1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 51 #include <sys/reboot.h> 52 #include <sys/uadmin.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 #include <sys/acct.h> 60 61 #include <sys/vfs.h> 62 #include <sys/dnlc.h> 63 #include <sys/var.h> 64 #include <sys/cmn_err.h> 65 #include <sys/utsname.h> 66 #include <sys/debug.h> 67 #include <sys/kdi.h> 68 69 #include <sys/dumphdr.h> 70 #include <sys/bootconf.h> 71 #include <sys/varargs.h> 72 #include <sys/promif.h> 73 #include <sys/prom_emul.h> /* for create_prom_prop */ 74 #include <sys/modctl.h> /* for "procfs" hack */ 75 76 #include <sys/consdev.h> 77 #include <sys/frame.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/sunndi.h> 81 #include <sys/ndi_impldefs.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/psw.h> 84 #include <sys/regset.h> 85 #include <sys/clock.h> 86 #include <sys/pte.h> 87 #include <sys/mmu.h> 88 #include <sys/tss.h> 89 #include <sys/stack.h> 90 #include <sys/trap.h> 91 #include <sys/pic.h> 92 #include <sys/fp.h> 93 #include <vm/anon.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/seg.h> 97 #include <vm/seg_dev.h> 98 #include <vm/seg_kmem.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_map.h> 101 #include <vm/seg_vn.h> 102 #include <vm/seg_kp.h> 103 #include <sys/memnode.h> 104 #include <vm/vm_dep.h> 105 #include <sys/swap.h> 106 #include <sys/thread.h> 107 #include <sys/sysconf.h> 108 #include <sys/vm_machparam.h> 109 #include <sys/archsystm.h> 110 #include <sys/machsystm.h> 111 #include <vm/hat.h> 112 #include <vm/hat_i86.h> 113 #include <sys/pmem.h> 114 #include <sys/instance.h> 115 #include <sys/smp_impldefs.h> 116 #include <sys/x86_archext.h> 117 #include <sys/segments.h> 118 #include <sys/clconf.h> 119 #include <sys/kobj.h> 120 #include <sys/kobj_lex.h> 121 #include <sys/prom_emul.h> 122 #include <sys/cpc_impl.h> 123 #include <sys/chip.h> 124 #include <sys/x86_archext.h> 125 #include <sys/cpu_module.h> 126 #include <sys/smbios.h> 127 128 extern void progressbar_init(void); 129 extern void progressbar_start(void); 130 131 /* 132 * XXX make declaration below "static" when drivers no longer use this 133 * interface. 134 */ 135 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 136 137 /* 138 * segkp 139 */ 140 extern int segkp_fromheap; 141 142 static void kvm_init(void); 143 static void startup_init(void); 144 static void startup_memlist(void); 145 static void startup_modules(void); 146 static void startup_bop_gone(void); 147 static void startup_vm(void); 148 static void startup_end(void); 149 150 /* 151 * Declare these as initialized data so we can patch them. 152 */ 153 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 154 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 155 156 char *kobj_file_buf; 157 int kobj_file_bufsize; /* set in /etc/system */ 158 159 /* Global variables for MP support. Used in mp_startup */ 160 caddr_t rm_platter_va; 161 uint32_t rm_platter_pa; 162 163 int auto_lpg_disable = 1; 164 165 /* 166 * Some CPUs have holes in the middle of the 64-bit virtual address range. 167 */ 168 uintptr_t hole_start, hole_end; 169 170 /* 171 * kpm mapping window 172 */ 173 caddr_t kpm_vbase; 174 size_t kpm_size; 175 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 176 177 /* 178 * VA range that must be preserved for boot until we release all of its 179 * mappings. 180 */ 181 #if defined(__amd64) 182 static void *kmem_setaside; 183 #endif 184 185 /* 186 * Configuration parameters set at boot time. 187 */ 188 189 caddr_t econtig; /* end of first block of contiguous kernel */ 190 191 struct bootops *bootops = 0; /* passed in from boot */ 192 struct bootops **bootopsp; 193 struct boot_syscalls *sysp; /* passed in from boot */ 194 195 char bootblock_fstype[16]; 196 197 char kern_bootargs[OBP_MAXPATHLEN]; 198 199 /* 200 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 201 * depends on number of BOP_ALLOC calls made and requested size, memory size 202 * combination and whether boot.bin memory needs to be freed. 203 */ 204 #define POSS_NEW_FRAGMENTS 12 205 206 /* 207 * VM data structures 208 */ 209 long page_hashsz; /* Size of page hash table (power of two) */ 210 struct page *pp_base; /* Base of initial system page struct array */ 211 struct page **page_hash; /* Page hash table */ 212 struct seg ktextseg; /* Segment used for kernel executable image */ 213 struct seg kvalloc; /* Segment used for "valloc" mapping */ 214 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 215 struct seg kmapseg; /* Segment used for generic kernel mappings */ 216 struct seg kdebugseg; /* Segment used for the kernel debugger */ 217 218 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 219 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 220 221 #if defined(__amd64) 222 struct seg kvseg_core; /* Segment used for the core heap */ 223 struct seg kpmseg; /* Segment used for physical mapping */ 224 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 225 #else 226 struct seg *segkpm = NULL; /* Unused on IA32 */ 227 #endif 228 229 caddr_t segkp_base; /* Base address of segkp */ 230 #if defined(__amd64) 231 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 232 #else 233 pgcnt_t segkpsize = 0; 234 #endif 235 236 struct memseg *memseg_base; 237 struct vnode unused_pages_vp; 238 239 #define FOURGB 0x100000000LL 240 241 struct memlist *memlist; 242 243 caddr_t s_text; /* start of kernel text segment */ 244 caddr_t e_text; /* end of kernel text segment */ 245 caddr_t s_data; /* start of kernel data segment */ 246 caddr_t e_data; /* end of kernel data segment */ 247 caddr_t modtext; /* start of loadable module text reserved */ 248 caddr_t e_modtext; /* end of loadable module text reserved */ 249 caddr_t moddata; /* start of loadable module data reserved */ 250 caddr_t e_moddata; /* end of loadable module data reserved */ 251 252 struct memlist *phys_install; /* Total installed physical memory */ 253 struct memlist *phys_avail; /* Total available physical memory */ 254 255 static void memlist_add(uint64_t, uint64_t, struct memlist *, 256 struct memlist **); 257 258 /* 259 * kphysm_init returns the number of pages that were processed 260 */ 261 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 262 263 #define IO_PROP_SIZE 64 /* device property size */ 264 265 /* 266 * a couple useful roundup macros 267 */ 268 #define ROUND_UP_PAGE(x) \ 269 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 270 #define ROUND_UP_LPAGE(x) \ 271 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 272 #define ROUND_UP_4MEG(x) \ 273 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 274 #define ROUND_UP_TOPLEVEL(x) \ 275 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 276 277 /* 278 * 32-bit Kernel's Virtual memory layout. 279 * +-----------------------+ 280 * | psm 1-1 map | 281 * | exec args area | 282 * 0xFFC00000 -|-----------------------|- ARGSBASE 283 * | debugger | 284 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 285 * | Kernel Data | 286 * 0xFEC00000 -|-----------------------| 287 * | Kernel Text | 288 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 289 * | LUFS sinkhole | 290 * 0xFE000000 -|-----------------------|- lufs_addr 291 * --- -|-----------------------|- valloc_base + valloc_sz 292 * | early pp structures | 293 * | memsegs, memlists, | 294 * | page hash, etc. | 295 * --- -|-----------------------|- valloc_base (floating) 296 * | ptable_va | 297 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 298 * | | (segkp is an arena under the heap) 299 * | | 300 * | kvseg | 301 * | | 302 * | | 303 * --- -|-----------------------|- kernelheap (floating) 304 * | Segkmap | 305 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 306 * | Red Zone | 307 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 308 * | | || 309 * | Shared objects | \/ 310 * | | 311 * : : 312 * | user data | 313 * |-----------------------| 314 * | user text | 315 * 0x08048000 -|-----------------------| 316 * | user stack | 317 * : : 318 * | invalid | 319 * 0x00000000 +-----------------------+ 320 * 321 * 322 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 323 * +-----------------------+ 324 * | psm 1-1 map | 325 * | exec args area | 326 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 327 * | debugger (?) | 328 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 329 * | unused | 330 * +-----------------------+ 331 * | Kernel Data | 332 * 0xFFFFFFFF.FBC00000 |-----------------------| 333 * | Kernel Text | 334 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 335 * | LUFS sinkhole | 336 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 337 * --- |-----------------------|- valloc_base + valloc_sz 338 * | early pp structures | 339 * | memsegs, memlists, | 340 * | page hash, etc. | 341 * --- |-----------------------|- valloc_base 342 * | ptable_va | 343 * --- |-----------------------|- ptable_va 344 * | Core heap | (used for loadable modules) 345 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 346 * | Kernel | 347 * | heap | 348 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 349 * | segkmap | 350 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 351 * | device mappings | 352 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 353 * | segkp | 354 * --- |-----------------------|- segkp_base 355 * | segkpm | 356 * 0xFFFFFE00.00000000 |-----------------------| 357 * | Red Zone | 358 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 359 * | User stack |- User space memory 360 * | | 361 * | shared objects, etc | (grows downwards) 362 * : : 363 * | | 364 * 0xFFFF8000.00000000 |-----------------------| 365 * | | 366 * | VA Hole / unused | 367 * | | 368 * 0x00008000.00000000 |-----------------------| 369 * | | 370 * | | 371 * : : 372 * | user heap | (grows upwards) 373 * | | 374 * | user data | 375 * |-----------------------| 376 * | user text | 377 * 0x00000000.04000000 |-----------------------| 378 * | invalid | 379 * 0x00000000.00000000 +-----------------------+ 380 * 381 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 382 * kernel, except that userlimit is raised to 0xfe000000 383 * 384 * Floating values: 385 * 386 * valloc_base: start of the kernel's memory management/tracking data 387 * structures. This region contains page_t structures for the lowest 4GB 388 * of physical memory, memsegs, memlists, and the page hash. 389 * 390 * core_base: start of the kernel's "core" heap area on 64-bit systems. 