1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright 2020 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 * Copyright 2022 Oxide Computer Company 29 * Copyright (c) 2020 Carlos Neira <cneirabustos@gmail.com> 30 * Copyright 2022 Oxide Computer Co. 31 */ 32 /* 33 * Copyright (c) 2010, Intel Corporation. 34 * All rights reserved. 35 */ 36 37 #include <sys/types.h> 38 #include <sys/t_lock.h> 39 #include <sys/param.h> 40 #include <sys/sysmacros.h> 41 #include <sys/signal.h> 42 #include <sys/systm.h> 43 #include <sys/user.h> 44 #include <sys/mman.h> 45 #include <sys/vm.h> 46 #include <sys/conf.h> 47 #include <sys/avintr.h> 48 #include <sys/autoconf.h> 49 #include <sys/disp.h> 50 #include <sys/class.h> 51 #include <sys/bitmap.h> 52 53 #include <sys/privregs.h> 54 55 #include <sys/proc.h> 56 #include <sys/buf.h> 57 #include <sys/kmem.h> 58 #include <sys/mem.h> 59 #include <sys/kstat.h> 60 61 #include <sys/reboot.h> 62 63 #include <sys/cred.h> 64 #include <sys/vnode.h> 65 #include <sys/file.h> 66 67 #include <sys/procfs.h> 68 69 #include <sys/vfs.h> 70 #include <sys/cmn_err.h> 71 #include <sys/utsname.h> 72 #include <sys/debug.h> 73 #include <sys/kdi.h> 74 75 #include <sys/dumphdr.h> 76 #include <sys/bootconf.h> 77 #include <sys/memlist_plat.h> 78 #include <sys/varargs.h> 79 #include <sys/promif.h> 80 #include <sys/prom_debug.h> 81 #include <sys/modctl.h> 82 83 #include <sys/sunddi.h> 84 #include <sys/sunndi.h> 85 #include <sys/ndi_impldefs.h> 86 #include <sys/ddidmareq.h> 87 #include <sys/psw.h> 88 #include <sys/regset.h> 89 #include <sys/clock.h> 90 #include <sys/pte.h> 91 #include <sys/tss.h> 92 #include <sys/stack.h> 93 #include <sys/trap.h> 94 #include <sys/fp.h> 95 #include <vm/kboot_mmu.h> 96 #include <vm/anon.h> 97 #include <vm/as.h> 98 #include <vm/page.h> 99 #include <vm/seg.h> 100 #include <vm/seg_dev.h> 101 #include <vm/seg_kmem.h> 102 #include <vm/seg_kpm.h> 103 #include <vm/seg_map.h> 104 #include <vm/seg_vn.h> 105 #include <vm/seg_kp.h> 106 #include <sys/memnode.h> 107 #include <vm/vm_dep.h> 108 #include <sys/thread.h> 109 #include <sys/sysconf.h> 110 #include <sys/vm_machparam.h> 111 #include <sys/archsystm.h> 112 #include <sys/machsystm.h> 113 #include <vm/hat.h> 114 #include <vm/hat_i86.h> 115 #include <sys/pmem.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/cpuvar.h> 119 #include <sys/segments.h> 120 #include <sys/clconf.h> 121 #include <sys/kobj.h> 122 #include <sys/kobj_lex.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/cpu_module.h> 125 #include <sys/smbios.h> 126 #include <sys/debug_info.h> 127 #include <sys/bootinfo.h> 128 #include <sys/ddi_periodic.h> 129 #include <sys/systeminfo.h> 130 #include <sys/multiboot.h> 131 #include <sys/ramdisk.h> 132 #include <sys/tsc.h> 133 #include <sys/clock.h> 134 135 #ifdef __xpv 136 137 #include <sys/hypervisor.h> 138 #include <sys/xen_mmu.h> 139 #include <sys/evtchn_impl.h> 140 #include <sys/gnttab.h> 141 #include <sys/xpv_panic.h> 142 #include <xen/sys/xenbus_comms.h> 143 #include <xen/public/physdev.h> 144 145 extern void xen_late_startup(void); 146 147 struct xen_evt_data cpu0_evt_data; 148 149 #else /* __xpv */ 150 #include <sys/memlist_impl.h> 151 152 extern void mem_config_init(void); 153 #endif /* __xpv */ 154 155 extern void progressbar_init(void); 156 extern void brand_init(void); 157 extern void pcf_init(void); 158 extern void pg_init(void); 159 extern void ssp_init(void); 160 161 extern int size_pse_array(pgcnt_t, int); 162 163 #if defined(_SOFT_HOSTID) 164 165 static int32_t set_soft_hostid(void); 166 static char hostid_file[] = "/etc/hostid"; 167 168 #endif 169 170 void *gfx_devinfo_list; 171 172 #if !defined(__xpv) 173 extern void immu_startup(void); 174 #endif 175 176 /* 177 * XXX make declaration below "static" when drivers no longer use this 178 * interface. 179 */ 180 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 181 182 /* 183 * segkp 184 */ 185 extern int segkp_fromheap; 186 187 static void kvm_init(void); 188 static void startup_init(void); 189 static void startup_memlist(void); 190 static void startup_kmem(void); 191 static void startup_modules(void); 192 static void startup_vm(void); 193 #ifndef __xpv 194 static void startup_tsc(void); 195 #endif 196 static void startup_end(void); 197 static void layout_kernel_va(void); 198 199 /* 200 * Declare these as initialized data so we can patch them. 201 */ 202 203 /* 204 * For now we can handle memory with physical addresses up to about 205 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 206 * half the VA space for seg_kpm. When systems get bigger than 64TB this 207 * code will need revisiting. There is an implicit assumption that there 208 * are no *huge* holes in the physical address space too. 209 */ 210 #define TERABYTE (1ul << 40) 211 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 212 #define PHYSMEM PHYSMEM_MAX64 213 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 214 215 216 pgcnt_t physmem = PHYSMEM; 217 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 218 219 extern char *kobj_file_buf; 220 extern int kobj_file_bufsize; /* set in /etc/system */ 221 222 /* Global variables for MP support. Used in mp_startup */ 223 caddr_t rm_platter_va = 0; 224 uint32_t rm_platter_pa; 225 226 int auto_lpg_disable = 1; 227 228 /* 229 * Some CPUs have holes in the middle of the 64-bit virtual address range. 230 */ 231 uintptr_t hole_start, hole_end; 232 233 /* 234 * kpm mapping window 235 */ 236 caddr_t kpm_vbase; 237 size_t kpm_size; 238 static int kpm_desired; 239 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 240 241 /* 242 * Configuration parameters set at boot time. 243 */ 244 245 caddr_t econtig; /* end of first block of contiguous kernel */ 246 247 struct bootops *bootops = 0; /* passed in from boot */ 248 struct bootops **bootopsp; 249 struct boot_syscalls *sysp; /* passed in from boot */ 250 251 char bootblock_fstype[16]; 252 253 char kern_bootargs[OBP_MAXPATHLEN]; 254 char kern_bootfile[OBP_MAXPATHLEN]; 255 256 /* 257 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 258 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 259 * zio buffers from their own segment, otherwise they are allocated from the 260 * heap. The optimization of allocating zio buffers from their own segment is 261 * only valid on 64-bit kernels. 262 */ 263 int segzio_fromheap = 0; 264 265 /* 266 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 267 * post-boot. 268 */ 269 int disable_smap = 0; 270 271 /* 272 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 273 * depends on number of BOP_ALLOC calls made and requested size, memory size 274 * combination and whether boot.bin memory needs to be freed. 275 */ 276 #define POSS_NEW_FRAGMENTS 12 277 278 /* 279 * VM data structures 280 */ 281 long page_hashsz; /* Size of page hash table (power of two) */ 282 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 283 struct page *pp_base; /* Base of initial system page struct array */ 284 struct page **page_hash; /* Page hash table */ 285 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 286 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 287 int pse_shift; /* log2(pse_table_size) */ 288 struct seg ktextseg; /* Segment used for kernel executable image */ 289 struct seg kvalloc; /* Segment used for "valloc" mapping */ 290 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 291 struct seg kmapseg; /* Segment used for generic kernel mappings */ 292 struct seg kdebugseg; /* Segment used for the kernel debugger */ 293 294 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 295 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 296 297 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 298 299 extern struct seg kvseg_core; /* Segment used for the core heap */ 300 struct seg kpmseg; /* Segment used for physical mapping */ 301 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 302 303 caddr_t segkp_base; /* Base address of segkp */ 304 caddr_t segzio_base; /* Base address of segzio */ 305 pgcnt_t segkpsize; /* size of segkp segment in pages */ 306 caddr_t segkvmm_base; 307 pgcnt_t segkvmmsize; 308 pgcnt_t segziosize; 309 310 /* 311 * A static DR page_t VA map is reserved that can map the page structures 312 * for a domain's entire RA space. The pages that back this space are 313 * dynamically allocated and need not be physically contiguous. The DR 314 * map size is derived from KPM size. 315 * This mechanism isn't used by x86 yet, so just stubs here. 316 */ 317 int ppvm_enable = 0; /* Static virtual map for page structs */ 318 page_t *ppvm_base = NULL; /* Base of page struct map */ 319 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 320 321 /* 322 * VA range available to the debugger 323 */ 324 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 325 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 326 327 struct memseg *memseg_base; 328 struct vnode unused_pages_vp; 329 330 #define FOURGB 0x100000000LL 331 332 struct memlist *memlist; 333 334 caddr_t s_text; /* start of kernel text segment */ 335 caddr_t e_text; /* end of kernel text segment */ 336 caddr_t s_data; /* start of kernel data segment */ 337 caddr_t e_data; /* end of kernel data segment */ 338 caddr_t modtext; /* start of loadable module text reserved */ 339 caddr_t e_modtext; /* end of loadable module text reserved */ 340 caddr_t moddata; /* start of loadable module data reserved */ 341 caddr_t e_moddata; /* end of loadable module data reserved */ 342 343 struct memlist *phys_install; /* Total installed physical memory */ 344 struct memlist *phys_avail; /* Total available physical memory */ 345 struct memlist *bios_rsvd; /* Bios reserved memory */ 346 347 /* 348 * kphysm_init returns the number of pages that were processed 349 */ 350 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 351 352 #define IO_PROP_SIZE 64 /* device property size */ 353 354 /* 355 * a couple useful roundup macros 356 */ 357 #define ROUND_UP_PAGE(x) \ 358 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 359 #define ROUND_UP_LPAGE(x) \ 360 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 361 #define ROUND_UP_4MEG(x) \ 362 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 363 #define ROUND_UP_TOPLEVEL(x) \ 364 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 365 366 /* 367 * 32-bit Kernel's Virtual memory layout. 