change; 768 769 if (prom_debug) 770 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 771 *addr, *size); 772 773 /* 774 * page zero is required for BIOS.. never make it available 775 */ 776 if (*addr == 0) { 777 *addr += MMU_PAGESIZE; 778 *size -= MMU_PAGESIZE; 779 } 780 781 /* 782 * First we trim from the front of the range. Since kbm_probe() 783 * walks ranges in virtual order, but addr/size are physical, we need 784 * to the list until no changes are seen. This deals with the case 785 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 786 * but w < v. 787 */ 788 do { 789 change = 0; 790 for (va = KERNEL_TEXT; 791 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 792 va = next_va) { 793 794 next_va = va + len; 795 pfn_addr = pfn_to_pa(pfn); 796 pfn_eaddr = pfn_addr + len; 797 798 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 799 change = 1; 800 while (*size > 0 && len > 0) { 801 *addr += MMU_PAGESIZE; 802 *size -= MMU_PAGESIZE; 803 len -= MMU_PAGESIZE; 804 } 805 } 806 } 807 if (change && prom_debug) 808 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 809 *addr, *size); 810 } while (change); 811 812 /* 813 * Trim pages from the end of the range. 814 */ 815 for (va = KERNEL_TEXT; 816 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 817 va = next_va) { 818 819 next_va = va + len; 820 pfn_addr = pfn_to_pa(pfn); 821 822 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 823 *size = pfn_addr - *addr; 824 } 825 826 if (prom_debug) 827 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 828 *addr, *size); 829 } 830 831 static void 832 kpm_init() 833 { 834 struct segkpm_crargs b; 835 836 /* 837 * These variables were all designed for sfmmu in which segkpm is 838 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 839 * might use 2+ page sizes on a single machine, so none of these 840 * variables have a single correct value. They are set up as if we 841 * always use a 4KB pagesize, which should do no harm. In the long 842 * run, we should get rid of KPM's assumption that only a single 843 * pagesize is used. 844 */ 845 kpm_pgshft = MMU_PAGESHIFT; 846 kpm_pgsz = MMU_PAGESIZE; 847 kpm_pgoff = MMU_PAGEOFFSET; 848 kpmp2pshft = 0; 849 kpmpnpgs = 1; 850 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 851 852 PRM_POINT("about to create segkpm"); 853 rw_enter(&kas.a_lock, RW_WRITER); 854 855 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 856 panic("cannot attach segkpm"); 857 858 b.prot = PROT_READ | PROT_WRITE; 859 b.nvcolors = 1; 860 861 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 862 panic("segkpm_create segkpm"); 863 864 rw_exit(&kas.a_lock); 865 } 866 867 /* 868 * The debug info page provides enough information to allow external 869 * inspectors (e.g. when running under a hypervisor) to bootstrap 870 * themselves into allowing full-blown kernel debugging. 871 */ 872 static void 873 init_debug_info(void) 874 { 875 caddr_t mem; 876 debug_info_t *di; 877 878 #ifndef __lint 879 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 880 #endif 881 882 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 883 MMU_PAGESIZE); 884 885 if (mem != (caddr_t)DEBUG_INFO_VA) 886 panic("BOP_ALLOC() failed"); 887 bzero(mem, MMU_PAGESIZE); 888 889 di = (debug_info_t *)mem; 890 891 di->di_magic = DEBUG_INFO_MAGIC; 892 di->di_version = DEBUG_INFO_VERSION; 893 di->di_modules = (uintptr_t)&modules; 894 di->di_s_text = (uintptr_t)s_text; 895 di->di_e_text = (uintptr_t)e_text; 896 di->di_s_data = (uintptr_t)s_data; 897 di->di_e_data = (uintptr_t)e_data; 898 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 899 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 900 } 901 902 /* 903 * Build the memlists and other kernel essential memory system data structures. 904 * This is everything at valloc_base. 905 */ 906 static void 907 startup_memlist(void) 908 { 909 size_t memlist_sz; 910 size_t memseg_sz; 911 size_t pagehash_sz; 912 size_t pp_sz; 913 uintptr_t va; 914 size_t len; 915 uint_t prot; 916 pfn_t pfn; 917 int memblocks; 918 pfn_t rsvd_high_pfn; 919 pgcnt_t rsvd_pgcnt; 920 size_t rsvdmemlist_sz; 921 int rsvdmemblocks; 922 caddr_t pagecolor_mem; 923 size_t pagecolor_memsz; 924 caddr_t page_ctrs_mem; 925 size_t page_ctrs_size; 926 size_t pse_table_alloc_size; 927 struct memlist *current; 928 extern void startup_build_mem_nodes(struct memlist *); 929 930 /* XX64 fix these - they should be in include files */ 931 extern size_t page_coloring_init(uint_t, int, int); 932 extern void page_coloring_setup(caddr_t); 933 934 PRM_POINT("startup_memlist() starting..."); 935 936 /* 937 * Use leftover large page nucleus text/data space for loadable modules. 938 * Use at most MODTEXT/MODDATA. 939 */ 940 len = kbm_nucleus_size; 941 ASSERT(len > MMU_PAGESIZE); 942 943 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 944 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 945 if (e_moddata - moddata > MODDATA) 946 e_moddata = moddata + MODDATA; 947 948 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 949 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 950 if (e_modtext - modtext > MODTEXT) 951 e_modtext = modtext + MODTEXT; 952 953 econtig = e_moddata; 954 955 PRM_DEBUG(modtext); 956 PRM_DEBUG(e_modtext); 957 PRM_DEBUG(moddata); 958 PRM_DEBUG(e_moddata); 959 PRM_DEBUG(econtig); 960 961 /* 962 * Examine the boot loader physical memory map to find out: 963 * - total memory in system - physinstalled 964 * - the max physical address - physmax 965 * - the number of discontiguous segments of memory. 966 */ 967 if (prom_debug) 968 print_memlist("boot physinstalled", 969 bootops->boot_mem->physinstalled); 970 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 971 &physinstalled, &memblocks); 972 PRM_DEBUG(physmax); 973 PRM_DEBUG(physinstalled); 974 PRM_DEBUG(memblocks); 975 976 /* 977 * Examine the bios reserved memory to find out: 978 * - the number of discontiguous segments of memory. 979 */ 980 if (prom_debug) 981 print_memlist("boot reserved mem", 982 bootops->boot_mem->rsvdmem); 983 installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 984 &rsvd_pgcnt, &rsvdmemblocks); 985 PRM_DEBUG(rsvd_high_pfn); 986 PRM_DEBUG(rsvd_pgcnt); 987 PRM_DEBUG(rsvdmemblocks); 988 989 /* 990 * Initialize hat's mmu parameters. 991 * Check for enforce-prot-exec in boot environment. It's used to 992 * enable/disable support for the page table entry NX bit. 993 * The default is to enforce PROT_EXEC on processors that support NX. 994 * Boot seems to round up the "len", but 8 seems to be big enough. 995 */ 996 mmu_init(); 997 998 #ifdef __i386 999 /* 1000 * physmax is lowered if there is more memory than can be 1001 * physically addressed in 32 bit (PAE/non-PAE) modes. 1002 */ 1003 if (mmu.pae_hat) { 1004 if (PFN_ABOVE64G(physmax)) { 1005 physinstalled -= (physmax - (PFN_64G - 1)); 1006 physmax = PFN_64G - 1; 1007 } 1008 } else { 1009 if (PFN_ABOVE4G(physmax)) { 1010 physinstalled -= (physmax - (PFN_4G - 1)); 1011 physmax = PFN_4G - 1; 1012 } 1013 } 1014 #endif 1015 1016 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1017 1018 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1019 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1020 char value[8]; 1021 1022 if (len < 8) 1023 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1024 else 1025 (void) strcpy(value, ""); 1026 if (strcmp(value, "off") == 0) 1027 mmu.pt_nx = 0; 1028 } 1029 PRM_DEBUG(mmu.pt_nx); 1030 1031 /* 1032 * We will need page_t's for every page in the system, except for 1033 * memory mapped at or above above the start of the kernel text segment. 