391 * This area is intended to be used for global data as well as for module 392 * text/data that does not fit into the nucleus pages. The core heap is 393 * restricted to a 2GB range, allowing every address within it to be 394 * accessed using rip-relative addressing 395 * 396 * ekernelheap: end of kernelheap and start of segmap. 397 * 398 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 399 * above a red zone that separates the user's address space from the 400 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 401 * 402 * segkmap_start: start of segmap. The length of segmap can be modified 403 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 404 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 405 * 406 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 407 * decreased by 2X the size required for page_t. This allows the kernel 408 * heap to grow in size with physical memory. With sizeof(page_t) == 80 409 * bytes, the following shows the values of kernelbase and kernel heap 410 * sizes for different memory configurations (assuming default segmap and 411 * segkp sizes). 412 * 413 * mem size for kernelbase kernel heap 414 * size page_t's size 415 * ---- --------- ---------- ----------- 416 * 1gb 0x01400000 0xd1800000 684MB 417 * 2gb 0x02800000 0xcf000000 704MB 418 * 4gb 0x05000000 0xca000000 744MB 419 * 6gb 0x07800000 0xc5000000 784MB 420 * 8gb 0x0a000000 0xc0000000 824MB 421 * 16gb 0x14000000 0xac000000 984MB 422 * 32gb 0x28000000 0x84000000 1304MB 423 * 64gb 0x50000000 0x34000000 1944MB (*) 424 * 425 * kernelbase is less than the abi minimum of 0xc0000000 for memory 426 * configurations above 8gb. 427 * 428 * (*) support for memory configurations above 32gb will require manual tuning 429 * of kernelbase to balance out the need of user applications. 430 */ 431 432 /* real-time-clock initialization parameters */ 433 long gmt_lag; /* offset in seconds of gmt to local time */ 434 extern long process_rtc_config_file(void); 435 436 char *final_kernelheap; 437 char *boot_kernelheap; 438 uintptr_t kernelbase; 439 uintptr_t eprom_kernelbase; 440 size_t segmapsize; 441 static uintptr_t segmap_reserved; 442 uintptr_t segkmap_start; 443 int segmapfreelists; 444 pgcnt_t boot_npages; 445 pgcnt_t npages; 446 size_t core_size; /* size of "core" heap */ 447 uintptr_t core_base; /* base address of "core" heap */ 448 449 /* 450 * List of bootstrap pages. We mark these as allocated in startup. 451 * release_bootstrap() will free them when we're completely done with 452 * the bootstrap. 453 */ 454 static page_t *bootpages, *rd_pages; 455 456 struct system_hardware system_hardware; 457 458 /* 459 * Enable some debugging messages concerning memory usage... 460 * 461 * XX64 There should only be one print routine once memlist usage between 462 * vmx and the kernel is cleaned up and there is a single memlist structure 463 * shared between kernel and boot. 464 */ 465 static void 466 print_boot_memlist(char *title, struct memlist *mp) 467 { 468 prom_printf("MEMLIST: %s:\n", title); 469 while (mp != NULL) { 470 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 471 mp->address, mp->size); 472 mp = mp->next; 473 } 474 } 475 476 static void 477 print_kernel_memlist(char *title, struct memlist *mp) 478 { 479 prom_printf("MEMLIST: %s:\n", title); 480 while (mp != NULL) { 481 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 482 mp->address, mp->size); 483 mp = mp->next; 484 } 485 } 486 487 /* 488 * XX64 need a comment here.. are these just default values, surely 489 * we read the "cpuid" type information to figure this out. 490 */ 491 int l2cache_sz = 0x80000; 492 int l2cache_linesz = 0x40; 493 int l2cache_assoc = 1; 494 495 /* 496 * on 64 bit we use a predifined VA range for mapping devices in the kernel 497 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 498 */ 499 #ifdef __amd64 500 501 vmem_t *device_arena; 502 uintptr_t toxic_addr = (uintptr_t)NULL; 503 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 504 505 #else /* __i386 */ 506 507 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 508 size_t toxic_bit_map_len = 0; /* in bits */ 509 510 #endif /* __i386 */ 511 512 /* 513 * Simple boot time debug facilities 514 */ 515 static char *prm_dbg_str[] = { 516 "%s:%d: '%s' is 0x%x\n", 517 "%s:%d: '%s' is 0x%llx\n" 518 }; 519 520 int prom_debug; 521 522 #define PRM_DEBUG(q) if (prom_debug) \ 523 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 524 #define PRM_POINT(q) if (prom_debug) \ 525 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 526 527 /* 528 * This structure is used to keep track of the intial allocations 529 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 530 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 531 */ 532 #define NUM_ALLOCATIONS 7 533 int num_allocations = 0; 534 struct { 535 void **al_ptr; 536 size_t al_size; 537 } allocations[NUM_ALLOCATIONS]; 538 size_t valloc_sz = 0; 539 uintptr_t valloc_base; 540 extern uintptr_t ptable_va; 541 extern size_t ptable_sz; 542 543 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 544 size = ROUND_UP_PAGE(size); \ 545 if (num_allocations == NUM_ALLOCATIONS) \ 546 panic("too many ADD_TO_ALLOCATIONS()"); \ 547 allocations[num_allocations].al_ptr = (void**)&ptr; \ 548 allocations[num_allocations].al_size = size; \ 549 valloc_sz += size; \ 550 ++num_allocations; \ 551 } 552 553 static void 554 perform_allocations(void) 555 { 556 caddr_t mem; 557 int i; 558 559 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 560 if (mem != (caddr_t)valloc_base) 561 panic("BOP_ALLOC() failed"); 562 bzero(mem, valloc_sz); 563 for (i = 0; i < num_allocations; ++i) { 564 *allocations[i].al_ptr = (void *)mem; 565 mem += allocations[i].al_size; 566 } 567 } 568 569 /* 570 * Our world looks like this at startup time. 571 * 572 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 573 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 574 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 575 * addresses are fixed in the binary at link time. 576 * 577 * On the text page: 578 * unix/genunix/krtld/module text loads. 579 * 580 * On the data page: 581 * unix/genunix/krtld/module data loads and space for page_t's. 582 */ 583 /* 584 * Machine-dependent startup code 585 */ 586 void 587 startup(void) 588 { 589 extern void startup_bios_disk(); 590 /* 591 * Make sure that nobody tries to use sekpm until we have 592 * initialized it properly. 593 */ 594 #if defined(__amd64) 595 kpm_desired = kpm_enable; 596 #endif 597 kpm_enable = 0; 598 599 progressbar_init(); 600 startup_init(); 601 startup_memlist(); 602 startup_modules(); 603 startup_bios_disk(); 604 startup_bop_gone(); 605 startup_vm(); 606 startup_end(); 607 progressbar_start(); 608 } 609 610 static void 611 startup_init() 612 { 613 PRM_POINT("startup_init() starting..."); 614 615 /* 616 * Complete the extraction of cpuid data 617 */ 618 cpuid_pass2(CPU); 619 620 (void) check_boot_version(BOP_GETVERSION(bootops)); 621 622 /* 623 * Check for prom_debug in boot environment 624 */ 625 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 626 ++prom_debug; 627 PRM_POINT("prom_debug found in boot enviroment"); 628 } 629 630 /* 631 * Collect node, cpu and memory configuration information. 632 */ 633 get_system_configuration(); 634 635 /* 636 * Halt if this is an unsupported processor. 637 */ 638 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 639 printf("\n486 processor (\"%s\") detected.\n", 640 CPU->cpu_brandstr); 641 halt("This processor is not supported by this release " 642 "of Solaris."); 643 } 644 645 PRM_POINT("startup_init() done"); 646 } 647 648 /* 649 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 650 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 651 * also filters out physical page zero. There is some reliance on the 652 * boot loader allocating only a few contiguous physical memory chunks. 653 */ 654 static void 655 avail_filter(uint64_t *addr, uint64_t *size) 656 { 657 uintptr_t va; 658 uintptr_t next_va; 659 pfn_t pfn; 660 uint64_t pfn_addr; 661 uint64_t pfn_eaddr; 662 uint_t prot; 663 size_t len; 664 uint_t change; 665 666 if (prom_debug) 667 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 668 *addr, *size); 669 670 /* 671 * page zero is required for BIOS.. never make it available 672 */ 673 if (*addr == 0) { 674 *addr += MMU_PAGESIZE; 675 *size -= MMU_PAGESIZE; 676 } 677 678 /* 679 * First we trim from the front of the range. Since hat_boot_probe() 680 * walks ranges in virtual order, but addr/size are physical, we need 681 * to the list until no changes are seen. This deals with the case 682 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 683 * but w < v. 684 */ 685 do { 686 change = 0; 687 for (va = KERNEL_TEXT; 688 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 689 va = next_va) { 690 691 next_va = va + len; 692 pfn_addr = ptob((uint64_t)pfn); 693 pfn_eaddr = pfn_addr + len; 694 695 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 696 change = 1; 697 while (*size > 0 && len > 0) { 698 *addr += MMU_PAGESIZE; 699 *size -= MMU_PAGESIZE; 700 len -= MMU_PAGESIZE; 701 } 702 } 703 } 704 if (change && prom_debug) 705 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 706 *addr, *size); 707 } while (change); 708 709 /* 710 * Trim pages from the end of the range. 