368 * +-----------------------+ 369 * | | 370 * 0xFFC00000 -|-----------------------|- ARGSBASE 371 * | debugger | 372 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 373 * | Kernel Data | 374 * 0xFEC00000 -|-----------------------| 375 * | Kernel Text | 376 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 377 * |--- GDT ---|- GDT page (GDT_VA) 378 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 379 * | | 380 * | page_t structures | 381 * | memsegs, memlists, | 382 * | page hash, etc. | 383 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 384 * | | (segkp is just an arena in the heap) 385 * | | 386 * | kvseg | 387 * | | 388 * | | 389 * --- -|-----------------------|- kernelheap (floating) 390 * | Segkmap | 391 * 0xC3002000 -|-----------------------|- segmap_start (floating) 392 * | Red Zone | 393 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 394 * | | || 395 * | Shared objects | \/ 396 * | | 397 * : : 398 * | user data | 399 * |-----------------------| 400 * | user text | 401 * 0x08048000 -|-----------------------| 402 * | user stack | 403 * : : 404 * | invalid | 405 * 0x00000000 +-----------------------+ 406 * 407 * 408 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 409 * +-----------------------+ 410 * | | 411 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 412 * | debugger (?) | 413 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 414 * | unused | 415 * +-----------------------+ 416 * | Kernel Data | 417 * 0xFFFFFFFF.FBC00000 |-----------------------| 418 * | Kernel Text | 419 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 420 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 421 * |--- GDT ---|- GDT page (GDT_VA) 422 * |--- IDT ---|- IDT page (IDT_VA) 423 * |--- LDT ---|- LDT pages (LDT_VA) 424 * | | 425 * | Core heap | (used for loadable modules) 426 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 427 * | Kernel | 428 * | heap | 429 * | | 430 * | | 431 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 432 * | segmap | 433 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 434 * | device mappings | 435 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 436 * | segzio | 437 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 438 * | segkvmm | 439 * | | 440 * | | 441 * | | 442 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating) 443 * | segkp | 444 * |-----------------------|- segkp_base (floating) 445 * | page_t structures | valloc_base + valloc_sz 446 * | memsegs, memlists, | 447 * | page hash, etc. | 448 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB) 449 * | segkpm | 450 * | | 451 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB) 452 * | Red Zone | 453 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 454 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB) 455 * | User stack |- User space memory 456 * | | 457 * | shared objects, etc | (grows downwards) 458 * : : 459 * | | 460 * 0xFFFF8000.00000000 |-----------------------| 461 * | | 462 * | VA Hole / unused | 463 * | | 464 * 0x00008000.00000000 |-----------------------| 465 * | | 466 * | | 467 * : : 468 * | user heap | (grows upwards) 469 * | | 470 * | user data | 471 * |-----------------------| 472 * | user text | 473 * 0x00000000.04000000 |-----------------------| 474 * | invalid | 475 * 0x00000000.00000000 +-----------------------+ 476 * 477 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 478 * kernel, except that userlimit is raised to 0xfe000000 479 * 480 * Floating values: 481 * 482 * valloc_base: start of the kernel's memory management/tracking data 483 * structures. This region contains page_t structures for 484 * physical memory, memsegs, memlists, and the page hash. 485 * 486 * core_base: start of the kernel's "core" heap area on 64-bit systems. 487 * This area is intended to be used for global data as well as for module 488 * text/data that does not fit into the nucleus pages. The core heap is 489 * restricted to a 2GB range, allowing every address within it to be 490 * accessed using rip-relative addressing 491 * 492 * ekernelheap: end of kernelheap and start of segmap. 493 * 494 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 495 * above a red zone that separates the user's address space from the 496 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 497 * 498 * segmap_start: start of segmap. The length of segmap can be modified 499 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 500 * on 64-bit systems. 501 * 502 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 503 * decreased by 2X the size required for page_t. This allows the kernel 504 * heap to grow in size with physical memory. With sizeof(page_t) == 80 505 * bytes, the following shows the values of kernelbase and kernel heap 506 * sizes for different memory configurations (assuming default segmap and 507 * segkp sizes). 508 * 509 * mem size for kernelbase kernel heap 510 * size page_t's size 511 * ---- --------- ---------- ----------- 512 * 1gb 0x01400000 0xd1800000 684MB 513 * 2gb 0x02800000 0xcf000000 704MB 514 * 4gb 0x05000000 0xca000000 744MB 515 * 6gb 0x07800000 0xc5000000 784MB 516 * 8gb 0x0a000000 0xc0000000 824MB 517 * 16gb 0x14000000 0xac000000 984MB 518 * 32gb 0x28000000 0x84000000 1304MB 519 * 64gb 0x50000000 0x34000000 1944MB (*) 520 * 521 * kernelbase is less than the abi minimum of 0xc0000000 for memory 522 * configurations above 8gb. 523 * 524 * (*) support for memory configurations above 32gb will require manual tuning 525 * of kernelbase to balance out the need of user applications. 526 */ 527 528 /* real-time-clock initialization parameters */ 529 extern time_t process_rtc_config_file(void); 530 531 uintptr_t kernelbase; 532 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 533 uintptr_t eprom_kernelbase; 534 size_t segmapsize; 535 uintptr_t segmap_start; 536 int segmapfreelists; 537 pgcnt_t npages; 538 pgcnt_t orig_npages; 539 size_t core_size; /* size of "core" heap */ 540 uintptr_t core_base; /* base address of "core" heap */ 541 542 /* 543 * List of bootstrap pages. We mark these as allocated in startup. 544 * release_bootstrap() will free them when we're completely done with 545 * the bootstrap. 546 */ 547 static page_t *bootpages; 548 549 /* 550 * boot time pages that have a vnode from the ramdisk will keep that forever. 551 */ 552 static page_t *rd_pages; 553 554 /* 555 * Lower 64K 556 */ 557 static page_t *lower_pages = NULL; 558 static int lower_pages_count = 0; 559 560 struct system_hardware system_hardware; 561 562 /* 563 * Enable some debugging messages concerning memory usage... 564 */ 565 static void 566 print_memlist(char *title, struct memlist *mp) 567 { 568 prom_printf("MEMLIST: %s:\n", title); 569 while (mp != NULL) { 570 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 571 mp->ml_address, mp->ml_size); 572 mp = mp->ml_next; 573 } 574 } 575 576 /* 577 * XX64 need a comment here.. are these just default values, surely 578 * we read the "cpuid" type information to figure this out. 579 */ 580 int l2cache_sz = 0x80000; 581 int l2cache_linesz = 0x40; 582 int l2cache_assoc = 1; 583 584 static size_t textrepl_min_gb = 10; 585 586 /* 587 * on 64 bit we use a predifined VA range for mapping devices in the kernel 588 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 589 */ 590 591 vmem_t *device_arena; 592 uintptr_t toxic_addr = (uintptr_t)NULL; 593 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 594 595 596 int prom_debug; 597 598 /* 599 * This structure is used to keep track of the intial allocations 600 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 601 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 602 */ 603 #define NUM_ALLOCATIONS 8 604 int num_allocations = 0; 605 struct { 606 void **al_ptr; 607 size_t al_size; 608 } allocations[NUM_ALLOCATIONS]; 609 size_t valloc_sz = 0; 610 uintptr_t valloc_base; 611 612 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 613 size = ROUND_UP_PAGE(size); \ 614 if (num_allocations == NUM_ALLOCATIONS) \ 615 panic("too many ADD_TO_ALLOCATIONS()"); \ 616 allocations[num_allocations].al_ptr = (void**)&ptr; \ 617 allocations[num_allocations].al_size = size; \ 618 valloc_sz += size; \ 619 ++num_allocations; \ 620 } 621 622 /* 623 * Allocate all the initial memory needed by the page allocator. 624 */ 625 static void 626 perform_allocations(void) 627 { 628 caddr_t mem; 629 int i; 630 int valloc_align; 631 632 PRM_DEBUG(valloc_base); 633 PRM_DEBUG(valloc_sz); 634 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 635 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 636 if (mem != (caddr_t)valloc_base) 637 panic("BOP_ALLOC() failed"); 638 bzero(mem, valloc_sz); 639 for (i = 0; i < num_allocations; ++i) { 640 *allocations[i].al_ptr = (void *)mem; 641 mem += allocations[i].al_size; 642 } 643 } 644 645 /* 646 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 647 * VM has been set up so we can use hot_patch_kernel_text(). 648 * 649 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 650 * replace the four byte word at the patch point. See uts/intel/ml/copy.s 651 * for more information on what's going on here. 652 */ 653 static void 654 startup_smap(void) 655 { 656 int i; 657 uint32_t inst; 658 uint8_t *instp; 659 char sym[128]; 660 struct modctl *modp; 661 662 extern int _smap_enable_patch_count; 663 extern int _smap_disable_patch_count; 664 665 if (disable_smap != 0) 666 remove_x86_feature(x86_featureset, X86FSET_SMAP); 667 668 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 669 return; 670 671 for (i = 0; i < _smap_enable_patch_count; i++) { 672 int sizep; 673 674 VERIFY3U(i, <, _smap_enable_patch_count); 675 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 676 sizeof (sym)); 677 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 678 VERIFY(instp != 0); 679 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 680 hot_patch_kernel_text((caddr_t)instp, inst, 4); 681 } 682 683 for (i = 0; i < _smap_disable_patch_count; i++) { 684 int sizep; 685 686 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 687 i) < sizeof (sym)); 688 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 689 VERIFY(instp != 0); 690 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 691 hot_patch_kernel_text((caddr_t)instp, inst, 4); 692 } 693 694 /* 695 * Hotinline calls to smap_enable and smap_disable within 696 * unix module. Hotinlines in other modules are done on 697 * mod_load(). 698 */ 699 modp = mod_hold_by_name("unix"); 700 do_hotinlines(modp->mod_mp); 701 mod_release_mod(modp); 702 703 setcr4(getcr4() | CR4_SMAP); 704 smap_enable(); 705 } 706 707 /* 708 * Our world looks like this at startup time. 709 * 710 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 711 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 712 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 713 * addresses are fixed in the binary at link time. 714 * 715 * On the text page: 716 * unix/genunix/krtld/module text loads. 717 * 718 * On the data page: 719 * unix/genunix/krtld/module data loads. 720 * 721 * Machine-dependent startup code 722 */ 723 void 724 startup(void) 725 { 726 #if !defined(__xpv) 727 extern void startup_pci_bios(void); 728 #endif 729 extern cpuset_t cpu_ready_set; 730 731 /* 732 * Make sure that nobody tries to use sekpm until we have 733 * initialized it properly. 734 */ 735 kpm_desired = 1; 736 kpm_enable = 0; 737 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 738 739 #if defined(__xpv) /* XXPV fix me! */ 740 { 741 extern int segvn_use_regions; 742 segvn_use_regions = 0; 743 } 744 #endif 745 ssp_init(); 746 progressbar_init(); 747 startup_init(); 748 #if defined(__xpv) 749 startup_xen_version(); 750 #endif 751 startup_memlist(); 752 startup_kmem(); 753 startup_vm(); 754 #if !defined(__xpv) 755 /* 756 * Up until this point, we cannot use any time delay functions 757 * (e.g. tenmicrosec()). Once the TSC is setup, we can. This is 758 * purposely done after the VM system as been setup to allow 759 * calibration sources which might require mapping for access 760 * (e.g. the HPET), but still early enough to allow the rest of 761 * the startup code to make use of the TSC (via tenmicrosec() or 762 * the default TSC-based gethrtime()) as required. 