1034 * 1035 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1036 */ 1037 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1038 obp_pages = 0; 1039 va = KERNEL_TEXT; 1040 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1041 npages -= len >> MMU_PAGESHIFT; 1042 if (va >= (uintptr_t)e_moddata) 1043 obp_pages += len >> MMU_PAGESHIFT; 1044 va += len; 1045 } 1046 PRM_DEBUG(npages); 1047 PRM_DEBUG(obp_pages); 1048 1049 /* 1050 * If physmem is patched to be non-zero, use it instead of the computed 1051 * value unless it is larger than the actual amount of memory on hand. 1052 */ 1053 if (physmem == 0 || physmem > npages) { 1054 physmem = npages; 1055 } else if (physmem < npages) { 1056 orig_npages = npages; 1057 npages = physmem; 1058 } 1059 PRM_DEBUG(physmem); 1060 1061 /* 1062 * We now compute the sizes of all the initial allocations for 1063 * structures the kernel needs in order do kmem_alloc(). These 1064 * include: 1065 * memsegs 1066 * memlists 1067 * page hash table 1068 * page_t's 1069 * page coloring data structs 1070 */ 1071 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1072 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1073 PRM_DEBUG(memseg_sz); 1074 1075 /* 1076 * Reserve space for memlists. There's no real good way to know exactly 1077 * how much room we'll need, but this should be a good upper bound. 1078 */ 1079 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1080 (memblocks + POSS_NEW_FRAGMENTS)); 1081 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1082 PRM_DEBUG(memlist_sz); 1083 1084 /* 1085 * Reserve space for bios reserved memlists. 1086 */ 1087 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1088 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1089 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1090 PRM_DEBUG(rsvdmemlist_sz); 1091 1092 /* 1093 * The page structure hash table size is a power of 2 1094 * such that the average hash chain length is PAGE_HASHAVELEN. 1095 */ 1096 page_hashsz = npages / PAGE_HASHAVELEN; 1097 page_hashsz = 1 << highbit(page_hashsz); 1098 pagehash_sz = sizeof (struct page *) * page_hashsz; 1099 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1100 PRM_DEBUG(pagehash_sz); 1101 1102 /* 1103 * Set aside room for the page structures themselves. 1104 */ 1105 PRM_DEBUG(npages); 1106 pp_sz = sizeof (struct page) * npages; 1107 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1108 PRM_DEBUG(pp_sz); 1109 1110 /* 1111 * determine l2 cache info and memory size for page coloring 1112 */ 1113 (void) getl2cacheinfo(CPU, 1114 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1115 pagecolor_memsz = 1116 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1117 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1118 PRM_DEBUG(pagecolor_memsz); 1119 1120 page_ctrs_size = page_ctrs_sz(); 1121 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1122 PRM_DEBUG(page_ctrs_size); 1123 1124 /* 1125 * Allocate the array that protects pp->p_selock. 1126 */ 1127 pse_shift = size_pse_array(physmem, max_ncpus); 1128 pse_table_size = 1 << pse_shift; 1129 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1130 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1131 1132 #if defined(__amd64) 1133 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1134 valloc_base = VALLOC_BASE; 1135 1136 /* 1137 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1138 * for values of physmax up to 1 Terabyte. They need adjusting when 1139 * memory is at addresses above 1 TB. 1140 */ 1141 if (physmax + 1 > mmu_btop(TERABYTE)) { 1142 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1143 1144 /* Round to largest possible pagesize for now */ 1145 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1146 1147 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1148 1149 /* make sure we leave some space for user apps above hole */ 1150 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1151 if (segkpm_base > SEGKPM_BASE) 1152 segkpm_base = SEGKPM_BASE; 1153 PRM_DEBUG(segkpm_base); 1154 1155 valloc_base = segkpm_base + kpm_resv_amount; 1156 PRM_DEBUG(valloc_base); 1157 } 1158 #else /* __i386 */ 1159 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1160 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1161 PRM_DEBUG(valloc_base); 1162 #endif /* __i386 */ 1163 1164 /* 1165 * do all the initial allocations 1166 */ 1167 perform_allocations(); 1168 1169 /* 1170 * Build phys_install and phys_avail in kernel memspace. 1171 * - phys_install should be all memory in the system. 1172 * - phys_avail is phys_install minus any memory mapped before this 1173 * point above KERNEL_TEXT. 1174 */ 1175 current = phys_install = memlist; 1176 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1177 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1178 panic("physinstalled was too big!"); 1179 if (prom_debug) 1180 print_memlist("phys_install", phys_install); 1181 1182 phys_avail = current; 1183 PRM_POINT("Building phys_avail:\n"); 1184 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1185 avail_filter); 1186 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1187 panic("physavail was too big!"); 1188 if (prom_debug) 1189 print_memlist("phys_avail", phys_avail); 1190 1191 /* 1192 * Build bios reserved memspace 1193 */ 1194 current = bios_rsvd; 1195 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1196 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1197 panic("bios_rsvd was too big!"); 1198 if (prom_debug) 1199 print_memlist("bios_rsvd", bios_rsvd); 1200 1201 /* 1202 * setup page coloring 1203 */ 1204 page_coloring_setup(pagecolor_mem); 1205 page_lock_init(); /* currently a no-op */ 1206 1207 /* 1208 * free page list counters 1209 */ 1210 (void) page_ctrs_alloc(page_ctrs_mem); 1211 1212 /* 1213 * Size the pcf array based on the number of cpus in the box at 1214 * boot time. 1215 */ 1216 1217 pcf_init(); 1218 1219 /* 1220 * Initialize the page structures from the memory lists. 1221 */ 1222 availrmem_initial = availrmem = freemem = 0; 1223 PRM_POINT("Calling kphysm_init()..."); 1224 npages = kphysm_init(pp_base, npages); 1225 PRM_POINT("kphysm_init() done"); 1226 PRM_DEBUG(npages); 1227 1228 init_debug_info(); 1229 1230 /* 1231 * Now that page_t's have been initialized, remove all the 1232 * initial allocation pages from the kernel free page lists. 1233 */ 1234 boot_mapin((caddr_t)valloc_base, valloc_sz); 1235 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1236 PRM_POINT("startup_memlist() done"); 1237 1238 PRM_DEBUG(valloc_sz); 1239 1240 #if defined(__amd64) 1241 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1242 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1243 extern size_t textrepl_size_thresh; 1244 textrepl_size_thresh = (16 << 20) - 1; 1245 } 1246 #endif 1247 } 1248 1249 /* 1250 * Layout the kernel's part of address space and initialize kmem allocator. 1251 */ 1252 static void 1253 startup_kmem(void) 1254 { 1255 extern void page_set_colorequiv_arr(void); 1256 const char *fmt = "?features: %b\n"; 1257 1258 PRM_POINT("startup_kmem() starting..."); 1259 1260 #if defined(__amd64) 1261 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1262 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1263 "systems."); 1264 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1265 core_base = (uintptr_t)COREHEAP_BASE; 1266 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1267 #else /* __i386 */ 1268 /* 1269 * We configure kernelbase based on: 1270 * 1271 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1272 * KERNELBASE_MAX. we large page align eprom_kernelbase 1273 * 1274 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1275 * On large memory systems we must lower kernelbase to allow 1276 * enough room for page_t's for all of memory. 1277 * 1278 * The value set here, might be changed a little later. 1279 */ 1280 if (eprom_kernelbase) { 1281 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1282 if (kernelbase > KERNELBASE_MAX) 1283 kernelbase = KERNELBASE_MAX; 1284 } else { 1285 kernelbase = (uintptr_t)KERNELBASE; 1286 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1287 } 1288 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1289 core_base = valloc_base; 1290 core_size = 0; 1291 #endif /* __i386 */ 1292 1293 PRM_DEBUG(core_base); 1294 PRM_DEBUG(core_size); 1295 PRM_DEBUG(kernelbase); 1296 1297 #if defined(__i386) 1298 segkp_fromheap = 1; 1299 #endif /* __i386 */ 1300 1301 ekernelheap = (char *)core_base; 1302 PRM_DEBUG(ekernelheap); 1303 1304 /* 1305 * Now that we know the real value of kernelbase, 1306 * update variables that were initialized with a value of 1307 * KERNELBASE (in common/conf/param.c). 