711 */ 712 for (va = KERNEL_TEXT; 713 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 714 va = next_va) { 715 716 next_va = va + len; 717 pfn_addr = ptob((uint64_t)pfn); 718 719 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 720 *size = pfn_addr - *addr; 721 } 722 723 if (prom_debug) 724 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 725 *addr, *size); 726 } 727 728 static void 729 kpm_init() 730 { 731 struct segkpm_crargs b; 732 uintptr_t start, end; 733 struct memlist *pmem; 734 735 /* 736 * These variables were all designed for sfmmu in which segkpm is 737 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 738 * might use 2+ page sizes on a single machine, so none of these 739 * variables have a single correct value. They are set up as if we 740 * always use a 4KB pagesize, which should do no harm. In the long 741 * run, we should get rid of KPM's assumption that only a single 742 * pagesize is used. 743 */ 744 kpm_pgshft = MMU_PAGESHIFT; 745 kpm_pgsz = MMU_PAGESIZE; 746 kpm_pgoff = MMU_PAGEOFFSET; 747 kpmp2pshft = 0; 748 kpmpnpgs = 1; 749 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 750 751 PRM_POINT("about to create segkpm"); 752 rw_enter(&kas.a_lock, RW_WRITER); 753 754 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 755 panic("cannot attach segkpm"); 756 757 b.prot = PROT_READ | PROT_WRITE; 758 b.nvcolors = 1; 759 760 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 761 panic("segkpm_create segkpm"); 762 763 rw_exit(&kas.a_lock); 764 765 /* 766 * Map each of the memsegs into the kpm segment, coalesing adjacent 767 * memsegs to allow mapping with the largest possible pages. 768 */ 769 pmem = phys_install; 770 start = pmem->address; 771 end = start + pmem->size; 772 for (;;) { 773 if (pmem == NULL || pmem->address > end) { 774 hat_devload(kas.a_hat, kpm_vbase + start, 775 end - start, mmu_btop(start), 776 PROT_READ | PROT_WRITE, 777 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 778 if (pmem == NULL) 779 break; 780 start = pmem->address; 781 } 782 end = pmem->address + pmem->size; 783 pmem = pmem->next; 784 } 785 } 786 787 /* 788 * The purpose of startup memlist is to get the system to the 789 * point where it can use kmem_alloc()'s that operate correctly 790 * relying on BOP_ALLOC(). This includes allocating page_ts, 791 * page hash table, vmem initialized, etc. 792 * 793 * Boot's versions of physinstalled and physavail are insufficient for 794 * the kernel's purposes. Specifically we don't know which pages that 795 * are not in physavail can be reclaimed after boot is gone. 796 * 797 * This code solves the problem by dividing the address space 798 * into 3 regions as it takes over the MMU from the booter. 799 * 800 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 801 * can not be used by the kernel. 802 * 803 * 2) Any free page that happens to be mapped below kernelbase 804 * is protected until the boot loader is released, but will then be reclaimed. 805 * 806 * 3) Boot shouldn't use any address in the remaining area between kernelbase 807 * and KERNEL_TEXT. 808 * 809 * In the case of multiple mappings to the same page, region 1 has precedence 810 * over region 2. 811 */ 812 static void 813 startup_memlist(void) 814 { 815 size_t memlist_sz; 816 size_t memseg_sz; 817 size_t pagehash_sz; 818 size_t pp_sz; 819 uintptr_t va; 820 size_t len; 821 uint_t prot; 822 pfn_t pfn; 823 int memblocks; 824 caddr_t pagecolor_mem; 825 size_t pagecolor_memsz; 826 caddr_t page_ctrs_mem; 827 size_t page_ctrs_size; 828 struct memlist *current; 829 extern void startup_build_mem_nodes(struct memlist *); 830 831 /* XX64 fix these - they should be in include files */ 832 extern ulong_t cr4_value; 833 extern size_t page_coloring_init(uint_t, int, int); 834 extern void page_coloring_setup(caddr_t); 835 836 PRM_POINT("startup_memlist() starting..."); 837 838 /* 839 * Take the most current snapshot we can by calling mem-update. 840 * For this to work properly, we first have to ask boot for its 841 * end address. 842 */ 843 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 844 (void) BOP_GETPROP(bootops, "memory-update", NULL); 845 846 /* 847 * find if the kernel is mapped on a large page 848 */ 849 va = KERNEL_TEXT; 850 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 851 panic("Couldn't find kernel text boot mapping"); 852 853 /* 854 * Use leftover large page nucleus text/data space for loadable modules. 855 * Use at most MODTEXT/MODDATA. 856 */ 857 if (len > MMU_PAGESIZE) { 858 859 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 860 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 861 if (e_moddata - moddata > MODDATA) 862 e_moddata = moddata + MODDATA; 863 864 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 865 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 866 if (e_modtext - modtext > MODTEXT) 867 e_modtext = modtext + MODTEXT; 868 869 870 } else { 871 872 PRM_POINT("Kernel NOT loaded on Large Page!"); 873 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 874 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 875 876 } 877 econtig = e_moddata; 878 879 PRM_DEBUG(modtext); 880 PRM_DEBUG(e_modtext); 881 PRM_DEBUG(moddata); 882 PRM_DEBUG(e_moddata); 883 PRM_DEBUG(econtig); 884 885 /* 886 * For MP machines cr4_value must be set or the non-boot 887 * CPUs will not be able to start. 888 */ 889 if (x86_feature & X86_LARGEPAGE) 890 cr4_value = getcr4(); 891 PRM_DEBUG(cr4_value); 892 893 /* 894 * Examine the boot loaders physical memory map to find out: 895 * - total memory in system - physinstalled 896 * - the max physical address - physmax 897 * - the number of segments the intsalled memory comes in 898 */ 899 if (prom_debug) 900 print_boot_memlist("boot physinstalled", 901 bootops->boot_mem->physinstalled); 902 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 903 &physinstalled, &memblocks); 904 PRM_DEBUG(physmax); 905 PRM_DEBUG(physinstalled); 906 PRM_DEBUG(memblocks); 907 908 if (prom_debug) 909 print_boot_memlist("boot physavail", 910 bootops->boot_mem->physavail); 911 912 /* 913 * Initialize hat's mmu parameters. 914 * Check for enforce-prot-exec in boot environment. It's used to 915 * enable/disable support for the page table entry NX bit. 916 * The default is to enforce PROT_EXEC on processors that support NX. 917 * Boot seems to round up the "len", but 8 seems to be big enough. 918 */ 919 mmu_init(); 920 921 #ifdef __i386 922 /* 923 * physmax is lowered if there is more memory than can be 924 * physically addressed in 32 bit (PAE/non-PAE) modes. 925 */ 926 if (mmu.pae_hat) { 927 if (PFN_ABOVE64G(physmax)) { 928 physinstalled -= (physmax - (PFN_64G - 1)); 929 physmax = PFN_64G - 1; 930 } 931 } else { 932 if (PFN_ABOVE4G(physmax)) { 933 physinstalled -= (physmax - (PFN_4G - 1)); 934 physmax = PFN_4G - 1; 935 } 936 } 937 #endif 938 939 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 940 941 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 942 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 943 char value[8]; 944 945 if (len < 8) 946 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 947 else 948 (void) strcpy(value, ""); 949 if (strcmp(value, "off") == 0) 950 mmu.pt_nx = 0; 951 } 952 PRM_DEBUG(mmu.pt_nx); 953 954 /* 955 * We will need page_t's for every page in the system, except for 956 * memory mapped at or above above the start of the kernel text segment. 957 * 958 * pages above e_modtext are attributed to kernel debugger (obp_pages) 959 */ 960 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 961 obp_pages = 0; 962 va = KERNEL_TEXT; 963 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 964 npages -= len >> MMU_PAGESHIFT; 965 if (va >= (uintptr_t)e_moddata) 966 obp_pages += len >> MMU_PAGESHIFT; 967 va += len; 968 } 969 PRM_DEBUG(npages); 970 PRM_DEBUG(obp_pages); 971 972 /* 973 * If physmem is patched to be non-zero, use it instead of 974 * the computed value unless it is larger than the real 975 * amount of memory on hand. 976 */ 977 if (physmem == 0 || physmem > npages) { 978 physmem = npages; 979 } else if (physmem < npages) { 980 cmn_err(CE_WARN, "limiting physmem to 0x%lx of" 981 " 0x%lx available pages", physmem, npages); 982 npages = physmem; 983 } 984 PRM_DEBUG(physmem); 985 986 /* 987 * We now compute the sizes of all the initial allocations for 988 * structures the kernel needs in order do kmem_alloc(). These 989 * include: 990 * memsegs 991 * memlists 992 * page hash table 993 * page_t's 994 * page coloring data structs 995 */ 996 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 997 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 998 PRM_DEBUG(memseg_sz); 999 1000 /* 1001 * Reserve space for phys_avail/phys_install memlists. 1002 * There's no real good way to know exactly how much room we'll need, 1003 * but this should be a good upper bound. 1004 */ 1005 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1006 (memblocks + POSS_NEW_FRAGMENTS)); 1007 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1008 PRM_DEBUG(memlist_sz); 1009 1010 /* 1011 * The page structure hash table size is a power of 2 1012 * such that the average hash chain length is PAGE_HASHAVELEN. 