1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2018 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 * Copyright 2020 Oxide Computer Company 29 */ 30 /* 31 * Copyright (c) 2010, Intel Corporation. 32 * All rights reserved. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/t_lock.h> 37 #include <sys/param.h> 38 #include <sys/sysmacros.h> 39 #include <sys/signal.h> 40 #include <sys/systm.h> 41 #include <sys/user.h> 42 #include <sys/mman.h> 43 #include <sys/vm.h> 44 #include <sys/conf.h> 45 #include <sys/avintr.h> 46 #include <sys/autoconf.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <sys/bitmap.h> 50 51 #include <sys/privregs.h> 52 53 #include <sys/proc.h> 54 #include <sys/buf.h> 55 #include <sys/kmem.h> 56 #include <sys/mem.h> 57 #include <sys/kstat.h> 58 59 #include <sys/reboot.h> 60 61 #include <sys/cred.h> 62 #include <sys/vnode.h> 63 #include <sys/file.h> 64 65 #include <sys/procfs.h> 66 67 #include <sys/vfs.h> 68 #include <sys/cmn_err.h> 69 #include <sys/utsname.h> 70 #include <sys/debug.h> 71 #include <sys/kdi.h> 72 73 #include <sys/dumphdr.h> 74 #include <sys/bootconf.h> 75 #include <sys/memlist_plat.h> 76 #include <sys/varargs.h> 77 #include <sys/promif.h> 78 #include <sys/prom_debug.h> 79 #include <sys/modctl.h> 80 81 #include <sys/sunddi.h> 82 #include <sys/sunndi.h> 83 #include <sys/ndi_impldefs.h> 84 #include <sys/ddidmareq.h> 85 #include <sys/psw.h> 86 #include <sys/regset.h> 87 #include <sys/clock.h> 88 #include <sys/pte.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/fp.h> 93 #include <vm/kboot_mmu.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/thread.h> 107 #include <sys/sysconf.h> 108 #include <sys/vm_machparam.h> 109 #include <sys/archsystm.h> 110 #include <sys/machsystm.h> 111 #include <vm/hat.h> 112 #include <vm/hat_i86.h> 113 #include <sys/pmem.h> 114 #include <sys/smp_impldefs.h> 115 #include <sys/x86_archext.h> 116 #include <sys/cpuvar.h> 117 #include <sys/segments.h> 118 #include <sys/clconf.h> 119 #include <sys/kobj.h> 120 #include <sys/kobj_lex.h> 121 #include <sys/cpc_impl.h> 122 #include <sys/cpu_module.h> 123 #include <sys/smbios.h> 124 #include <sys/debug_info.h> 125 #include <sys/bootinfo.h> 126 #include <sys/ddi_periodic.h> 127 #include <sys/systeminfo.h> 128 #include <sys/multiboot.h> 129 #include <sys/ramdisk.h> 130 131 #ifdef __xpv 132 133 #include <sys/hypervisor.h> 134 #include <sys/xen_mmu.h> 135 #include <sys/evtchn_impl.h> 136 #include <sys/gnttab.h> 137 #include <sys/xpv_panic.h> 138 #include <xen/sys/xenbus_comms.h> 139 #include <xen/public/physdev.h> 140 141 extern void xen_late_startup(void); 142 143 struct xen_evt_data cpu0_evt_data; 144 145 #else /* __xpv */ 146 #include <sys/memlist_impl.h> 147 148 extern void mem_config_init(void); 149 #endif /* __xpv */ 150 151 extern void progressbar_init(void); 152 extern void brand_init(void); 153 extern void pcf_init(void); 154 extern void pg_init(void); 155 extern void ssp_init(void); 156 157 extern int size_pse_array(pgcnt_t, int); 158 159 #if defined(_SOFT_HOSTID) 160 161 #include <sys/rtc.h> 162 163 static int32_t set_soft_hostid(void); 164 static char hostid_file[] = "/etc/hostid"; 165 166 #endif 167 168 void *gfx_devinfo_list; 169 170 #if defined(__amd64) && !defined(__xpv) 171 extern void immu_startup(void); 172 #endif 173 174 /* 175 * XXX make declaration below "static" when drivers no longer use this 176 * interface. 177 */ 178 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 179 180 /* 181 * segkp 182 */ 183 extern int segkp_fromheap; 184 185 static void kvm_init(void); 186 static void startup_init(void); 187 static void startup_memlist(void); 188 static void startup_kmem(void); 189 static void startup_modules(void); 190 static void startup_vm(void); 191 static void startup_end(void); 192 static void layout_kernel_va(void); 193 194 /* 195 * Declare these as initialized data so we can patch them. 196 */ 197 #ifdef __i386 198 199 /* 200 * Due to virtual address space limitations running in 32 bit mode, restrict 201 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 202 * 203 * If the physical max memory size of 64g were allowed to be configured, the 204 * size of user virtual address space will be less than 1g. A limited user 205 * address space greatly reduces the range of applications that can run. 206 * 207 * If more physical memory than PHYSMEM is required, users should preferably 208 * run in 64 bit mode which has far looser virtual address space limitations. 209 * 210 * If 64 bit mode is not available (as in IA32) and/or more physical memory 211 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 212 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 213 * should also be carefully tuned to balance out the need of the user 214 * application while minimizing the risk of kernel heap exhaustion due to 215 * kernelbase being set too high. 216 */ 217 #define PHYSMEM 0x400000 218 219 #else /* __amd64 */ 220 221 /* 222 * For now we can handle memory with physical addresses up to about 223 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 224 * half the VA space for seg_kpm. When systems get bigger than 64TB this 225 * code will need revisiting. There is an implicit assumption that there 226 * are no *huge* holes in the physical address space too. 227 */ 228 #define TERABYTE (1ul << 40) 229 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 230 #define PHYSMEM PHYSMEM_MAX64 231 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 232 233 #endif /* __amd64 */ 234 235 pgcnt_t physmem = PHYSMEM; 236 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 237 238 extern char *kobj_file_buf; 239 extern int kobj_file_bufsize; /* set in /etc/system */ 240 241 /* Global variables for MP support. Used in mp_startup */ 242 caddr_t rm_platter_va = 0; 243 uint32_t rm_platter_pa; 244 245 int auto_lpg_disable = 1; 246 247 /* 248 * Some CPUs have holes in the middle of the 64-bit virtual address range. 