1308 * 1309 * XXX The problem with this sort of hackery is that the 1310 * compiler just may feel like putting the const declarations 1311 * (in param.c) into the .text section. Perhaps they should 1312 * just be declared as variables there? 1313 */ 1314 1315 *(uintptr_t *)&_kernelbase = kernelbase; 1316 *(uintptr_t *)&_userlimit = kernelbase; 1317 #if defined(__amd64) 1318 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1319 #else 1320 *(uintptr_t *)&_userlimit32 = _userlimit; 1321 #endif 1322 PRM_DEBUG(_kernelbase); 1323 PRM_DEBUG(_userlimit); 1324 PRM_DEBUG(_userlimit32); 1325 1326 layout_kernel_va(); 1327 1328 #if defined(__i386) 1329 /* 1330 * If segmap is too large we can push the bottom of the kernel heap 1331 * higher than the base. Or worse, it could exceed the top of the 1332 * VA space entirely, causing it to wrap around. 1333 */ 1334 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1335 panic("too little address space available for kernelheap," 1336 " use eeprom for lower kernelbase or smaller segmapsize"); 1337 #endif /* __i386 */ 1338 1339 /* 1340 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1341 */ 1342 kernelheap_init(kernelheap, ekernelheap, 1343 kernelheap + MMU_PAGESIZE, 1344 (void *)core_base, (void *)(core_base + core_size)); 1345 1346 #if defined(__xpv) 1347 /* 1348 * Link pending events struct into cpu struct 1349 */ 1350 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1351 #endif 1352 /* 1353 * Initialize kernel memory allocator. 1354 */ 1355 kmem_init(); 1356 1357 /* 1358 * Factor in colorequiv to check additional 'equivalent' bins 1359 */ 1360 page_set_colorequiv_arr(); 1361 1362 /* 1363 * print this out early so that we know what's going on 1364 */ 1365 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1366 1367 /* 1368 * Initialize bp_mapin(). 1369 */ 1370 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1371 1372 /* 1373 * orig_npages is non-zero if physmem has been configured for less 1374 * than the available memory. 1375 */ 1376 if (orig_npages) { 1377 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1378 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1379 npages, orig_npages); 1380 } 1381 #if defined(__i386) 1382 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1383 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1384 "System using 0x%lx", 1385 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1386 #endif 1387 1388 #ifdef KERNELBASE_ABI_MIN 1389 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1390 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1391 "i386 ABI compliant.", (uintptr_t)kernelbase); 1392 } 1393 #endif 1394 1395 #ifdef __xpv 1396 /* 1397 * Some of the xen start information has to be relocated up 1398 * into the kernel's permanent address space. 1399 */ 1400 PRM_POINT("calling xen_relocate_start_info()"); 1401 xen_relocate_start_info(); 1402 PRM_POINT("xen_relocate_start_info() done"); 1403 1404 /* 1405 * (Update the vcpu pointer in our cpu structure to point into 1406 * the relocated shared info.) 1407 */ 1408 CPU->cpu_m.mcpu_vcpu_info = 1409 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1410 #endif 1411 1412 PRM_POINT("startup_kmem() done"); 1413 } 1414 1415 #ifndef __xpv 1416 /* 1417 * If we have detected that we are running in an HVM environment, we need 1418 * to prepend the PV driver directory to the module search path. 1419 */ 1420 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1421 static void 1422 update_default_path() 1423 { 1424 char *current, *newpath; 1425 int newlen; 1426 1427 /* 1428 * We are about to resync with krtld. krtld will reset its 1429 * internal module search path iff Solaris has set default_path. 1430 * We want to be sure we're prepending this new directory to the 1431 * right search path. 1432 */ 1433 current = (default_path == NULL) ? kobj_module_path : default_path; 1434 1435 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1436 newpath = kmem_alloc(newlen, KM_SLEEP); 1437 (void) strcpy(newpath, HVM_MOD_DIR); 1438 (void) strcat(newpath, " "); 1439 (void) strcat(newpath, current); 1440 1441 default_path = newpath; 1442 } 1443 #endif 1444 1445 static void 1446 startup_modules(void) 1447 { 1448 int cnt; 1449 extern void prom_setup(void); 1450 int32_t v, h; 1451 char d[11]; 1452 char *cp; 1453 cmi_hdl_t hdl; 1454 1455 PRM_POINT("startup_modules() starting..."); 1456 1457 #ifndef __xpv 1458 /* 1459 * Initialize ten-micro second timer so that drivers will 1460 * not get short changed in their init phase. This was 1461 * not getting called until clkinit which, on fast cpu's 1462 * caused the drv_usecwait to be way too short. 1463 */ 1464 microfind(); 1465 1466 if (get_hwenv() == HW_XEN_HVM) 1467 update_default_path(); 1468 #endif 1469 1470 /* 1471 * Read the GMT lag from /etc/rtc_config. 1472 */ 1473 sgmtl(process_rtc_config_file()); 1474 1475 /* 1476 * Calculate default settings of system parameters based upon 1477 * maxusers, yet allow to be overridden via the /etc/system file. 1478 */ 1479 param_calc(0); 1480 1481 mod_setup(); 1482 1483 /* 1484 * Initialize system parameters. 1485 */ 1486 param_init(); 1487 1488 /* 1489 * Initialize the default brands 1490 */ 1491 brand_init(); 1492 1493 /* 1494 * maxmem is the amount of physical memory we're playing with. 1495 */ 1496 maxmem = physmem; 1497 1498 /* 1499 * Initialize segment management stuff. 1500 */ 1501 seg_init(); 1502 1503 if (modload("fs", "specfs") == -1) 1504 halt("Can't load specfs"); 1505 1506 if (modload("fs", "devfs") == -1) 1507 halt("Can't load devfs"); 1508 1509 if (modload("fs", "dev") == -1) 1510 halt("Can't load dev"); 1511 1512 if (modload("fs", "procfs") == -1) 1513 halt("Can't load procfs"); 1514 1515 (void) modloadonly("sys", "lbl_edition"); 1516 1517 dispinit(); 1518 1519 /* 1520 * This is needed here to initialize hw_serial[] for cluster booting. 1521 */ 1522 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1523 cmn_err(CE_WARN, "Unable to set hostid"); 1524 } else { 1525 for (v = h, cnt = 0; cnt < 10; cnt++) { 1526 d[cnt] = (char)(v % 10); 1527 v /= 10; 1528 if (v == 0) 1529 break; 1530 } 1531 for (cp = hw_serial; cnt >= 0; cnt--) 1532 *cp++ = d[cnt] + '0'; 1533 *cp = 0; 1534 } 1535 1536 /* Read cluster configuration data. */ 1537 clconf_init(); 1538 1539 #if defined(__xpv) 1540 (void) ec_init(); 1541 gnttab_init(); 1542 (void) xs_early_init(); 1543 #endif /* __xpv */ 1544 1545 /* 1546 * Create a kernel device tree. First, create rootnex and 1547 * then invoke bus specific code to probe devices. 1548 */ 1549 setup_ddi(); 1550 1551 #ifdef __xpv 1552 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1553 #endif 1554 { 1555 /* 1556 * Load the System Management BIOS into the global ksmbios 1557 * handle, if an SMBIOS is present on this system. 1558 */ 1559 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1560 } 1561 1562 1563 /* 1564 * Set up the CPU module subsystem for the boot cpu in the native 1565 * case, and all physical cpu resource in the xpv dom0 case. 1566 * Modifies the device tree, so this must be done after 1567 * setup_ddi(). 1568 */ 1569 #ifdef __xpv 1570 /* 1571 * If paravirtualized and on dom0 then we initialize all physical 1572 * cpu handles now; if paravirtualized on a domU then do not 1573 * initialize. 