763 */ 764 startup_tsc(); 765 766 /* 767 * Note we need to do this even on fast reboot in order to access 768 * the irq routing table (used for pci labels). 769 */ 770 startup_pci_bios(); 771 startup_smap(); 772 #endif 773 #if defined(__xpv) 774 startup_xen_mca(); 775 #endif 776 startup_modules(); 777 778 startup_end(); 779 } 780 781 static void 782 startup_init() 783 { 784 PRM_POINT("startup_init() starting..."); 785 786 /* 787 * Complete the extraction of cpuid data 788 */ 789 cpuid_execpass(CPU, CPUID_PASS_EXTENDED, NULL); 790 791 (void) check_boot_version(BOP_GETVERSION(bootops)); 792 793 /* 794 * Check for prom_debug in boot environment 795 */ 796 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 797 ++prom_debug; 798 PRM_POINT("prom_debug found in boot enviroment"); 799 } 800 801 /* 802 * Collect node, cpu and memory configuration information. 803 */ 804 get_system_configuration(); 805 806 /* 807 * Halt if this is an unsupported processor. 808 */ 809 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 810 printf("\n486 processor (\"%s\") detected.\n", 811 CPU->cpu_brandstr); 812 halt("This processor is not supported by this release " 813 "of Solaris."); 814 } 815 816 PRM_POINT("startup_init() done"); 817 } 818 819 /* 820 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 821 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 822 * also filters out physical page zero. There is some reliance on the 823 * boot loader allocating only a few contiguous physical memory chunks. 824 */ 825 static void 826 avail_filter(uint64_t *addr, uint64_t *size) 827 { 828 uintptr_t va; 829 uintptr_t next_va; 830 pfn_t pfn; 831 uint64_t pfn_addr; 832 uint64_t pfn_eaddr; 833 uint_t prot; 834 size_t len; 835 uint_t change; 836 837 if (prom_debug) 838 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 839 *addr, *size); 840 841 /* 842 * page zero is required for BIOS.. never make it available 843 */ 844 if (*addr == 0) { 845 *addr += MMU_PAGESIZE; 846 *size -= MMU_PAGESIZE; 847 } 848 849 /* 850 * First we trim from the front of the range. Since kbm_probe() 851 * walks ranges in virtual order, but addr/size are physical, we need 852 * to the list until no changes are seen. This deals with the case 853 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 854 * but w < v. 855 */ 856 do { 857 change = 0; 858 for (va = KERNEL_TEXT; 859 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 860 va = next_va) { 861 862 next_va = va + len; 863 pfn_addr = pfn_to_pa(pfn); 864 pfn_eaddr = pfn_addr + len; 865 866 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 867 change = 1; 868 while (*size > 0 && len > 0) { 869 *addr += MMU_PAGESIZE; 870 *size -= MMU_PAGESIZE; 871 len -= MMU_PAGESIZE; 872 } 873 } 874 } 875 if (change && prom_debug) 876 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 877 *addr, *size); 878 } while (change); 879 880 /* 881 * Trim pages from the end of the range. 882 */ 883 for (va = KERNEL_TEXT; 884 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 885 va = next_va) { 886 887 next_va = va + len; 888 pfn_addr = pfn_to_pa(pfn); 889 890 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 891 *size = pfn_addr - *addr; 892 } 893 894 if (prom_debug) 895 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 896 *addr, *size); 897 } 898 899 static void 900 kpm_init() 901 { 902 struct segkpm_crargs b; 903 904 /* 905 * These variables were all designed for sfmmu in which segkpm is 906 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 907 * might use 2+ page sizes on a single machine, so none of these 908 * variables have a single correct value. They are set up as if we 909 * always use a 4KB pagesize, which should do no harm. In the long 910 * run, we should get rid of KPM's assumption that only a single 911 * pagesize is used. 912 */ 913 kpm_pgshft = MMU_PAGESHIFT; 914 kpm_pgsz = MMU_PAGESIZE; 915 kpm_pgoff = MMU_PAGEOFFSET; 916 kpmp2pshft = 0; 917 kpmpnpgs = 1; 918 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 919 920 PRM_POINT("about to create segkpm"); 921 rw_enter(&kas.a_lock, RW_WRITER); 922 923 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 924 panic("cannot attach segkpm"); 925 926 b.prot = PROT_READ | PROT_WRITE; 927 b.nvcolors = 1; 928 929 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 930 panic("segkpm_create segkpm"); 931 932 rw_exit(&kas.a_lock); 933 934 kpm_enable = 1; 935 936 /* 937 * As the KPM was disabled while setting up the system, go back and fix 938 * CPU zero's access to its user page table. This is a bit gross, but 939 * we have a chicken and egg problem otherwise. 940 */ 941 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 942 CPU->cpu_hat_info->hci_user_l3ptes = 943 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 944 } 945 946 /* 947 * The debug info page provides enough information to allow external 948 * inspectors (e.g. when running under a hypervisor) to bootstrap 949 * themselves into allowing full-blown kernel debugging. 950 */ 951 static void 952 init_debug_info(void) 953 { 954 caddr_t mem; 955 debug_info_t *di; 956 957 #ifndef __lint 958 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 959 #endif 960 961 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 962 MMU_PAGESIZE); 963 964 if (mem != (caddr_t)DEBUG_INFO_VA) 965 panic("BOP_ALLOC() failed"); 966 bzero(mem, MMU_PAGESIZE); 967 968 di = (debug_info_t *)mem; 969 970 di->di_magic = DEBUG_INFO_MAGIC; 971 di->di_version = DEBUG_INFO_VERSION; 972 di->di_modules = (uintptr_t)&modules; 973 di->di_s_text = (uintptr_t)s_text; 974 di->di_e_text = (uintptr_t)e_text; 975 di->di_s_data = (uintptr_t)s_data; 976 di->di_e_data = (uintptr_t)e_data; 977 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 978 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 979 } 980 981 /* 982 * Build the memlists and other kernel essential memory system data structures. 983 * This is everything at valloc_base. 984 */ 985 static void 986 startup_memlist(void) 987 { 988 size_t memlist_sz; 989 size_t memseg_sz; 990 size_t pagehash_sz; 991 size_t pp_sz; 992 uintptr_t va; 993 size_t len; 994 uint_t prot; 995 pfn_t pfn; 996 int memblocks; 997 pfn_t rsvd_high_pfn; 998 pgcnt_t rsvd_pgcnt; 999 size_t rsvdmemlist_sz; 1000 int rsvdmemblocks; 1001 caddr_t pagecolor_mem; 1002 size_t pagecolor_memsz; 1003 caddr_t page_ctrs_mem; 1004 size_t page_ctrs_size; 1005 size_t pse_table_alloc_size; 1006 struct memlist *current; 1007 extern void startup_build_mem_nodes(struct memlist *); 1008 1009 /* XX64 fix these - they should be in include files */ 1010 extern size_t page_coloring_init(uint_t, int, int); 1011 extern void page_coloring_setup(caddr_t); 1012 1013 PRM_POINT("startup_memlist() starting..."); 1014 1015 /* 1016 * Use leftover large page nucleus text/data space for loadable modules. 1017 * Use at most MODTEXT/MODDATA. 1018 */ 1019 len = kbm_nucleus_size; 1020 ASSERT(len > MMU_PAGESIZE); 1021 1022 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1023 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1024 if (e_moddata - moddata > MODDATA) 1025 e_moddata = moddata + MODDATA; 1026 1027 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1028 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1029 if (e_modtext - modtext > MODTEXT) 1030 e_modtext = modtext + MODTEXT; 1031 1032 econtig = e_moddata; 1033 1034 PRM_DEBUG(modtext); 1035 PRM_DEBUG(e_modtext); 1036 PRM_DEBUG(moddata); 1037 PRM_DEBUG(e_moddata); 1038 PRM_DEBUG(econtig); 1039 1040 /* 1041 * Examine the boot loader physical memory map to find out: 1042 * - total memory in system - physinstalled 1043 * - the max physical address - physmax 1044 * - the number of discontiguous segments of memory. 1045 */ 1046 if (prom_debug) 1047 print_memlist("boot physinstalled", 1048 bootops->boot_mem->physinstalled); 1049 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1050 &physinstalled, &memblocks); 1051 PRM_DEBUG(physmax); 1052 PRM_DEBUG(physinstalled); 1053 PRM_DEBUG(memblocks); 1054 1055 /* 1056 * We no longer support any form of memory DR. 1057 */ 1058 plat_dr_physmax = 0; 1059 1060 /* 1061 * Examine the bios reserved memory to find out: 1062 * - the number of discontiguous segments of memory. 1063 */ 1064 if (prom_debug) 1065 print_memlist("boot reserved mem", 1066 bootops->boot_mem->rsvdmem); 1067 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1068 &rsvd_pgcnt, &rsvdmemblocks); 1069 PRM_DEBUG(rsvd_high_pfn); 1070 PRM_DEBUG(rsvd_pgcnt); 1071 PRM_DEBUG(rsvdmemblocks); 1072 1073 /* 1074 * Initialize hat's mmu parameters. 1075 * Check for enforce-prot-exec in boot environment. It's used to 1076 * enable/disable support for the page table entry NX bit. 1077 * The default is to enforce PROT_EXEC on processors that support NX. 1078 * Boot seems to round up the "len", but 8 seems to be big enough. 1079 */ 1080 mmu_init(); 1081 1082 1083 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1084 1085 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1086 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1087 char value[8]; 1088 1089 if (len < 8) 1090 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1091 else 1092 (void) strcpy(value, ""); 1093 if (strcmp(value, "off") == 0) 1094 mmu.pt_nx = 0; 1095 } 1096 PRM_DEBUG(mmu.pt_nx); 1097 1098 /* 1099 * We will need page_t's for every page in the system, except for 1100 * memory mapped at or above above the start of the kernel text segment. 1101 * 1102 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1103 */ 1104 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1105 obp_pages = 0; 1106 va = KERNEL_TEXT; 1107 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1108 npages -= len >> MMU_PAGESHIFT; 1109 if (va >= (uintptr_t)e_moddata) 1110 obp_pages += len >> MMU_PAGESHIFT; 1111 va += len; 1112 } 1113 PRM_DEBUG(npages); 1114 PRM_DEBUG(obp_pages); 1115 1116 /* 1117 * If physmem is patched to be non-zero, use it instead of the computed 1118 * value unless it is larger than the actual amount of memory on hand. 1119 */ 1120 if (physmem == 0 || physmem > npages) { 1121 physmem = npages; 1122 } else if (physmem < npages) { 1123 orig_npages = npages; 1124 npages = physmem; 1125 } 1126 PRM_DEBUG(physmem); 1127 1128 /* 1129 * We now compute the sizes of all the initial allocations for 1130 * structures the kernel needs in order do kmem_alloc(). These 1131 * include: 1132 * memsegs 1133 * memlists 1134 * page hash table 1135 * page_t's 1136 * page coloring data structs 1137 */ 1138 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1139 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1140 PRM_DEBUG(memseg_sz); 1141 1142 /* 1143 * Reserve space for memlists. There's no real good way to know exactly 1144 * how much room we'll need, but this should be a good upper bound. 