249 */ 250 uintptr_t hole_start, hole_end; 251 252 /* 253 * kpm mapping window 254 */ 255 caddr_t kpm_vbase; 256 size_t kpm_size; 257 static int kpm_desired; 258 #ifdef __amd64 259 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 260 #endif 261 262 /* 263 * Configuration parameters set at boot time. 264 */ 265 266 caddr_t econtig; /* end of first block of contiguous kernel */ 267 268 struct bootops *bootops = 0; /* passed in from boot */ 269 struct bootops **bootopsp; 270 struct boot_syscalls *sysp; /* passed in from boot */ 271 272 char bootblock_fstype[16]; 273 274 char kern_bootargs[OBP_MAXPATHLEN]; 275 char kern_bootfile[OBP_MAXPATHLEN]; 276 277 /* 278 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 279 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 280 * zio buffers from their own segment, otherwise they are allocated from the 281 * heap. The optimization of allocating zio buffers from their own segment is 282 * only valid on 64-bit kernels. 283 */ 284 #if defined(__amd64) 285 int segzio_fromheap = 0; 286 #else 287 int segzio_fromheap = 1; 288 #endif 289 290 /* 291 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 292 * post-boot. 293 */ 294 int disable_smap = 0; 295 296 /* 297 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 298 * depends on number of BOP_ALLOC calls made and requested size, memory size 299 * combination and whether boot.bin memory needs to be freed. 300 */ 301 #define POSS_NEW_FRAGMENTS 12 302 303 /* 304 * VM data structures 305 */ 306 long page_hashsz; /* Size of page hash table (power of two) */ 307 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 308 struct page *pp_base; /* Base of initial system page struct array */ 309 struct page **page_hash; /* Page hash table */ 310 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 311 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 312 int pse_shift; /* log2(pse_table_size) */ 313 struct seg ktextseg; /* Segment used for kernel executable image */ 314 struct seg kvalloc; /* Segment used for "valloc" mapping */ 315 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 316 struct seg kmapseg; /* Segment used for generic kernel mappings */ 317 struct seg kdebugseg; /* Segment used for the kernel debugger */ 318 319 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 320 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 321 322 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 323 324 extern struct seg kvseg_core; /* Segment used for the core heap */ 325 struct seg kpmseg; /* Segment used for physical mapping */ 326 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 327 328 caddr_t segkp_base; /* Base address of segkp */ 329 caddr_t segzio_base; /* Base address of segzio */ 330 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 331 caddr_t segkvmm_base; 332 pgcnt_t segkvmmsize; 333 pgcnt_t segziosize; 334 335 /* 336 * A static DR page_t VA map is reserved that can map the page structures 337 * for a domain's entire RA space. The pages that back this space are 338 * dynamically allocated and need not be physically contiguous. The DR 339 * map size is derived from KPM size. 340 * This mechanism isn't used by x86 yet, so just stubs here. 341 */ 342 int ppvm_enable = 0; /* Static virtual map for page structs */ 343 page_t *ppvm_base = NULL; /* Base of page struct map */ 344 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 345 346 /* 347 * VA range available to the debugger 348 */ 349 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 350 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 351 352 struct memseg *memseg_base; 353 struct vnode unused_pages_vp; 354 355 #define FOURGB 0x100000000LL 356 357 struct memlist *memlist; 358 359 caddr_t s_text; /* start of kernel text segment */ 360 caddr_t e_text; /* end of kernel text segment */ 361 caddr_t s_data; /* start of kernel data segment */ 362 caddr_t e_data; /* end of kernel data segment */ 363 caddr_t modtext; /* start of loadable module text reserved */ 364 caddr_t e_modtext; /* end of loadable module text reserved */ 365 caddr_t moddata; /* start of loadable module data reserved */ 366 caddr_t e_moddata; /* end of loadable module data reserved */ 367 368 struct memlist *phys_install; /* Total installed physical memory */ 369 struct memlist *phys_avail; /* Total available physical memory */ 370 struct memlist *bios_rsvd; /* Bios reserved memory */ 371 372 /* 373 * kphysm_init returns the number of pages that were processed 374 */ 375 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 376 377 #define IO_PROP_SIZE 64 /* device property size */ 378 379 /* 380 * a couple useful roundup macros 381 */ 382 #define ROUND_UP_PAGE(x) \ 383 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 384 #define ROUND_UP_LPAGE(x) \ 385 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 386 #define ROUND_UP_4MEG(x) \ 387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 388 #define ROUND_UP_TOPLEVEL(x) \ 389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 390 391 /* 392 * 32-bit Kernel's Virtual memory layout. 