1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 extern void pg_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 #if defined(__amd64) && !defined(__xpv) 155 extern void immu_startup(void); 156 #endif 157 158 /* 159 * XXX make declaration below "static" when drivers no longer use this 160 * interface. 161 */ 162 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 163 164 /* 165 * segkp 166 */ 167 extern int segkp_fromheap; 168 169 static void kvm_init(void); 170 static void startup_init(void); 171 static void startup_memlist(void); 172 static void startup_kmem(void); 173 static void startup_modules(void); 174 static void startup_vm(void); 175 static void startup_end(void); 176 static void layout_kernel_va(void); 177 178 /* 179 * Declare these as initialized data so we can patch them. 180 */ 181 #ifdef __i386 182 183 /* 184 * Due to virtual address space limitations running in 32 bit mode, restrict 185 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 186 * 187 * If the physical max memory size of 64g were allowed to be configured, the 188 * size of user virtual address space will be less than 1g. A limited user 189 * address space greatly reduces the range of applications that can run. 190 * 191 * If more physical memory than PHYSMEM is required, users should preferably 192 * run in 64 bit mode which has far looser virtual address space limitations. 193 * 194 * If 64 bit mode is not available (as in IA32) and/or more physical memory 195 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 196 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 197 * should also be carefully tuned to balance out the need of the user 198 * application while minimizing the risk of kernel heap exhaustion due to 199 * kernelbase being set too high. 200 */ 201 #define PHYSMEM 0x400000 202 203 #else /* __amd64 */ 204 205 /* 206 * For now we can handle memory with physical addresses up to about 207 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 208 * half the VA space for seg_kpm. When systems get bigger than 64TB this 209 * code will need revisiting. There is an implicit assumption that there 210 * are no *huge* holes in the physical address space too. 211 */ 212 #define TERABYTE (1ul << 40) 213 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 214 #define PHYSMEM PHYSMEM_MAX64 215 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 216 217 #endif /* __amd64 */ 218 219 pgcnt_t physmem = PHYSMEM; 220 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 221 222 char *kobj_file_buf; 223 int kobj_file_bufsize; /* set in /etc/system */ 224 225 /* Global variables for MP support. Used in mp_startup */ 226 caddr_t rm_platter_va = 0; 227 uint32_t rm_platter_pa; 228 229 int auto_lpg_disable = 1; 230 231 /* 232 * Some CPUs have holes in the middle of the 64-bit virtual address range. 233 */ 234 uintptr_t hole_start, hole_end; 235 236 /* 237 * kpm mapping window 238 */ 239 caddr_t kpm_vbase; 240 size_t kpm_size; 241 static int kpm_desired; 242 #ifdef __amd64 243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 244 #endif 245 246 /* 247 * Configuration parameters set at boot time. 248 */ 249 250 caddr_t econtig; /* end of first block of contiguous kernel */ 251 252 struct bootops *bootops = 0; /* passed in from boot */ 253 struct bootops **bootopsp; 254 struct boot_syscalls *sysp; /* passed in from boot */ 255 256 char bootblock_fstype[16]; 257 258 char kern_bootargs[OBP_MAXPATHLEN]; 259 char kern_bootfile[OBP_MAXPATHLEN]; 260 261 /* 262 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 263 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 264 * zio buffers from their own segment, otherwise they are allocated from the 265 * heap. The optimization of allocating zio buffers from their own segment is 266 * only valid on 64-bit kernels. 267 */ 268 #if defined(__amd64) 269 int segzio_fromheap = 0; 270 #else 271 int segzio_fromheap = 1; 272 #endif 273 274 /* 275 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 276 * depends on number of BOP_ALLOC calls made and requested size, memory size 277 * combination and whether boot.bin memory needs to be freed. 278 */ 279 #define POSS_NEW_FRAGMENTS 12 280 281 /* 282 * VM data structures 283 */ 284 long page_hashsz; /* Size of page hash table (power of two) */ 285 struct page *pp_base; /* Base of initial system page struct array */ 286 struct page **page_hash; /* Page hash table */ 287 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 288 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 289 int pse_shift; /* log2(pse_table_size) */ 290 struct seg ktextseg; /* Segment used for kernel executable image */ 291 struct seg kvalloc; /* Segment used for "valloc" mapping */ 292 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 293 struct seg kmapseg; /* Segment used for generic kernel mappings */ 294 struct seg kdebugseg; /* Segment used for the kernel debugger */ 295 296 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 297 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 298 299 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 300 301 #if defined(__amd64) 302 struct seg kvseg_core; /* Segment used for the core heap */ 303 struct seg kpmseg; /* Segment used for physical mapping */ 304 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 305 #else 306 struct seg *segkpm = NULL; /* Unused on IA32 */ 307 #endif 308 309 caddr_t segkp_base; /* Base address of segkp */ 310 caddr_t segzio_base; /* Base address of segzio */ 311 #if defined(__amd64) 312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 313 #else 314 pgcnt_t segkpsize = 0; 315 #endif 316 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 317 318 /* 319 * VA range available to the debugger 320 */ 321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 322 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 323 324 struct memseg *memseg_base; 325 struct vnode unused_pages_vp; 326 327 #define FOURGB 0x100000000LL 328 329 struct memlist *memlist; 330 331 caddr_t s_text; /* start of kernel text segment */ 332 caddr_t e_text; /* end of kernel text segment */ 333 caddr_t s_data; /* start of kernel data segment */ 334 caddr_t e_data; /* end of kernel data segment */ 335 caddr_t modtext; /* start of loadable module text reserved */ 336 caddr_t e_modtext; /* end of loadable module text reserved */ 337 caddr_t moddata; /* start of loadable module data reserved */ 338 caddr_t e_moddata; /* end of loadable module data reserved */ 339 340 struct memlist *phys_install; /* Total installed physical memory */ 341 struct memlist *phys_avail; /* Total available physical memory */ 342 struct memlist *bios_rsvd; /* Bios reserved memory */ 343 344 /* 345 * kphysm_init returns the number of pages that were processed 346 */ 347 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 348 349 #define IO_PROP_SIZE 64 /* device property size */ 350 351 /* 352 * a couple useful roundup macros 353 */ 354 #define ROUND_UP_PAGE(x) \ 355 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 356 #define ROUND_UP_LPAGE(x) \ 357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 358 #define ROUND_UP_4MEG(x) \ 359 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 360 #define ROUND_UP_TOPLEVEL(x) \ 361 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 362 363 /* 364 * 32-bit Kernel's Virtual memory layout. 365 * +-----------------------+ 366 * | | 367 * 0xFFC00000 -|-----------------------|- ARGSBASE 368 * | debugger | 369 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 370 * | Kernel Data | 371 * 0xFEC00000 -|-----------------------| 372 * | Kernel Text | 373 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 374 * |--- GDT ---|- GDT page (GDT_VA) 375 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 376 * | | 377 * | page_t structures | 378 * | memsegs, memlists, | 379 * | page hash, etc. | 380 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 381 * | | (segkp is just an arena in the heap) 382 * | | 383 * | kvseg | 384 * | | 385 * | | 386 * --- -|-----------------------|- kernelheap (floating) 387 * | Segkmap | 388 * 0xC3002000 -|-----------------------|- segmap_start (floating) 389 * | Red Zone | 390 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 391 * | | || 392 * | Shared objects | \/ 393 * | | 394 * : : 395 * | user data | 396 * |-----------------------| 397 * | user text | 398 * 0x08048000 -|-----------------------| 399 * | user stack | 400 * : : 401 * | invalid | 402 * 0x00000000 +-----------------------+ 403 * 404 * 405 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 406 * +-----------------------+ 407 * | | 408 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 409 * | debugger (?) | 410 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 411 * | unused | 412 * +-----------------------+ 413 * | Kernel Data | 414 * 0xFFFFFFFF.FBC00000 |-----------------------| 415 * | Kernel Text | 416 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 417 * |--- GDT ---|- GDT page (GDT_VA) 418 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 419 * | | 420 * | Core heap | (used for loadable modules) 421 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 422 * | Kernel | 423 * | heap | 424 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 425 * | segmap | 426 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 427 * | device mappings | 428 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 429 * | segzio | 430 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 431 * | segkp | 432 * --- |-----------------------|- segkp_base (floating) 433 * | page_t structures | valloc_base + valloc_sz 434 * | memsegs, memlists, | 435 * | page hash, etc. | 436 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 437 * | segkpm | 438 * 0xFFFFFE00.00000000 |-----------------------| 439 * | Red Zone | 440 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 441 * | User stack |- User space memory 442 * | | 443 * | shared objects, etc | (grows downwards) 444 * : : 445 * | | 446 * 0xFFFF8000.00000000 |-----------------------| 447 * | | 448 * | VA Hole / unused | 449 * | | 450 * 0x00008000.00000000 |-----------------------| 451 * | | 452 * | | 453 * : : 454 * | user heap | (grows upwards) 455 * | | 456 * | user data | 457 * |-----------------------| 458 * | user text | 459 * 0x00000000.04000000 |-----------------------| 460 * | invalid | 461 * 0x00000000.00000000 +-----------------------+ 462 * 463 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 464 * kernel, except that userlimit is raised to 0xfe000000 465 * 466 * Floating values: 467 * 468 * valloc_base: start of the kernel's memory management/tracking data 469 * structures. This region contains page_t structures for 470 * physical memory, memsegs, memlists, and the page hash. 471 * 472 * core_base: start of the kernel's "core" heap area on 64-bit systems. 