1574 */ 1575 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1576 xen_mc_lcpu_cookie_t cpi; 1577 1578 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1579 cpi = xen_physcpu_next(cpi)) { 1580 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1581 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1582 xen_physcpu_strandid(cpi))) != NULL && 1583 (x86_feature & X86_MCA)) 1584 cmi_mca_init(hdl); 1585 } 1586 } 1587 #else 1588 /* 1589 * Initialize a handle for the boot cpu - others will initialize 1590 * as they startup. Do not do this if we know we are in an HVM domU. 1591 */ 1592 if ((get_hwenv() != HW_XEN_HVM) && 1593 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1594 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1595 (x86_feature & X86_MCA)) 1596 cmi_mca_init(hdl); 1597 #endif /* __xpv */ 1598 1599 /* 1600 * Fake a prom tree such that /dev/openprom continues to work 1601 */ 1602 PRM_POINT("startup_modules: calling prom_setup..."); 1603 prom_setup(); 1604 PRM_POINT("startup_modules: done"); 1605 1606 /* 1607 * Load all platform specific modules 1608 */ 1609 PRM_POINT("startup_modules: calling psm_modload..."); 1610 psm_modload(); 1611 1612 PRM_POINT("startup_modules() done"); 1613 } 1614 1615 /* 1616 * claim a "setaside" boot page for use in the kernel 1617 */ 1618 page_t * 1619 boot_claim_page(pfn_t pfn) 1620 { 1621 page_t *pp; 1622 1623 pp = page_numtopp_nolock(pfn); 1624 ASSERT(pp != NULL); 1625 1626 if (PP_ISBOOTPAGES(pp)) { 1627 if (pp->p_next != NULL) 1628 pp->p_next->p_prev = pp->p_prev; 1629 if (pp->p_prev == NULL) 1630 bootpages = pp->p_next; 1631 else 1632 pp->p_prev->p_next = pp->p_next; 1633 } else { 1634 /* 1635 * htable_attach() expects a base pagesize page 1636 */ 1637 if (pp->p_szc != 0) 1638 page_boot_demote(pp); 1639 pp = page_numtopp(pfn, SE_EXCL); 1640 } 1641 return (pp); 1642 } 1643 1644 /* 1645 * Walk through the pagetables looking for pages mapped in by boot. If the 1646 * setaside flag is set the pages are expected to be returned to the 1647 * kernel later in boot, so we add them to the bootpages list. 1648 */ 1649 static void 1650 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1651 { 1652 uintptr_t va = low; 1653 size_t len; 1654 uint_t prot; 1655 pfn_t pfn; 1656 page_t *pp; 1657 pgcnt_t boot_protect_cnt = 0; 1658 1659 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1660 if (va + len >= high) 1661 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1662 "legal range.", len, (void *)va); 1663 1664 while (len > 0) { 1665 pp = page_numtopp_alloc(pfn); 1666 if (pp != NULL) { 1667 if (setaside == 0) 1668 panic("Unexpected mapping by boot. " 1669 "addr=%p pfn=%lx\n", 1670 (void *)va, pfn); 1671 1672 pp->p_next = bootpages; 1673 pp->p_prev = NULL; 1674 PP_SETBOOTPAGES(pp); 1675 if (bootpages != NULL) { 1676 bootpages->p_prev = pp; 1677 } 1678 bootpages = pp; 1679 ++boot_protect_cnt; 1680 } 1681 1682 ++pfn; 1683 len -= MMU_PAGESIZE; 1684 va += MMU_PAGESIZE; 1685 } 1686 } 1687 PRM_DEBUG(boot_protect_cnt); 1688 } 1689 1690 /* 1691 * 1692 */ 1693 static void 1694 layout_kernel_va(void) 1695 { 1696 PRM_POINT("layout_kernel_va() starting..."); 1697 /* 1698 * Establish the final size of the kernel's heap, size of segmap, 1699 * segkp, etc. 1700 */ 1701 1702 #if defined(__amd64) 1703 1704 kpm_vbase = (caddr_t)segkpm_base; 1705 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1706 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1707 panic("not enough room for kpm!"); 1708 PRM_DEBUG(kpm_size); 1709 PRM_DEBUG(kpm_vbase); 1710 1711 /* 1712 * By default we create a seg_kp in 64 bit kernels, it's a little 1713 * faster to access than embedding it in the heap. 1714 */ 1715 segkp_base = (caddr_t)valloc_base + valloc_sz; 1716 if (!segkp_fromheap) { 1717 size_t sz = mmu_ptob(segkpsize); 1718 1719 /* 1720 * determine size of segkp 1721 */ 1722 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1723 sz = SEGKPDEFSIZE; 1724 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1725 "segkpsize has been reset to %ld pages", 1726 mmu_btop(sz)); 1727 } 1728 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1729 1730 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1731 } 1732 PRM_DEBUG(segkp_base); 1733 PRM_DEBUG(segkpsize); 1734 1735 /* 1736 * segzio is used for ZFS cached data. It uses a distinct VA 1737 * segment (from kernel heap) so that we can easily tell not to 1738 * include it in kernel crash dumps on 64 bit kernels. The trick is 1739 * to give it lots of VA, but not constrain the kernel heap. 1740 * We scale the size of segzio linearly with physmem up to 1741 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1742 */ 1743 segzio_base = segkp_base + mmu_ptob(segkpsize); 1744 if (segzio_fromheap) { 1745 segziosize = 0; 1746 } else { 1747 size_t physmem_size = mmu_ptob(physmem); 1748 size_t size = (segziosize == 0) ? 1749 physmem_size : mmu_ptob(segziosize); 1750 1751 if (size < SEGZIOMINSIZE) 1752 size = SEGZIOMINSIZE; 1753 if (size > SEGZIOMAXSIZE) { 1754 size = SEGZIOMAXSIZE; 1755 if (physmem_size > size) 1756 size += (physmem_size - size) / 2; 1757 } 1758 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1759 } 1760 PRM_DEBUG(segziosize); 1761 PRM_DEBUG(segzio_base); 1762 1763 /* 1764 * Put the range of VA for device mappings next, kmdb knows to not 1765 * grep in this range of addresses. 1766 */ 1767 toxic_addr = 1768 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1769 PRM_DEBUG(toxic_addr); 1770 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1771 #else /* __i386 */ 1772 segmap_start = ROUND_UP_LPAGE(kernelbase); 1773 #endif /* __i386 */ 1774 PRM_DEBUG(segmap_start); 1775 1776 /* 1777 * Users can change segmapsize through eeprom. If the variable 1778 * is tuned through eeprom, there is no upper bound on the 1779 * size of segmap. 1780 */ 1781 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1782 1783 #if defined(__i386) 1784 /* 1785 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1786 * the bottom of the kernel's address range. Set aside space for a 1787 * small red zone just below the start of segmap. 1788 */ 1789 segmap_start += KERNEL_REDZONE_SIZE; 1790 segmapsize -= KERNEL_REDZONE_SIZE; 1791 #endif 1792 1793 PRM_DEBUG(segmap_start); 1794 PRM_DEBUG(segmapsize); 1795 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1796 PRM_DEBUG(kernelheap); 1797 PRM_POINT("layout_kernel_va() done..."); 1798 } 1799 1800 /* 1801 * Finish initializing the VM system, now that we are no longer 1802 * relying on the boot time memory allocators. 1803 */ 1804 static void 1805 startup_vm(void) 1806 { 1807 struct segmap_crargs a; 1808 1809 extern int use_brk_lpg, use_stk_lpg; 1810 1811 PRM_POINT("startup_vm() starting..."); 1812 1813 /* 1814 * Initialize the hat layer. 1815 */ 1816 hat_init(); 1817 1818 /* 1819 * Do final allocations of HAT data structures that need to 1820 * be allocated before quiescing the boot loader. 1821 */ 1822 PRM_POINT("Calling hat_kern_alloc()..."); 1823 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1824 PRM_POINT("hat_kern_alloc() done"); 1825 1826 #ifndef __xpv 1827 /* 1828 * Setup Page Attribute Table 1829 */ 1830 pat_sync(); 1831 #endif 1832 1833 /* 1834 * The next two loops are done in distinct steps in order 1835 * to be sure that any page that is doubly mapped (both above 1836 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1837 * Note this may never happen, but it might someday. 1838 */ 1839 bootpages = NULL; 1840 PRM_POINT("Protecting boot pages"); 1841 1842 /* 1843 * Protect any pages mapped above KERNEL_TEXT that somehow have 1844 * page_t's. This can only happen if something weird allocated 1845 * in this range (like kadb/kmdb). 1846 */ 1847 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1848 1849 /* 1850 * Before we can take over memory allocation/mapping from the boot 1851 * loader we must remove from our free page lists any boot allocated 1852 * pages that stay mapped until release_bootstrap(). 