393 * +-----------------------+ 394 * | | 395 * 0xFFC00000 -|-----------------------|- ARGSBASE 396 * | debugger | 397 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 398 * | Kernel Data | 399 * 0xFEC00000 -|-----------------------| 400 * | Kernel Text | 401 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 402 * |--- GDT ---|- GDT page (GDT_VA) 403 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 404 * | | 405 * | page_t structures | 406 * | memsegs, memlists, | 407 * | page hash, etc. | 408 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 409 * | | (segkp is just an arena in the heap) 410 * | | 411 * | kvseg | 412 * | | 413 * | | 414 * --- -|-----------------------|- kernelheap (floating) 415 * | Segkmap | 416 * 0xC3002000 -|-----------------------|- segmap_start (floating) 417 * | Red Zone | 418 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 419 * | | || 420 * | Shared objects | \/ 421 * | | 422 * : : 423 * | user data | 424 * |-----------------------| 425 * | user text | 426 * 0x08048000 -|-----------------------| 427 * | user stack | 428 * : : 429 * | invalid | 430 * 0x00000000 +-----------------------+ 431 * 432 * 433 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 434 * +-----------------------+ 435 * | | 436 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 437 * | debugger (?) | 438 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 439 * | unused | 440 * +-----------------------+ 441 * | Kernel Data | 442 * 0xFFFFFFFF.FBC00000 |-----------------------| 443 * | Kernel Text | 444 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 445 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 446 * |--- GDT ---|- GDT page (GDT_VA) 447 * |--- IDT ---|- IDT page (IDT_VA) 448 * |--- LDT ---|- LDT pages (LDT_VA) 449 * | | 450 * | Core heap | (used for loadable modules) 451 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 452 * | Kernel | 453 * | heap | 454 * | | 455 * | | 456 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 457 * | segmap | 458 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 459 * | device mappings | 460 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 461 * | segzio | 462 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 463 * | segkvmm | 464 * | | 465 * | | 466 * | | 467 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkvmm_base (floating) 468 * | segkp | 469 * |-----------------------|- segkp_base (floating) 470 * | page_t structures | valloc_base + valloc_sz 471 * | memsegs, memlists, | 472 * | page hash, etc. | 473 * 0xFFFFFE00.00000000 |-----------------------|- valloc_base (lower if >256GB) 474 * | segkpm | 475 * | | 476 * 0xFFFFFD00.00000000 |-----------------------|- SEGKPM_BASE (lower if >256GB) 477 * | Red Zone | 478 * 0xFFFFFC80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 479 * 0xFFFFFC7F.FFE00000 |-----------------------|- USERLIMIT (lower if >256GB) 480 * | User stack |- User space memory 481 * | | 482 * | shared objects, etc | (grows downwards) 483 * : : 484 * | | 485 * 0xFFFF8000.00000000 |-----------------------| 486 * | | 487 * | VA Hole / unused | 488 * | | 489 * 0x00008000.00000000 |-----------------------| 490 * | | 491 * | | 492 * : : 493 * | user heap | (grows upwards) 494 * | | 495 * | user data | 496 * |-----------------------| 497 * | user text | 498 * 0x00000000.04000000 |-----------------------| 499 * | invalid | 500 * 0x00000000.00000000 +-----------------------+ 501 * 502 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 503 * kernel, except that userlimit is raised to 0xfe000000 504 * 505 * Floating values: 506 * 507 * valloc_base: start of the kernel's memory management/tracking data 508 * structures. This region contains page_t structures for 509 * physical memory, memsegs, memlists, and the page hash. 510 * 511 * core_base: start of the kernel's "core" heap area on 64-bit systems. 512 * This area is intended to be used for global data as well as for module 513 * text/data that does not fit into the nucleus pages. The core heap is 514 * restricted to a 2GB range, allowing every address within it to be 515 * accessed using rip-relative addressing 516 * 517 * ekernelheap: end of kernelheap and start of segmap. 518 * 519 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 520 * above a red zone that separates the user's address space from the 521 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 522 * 523 * segmap_start: start of segmap. The length of segmap can be modified 524 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 525 * on 64-bit systems. 526 * 527 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 528 * decreased by 2X the size required for page_t. This allows the kernel 529 * heap to grow in size with physical memory. With sizeof(page_t) == 80 530 * bytes, the following shows the values of kernelbase and kernel heap 531 * sizes for different memory configurations (assuming default segmap and 532 * segkp sizes). 533 * 534 * mem size for kernelbase kernel heap 535 * size page_t's size 536 * ---- --------- ---------- ----------- 537 * 1gb 0x01400000 0xd1800000 684MB 538 * 2gb 0x02800000 0xcf000000 704MB 539 * 4gb 0x05000000 0xca000000 744MB 540 * 6gb 0x07800000 0xc5000000 784MB 541 * 8gb 0x0a000000 0xc0000000 824MB 542 * 16gb 0x14000000 0xac000000 984MB 543 * 32gb 0x28000000 0x84000000 1304MB 544 * 64gb 0x50000000 0x34000000 1944MB (*) 545 * 546 * kernelbase is less than the abi minimum of 0xc0000000 for memory 547 * configurations above 8gb. 548 * 549 * (*) support for memory configurations above 32gb will require manual tuning 550 * of kernelbase to balance out the need of user applications. 