473 * This area is intended to be used for global data as well as for module 474 * text/data that does not fit into the nucleus pages. The core heap is 475 * restricted to a 2GB range, allowing every address within it to be 476 * accessed using rip-relative addressing 477 * 478 * ekernelheap: end of kernelheap and start of segmap. 479 * 480 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 481 * above a red zone that separates the user's address space from the 482 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 483 * 484 * segmap_start: start of segmap. The length of segmap can be modified 485 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 486 * on 64-bit systems. 487 * 488 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 489 * decreased by 2X the size required for page_t. This allows the kernel 490 * heap to grow in size with physical memory. With sizeof(page_t) == 80 491 * bytes, the following shows the values of kernelbase and kernel heap 492 * sizes for different memory configurations (assuming default segmap and 493 * segkp sizes). 494 * 495 * mem size for kernelbase kernel heap 496 * size page_t's size 497 * ---- --------- ---------- ----------- 498 * 1gb 0x01400000 0xd1800000 684MB 499 * 2gb 0x02800000 0xcf000000 704MB 500 * 4gb 0x05000000 0xca000000 744MB 501 * 6gb 0x07800000 0xc5000000 784MB 502 * 8gb 0x0a000000 0xc0000000 824MB 503 * 16gb 0x14000000 0xac000000 984MB 504 * 32gb 0x28000000 0x84000000 1304MB 505 * 64gb 0x50000000 0x34000000 1944MB (*) 506 * 507 * kernelbase is less than the abi minimum of 0xc0000000 for memory 508 * configurations above 8gb. 509 * 510 * (*) support for memory configurations above 32gb will require manual tuning 511 * of kernelbase to balance out the need of user applications. 512 */ 513 514 /* real-time-clock initialization parameters */ 515 extern time_t process_rtc_config_file(void); 516 517 uintptr_t kernelbase; 518 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 519 uintptr_t eprom_kernelbase; 520 size_t segmapsize; 521 uintptr_t segmap_start; 522 int segmapfreelists; 523 pgcnt_t npages; 524 pgcnt_t orig_npages; 525 size_t core_size; /* size of "core" heap */ 526 uintptr_t core_base; /* base address of "core" heap */ 527 528 /* 529 * List of bootstrap pages. We mark these as allocated in startup. 530 * release_bootstrap() will free them when we're completely done with 531 * the bootstrap. 532 */ 533 static page_t *bootpages; 534 535 /* 536 * boot time pages that have a vnode from the ramdisk will keep that forever. 537 */ 538 static page_t *rd_pages; 539 540 /* 541 * Lower 64K 542 */ 543 static page_t *lower_pages = NULL; 544 static int lower_pages_count = 0; 545 546 struct system_hardware system_hardware; 547 548 /* 549 * Enable some debugging messages concerning memory usage... 550 */ 551 static void 552 print_memlist(char *title, struct memlist *mp) 553 { 554 prom_printf("MEMLIST: %s:\n", title); 555 while (mp != NULL) { 556 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 557 mp->ml_address, mp->ml_size); 558 mp = mp->ml_next; 559 } 560 } 561 562 /* 563 * XX64 need a comment here.. are these just default values, surely 564 * we read the "cpuid" type information to figure this out. 565 */ 566 int l2cache_sz = 0x80000; 567 int l2cache_linesz = 0x40; 568 int l2cache_assoc = 1; 569 570 static size_t textrepl_min_gb = 10; 571 572 /* 573 * on 64 bit we use a predifined VA range for mapping devices in the kernel 574 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 575 */ 576 #ifdef __amd64 577 578 vmem_t *device_arena; 579 uintptr_t toxic_addr = (uintptr_t)NULL; 580 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 581 582 #else /* __i386 */ 583 584 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 585 size_t toxic_bit_map_len = 0; /* in bits */ 586 587 #endif /* __i386 */ 588 589 /* 590 * Simple boot time debug facilities 591 */ 592 static char *prm_dbg_str[] = { 593 "%s:%d: '%s' is 0x%x\n", 594 "%s:%d: '%s' is 0x%llx\n" 595 }; 596 597 int prom_debug; 598 599 #define PRM_DEBUG(q) if (prom_debug) \ 600 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 601 #define PRM_POINT(q) if (prom_debug) \ 602 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 603 604 /* 605 * This structure is used to keep track of the intial allocations 606 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 607 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 608 */ 609 #define NUM_ALLOCATIONS 8 610 int num_allocations = 0; 611 struct { 612 void **al_ptr; 613 size_t al_size; 614 } allocations[NUM_ALLOCATIONS]; 615 size_t valloc_sz = 0; 616 uintptr_t valloc_base; 617 618 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 619 size = ROUND_UP_PAGE(size); \ 620 if (num_allocations == NUM_ALLOCATIONS) \ 621 panic("too many ADD_TO_ALLOCATIONS()"); \ 622 allocations[num_allocations].al_ptr = (void**)&ptr; \ 623 allocations[num_allocations].al_size = size; \ 624 valloc_sz += size; \ 625 ++num_allocations; \ 626 } 627 628 /* 629 * Allocate all the initial memory needed by the page allocator. 630 */ 631 static void 632 perform_allocations(void) 633 { 634 caddr_t mem; 635 int i; 636 int valloc_align; 637 638 PRM_DEBUG(valloc_base); 639 PRM_DEBUG(valloc_sz); 640 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 641 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 642 if (mem != (caddr_t)valloc_base) 643 panic("BOP_ALLOC() failed"); 644 bzero(mem, valloc_sz); 645 for (i = 0; i < num_allocations; ++i) { 646 *allocations[i].al_ptr = (void *)mem; 647 mem += allocations[i].al_size; 648 } 649 } 650 651 /* 652 * Our world looks like this at startup time. 653 * 654 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 655 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 656 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 657 * addresses are fixed in the binary at link time. 658 * 659 * On the text page: 660 * unix/genunix/krtld/module text loads. 661 * 662 * On the data page: 663 * unix/genunix/krtld/module data loads. 664 * 665 * Machine-dependent startup code 666 */ 667 void 668 startup(void) 669 { 670 #if !defined(__xpv) 671 extern void startup_pci_bios(void); 672 extern int post_fastreboot; 673 #endif 674 extern cpuset_t cpu_ready_set; 675 676 /* 677 * Make sure that nobody tries to use sekpm until we have 678 * initialized it properly. 679 */ 680 #if defined(__amd64) 681 kpm_desired = 1; 682 #endif 683 kpm_enable = 0; 684 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 685 686 #if defined(__xpv) /* XXPV fix me! */ 687 { 688 extern int segvn_use_regions; 689 segvn_use_regions = 0; 690 } 691 #endif 692 progressbar_init(); 693 startup_init(); 694 #if defined(__xpv) 695 startup_xen_version(); 696 #endif 697 startup_memlist(); 698 startup_kmem(); 699 startup_vm(); 700 #if !defined(__xpv) 701 if (!post_fastreboot) 702 startup_pci_bios(); 703 #endif 704 #if defined(__xpv) 705 startup_xen_mca(); 706 #endif 707 startup_modules(); 708 709 startup_end(); 710 progressbar_start(); 711 } 712 713 static void 714 startup_init() 715 { 716 PRM_POINT("startup_init() starting..."); 717 718 /* 719 * Complete the extraction of cpuid data 720 */ 721 cpuid_pass2(CPU); 722 723 (void) check_boot_version(BOP_GETVERSION(bootops)); 724 725 /* 726 * Check for prom_debug in boot environment 727 */ 728 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 729 ++prom_debug; 730 PRM_POINT("prom_debug found in boot enviroment"); 731 } 732 733 /* 734 * Collect node, cpu and memory configuration information. 735 */ 736 get_system_configuration(); 737 738 /* 739 * Halt if this is an unsupported processor. 740 */ 741 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 742 printf("\n486 processor (\"%s\") detected.\n", 743 CPU->cpu_brandstr); 744 halt("This processor is not supported by this release " 745 "of Solaris."); 746 } 747 748 PRM_POINT("startup_init() done"); 749 } 750 751 /* 752 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 753 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 754 * also filters out physical page zero. There is some reliance on the 755 * boot loader allocating only a few contiguous physical memory chunks. 756 */ 757 static void 758 avail_filter(uint64_t *addr, uint64_t *size) 759 { 760 uintptr_t va; 761 uintptr_t next_va; 762 pfn_t pfn; 763 uint64_t pfn_addr; 764 uint64_t pfn_eaddr; 765 uint_t prot; 766 size_t len; 767 uint_t change; 768 769 if (prom_debug) 770 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 771 *addr, *size); 772 773 /* 774 * page zero is required for BIOS.. never make it available 775 */ 776 if (*addr == 0) { 777 *addr += MMU_PAGESIZE; 778 *size -= MMU_PAGESIZE; 779 } 780 781 /* 782 * First we trim from the front of the range. Since kbm_probe() 783 * walks ranges in virtual order, but addr/size are physical, we need 784 * to the list until no changes are seen. This deals with the case 785 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 786 * but w < v. 787 */ 788 do { 789 change = 0; 790 for (va = KERNEL_TEXT; 791 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 792 va = next_va) { 793 794 next_va = va + len; 795 pfn_addr = pfn_to_pa(pfn); 796 pfn_eaddr = pfn_addr + len; 797 798 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 799 change = 1; 800 while (*size > 0 && len > 0) { 801 *addr += MMU_PAGESIZE; 802 *size -= MMU_PAGESIZE; 803 len -= MMU_PAGESIZE; 804 } 805 } 806 } 807 if (change && prom_debug) 808 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 809 *addr, *size); 810 } while (change); 811 812 /* 813 * Trim pages from the end of the range. 