1853 */ 1854 protect_boot_range(0, kernelbase, 1); 1855 1856 1857 /* 1858 * Switch to running on regular HAT (not boot_mmu) 1859 */ 1860 PRM_POINT("Calling hat_kern_setup()..."); 1861 hat_kern_setup(); 1862 1863 /* 1864 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1865 */ 1866 bop_no_more_mem(); 1867 1868 PRM_POINT("hat_kern_setup() done"); 1869 1870 hat_cpu_online(CPU); 1871 1872 /* 1873 * Initialize VM system 1874 */ 1875 PRM_POINT("Calling kvm_init()..."); 1876 kvm_init(); 1877 PRM_POINT("kvm_init() done"); 1878 1879 /* 1880 * Tell kmdb that the VM system is now working 1881 */ 1882 if (boothowto & RB_DEBUG) 1883 kdi_dvec_vmready(); 1884 1885 #if defined(__xpv) 1886 /* 1887 * Populate the I/O pool on domain 0 1888 */ 1889 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1890 extern long populate_io_pool(void); 1891 long init_io_pool_cnt; 1892 1893 PRM_POINT("Populating reserve I/O page pool"); 1894 init_io_pool_cnt = populate_io_pool(); 1895 PRM_DEBUG(init_io_pool_cnt); 1896 } 1897 #endif 1898 /* 1899 * Mangle the brand string etc. 1900 */ 1901 cpuid_pass3(CPU); 1902 1903 #if defined(__amd64) 1904 1905 /* 1906 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1907 */ 1908 device_arena = vmem_create("device", (void *)toxic_addr, 1909 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1910 1911 #else /* __i386 */ 1912 1913 /* 1914 * allocate the bit map that tracks toxic pages 1915 */ 1916 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1917 PRM_DEBUG(toxic_bit_map_len); 1918 toxic_bit_map = 1919 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1920 ASSERT(toxic_bit_map != NULL); 1921 PRM_DEBUG(toxic_bit_map); 1922 1923 #endif /* __i386 */ 1924 1925 1926 /* 1927 * Now that we've got more VA, as well as the ability to allocate from 1928 * it, tell the debugger. 1929 */ 1930 if (boothowto & RB_DEBUG) 1931 kdi_dvec_memavail(); 1932 1933 /* 1934 * The following code installs a special page fault handler (#pf) 1935 * to work around a pentium bug. 1936 */ 1937 #if !defined(__amd64) && !defined(__xpv) 1938 if (x86_type == X86_TYPE_P5) { 1939 desctbr_t idtr; 1940 gate_desc_t *newidt; 1941 1942 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1943 panic("failed to install pentium_pftrap"); 1944 1945 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1946 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1947 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1948 1949 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1950 PROT_READ | PROT_EXEC); 1951 1952 CPU->cpu_idt = newidt; 1953 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1954 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1955 wr_idtr(&idtr); 1956 } 1957 #endif /* !__amd64 */ 1958 1959 #if !defined(__xpv) 1960 /* 1961 * Map page pfn=0 for drivers, such as kd, that need to pick up 1962 * parameters left there by controllers/BIOS. 1963 */ 1964 PRM_POINT("setup up p0_va"); 1965 p0_va = i86devmap(0, 1, PROT_READ); 1966 PRM_DEBUG(p0_va); 1967 #endif 1968 1969 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1970 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1971 1972 /* 1973 * disable automatic large pages for small memory systems or 1974 * when the disable flag is set. 1975 * 1976 * Do not yet consider page sizes larger than 2m/4m. 1977 */ 1978 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1979 max_uheap_lpsize = LEVEL_SIZE(1); 1980 max_ustack_lpsize = LEVEL_SIZE(1); 1981 max_privmap_lpsize = LEVEL_SIZE(1); 1982 max_uidata_lpsize = LEVEL_SIZE(1); 1983 max_utext_lpsize = LEVEL_SIZE(1); 1984 max_shm_lpsize = LEVEL_SIZE(1); 1985 } 1986 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1987 auto_lpg_disable) { 1988 use_brk_lpg = 0; 1989 use_stk_lpg = 0; 1990 } 1991 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1992 1993 PRM_POINT("Calling hat_init_finish()..."); 1994 hat_init_finish(); 1995 PRM_POINT("hat_init_finish() done"); 1996 1997 /* 1998 * Initialize the segkp segment type. 1999 */ 2000 rw_enter(&kas.a_lock, RW_WRITER); 2001 PRM_POINT("Attaching segkp"); 2002 if (segkp_fromheap) { 2003 segkp->s_as = &kas; 2004 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2005 segkp) < 0) { 2006 panic("startup: cannot attach segkp"); 2007 /*NOTREACHED*/ 2008 } 2009 PRM_POINT("Doing segkp_create()"); 2010 if (segkp_create(segkp) != 0) { 2011 panic("startup: segkp_create failed"); 2012 /*NOTREACHED*/ 2013 } 2014 PRM_DEBUG(segkp); 2015 rw_exit(&kas.a_lock); 2016 2017 /* 2018 * kpm segment 2019 */ 2020 segmap_kpm = 0; 2021 if (kpm_desired) { 2022 kpm_init(); 2023 kpm_enable = 1; 2024 } 2025 2026 /* 2027 * Now create segmap segment. 2028 */ 2029 rw_enter(&kas.a_lock, RW_WRITER); 2030 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2031 panic("cannot attach segmap"); 2032 /*NOTREACHED*/ 2033 } 2034 PRM_DEBUG(segmap); 2035 2036 a.prot = PROT_READ | PROT_WRITE; 2037 a.shmsize = 0; 2038 a.nfreelist = segmapfreelists; 2039 2040 if (segmap_create(segmap, (caddr_t)&a) != 0) 2041 panic("segmap_create segmap"); 2042 rw_exit(&kas.a_lock); 2043 2044 setup_vaddr_for_ppcopy(CPU); 2045 2046 segdev_init(); 2047 #if defined(__xpv) 2048 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2049 #endif 2050 pmem_init(); 2051 2052 PRM_POINT("startup_vm() done"); 2053 } 2054 2055 /* 2056 * Load a tod module for the non-standard tod part found on this system. 2057 */ 2058 static void 2059 load_tod_module(char *todmod) 2060 { 2061 if (modload("tod", todmod) == -1) 2062 halt("Can't load TOD module"); 2063 } 2064 2065 static void 2066 startup_end(void) 2067 { 2068 int i; 2069 extern void setx86isalist(void); 2070 extern void cpu_event_init(void); 2071 2072 PRM_POINT("startup_end() starting..."); 2073 2074 /* 2075 * Perform tasks that get done after most of the VM 2076 * initialization has been done but before the clock 2077 * and other devices get started. 2078 */ 2079 kern_setup1(); 2080 2081 /* 2082 * Perform CPC initialization for this CPU. 2083 */ 2084 kcpc_hw_init(CPU); 2085 2086 /* 2087 * Initialize cpu event framework. 2088 */ 2089 cpu_event_init(); 2090 2091 #if defined(OPTERON_WORKAROUND_6323525) 2092 if (opteron_workaround_6323525) 2093 patch_workaround_6323525(); 2094 #endif 2095 /* 2096 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2097 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2098 */ 2099 if (tod_module_name != NULL) { 2100 PRM_POINT("load_tod_module()"); 2101 load_tod_module(tod_module_name); 2102 } 2103 2104 #if defined(__xpv) 2105 /* 2106 * Forceload interposing TOD module for the hypervisor. 2107 */ 2108 PRM_POINT("load_tod_module()"); 2109 load_tod_module("xpvtod"); 2110 #endif 2111 2112 /* 2113 * Configure the system. 2114 */ 2115 PRM_POINT("Calling configure()..."); 2116 configure(); /* set up devices */ 2117 PRM_POINT("configure() done"); 2118 2119 /* 2120 * Set the isa_list string to the defined instruction sets we 2121 * support. 2122 */ 2123 setx86isalist(); 2124 cpu_intr_alloc(CPU, NINTR_THREADS); 2125 psm_install(); 2126 2127 /* 2128 * We're done with bootops. We don't unmap the bootstrap yet because 2129 * we're still using bootsvcs. 2130 */ 2131 PRM_POINT("NULLing out bootops"); 2132 *bootopsp = (struct bootops *)NULL; 2133 bootops = (struct bootops *)NULL; 2134 2135 #if defined(__xpv) 2136 ec_init_debug_irq(); 2137 xs_domu_init(); 2138 #endif 2139 2140 #if defined(__amd64) && !defined(__xpv) 2141 /* 2142 * Intel IOMMU has been setup/initialized in ddi_impl.c 2143 * Start it up now. 2144 */ 2145 immu_startup(); 2146 #endif 2147 2148 PRM_POINT("Enabling interrupts"); 2149 (*picinitf)(); 2150 sti(); 2151 #if defined(__xpv) 2152 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2153 xen_late_startup(); 2154 #endif 2155 2156 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2157 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2158 2159 /* 2160 * Register these software interrupts for ddi timer. 2161 * Software interrupts up to the level 10 are supported. 