551 */ 552 553 /* real-time-clock initialization parameters */ 554 extern time_t process_rtc_config_file(void); 555 556 uintptr_t kernelbase; 557 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 558 uintptr_t eprom_kernelbase; 559 size_t segmapsize; 560 uintptr_t segmap_start; 561 int segmapfreelists; 562 pgcnt_t npages; 563 pgcnt_t orig_npages; 564 size_t core_size; /* size of "core" heap */ 565 uintptr_t core_base; /* base address of "core" heap */ 566 567 /* 568 * List of bootstrap pages. We mark these as allocated in startup. 569 * release_bootstrap() will free them when we're completely done with 570 * the bootstrap. 571 */ 572 static page_t *bootpages; 573 574 /* 575 * boot time pages that have a vnode from the ramdisk will keep that forever. 576 */ 577 static page_t *rd_pages; 578 579 /* 580 * Lower 64K 581 */ 582 static page_t *lower_pages = NULL; 583 static int lower_pages_count = 0; 584 585 struct system_hardware system_hardware; 586 587 /* 588 * Enable some debugging messages concerning memory usage... 589 */ 590 static void 591 print_memlist(char *title, struct memlist *mp) 592 { 593 prom_printf("MEMLIST: %s:\n", title); 594 while (mp != NULL) { 595 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 596 mp->ml_address, mp->ml_size); 597 mp = mp->ml_next; 598 } 599 } 600 601 /* 602 * XX64 need a comment here.. are these just default values, surely 603 * we read the "cpuid" type information to figure this out. 604 */ 605 int l2cache_sz = 0x80000; 606 int l2cache_linesz = 0x40; 607 int l2cache_assoc = 1; 608 609 static size_t textrepl_min_gb = 10; 610 611 /* 612 * on 64 bit we use a predifined VA range for mapping devices in the kernel 613 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 614 */ 615 #ifdef __amd64 616 617 vmem_t *device_arena; 618 uintptr_t toxic_addr = (uintptr_t)NULL; 619 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 620 621 #else /* __i386 */ 622 623 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 624 size_t toxic_bit_map_len = 0; /* in bits */ 625 626 #endif /* __i386 */ 627 628 int prom_debug; 629 630 /* 631 * This structure is used to keep track of the intial allocations 632 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 633 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 634 */ 635 #define NUM_ALLOCATIONS 8 636 int num_allocations = 0; 637 struct { 638 void **al_ptr; 639 size_t al_size; 640 } allocations[NUM_ALLOCATIONS]; 641 size_t valloc_sz = 0; 642 uintptr_t valloc_base; 643 644 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 645 size = ROUND_UP_PAGE(size); \ 646 if (num_allocations == NUM_ALLOCATIONS) \ 647 panic("too many ADD_TO_ALLOCATIONS()"); \ 648 allocations[num_allocations].al_ptr = (void**)&ptr; \ 649 allocations[num_allocations].al_size = size; \ 650 valloc_sz += size; \ 651 ++num_allocations; \ 652 } 653 654 /* 655 * Allocate all the initial memory needed by the page allocator. 656 */ 657 static void 658 perform_allocations(void) 659 { 660 caddr_t mem; 661 int i; 662 int valloc_align; 663 664 PRM_DEBUG(valloc_base); 665 PRM_DEBUG(valloc_sz); 666 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 667 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 668 if (mem != (caddr_t)valloc_base) 669 panic("BOP_ALLOC() failed"); 670 bzero(mem, valloc_sz); 671 for (i = 0; i < num_allocations; ++i) { 672 *allocations[i].al_ptr = (void *)mem; 673 mem += allocations[i].al_size; 674 } 675 } 676 677 /* 678 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 679 * VM has been set up so we can use hot_patch_kernel_text(). 680 * 681 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 682 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s 683 * for more information on what's going on here. 684 */ 685 static void 686 startup_smap(void) 687 { 688 int i; 689 uint32_t inst; 690 uint8_t *instp; 691 char sym[128]; 692 struct modctl *modp; 693 694 extern int _smap_enable_patch_count; 695 extern int _smap_disable_patch_count; 696 697 if (disable_smap != 0) 698 remove_x86_feature(x86_featureset, X86FSET_SMAP); 699 700 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 701 return; 702 703 for (i = 0; i < _smap_enable_patch_count; i++) { 704 int sizep; 705 706 VERIFY3U(i, <, _smap_enable_patch_count); 707 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 708 sizeof (sym)); 709 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 710 VERIFY(instp != 0); 711 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 712 hot_patch_kernel_text((caddr_t)instp, inst, 4); 713 } 714 715 for (i = 0; i < _smap_disable_patch_count; i++) { 716 int sizep; 717 718 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 719 i) < sizeof (sym)); 720 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 721 VERIFY(instp != 0); 722 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 723 hot_patch_kernel_text((caddr_t)instp, inst, 4); 724 } 725 726 /* 727 * Hotinline calls to smap_enable and smap_disable within 728 * unix module. Hotinlines in other modules are done on 729 * mod_load(). 730 */ 731 modp = mod_hold_by_name("unix"); 732 do_hotinlines(modp->mod_mp); 733 mod_release_mod(modp); 734 735 setcr4(getcr4() | CR4_SMAP); 736 smap_enable(); 737 } 738 739 /* 740 * Our world looks like this at startup time. 741 * 742 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 743 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 744 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 745 * addresses are fixed in the binary at link time. 746 * 747 * On the text page: 748 * unix/genunix/krtld/module text loads. 749 * 750 * On the data page: 751 * unix/genunix/krtld/module data loads. 