1145 */ 1146 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1147 (memblocks + POSS_NEW_FRAGMENTS)); 1148 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1149 PRM_DEBUG(memlist_sz); 1150 1151 /* 1152 * Reserve space for bios reserved memlists. 1153 */ 1154 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1155 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1156 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1157 PRM_DEBUG(rsvdmemlist_sz); 1158 1159 /* LINTED */ 1160 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1161 /* 1162 * The page structure hash table size is a power of 2 1163 * such that the average hash chain length is PAGE_HASHAVELEN. 1164 */ 1165 page_hashsz = npages / PAGE_HASHAVELEN; 1166 page_hashsz_shift = highbit(page_hashsz); 1167 page_hashsz = 1 << page_hashsz_shift; 1168 pagehash_sz = sizeof (struct page *) * page_hashsz; 1169 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1170 PRM_DEBUG(pagehash_sz); 1171 1172 /* 1173 * Set aside room for the page structures themselves. 1174 */ 1175 PRM_DEBUG(npages); 1176 pp_sz = sizeof (struct page) * npages; 1177 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1178 PRM_DEBUG(pp_sz); 1179 1180 /* 1181 * determine l2 cache info and memory size for page coloring 1182 */ 1183 (void) getl2cacheinfo(CPU, 1184 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1185 pagecolor_memsz = 1186 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1187 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1188 PRM_DEBUG(pagecolor_memsz); 1189 1190 page_ctrs_size = page_ctrs_sz(); 1191 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1192 PRM_DEBUG(page_ctrs_size); 1193 1194 /* 1195 * Allocate the array that protects pp->p_selock. 1196 */ 1197 pse_shift = size_pse_array(physmem, max_ncpus); 1198 pse_table_size = 1 << pse_shift; 1199 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1200 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1201 1202 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1203 valloc_base = VALLOC_BASE; 1204 1205 /* 1206 * The signicant memory-sized regions are roughly sized as follows in 1207 * the default layout with max physmem: 1208 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE) 1209 * segzio: 1.5x physmem 1210 * segkvmm: 4x physmem 1211 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem 1212 * 1213 * The idea is that we leave enough room to avoid fragmentation issues, 1214 * so we would like the VA arenas to have some extra. 1215 * 1216 * Ignoring the loose change of segkp, valloc, and such, this means that 1217 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to 1218 * about (2Tb / 7.0), rounded down to 256Gb in the check below. 1219 * 1220 * Note that KPM lives below VALLOC_BASE, but we want to include it in 1221 * adjustments, hence the 8 below. 1222 * 1223 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and 1224 * _userlimit) down to accommodate the VA requirements above. 1225 */ 1226 if (physmax + 1 > mmu_btop(TERABYTE / 4)) { 1227 uint64_t physmem_bytes = mmu_ptob(physmax + 1); 1228 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4)); 1229 1230 PRM_DEBUG(adjustment); 1231 1232 /* 1233 * segkpm_base is always aligned on a L3 PTE boundary. 1234 */ 1235 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE); 1236 1237 /* 1238 * But make sure we leave some space for user apps above hole. 1239 */ 1240 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1241 1242 ASSERT(segkpm_base <= SEGKPM_BASE); 1243 1244 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG); 1245 if (valloc_base < segkpm_base) 1246 panic("not enough kernel VA to support memory size"); 1247 } 1248 1249 PRM_DEBUG(segkpm_base); 1250 PRM_DEBUG(valloc_base); 1251 1252 /* 1253 * do all the initial allocations 1254 */ 1255 perform_allocations(); 1256 1257 /* 1258 * Build phys_install and phys_avail in kernel memspace. 1259 * - phys_install should be all memory in the system. 1260 * - phys_avail is phys_install minus any memory mapped before this 1261 * point above KERNEL_TEXT. 1262 */ 1263 current = phys_install = memlist; 1264 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1265 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1266 panic("physinstalled was too big!"); 1267 if (prom_debug) 1268 print_memlist("phys_install", phys_install); 1269 1270 phys_avail = current; 1271 PRM_POINT("Building phys_avail:\n"); 1272 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1273 avail_filter); 1274 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1275 panic("physavail was too big!"); 1276 if (prom_debug) 1277 print_memlist("phys_avail", phys_avail); 1278 #ifndef __xpv 1279 /* 1280 * Free unused memlist items, which may be used by memory DR driver 1281 * at runtime. 1282 */ 1283 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1284 memlist_free_block((caddr_t)current, 1285 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1286 } 1287 #endif 1288 1289 /* 1290 * Build bios reserved memspace 1291 */ 1292 current = bios_rsvd; 1293 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1294 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1295 panic("bios_rsvd was too big!"); 1296 if (prom_debug) 1297 print_memlist("bios_rsvd", bios_rsvd); 1298 #ifndef __xpv 1299 /* 1300 * Free unused memlist items, which may be used by memory DR driver 1301 * at runtime. 1302 */ 1303 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1304 memlist_free_block((caddr_t)current, 1305 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1306 } 1307 #endif 1308 1309 /* 1310 * setup page coloring 1311 */ 1312 page_coloring_setup(pagecolor_mem); 1313 page_lock_init(); /* currently a no-op */ 1314 1315 /* 1316 * free page list counters 1317 */ 1318 (void) page_ctrs_alloc(page_ctrs_mem); 1319 1320 /* 1321 * Size the pcf array based on the number of cpus in the box at 1322 * boot time. 1323 */ 1324 1325 pcf_init(); 1326 1327 /* 1328 * Initialize the page structures from the memory lists. 1329 */ 1330 availrmem_initial = availrmem = freemem = 0; 1331 PRM_POINT("Calling kphysm_init()..."); 1332 npages = kphysm_init(pp_base, npages); 1333 PRM_POINT("kphysm_init() done"); 1334 PRM_DEBUG(npages); 1335 1336 init_debug_info(); 1337 1338 /* 1339 * Now that page_t's have been initialized, remove all the 1340 * initial allocation pages from the kernel free page lists. 1341 */ 1342 boot_mapin((caddr_t)valloc_base, valloc_sz); 1343 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1344 PRM_POINT("startup_memlist() done"); 1345 1346 PRM_DEBUG(valloc_sz); 1347 1348 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1349 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1350 extern size_t textrepl_size_thresh; 1351 textrepl_size_thresh = (16 << 20) - 1; 1352 } 1353 } 1354 1355 /* 1356 * Layout the kernel's part of address space and initialize kmem allocator. 1357 */ 1358 static void 1359 startup_kmem(void) 1360 { 1361 extern void page_set_colorequiv_arr(void); 1362 #if !defined(__xpv) 1363 extern uint64_t kpti_kbase; 1364 #endif 1365 1366 PRM_POINT("startup_kmem() starting..."); 1367 1368 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1369 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1370 "systems."); 1371 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1372 core_base = (uintptr_t)COREHEAP_BASE; 1373 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1374 1375 PRM_DEBUG(core_base); 1376 PRM_DEBUG(core_size); 1377 PRM_DEBUG(kernelbase); 1378 1379 ekernelheap = (char *)core_base; 1380 PRM_DEBUG(ekernelheap); 1381 1382 /* 1383 * Now that we know the real value of kernelbase, 1384 * update variables that were initialized with a value of 1385 * KERNELBASE (in common/conf/param.c). 1386 * 1387 * XXX The problem with this sort of hackery is that the 1388 * compiler just may feel like putting the const declarations 1389 * (in param.c) into the .text section. Perhaps they should 1390 * just be declared as variables there? 1391 */ 1392 1393 *(uintptr_t *)&_kernelbase = kernelbase; 1394 *(uintptr_t *)&_userlimit = kernelbase; 1395 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1396 #if !defined(__xpv) 1397 kpti_kbase = kernelbase; 1398 #endif 1399 PRM_DEBUG(_kernelbase); 1400 PRM_DEBUG(_userlimit); 1401 PRM_DEBUG(_userlimit32); 1402 1403 /* We have to re-do this now that we've modified _userlimit. */ 1404 mmu_calc_user_slots(); 1405 1406 layout_kernel_va(); 1407 1408 /* 1409 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1410 */ 1411 kernelheap_init(kernelheap, ekernelheap, 1412 kernelheap + MMU_PAGESIZE, 1413 (void *)core_base, (void *)(core_base + core_size)); 1414 1415 #if defined(__xpv) 1416 /* 1417 * Link pending events struct into cpu struct 1418 */ 1419 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1420 #endif 1421 /* 1422 * Initialize kernel memory allocator. 1423 */ 1424 kmem_init(); 1425 1426 /* 1427 * Factor in colorequiv to check additional 'equivalent' bins 1428 */ 1429 page_set_colorequiv_arr(); 1430 1431 /* 1432 * print this out early so that we know what's going on 1433 */ 1434 print_x86_featureset(x86_featureset); 1435 1436 /* 1437 * Initialize bp_mapin(). 1438 */ 1439 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1440 1441 /* 1442 * orig_npages is non-zero if physmem has been configured for less 1443 * than the available memory. 1444 */ 1445 if (orig_npages) { 1446 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1447 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1448 npages, orig_npages); 1449 } 1450 1451 #ifdef KERNELBASE_ABI_MIN 1452 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1453 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1454 "i386 ABI compliant.", (uintptr_t)kernelbase); 1455 } 1456 #endif 1457 1458 #ifndef __xpv 1459 if (plat_dr_support_memory()) { 1460 mem_config_init(); 1461 } 1462 #else /* __xpv */ 1463 /* 1464 * Some of the xen start information has to be relocated up 1465 * into the kernel's permanent address space. 1466 */ 1467 PRM_POINT("calling xen_relocate_start_info()"); 1468 xen_relocate_start_info(); 1469 PRM_POINT("xen_relocate_start_info() done"); 1470 1471 /* 1472 * (Update the vcpu pointer in our cpu structure to point into 1473 * the relocated shared info.) 1474 */ 1475 CPU->cpu_m.mcpu_vcpu_info = 1476 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1477 #endif /* __xpv */ 1478 1479 PRM_POINT("startup_kmem() done"); 1480 } 1481 1482 #ifndef __xpv 1483 /* 1484 * If we have detected that we are running in an HVM environment, we need 1485 * to prepend the PV driver directory to the module search path. 1486 */ 1487 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1488 static void 1489 update_default_path() 1490 { 1491 char *current, *newpath; 1492 int newlen; 1493 1494 /* 1495 * We are about to resync with krtld. krtld will reset its 1496 * internal module search path iff Solaris has set default_path. 1497 * We want to be sure we're prepending this new directory to the 1498 * right search path. 1499 */ 1500 current = (default_path == NULL) ? kobj_module_path : default_path; 1501 1502 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1503 newpath = kmem_alloc(newlen, KM_SLEEP); 1504 (void) strcpy(newpath, HVM_MOD_DIR); 1505 (void) strcat(newpath, " "); 1506 (void) strcat(newpath, current); 1507 1508 default_path = newpath; 1509 } 1510 #endif 1511 1512 static void 1513 startup_modules(void) 1514 { 1515 int cnt; 1516 extern void prom_setup(void); 1517 int32_t v, h; 1518 char d[11]; 1519 char *cp; 1520 cmi_hdl_t hdl; 1521 1522 PRM_POINT("startup_modules() starting..."); 1523 1524 #ifndef __xpv 1525 if ((get_hwenv() & HW_XEN_HVM) != 0) 1526 update_default_path(); 1527 #endif 1528 1529 /* 1530 * Read the GMT lag from /etc/rtc_config. 