2162 */ 2163 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2164 char name[sizeof ("timer_softintr") + 2]; 2165 (void) sprintf(name, "timer_softintr%02d", i); 2166 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2167 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2168 } 2169 2170 #if !defined(__xpv) 2171 if (modload("drv", "amd_iommu") < 0) { 2172 PRM_POINT("No AMD IOMMU present\n"); 2173 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2174 "amd_iommu")) == NULL) { 2175 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2176 } 2177 #endif 2178 post_startup_cpu_fixups(); 2179 2180 PRM_POINT("startup_end() done"); 2181 } 2182 2183 /* 2184 * Don't remove the following 2 variables. They are necessary 2185 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2186 */ 2187 char *_hs1107 = hw_serial; 2188 ulong_t _bdhs34; 2189 2190 void 2191 post_startup(void) 2192 { 2193 extern void cpupm_init(cpu_t *); 2194 extern void cpu_event_init_cpu(cpu_t *); 2195 2196 /* 2197 * Set the system wide, processor-specific flags to be passed 2198 * to userland via the aux vector for performance hints and 2199 * instruction set extensions. 2200 */ 2201 bind_hwcap(); 2202 2203 #ifdef __xpv 2204 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2205 #endif 2206 { 2207 #if defined(__xpv) 2208 xpv_panic_init(); 2209 #else 2210 /* 2211 * Startup the memory scrubber. 2212 * XXPV This should be running somewhere .. 2213 */ 2214 if (get_hwenv() != HW_XEN_HVM) 2215 memscrub_init(); 2216 #endif 2217 } 2218 2219 /* 2220 * Complete CPU module initialization 2221 */ 2222 cmi_post_startup(); 2223 2224 /* 2225 * Perform forceloading tasks for /etc/system. 2226 */ 2227 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2228 2229 /* 2230 * ON4.0: Force /proc module in until clock interrupt handle fixed 2231 * ON4.0: This must be fixed or restated in /etc/systems. 2232 */ 2233 (void) modload("fs", "procfs"); 2234 2235 (void) i_ddi_attach_hw_nodes("pit_beep"); 2236 2237 #if defined(__i386) 2238 /* 2239 * Check for required functional Floating Point hardware, 2240 * unless FP hardware explicitly disabled. 2241 */ 2242 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2243 halt("No working FP hardware found"); 2244 #endif 2245 2246 maxmem = freemem; 2247 2248 cpu_event_init_cpu(CPU); 2249 cpupm_init(CPU); 2250 (void) mach_cpu_create_device_node(CPU, NULL); 2251 2252 pg_init(); 2253 } 2254 2255 static int 2256 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2257 { 2258 return ((pp->p_pagenum >= btop(low_addr)) && 2259 (pp->p_pagenum < btopr(high_addr))); 2260 } 2261 2262 void 2263 release_bootstrap(void) 2264 { 2265 int root_is_ramdisk; 2266 page_t *pp; 2267 extern void kobj_boot_unmountroot(void); 2268 extern dev_t rootdev; 2269 #if !defined(__xpv) 2270 pfn_t pfn; 2271 #endif 2272 2273 /* unmount boot ramdisk and release kmem usage */ 2274 kobj_boot_unmountroot(); 2275 2276 /* 2277 * We're finished using the boot loader so free its pages. 2278 */ 2279 PRM_POINT("Unmapping lower boot pages"); 2280 2281 clear_boot_mappings(0, _userlimit); 2282 2283 postbootkernelbase = kernelbase; 2284 2285 /* 2286 * If root isn't on ramdisk, destroy the hardcoded 2287 * ramdisk node now and release the memory. Else, 2288 * ramdisk memory is kept in rd_pages. 2289 */ 2290 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2291 if (!root_is_ramdisk) { 2292 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2293 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2294 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2295 (void) ddi_remove_child(dip, 0); 2296 } 2297 2298 PRM_POINT("Releasing boot pages"); 2299 while (bootpages) { 2300 extern uint64_t ramdisk_start, ramdisk_end; 2301 pp = bootpages; 2302 bootpages = pp->p_next; 2303 2304 2305 /* Keep pages for the lower 64K */ 2306 if (pp_in_range(pp, 0, 0x40000)) { 2307 pp->p_next = lower_pages; 2308 lower_pages = pp; 2309 lower_pages_count++; 2310 continue; 2311 } 2312 2313 2314 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2315 ramdisk_end)) { 2316 pp->p_next = rd_pages; 2317 rd_pages = pp; 2318 continue; 2319 } 2320 pp->p_next = (struct page *)0; 2321 pp->p_prev = (struct page *)0; 2322 PP_CLRBOOTPAGES(pp); 2323 page_free(pp, 1); 2324 } 2325 PRM_POINT("Boot pages released"); 2326 2327 #if !defined(__xpv) 2328 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2329 /* 2330 * Find 1 page below 1 MB so that other processors can boot up or 2331 * so that any processor can resume. 2332 * Make sure it has a kernel VA as well as a 1:1 mapping. 2333 * We should have just free'd one up. 2334 */ 2335 2336 /* 2337 * 0x10 pages is 64K. Leave the bottom 64K alone 2338 * for BIOS. 2339 */ 2340 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2341 if (page_numtopp_alloc(pfn) == NULL) 2342 continue; 2343 rm_platter_va = i86devmap(pfn, 1, 2344 PROT_READ | PROT_WRITE | PROT_EXEC); 2345 rm_platter_pa = ptob(pfn); 2346 hat_devload(kas.a_hat, 2347 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2348 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2349 HAT_LOAD_NOCONSIST); 2350 break; 2351 } 2352 if (pfn == btop(1*1024*1024) && use_mp) 2353 panic("No page below 1M available for starting " 2354 "other processors or for resuming from system-suspend"); 2355 #endif /* !__xpv */ 2356 } 2357 2358 /* 2359 * Initialize the platform-specific parts of a page_t. 2360 */ 2361 void 2362 add_physmem_cb(page_t *pp, pfn_t pnum) 2363 { 2364 pp->p_pagenum = pnum; 2365 pp->p_mapping = NULL; 2366 pp->p_embed = 0; 2367 pp->p_share = 0; 2368 pp->p_mlentry = 0; 2369 } 2370 2371 /* 2372 * kphysm_init() initializes physical memory. 2373 */ 2374 static pgcnt_t 2375 kphysm_init( 2376 page_t *pp, 2377 pgcnt_t npages) 2378 { 2379 struct memlist *pmem; 2380 struct memseg *cur_memseg; 2381 pfn_t base_pfn; 2382 pfn_t end_pfn; 2383 pgcnt_t num; 2384 pgcnt_t pages_done = 0; 2385 uint64_t addr; 2386 uint64_t size; 2387 extern pfn_t ddiphysmin; 2388 extern int mnode_xwa; 2389 int ms = 0, me = 0; 2390 2391 ASSERT(page_hash != NULL && page_hashsz != 0); 2392 2393 cur_memseg = memseg_base; 2394 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2395 /* 2396 * In a 32 bit kernel can't use higher memory if we're 2397 * not booting in PAE mode. This check takes care of that. 2398 */ 2399 addr = pmem->ml_address; 2400 size = pmem->ml_size; 2401 if (btop(addr) > physmax) 2402 continue; 2403 2404 /* 2405 * align addr and size - they may not be at page boundaries 2406 */ 2407 if ((addr & MMU_PAGEOFFSET) != 0) { 2408 addr += MMU_PAGEOFFSET; 2409 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2410 size -= addr - pmem->ml_address; 2411 } 2412 2413 /* only process pages below or equal to physmax */ 2414 if ((btop(addr + size) - 1) > physmax) 2415 size = ptob(physmax - btop(addr) + 1); 2416 2417 num = btop(size); 2418 if (num == 0) 2419 continue; 2420 2421 if (num > npages) 2422 num = npages; 2423 2424 npages -= num; 2425 pages_done += num; 2426 base_pfn = btop(addr); 2427 2428 if (prom_debug) 2429 prom_printf("MEMSEG addr=0x%" PRIx64 2430 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2431 addr, num, base_pfn, base_pfn + num); 2432 2433 /* 2434 * Ignore pages below ddiphysmin to simplify ddi memory 2435 * allocation with non-zero addr_lo requests. 2436 */ 2437 if (base_pfn < ddiphysmin) { 2438 if (base_pfn + num <= ddiphysmin) 2439 continue; 2440 pp += (ddiphysmin - base_pfn); 2441 num -= (ddiphysmin - base_pfn); 2442 base_pfn = ddiphysmin; 2443 } 2444 2445 /* 2446 * mnode_xwa is greater than 1 when large pages regions can 2447 * cross memory node boundaries. To prevent the formation 2448 * of these large pages, configure the memsegs based on the 2449 * memory node ranges which had been made non-contiguous. 