1013 */ 1014 page_hashsz = npages / PAGE_HASHAVELEN; 1015 page_hashsz = 1 << highbit(page_hashsz); 1016 pagehash_sz = sizeof (struct page *) * page_hashsz; 1017 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1018 PRM_DEBUG(pagehash_sz); 1019 1020 /* 1021 * Set aside room for the page structures themselves. Note: on 1022 * 64-bit systems we don't allocate page_t's for every page here. 1023 * We just allocate enough to map the lowest 4GB of physical 1024 * memory, minus those pages that are used for the "nucleus" kernel 1025 * text and data. The remaining pages are allocated once we can 1026 * map around boot. 1027 * 1028 * boot_npages is used to allocate an area big enough for our 1029 * initial page_t's. kphym_init may use less than that. 1030 */ 1031 boot_npages = npages; 1032 #if defined(__amd64) 1033 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1034 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1035 #endif 1036 PRM_DEBUG(boot_npages); 1037 pp_sz = sizeof (struct page) * boot_npages; 1038 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1039 PRM_DEBUG(pp_sz); 1040 1041 /* 1042 * determine l2 cache info and memory size for page coloring 1043 */ 1044 (void) getl2cacheinfo(CPU, 1045 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1046 pagecolor_memsz = 1047 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1048 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1049 PRM_DEBUG(pagecolor_memsz); 1050 1051 page_ctrs_size = page_ctrs_sz(); 1052 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1053 PRM_DEBUG(page_ctrs_size); 1054 1055 /* 1056 * valloc_base will be below kernel text 1057 * The extra pages are for the HAT and kmdb to map page tables. 1058 */ 1059 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1060 valloc_base = KERNEL_TEXT - valloc_sz; 1061 PRM_DEBUG(valloc_base); 1062 ptable_va = valloc_base - ptable_sz; 1063 1064 #if defined(__amd64) 1065 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1066 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1067 "systems."); 1068 kernelbase = (uintptr_t)KERNELBASE; 1069 core_base = (uintptr_t)COREHEAP_BASE; 1070 core_size = ptable_va - core_base; 1071 #else /* __i386 */ 1072 /* 1073 * We configure kernelbase based on: 1074 * 1075 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1076 * KERNELBASE_MAX. we large page align eprom_kernelbase 1077 * 1078 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1079 * On large memory systems we must lower kernelbase to allow 1080 * enough room for page_t's for all of memory. 1081 * 1082 * The value set here, might be changed a little later. 1083 */ 1084 if (eprom_kernelbase) { 1085 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1086 if (kernelbase > KERNELBASE_MAX) 1087 kernelbase = KERNELBASE_MAX; 1088 } else { 1089 kernelbase = (uintptr_t)KERNELBASE; 1090 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1091 } 1092 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1093 core_base = ptable_va; 1094 core_size = 0; 1095 #endif 1096 1097 PRM_DEBUG(kernelbase); 1098 PRM_DEBUG(core_base); 1099 PRM_DEBUG(core_size); 1100 1101 /* 1102 * At this point, we can only use a portion of the kernelheap that 1103 * will be available after we boot. Both 32-bit and 64-bit systems 1104 * have this limitation, although the reasons are completely 1105 * different. 1106 * 1107 * On 64-bit systems, the booter only supports allocations in the 1108 * upper 4GB of memory, so we have to work with a reduced kernel 1109 * heap until we take over all allocations. The booter also sits 1110 * in the lower portion of that 4GB range, so we have to raise the 1111 * bottom of the heap even further. 1112 * 1113 * On 32-bit systems we have to leave room to place segmap below 1114 * the heap. We don't yet know how large segmap will be, so we 1115 * have to be very conservative. 1116 */ 1117 #if defined(__amd64) 1118 /* 1119 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1120 * address range. In the long run, that should be fixed. It's 1121 * insane for a booter to need 2 2GB address ranges. 1122 */ 1123 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1124 segmap_reserved = 0; 1125 1126 #else /* __i386 */ 1127 segkp_fromheap = 1; 1128 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1129 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1130 segmap_reserved); 1131 #endif 1132 PRM_DEBUG(boot_kernelheap); 1133 kernelheap = boot_kernelheap; 1134 ekernelheap = (char *)core_base; 1135 1136 /* 1137 * If segmap is too large we can push the bottom of the kernel heap 1138 * higher than the base. Or worse, it could exceed the top of the 1139 * VA space entirely, causing it to wrap around. 1140 */ 1141 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1142 panic("too little memory available for kernelheap," 1143 " use a different kernelbase"); 1144 1145 /* 1146 * Now that we know the real value of kernelbase, 1147 * update variables that were initialized with a value of 1148 * KERNELBASE (in common/conf/param.c). 1149 * 1150 * XXX The problem with this sort of hackery is that the 1151 * compiler just may feel like putting the const declarations 1152 * (in param.c) into the .text section. Perhaps they should 1153 * just be declared as variables there? 1154 */ 1155 1156 #if defined(__amd64) 1157 ASSERT(_kernelbase == KERNELBASE); 1158 ASSERT(_userlimit == USERLIMIT); 1159 /* 1160 * As one final sanity check, verify that the "red zone" between 1161 * kernel and userspace is exactly the size we expected. 1162 */ 1163 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1164 #else 1165 *(uintptr_t *)&_kernelbase = kernelbase; 1166 *(uintptr_t *)&_userlimit = kernelbase; 1167 *(uintptr_t *)&_userlimit32 = _userlimit; 1168 #endif 1169 PRM_DEBUG(_kernelbase); 1170 PRM_DEBUG(_userlimit); 1171 PRM_DEBUG(_userlimit32); 1172 1173 /* 1174 * do all the initial allocations 1175 */ 1176 perform_allocations(); 1177 1178 /* 1179 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1180 */ 1181 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1182 (void *)core_base, (void *)ptable_va); 1183 1184 /* 1185 * Build phys_install and phys_avail in kernel memspace. 1186 * - phys_install should be all memory in the system. 1187 * - phys_avail is phys_install minus any memory mapped before this 1188 * point above KERNEL_TEXT. 1189 */ 1190 current = phys_install = memlist; 1191 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1192 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1193 panic("physinstalled was too big!"); 1194 if (prom_debug) 1195 print_kernel_memlist("phys_install", phys_install); 1196 1197 phys_avail = current; 1198 PRM_POINT("Building phys_avail:\n"); 1199 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1200 avail_filter); 1201 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1202 panic("physavail was too big!"); 1203 if (prom_debug) 1204 print_kernel_memlist("phys_avail", phys_avail); 1205 1206 /* 1207 * setup page coloring 1208 */ 1209 page_coloring_setup(pagecolor_mem); 1210 page_lock_init(); /* currently a no-op */ 1211 1212 /* 1213 * free page list counters 1214 */ 1215 (void) page_ctrs_alloc(page_ctrs_mem); 1216 1217 /* 1218 * Initialize the page structures from the memory lists. 1219 */ 1220 availrmem_initial = availrmem = freemem = 0; 1221 PRM_POINT("Calling kphysm_init()..."); 1222 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1223 PRM_POINT("kphysm_init() done"); 1224 PRM_DEBUG(boot_npages); 1225 1226 /* 1227 * Now that page_t's have been initialized, remove all the 1228 * initial allocation pages from the kernel free page lists. 1229 */ 1230 boot_mapin((caddr_t)valloc_base, valloc_sz); 1231 1232 /* 1233 * Initialize kernel memory allocator. 1234 */ 1235 kmem_init(); 1236 1237 /* 1238 * print this out early so that we know what's going on 1239 */ 1240 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1241 1242 /* 1243 * Initialize bp_mapin(). 1244 */ 1245 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1246 1247 #if defined(__i386) 1248 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1249 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1250 "System using 0x%lx", 1251 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1252 #endif 1253 1254 #ifdef KERNELBASE_ABI_MIN 1255 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1256 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1257 "i386 ABI compliant.", (uintptr_t)kernelbase); 1258 } 1259 #endif 1260 1261 PRM_POINT("startup_memlist() done"); 1262 } 1263 1264 static void 1265 startup_modules(void) 1266 { 1267 unsigned int i; 1268 extern void prom_setup(void); 1269 1270 PRM_POINT("startup_modules() starting..."); 1271 /* 1272 * Initialize ten-micro second timer so that drivers will 1273 * not get short changed in their init phase. This was 1274 * not getting called until clkinit which, on fast cpu's 1275 * caused the drv_usecwait to be way too short. 1276 */ 1277 microfind(); 1278 1279 /* 1280 * Read the GMT lag from /etc/rtc_config. 1281 */ 1282 gmt_lag = process_rtc_config_file(); 1283 1284 /* 1285 * Calculate default settings of system parameters based upon 1286 * maxusers, yet allow to be overridden via the /etc/system file. 1287 */ 1288 param_calc(0); 1289 1290 mod_setup(); 1291 1292 /* 1293 * Initialize system parameters. 1294 */ 1295 param_init(); 1296 1297 /* 1298 * maxmem is the amount of physical memory we're playing with. 1299 */ 1300 maxmem = physmem; 1301 1302 /* 1303 * Initialize the hat layer. 1304 */ 1305 hat_init(); 1306 1307 /* 1308 * Initialize segment management stuff. 1309 */ 1310 seg_init(); 1311 1312 if (modload("fs", "specfs") == -1) 1313 halt("Can't load specfs"); 1314 1315 if (modload("fs", "devfs") == -1) 1316 halt("Can't load devfs"); 1317 1318 dispinit(); 1319 1320 /* 1321 * This is needed here to initialize hw_serial[] for cluster booting. 1322 */ 1323 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1324 (void) modunload(i); 1325 else 1326 cmn_err(CE_CONT, "sysinit load failed"); 1327 1328 /* Read cluster configuration data. */ 1329 clconf_init(); 1330 1331 /* 1332 * Create a kernel device tree. First, create rootnex and 1333 * then invoke bus specific code to probe devices. 1334 */ 1335 setup_ddi(); 1336 1337 /* 1338 * Set up the CPU module subsystem. Modifies the device tree, so it 1339 * must be done after setup_ddi(). 