752 * 753 * Machine-dependent startup code 754 */ 755 void 756 startup(void) 757 { 758 #if !defined(__xpv) 759 extern void startup_pci_bios(void); 760 #endif 761 extern cpuset_t cpu_ready_set; 762 763 /* 764 * Make sure that nobody tries to use sekpm until we have 765 * initialized it properly. 766 */ 767 #if defined(__amd64) 768 kpm_desired = 1; 769 #endif 770 kpm_enable = 0; 771 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 772 773 #if defined(__xpv) /* XXPV fix me! */ 774 { 775 extern int segvn_use_regions; 776 segvn_use_regions = 0; 777 } 778 #endif 779 ssp_init(); 780 progressbar_init(); 781 startup_init(); 782 #if defined(__xpv) 783 startup_xen_version(); 784 #endif 785 startup_memlist(); 786 startup_kmem(); 787 startup_vm(); 788 #if !defined(__xpv) 789 /* 790 * Note we need to do this even on fast reboot in order to access 791 * the irq routing table (used for pci labels). 792 */ 793 startup_pci_bios(); 794 startup_smap(); 795 #endif 796 #if defined(__xpv) 797 startup_xen_mca(); 798 #endif 799 startup_modules(); 800 801 startup_end(); 802 } 803 804 static void 805 startup_init() 806 { 807 PRM_POINT("startup_init() starting..."); 808 809 /* 810 * Complete the extraction of cpuid data 811 */ 812 cpuid_pass2(CPU); 813 814 (void) check_boot_version(BOP_GETVERSION(bootops)); 815 816 /* 817 * Check for prom_debug in boot environment 818 */ 819 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 820 ++prom_debug; 821 PRM_POINT("prom_debug found in boot enviroment"); 822 } 823 824 /* 825 * Collect node, cpu and memory configuration information. 826 */ 827 get_system_configuration(); 828 829 /* 830 * Halt if this is an unsupported processor. 831 */ 832 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 833 printf("\n486 processor (\"%s\") detected.\n", 834 CPU->cpu_brandstr); 835 halt("This processor is not supported by this release " 836 "of Solaris."); 837 } 838 839 PRM_POINT("startup_init() done"); 840 } 841 842 /* 843 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 844 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 845 * also filters out physical page zero. There is some reliance on the 846 * boot loader allocating only a few contiguous physical memory chunks. 847 */ 848 static void 849 avail_filter(uint64_t *addr, uint64_t *size) 850 { 851 uintptr_t va; 852 uintptr_t next_va; 853 pfn_t pfn; 854 uint64_t pfn_addr; 855 uint64_t pfn_eaddr; 856 uint_t prot; 857 size_t len; 858 uint_t change; 859 860 if (prom_debug) 861 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 862 *addr, *size); 863 864 /* 865 * page zero is required for BIOS.. never make it available 866 */ 867 if (*addr == 0) { 868 *addr += MMU_PAGESIZE; 869 *size -= MMU_PAGESIZE; 870 } 871 872 /* 873 * First we trim from the front of the range. Since kbm_probe() 874 * walks ranges in virtual order, but addr/size are physical, we need 875 * to the list until no changes are seen. This deals with the case 876 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 877 * but w < v. 878 */ 879 do { 880 change = 0; 881 for (va = KERNEL_TEXT; 882 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 883 va = next_va) { 884 885 next_va = va + len; 886 pfn_addr = pfn_to_pa(pfn); 887 pfn_eaddr = pfn_addr + len; 888 889 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 890 change = 1; 891 while (*size > 0 && len > 0) { 892 *addr += MMU_PAGESIZE; 893 *size -= MMU_PAGESIZE; 894 len -= MMU_PAGESIZE; 895 } 896 } 897 } 898 if (change && prom_debug) 899 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 900 *addr, *size); 901 } while (change); 902 903 /* 904 * Trim pages from the end of the range. 905 */ 906 for (va = KERNEL_TEXT; 907 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 908 va = next_va) { 909 910 next_va = va + len; 911 pfn_addr = pfn_to_pa(pfn); 912 913 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 914 *size = pfn_addr - *addr; 915 } 916 917 if (prom_debug) 918 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 919 *addr, *size); 920 } 921 922 static void 923 kpm_init() 924 { 925 struct segkpm_crargs b; 926 927 /* 928 * These variables were all designed for sfmmu in which segkpm is 929 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 930 * might use 2+ page sizes on a single machine, so none of these 931 * variables have a single correct value. They are set up as if we 932 * always use a 4KB pagesize, which should do no harm. In the long 933 * run, we should get rid of KPM's assumption that only a single 934 * pagesize is used. 935 */ 936 kpm_pgshft = MMU_PAGESHIFT; 937 kpm_pgsz = MMU_PAGESIZE; 938 kpm_pgoff = MMU_PAGEOFFSET; 939 kpmp2pshft = 0; 940 kpmpnpgs = 1; 941 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 942 943 PRM_POINT("about to create segkpm"); 944 rw_enter(&kas.a_lock, RW_WRITER); 945 946 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 947 panic("cannot attach segkpm"); 948 949 b.prot = PROT_READ | PROT_WRITE; 950 b.nvcolors = 1; 951 952 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 953 panic("segkpm_create segkpm"); 954 955 rw_exit(&kas.a_lock); 956 957 kpm_enable = 1; 958 959 /* 960 * As the KPM was disabled while setting up the system, go back and fix 961 * CPU zero's access to its user page table. This is a bit gross, but 962 * we have a chicken and egg problem otherwise. 963 */ 964 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 965 CPU->cpu_hat_info->hci_user_l3ptes = 966 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 967 } 968 969 /* 970 * The debug info page provides enough information to allow external 971 * inspectors (e.g. when running under a hypervisor) to bootstrap 972 * themselves into allowing full-blown kernel debugging. 