2450 */ 2451 if (mnode_xwa > 1) { 2452 2453 end_pfn = base_pfn + num - 1; 2454 ms = PFN_2_MEM_NODE(base_pfn); 2455 me = PFN_2_MEM_NODE(end_pfn); 2456 2457 if (ms != me) { 2458 /* 2459 * current range spans more than 1 memory node. 2460 * Set num to only the pfn range in the start 2461 * memory node. 2462 */ 2463 num = mem_node_config[ms].physmax - base_pfn 2464 + 1; 2465 ASSERT(end_pfn > mem_node_config[ms].physmax); 2466 } 2467 } 2468 2469 for (;;) { 2470 /* 2471 * Build the memsegs entry 2472 */ 2473 cur_memseg->pages = pp; 2474 cur_memseg->epages = pp + num; 2475 cur_memseg->pages_base = base_pfn; 2476 cur_memseg->pages_end = base_pfn + num; 2477 2478 /* 2479 * Insert into memseg list in decreasing pfn range 2480 * order. Low memory is typically more fragmented such 2481 * that this ordering keeps the larger ranges at the 2482 * front of the list for code that searches memseg. 2483 * This ASSERTS that the memsegs coming in from boot 2484 * are in increasing physical address order and not 2485 * contiguous. 2486 */ 2487 if (memsegs != NULL) { 2488 ASSERT(cur_memseg->pages_base >= 2489 memsegs->pages_end); 2490 cur_memseg->next = memsegs; 2491 } 2492 memsegs = cur_memseg; 2493 2494 /* 2495 * add_physmem() initializes the PSM part of the page 2496 * struct by calling the PSM back with add_physmem_cb(). 2497 * In addition it coalesces pages into larger pages as 2498 * it initializes them. 2499 */ 2500 add_physmem(pp, num, base_pfn); 2501 cur_memseg++; 2502 availrmem_initial += num; 2503 availrmem += num; 2504 2505 pp += num; 2506 if (ms >= me) 2507 break; 2508 2509 /* process next memory node range */ 2510 ms++; 2511 base_pfn = mem_node_config[ms].physbase; 2512 num = MIN(mem_node_config[ms].physmax, 2513 end_pfn) - base_pfn + 1; 2514 } 2515 } 2516 2517 PRM_DEBUG(availrmem_initial); 2518 PRM_DEBUG(availrmem); 2519 PRM_DEBUG(freemem); 2520 build_pfn_hash(); 2521 return (pages_done); 2522 } 2523 2524 /* 2525 * Kernel VM initialization. 2526 */ 2527 static void 2528 kvm_init(void) 2529 { 2530 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2531 2532 /* 2533 * Put the kernel segments in kernel address space. 2534 */ 2535 rw_enter(&kas.a_lock, RW_WRITER); 2536 as_avlinit(&kas); 2537 2538 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2539 (void) segkmem_create(&ktextseg); 2540 2541 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2542 (void) segkmem_create(&kvalloc); 2543 2544 (void) seg_attach(&kas, kernelheap, 2545 ekernelheap - kernelheap, &kvseg); 2546 (void) segkmem_create(&kvseg); 2547 2548 if (core_size > 0) { 2549 PRM_POINT("attaching kvseg_core"); 2550 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2551 &kvseg_core); 2552 (void) segkmem_create(&kvseg_core); 2553 } 2554 2555 if (segziosize > 0) { 2556 PRM_POINT("attaching segzio"); 2557 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2558 &kzioseg); 2559 (void) segkmem_zio_create(&kzioseg); 2560 2561 /* create zio area covering new segment */ 2562 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2563 } 2564 2565 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2566 (void) segkmem_create(&kdebugseg); 2567 2568 rw_exit(&kas.a_lock); 2569 2570 /* 2571 * Ensure that the red zone at kernelbase is never accessible. 2572 */ 2573 PRM_POINT("protecting redzone"); 2574 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2575 2576 /* 2577 * Make the text writable so that it can be hot patched by DTrace. 2578 */ 2579 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2580 PROT_READ | PROT_WRITE | PROT_EXEC); 2581 2582 /* 2583 * Make data writable until end. 2584 */ 2585 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2586 PROT_READ | PROT_WRITE | PROT_EXEC); 2587 } 2588 2589 #ifndef __xpv 2590 /* 2591 * Solaris adds an entry for Write Combining caching to the PAT 2592 */ 2593 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2594 2595 void 2596 pat_sync(void) 2597 { 2598 ulong_t cr0, cr0_orig, cr4; 2599 2600 if (!(x86_feature & X86_PAT)) 2601 return; 2602 cr0_orig = cr0 = getcr0(); 2603 cr4 = getcr4(); 2604 2605 /* disable caching and flush all caches and TLBs */ 2606 cr0 |= CR0_CD; 2607 cr0 &= ~CR0_NW; 2608 setcr0(cr0); 2609 invalidate_cache(); 2610 if (cr4 & CR4_PGE) { 2611 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2612 setcr4(cr4); 2613 } else { 2614 reload_cr3(); 2615 } 2616 2617 /* add our entry to the PAT */ 2618 wrmsr(REG_PAT, pat_attr_reg); 2619 2620 /* flush TLBs and cache again, then reenable cr0 caching */ 2621 if (cr4 & CR4_PGE) { 2622 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2623 setcr4(cr4); 2624 } else { 2625 reload_cr3(); 2626 } 2627 invalidate_cache(); 2628 setcr0(cr0_orig); 2629 } 2630 2631 #endif /* !__xpv */ 2632 2633 #if defined(_SOFT_HOSTID) 2634 /* 2635 * On platforms that do not have a hardware serial number, attempt 2636 * to set one based on the contents of /etc/hostid. If this file does 2637 * not exist, assume that we are to generate a new hostid and set 2638 * it in the kernel, for subsequent saving by a userland process 2639 * once the system is up and the root filesystem is mounted r/w. 2640 * 2641 * In order to gracefully support upgrade on OpenSolaris, if 2642 * /etc/hostid does not exist, we will attempt to get a serial number 2643 * using the legacy method (/kernel/misc/sysinit). 2644 * 2645 * In an attempt to make the hostid less prone to abuse 2646 * (for license circumvention, etc), we store it in /etc/hostid 2647 * in rot47 format. 2648 */ 2649 extern volatile unsigned long tenmicrodata; 2650 static int atoi(char *); 2651 2652 static int32_t 2653 set_soft_hostid(void) 2654 { 2655 struct _buf *file; 2656 char tokbuf[MAXNAMELEN]; 2657 token_t token; 2658 int done = 0; 2659 u_longlong_t tmp; 2660 int i; 2661 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2662 unsigned char *c; 2663 hrtime_t tsc; 2664 2665 /* 2666 * If /etc/hostid file not found, we'd like to get a pseudo 2667 * random number to use at the hostid. A nice way to do this 2668 * is to read the real time clock. To remain xen-compatible, 2669 * we can't poke the real hardware, so we use tsc_read() to 2670 * read the real time clock. However, there is an ominous 2671 * warning in tsc_read that says it can return zero, so we 2672 * deal with that possibility by falling back to using the 2673 * (hopefully random enough) value in tenmicrodata. 2674 */ 2675 2676 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2677 /* 2678 * hostid file not found - try to load sysinit module 2679 * and see if it has a nonzero hostid value...use that 2680 * instead of generating a new hostid here if so. 2681 */ 2682 if ((i = modload("misc", "sysinit")) != -1) { 2683 if (strlen(hw_serial) > 0) 2684 hostid = (int32_t)atoi(hw_serial); 2685 (void) modunload(i); 2686 } 2687 if (hostid == HW_INVALID_HOSTID) { 2688 tsc = tsc_read(); 2689 if (tsc == 0) /* tsc_read can return zero sometimes */ 2690 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2691 else 2692 hostid = (int32_t)tsc & 0x0CFFFFF; 2693 } 2694 } else { 2695 /* hostid file found */ 2696 while (!done) { 2697 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2698 2699 switch (token) { 2700 case POUND: 2701 /* 2702 * skip comments 2703 */ 2704 kobj_find_eol(file); 2705 break; 2706 case STRING: 2707 /* 2708 * un-rot47 - obviously this 2709 * nonsense is ascii-specific 2710 */ 2711 for (c = (unsigned char *)tokbuf; 2712 *c != '\0'; c++) { 2713 *c += 47; 2714 if (*c > '~') 2715 *c -= 94; 2716 else if (*c < '!') 