1340 */ 1341 cmi_init(); 1342 1343 /* 1344 * Initialize the MCA handlers 1345 */ 1346 if (x86_feature & X86_MCA) 1347 cmi_mca_init(); 1348 1349 /* 1350 * Fake a prom tree such that /dev/openprom continues to work 1351 */ 1352 prom_setup(); 1353 1354 /* 1355 * Load all platform specific modules 1356 */ 1357 psm_modload(); 1358 1359 PRM_POINT("startup_modules() done"); 1360 } 1361 1362 static void 1363 startup_bop_gone(void) 1364 { 1365 PRM_POINT("startup_bop_gone() starting..."); 1366 1367 /* 1368 * Do final allocations of HAT data structures that need to 1369 * be allocated before quiescing the boot loader. 1370 */ 1371 PRM_POINT("Calling hat_kern_alloc()..."); 1372 hat_kern_alloc(); 1373 PRM_POINT("hat_kern_alloc() done"); 1374 1375 /* 1376 * Setup MTRR (Memory type range registers) 1377 */ 1378 setup_mtrr(); 1379 PRM_POINT("startup_bop_gone() done"); 1380 } 1381 1382 /* 1383 * Walk through the pagetables looking for pages mapped in by boot. If the 1384 * setaside flag is set the pages are expected to be returned to the 1385 * kernel later in boot, so we add them to the bootpages list. 1386 */ 1387 static void 1388 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1389 { 1390 uintptr_t va = low; 1391 size_t len; 1392 uint_t prot; 1393 pfn_t pfn; 1394 page_t *pp; 1395 pgcnt_t boot_protect_cnt = 0; 1396 1397 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1398 if (va + len >= high) 1399 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1400 "legal range.", len, (void *)va); 1401 1402 while (len > 0) { 1403 pp = page_numtopp_alloc(pfn); 1404 if (pp != NULL) { 1405 if (setaside == 0) 1406 panic("Unexpected mapping by boot. " 1407 "addr=%p pfn=%lx\n", 1408 (void *)va, pfn); 1409 1410 pp->p_next = bootpages; 1411 bootpages = pp; 1412 ++boot_protect_cnt; 1413 } 1414 1415 ++pfn; 1416 len -= MMU_PAGESIZE; 1417 va += MMU_PAGESIZE; 1418 } 1419 } 1420 PRM_DEBUG(boot_protect_cnt); 1421 } 1422 1423 static void 1424 startup_vm(void) 1425 { 1426 struct segmap_crargs a; 1427 extern void hat_kern_setup(void); 1428 pgcnt_t pages_left; 1429 1430 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1431 extern pgcnt_t auto_lpg_min_physmem; 1432 1433 PRM_POINT("startup_vm() starting..."); 1434 1435 /* 1436 * The next two loops are done in distinct steps in order 1437 * to be sure that any page that is doubly mapped (both above 1438 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1439 * Note this may never happen, but it might someday. 1440 */ 1441 1442 bootpages = NULL; 1443 PRM_POINT("Protecting boot pages"); 1444 /* 1445 * Protect any pages mapped above KERNEL_TEXT that somehow have 1446 * page_t's. This can only happen if something weird allocated 1447 * in this range (like kadb/kmdb). 1448 */ 1449 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1450 1451 /* 1452 * Before we can take over memory allocation/mapping from the boot 1453 * loader we must remove from our free page lists any boot pages that 1454 * will stay mapped until release_bootstrap(). 1455 */ 1456 protect_boot_range(0, kernelbase, 1); 1457 #if defined(__amd64) 1458 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1459 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1460 #endif 1461 1462 /* 1463 * Copy in boot's page tables, set up extra page tables for the kernel, 1464 * and switch to the kernel's context. 1465 */ 1466 PRM_POINT("Calling hat_kern_setup()..."); 1467 hat_kern_setup(); 1468 1469 /* 1470 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1471 */ 1472 bootops->bsys_alloc = NULL; 1473 PRM_POINT("hat_kern_setup() done"); 1474 1475 hat_cpu_online(CPU); 1476 1477 /* 1478 * Before we call kvm_init(), we need to establish the final size 1479 * of the kernel's heap. So, we need to figure out how much space 1480 * to set aside for segkp, segkpm, and segmap. 1481 */ 1482 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1483 #if defined(__amd64) 1484 if (kpm_desired) { 1485 /* 1486 * Segkpm appears at the bottom of the kernel's address 1487 * range. To detect accidental overruns of the user 1488 * address space, we leave a "red zone" of unmapped memory 1489 * between kernelbase and the beginning of segkpm. 1490 */ 1491 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1492 kpm_size = mmu_ptob(physmax); 1493 PRM_DEBUG(kpm_vbase); 1494 PRM_DEBUG(kpm_size); 1495 final_kernelheap = 1496 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1497 } 1498 1499 if (!segkp_fromheap) { 1500 size_t sz = mmu_ptob(segkpsize); 1501 1502 /* 1503 * determine size of segkp and adjust the bottom of the 1504 * kernel's heap. 1505 */ 1506 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1507 sz = SEGKPDEFSIZE; 1508 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1509 "segkpsize has been reset to %ld pages", 1510 mmu_btop(sz)); 1511 } 1512 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1513 1514 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1515 segkp_base = final_kernelheap; 1516 PRM_DEBUG(segkpsize); 1517 PRM_DEBUG(segkp_base); 1518 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1519 PRM_DEBUG(final_kernelheap); 1520 } 1521 1522 /* 1523 * put the range of VA for device mappings next 1524 */ 1525 toxic_addr = (uintptr_t)final_kernelheap; 1526 PRM_DEBUG(toxic_addr); 1527 final_kernelheap = (char *)toxic_addr + toxic_size; 1528 #endif 1529 PRM_DEBUG(final_kernelheap); 1530 ASSERT(final_kernelheap < boot_kernelheap); 1531 1532 /* 1533 * Users can change segmapsize through eeprom or /etc/system. 1534 * If the variable is tuned through eeprom, there is no upper 1535 * bound on the size of segmap. If it is tuned through 1536 * /etc/system on 32-bit systems, it must be no larger than we 1537 * planned for in startup_memlist(). 1538 */ 1539 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1540 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1541 1542 #if defined(__i386) 1543 if (segmapsize > segmap_reserved) { 1544 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1545 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1546 segmapsize = segmap_reserved; 1547 } 1548 /* 1549 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1550 * the bottom of the kernel's address range. Set aside space for a 1551 * red zone just below the start of segmap. 1552 */ 1553 segkmap_start += KERNEL_REDZONE_SIZE; 1554 segmapsize -= KERNEL_REDZONE_SIZE; 1555 #endif 1556 final_kernelheap = (char *)(segkmap_start + segmapsize); 1557 1558 PRM_DEBUG(segkmap_start); 1559 PRM_DEBUG(segmapsize); 1560 PRM_DEBUG(final_kernelheap); 1561 1562 /* 1563 * Initialize VM system 1564 */ 1565 PRM_POINT("Calling kvm_init()..."); 1566 kvm_init(); 1567 PRM_POINT("kvm_init() done"); 1568 1569 /* 1570 * Tell kmdb that the VM system is now working 1571 */ 1572 if (boothowto & RB_DEBUG) 1573 kdi_dvec_vmready(); 1574 1575 /* 1576 * Mangle the brand string etc. 1577 */ 1578 cpuid_pass3(CPU); 1579 1580 PRM_DEBUG(final_kernelheap); 1581 1582 /* 1583 * Now that we can use memory outside the top 4GB (on 64-bit 1584 * systems) and we know the size of segmap, we can set the final 1585 * size of the kernel's heap. Note: on 64-bit systems we still 1586 * can't touch anything in the bottom half of the top 4GB range 1587 * because boot still has pages mapped there. 1588 */ 1589 if (final_kernelheap < boot_kernelheap) { 1590 kernelheap_extend(final_kernelheap, boot_kernelheap); 1591 #if defined(__amd64) 1592 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1593 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1594 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1595 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1596 PRM_DEBUG(kmem_setaside); 1597 if (kmem_setaside == NULL) 1598 panic("Could not protect boot's memory"); 1599 #endif 1600 } 1601 /* 1602 * Now that the kernel heap may have grown significantly, we need 1603 * to make all the remaining page_t's available to back that memory. 1604 * 1605 * XX64 this should probably wait till after release boot-strap too. 1606 */ 1607 pages_left = npages - boot_npages; 1608 if (pages_left > 0) { 1609 PRM_DEBUG(pages_left); 1610 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1611 } 1612 1613 #if defined(__amd64) 1614 1615 /* 1616 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1617 */ 1618 device_arena = vmem_create("device", (void *)toxic_addr, 1619 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1620 1621 #else /* __i386 */ 1622 1623 /* 1624 * allocate the bit map that tracks toxic pages 1625 */ 1626 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1627 PRM_DEBUG(toxic_bit_map_len); 1628 toxic_bit_map = 1629 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1630 ASSERT(toxic_bit_map != NULL); 1631 PRM_DEBUG(toxic_bit_map); 1632 1633 #endif /* __i386 */ 1634 1635 1636 /* 1637 * Now that we've got more VA, as well as the ability to allocate from 1638 * it, tell the debugger. 1639 */ 1640 if (boothowto & RB_DEBUG) 1641 kdi_dvec_memavail(); 1642 1643 /* 1644 * The following code installs a special page fault handler (#pf) 1645 * to work around a pentium bug. 1646 */ 1647 #if !defined(__amd64) 1648 if (x86_type == X86_TYPE_P5) { 1649 gate_desc_t *newidt; 1650 desctbr_t newidt_r; 1651 1652 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1653 panic("failed to install pentium_pftrap"); 1654 1655 bcopy(idt0, newidt, sizeof (idt0)); 1656 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1657 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1658 1659 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1660 PROT_READ|PROT_EXEC); 1661 1662 newidt_r.dtr_limit = sizeof (idt0) - 1; 1663 newidt_r.dtr_base = (uintptr_t)newidt; 1664 CPU->cpu_idt = newidt; 1665 wr_idtr(&newidt_r); 1666 } 1667 #endif /* !