814 */ 815 for (va = KERNEL_TEXT; 816 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 817 va = next_va) { 818 819 next_va = va + len; 820 pfn_addr = pfn_to_pa(pfn); 821 822 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 823 *size = pfn_addr - *addr; 824 } 825 826 if (prom_debug) 827 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 828 *addr, *size); 829 } 830 831 static void 832 kpm_init() 833 { 834 struct segkpm_crargs b; 835 836 /* 837 * These variables were all designed for sfmmu in which segkpm is 838 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 839 * might use 2+ page sizes on a single machine, so none of these 840 * variables have a single correct value. They are set up as if we 841 * always use a 4KB pagesize, which should do no harm. In the long 842 * run, we should get rid of KPM's assumption that only a single 843 * pagesize is used. 844 */ 845 kpm_pgshft = MMU_PAGESHIFT; 846 kpm_pgsz = MMU_PAGESIZE; 847 kpm_pgoff = MMU_PAGEOFFSET; 848 kpmp2pshft = 0; 849 kpmpnpgs = 1; 850 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 851 852 PRM_POINT("about to create segkpm"); 853 rw_enter(&kas.a_lock, RW_WRITER); 854 855 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 856 panic("cannot attach segkpm"); 857 858 b.prot = PROT_READ | PROT_WRITE; 859 b.nvcolors = 1; 860 861 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 862 panic("segkpm_create segkpm"); 863 864 rw_exit(&kas.a_lock); 865 } 866 867 /* 868 * The debug info page provides enough information to allow external 869 * inspectors (e.g. when running under a hypervisor) to bootstrap 870 * themselves into allowing full-blown kernel debugging. 871 */ 872 static void 873 init_debug_info(void) 874 { 875 caddr_t mem; 876 debug_info_t *di; 877 878 #ifndef __lint 879 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 880 #endif 881 882 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 883 MMU_PAGESIZE); 884 885 if (mem != (caddr_t)DEBUG_INFO_VA) 886 panic("BOP_ALLOC() failed"); 887 bzero(mem, MMU_PAGESIZE); 888 889 di = (debug_info_t *)mem; 890 891 di->di_magic = DEBUG_INFO_MAGIC; 892 di->di_version = DEBUG_INFO_VERSION; 893 di->di_modules = (uintptr_t)&modules; 894 di->di_s_text = (uintptr_t)s_text; 895 di->di_e_text = (uintptr_t)e_text; 896 di->di_s_data = (uintptr_t)s_data; 897 di->di_e_data = (uintptr_t)e_data; 898 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 899 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 900 } 901 902 /* 903 * Build the memlists and other kernel essential memory system data structures. 904 * This is everything at valloc_base. 905 */ 906 static void 907 startup_memlist(void) 908 { 909 size_t memlist_sz; 910 size_t memseg_sz; 911 size_t pagehash_sz; 912 size_t pp_sz; 913 uintptr_t va; 914 size_t len; 915 uint_t prot; 916 pfn_t pfn; 917 int memblocks; 918 pfn_t rsvd_high_pfn; 919 pgcnt_t rsvd_pgcnt; 920 size_t rsvdmemlist_sz; 921 int rsvdmemblocks; 922 caddr_t pagecolor_mem; 923 size_t pagecolor_memsz; 924 caddr_t page_ctrs_mem; 925 size_t page_ctrs_size; 926 size_t pse_table_alloc_size; 927 struct memlist *current; 928 extern void startup_build_mem_nodes(struct memlist *); 929 930 /* XX64 fix these - they should be in include files */ 931 extern size_t page_coloring_init(uint_t, int, int); 932 extern void page_coloring_setup(caddr_t); 933 934 PRM_POINT("startup_memlist() starting..."); 935 936 /* 937 * Use leftover large page nucleus text/data space for loadable modules. 938 * Use at most MODTEXT/MODDATA. 939 */ 940 len = kbm_nucleus_size; 941 ASSERT(len > MMU_PAGESIZE); 942 943 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 944 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 945 if (e_moddata - moddata > MODDATA) 946 e_moddata = moddata + MODDATA; 947 948 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 949 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 950 if (e_modtext - modtext > MODTEXT) 951 e_modtext = modtext + MODTEXT; 952 953 econtig = e_moddata; 954 955 PRM_DEBUG(modtext); 956 PRM_DEBUG(e_modtext); 957 PRM_DEBUG(moddata); 958 PRM_DEBUG(e_moddata); 959 PRM_DEBUG(econtig); 960 961 /* 962 * Examine the boot loader physical memory map to find out: 963 * - total memory in system - physinstalled 964 * - the max physical address - physmax 965 * - the number of discontiguous segments of memory. 966 */ 967 if (prom_debug) 968 print_memlist("boot physinstalled", 969 bootops->boot_mem->physinstalled); 970 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 971 &physinstalled, &memblocks); 972 PRM_DEBUG(physmax); 973 PRM_DEBUG(physinstalled); 974 PRM_DEBUG(memblocks); 975 976 /* 977 * Examine the bios reserved memory to find out: 978 * - the number of discontiguous segments of memory. 979 */ 980 if (prom_debug) 981 print_memlist("boot reserved mem", 982 bootops->boot_mem->rsvdmem); 983 installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 984 &rsvd_pgcnt, &rsvdmemblocks); 985 PRM_DEBUG(rsvd_high_pfn); 986 PRM_DEBUG(rsvd_pgcnt); 987 PRM_DEBUG(rsvdmemblocks); 988 989 /* 990 * Initialize hat's mmu parameters. 991 * Check for enforce-prot-exec in boot environment. It's used to 992 * enable/disable support for the page table entry NX bit. 993 * The default is to enforce PROT_EXEC on processors that support NX. 994 * Boot seems to round up the "len", but 8 seems to be big enough. 995 */ 996 mmu_init(); 997 998 #ifdef __i386 999 /* 1000 * physmax is lowered if there is more memory than can be 1001 * physically addressed in 32 bit (PAE/non-PAE) modes. 1002 */ 1003 if (mmu.pae_hat) { 1004 if (PFN_ABOVE64G(physmax)) { 1005 physinstalled -= (physmax - (PFN_64G - 1)); 1006 physmax = PFN_64G - 1; 1007 } 1008 } else { 1009 if (PFN_ABOVE4G(physmax)) { 1010 physinstalled -= (physmax - (PFN_4G - 1)); 1011 physmax = PFN_4G - 1; 1012 } 1013 } 1014 #endif 1015 1016 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1017 1018 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1019 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1020 char value[8]; 1021 1022 if (len < 8) 1023 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1024 else 1025 (void) strcpy(value, ""); 1026 if (strcmp(value, "off") == 0) 1027 mmu.pt_nx = 0; 1028 } 1029 PRM_DEBUG(mmu.pt_nx); 1030 1031 /* 1032 * We will need page_t's for every page in the system, except for 1033 * memory mapped at or above above the start of the kernel text segment. 1034 * 1035 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1036 */ 1037 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1038 obp_pages = 0; 1039 va = KERNEL_TEXT; 1040 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1041 npages -= len >> MMU_PAGESHIFT; 1042 if (va >= (uintptr_t)e_moddata) 1043 obp_pages += len >> MMU_PAGESHIFT; 1044 va += len; 1045 } 1046 PRM_DEBUG(npages); 1047 PRM_DEBUG(obp_pages); 1048 1049 /* 1050 * If physmem is patched to be non-zero, use it instead of the computed 1051 * value unless it is larger than the actual amount of memory on hand. 1052 */ 1053 if (physmem == 0 || physmem > npages) { 1054 physmem = npages; 1055 } else if (physmem < npages) { 1056 orig_npages = npages; 1057 npages = physmem; 1058 } 1059 PRM_DEBUG(physmem); 1060 1061 /* 1062 * We now compute the sizes of all the initial allocations for 1063 * structures the kernel needs in order do kmem_alloc(). These 1064 * include: 1065 * memsegs 1066 * memlists 1067 * page hash table 1068 * page_t's 1069 * page coloring data structs 1070 */ 1071 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1072 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1073 PRM_DEBUG(memseg_sz); 1074 1075 /* 1076 * Reserve space for memlists. There's no real good way to know exactly 1077 * how much room we'll need, but this should be a good upper bound. 1078 */ 1079 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1080 (memblocks + POSS_NEW_FRAGMENTS)); 1081 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1082 PRM_DEBUG(memlist_sz); 1083 1084 /* 1085 * Reserve space for bios reserved memlists. 1086 */ 1087 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1088 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1089 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1090 PRM_DEBUG(rsvdmemlist_sz); 1091 1092 /* 1093 * The page structure hash table size is a power of 2 1094 * such that the average hash chain length is PAGE_HASHAVELEN. 1095 */ 1096 page_hashsz = npages / PAGE_HASHAVELEN; 1097 page_hashsz = 1 << highbit(page_hashsz); 1098 pagehash_sz = sizeof (struct page *) * page_hashsz; 1099 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1100 PRM_DEBUG(pagehash_sz); 1101 1102 /* 1103 * Set aside room for the page structures themselves. 1104 */ 1105 PRM_DEBUG(npages); 1106 pp_sz = sizeof (struct page) * npages; 1107 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1108 PRM_DEBUG(pp_sz); 1109 1110 /* 1111 * determine l2 cache info and memory size for page coloring 1112 */ 1113 (void) getl2cacheinfo(CPU, 1114 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1115 pagecolor_memsz = 1116 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1117 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1118 PRM_DEBUG(pagecolor_memsz); 1119 1120 page_ctrs_size = page_ctrs_sz(); 1121 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1122 PRM_DEBUG(page_ctrs_size); 1123 1124 /* 1125 * Allocate the array that protects pp->p_selock. 1126 */ 1127 pse_shift = size_pse_array(physmem, max_ncpus); 1128 pse_table_size = 1 << pse_shift; 1129 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1130 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1131 1132 #if defined(__amd64) 1133 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1134 valloc_base = VALLOC_BASE; 1135 1136 /* 1137 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1138 * for values of physmax up to 1 Terabyte. They need adjusting when 1139 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1140 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1141 */ 1142 if (physmax + 1 > mmu_btop(TERABYTE)) { 1143 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1144 1145 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1146 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1147 1148 /* make sure we leave some space for user apps above hole */ 1149 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1150 if (segkpm_base > SEGKPM_BASE) 1151 segkpm_base = SEGKPM_BASE; 1152 PRM_DEBUG(segkpm_base); 1153 1154 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1155 if (valloc_base < segkpm_base) 1156 panic("not enough kernel VA to support memory size"); 1157 PRM_DEBUG(valloc_base); 1158 } 1159 #else /* __i386 */ 1160 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1161 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1162 PRM_DEBUG(valloc_base); 1163 #endif /* __i386 */ 1164 1165 /* 1166 * do all the initial allocations 1167 */ 1168 perform_allocations(); 1169 1170 /* 1171 * Build phys_install and phys_avail in kernel memspace. 