973 */ 974 static void 975 init_debug_info(void) 976 { 977 caddr_t mem; 978 debug_info_t *di; 979 980 #ifndef __lint 981 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 982 #endif 983 984 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 985 MMU_PAGESIZE); 986 987 if (mem != (caddr_t)DEBUG_INFO_VA) 988 panic("BOP_ALLOC() failed"); 989 bzero(mem, MMU_PAGESIZE); 990 991 di = (debug_info_t *)mem; 992 993 di->di_magic = DEBUG_INFO_MAGIC; 994 di->di_version = DEBUG_INFO_VERSION; 995 di->di_modules = (uintptr_t)&modules; 996 di->di_s_text = (uintptr_t)s_text; 997 di->di_e_text = (uintptr_t)e_text; 998 di->di_s_data = (uintptr_t)s_data; 999 di->di_e_data = (uintptr_t)e_data; 1000 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 1001 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 1002 } 1003 1004 /* 1005 * Build the memlists and other kernel essential memory system data structures. 1006 * This is everything at valloc_base. 1007 */ 1008 static void 1009 startup_memlist(void) 1010 { 1011 size_t memlist_sz; 1012 size_t memseg_sz; 1013 size_t pagehash_sz; 1014 size_t pp_sz; 1015 uintptr_t va; 1016 size_t len; 1017 uint_t prot; 1018 pfn_t pfn; 1019 int memblocks; 1020 pfn_t rsvd_high_pfn; 1021 pgcnt_t rsvd_pgcnt; 1022 size_t rsvdmemlist_sz; 1023 int rsvdmemblocks; 1024 caddr_t pagecolor_mem; 1025 size_t pagecolor_memsz; 1026 caddr_t page_ctrs_mem; 1027 size_t page_ctrs_size; 1028 size_t pse_table_alloc_size; 1029 struct memlist *current; 1030 extern void startup_build_mem_nodes(struct memlist *); 1031 1032 /* XX64 fix these - they should be in include files */ 1033 extern size_t page_coloring_init(uint_t, int, int); 1034 extern void page_coloring_setup(caddr_t); 1035 1036 PRM_POINT("startup_memlist() starting..."); 1037 1038 /* 1039 * Use leftover large page nucleus text/data space for loadable modules. 1040 * Use at most MODTEXT/MODDATA. 1041 */ 1042 len = kbm_nucleus_size; 1043 ASSERT(len > MMU_PAGESIZE); 1044 1045 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1046 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1047 if (e_moddata - moddata > MODDATA) 1048 e_moddata = moddata + MODDATA; 1049 1050 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1051 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1052 if (e_modtext - modtext > MODTEXT) 1053 e_modtext = modtext + MODTEXT; 1054 1055 econtig = e_moddata; 1056 1057 PRM_DEBUG(modtext); 1058 PRM_DEBUG(e_modtext); 1059 PRM_DEBUG(moddata); 1060 PRM_DEBUG(e_moddata); 1061 PRM_DEBUG(econtig); 1062 1063 /* 1064 * Examine the boot loader physical memory map to find out: 1065 * - total memory in system - physinstalled 1066 * - the max physical address - physmax 1067 * - the number of discontiguous segments of memory. 1068 */ 1069 if (prom_debug) 1070 print_memlist("boot physinstalled", 1071 bootops->boot_mem->physinstalled); 1072 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1073 &physinstalled, &memblocks); 1074 PRM_DEBUG(physmax); 1075 PRM_DEBUG(physinstalled); 1076 PRM_DEBUG(memblocks); 1077 1078 /* 1079 * We no longer support any form of memory DR. 1080 */ 1081 plat_dr_physmax = 0; 1082 1083 /* 1084 * Examine the bios reserved memory to find out: 1085 * - the number of discontiguous segments of memory. 1086 */ 1087 if (prom_debug) 1088 print_memlist("boot reserved mem", 1089 bootops->boot_mem->rsvdmem); 1090 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1091 &rsvd_pgcnt, &rsvdmemblocks); 1092 PRM_DEBUG(rsvd_high_pfn); 1093 PRM_DEBUG(rsvd_pgcnt); 1094 PRM_DEBUG(rsvdmemblocks); 1095 1096 /* 1097 * Initialize hat's mmu parameters. 1098 * Check for enforce-prot-exec in boot environment. It's used to 1099 * enable/disable support for the page table entry NX bit. 1100 * The default is to enforce PROT_EXEC on processors that support NX. 1101 * Boot seems to round up the "len", but 8 seems to be big enough. 1102 */ 1103 mmu_init(); 1104 1105 #ifdef __i386 1106 /* 1107 * physmax is lowered if there is more memory than can be 1108 * physically addressed in 32 bit (PAE/non-PAE) modes. 1109 */ 1110 if (mmu.pae_hat) { 1111 if (PFN_ABOVE64G(physmax)) { 1112 physinstalled -= (physmax - (PFN_64G - 1)); 1113 physmax = PFN_64G - 1; 1114 } 1115 } else { 1116 if (PFN_ABOVE4G(physmax)) { 1117 physinstalled -= (physmax - (PFN_4G - 1)); 1118 physmax = PFN_4G - 1; 1119 } 1120 } 1121 #endif 1122 1123 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1124 1125 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1126 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1127 char value[8]; 1128 1129 if (len < 8) 1130 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1131 else 1132 (void) strcpy(value, ""); 1133 if (strcmp(value, "off") == 0) 1134 mmu.pt_nx = 0; 1135 } 1136 PRM_DEBUG(mmu.pt_nx); 1137 1138 /* 1139 * We will need page_t's for every page in the system, except for 1140 * memory mapped at or above above the start of the kernel text segment. 