1531 */ 1532 sgmtl(process_rtc_config_file()); 1533 1534 /* 1535 * Calculate default settings of system parameters based upon 1536 * maxusers, yet allow to be overridden via the /etc/system file. 1537 */ 1538 param_calc(0); 1539 1540 mod_setup(); 1541 1542 /* 1543 * Initialize system parameters. 1544 */ 1545 param_init(); 1546 1547 /* 1548 * Initialize the default brands 1549 */ 1550 brand_init(); 1551 1552 /* 1553 * maxmem is the amount of physical memory we're playing with. 1554 */ 1555 maxmem = physmem; 1556 1557 /* 1558 * Initialize segment management stuff. 1559 */ 1560 seg_init(); 1561 1562 if (modload("fs", "specfs") == -1) 1563 halt("Can't load specfs"); 1564 1565 if (modload("fs", "devfs") == -1) 1566 halt("Can't load devfs"); 1567 1568 if (modload("fs", "dev") == -1) 1569 halt("Can't load dev"); 1570 1571 if (modload("fs", "procfs") == -1) 1572 halt("Can't load procfs"); 1573 1574 (void) modloadonly("sys", "lbl_edition"); 1575 1576 dispinit(); 1577 1578 /* Read cluster configuration data. */ 1579 clconf_init(); 1580 1581 #if defined(__xpv) 1582 (void) ec_init(); 1583 gnttab_init(); 1584 (void) xs_early_init(); 1585 #endif /* __xpv */ 1586 1587 /* 1588 * Create a kernel device tree. First, create rootnex and 1589 * then invoke bus specific code to probe devices. 1590 */ 1591 setup_ddi(); 1592 1593 #ifdef __xpv 1594 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1595 #endif 1596 { 1597 id_t smid; 1598 smbios_system_t smsys; 1599 smbios_info_t sminfo; 1600 char *mfg; 1601 /* 1602 * Load the System Management BIOS into the global ksmbios 1603 * handle, if an SMBIOS is present on this system. 1604 * Also set "si-hw-provider" property, if not already set. 1605 */ 1606 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1607 if (ksmbios != NULL && 1608 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1609 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1610 mfg = (char *)sminfo.smbi_manufacturer; 1611 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1612 extern char hw_provider[]; 1613 int i; 1614 for (i = 0; i < SYS_NMLN; i++) { 1615 if (isprint(mfg[i])) 1616 hw_provider[i] = mfg[i]; 1617 else { 1618 hw_provider[i] = '\0'; 1619 break; 1620 } 1621 } 1622 hw_provider[SYS_NMLN - 1] = '\0'; 1623 } 1624 } 1625 } 1626 1627 1628 /* 1629 * Originally clconf_init() apparently needed the hostid. But 1630 * this no longer appears to be true - it uses its own nodeid. 1631 * By placing the hostid logic here, we are able to make use of 1632 * the SMBIOS UUID. 1633 */ 1634 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1635 cmn_err(CE_WARN, "Unable to set hostid"); 1636 } else { 1637 for (v = h, cnt = 0; cnt < 10; cnt++) { 1638 d[cnt] = (char)(v % 10); 1639 v /= 10; 1640 if (v == 0) 1641 break; 1642 } 1643 for (cp = hw_serial; cnt >= 0; cnt--) 1644 *cp++ = d[cnt] + '0'; 1645 *cp = 0; 1646 } 1647 1648 /* 1649 * Set up the CPU module subsystem for the boot cpu in the native 1650 * case, and all physical cpu resource in the xpv dom0 case. 1651 * Modifies the device tree, so this must be done after 1652 * setup_ddi(). 1653 */ 1654 #ifdef __xpv 1655 /* 1656 * If paravirtualized and on dom0 then we initialize all physical 1657 * cpu handles now; if paravirtualized on a domU then do not 1658 * initialize. 1659 */ 1660 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1661 xen_mc_lcpu_cookie_t cpi; 1662 1663 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1664 cpi = xen_physcpu_next(cpi)) { 1665 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1666 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1667 xen_physcpu_strandid(cpi))) != NULL && 1668 is_x86_feature(x86_featureset, X86FSET_MCA)) 1669 cmi_mca_init(hdl); 1670 } 1671 } 1672 #else 1673 /* 1674 * Initialize a handle for the boot cpu - others will initialize 1675 * as they startup. 1676 */ 1677 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1678 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1679 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1680 cmi_mca_init(hdl); 1681 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1682 } 1683 #endif /* __xpv */ 1684 1685 /* 1686 * Fake a prom tree such that /dev/openprom continues to work 1687 */ 1688 PRM_POINT("startup_modules: calling prom_setup..."); 1689 prom_setup(); 1690 PRM_POINT("startup_modules: done"); 1691 1692 /* 1693 * Load all platform specific modules 1694 */ 1695 PRM_POINT("startup_modules: calling psm_modload..."); 1696 psm_modload(); 1697 1698 PRM_POINT("startup_modules() done"); 1699 } 1700 1701 /* 1702 * claim a "setaside" boot page for use in the kernel 1703 */ 1704 page_t * 1705 boot_claim_page(pfn_t pfn) 1706 { 1707 page_t *pp; 1708 1709 pp = page_numtopp_nolock(pfn); 1710 ASSERT(pp != NULL); 1711 1712 if (PP_ISBOOTPAGES(pp)) { 1713 if (pp->p_next != NULL) 1714 pp->p_next->p_prev = pp->p_prev; 1715 if (pp->p_prev == NULL) 1716 bootpages = pp->p_next; 1717 else 1718 pp->p_prev->p_next = pp->p_next; 1719 } else { 1720 /* 1721 * htable_attach() expects a base pagesize page 1722 */ 1723 if (pp->p_szc != 0) 1724 page_boot_demote(pp); 1725 pp = page_numtopp(pfn, SE_EXCL); 1726 } 1727 return (pp); 1728 } 1729 1730 /* 1731 * Walk through the pagetables looking for pages mapped in by boot. If the 1732 * setaside flag is set the pages are expected to be returned to the 1733 * kernel later in boot, so we add them to the bootpages list. 1734 */ 1735 static void 1736 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1737 { 1738 uintptr_t va = low; 1739 size_t len; 1740 uint_t prot; 1741 pfn_t pfn; 1742 page_t *pp; 1743 pgcnt_t boot_protect_cnt = 0; 1744 1745 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1746 if (va + len >= high) 1747 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1748 "legal range.", len, (void *)va); 1749 1750 while (len > 0) { 1751 pp = page_numtopp_alloc(pfn); 1752 if (pp != NULL) { 1753 if (setaside == 0) 1754 panic("Unexpected mapping by boot. " 1755 "addr=%p pfn=%lx\n", 1756 (void *)va, pfn); 1757 1758 pp->p_next = bootpages; 1759 pp->p_prev = NULL; 1760 PP_SETBOOTPAGES(pp); 1761 if (bootpages != NULL) { 1762 bootpages->p_prev = pp; 1763 } 1764 bootpages = pp; 1765 ++boot_protect_cnt; 1766 } 1767 1768 ++pfn; 1769 len -= MMU_PAGESIZE; 1770 va += MMU_PAGESIZE; 1771 } 1772 } 1773 PRM_DEBUG(boot_protect_cnt); 1774 } 1775 1776 /* 1777 * Establish the final size of the kernel's heap, size of segmap, segkp, etc. 1778 */ 1779 static void 1780 layout_kernel_va(void) 1781 { 1782 const size_t physmem_size = mmu_ptob(physmem); 1783 size_t size; 1784 1785 PRM_POINT("layout_kernel_va() starting..."); 1786 1787 kpm_vbase = (caddr_t)segkpm_base; 1788 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1789 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1790 panic("not enough room for kpm!"); 1791 PRM_DEBUG(kpm_size); 1792 PRM_DEBUG(kpm_vbase); 1793 1794 segkp_base = (caddr_t)valloc_base + valloc_sz; 1795 if (!segkp_fromheap) { 1796 size = mmu_ptob(segkpsize); 1797 /* 1798 * Determine size of segkp 1799 * Users can change segkpsize through eeprom. 1800 */ 1801 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) { 1802 size = SEGKPDEFSIZE; 1803 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1804 "segkpsize has been reset to %ld pages", 1805 mmu_btop(size)); 1806 } 1807 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size)); 1808 segkpsize = mmu_btop(ROUND_UP_LPAGE(size)); 1809 } 1810 PRM_DEBUG(segkp_base); 1811 PRM_DEBUG(segkpsize); 1812 1813 /* 1814 * segkvmm: backing for vmm guest memory. Like segzio, we have a 1815 * separate segment for two reasons: it makes it easy to skip our pages 1816 * on kernel crash dumps, and it helps avoid fragmentation. With this 1817 * segment, we're expecting significantly-sized allocations only; we'll 1818 * default to 4x the size of physmem. 1819 */ 1820 segkvmm_base = segkp_base + mmu_ptob(segkpsize); 1821 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4); 1822 1823 size = MAX(size, SEGVMMMINSIZE); 1824 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size)); 1825 1826 PRM_DEBUG(segkvmmsize); 1827 PRM_DEBUG(segkvmm_base); 1828 1829 /* 1830 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem. 1831 */ 1832 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize); 1833 if (segzio_fromheap) { 1834 segziosize = 0; 1835 } else { 1836 size = (segziosize != 0) ? mmu_ptob(segziosize) : 1837 (physmem_size * 3) / 2; 1838 1839 size = MAX(size, SEGZIOMINSIZE); 1840 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1841 } 1842 PRM_DEBUG(segziosize); 1843 PRM_DEBUG(segzio_base); 1844 1845 /* 1846 * Put the range of VA for device mappings next, kmdb knows to not 1847 * grep in this range of addresses. 1848 */ 1849 toxic_addr = 1850 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1851 PRM_DEBUG(toxic_addr); 1852 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1853 1854 /* 1855 * Users can change segmapsize through eeprom. If the variable 1856 * is tuned through eeprom, there is no upper bound on the 1857 * size of segmap. 1858 */ 1859 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1860 1861 PRM_DEBUG(segmap_start); 1862 PRM_DEBUG(segmapsize); 1863 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1864 PRM_DEBUG(kernelheap); 1865 PRM_POINT("layout_kernel_va() done..."); 1866 } 1867 1868 /* 1869 * Finish initializing the VM system, now that we are no longer 1870 * relying on the boot time memory allocators. 1871 */ 1872 static void 1873 startup_vm(void) 1874 { 1875 struct segmap_crargs a; 1876 1877 extern int use_brk_lpg, use_stk_lpg; 1878 1879 PRM_POINT("startup_vm() starting..."); 1880 1881 /* 1882 * Initialize the hat layer. 1883 */ 1884 hat_init(); 1885 1886 /* 1887 * Do final allocations of HAT data structures that need to 1888 * be allocated before quiescing the boot loader. 1889 */ 1890 PRM_POINT("Calling hat_kern_alloc()..."); 1891 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1892 PRM_POINT("hat_kern_alloc() done"); 1893 1894 #ifndef __xpv 1895 /* 1896 * Setup Page Attribute Table 1897 */ 1898 pat_sync(); 1899 #endif 1900 1901 /* 1902 * The next two loops are done in distinct steps in order 1903 * to be sure that any page that is doubly mapped (both above 1904 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1905 * Note this may never happen, but it might someday. 