1172 * - phys_install should be all memory in the system. 1173 * - phys_avail is phys_install minus any memory mapped before this 1174 * point above KERNEL_TEXT. 1175 */ 1176 current = phys_install = memlist; 1177 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1178 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1179 panic("physinstalled was too big!"); 1180 if (prom_debug) 1181 print_memlist("phys_install", phys_install); 1182 1183 phys_avail = current; 1184 PRM_POINT("Building phys_avail:\n"); 1185 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1186 avail_filter); 1187 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1188 panic("physavail was too big!"); 1189 if (prom_debug) 1190 print_memlist("phys_avail", phys_avail); 1191 1192 /* 1193 * Build bios reserved memspace 1194 */ 1195 current = bios_rsvd; 1196 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1197 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1198 panic("bios_rsvd was too big!"); 1199 if (prom_debug) 1200 print_memlist("bios_rsvd", bios_rsvd); 1201 1202 /* 1203 * setup page coloring 1204 */ 1205 page_coloring_setup(pagecolor_mem); 1206 page_lock_init(); /* currently a no-op */ 1207 1208 /* 1209 * free page list counters 1210 */ 1211 (void) page_ctrs_alloc(page_ctrs_mem); 1212 1213 /* 1214 * Size the pcf array based on the number of cpus in the box at 1215 * boot time. 1216 */ 1217 1218 pcf_init(); 1219 1220 /* 1221 * Initialize the page structures from the memory lists. 1222 */ 1223 availrmem_initial = availrmem = freemem = 0; 1224 PRM_POINT("Calling kphysm_init()..."); 1225 npages = kphysm_init(pp_base, npages); 1226 PRM_POINT("kphysm_init() done"); 1227 PRM_DEBUG(npages); 1228 1229 init_debug_info(); 1230 1231 /* 1232 * Now that page_t's have been initialized, remove all the 1233 * initial allocation pages from the kernel free page lists. 1234 */ 1235 boot_mapin((caddr_t)valloc_base, valloc_sz); 1236 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1237 PRM_POINT("startup_memlist() done"); 1238 1239 PRM_DEBUG(valloc_sz); 1240 1241 #if defined(__amd64) 1242 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1243 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1244 extern size_t textrepl_size_thresh; 1245 textrepl_size_thresh = (16 << 20) - 1; 1246 } 1247 #endif 1248 } 1249 1250 /* 1251 * Layout the kernel's part of address space and initialize kmem allocator. 1252 */ 1253 static void 1254 startup_kmem(void) 1255 { 1256 extern void page_set_colorequiv_arr(void); 1257 const char *fmt = "?features: %b\n"; 1258 1259 PRM_POINT("startup_kmem() starting..."); 1260 1261 #if defined(__amd64) 1262 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1263 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1264 "systems."); 1265 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1266 core_base = (uintptr_t)COREHEAP_BASE; 1267 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1268 #else /* __i386 */ 1269 /* 1270 * We configure kernelbase based on: 1271 * 1272 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1273 * KERNELBASE_MAX. we large page align eprom_kernelbase 1274 * 1275 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1276 * On large memory systems we must lower kernelbase to allow 1277 * enough room for page_t's for all of memory. 1278 * 1279 * The value set here, might be changed a little later. 1280 */ 1281 if (eprom_kernelbase) { 1282 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1283 if (kernelbase > KERNELBASE_MAX) 1284 kernelbase = KERNELBASE_MAX; 1285 } else { 1286 kernelbase = (uintptr_t)KERNELBASE; 1287 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1288 } 1289 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1290 core_base = valloc_base; 1291 core_size = 0; 1292 #endif /* __i386 */ 1293 1294 PRM_DEBUG(core_base); 1295 PRM_DEBUG(core_size); 1296 PRM_DEBUG(kernelbase); 1297 1298 #if defined(__i386) 1299 segkp_fromheap = 1; 1300 #endif /* __i386 */ 1301 1302 ekernelheap = (char *)core_base; 1303 PRM_DEBUG(ekernelheap); 1304 1305 /* 1306 * Now that we know the real value of kernelbase, 1307 * update variables that were initialized with a value of 1308 * KERNELBASE (in common/conf/param.c). 1309 * 1310 * XXX The problem with this sort of hackery is that the 1311 * compiler just may feel like putting the const declarations 1312 * (in param.c) into the .text section. Perhaps they should 1313 * just be declared as variables there? 1314 */ 1315 1316 *(uintptr_t *)&_kernelbase = kernelbase; 1317 *(uintptr_t *)&_userlimit = kernelbase; 1318 #if defined(__amd64) 1319 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1320 #else 1321 *(uintptr_t *)&_userlimit32 = _userlimit; 1322 #endif 1323 PRM_DEBUG(_kernelbase); 1324 PRM_DEBUG(_userlimit); 1325 PRM_DEBUG(_userlimit32); 1326 1327 layout_kernel_va(); 1328 1329 #if defined(__i386) 1330 /* 1331 * If segmap is too large we can push the bottom of the kernel heap 1332 * higher than the base. Or worse, it could exceed the top of the 1333 * VA space entirely, causing it to wrap around. 1334 */ 1335 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1336 panic("too little address space available for kernelheap," 1337 " use eeprom for lower kernelbase or smaller segmapsize"); 1338 #endif /* __i386 */ 1339 1340 /* 1341 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1342 */ 1343 kernelheap_init(kernelheap, ekernelheap, 1344 kernelheap + MMU_PAGESIZE, 1345 (void *)core_base, (void *)(core_base + core_size)); 1346 1347 #if defined(__xpv) 1348 /* 1349 * Link pending events struct into cpu struct 1350 */ 1351 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1352 #endif 1353 /* 1354 * Initialize kernel memory allocator. 1355 */ 1356 kmem_init(); 1357 1358 /* 1359 * Factor in colorequiv to check additional 'equivalent' bins 1360 */ 1361 page_set_colorequiv_arr(); 1362 1363 /* 1364 * print this out early so that we know what's going on 1365 */ 1366 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1367 1368 /* 1369 * Initialize bp_mapin(). 1370 */ 1371 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1372 1373 /* 1374 * orig_npages is non-zero if physmem has been configured for less 1375 * than the available memory. 1376 */ 1377 if (orig_npages) { 1378 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1379 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1380 npages, orig_npages); 1381 } 1382 #if defined(__i386) 1383 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1384 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1385 "System using 0x%lx", 1386 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1387 #endif 1388 1389 #ifdef KERNELBASE_ABI_MIN 1390 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1391 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1392 "i386 ABI compliant.", (uintptr_t)kernelbase); 1393 } 1394 #endif 1395 1396 #ifdef __xpv 1397 /* 1398 * Some of the xen start information has to be relocated up 1399 * into the kernel's permanent address space. 1400 */ 1401 PRM_POINT("calling xen_relocate_start_info()"); 1402 xen_relocate_start_info(); 1403 PRM_POINT("xen_relocate_start_info() done"); 1404 1405 /* 1406 * (Update the vcpu pointer in our cpu structure to point into 1407 * the relocated shared info.) 1408 */ 1409 CPU->cpu_m.mcpu_vcpu_info = 1410 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1411 #endif 1412 1413 PRM_POINT("startup_kmem() done"); 1414 } 1415 1416 #ifndef __xpv 1417 /* 1418 * If we have detected that we are running in an HVM environment, we need 1419 * to prepend the PV driver directory to the module search path. 1420 */ 1421 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1422 static void 1423 update_default_path() 1424 { 1425 char *current, *newpath; 1426 int newlen; 1427 1428 /* 1429 * We are about to resync with krtld. krtld will reset its 1430 * internal module search path iff Solaris has set default_path. 1431 * We want to be sure we're prepending this new directory to the 1432 * right search path. 1433 */ 1434 current = (default_path == NULL) ? kobj_module_path : default_path; 1435 1436 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1437 newpath = kmem_alloc(newlen, KM_SLEEP); 1438 (void) strcpy(newpath, HVM_MOD_DIR); 1439 (void) strcat(newpath, " "); 1440 (void) strcat(newpath, current); 1441 1442 default_path = newpath; 1443 } 1444 #endif 1445 1446 static void 1447 startup_modules(void) 1448 { 1449 int cnt; 1450 extern void prom_setup(void); 1451 int32_t v, h; 1452 char d[11]; 1453 char *cp; 1454 cmi_hdl_t hdl; 1455 1456 PRM_POINT("startup_modules() starting..."); 1457 1458 #ifndef __xpv 1459 /* 1460 * Initialize ten-micro second timer so that drivers will 1461 * not get short changed in their init phase. This was 1462 * not getting called until clkinit which, on fast cpu's 1463 * caused the drv_usecwait to be way too short. 1464 */ 1465 microfind(); 1466 1467 if (get_hwenv() == HW_XEN_HVM) 1468 update_default_path(); 1469 #endif 1470 1471 /* 1472 * Read the GMT lag from /etc/rtc_config. 1473 */ 1474 sgmtl(process_rtc_config_file()); 1475 1476 /* 1477 * Calculate default settings of system parameters based upon 1478 * maxusers, yet allow to be overridden via the /etc/system file. 1479 */ 1480 param_calc(0); 1481 1482 mod_setup(); 1483 1484 /* 1485 * Initialize system parameters. 1486 */ 1487 param_init(); 1488 1489 /* 1490 * Initialize the default brands 1491 */ 1492 brand_init(); 1493 1494 /* 1495 * maxmem is the amount of physical memory we're playing with. 1496 */ 1497 maxmem = physmem; 1498 1499 /* 1500 * Initialize segment management stuff. 1501 */ 1502 seg_init(); 1503 1504 if (modload("fs", "specfs") == -1) 1505 halt("Can't load specfs"); 1506 1507 if (modload("fs", "devfs") == -1) 1508 halt("Can't load devfs"); 1509 1510 if (modload("fs", "dev") == -1) 1511 halt("Can't load dev"); 1512 1513 if (modload("fs", "procfs") == -1) 1514 halt("Can't load procfs"); 1515 1516 (void) modloadonly("sys", "lbl_edition"); 1517 1518 dispinit(); 1519 1520 /* 1521 * This is needed here to initialize hw_serial[] for cluster booting. 