__amd64 */ 1668 1669 /* 1670 * Map page pfn=0 for drivers, such as kd, that need to pick up 1671 * parameters left there by controllers/BIOS. 1672 */ 1673 PRM_POINT("setup up p0_va"); 1674 p0_va = i86devmap(0, 1, PROT_READ); 1675 PRM_DEBUG(p0_va); 1676 1677 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1678 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1679 1680 /* 1681 * disable automatic large pages for small memory systems or 1682 * when the disable flag is set. 1683 */ 1684 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1685 exec_lpg_disable = 1; 1686 use_brk_lpg = 0; 1687 use_stk_lpg = 0; 1688 use_zmap_lpg = 0; 1689 } 1690 1691 PRM_POINT("Calling hat_init_finish()..."); 1692 hat_init_finish(); 1693 PRM_POINT("hat_init_finish() done"); 1694 1695 /* 1696 * Initialize the segkp segment type. 1697 */ 1698 rw_enter(&kas.a_lock, RW_WRITER); 1699 if (!segkp_fromheap) { 1700 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1701 segkp) < 0) { 1702 panic("startup: cannot attach segkp"); 1703 /*NOTREACHED*/ 1704 } 1705 } else { 1706 /* 1707 * For 32 bit x86 systems, we will have segkp under the heap. 1708 * There will not be a segkp segment. We do, however, need 1709 * to fill in the seg structure. 1710 */ 1711 segkp->s_as = &kas; 1712 } 1713 if (segkp_create(segkp) != 0) { 1714 panic("startup: segkp_create failed"); 1715 /*NOTREACHED*/ 1716 } 1717 PRM_DEBUG(segkp); 1718 rw_exit(&kas.a_lock); 1719 1720 /* 1721 * kpm segment 1722 */ 1723 segmap_kpm = 0; 1724 if (kpm_desired) { 1725 kpm_init(); 1726 kpm_enable = 1; 1727 } 1728 1729 /* 1730 * Now create segmap segment. 1731 */ 1732 rw_enter(&kas.a_lock, RW_WRITER); 1733 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1734 panic("cannot attach segkmap"); 1735 /*NOTREACHED*/ 1736 } 1737 PRM_DEBUG(segkmap); 1738 1739 /* 1740 * The 64 bit HAT permanently maps only segmap's page tables. 1741 * The 32 bit HAT maps the heap's page tables too. 1742 */ 1743 #if defined(__amd64) 1744 hat_kmap_init(segkmap_start, segmapsize); 1745 #else /* __i386 */ 1746 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1747 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1748 #endif /* __i386 */ 1749 1750 a.prot = PROT_READ | PROT_WRITE; 1751 a.shmsize = 0; 1752 a.nfreelist = segmapfreelists; 1753 1754 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1755 panic("segmap_create segkmap"); 1756 rw_exit(&kas.a_lock); 1757 1758 setup_vaddr_for_ppcopy(CPU); 1759 1760 segdev_init(); 1761 pmem_init(); 1762 PRM_POINT("startup_vm() done"); 1763 } 1764 1765 static void 1766 startup_end(void) 1767 { 1768 extern void setx86isalist(void); 1769 1770 PRM_POINT("startup_end() starting..."); 1771 1772 /* 1773 * Perform tasks that get done after most of the VM 1774 * initialization has been done but before the clock 1775 * and other devices get started. 1776 */ 1777 kern_setup1(); 1778 1779 /* 1780 * Perform CPC initialization for this CPU. 1781 */ 1782 kcpc_hw_init(CPU); 1783 1784 #if defined(__amd64) 1785 /* 1786 * Validate support for syscall/sysret 1787 * XX64 -- include SSE, SSE2, etc. here too? 1788 */ 1789 if ((x86_feature & X86_ASYSC) == 0) { 1790 cmn_err(CE_WARN, 1791 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1792 } 1793 #endif 1794 /* 1795 * Configure the system. 1796 */ 1797 PRM_POINT("Calling configure()..."); 1798 configure(); /* set up devices */ 1799 PRM_POINT("configure() done"); 1800 1801 /* 1802 * Set the isa_list string to the defined instruction sets we 1803 * support. 1804 */ 1805 setx86isalist(); 1806 cpu_intr_alloc(CPU, NINTR_THREADS); 1807 psm_install(); 1808 1809 /* 1810 * We're done with bootops. We don't unmap the bootstrap yet because 1811 * we're still using bootsvcs. 1812 */ 1813 PRM_POINT("zeroing out bootops"); 1814 *bootopsp = (struct bootops *)0; 1815 bootops = (struct bootops *)NULL; 1816 1817 PRM_POINT("Enabling interrupts"); 1818 (*picinitf)(); 1819 sti(); 1820 1821 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1822 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1823 1824 PRM_POINT("startup_end() done"); 1825 } 1826 1827 extern char hw_serial[]; 1828 char *_hs1107 = hw_serial; 1829 ulong_t _bdhs34; 1830 1831 void 1832 post_startup(void) 1833 { 1834 /* 1835 * Set the system wide, processor-specific flags to be passed 1836 * to userland via the aux vector for performance hints and 1837 * instruction set extensions. 1838 */ 1839 bind_hwcap(); 1840 1841 /* 1842 * Load the System Management BIOS into the global ksmbios handle, 1843 * if an SMBIOS is present on this system. 1844 */ 1845 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1846 1847 /* 1848 * Startup memory scrubber. 1849 */ 1850 memscrub_init(); 1851 1852 /* 1853 * Complete CPU module initialization 1854 */ 1855 cmi_post_init(); 1856 1857 /* 1858 * Perform forceloading tasks for /etc/system. 1859 */ 1860 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1861 1862 /* 1863 * ON4.0: Force /proc module in until clock interrupt handle fixed 1864 * ON4.0: This must be fixed or restated in /etc/systems. 1865 */ 1866 (void) modload("fs", "procfs"); 1867 1868 #if defined(__i386) 1869 /* 1870 * Check for required functional Floating Point hardware, 1871 * unless FP hardware explicitly disabled. 1872 */ 1873 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1874 halt("No working FP hardware found"); 1875 #endif 1876 1877 maxmem = freemem; 1878 1879 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1880 1881 /* 1882 * Perform the formal initialization of the boot chip, 1883 * and associate the boot cpu with it. 1884 * This must be done after the cpu node for CPU has been 1885 * added to the device tree, when the necessary probing to 1886 * know the chip type and chip "id" is performed. 1887 */ 1888 chip_cpu_init(CPU); 1889 chip_cpu_assign(CPU); 1890 } 1891 1892 static int 1893 pp_in_ramdisk(page_t *pp) 1894 { 1895 extern uint64_t ramdisk_start, ramdisk_end; 1896 1897 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1898 (pp->p_pagenum < btopr(ramdisk_end))); 1899 } 1900 1901 void 1902 release_bootstrap(void) 1903 { 1904 int root_is_ramdisk; 1905 pfn_t pfn; 1906 page_t *pp; 1907 extern void kobj_boot_unmountroot(void); 1908 extern dev_t rootdev; 1909 1910 /* unmount boot ramdisk and release kmem usage */ 1911 kobj_boot_unmountroot(); 1912 1913 /* 1914 * We're finished using the boot loader so free its pages. 1915 */ 1916 PRM_POINT("Unmapping lower boot pages"); 1917 clear_boot_mappings(0, kernelbase); 1918 #if defined(__amd64) 1919 PRM_POINT("Unmapping upper boot pages"); 1920 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1921 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1922 #endif 1923 1924 /* 1925 * If root isn't on ramdisk, destroy the hardcoded 1926 * ramdisk node now and release the memory. Else, 1927 * ramdisk memory is kept in rd_pages. 1928 */ 1929 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1930 if (!root_is_ramdisk) { 1931 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1932 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1933 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1934 (void) ddi_remove_child(dip, 0); 1935 } 1936 1937 PRM_POINT("Releasing boot pages"); 1938 while (bootpages) { 1939 pp = bootpages; 1940 bootpages = pp->p_next; 1941 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1942 pp->p_next = rd_pages; 1943 rd_pages = pp; 1944 continue; 1945 } 1946 pp->p_next = (struct page *)0; 1947 page_free(pp, 1); 1948 } 1949 1950 /* 1951 * Find 1 page below 1 MB so that other processors can boot up. 1952 * Make sure it has a kernel VA as well as a 1:1 mapping. 1953 * We should have just free'd one up. 1954 */ 1955 if (use_mp) { 1956 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1957 if (page_numtopp_alloc(pfn) == NULL) 1958 continue; 1959 rm_platter_va = i86devmap(pfn, 1, 1960 PROT_READ | PROT_WRITE | PROT_EXEC); 1961 rm_platter_pa = ptob(pfn); 1962 hat_devload(kas.a_hat, 1963 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1964 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 1965 HAT_LOAD_NOCONSIST); 1966 break; 1967 } 1968 if (pfn == btop(1*1024*1024)) 1969 panic("No page available for starting " 1970 "other processors"); 1971 } 1972 1973 #if defined(__amd64) 1974 PRM_POINT("Returning boot's VA space to kernel heap"); 1975 if (kmem_setaside != NULL) 1976 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 1977 #endif 1978 } 1979 1980 /* 1981 * Initialize the platform-specific parts of a page_t. 1982 */ 1983 void 1984 add_physmem_cb(page_t *pp, pfn_t pnum) 1985 { 1986 pp->p_pagenum = pnum; 1987 pp->p_mapping = NULL; 1988 pp->p_embed = 0; 1989 pp->p_share = 0; 1990 pp->p_mlentry = 0; 1991 } 1992 1993 /* 1994 * kphysm_init() initializes physical memory. 1995 */ 1996 static pgcnt_t 1997 kphysm_init( 1998 page_t *inpp, 1999 struct memseg *memsegp, 2000 pgcnt_t start, 2001 pgcnt_t npages) 2002 { 2003 struct memlist *pmem; 2004 struct memseg *cur_memseg; 2005 struct memseg **memsegpp; 2006 pfn_t base_pfn; 2007 pgcnt_t num; 2008 pgcnt_t total_skipped = 0; 2009 pgcnt_t skipping = 0; 2010 pgcnt_t pages_done = 0; 2011 pgcnt_t largepgcnt; 2012 uint64_t addr; 2013 uint64_t size; 2014 page_t *pp = inpp; 2015 int dobreak = 0; 2016 extern pfn_t ddiphysmin; 2017 2018 ASSERT(page_hash != NULL && page_hashsz != 0); 2019 2020 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2021 ASSERT(cur_memseg == memsegp || start > 0); 2022 2023 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2024 /* 2025 * In a 32 bit kernel can't use higher memory if we're 2026 * not booting in PAE mode. This check takes care of that. 2027 */ 2028 addr = pmem->address; 2029 size = pmem->size; 2030 if (btop(addr) > physmax) 2031 continue; 2032 2033 /* 2034 * align addr and size - they may not be at page boundaries 2035 */ 2036 if ((addr & MMU_PAGEOFFSET) != 0) { 2037 addr += MMU_PAGEOFFSET; 2038 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2039 size -= addr - pmem->address; 2040 } 2041 2042 /* only process pages below or equal to physmax */ 2043 if ((btop(addr + size) - 1) > physmax) 2044 size = ptob(physmax - btop(addr) + 1); 2045 2046 num = btop(size); 2047 if (num == 0) 2048 continue; 2049 2050 if (total_skipped < start) { 2051 if (start - total_skipped > num) { 2052 total_skipped += num; 2053 continue; 2054 } 2055 skipping = start - total_skipped; 2056 num -= skipping; 2057 addr += (MMU_PAGESIZE * skipping); 2058 total_skipped = start; 2059 } 2060 if (num == 0) 2061 continue; 2062 2063 if (num > npages) 2064 num = npages; 2065 2066 npages -= num; 2067 pages_done += num; 2068 base_pfn = btop(addr); 2069 2070 /* 2071 * If the caller didn't provide space for the page 2072 * structures, carve them out of the memseg they will 2073 * represent. 