1906 */ 1907 bootpages = NULL; 1908 PRM_POINT("Protecting boot pages"); 1909 1910 /* 1911 * Protect any pages mapped above KERNEL_TEXT that somehow have 1912 * page_t's. This can only happen if something weird allocated 1913 * in this range (like kadb/kmdb). 1914 */ 1915 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1916 1917 /* 1918 * Before we can take over memory allocation/mapping from the boot 1919 * loader we must remove from our free page lists any boot allocated 1920 * pages that stay mapped until release_bootstrap(). 1921 */ 1922 protect_boot_range(0, kernelbase, 1); 1923 1924 1925 /* 1926 * Switch to running on regular HAT (not boot_mmu) 1927 */ 1928 PRM_POINT("Calling hat_kern_setup()..."); 1929 hat_kern_setup(); 1930 1931 /* 1932 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1933 */ 1934 bop_no_more_mem(); 1935 1936 PRM_POINT("hat_kern_setup() done"); 1937 1938 hat_cpu_online(CPU); 1939 1940 /* 1941 * Initialize VM system 1942 */ 1943 PRM_POINT("Calling kvm_init()..."); 1944 kvm_init(); 1945 PRM_POINT("kvm_init() done"); 1946 1947 /* 1948 * Tell kmdb that the VM system is now working 1949 */ 1950 if (boothowto & RB_DEBUG) 1951 kdi_dvec_vmready(); 1952 1953 #if defined(__xpv) 1954 /* 1955 * Populate the I/O pool on domain 0 1956 */ 1957 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1958 extern long populate_io_pool(void); 1959 long init_io_pool_cnt; 1960 1961 PRM_POINT("Populating reserve I/O page pool"); 1962 init_io_pool_cnt = populate_io_pool(); 1963 PRM_DEBUG(init_io_pool_cnt); 1964 } 1965 #endif 1966 /* 1967 * Mangle the brand string etc. 1968 */ 1969 cpuid_execpass(CPU, CPUID_PASS_DYNAMIC, NULL); 1970 1971 /* 1972 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1973 */ 1974 device_arena = vmem_create("device", (void *)toxic_addr, 1975 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1976 1977 /* 1978 * Now that we've got more VA, as well as the ability to allocate from 1979 * it, tell the debugger. 1980 */ 1981 if (boothowto & RB_DEBUG) 1982 kdi_dvec_memavail(); 1983 1984 #if !defined(__xpv) 1985 /* 1986 * Map page pfn=0 for drivers, such as kd, that need to pick up 1987 * parameters left there by controllers/BIOS. 1988 */ 1989 PRM_POINT("setup up p0_va"); 1990 p0_va = i86devmap(0, 1, PROT_READ); 1991 PRM_DEBUG(p0_va); 1992 #endif 1993 1994 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1995 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1996 1997 /* 1998 * disable automatic large pages for small memory systems or 1999 * when the disable flag is set. 2000 * 2001 * Do not yet consider page sizes larger than 2m/4m. 2002 */ 2003 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2004 max_uheap_lpsize = LEVEL_SIZE(1); 2005 max_ustack_lpsize = LEVEL_SIZE(1); 2006 max_privmap_lpsize = LEVEL_SIZE(1); 2007 max_uidata_lpsize = LEVEL_SIZE(1); 2008 max_utext_lpsize = LEVEL_SIZE(1); 2009 max_shm_lpsize = LEVEL_SIZE(1); 2010 } 2011 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2012 auto_lpg_disable) { 2013 use_brk_lpg = 0; 2014 use_stk_lpg = 0; 2015 } 2016 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2017 2018 PRM_POINT("Calling hat_init_finish()..."); 2019 hat_init_finish(); 2020 PRM_POINT("hat_init_finish() done"); 2021 2022 /* 2023 * Initialize the segkp segment type. 2024 */ 2025 rw_enter(&kas.a_lock, RW_WRITER); 2026 PRM_POINT("Attaching segkp"); 2027 if (segkp_fromheap) { 2028 segkp->s_as = &kas; 2029 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2030 segkp) < 0) { 2031 panic("startup: cannot attach segkp"); 2032 /*NOTREACHED*/ 2033 } 2034 PRM_POINT("Doing segkp_create()"); 2035 if (segkp_create(segkp) != 0) { 2036 panic("startup: segkp_create failed"); 2037 /*NOTREACHED*/ 2038 } 2039 PRM_DEBUG(segkp); 2040 rw_exit(&kas.a_lock); 2041 2042 /* 2043 * kpm segment 2044 */ 2045 segmap_kpm = 0; 2046 if (kpm_desired) 2047 kpm_init(); 2048 2049 /* 2050 * Now create segmap segment. 2051 */ 2052 rw_enter(&kas.a_lock, RW_WRITER); 2053 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2054 panic("cannot attach segmap"); 2055 /*NOTREACHED*/ 2056 } 2057 PRM_DEBUG(segmap); 2058 2059 a.prot = PROT_READ | PROT_WRITE; 2060 a.shmsize = 0; 2061 a.nfreelist = segmapfreelists; 2062 2063 if (segmap_create(segmap, (caddr_t)&a) != 0) 2064 panic("segmap_create segmap"); 2065 rw_exit(&kas.a_lock); 2066 2067 setup_vaddr_for_ppcopy(CPU); 2068 2069 segdev_init(); 2070 #if defined(__xpv) 2071 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2072 #endif 2073 pmem_init(); 2074 2075 PRM_POINT("startup_vm() done"); 2076 } 2077 2078 /* 2079 * Load a tod module for the non-standard tod part found on this system. 2080 */ 2081 static void 2082 load_tod_module(char *todmod) 2083 { 2084 if (modload("tod", todmod) == -1) 2085 halt("Can't load TOD module"); 2086 } 2087 2088 #ifndef __xpv 2089 static void 2090 startup_tsc(void) 2091 { 2092 uint64_t tsc_freq; 2093 2094 PRM_POINT("startup_tsc() starting..."); 2095 2096 tsc_freq = tsc_calibrate(); 2097 PRM_DEBUG(tsc_freq); 2098 2099 tsc_hrtimeinit(tsc_freq); 2100 } 2101 #endif 2102 2103 static void 2104 startup_end(void) 2105 { 2106 int i; 2107 extern void setx86isalist(void); 2108 extern void cpu_event_init(void); 2109 2110 PRM_POINT("startup_end() starting..."); 2111 2112 /* 2113 * Perform tasks that get done after most of the VM 2114 * initialization has been done but before the clock 2115 * and other devices get started. 2116 */ 2117 kern_setup1(); 2118 2119 /* 2120 * Perform CPC initialization for this CPU. 2121 */ 2122 kcpc_hw_init(CPU); 2123 2124 /* 2125 * Initialize cpu event framework. 2126 */ 2127 cpu_event_init(); 2128 2129 #if defined(OPTERON_ERRATUM_147) 2130 if (opteron_erratum_147) 2131 patch_erratum_147(); 2132 #endif 2133 /* 2134 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2135 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2136 */ 2137 if (tod_module_name != NULL) { 2138 PRM_POINT("load_tod_module()"); 2139 load_tod_module(tod_module_name); 2140 } 2141 2142 #if defined(__xpv) 2143 /* 2144 * Forceload interposing TOD module for the hypervisor. 2145 */ 2146 PRM_POINT("load_tod_module()"); 2147 load_tod_module("xpvtod"); 2148 #endif 2149 2150 /* 2151 * Configure the system. 2152 */ 2153 PRM_POINT("Calling configure()..."); 2154 configure(); /* set up devices */ 2155 PRM_POINT("configure() done"); 2156 2157 /* 2158 * We can now setup for XSAVE because fpu_probe is done in configure(). 2159 */ 2160 if (fp_save_mech == FP_XSAVE) { 2161 PRM_POINT("xsave_setup_msr()"); 2162 xsave_setup_msr(CPU); 2163 } 2164 2165 /* 2166 * Set the isa_list string to the defined instruction sets we 2167 * support. 2168 */ 2169 setx86isalist(); 2170 PRM_POINT("cpu_intr_alloc()"); 2171 cpu_intr_alloc(CPU, NINTR_THREADS); 2172 PRM_POINT("psm_install()"); 2173 psm_install(); 2174 2175 /* 2176 * We're done with bootops. We don't unmap the bootstrap yet because 2177 * we're still using bootsvcs. 2178 */ 2179 PRM_POINT("NULLing out bootops"); 2180 *bootopsp = (struct bootops *)NULL; 2181 bootops = (struct bootops *)NULL; 2182 2183 #if defined(__xpv) 2184 ec_init_debug_irq(); 2185 xs_domu_init(); 2186 #endif 2187 2188 #if !defined(__xpv) 2189 /* 2190 * Intel IOMMU has been setup/initialized in ddi_impl.c 2191 * Start it up now. 2192 */ 2193 immu_startup(); 2194 2195 /* 2196 * Now that we're no longer going to drop into real mode for a BIOS call 2197 * via bootops, we can enable PCID (which requires CR0.PG). 2198 */ 2199 enable_pcid(); 2200 #endif 2201 2202 PRM_POINT("Enabling interrupts"); 2203 (*picinitf)(); 2204 sti(); 2205 #if defined(__xpv) 2206 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2207 xen_late_startup(); 2208 #endif 2209 2210 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2211 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2212 2213 /* 2214 * Register software interrupt handlers for ddi_periodic_add(9F). 2215 * Software interrupts up to the level 10 are supported. 2216 */ 2217 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2218 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2219 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2220 (caddr_t)(uintptr_t)i, NULL); 2221 } 2222 2223 #if !defined(__xpv) 2224 if (modload("drv", "amd_iommu") < 0) { 2225 PRM_POINT("No AMD IOMMU present\n"); 2226 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2227 "amd_iommu")) == NULL) { 2228 PRM_POINT("AMD IOMMU failed to attach\n"); 2229 } 2230 #endif 2231 post_startup_cpu_fixups(); 2232 2233 PRM_POINT("startup_end() done"); 2234 } 2235 2236 /* 2237 * Don't remove the following 2 variables. They are necessary 2238 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2239 */ 2240 char *_hs1107 = hw_serial; 2241 ulong_t _bdhs34; 2242 2243 void 2244 post_startup(void) 2245 { 2246 extern void cpupm_init(cpu_t *); 2247 extern void cpu_event_init_cpu(cpu_t *); 2248 2249 /* 2250 * Set the system wide, processor-specific flags to be passed 2251 * to userland via the aux vector for performance hints and 2252 * instruction set extensions. 2253 */ 2254 bind_hwcap(); 2255 2256 #ifdef __xpv 2257 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2258 #endif 2259 { 2260 #if defined(__xpv) 2261 xpv_panic_init(); 2262 #else 2263 /* 2264 * Startup the memory scrubber. 2265 * XXPV This should be running somewhere .. 2266 */ 2267 if ((get_hwenv() & HW_VIRTUAL) == 0) 2268 memscrub_init(); 2269 #endif 2270 } 2271 2272 /* 2273 * Complete CPU module initialization 2274 */ 2275 cmi_post_startup(); 2276 2277 /* 2278 * Perform forceloading tasks for /etc/system. 2279 */ 2280 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2281 2282 /* 2283 * ON4.0: Force /proc module in until clock interrupt handle fixed 2284 * ON4.0: This must be fixed or restated in /etc/systems. 2285 */ 2286 (void) modload("fs", "procfs"); 2287 2288 (void) i_ddi_attach_hw_nodes("pit_beep"); 2289 2290 maxmem = freemem; 2291 2292 cpu_event_init_cpu(CPU); 2293 cpupm_init(CPU); 2294 (void) mach_cpu_create_device_node(CPU, NULL); 2295 2296 pg_init(); 2297 } 2298 2299 static int 2300 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2301 { 2302 return ((pp->p_pagenum >= btop(low_addr)) && 2303 (pp->p_pagenum < btopr(high_addr))); 2304 } 2305 2306 static int 2307 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2308 { 2309 uint_t i; 2310 2311 for (i = 0; modranges[i].phys != 0; i++) { 2312 if (pp_in_range(pp, modranges[i].phys, 2313 modranges[i].phys + modranges[i].size)) 2314 return (1); 2315 } 2316 2317 return (0); 2318 } 2319 2320 void 2321 release_bootstrap(void) 2322 { 2323 int root_is_ramdisk; 2324 page_t *pp; 2325 extern void kobj_boot_unmountroot(void); 2326 extern dev_t rootdev; 2327 uint_t i; 2328 char propname[32]; 2329 rd_existing_t *modranges; 2330 #if !defined(__xpv) 2331 pfn_t pfn; 2332 #endif 2333 2334 /* 2335 * Save the bootfs module ranges so that we can reserve them below 2336 * for the real bootfs. 