1522 */ 1523 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1524 cmn_err(CE_WARN, "Unable to set hostid"); 1525 } else { 1526 for (v = h, cnt = 0; cnt < 10; cnt++) { 1527 d[cnt] = (char)(v % 10); 1528 v /= 10; 1529 if (v == 0) 1530 break; 1531 } 1532 for (cp = hw_serial; cnt >= 0; cnt--) 1533 *cp++ = d[cnt] + '0'; 1534 *cp = 0; 1535 } 1536 1537 /* Read cluster configuration data. */ 1538 clconf_init(); 1539 1540 #if defined(__xpv) 1541 (void) ec_init(); 1542 gnttab_init(); 1543 (void) xs_early_init(); 1544 #endif /* __xpv */ 1545 1546 /* 1547 * Create a kernel device tree. First, create rootnex and 1548 * then invoke bus specific code to probe devices. 1549 */ 1550 setup_ddi(); 1551 1552 #ifdef __xpv 1553 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1554 #endif 1555 { 1556 /* 1557 * Load the System Management BIOS into the global ksmbios 1558 * handle, if an SMBIOS is present on this system. 1559 */ 1560 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1561 } 1562 1563 1564 /* 1565 * Set up the CPU module subsystem for the boot cpu in the native 1566 * case, and all physical cpu resource in the xpv dom0 case. 1567 * Modifies the device tree, so this must be done after 1568 * setup_ddi(). 1569 */ 1570 #ifdef __xpv 1571 /* 1572 * If paravirtualized and on dom0 then we initialize all physical 1573 * cpu handles now; if paravirtualized on a domU then do not 1574 * initialize. 1575 */ 1576 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1577 xen_mc_lcpu_cookie_t cpi; 1578 1579 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1580 cpi = xen_physcpu_next(cpi)) { 1581 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1582 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1583 xen_physcpu_strandid(cpi))) != NULL && 1584 (x86_feature & X86_MCA)) 1585 cmi_mca_init(hdl); 1586 } 1587 } 1588 #else 1589 /* 1590 * Initialize a handle for the boot cpu - others will initialize 1591 * as they startup. Do not do this if we know we are in an HVM domU. 1592 */ 1593 if ((get_hwenv() != HW_XEN_HVM) && 1594 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1595 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1596 (x86_feature & X86_MCA)) 1597 cmi_mca_init(hdl); 1598 #endif /* __xpv */ 1599 1600 /* 1601 * Fake a prom tree such that /dev/openprom continues to work 1602 */ 1603 PRM_POINT("startup_modules: calling prom_setup..."); 1604 prom_setup(); 1605 PRM_POINT("startup_modules: done"); 1606 1607 /* 1608 * Load all platform specific modules 1609 */ 1610 PRM_POINT("startup_modules: calling psm_modload..."); 1611 psm_modload(); 1612 1613 PRM_POINT("startup_modules() done"); 1614 } 1615 1616 /* 1617 * claim a "setaside" boot page for use in the kernel 1618 */ 1619 page_t * 1620 boot_claim_page(pfn_t pfn) 1621 { 1622 page_t *pp; 1623 1624 pp = page_numtopp_nolock(pfn); 1625 ASSERT(pp != NULL); 1626 1627 if (PP_ISBOOTPAGES(pp)) { 1628 if (pp->p_next != NULL) 1629 pp->p_next->p_prev = pp->p_prev; 1630 if (pp->p_prev == NULL) 1631 bootpages = pp->p_next; 1632 else 1633 pp->p_prev->p_next = pp->p_next; 1634 } else { 1635 /* 1636 * htable_attach() expects a base pagesize page 1637 */ 1638 if (pp->p_szc != 0) 1639 page_boot_demote(pp); 1640 pp = page_numtopp(pfn, SE_EXCL); 1641 } 1642 return (pp); 1643 } 1644 1645 /* 1646 * Walk through the pagetables looking for pages mapped in by boot. If the 1647 * setaside flag is set the pages are expected to be returned to the 1648 * kernel later in boot, so we add them to the bootpages list. 1649 */ 1650 static void 1651 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1652 { 1653 uintptr_t va = low; 1654 size_t len; 1655 uint_t prot; 1656 pfn_t pfn; 1657 page_t *pp; 1658 pgcnt_t boot_protect_cnt = 0; 1659 1660 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1661 if (va + len >= high) 1662 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1663 "legal range.", len, (void *)va); 1664 1665 while (len > 0) { 1666 pp = page_numtopp_alloc(pfn); 1667 if (pp != NULL) { 1668 if (setaside == 0) 1669 panic("Unexpected mapping by boot. " 1670 "addr=%p pfn=%lx\n", 1671 (void *)va, pfn); 1672 1673 pp->p_next = bootpages; 1674 pp->p_prev = NULL; 1675 PP_SETBOOTPAGES(pp); 1676 if (bootpages != NULL) { 1677 bootpages->p_prev = pp; 1678 } 1679 bootpages = pp; 1680 ++boot_protect_cnt; 1681 } 1682 1683 ++pfn; 1684 len -= MMU_PAGESIZE; 1685 va += MMU_PAGESIZE; 1686 } 1687 } 1688 PRM_DEBUG(boot_protect_cnt); 1689 } 1690 1691 /* 1692 * 1693 */ 1694 static void 1695 layout_kernel_va(void) 1696 { 1697 PRM_POINT("layout_kernel_va() starting..."); 1698 /* 1699 * Establish the final size of the kernel's heap, size of segmap, 1700 * segkp, etc. 1701 */ 1702 1703 #if defined(__amd64) 1704 1705 kpm_vbase = (caddr_t)segkpm_base; 1706 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1707 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1708 panic("not enough room for kpm!"); 1709 PRM_DEBUG(kpm_size); 1710 PRM_DEBUG(kpm_vbase); 1711 1712 /* 1713 * By default we create a seg_kp in 64 bit kernels, it's a little 1714 * faster to access than embedding it in the heap. 1715 */ 1716 segkp_base = (caddr_t)valloc_base + valloc_sz; 1717 if (!segkp_fromheap) { 1718 size_t sz = mmu_ptob(segkpsize); 1719 1720 /* 1721 * determine size of segkp 1722 */ 1723 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1724 sz = SEGKPDEFSIZE; 1725 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1726 "segkpsize has been reset to %ld pages", 1727 mmu_btop(sz)); 1728 } 1729 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1730 1731 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1732 } 1733 PRM_DEBUG(segkp_base); 1734 PRM_DEBUG(segkpsize); 1735 1736 /* 1737 * segzio is used for ZFS cached data. It uses a distinct VA 1738 * segment (from kernel heap) so that we can easily tell not to 1739 * include it in kernel crash dumps on 64 bit kernels. The trick is 1740 * to give it lots of VA, but not constrain the kernel heap. 1741 * We scale the size of segzio linearly with physmem up to 1742 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1743 */ 1744 segzio_base = segkp_base + mmu_ptob(segkpsize); 1745 if (segzio_fromheap) { 1746 segziosize = 0; 1747 } else { 1748 size_t physmem_size = mmu_ptob(physmem); 1749 size_t size = (segziosize == 0) ? 1750 physmem_size : mmu_ptob(segziosize); 1751 1752 if (size < SEGZIOMINSIZE) 1753 size = SEGZIOMINSIZE; 1754 if (size > SEGZIOMAXSIZE) { 1755 size = SEGZIOMAXSIZE; 1756 if (physmem_size > size) 1757 size += (physmem_size - size) / 2; 1758 } 1759 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1760 } 1761 PRM_DEBUG(segziosize); 1762 PRM_DEBUG(segzio_base); 1763 1764 /* 1765 * Put the range of VA for device mappings next, kmdb knows to not 1766 * grep in this range of addresses. 1767 */ 1768 toxic_addr = 1769 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1770 PRM_DEBUG(toxic_addr); 1771 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1772 #else /* __i386 */ 1773 segmap_start = ROUND_UP_LPAGE(kernelbase); 1774 #endif /* __i386 */ 1775 PRM_DEBUG(segmap_start); 1776 1777 /* 1778 * Users can change segmapsize through eeprom. If the variable 1779 * is tuned through eeprom, there is no upper bound on the 1780 * size of segmap. 1781 */ 1782 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1783 1784 #if defined(__i386) 1785 /* 1786 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1787 * the bottom of the kernel's address range. Set aside space for a 1788 * small red zone just below the start of segmap. 1789 */ 1790 segmap_start += KERNEL_REDZONE_SIZE; 1791 segmapsize -= KERNEL_REDZONE_SIZE; 1792 #endif 1793 1794 PRM_DEBUG(segmap_start); 1795 PRM_DEBUG(segmapsize); 1796 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1797 PRM_DEBUG(kernelheap); 1798 PRM_POINT("layout_kernel_va() done..."); 1799 } 1800 1801 /* 1802 * Finish initializing the VM system, now that we are no longer 1803 * relying on the boot time memory allocators. 1804 */ 1805 static void 1806 startup_vm(void) 1807 { 1808 struct segmap_crargs a; 1809 1810 extern int use_brk_lpg, use_stk_lpg; 1811 1812 PRM_POINT("startup_vm() starting..."); 1813 1814 /* 1815 * Initialize the hat layer. 1816 */ 1817 hat_init(); 1818 1819 /* 1820 * Do final allocations of HAT data structures that need to 1821 * be allocated before quiescing the boot loader. 1822 */ 1823 PRM_POINT("Calling hat_kern_alloc()..."); 1824 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1825 PRM_POINT("hat_kern_alloc() done"); 1826 1827 #ifndef __xpv 1828 /* 1829 * Setup Page Attribute Table 1830 */ 1831 pat_sync(); 1832 #endif 1833 1834 /* 1835 * The next two loops are done in distinct steps in order 1836 * to be sure that any page that is doubly mapped (both above 1837 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1838 * Note this may never happen, but it might someday. 1839 */ 1840 bootpages = NULL; 1841 PRM_POINT("Protecting boot pages"); 1842 1843 /* 1844 * Protect any pages mapped above KERNEL_TEXT that somehow have 1845 * page_t's. This can only happen if something weird allocated 1846 * in this range (like kadb/kmdb). 1847 */ 1848 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1849 1850 /* 1851 * Before we can take over memory allocation/mapping from the boot 1852 * loader we must remove from our free page lists any boot allocated 1853 * pages that stay mapped until release_bootstrap(). 1854 */ 1855 protect_boot_range(0, kernelbase, 1); 1856 1857 1858 /* 1859 * Switch to running on regular HAT (not boot_mmu) 1860 */ 1861 PRM_POINT("Calling hat_kern_setup()..."); 1862 hat_kern_setup(); 1863 1864 /* 1865 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1866 */ 1867 bop_no_more_mem(); 1868 1869 PRM_POINT("hat_kern_setup() done"); 1870 1871 hat_cpu_online(CPU); 1872 1873 /* 1874 * Initialize VM system 1875 */ 1876 PRM_POINT("Calling kvm_init()..."); 1877 kvm_init(); 1878 PRM_POINT("kvm_init() done"); 1879 1880 /* 1881 * Tell kmdb that the VM system is now working 1882 */ 1883 if (boothowto & RB_DEBUG) 1884 kdi_dvec_vmready(); 1885 1886 #if defined(__xpv) 1887 /* 1888 * Populate the I/O pool on domain 0 1889 */ 1890 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1891 extern long populate_io_pool(void); 1892 long init_io_pool_cnt; 1893 1894 PRM_POINT("Populating reserve I/O page pool"); 1895 init_io_pool_cnt = populate_io_pool(); 1896 PRM_DEBUG(init_io_pool_cnt); 1897 } 1898 #endif 1899 /* 1900 * Mangle the brand string etc. 1901 */ 1902 cpuid_pass3(CPU); 1903 1904 #if defined(__amd64) 1905 1906 /* 1907 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1908 */ 1909 device_arena = vmem_create("device", (void *)toxic_addr, 1910 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1911 1912 #else /* __i386 */ 1913 1914 /* 1915 * allocate the bit map that tracks toxic pages 1916 */ 1917 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1918 PRM_DEBUG(toxic_bit_map_len); 1919 toxic_bit_map = 1920 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1921 ASSERT(toxic_bit_map != NULL); 1922 PRM_DEBUG(toxic_bit_map); 1923 1924 #endif /* __i386 */ 1925 1926 1927 /* 1928 * Now that we've got more VA, as well as the ability to allocate from 1929 * it, tell the debugger. 