2074 */ 2075 if (pp == NULL) { 2076 pgcnt_t pp_pgs; 2077 2078 if (num <= 1) 2079 continue; 2080 2081 /* 2082 * Compute how many of the pages we need to use for 2083 * page_ts 2084 */ 2085 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2086 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2087 num - pp_pgs + 1) 2088 --pp_pgs; 2089 PRM_DEBUG(pp_pgs); 2090 2091 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2092 VM_NOSLEEP); 2093 if (pp == NULL) { 2094 cmn_err(CE_WARN, "Unable to add %ld pages to " 2095 "the system.", num); 2096 continue; 2097 } 2098 2099 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2100 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2101 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2102 bzero(pp, mmu_ptob(pp_pgs)); 2103 num -= pp_pgs; 2104 base_pfn += pp_pgs; 2105 } 2106 2107 if (prom_debug) 2108 prom_printf("MEMSEG addr=0x%" PRIx64 2109 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2110 addr, num, base_pfn, base_pfn + num); 2111 2112 /* 2113 * drop pages below ddiphysmin to simplify ddi memory 2114 * allocation with non-zero addr_lo requests. 2115 */ 2116 if (base_pfn < ddiphysmin) { 2117 if (base_pfn + num <= ddiphysmin) { 2118 /* drop entire range below ddiphysmin */ 2119 continue; 2120 } 2121 /* adjust range to ddiphysmin */ 2122 pp += (ddiphysmin - base_pfn); 2123 num -= (ddiphysmin - base_pfn); 2124 base_pfn = ddiphysmin; 2125 } 2126 /* 2127 * Build the memsegs entry 2128 */ 2129 cur_memseg->pages = pp; 2130 cur_memseg->epages = pp + num; 2131 cur_memseg->pages_base = base_pfn; 2132 cur_memseg->pages_end = base_pfn + num; 2133 2134 /* 2135 * insert in memseg list in decreasing pfn range order. 2136 * Low memory is typically more fragmented such that this 2137 * ordering keeps the larger ranges at the front of the list 2138 * for code that searches memseg. 2139 */ 2140 memsegpp = &memsegs; 2141 for (;;) { 2142 if (*memsegpp == NULL) { 2143 /* empty memsegs */ 2144 memsegs = cur_memseg; 2145 break; 2146 } 2147 /* check for continuity with start of memsegpp */ 2148 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2149 if (cur_memseg->epages == (*memsegpp)->pages) { 2150 /* 2151 * contiguous pfn and page_t's. Merge 2152 * cur_memseg into *memsegpp. Drop 2153 * cur_memseg 2154 */ 2155 (*memsegpp)->pages_base = 2156 cur_memseg->pages_base; 2157 (*memsegpp)->pages = 2158 cur_memseg->pages; 2159 /* 2160 * check if contiguous with the end of 2161 * the next memseg. 2162 */ 2163 if ((*memsegpp)->next && 2164 ((*memsegpp)->pages_base == 2165 (*memsegpp)->next->pages_end)) { 2166 cur_memseg = *memsegpp; 2167 memsegpp = &((*memsegpp)->next); 2168 dobreak = 1; 2169 } else { 2170 break; 2171 } 2172 } else { 2173 /* 2174 * contiguous pfn but not page_t's. 2175 * drop last pfn/page_t in cur_memseg 2176 * to prevent creation of large pages 2177 * with noncontiguous page_t's if not 2178 * aligned to largest page boundary. 2179 */ 2180 largepgcnt = page_get_pagecnt( 2181 page_num_pagesizes() - 1); 2182 2183 if (cur_memseg->pages_end & 2184 (largepgcnt - 1)) { 2185 num--; 2186 cur_memseg->epages--; 2187 cur_memseg->pages_end--; 2188 } 2189 } 2190 } 2191 2192 /* check for continuity with end of memsegpp */ 2193 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2194 if (cur_memseg->pages == (*memsegpp)->epages) { 2195 /* 2196 * contiguous pfn and page_t's. Merge 2197 * cur_memseg into *memsegpp. Drop 2198 * cur_memseg. 2199 */ 2200 if (dobreak) { 2201 /* merge previously done */ 2202 cur_memseg->pages = 2203 (*memsegpp)->pages; 2204 cur_memseg->pages_base = 2205 (*memsegpp)->pages_base; 2206 cur_memseg->next = 2207 (*memsegpp)->next; 2208 } else { 2209 (*memsegpp)->pages_end = 2210 cur_memseg->pages_end; 2211 (*memsegpp)->epages = 2212 cur_memseg->epages; 2213 } 2214 break; 2215 } 2216 /* 2217 * contiguous pfn but not page_t's. 2218 * drop first pfn/page_t in cur_memseg 2219 * to prevent creation of large pages 2220 * with noncontiguous page_t's if not 2221 * aligned to largest page boundary. 2222 */ 2223 largepgcnt = page_get_pagecnt( 2224 page_num_pagesizes() - 1); 2225 if (base_pfn & (largepgcnt - 1)) { 2226 num--; 2227 base_pfn++; 2228 cur_memseg->pages++; 2229 cur_memseg->pages_base++; 2230 pp = cur_memseg->pages; 2231 } 2232 if (dobreak) 2233 break; 2234 } 2235 2236 if (cur_memseg->pages_base >= 2237 (*memsegpp)->pages_end) { 2238 cur_memseg->next = *memsegpp; 2239 *memsegpp = cur_memseg; 2240 break; 2241 } 2242 if ((*memsegpp)->next == NULL) { 2243 cur_memseg->next = NULL; 2244 (*memsegpp)->next = cur_memseg; 2245 break; 2246 } 2247 memsegpp = &((*memsegpp)->next); 2248 ASSERT(*memsegpp != NULL); 2249 } 2250 2251 /* 2252 * add_physmem() initializes the PSM part of the page 2253 * struct by calling the PSM back with add_physmem_cb(). 2254 * In addition it coalesces pages into larger pages as 2255 * it initializes them. 2256 */ 2257 add_physmem(pp, num, base_pfn); 2258 cur_memseg++; 2259 availrmem_initial += num; 2260 availrmem += num; 2261 2262 /* 2263 * If the caller provided the page frames to us, then 2264 * advance in that list. Otherwise, prepare to allocate 2265 * our own page frames for the next memseg. 2266 */ 2267 pp = (inpp == NULL) ? NULL : pp + num; 2268 } 2269 2270 PRM_DEBUG(availrmem_initial); 2271 PRM_DEBUG(availrmem); 2272 PRM_DEBUG(freemem); 2273 build_pfn_hash(); 2274 return (pages_done); 2275 } 2276 2277 /* 2278 * Kernel VM initialization. 2279 */ 2280 static void 2281 kvm_init(void) 2282 { 2283 #ifdef DEBUG 2284 extern void _start(); 2285 2286 ASSERT((caddr_t)_start == s_text); 2287 #endif 2288 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2289 2290 /* 2291 * Put the kernel segments in kernel address space. 2292 */ 2293 rw_enter(&kas.a_lock, RW_WRITER); 2294 as_avlinit(&kas); 2295 2296 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2297 (void) segkmem_create(&ktextseg); 2298 2299 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2300 (void) segkmem_create(&kvalloc); 2301 2302 /* 2303 * We're about to map out /boot. This is the beginning of the 2304 * system resource management transition. We can no longer 2305 * call into /boot for I/O or memory allocations. 2306 * 2307 * XX64 - Is this still correct with kernelheap_extend() being called 2308 * later than this???? 2309 */ 2310 (void) seg_attach(&kas, final_kernelheap, 2311 ekernelheap - final_kernelheap, &kvseg); 2312 (void) segkmem_create(&kvseg); 2313 2314 #if defined(__amd64) 2315 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2316 (void) segkmem_create(&kvseg_core); 2317 #endif 2318 2319 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2320 &kdebugseg); 2321 (void) segkmem_create(&kdebugseg); 2322 2323 rw_exit(&kas.a_lock); 2324 2325 /* 2326 * Ensure that the red zone at kernelbase is never accessible. 2327 */ 2328 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2329 2330 /* 2331 * Make the text writable so that it can be hot patched by DTrace. 2332 */ 2333 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2334 PROT_READ | PROT_WRITE | PROT_EXEC); 2335 2336 /* 2337 * Make data writable until end. 2338 */ 2339 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2340 PROT_READ | PROT_WRITE | PROT_EXEC); 2341 } 2342 2343 /* 2344 * These are MTTR registers supported by P6 2345 */ 2346 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2347 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2348 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2349 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2350 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2351 uint64_t mtrrdef, pat_attr_reg; 2352 2353 /* 2354 * Disable reprogramming of MTRRs by default. 2355 */ 2356 int enable_relaxed_mtrr = 0; 2357 2358 void 2359 setup_mtrr() 2360 { 2361 int i, ecx; 2362 int vcnt; 2363 struct mtrrvar *mtrrphys; 2364 2365 if (!(x86_feature & X86_MTRR)) 2366 return; 2367 2368 mtrrcap = rdmsr(REG_MTRRCAP); 2369 mtrrdef = rdmsr(REG_MTRRDEF); 2370 if (mtrrcap & MTRRCAP_FIX) { 2371 mtrr64k = rdmsr(REG_MTRR64K); 2372 mtrr16k1 = rdmsr(REG_MTRR16K1); 2373 mtrr16k2 = rdmsr(REG_MTRR16K2); 2374 mtrr4k1 = rdmsr(REG_MTRR4K1); 2375 mtrr4k2 = rdmsr(REG_MTRR4K2); 2376 mtrr4k3 = rdmsr(REG_MTRR4K3); 2377 mtrr4k4 = rdmsr(REG_MTRR4K4); 2378 mtrr4k5 = rdmsr(REG_MTRR4K5); 2379 mtrr4k6 = rdmsr(REG_MTRR4K6); 2380 mtrr4k7 = rdmsr(REG_MTRR4K7); 2381 mtrr4k8 = rdmsr(REG_MTRR4K8); 2382 } 2383 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2384 vcnt = MAX_MTRRVAR; 2385 2386 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2387 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2388 mtrrphys->mtrrphys_base = rdmsr(ecx); 2389 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2390 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2391 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2392 } 2393 } 2394 if (x86_feature & X86_PAT) { 2395 if (enable_relaxed_mtrr) 2396 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2397 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2398 } 2399 2400 mtrr_sync(); 2401 } 2402 2403 /* 2404 * Sync current cpu mtrr with the incore copy of mtrr. 2405 * This function has to be invoked with interrupts disabled 2406 * Currently we do not capture other cpu's. This is invoked on cpu0 2407 * just after reading /etc/system. 