2337 */ 2338 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2339 KM_SLEEP); 2340 for (i = 0; ; i++) { 2341 uint64_t start, size; 2342 2343 modranges[i].phys = 0; 2344 2345 (void) snprintf(propname, sizeof (propname), 2346 "module-addr-%u", i); 2347 if (do_bsys_getproplen(NULL, propname) <= 0) 2348 break; 2349 (void) do_bsys_getprop(NULL, propname, &start); 2350 2351 (void) snprintf(propname, sizeof (propname), 2352 "module-size-%u", i); 2353 if (do_bsys_getproplen(NULL, propname) <= 0) 2354 break; 2355 (void) do_bsys_getprop(NULL, propname, &size); 2356 2357 modranges[i].phys = start; 2358 modranges[i].size = size; 2359 } 2360 2361 /* unmount boot ramdisk and release kmem usage */ 2362 kobj_boot_unmountroot(); 2363 2364 /* 2365 * We're finished using the boot loader so free its pages. 2366 */ 2367 PRM_POINT("Unmapping lower boot pages"); 2368 2369 clear_boot_mappings(0, _userlimit); 2370 2371 postbootkernelbase = kernelbase; 2372 2373 /* 2374 * If root isn't on ramdisk, destroy the hardcoded 2375 * ramdisk node now and release the memory. Else, 2376 * ramdisk memory is kept in rd_pages. 2377 */ 2378 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2379 if (!root_is_ramdisk) { 2380 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2381 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2382 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2383 (void) ddi_remove_child(dip, 0); 2384 } 2385 2386 PRM_POINT("Releasing boot pages"); 2387 while (bootpages) { 2388 extern uint64_t ramdisk_start, ramdisk_end; 2389 pp = bootpages; 2390 bootpages = pp->p_next; 2391 2392 2393 /* Keep pages for the lower 64K */ 2394 if (pp_in_range(pp, 0, 0x40000)) { 2395 pp->p_next = lower_pages; 2396 lower_pages = pp; 2397 lower_pages_count++; 2398 continue; 2399 } 2400 2401 if ((root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2402 ramdisk_end)) || pp_in_module(pp, modranges)) { 2403 pp->p_next = rd_pages; 2404 rd_pages = pp; 2405 continue; 2406 } 2407 pp->p_next = (struct page *)0; 2408 pp->p_prev = (struct page *)0; 2409 PP_CLRBOOTPAGES(pp); 2410 page_free(pp, 1); 2411 } 2412 PRM_POINT("Boot pages released"); 2413 2414 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2415 2416 #if !defined(__xpv) 2417 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2418 /* 2419 * Find 1 page below 1 MB so that other processors can boot up or 2420 * so that any processor can resume. 2421 * Make sure it has a kernel VA as well as a 1:1 mapping. 2422 * We should have just free'd one up. 2423 */ 2424 2425 /* 2426 * 0x10 pages is 64K. Leave the bottom 64K alone 2427 * for BIOS. 2428 */ 2429 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2430 if (page_numtopp_alloc(pfn) == NULL) 2431 continue; 2432 rm_platter_va = i86devmap(pfn, 1, 2433 PROT_READ | PROT_WRITE | PROT_EXEC); 2434 rm_platter_pa = ptob(pfn); 2435 break; 2436 } 2437 if (pfn == btop(1*1024*1024) && use_mp) 2438 panic("No page below 1M available for starting " 2439 "other processors or for resuming from system-suspend"); 2440 #endif /* !__xpv */ 2441 } 2442 2443 /* 2444 * Initialize the platform-specific parts of a page_t. 2445 */ 2446 void 2447 add_physmem_cb(page_t *pp, pfn_t pnum) 2448 { 2449 pp->p_pagenum = pnum; 2450 pp->p_mapping = NULL; 2451 pp->p_embed = 0; 2452 pp->p_share = 0; 2453 pp->p_mlentry = 0; 2454 } 2455 2456 /* 2457 * kphysm_init() initializes physical memory. 2458 */ 2459 static pgcnt_t 2460 kphysm_init(page_t *pp, pgcnt_t npages) 2461 { 2462 struct memlist *pmem; 2463 struct memseg *cur_memseg; 2464 pfn_t base_pfn; 2465 pfn_t end_pfn; 2466 pgcnt_t num; 2467 pgcnt_t pages_done = 0; 2468 uint64_t addr; 2469 uint64_t size; 2470 extern pfn_t ddiphysmin; 2471 extern int mnode_xwa; 2472 int ms = 0, me = 0; 2473 2474 ASSERT(page_hash != NULL && page_hashsz != 0); 2475 2476 cur_memseg = memseg_base; 2477 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2478 /* 2479 * In a 32 bit kernel can't use higher memory if we're 2480 * not booting in PAE mode. This check takes care of that. 2481 */ 2482 addr = pmem->ml_address; 2483 size = pmem->ml_size; 2484 if (btop(addr) > physmax) 2485 continue; 2486 2487 /* 2488 * align addr and size - they may not be at page boundaries 2489 */ 2490 if ((addr & MMU_PAGEOFFSET) != 0) { 2491 addr += MMU_PAGEOFFSET; 2492 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2493 size -= addr - pmem->ml_address; 2494 } 2495 2496 /* only process pages below or equal to physmax */ 2497 if ((btop(addr + size) - 1) > physmax) 2498 size = ptob(physmax - btop(addr) + 1); 2499 2500 num = btop(size); 2501 if (num == 0) 2502 continue; 2503 2504 if (num > npages) 2505 num = npages; 2506 2507 npages -= num; 2508 pages_done += num; 2509 base_pfn = btop(addr); 2510 2511 if (prom_debug) 2512 prom_printf("MEMSEG addr=0x%" PRIx64 2513 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2514 addr, num, base_pfn, base_pfn + num); 2515 2516 /* 2517 * Ignore pages below ddiphysmin to simplify ddi memory 2518 * allocation with non-zero addr_lo requests. 2519 */ 2520 if (base_pfn < ddiphysmin) { 2521 if (base_pfn + num <= ddiphysmin) 2522 continue; 2523 pp += (ddiphysmin - base_pfn); 2524 num -= (ddiphysmin - base_pfn); 2525 base_pfn = ddiphysmin; 2526 } 2527 2528 /* 2529 * mnode_xwa is greater than 1 when large pages regions can 2530 * cross memory node boundaries. To prevent the formation 2531 * of these large pages, configure the memsegs based on the 2532 * memory node ranges which had been made non-contiguous. 2533 */ 2534 end_pfn = base_pfn + num - 1; 2535 if (mnode_xwa > 1) { 2536 ms = PFN_2_MEM_NODE(base_pfn); 2537 me = PFN_2_MEM_NODE(end_pfn); 2538 2539 if (ms != me) { 2540 /* 2541 * current range spans more than 1 memory node. 2542 * Set num to only the pfn range in the start 2543 * memory node. 2544 */ 2545 num = mem_node_config[ms].physmax - base_pfn 2546 + 1; 2547 ASSERT(end_pfn > mem_node_config[ms].physmax); 2548 } 2549 } 2550 2551 for (;;) { 2552 /* 2553 * Build the memsegs entry 2554 */ 2555 cur_memseg->pages = pp; 2556 cur_memseg->epages = pp + num; 2557 cur_memseg->pages_base = base_pfn; 2558 cur_memseg->pages_end = base_pfn + num; 2559 2560 /* 2561 * Insert into memseg list in decreasing pfn range 2562 * order. Low memory is typically more fragmented such 2563 * that this ordering keeps the larger ranges at the 2564 * front of the list for code that searches memseg. 2565 * This ASSERTS that the memsegs coming in from boot 2566 * are in increasing physical address order and not 2567 * contiguous. 2568 */ 2569 if (memsegs != NULL) { 2570 ASSERT(cur_memseg->pages_base >= 2571 memsegs->pages_end); 2572 cur_memseg->next = memsegs; 2573 } 2574 memsegs = cur_memseg; 2575 2576 /* 2577 * add_physmem() initializes the PSM part of the page 2578 * struct by calling the PSM back with add_physmem_cb(). 2579 * In addition it coalesces pages into larger pages as 2580 * it initializes them. 2581 */ 2582 add_physmem(pp, num, base_pfn); 2583 cur_memseg++; 2584 availrmem_initial += num; 2585 availrmem += num; 2586 2587 pp += num; 2588 if (ms >= me) 2589 break; 2590 2591 /* process next memory node range */ 2592 ms++; 2593 base_pfn = mem_node_config[ms].physbase; 2594 2595 if (mnode_xwa > 1) { 2596 num = MIN(mem_node_config[ms].physmax, 2597 end_pfn) - base_pfn + 1; 2598 } else { 2599 num = mem_node_config[ms].physmax - 2600 base_pfn + 1; 2601 } 2602 } 2603 } 2604 2605 PRM_DEBUG(availrmem_initial); 2606 PRM_DEBUG(availrmem); 2607 PRM_DEBUG(freemem); 2608 build_pfn_hash(); 2609 return (pages_done); 2610 } 2611 2612 /* 2613 * Kernel VM initialization. 2614 */ 2615 static void 2616 kvm_init(void) 2617 { 2618 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2619 2620 /* 2621 * Put the kernel segments in kernel address space. 2622 */ 2623 rw_enter(&kas.a_lock, RW_WRITER); 2624 as_avlinit(&kas); 2625 2626 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2627 (void) segkmem_create(&ktextseg); 2628 2629 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2630 (void) segkmem_create(&kvalloc); 2631 2632 (void) seg_attach(&kas, kernelheap, 2633 ekernelheap - kernelheap, &kvseg); 2634 (void) segkmem_create(&kvseg); 2635 2636 if (core_size > 0) { 2637 PRM_POINT("attaching kvseg_core"); 2638 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2639 &kvseg_core); 2640 (void) segkmem_create(&kvseg_core); 2641 } 2642 2643 PRM_POINT("attaching segkvmm"); 2644 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg); 2645 (void) segkmem_create(&kvmmseg); 2646 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize)); 2647 2648 if (segziosize > 0) { 2649 PRM_POINT("attaching segzio"); 2650 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2651 &kzioseg); 2652 (void) segkmem_create(&kzioseg); 2653 2654 /* create zio area covering new segment */ 2655 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2656 } 2657 2658 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2659 (void) segkmem_create(&kdebugseg); 2660 2661 rw_exit(&kas.a_lock); 2662 2663 /* 2664 * Ensure that the red zone at kernelbase is never accessible. 2665 */ 2666 PRM_POINT("protecting redzone"); 2667 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2668 2669 /* 2670 * Make the text writable so that it can be hot patched by DTrace. 2671 */ 2672 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2673 PROT_READ | PROT_WRITE | PROT_EXEC); 2674 2675 /* 2676 * Make data writable until end. 2677 */ 2678 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2679 PROT_READ | PROT_WRITE | PROT_EXEC); 2680 } 2681 2682 #ifndef __xpv 2683 /* 2684 * Solaris adds an entry for Write Combining caching to the PAT 2685 */ 2686 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2687 2688 void 2689 pat_sync(void) 2690 { 2691 ulong_t cr0, cr0_orig, cr4; 2692 2693 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2694 return; 2695 cr0_orig = cr0 = getcr0(); 2696 cr4 = getcr4(); 2697 2698 /* disable caching and flush all caches and TLBs */ 2699 cr0 |= CR0_CD; 2700 cr0 &= ~CR0_NW; 2701 setcr0(cr0); 2702 invalidate_cache(); 2703 if (cr4 & CR4_PGE) { 2704 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2705 setcr4(cr4); 2706 } else { 2707 reload_cr3(); 2708 } 2709 2710 /* add our entry to the PAT */ 2711 wrmsr(REG_PAT, pat_attr_reg); 2712 2713 /* flush TLBs and cache again, then reenable cr0 caching */ 2714 if (cr4 & CR4_PGE) { 2715 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2716 setcr4(cr4); 2717 } else { 2718 reload_cr3(); 2719 } 2720 invalidate_cache(); 2721 setcr0(cr0_orig); 2722 } 2723 2724 #endif /* !__xpv */ 2725 2726 #if defined(_SOFT_HOSTID) 2727 /* 2728 * On platforms that do not have a hardware serial number, attempt 2729 * to set one based on the contents of /etc/hostid. If this file does 2730 * not exist, assume that we are to generate a new hostid and set 2731 * it in the kernel, for subsequent saving by a userland process 2732 * once the system is up and the root filesystem is mounted r/w. 2733 * 2734 * In order to gracefully support upgrade on OpenSolaris, if 2735 * /etc/hostid does not exist, we will attempt to get a serial number 2736 * using the legacy method (/kernel/misc/sysinit). 2737 * 2738 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2739 * a hardware serial number. Note that we don't automatically trust 2740 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2741 * UUIDs in violation of the standard), we check against a blacklist. 