1930 */ 1931 if (boothowto & RB_DEBUG) 1932 kdi_dvec_memavail(); 1933 1934 /* 1935 * The following code installs a special page fault handler (#pf) 1936 * to work around a pentium bug. 1937 */ 1938 #if !defined(__amd64) && !defined(__xpv) 1939 if (x86_type == X86_TYPE_P5) { 1940 desctbr_t idtr; 1941 gate_desc_t *newidt; 1942 1943 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1944 panic("failed to install pentium_pftrap"); 1945 1946 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1947 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1948 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1949 1950 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1951 PROT_READ | PROT_EXEC); 1952 1953 CPU->cpu_idt = newidt; 1954 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1955 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1956 wr_idtr(&idtr); 1957 } 1958 #endif /* !__amd64 */ 1959 1960 #if !defined(__xpv) 1961 /* 1962 * Map page pfn=0 for drivers, such as kd, that need to pick up 1963 * parameters left there by controllers/BIOS. 1964 */ 1965 PRM_POINT("setup up p0_va"); 1966 p0_va = i86devmap(0, 1, PROT_READ); 1967 PRM_DEBUG(p0_va); 1968 #endif 1969 1970 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1971 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1972 1973 /* 1974 * disable automatic large pages for small memory systems or 1975 * when the disable flag is set. 1976 * 1977 * Do not yet consider page sizes larger than 2m/4m. 1978 */ 1979 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1980 max_uheap_lpsize = LEVEL_SIZE(1); 1981 max_ustack_lpsize = LEVEL_SIZE(1); 1982 max_privmap_lpsize = LEVEL_SIZE(1); 1983 max_uidata_lpsize = LEVEL_SIZE(1); 1984 max_utext_lpsize = LEVEL_SIZE(1); 1985 max_shm_lpsize = LEVEL_SIZE(1); 1986 } 1987 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1988 auto_lpg_disable) { 1989 use_brk_lpg = 0; 1990 use_stk_lpg = 0; 1991 } 1992 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1993 1994 PRM_POINT("Calling hat_init_finish()..."); 1995 hat_init_finish(); 1996 PRM_POINT("hat_init_finish() done"); 1997 1998 /* 1999 * Initialize the segkp segment type. 2000 */ 2001 rw_enter(&kas.a_lock, RW_WRITER); 2002 PRM_POINT("Attaching segkp"); 2003 if (segkp_fromheap) { 2004 segkp->s_as = &kas; 2005 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2006 segkp) < 0) { 2007 panic("startup: cannot attach segkp"); 2008 /*NOTREACHED*/ 2009 } 2010 PRM_POINT("Doing segkp_create()"); 2011 if (segkp_create(segkp) != 0) { 2012 panic("startup: segkp_create failed"); 2013 /*NOTREACHED*/ 2014 } 2015 PRM_DEBUG(segkp); 2016 rw_exit(&kas.a_lock); 2017 2018 /* 2019 * kpm segment 2020 */ 2021 segmap_kpm = 0; 2022 if (kpm_desired) { 2023 kpm_init(); 2024 kpm_enable = 1; 2025 } 2026 2027 /* 2028 * Now create segmap segment. 2029 */ 2030 rw_enter(&kas.a_lock, RW_WRITER); 2031 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2032 panic("cannot attach segmap"); 2033 /*NOTREACHED*/ 2034 } 2035 PRM_DEBUG(segmap); 2036 2037 a.prot = PROT_READ | PROT_WRITE; 2038 a.shmsize = 0; 2039 a.nfreelist = segmapfreelists; 2040 2041 if (segmap_create(segmap, (caddr_t)&a) != 0) 2042 panic("segmap_create segmap"); 2043 rw_exit(&kas.a_lock); 2044 2045 setup_vaddr_for_ppcopy(CPU); 2046 2047 segdev_init(); 2048 #if defined(__xpv) 2049 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2050 #endif 2051 pmem_init(); 2052 2053 PRM_POINT("startup_vm() done"); 2054 } 2055 2056 /* 2057 * Load a tod module for the non-standard tod part found on this system. 2058 */ 2059 static void 2060 load_tod_module(char *todmod) 2061 { 2062 if (modload("tod", todmod) == -1) 2063 halt("Can't load TOD module"); 2064 } 2065 2066 static void 2067 startup_end(void) 2068 { 2069 int i; 2070 extern void setx86isalist(void); 2071 extern void cpu_event_init(void); 2072 2073 PRM_POINT("startup_end() starting..."); 2074 2075 /* 2076 * Perform tasks that get done after most of the VM 2077 * initialization has been done but before the clock 2078 * and other devices get started. 2079 */ 2080 kern_setup1(); 2081 2082 /* 2083 * Perform CPC initialization for this CPU. 2084 */ 2085 kcpc_hw_init(CPU); 2086 2087 /* 2088 * Initialize cpu event framework. 2089 */ 2090 cpu_event_init(); 2091 2092 #if defined(OPTERON_WORKAROUND_6323525) 2093 if (opteron_workaround_6323525) 2094 patch_workaround_6323525(); 2095 #endif 2096 /* 2097 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2098 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2099 */ 2100 if (tod_module_name != NULL) { 2101 PRM_POINT("load_tod_module()"); 2102 load_tod_module(tod_module_name); 2103 } 2104 2105 #if defined(__xpv) 2106 /* 2107 * Forceload interposing TOD module for the hypervisor. 2108 */ 2109 PRM_POINT("load_tod_module()"); 2110 load_tod_module("xpvtod"); 2111 #endif 2112 2113 /* 2114 * Configure the system. 2115 */ 2116 PRM_POINT("Calling configure()..."); 2117 configure(); /* set up devices */ 2118 PRM_POINT("configure() done"); 2119 2120 /* 2121 * Set the isa_list string to the defined instruction sets we 2122 * support. 2123 */ 2124 setx86isalist(); 2125 cpu_intr_alloc(CPU, NINTR_THREADS); 2126 psm_install(); 2127 2128 /* 2129 * We're done with bootops. We don't unmap the bootstrap yet because 2130 * we're still using bootsvcs. 2131 */ 2132 PRM_POINT("NULLing out bootops"); 2133 *bootopsp = (struct bootops *)NULL; 2134 bootops = (struct bootops *)NULL; 2135 2136 #if defined(__xpv) 2137 ec_init_debug_irq(); 2138 xs_domu_init(); 2139 #endif 2140 2141 #if defined(__amd64) && !defined(__xpv) 2142 /* 2143 * Intel IOMMU has been setup/initialized in ddi_impl.c 2144 * Start it up now. 2145 */ 2146 immu_startup(); 2147 #endif 2148 2149 PRM_POINT("Enabling interrupts"); 2150 (*picinitf)(); 2151 sti(); 2152 #if defined(__xpv) 2153 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2154 xen_late_startup(); 2155 #endif 2156 2157 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2158 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2159 2160 /* 2161 * Register these software interrupts for ddi timer. 2162 * Software interrupts up to the level 10 are supported. 2163 */ 2164 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2165 char name[sizeof ("timer_softintr") + 2]; 2166 (void) sprintf(name, "timer_softintr%02d", i); 2167 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2168 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2169 } 2170 2171 #if !defined(__xpv) 2172 if (modload("drv", "amd_iommu") < 0) { 2173 PRM_POINT("No AMD IOMMU present\n"); 2174 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2175 "amd_iommu")) == NULL) { 2176 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2177 } 2178 #endif 2179 post_startup_cpu_fixups(); 2180 2181 PRM_POINT("startup_end() done"); 2182 } 2183 2184 /* 2185 * Don't remove the following 2 variables. They are necessary 2186 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2187 */ 2188 char *_hs1107 = hw_serial; 2189 ulong_t _bdhs34; 2190 2191 void 2192 post_startup(void) 2193 { 2194 extern void cpupm_init(cpu_t *); 2195 extern void cpu_event_init_cpu(cpu_t *); 2196 2197 /* 2198 * Set the system wide, processor-specific flags to be passed 2199 * to userland via the aux vector for performance hints and 2200 * instruction set extensions. 2201 */ 2202 bind_hwcap(); 2203 2204 #ifdef __xpv 2205 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2206 #endif 2207 { 2208 #if defined(__xpv) 2209 xpv_panic_init(); 2210 #else 2211 /* 2212 * Startup the memory scrubber. 2213 * XXPV This should be running somewhere .. 2214 */ 2215 if (get_hwenv() != HW_XEN_HVM) 2216 memscrub_init(); 2217 #endif 2218 } 2219 2220 /* 2221 * Complete CPU module initialization 2222 */ 2223 cmi_post_startup(); 2224 2225 /* 2226 * Perform forceloading tasks for /etc/system. 2227 */ 2228 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2229 2230 /* 2231 * ON4.0: Force /proc module in until clock interrupt handle fixed 2232 * ON4.0: This must be fixed or restated in /etc/systems. 2233 */ 2234 (void) modload("fs", "procfs"); 2235 2236 (void) i_ddi_attach_hw_nodes("pit_beep"); 2237 2238 #if defined(__i386) 2239 /* 2240 * Check for required functional Floating Point hardware, 2241 * unless FP hardware explicitly disabled. 2242 */ 2243 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2244 halt("No working FP hardware found"); 2245 #endif 2246 2247 maxmem = freemem; 2248 2249 cpu_event_init_cpu(CPU); 2250 cpupm_init(CPU); 2251 (void) mach_cpu_create_device_node(CPU, NULL); 2252 2253 pg_init(); 2254 } 2255 2256 static int 2257 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2258 { 2259 return ((pp->p_pagenum >= btop(low_addr)) && 2260 (pp->p_pagenum < btopr(high_addr))); 2261 } 2262 2263 void 2264 release_bootstrap(void) 2265 { 2266 int root_is_ramdisk; 2267 page_t *pp; 2268 extern void kobj_boot_unmountroot(void); 2269 extern dev_t rootdev; 2270 #if !defined(__xpv) 2271 pfn_t pfn; 2272 #endif 2273 2274 /* unmount boot ramdisk and release kmem usage */ 2275 kobj_boot_unmountroot(); 2276 2277 /* 2278 * We're finished using the boot loader so free its pages. 2279 */ 2280 PRM_POINT("Unmapping lower boot pages"); 2281 2282 clear_boot_mappings(0, _userlimit); 2283 2284 postbootkernelbase = kernelbase; 2285 2286 /* 2287 * If root isn't on ramdisk, destroy the hardcoded 2288 * ramdisk node now and release the memory. Else, 2289 * ramdisk memory is kept in rd_pages. 