2717 *c += 94; 2718 } 2719 /* 2720 * now we should have a real number 2721 */ 2722 2723 if (kobj_getvalue(tokbuf, &tmp) != 0) 2724 kobj_file_err(CE_WARN, file, 2725 "Bad value %s for hostid", 2726 tokbuf); 2727 else 2728 hostid = (int32_t)tmp; 2729 2730 break; 2731 case EOF: 2732 done = 1; 2733 /* FALLTHROUGH */ 2734 case NEWLINE: 2735 kobj_newline(file); 2736 break; 2737 default: 2738 break; 2739 2740 } 2741 } 2742 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2743 kobj_file_err(CE_WARN, file, 2744 "hostid missing or corrupt"); 2745 2746 kobj_close_file(file); 2747 } 2748 /* 2749 * hostid is now the value read from /etc/hostid, or the 2750 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2751 * set. 2752 */ 2753 return (hostid); 2754 } 2755 2756 static int 2757 atoi(char *p) 2758 { 2759 int i = 0; 2760 2761 while (*p != '\0') 2762 i = 10 * i + (*p++ - '0'); 2763 2764 return (i); 2765 } 2766 2767 #endif /* _SOFT_HOSTID */ 2768 2769 void 2770 get_system_configuration(void) 2771 { 2772 char prop[32]; 2773 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2774 2775 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2776 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2777 kobj_getvalue(prop, &nodes_ll) == -1 || 2778 nodes_ll > MAXNODES || 2779 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2780 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2781 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2782 system_hardware.hd_nodes = 1; 2783 system_hardware.hd_cpus_per_node = 0; 2784 } else { 2785 system_hardware.hd_nodes = (int)nodes_ll; 2786 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2787 } 2788 2789 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2790 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2791 kobj_getvalue(prop, &lvalue) == -1) 2792 eprom_kernelbase = NULL; 2793 else 2794 eprom_kernelbase = (uintptr_t)lvalue; 2795 2796 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2797 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2798 kobj_getvalue(prop, &lvalue) == -1) 2799 segmapsize = SEGMAPDEFAULT; 2800 else 2801 segmapsize = (uintptr_t)lvalue; 2802 2803 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2804 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2805 kobj_getvalue(prop, &lvalue) == -1) 2806 segmapfreelists = 0; /* use segmap driver default */ 2807 else 2808 segmapfreelists = (int)lvalue; 2809 2810 /* physmem used to be here, but moved much earlier to fakebop.c */ 2811 } 2812 2813 /* 2814 * Add to a memory list. 2815 * start = start of new memory segment 2816 * len = length of new memory segment in bytes 2817 * new = pointer to a new struct memlist 2818 * memlistp = memory list to which to add segment. 2819 */ 2820 void 2821 memlist_add( 2822 uint64_t start, 2823 uint64_t len, 2824 struct memlist *new, 2825 struct memlist **memlistp) 2826 { 2827 struct memlist *cur; 2828 uint64_t end = start + len; 2829 2830 new->ml_address = start; 2831 new->ml_size = len; 2832 2833 cur = *memlistp; 2834 2835 while (cur) { 2836 if (cur->ml_address >= end) { 2837 new->ml_next = cur; 2838 *memlistp = new; 2839 new->ml_prev = cur->ml_prev; 2840 cur->ml_prev = new; 2841 return; 2842 } 2843 ASSERT(cur->ml_address + cur->ml_size <= start); 2844 if (cur->ml_next == NULL) { 2845 cur->ml_next = new; 2846 new->ml_prev = cur; 2847 new->ml_next = NULL; 2848 return; 2849 } 2850 memlistp = &cur->ml_next; 2851 cur = cur->ml_next; 2852 } 2853 } 2854 2855 void 2856 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2857 { 2858 size_t tsize = e_modtext - modtext; 2859 size_t dsize = e_moddata - moddata; 2860 2861 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2862 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2863 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2864 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2865 } 2866 2867 caddr_t 2868 kobj_text_alloc(vmem_t *arena, size_t size) 2869 { 2870 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2871 } 2872 2873 /*ARGSUSED*/ 2874 caddr_t 2875 kobj_texthole_alloc(caddr_t addr, size_t size) 2876 { 2877 panic("unexpected call to kobj_texthole_alloc()"); 2878 /*NOTREACHED*/ 2879 return (0); 2880 } 2881 2882 /*ARGSUSED*/ 2883 void 2884 kobj_texthole_free(caddr_t addr, size_t size) 2885 { 2886 panic("unexpected call to kobj_texthole_free()"); 2887 } 2888 2889 /* 2890 * This is called just after configure() in startup(). 2891 * 2892 * The ISALIST concept is a bit hopeless on Intel, because 2893 * there's no guarantee of an ever-more-capable processor 2894 * given that various parts of the instruction set may appear 2895 * and disappear between different implementations. 2896 * 2897 * While it would be possible to correct it and even enhance 2898 * it somewhat, the explicit hardware capability bitmask allows 2899 * more flexibility. 2900 * 2901 * So, we just leave this alone. 2902 */ 2903 void 2904 setx86isalist(void) 2905 { 2906 char *tp; 2907 size_t len; 2908 extern char *isa_list; 2909 2910 #define TBUFSIZE 1024 2911 2912 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2913 *tp = '\0'; 2914 2915 #if defined(__amd64) 2916 (void) strcpy(tp, "amd64 "); 2917 #endif 2918 2919 switch (x86_vendor) { 2920 case X86_VENDOR_Intel: 2921 case X86_VENDOR_AMD: 2922 case X86_VENDOR_TM: 2923 if (x86_feature & X86_CMOV) { 2924 /* 2925 * Pentium Pro or later 2926 */ 2927 (void) strcat(tp, "pentium_pro"); 2928 (void) strcat(tp, x86_feature & X86_MMX ? 2929 "+mmx pentium_pro " : " "); 2930 } 2931 /*FALLTHROUGH*/ 2932 case X86_VENDOR_Cyrix: 2933 /* 2934 * The Cyrix 6x86 does not have any Pentium features 2935 * accessible while not at privilege level 0. 2936 */ 2937 if (x86_feature & X86_CPUID) { 2938 (void) strcat(tp, "pentium"); 2939 (void) strcat(tp, x86_feature & X86_MMX ? 2940 "+mmx pentium " : " "); 2941 } 2942 break; 2943 default: 2944 break; 2945 } 2946 (void) strcat(tp, "i486 i386 i86"); 2947 len = strlen(tp) + 1; /* account for NULL at end of string */ 2948 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2949 kmem_free(tp, TBUFSIZE); 2950 2951 #undef TBUFSIZE 2952 } 2953 2954 2955 #ifdef __amd64 2956 2957 void * 2958 device_arena_alloc(size_t size, int vm_flag) 2959 { 2960 return (vmem_alloc(device_arena, size, vm_flag)); 2961 } 2962 2963 void 2964 device_arena_free(void *vaddr, size_t size) 2965 { 2966 vmem_free(device_arena, vaddr, size); 2967 } 2968 2969 #else /* __i386 */ 2970 2971 void * 2972 device_arena_alloc(size_t size, int vm_flag) 2973 { 2974 caddr_t vaddr; 2975 uintptr_t v; 2976 size_t start; 2977 size_t end; 2978 2979 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2980 if (vaddr == NULL) 2981 return (NULL); 2982 2983 v = (uintptr_t)vaddr; 2984 ASSERT(v >= kernelbase); 2985 ASSERT(v + size <= valloc_base); 2986 2987 start = btop(v - kernelbase); 2988 end = btop(v + size - 1 - kernelbase); 2989 ASSERT(start < toxic_bit_map_len); 2990 ASSERT(end < toxic_bit_map_len); 2991 2992 while (start <= end) { 2993 BT_ATOMIC_SET(toxic_bit_map, start); 2994 ++start; 2995 } 2996 return (vaddr); 2997 } 2998 2999 void 3000 device_arena_free(void *vaddr, size_t size) 3001 { 3002 uintptr_t v = (uintptr_t)vaddr; 3003 size_t start; 3004 size_t end; 3005 3006 ASSERT(v >= kernelbase); 3007 ASSERT(v + size <= valloc_base); 3008 3009 start = btop(v - kernelbase); 3010 end = btop(v + size - 1 - kernelbase); 3011 ASSERT(start < toxic_bit_map_len); 3012 ASSERT(end < toxic_bit_map_len); 3013 3014 while (start <= end) { 3015 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3016 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3017 ++start; 3018 } 3019 vmem_free(heap_arena, vaddr, size); 3020 } 3021 3022 /* 3023 * returns 1st address in range that is in device arena, or NULL 3024 * if len is not NULL it returns the length of the toxic range 3025 */ 3026 void * 3027 device_arena_contains(void *vaddr, size_t size, size_t *len) 3028 { 3029 uintptr_t v = (uintptr_t)vaddr; 3030 uintptr_t eaddr = v + size; 3031 size_t start; 3032 size_t end; 3033 3034 /* 3035 * if called very early by kmdb, just return NULL 3036 */ 3037 if (toxic_bit_map == NULL) 3038 return (NULL); 3039 3040 /* 3041 * First check if we're completely outside the bitmap range. 3042 */ 3043 if (v >= valloc_base || eaddr < kernelbase) 3044 return (NULL); 3045 3046 /* 3047 * Trim ends of search to look at only what the bitmap covers. 3048 */ 3049 if (v < kernelbase) 3050 v = kernelbase; 3051 start = btop(v - kernelbase); 3052 end = btop(eaddr - kernelbase); 3053 if (end >= toxic_bit_map_len) 3054 end = toxic_bit_map_len; 3055 3056 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3057 return (NULL); 3058 3059 v = kernelbase + ptob(start); 3060 if (len != NULL) 3061 *len = ptob(end - start); 3062 return ((void *)v); 3063 } 3064 3065 #endif /* __i386 */ 3066