1141 * 1142 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1143 */ 1144 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1145 obp_pages = 0; 1146 va = KERNEL_TEXT; 1147 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1148 npages -= len >> MMU_PAGESHIFT; 1149 if (va >= (uintptr_t)e_moddata) 1150 obp_pages += len >> MMU_PAGESHIFT; 1151 va += len; 1152 } 1153 PRM_DEBUG(npages); 1154 PRM_DEBUG(obp_pages); 1155 1156 /* 1157 * If physmem is patched to be non-zero, use it instead of the computed 1158 * value unless it is larger than the actual amount of memory on hand. 1159 */ 1160 if (physmem == 0 || physmem > npages) { 1161 physmem = npages; 1162 } else if (physmem < npages) { 1163 orig_npages = npages; 1164 npages = physmem; 1165 } 1166 PRM_DEBUG(physmem); 1167 1168 /* 1169 * We now compute the sizes of all the initial allocations for 1170 * structures the kernel needs in order do kmem_alloc(). These 1171 * include: 1172 * memsegs 1173 * memlists 1174 * page hash table 1175 * page_t's 1176 * page coloring data structs 1177 */ 1178 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1179 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1180 PRM_DEBUG(memseg_sz); 1181 1182 /* 1183 * Reserve space for memlists. There's no real good way to know exactly 1184 * how much room we'll need, but this should be a good upper bound. 1185 */ 1186 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1187 (memblocks + POSS_NEW_FRAGMENTS)); 1188 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1189 PRM_DEBUG(memlist_sz); 1190 1191 /* 1192 * Reserve space for bios reserved memlists. 1193 */ 1194 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1195 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1196 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1197 PRM_DEBUG(rsvdmemlist_sz); 1198 1199 /* LINTED */ 1200 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1201 /* 1202 * The page structure hash table size is a power of 2 1203 * such that the average hash chain length is PAGE_HASHAVELEN. 1204 */ 1205 page_hashsz = npages / PAGE_HASHAVELEN; 1206 page_hashsz_shift = highbit(page_hashsz); 1207 page_hashsz = 1 << page_hashsz_shift; 1208 pagehash_sz = sizeof (struct page *) * page_hashsz; 1209 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1210 PRM_DEBUG(pagehash_sz); 1211 1212 /* 1213 * Set aside room for the page structures themselves. 1214 */ 1215 PRM_DEBUG(npages); 1216 pp_sz = sizeof (struct page) * npages; 1217 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1218 PRM_DEBUG(pp_sz); 1219 1220 /* 1221 * determine l2 cache info and memory size for page coloring 1222 */ 1223 (void) getl2cacheinfo(CPU, 1224 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1225 pagecolor_memsz = 1226 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1227 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1228 PRM_DEBUG(pagecolor_memsz); 1229 1230 page_ctrs_size = page_ctrs_sz(); 1231 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1232 PRM_DEBUG(page_ctrs_size); 1233 1234 /* 1235 * Allocate the array that protects pp->p_selock. 1236 */ 1237 pse_shift = size_pse_array(physmem, max_ncpus); 1238 pse_table_size = 1 << pse_shift; 1239 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1240 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1241 1242 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1243 valloc_base = VALLOC_BASE; 1244 1245 /* 1246 * The signicant memory-sized regions are roughly sized as follows in 1247 * the default layout with max physmem: 1248 * segkpm: 1x physmem allocated (but 1Tb room, below VALLOC_BASE) 1249 * segzio: 1.5x physmem 1250 * segkvmm: 4x physmem 1251 * heap: whatever's left up to COREHEAP_BASE, at least 1.5x physmem 1252 * 1253 * The idea is that we leave enough room to avoid fragmentation issues, 1254 * so we would like the VA arenas to have some extra. 1255 * 1256 * Ignoring the loose change of segkp, valloc, and such, this means that 1257 * as COREHEAP_BASE-VALLOC_BASE=2Tb, we can accommodate a physmem up to 1258 * about (2Tb / 7.0), rounded down to 256Gb in the check below. 1259 * 1260 * Note that KPM lives below VALLOC_BASE, but we want to include it in 1261 * adjustments, hence the 8 below. 1262 * 1263 * Beyond 256Gb, we push segkpm_base (and hence kernelbase and 1264 * _userlimit) down to accommodate the VA requirements above. 1265 */ 1266 if (physmax + 1 > mmu_btop(TERABYTE / 4)) { 1267 uint64_t physmem_bytes = mmu_ptob(physmax + 1); 1268 uint64_t adjustment = 8 * (physmem_bytes - (TERABYTE / 4)); 1269 1270 PRM_DEBUG(adjustment); 1271 1272 /* 1273 * segkpm_base is always aligned on a L3 PTE boundary. 1274 */ 1275 segkpm_base -= P2ROUNDUP(adjustment, KERNEL_REDZONE_SIZE); 1276 1277 /* 1278 * But make sure we leave some space for user apps above hole. 1279 */ 1280 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1281 1282 ASSERT(segkpm_base <= SEGKPM_BASE); 1283 1284 valloc_base = segkpm_base + P2ROUNDUP(physmem_bytes, ONE_GIG); 1285 if (valloc_base < segkpm_base) 1286 panic("not enough kernel VA to support memory size"); 1287 } 1288 1289 PRM_DEBUG(segkpm_base); 1290 PRM_DEBUG(valloc_base); 1291 1292 /* 1293 * do all the initial allocations 1294 */ 1295 perform_allocations(); 1296 1297 /* 1298 * Build phys_install and phys_avail in kernel memspace. 1299 * - phys_install should be all memory in the system. 1300 * - phys_avail is phys_install minus any memory mapped before this 1301 * point above KERNEL_TEXT. 1302 */ 1303 current = phys_install = memlist; 1304 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1305 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1306 panic("physinstalled was too big!"); 1307 if (prom_debug) 1308 print_memlist("phys_install", phys_install); 1309 1310 phys_avail = current; 1311 PRM_POINT("Building phys_avail:\n"); 1312 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1313 avail_filter); 1314 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1315 panic("physavail was too big!"); 1316 if (prom_debug) 1317 print_memlist("phys_avail", phys_avail); 1318 #ifndef __xpv 1319 /* 1320 * Free unused memlist items, which may be used by memory DR driver 1321 * at runtime. 