2290 */ 2291 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2292 if (!root_is_ramdisk) { 2293 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2294 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2295 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2296 (void) ddi_remove_child(dip, 0); 2297 } 2298 2299 PRM_POINT("Releasing boot pages"); 2300 while (bootpages) { 2301 extern uint64_t ramdisk_start, ramdisk_end; 2302 pp = bootpages; 2303 bootpages = pp->p_next; 2304 2305 2306 /* Keep pages for the lower 64K */ 2307 if (pp_in_range(pp, 0, 0x40000)) { 2308 pp->p_next = lower_pages; 2309 lower_pages = pp; 2310 lower_pages_count++; 2311 continue; 2312 } 2313 2314 2315 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2316 ramdisk_end)) { 2317 pp->p_next = rd_pages; 2318 rd_pages = pp; 2319 continue; 2320 } 2321 pp->p_next = (struct page *)0; 2322 pp->p_prev = (struct page *)0; 2323 PP_CLRBOOTPAGES(pp); 2324 page_free(pp, 1); 2325 } 2326 PRM_POINT("Boot pages released"); 2327 2328 #if !defined(__xpv) 2329 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2330 /* 2331 * Find 1 page below 1 MB so that other processors can boot up or 2332 * so that any processor can resume. 2333 * Make sure it has a kernel VA as well as a 1:1 mapping. 2334 * We should have just free'd one up. 2335 */ 2336 2337 /* 2338 * 0x10 pages is 64K. Leave the bottom 64K alone 2339 * for BIOS. 2340 */ 2341 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2342 if (page_numtopp_alloc(pfn) == NULL) 2343 continue; 2344 rm_platter_va = i86devmap(pfn, 1, 2345 PROT_READ | PROT_WRITE | PROT_EXEC); 2346 rm_platter_pa = ptob(pfn); 2347 hat_devload(kas.a_hat, 2348 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2349 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2350 HAT_LOAD_NOCONSIST); 2351 break; 2352 } 2353 if (pfn == btop(1*1024*1024) && use_mp) 2354 panic("No page below 1M available for starting " 2355 "other processors or for resuming from system-suspend"); 2356 #endif /* !__xpv */ 2357 } 2358 2359 /* 2360 * Initialize the platform-specific parts of a page_t. 2361 */ 2362 void 2363 add_physmem_cb(page_t *pp, pfn_t pnum) 2364 { 2365 pp->p_pagenum = pnum; 2366 pp->p_mapping = NULL; 2367 pp->p_embed = 0; 2368 pp->p_share = 0; 2369 pp->p_mlentry = 0; 2370 } 2371 2372 /* 2373 * kphysm_init() initializes physical memory. 2374 */ 2375 static pgcnt_t 2376 kphysm_init( 2377 page_t *pp, 2378 pgcnt_t npages) 2379 { 2380 struct memlist *pmem; 2381 struct memseg *cur_memseg; 2382 pfn_t base_pfn; 2383 pfn_t end_pfn; 2384 pgcnt_t num; 2385 pgcnt_t pages_done = 0; 2386 uint64_t addr; 2387 uint64_t size; 2388 extern pfn_t ddiphysmin; 2389 extern int mnode_xwa; 2390 int ms = 0, me = 0; 2391 2392 ASSERT(page_hash != NULL && page_hashsz != 0); 2393 2394 cur_memseg = memseg_base; 2395 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2396 /* 2397 * In a 32 bit kernel can't use higher memory if we're 2398 * not booting in PAE mode. This check takes care of that. 2399 */ 2400 addr = pmem->ml_address; 2401 size = pmem->ml_size; 2402 if (btop(addr) > physmax) 2403 continue; 2404 2405 /* 2406 * align addr and size - they may not be at page boundaries 2407 */ 2408 if ((addr & MMU_PAGEOFFSET) != 0) { 2409 addr += MMU_PAGEOFFSET; 2410 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2411 size -= addr - pmem->ml_address; 2412 } 2413 2414 /* only process pages below or equal to physmax */ 2415 if ((btop(addr + size) - 1) > physmax) 2416 size = ptob(physmax - btop(addr) + 1); 2417 2418 num = btop(size); 2419 if (num == 0) 2420 continue; 2421 2422 if (num > npages) 2423 num = npages; 2424 2425 npages -= num; 2426 pages_done += num; 2427 base_pfn = btop(addr); 2428 2429 if (prom_debug) 2430 prom_printf("MEMSEG addr=0x%" PRIx64 2431 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2432 addr, num, base_pfn, base_pfn + num); 2433 2434 /* 2435 * Ignore pages below ddiphysmin to simplify ddi memory 2436 * allocation with non-zero addr_lo requests. 2437 */ 2438 if (base_pfn < ddiphysmin) { 2439 if (base_pfn + num <= ddiphysmin) 2440 continue; 2441 pp += (ddiphysmin - base_pfn); 2442 num -= (ddiphysmin - base_pfn); 2443 base_pfn = ddiphysmin; 2444 } 2445 2446 /* 2447 * mnode_xwa is greater than 1 when large pages regions can 2448 * cross memory node boundaries. To prevent the formation 2449 * of these large pages, configure the memsegs based on the 2450 * memory node ranges which had been made non-contiguous. 2451 */ 2452 if (mnode_xwa > 1) { 2453 2454 end_pfn = base_pfn + num - 1; 2455 ms = PFN_2_MEM_NODE(base_pfn); 2456 me = PFN_2_MEM_NODE(end_pfn); 2457 2458 if (ms != me) { 2459 /* 2460 * current range spans more than 1 memory node. 2461 * Set num to only the pfn range in the start 2462 * memory node. 2463 */ 2464 num = mem_node_config[ms].physmax - base_pfn 2465 + 1; 2466 ASSERT(end_pfn > mem_node_config[ms].physmax); 2467 } 2468 } 2469 2470 for (;;) { 2471 /* 2472 * Build the memsegs entry 2473 */ 2474 cur_memseg->pages = pp; 2475 cur_memseg->epages = pp + num; 2476 cur_memseg->pages_base = base_pfn; 2477 cur_memseg->pages_end = base_pfn + num; 2478 2479 /* 2480 * Insert into memseg list in decreasing pfn range 2481 * order. Low memory is typically more fragmented such 2482 * that this ordering keeps the larger ranges at the 2483 * front of the list for code that searches memseg. 2484 * This ASSERTS that the memsegs coming in from boot 2485 * are in increasing physical address order and not 2486 * contiguous. 2487 */ 2488 if (memsegs != NULL) { 2489 ASSERT(cur_memseg->pages_base >= 2490 memsegs->pages_end); 2491 cur_memseg->next = memsegs; 2492 } 2493 memsegs = cur_memseg; 2494 2495 /* 2496 * add_physmem() initializes the PSM part of the page 2497 * struct by calling the PSM back with add_physmem_cb(). 2498 * In addition it coalesces pages into larger pages as 2499 * it initializes them. 2500 */ 2501 add_physmem(pp, num, base_pfn); 2502 cur_memseg++; 2503 availrmem_initial += num; 2504 availrmem += num; 2505 2506 pp += num; 2507 if (ms >= me) 2508 break; 2509 2510 /* process next memory node range */ 2511 ms++; 2512 base_pfn = mem_node_config[ms].physbase; 2513 num = MIN(mem_node_config[ms].physmax, 2514 end_pfn) - base_pfn + 1; 2515 } 2516 } 2517 2518 PRM_DEBUG(availrmem_initial); 2519 PRM_DEBUG(availrmem); 2520 PRM_DEBUG(freemem); 2521 build_pfn_hash(); 2522 return (pages_done); 2523 } 2524 2525 /* 2526 * Kernel VM initialization. 2527 */ 2528 static void 2529 kvm_init(void) 2530 { 2531 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2532 2533 /* 2534 * Put the kernel segments in kernel address space. 2535 */ 2536 rw_enter(&kas.a_lock, RW_WRITER); 2537 as_avlinit(&kas); 2538 2539 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2540 (void) segkmem_create(&ktextseg); 2541 2542 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2543 (void) segkmem_create(&kvalloc); 2544 2545 (void) seg_attach(&kas, kernelheap, 2546 ekernelheap - kernelheap, &kvseg); 2547 (void) segkmem_create(&kvseg); 2548 2549 if (core_size > 0) { 2550 PRM_POINT("attaching kvseg_core"); 2551 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2552 &kvseg_core); 2553 (void) segkmem_create(&kvseg_core); 2554 } 2555 2556 if (segziosize > 0) { 2557 PRM_POINT("attaching segzio"); 2558 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2559 &kzioseg); 2560 (void) segkmem_zio_create(&kzioseg); 2561 2562 /* create zio area covering new segment */ 2563 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2564 } 2565 2566 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2567 (void) segkmem_create(&kdebugseg); 2568 2569 rw_exit(&kas.a_lock); 2570 2571 /* 2572 * Ensure that the red zone at kernelbase is never accessible. 2573 */ 2574 PRM_POINT("protecting redzone"); 2575 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2576 2577 /* 2578 * Make the text writable so that it can be hot patched by DTrace. 2579 */ 2580 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2581 PROT_READ | PROT_WRITE | PROT_EXEC); 2582 2583 /* 2584 * Make data writable until end. 2585 */ 2586 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2587 PROT_READ | PROT_WRITE | PROT_EXEC); 2588 } 2589 2590 #ifndef __xpv 2591 /* 2592 * Solaris adds an entry for Write Combining caching to the PAT 2593 */ 2594 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2595 2596 void 2597 pat_sync(void) 2598 { 2599 ulong_t cr0, cr0_orig, cr4; 2600 2601 if (!(x86_feature & X86_PAT)) 2602 return; 2603 cr0_orig = cr0 = getcr0(); 2604 cr4 = getcr4(); 2605 2606 /* disable caching and flush all caches and TLBs */ 2607 cr0 |= CR0_CD; 2608 cr0 &= ~CR0_NW; 2609 setcr0(cr0); 2610 invalidate_cache(); 2611 if (cr4 & CR4_PGE) { 2612 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2613 setcr4(cr4); 2614 } else { 2615 reload_cr3(); 2616 } 2617 2618 /* add our entry to the PAT */ 2619 wrmsr(REG_PAT, pat_attr_reg); 2620 2621 /* flush TLBs and cache again, then reenable cr0 caching */ 2622 if (cr4 & CR4_PGE) { 2623 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2624 setcr4(cr4); 2625 } else { 2626 reload_cr3(); 2627 } 2628 invalidate_cache(); 2629 setcr0(cr0_orig); 2630 } 2631 2632 #endif /* !__xpv */ 2633 2634 #if defined(_SOFT_HOSTID) 2635 /* 2636 * On platforms that do not have a hardware serial number, attempt 2637 * to set one based on the contents of /etc/hostid. If this file does 2638 * not exist, assume that we are to generate a new hostid and set 2639 * it in the kernel, for subsequent saving by a userland process 2640 * once the system is up and the root filesystem is mounted r/w. 2641 * 2642 * In order to gracefully support upgrade on OpenSolaris, if 2643 * /etc/hostid does not exist, we will attempt to get a serial number 2644 * using the legacy method (/kernel/misc/sysinit). 2645 * 2646 * In an attempt to make the hostid less prone to abuse 2647 * (for license circumvention, etc), we store it in /etc/hostid 2648 * in rot47 format. 2649 */ 2650 extern volatile unsigned long tenmicrodata; 2651 static int atoi(char *); 2652 2653 static int32_t 2654 set_soft_hostid(void) 2655 { 2656 struct _buf *file; 2657 char tokbuf[MAXNAMELEN]; 2658 token_t token; 2659 int done = 0; 2660 u_longlong_t tmp; 2661 int i; 2662 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2663 unsigned char *c; 2664 hrtime_t tsc; 2665 2666 /* 2667 * If /etc/hostid file not found, we'd like to get a pseudo 2668 * random number to use at the hostid. A nice way to do this 2669 * is to read the real time clock. To remain xen-compatible, 2670 * we can't poke the real hardware, so we use tsc_read() to 2671 * read the real time clock. However, there is an ominous 2672 * warning in tsc_read that says it can return zero, so we 2673 * deal with that possibility by falling back to using the 2674 * (hopefully random enough) value in tenmicrodata. 