2742 * 2743 * In an attempt to make the hostid less prone to abuse 2744 * (for license circumvention, etc), we store it in /etc/hostid 2745 * in rot47 format. 2746 */ 2747 static int atoi(char *); 2748 2749 /* 2750 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2751 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2752 * array can be updated.) 2753 */ 2754 int smbios_broken_uuid = 0; 2755 2756 /* 2757 * List of known bad UUIDs. This is just the lower 32-bit values, since 2758 * that's what we use for the host id. If your hostid falls here, you need 2759 * to contact your hardware OEM for a fix for your BIOS. 2760 */ 2761 static unsigned char 2762 smbios_uuid_blacklist[][16] = { 2763 2764 { /* Reported bad UUID (Google search) */ 2765 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2766 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2767 }, 2768 { /* Known bad DELL UUID */ 2769 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2770 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2771 }, 2772 { /* Uninitialized flash */ 2773 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2774 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2775 }, 2776 { /* All zeros */ 2777 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2778 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2779 }, 2780 }; 2781 2782 static int32_t 2783 uuid_to_hostid(const uint8_t *uuid) 2784 { 2785 /* 2786 * Although the UUIDs are 128-bits, they may not distribute entropy 2787 * evenly. We would like to use SHA or MD5, but those are located 2788 * in loadable modules and not available this early in boot. As we 2789 * don't need the values to be cryptographically strong, we just 2790 * generate 32-bit vaue by xor'ing the various sequences together, 2791 * which ensures that the entire UUID contributes to the hostid. 2792 */ 2793 uint32_t id = 0; 2794 2795 /* first check against the blacklist */ 2796 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2797 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2798 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2799 "Contact BIOS manufacturer for repair.\n"); 2800 return ((int32_t)HW_INVALID_HOSTID); 2801 } 2802 } 2803 2804 for (int i = 0; i < 16; i++) 2805 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2806 2807 /* Make sure return value is positive */ 2808 return (id & 0x7fffffff); 2809 } 2810 2811 static int32_t 2812 set_soft_hostid(void) 2813 { 2814 struct _buf *file; 2815 char tokbuf[MAXNAMELEN]; 2816 token_t token; 2817 int done = 0; 2818 u_longlong_t tmp; 2819 int i; 2820 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2821 unsigned char *c; 2822 smbios_system_t smsys; 2823 2824 /* 2825 * If /etc/hostid file not found, we'd like to get a pseudo 2826 * random number to use at the hostid. A nice way to do this 2827 * is to read the real time clock. To remain xen-compatible, 2828 * we can't poke the real hardware, so we use tsc_read() to 2829 * read the real time clock. 2830 */ 2831 2832 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2833 /* 2834 * hostid file not found - try to load sysinit module 2835 * and see if it has a nonzero hostid value...use that 2836 * instead of generating a new hostid here if so. 2837 */ 2838 if ((i = modload("misc", "sysinit")) != -1) { 2839 if (strlen(hw_serial) > 0) 2840 hostid = (int32_t)atoi(hw_serial); 2841 (void) modunload(i); 2842 } 2843 2844 /* 2845 * We try to use the SMBIOS UUID. But not if it is blacklisted 2846 * in /etc/system. 2847 */ 2848 if ((hostid == HW_INVALID_HOSTID) && 2849 (smbios_broken_uuid == 0) && 2850 (ksmbios != NULL) && 2851 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 2852 (smsys.smbs_uuidlen >= 16)) { 2853 hostid = uuid_to_hostid(smsys.smbs_uuid); 2854 } 2855 2856 /* 2857 * Generate a "random" hostid using the clock. These 2858 * hostids will change on each boot if the value is not 2859 * saved to a persistent /etc/hostid file. 2860 */ 2861 if (hostid == HW_INVALID_HOSTID) { 2862 hostid = tsc_read() & 0x0CFFFFF; 2863 } 2864 } else { 2865 /* hostid file found */ 2866 while (!done) { 2867 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2868 2869 switch (token) { 2870 case POUND: 2871 /* 2872 * skip comments 2873 */ 2874 kobj_find_eol(file); 2875 break; 2876 case STRING: 2877 /* 2878 * un-rot47 - obviously this 2879 * nonsense is ascii-specific 2880 */ 2881 for (c = (unsigned char *)tokbuf; 2882 *c != '\0'; c++) { 2883 *c += 47; 2884 if (*c > '~') 2885 *c -= 94; 2886 else if (*c < '!') 2887 *c += 94; 2888 } 2889 /* 2890 * now we should have a real number 2891 */ 2892 2893 if (kobj_getvalue(tokbuf, &tmp) != 0) 2894 kobj_file_err(CE_WARN, file, 2895 "Bad value %s for hostid", 2896 tokbuf); 2897 else 2898 hostid = (int32_t)tmp; 2899 2900 break; 2901 case EOF: 2902 done = 1; 2903 /* FALLTHROUGH */ 2904 case NEWLINE: 2905 kobj_newline(file); 2906 break; 2907 default: 2908 break; 2909 2910 } 2911 } 2912 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2913 kobj_file_err(CE_WARN, file, 2914 "hostid missing or corrupt"); 2915 2916 kobj_close_file(file); 2917 } 2918 /* 2919 * hostid is now the value read from /etc/hostid, or the 2920 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2921 * set. 2922 */ 2923 return (hostid); 2924 } 2925 2926 static int 2927 atoi(char *p) 2928 { 2929 int i = 0; 2930 2931 while (*p != '\0') 2932 i = 10 * i + (*p++ - '0'); 2933 2934 return (i); 2935 } 2936 2937 #endif /* _SOFT_HOSTID */ 2938 2939 void 2940 get_system_configuration(void) 2941 { 2942 char prop[32]; 2943 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2944 2945 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2946 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2947 kobj_getvalue(prop, &nodes_ll) == -1 || 2948 nodes_ll > MAXNODES || 2949 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2950 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2951 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2952 system_hardware.hd_nodes = 1; 2953 system_hardware.hd_cpus_per_node = 0; 2954 } else { 2955 system_hardware.hd_nodes = (int)nodes_ll; 2956 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2957 } 2958 2959 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2960 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2961 kobj_getvalue(prop, &lvalue) == -1) 2962 eprom_kernelbase = 0; 2963 else 2964 eprom_kernelbase = (uintptr_t)lvalue; 2965 2966 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2967 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2968 kobj_getvalue(prop, &lvalue) == -1) 2969 segmapsize = SEGMAPDEFAULT; 2970 else 2971 segmapsize = (uintptr_t)lvalue; 2972 2973 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2974 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2975 kobj_getvalue(prop, &lvalue) == -1) 2976 segmapfreelists = 0; /* use segmap driver default */ 2977 else 2978 segmapfreelists = (int)lvalue; 2979 2980 if (BOP_GETPROPLEN(bootops, "segkpsize") > sizeof (prop) || 2981 BOP_GETPROP(bootops, "segkpsize", prop) < 0 || 2982 kobj_getvalue(prop, &lvalue) == -1) 2983 segkpsize = mmu_btop(SEGKPDEFSIZE); 2984 else 2985 segkpsize = mmu_btop((size_t)lvalue); 2986 2987 /* physmem used to be here, but moved much earlier to fakebop.c */ 2988 } 2989 2990 /* 2991 * Add to a memory list. 2992 * start = start of new memory segment 2993 * len = length of new memory segment in bytes 2994 * new = pointer to a new struct memlist 2995 * memlistp = memory list to which to add segment. 2996 */ 2997 void 2998 memlist_add( 2999 uint64_t start, 3000 uint64_t len, 3001 struct memlist *new, 3002 struct memlist **memlistp) 3003 { 3004 struct memlist *cur; 3005 uint64_t end = start + len; 3006 3007 new->ml_address = start; 3008 new->ml_size = len; 3009 3010 cur = *memlistp; 3011 3012 while (cur) { 3013 if (cur->ml_address >= end) { 3014 new->ml_next = cur; 3015 *memlistp = new; 3016 new->ml_prev = cur->ml_prev; 3017 cur->ml_prev = new; 3018 return; 3019 } 3020 ASSERT(cur->ml_address + cur->ml_size <= start); 3021 if (cur->ml_next == NULL) { 3022 cur->ml_next = new; 3023 new->ml_prev = cur; 3024 new->ml_next = NULL; 3025 return; 3026 } 3027 memlistp = &cur->ml_next; 3028 cur = cur->ml_next; 3029 } 3030 } 3031 3032 void 3033 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3034 { 3035 size_t tsize = e_modtext - modtext; 3036 size_t dsize = e_moddata - moddata; 3037 3038 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3039 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3040 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3041 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3042 } 3043 3044 caddr_t 3045 kobj_text_alloc(vmem_t *arena, size_t size) 3046 { 3047 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3048 } 3049 3050 /*ARGSUSED*/ 3051 caddr_t 3052 kobj_texthole_alloc(caddr_t addr, size_t size) 3053 { 3054 panic("unexpected call to kobj_texthole_alloc()"); 3055 /*NOTREACHED*/ 3056 return (0); 3057 } 3058 3059 /*ARGSUSED*/ 3060 void 3061 kobj_texthole_free(caddr_t addr, size_t size) 3062 { 3063 panic("unexpected call to kobj_texthole_free()"); 3064 } 3065 3066 /* 3067 * This is called just after configure() in startup(). 3068 * 3069 * The ISALIST concept is a bit hopeless on Intel, because 3070 * there's no guarantee of an ever-more-capable processor 3071 * given that various parts of the instruction set may appear 3072 * and disappear between different implementations. 3073 * 3074 * While it would be possible to correct it and even enhance 3075 * it somewhat, the explicit hardware capability bitmask allows 3076 * more flexibility. 3077 * 3078 * So, we just leave this alone. 3079 */ 3080 void 3081 setx86isalist(void) 3082 { 3083 char *tp; 3084 size_t len; 3085 extern char *isa_list; 3086 3087 #define TBUFSIZE 1024 3088 3089 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3090 *tp = '\0'; 3091 3092 (void) strcpy(tp, "amd64 "); 3093 3094 switch (x86_vendor) { 3095 case X86_VENDOR_Intel: 3096 case X86_VENDOR_AMD: 3097 case X86_VENDOR_HYGON: 3098 case X86_VENDOR_TM: 3099 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3100 /* 3101 * Pentium Pro or later 3102 */ 3103 (void) strcat(tp, "pentium_pro"); 3104 (void) strcat(tp, 3105 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3106 "+mmx pentium_pro " : " "); 3107 } 3108 /*FALLTHROUGH*/ 3109 case X86_VENDOR_Cyrix: 3110 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID)); 3111 (void) strcat(tp, "pentium"); 3112 (void) strcat(tp, 3113 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3114 "+mmx pentium " : " "); 3115 break; 3116 default: 3117 break; 3118 } 3119 (void) strcat(tp, "i486 i386 i86"); 3120 len = strlen(tp) + 1; /* account for NULL at end of string */ 3121 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3122 kmem_free(tp, TBUFSIZE); 3123 3124 #undef TBUFSIZE 3125 } 3126 3127 void * 3128 device_arena_alloc(size_t size, int vm_flag) 3129 { 3130 return (vmem_alloc(device_arena, size, vm_flag)); 3131 } 3132 3133 void 3134 device_arena_free(void *vaddr, size_t size) 3135 { 3136 vmem_free(device_arena, vaddr, size); 3137 } 3138