2408 * On other cpu's its invoked from mp_startup(). 2409 */ 2410 void 2411 mtrr_sync() 2412 { 2413 uint_t crvalue, cr0_orig; 2414 int vcnt, i, ecx; 2415 struct mtrrvar *mtrrphys; 2416 2417 cr0_orig = crvalue = getcr0(); 2418 crvalue |= CR0_CD; 2419 crvalue &= ~CR0_NW; 2420 setcr0(crvalue); 2421 invalidate_cache(); 2422 setcr3(getcr3()); 2423 2424 if (x86_feature & X86_PAT) 2425 wrmsr(REG_MTRRPAT, pat_attr_reg); 2426 2427 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2428 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2429 2430 if (mtrrcap & MTRRCAP_FIX) { 2431 wrmsr(REG_MTRR64K, mtrr64k); 2432 wrmsr(REG_MTRR16K1, mtrr16k1); 2433 wrmsr(REG_MTRR16K2, mtrr16k2); 2434 wrmsr(REG_MTRR4K1, mtrr4k1); 2435 wrmsr(REG_MTRR4K2, mtrr4k2); 2436 wrmsr(REG_MTRR4K3, mtrr4k3); 2437 wrmsr(REG_MTRR4K4, mtrr4k4); 2438 wrmsr(REG_MTRR4K5, mtrr4k5); 2439 wrmsr(REG_MTRR4K6, mtrr4k6); 2440 wrmsr(REG_MTRR4K7, mtrr4k7); 2441 wrmsr(REG_MTRR4K8, mtrr4k8); 2442 } 2443 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2444 vcnt = MAX_MTRRVAR; 2445 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2446 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2447 wrmsr(ecx, mtrrphys->mtrrphys_base); 2448 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2449 } 2450 wrmsr(REG_MTRRDEF, mtrrdef); 2451 setcr3(getcr3()); 2452 invalidate_cache(); 2453 setcr0(cr0_orig); 2454 } 2455 2456 /* 2457 * resync mtrr so that BIOS is happy. Called from mdboot 2458 */ 2459 void 2460 mtrr_resync() 2461 { 2462 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2463 /* 2464 * We could have changed the default mtrr definition. 2465 * Put it back to uncached which is what it is at power on 2466 */ 2467 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2468 mtrr_sync(); 2469 } 2470 } 2471 2472 void 2473 get_system_configuration() 2474 { 2475 char prop[32]; 2476 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2477 2478 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2479 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2480 (kobj_getvalue(prop, &nodes_ll) == -1) || 2481 (nodes_ll > MAXNODES)) || 2482 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2483 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2484 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2485 2486 system_hardware.hd_nodes = 1; 2487 system_hardware.hd_cpus_per_node = 0; 2488 } else { 2489 system_hardware.hd_nodes = (int)nodes_ll; 2490 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2491 } 2492 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2493 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2494 (kobj_getvalue(prop, &lvalue) == -1)) 2495 eprom_kernelbase = NULL; 2496 else 2497 eprom_kernelbase = (uintptr_t)lvalue; 2498 2499 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2500 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2501 (kobj_getvalue(prop, &lvalue) == -1)) { 2502 segmapsize = SEGMAPDEFAULT; 2503 } else { 2504 segmapsize = (uintptr_t)lvalue; 2505 } 2506 2507 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2508 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2509 (kobj_getvalue(prop, &lvalue) == -1)) { 2510 segmapfreelists = 0; /* use segmap driver default */ 2511 } else { 2512 segmapfreelists = (int)lvalue; 2513 } 2514 2515 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2516 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2517 (kobj_getvalue(prop, &lvalue) != -1)) { 2518 physmem = (uintptr_t)lvalue; 2519 } 2520 } 2521 2522 /* 2523 * Add to a memory list. 2524 * start = start of new memory segment 2525 * len = length of new memory segment in bytes 2526 * new = pointer to a new struct memlist 2527 * memlistp = memory list to which to add segment. 2528 */ 2529 static void 2530 memlist_add( 2531 uint64_t start, 2532 uint64_t len, 2533 struct memlist *new, 2534 struct memlist **memlistp) 2535 { 2536 struct memlist *cur; 2537 uint64_t end = start + len; 2538 2539 new->address = start; 2540 new->size = len; 2541 2542 cur = *memlistp; 2543 2544 while (cur) { 2545 if (cur->address >= end) { 2546 new->next = cur; 2547 *memlistp = new; 2548 new->prev = cur->prev; 2549 cur->prev = new; 2550 return; 2551 } 2552 ASSERT(cur->address + cur->size <= start); 2553 if (cur->next == NULL) { 2554 cur->next = new; 2555 new->prev = cur; 2556 new->next = NULL; 2557 return; 2558 } 2559 memlistp = &cur->next; 2560 cur = cur->next; 2561 } 2562 } 2563 2564 void 2565 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2566 { 2567 size_t tsize = e_modtext - modtext; 2568 size_t dsize = e_moddata - moddata; 2569 2570 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2571 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2572 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2573 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2574 } 2575 2576 caddr_t 2577 kobj_text_alloc(vmem_t *arena, size_t size) 2578 { 2579 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2580 } 2581 2582 /*ARGSUSED*/ 2583 caddr_t 2584 kobj_texthole_alloc(caddr_t addr, size_t size) 2585 { 2586 panic("unexpected call to kobj_texthole_alloc()"); 2587 /*NOTREACHED*/ 2588 return (0); 2589 } 2590 2591 /*ARGSUSED*/ 2592 void 2593 kobj_texthole_free(caddr_t addr, size_t size) 2594 { 2595 panic("unexpected call to kobj_texthole_free()"); 2596 } 2597 2598 /* 2599 * This is called just after configure() in startup(). 2600 * 2601 * The ISALIST concept is a bit hopeless on Intel, because 2602 * there's no guarantee of an ever-more-capable processor 2603 * given that various parts of the instruction set may appear 2604 * and disappear between different implementations. 2605 * 2606 * While it would be possible to correct it and even enhance 2607 * it somewhat, the explicit hardware capability bitmask allows 2608 * more flexibility. 2609 * 2610 * So, we just leave this alone. 2611 */ 2612 void 2613 setx86isalist(void) 2614 { 2615 char *tp; 2616 size_t len; 2617 extern char *isa_list; 2618 2619 #define TBUFSIZE 1024 2620 2621 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2622 *tp = '\0'; 2623 2624 #if defined(__amd64) 2625 (void) strcpy(tp, "amd64 "); 2626 #endif 2627 2628 switch (x86_vendor) { 2629 case X86_VENDOR_Intel: 2630 case X86_VENDOR_AMD: 2631 case X86_VENDOR_TM: 2632 if (x86_feature & X86_CMOV) { 2633 /* 2634 * Pentium Pro or later 2635 */ 2636 (void) strcat(tp, "pentium_pro"); 2637 (void) strcat(tp, x86_feature & X86_MMX ? 2638 "+mmx pentium_pro " : " "); 2639 } 2640 /*FALLTHROUGH*/ 2641 case X86_VENDOR_Cyrix: 2642 /* 2643 * The Cyrix 6x86 does not have any Pentium features 2644 * accessible while not at privilege level 0. 2645 */ 2646 if (x86_feature & X86_CPUID) { 2647 (void) strcat(tp, "pentium"); 2648 (void) strcat(tp, x86_feature & X86_MMX ? 2649 "+mmx pentium " : " "); 2650 } 2651 break; 2652 default: 2653 break; 2654 } 2655 (void) strcat(tp, "i486 i386 i86"); 2656 len = strlen(tp) + 1; /* account for NULL at end of string */ 2657 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2658 kmem_free(tp, TBUFSIZE); 2659 2660 #undef TBUFSIZE 2661 } 2662 2663 2664 #ifdef __amd64 2665 2666 void * 2667 device_arena_alloc(size_t size, int vm_flag) 2668 { 2669 return (vmem_alloc(device_arena, size, vm_flag)); 2670 } 2671 2672 void 2673 device_arena_free(void *vaddr, size_t size) 2674 { 2675 vmem_free(device_arena, vaddr, size); 2676 } 2677 2678 #else 2679 2680 void * 2681 device_arena_alloc(size_t size, int vm_flag) 2682 { 2683 caddr_t vaddr; 2684 uintptr_t v; 2685 size_t start; 2686 size_t end; 2687 2688 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2689 if (vaddr == NULL) 2690 return (NULL); 2691 2692 v = (uintptr_t)vaddr; 2693 ASSERT(v >= kernelbase); 2694 ASSERT(v + size <= ptable_va); 2695 2696 start = btop(v - kernelbase); 2697 end = btop(v + size - 1 - kernelbase); 2698 ASSERT(start < toxic_bit_map_len); 2699 ASSERT(end < toxic_bit_map_len); 2700 2701 while (start <= end) { 2702 BT_ATOMIC_SET(toxic_bit_map, start); 2703 ++start; 2704 } 2705 return (vaddr); 2706 } 2707 2708 void 2709 device_arena_free(void *vaddr, size_t size) 2710 { 2711 uintptr_t v = (uintptr_t)vaddr; 2712 size_t start; 2713 size_t end; 2714 2715 ASSERT(v >= kernelbase); 2716 ASSERT(v + size <= ptable_va); 2717 2718 start = btop(v - kernelbase); 2719 end = btop(v + size - 1 - kernelbase); 2720 ASSERT(start < toxic_bit_map_len); 2721 ASSERT(end < toxic_bit_map_len); 2722 2723 while (start <= end) { 2724 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2725 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2726 ++start; 2727 } 2728 vmem_free(heap_arena, vaddr, size); 2729 } 2730 2731 /* 2732 * returns 1st address in range that is in device arena, or NULL 2733 * if len is not NULL it returns the length of the toxic range 2734 */ 2735 void * 2736 device_arena_contains(void *vaddr, size_t size, size_t *len) 2737 { 2738 uintptr_t v = (uintptr_t)vaddr; 2739 uintptr_t eaddr = v + size; 2740 size_t start; 2741 size_t end; 2742 2743 /* 2744 * if called very early by kmdb, just return NULL 2745 */ 2746 if (toxic_bit_map == NULL) 2747 return (NULL); 2748 2749 /* 2750 * First check if we're completely outside the bitmap range. 2751 */ 2752 if (v >= ptable_va || eaddr < kernelbase) 2753 return (NULL); 2754 2755 /* 2756 * Trim ends of search to look at only what the bitmap covers. 2757 */ 2758 if (v < kernelbase) 2759 v = kernelbase; 2760 start = btop(v - kernelbase); 2761 end = btop(eaddr - kernelbase); 2762 if (end >= toxic_bit_map_len) 2763 end = toxic_bit_map_len; 2764 2765 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2766 return (NULL); 2767 2768 v = kernelbase + ptob(start); 2769 if (len != NULL) 2770 *len = ptob(end - start); 2771 return ((void *)v); 2772 } 2773 2774 #endif 2775