2675 */ 2676 2677 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2678 /* 2679 * hostid file not found - try to load sysinit module 2680 * and see if it has a nonzero hostid value...use that 2681 * instead of generating a new hostid here if so. 2682 */ 2683 if ((i = modload("misc", "sysinit")) != -1) { 2684 if (strlen(hw_serial) > 0) 2685 hostid = (int32_t)atoi(hw_serial); 2686 (void) modunload(i); 2687 } 2688 if (hostid == HW_INVALID_HOSTID) { 2689 tsc = tsc_read(); 2690 if (tsc == 0) /* tsc_read can return zero sometimes */ 2691 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2692 else 2693 hostid = (int32_t)tsc & 0x0CFFFFF; 2694 } 2695 } else { 2696 /* hostid file found */ 2697 while (!done) { 2698 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2699 2700 switch (token) { 2701 case POUND: 2702 /* 2703 * skip comments 2704 */ 2705 kobj_find_eol(file); 2706 break; 2707 case STRING: 2708 /* 2709 * un-rot47 - obviously this 2710 * nonsense is ascii-specific 2711 */ 2712 for (c = (unsigned char *)tokbuf; 2713 *c != '\0'; c++) { 2714 *c += 47; 2715 if (*c > '~') 2716 *c -= 94; 2717 else if (*c < '!') 2718 *c += 94; 2719 } 2720 /* 2721 * now we should have a real number 2722 */ 2723 2724 if (kobj_getvalue(tokbuf, &tmp) != 0) 2725 kobj_file_err(CE_WARN, file, 2726 "Bad value %s for hostid", 2727 tokbuf); 2728 else 2729 hostid = (int32_t)tmp; 2730 2731 break; 2732 case EOF: 2733 done = 1; 2734 /* FALLTHROUGH */ 2735 case NEWLINE: 2736 kobj_newline(file); 2737 break; 2738 default: 2739 break; 2740 2741 } 2742 } 2743 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2744 kobj_file_err(CE_WARN, file, 2745 "hostid missing or corrupt"); 2746 2747 kobj_close_file(file); 2748 } 2749 /* 2750 * hostid is now the value read from /etc/hostid, or the 2751 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2752 * set. 2753 */ 2754 return (hostid); 2755 } 2756 2757 static int 2758 atoi(char *p) 2759 { 2760 int i = 0; 2761 2762 while (*p != '\0') 2763 i = 10 * i + (*p++ - '0'); 2764 2765 return (i); 2766 } 2767 2768 #endif /* _SOFT_HOSTID */ 2769 2770 void 2771 get_system_configuration(void) 2772 { 2773 char prop[32]; 2774 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2775 2776 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2777 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2778 kobj_getvalue(prop, &nodes_ll) == -1 || 2779 nodes_ll > MAXNODES || 2780 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2781 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2782 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2783 system_hardware.hd_nodes = 1; 2784 system_hardware.hd_cpus_per_node = 0; 2785 } else { 2786 system_hardware.hd_nodes = (int)nodes_ll; 2787 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2788 } 2789 2790 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2791 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2792 kobj_getvalue(prop, &lvalue) == -1) 2793 eprom_kernelbase = NULL; 2794 else 2795 eprom_kernelbase = (uintptr_t)lvalue; 2796 2797 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2798 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2799 kobj_getvalue(prop, &lvalue) == -1) 2800 segmapsize = SEGMAPDEFAULT; 2801 else 2802 segmapsize = (uintptr_t)lvalue; 2803 2804 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2805 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2806 kobj_getvalue(prop, &lvalue) == -1) 2807 segmapfreelists = 0; /* use segmap driver default */ 2808 else 2809 segmapfreelists = (int)lvalue; 2810 2811 /* physmem used to be here, but moved much earlier to fakebop.c */ 2812 } 2813 2814 /* 2815 * Add to a memory list. 2816 * start = start of new memory segment 2817 * len = length of new memory segment in bytes 2818 * new = pointer to a new struct memlist 2819 * memlistp = memory list to which to add segment. 2820 */ 2821 void 2822 memlist_add( 2823 uint64_t start, 2824 uint64_t len, 2825 struct memlist *new, 2826 struct memlist **memlistp) 2827 { 2828 struct memlist *cur; 2829 uint64_t end = start + len; 2830 2831 new->ml_address = start; 2832 new->ml_size = len; 2833 2834 cur = *memlistp; 2835 2836 while (cur) { 2837 if (cur->ml_address >= end) { 2838 new->ml_next = cur; 2839 *memlistp = new; 2840 new->ml_prev = cur->ml_prev; 2841 cur->ml_prev = new; 2842 return; 2843 } 2844 ASSERT(cur->ml_address + cur->ml_size <= start); 2845 if (cur->ml_next == NULL) { 2846 cur->ml_next = new; 2847 new->ml_prev = cur; 2848 new->ml_next = NULL; 2849 return; 2850 } 2851 memlistp = &cur->ml_next; 2852 cur = cur->ml_next; 2853 } 2854 } 2855 2856 void 2857 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2858 { 2859 size_t tsize = e_modtext - modtext; 2860 size_t dsize = e_moddata - moddata; 2861 2862 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2863 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2864 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2865 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2866 } 2867 2868 caddr_t 2869 kobj_text_alloc(vmem_t *arena, size_t size) 2870 { 2871 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2872 } 2873 2874 /*ARGSUSED*/ 2875 caddr_t 2876 kobj_texthole_alloc(caddr_t addr, size_t size) 2877 { 2878 panic("unexpected call to kobj_texthole_alloc()"); 2879 /*NOTREACHED*/ 2880 return (0); 2881 } 2882 2883 /*ARGSUSED*/ 2884 void 2885 kobj_texthole_free(caddr_t addr, size_t size) 2886 { 2887 panic("unexpected call to kobj_texthole_free()"); 2888 } 2889 2890 /* 2891 * This is called just after configure() in startup(). 2892 * 2893 * The ISALIST concept is a bit hopeless on Intel, because 2894 * there's no guarantee of an ever-more-capable processor 2895 * given that various parts of the instruction set may appear 2896 * and disappear between different implementations. 2897 * 2898 * While it would be possible to correct it and even enhance 2899 * it somewhat, the explicit hardware capability bitmask allows 2900 * more flexibility. 2901 * 2902 * So, we just leave this alone. 2903 */ 2904 void 2905 setx86isalist(void) 2906 { 2907 char *tp; 2908 size_t len; 2909 extern char *isa_list; 2910 2911 #define TBUFSIZE 1024 2912 2913 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2914 *tp = '\0'; 2915 2916 #if defined(__amd64) 2917 (void) strcpy(tp, "amd64 "); 2918 #endif 2919 2920 switch (x86_vendor) { 2921 case X86_VENDOR_Intel: 2922 case X86_VENDOR_AMD: 2923 case X86_VENDOR_TM: 2924 if (x86_feature & X86_CMOV) { 2925 /* 2926 * Pentium Pro or later 2927 */ 2928 (void) strcat(tp, "pentium_pro"); 2929 (void) strcat(tp, x86_feature & X86_MMX ? 2930 "+mmx pentium_pro " : " "); 2931 } 2932 /*FALLTHROUGH*/ 2933 case X86_VENDOR_Cyrix: 2934 /* 2935 * The Cyrix 6x86 does not have any Pentium features 2936 * accessible while not at privilege level 0. 2937 */ 2938 if (x86_feature & X86_CPUID) { 2939 (void) strcat(tp, "pentium"); 2940 (void) strcat(tp, x86_feature & X86_MMX ? 2941 "+mmx pentium " : " "); 2942 } 2943 break; 2944 default: 2945 break; 2946 } 2947 (void) strcat(tp, "i486 i386 i86"); 2948 len = strlen(tp) + 1; /* account for NULL at end of string */ 2949 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2950 kmem_free(tp, TBUFSIZE); 2951 2952 #undef TBUFSIZE 2953 } 2954 2955 2956 #ifdef __amd64 2957 2958 void * 2959 device_arena_alloc(size_t size, int vm_flag) 2960 { 2961 return (vmem_alloc(device_arena, size, vm_flag)); 2962 } 2963 2964 void 2965 device_arena_free(void *vaddr, size_t size) 2966 { 2967 vmem_free(device_arena, vaddr, size); 2968 } 2969 2970 #else /* __i386 */ 2971 2972 void * 2973 device_arena_alloc(size_t size, int vm_flag) 2974 { 2975 caddr_t vaddr; 2976 uintptr_t v; 2977 size_t start; 2978 size_t end; 2979 2980 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2981 if (vaddr == NULL) 2982 return (NULL); 2983 2984 v = (uintptr_t)vaddr; 2985 ASSERT(v >= kernelbase); 2986 ASSERT(v + size <= valloc_base); 2987 2988 start = btop(v - kernelbase); 2989 end = btop(v + size - 1 - kernelbase); 2990 ASSERT(start < toxic_bit_map_len); 2991 ASSERT(end < toxic_bit_map_len); 2992 2993 while (start <= end) { 2994 BT_ATOMIC_SET(toxic_bit_map, start); 2995 ++start; 2996 } 2997 return (vaddr); 2998 } 2999 3000 void 3001 device_arena_free(void *vaddr, size_t size) 3002 { 3003 uintptr_t v = (uintptr_t)vaddr; 3004 size_t start; 3005 size_t end; 3006 3007 ASSERT(v >= kernelbase); 3008 ASSERT(v + size <= valloc_base); 3009 3010 start = btop(v - kernelbase); 3011 end = btop(v + size - 1 - kernelbase); 3012 ASSERT(start < toxic_bit_map_len); 3013 ASSERT(end < toxic_bit_map_len); 3014 3015 while (start <= end) { 3016 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3017 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3018 ++start; 3019 } 3020 vmem_free(heap_arena, vaddr, size); 3021 } 3022 3023 /* 3024 * returns 1st address in range that is in device arena, or NULL 3025 * if len is not NULL it returns the length of the toxic range 3026 */ 3027 void * 3028 device_arena_contains(void *vaddr, size_t size, size_t *len) 3029 { 3030 uintptr_t v = (uintptr_t)vaddr; 3031 uintptr_t eaddr = v + size; 3032 size_t start; 3033 size_t end; 3034 3035 /* 3036 * if called very early by kmdb, just return NULL 3037 */ 3038 if (toxic_bit_map == NULL) 3039 return (NULL); 3040 3041 /* 3042 * First check if we're completely outside the bitmap range. 3043 */ 3044 if (v >= valloc_base || eaddr < kernelbase) 3045 return (NULL); 3046 3047 /* 3048 * Trim ends of search to look at only what the bitmap covers. 3049 */ 3050 if (v < kernelbase) 3051 v = kernelbase; 3052 start = btop(v - kernelbase); 3053 end = btop(eaddr - kernelbase); 3054 if (end >= toxic_bit_map_len) 3055 end = toxic_bit_map_len; 3056 3057 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3058 return (NULL); 3059 3060 v = kernelbase + ptob(start); 3061 if (len != NULL) 3062 *len = ptob(end - start); 3063 return ((void *)v); 3064 } 3065 3066 #endif /* __i386 */ 3067