1322 */ 1323 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1324 memlist_free_block((caddr_t)current, 1325 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1326 } 1327 #endif 1328 1329 /* 1330 * Build bios reserved memspace 1331 */ 1332 current = bios_rsvd; 1333 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1334 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1335 panic("bios_rsvd was too big!"); 1336 if (prom_debug) 1337 print_memlist("bios_rsvd", bios_rsvd); 1338 #ifndef __xpv 1339 /* 1340 * Free unused memlist items, which may be used by memory DR driver 1341 * at runtime. 1342 */ 1343 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1344 memlist_free_block((caddr_t)current, 1345 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1346 } 1347 #endif 1348 1349 /* 1350 * setup page coloring 1351 */ 1352 page_coloring_setup(pagecolor_mem); 1353 page_lock_init(); /* currently a no-op */ 1354 1355 /* 1356 * free page list counters 1357 */ 1358 (void) page_ctrs_alloc(page_ctrs_mem); 1359 1360 /* 1361 * Size the pcf array based on the number of cpus in the box at 1362 * boot time. 1363 */ 1364 1365 pcf_init(); 1366 1367 /* 1368 * Initialize the page structures from the memory lists. 1369 */ 1370 availrmem_initial = availrmem = freemem = 0; 1371 PRM_POINT("Calling kphysm_init()..."); 1372 npages = kphysm_init(pp_base, npages); 1373 PRM_POINT("kphysm_init() done"); 1374 PRM_DEBUG(npages); 1375 1376 init_debug_info(); 1377 1378 /* 1379 * Now that page_t's have been initialized, remove all the 1380 * initial allocation pages from the kernel free page lists. 1381 */ 1382 boot_mapin((caddr_t)valloc_base, valloc_sz); 1383 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1384 PRM_POINT("startup_memlist() done"); 1385 1386 PRM_DEBUG(valloc_sz); 1387 1388 #if defined(__amd64) 1389 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1390 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1391 extern size_t textrepl_size_thresh; 1392 textrepl_size_thresh = (16 << 20) - 1; 1393 } 1394 #endif 1395 } 1396 1397 /* 1398 * Layout the kernel's part of address space and initialize kmem allocator. 1399 */ 1400 static void 1401 startup_kmem(void) 1402 { 1403 extern void page_set_colorequiv_arr(void); 1404 #if !defined(__xpv) 1405 extern uint64_t kpti_kbase; 1406 #endif 1407 1408 PRM_POINT("startup_kmem() starting..."); 1409 1410 #if defined(__amd64) 1411 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1412 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1413 "systems."); 1414 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1415 core_base = (uintptr_t)COREHEAP_BASE; 1416 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1417 #else /* __i386 */ 1418 /* 1419 * We configure kernelbase based on: 1420 * 1421 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1422 * KERNELBASE_MAX. we large page align eprom_kernelbase 1423 * 1424 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1425 * On large memory systems we must lower kernelbase to allow 1426 * enough room for page_t's for all of memory. 1427 * 1428 * The value set here, might be changed a little later. 1429 */ 1430 if (eprom_kernelbase) { 1431 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1432 if (kernelbase > KERNELBASE_MAX) 1433 kernelbase = KERNELBASE_MAX; 1434 } else { 1435 kernelbase = (uintptr_t)KERNELBASE; 1436 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1437 } 1438 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1439 core_base = valloc_base; 1440 core_size = 0; 1441 #endif /* __i386 */ 1442 1443 PRM_DEBUG(core_base); 1444 PRM_DEBUG(core_size); 1445 PRM_DEBUG(kernelbase); 1446 1447 #if defined(__i386) 1448 segkp_fromheap = 1; 1449 #endif /* __i386 */ 1450 1451 ekernelheap = (char *)core_base; 1452 PRM_DEBUG(ekernelheap); 1453 1454 /* 1455 * Now that we know the real value of kernelbase, 1456 * update variables that were initialized with a value of 1457 * KERNELBASE (in common/conf/param.c). 1458 * 1459 * XXX The problem with this sort of hackery is that the 1460 * compiler just may feel like putting the const declarations 1461 * (in param.c) into the .text section. Perhaps they should 1462 * just be declared as variables there? 1463 */ 1464 1465 *(uintptr_t *)&_kernelbase = kernelbase; 1466 *(uintptr_t *)&_userlimit = kernelbase; 1467 #if defined(__amd64) 1468 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1469 #if !defined(__xpv) 1470 kpti_kbase = kernelbase; 1471 #endif 1472 #else 1473 *(uintptr_t *)&_userlimit32 = _userlimit; 1474 #endif 1475 PRM_DEBUG(_kernelbase); 1476 PRM_DEBUG(_userlimit); 1477 PRM_DEBUG(_userlimit32); 1478 1479 /* We have to re-do this now that we've modified _userlimit. */ 1480 mmu_calc_user_slots(); 1481 1482 layout_kernel_va(); 1483 1484 #if defined(__i386) 1485 /* 1486 * If segmap is too large we can push the bottom of the kernel heap 1487 * higher than the base. Or worse, it could exceed the top of the 1488 * VA space entirely, causing it to wrap around. 1489 */ 1490 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1491 panic("too little address space available for kernelheap," 1492 " use eeprom for lower kernelbase or smaller segmapsize"); 1493 #endif /* __i386 */ 1494 1495 /* 1496 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1497 */ 1498 kernelheap_init(kernelheap, ekernelheap, 1499 kernelheap + MMU_PAGESIZE, 1500 (void *)core_base, (void *)(core_base + core_size)); 1501 1502 #if defined(__xpv) 1503 /* 1504 * Link pending events struct into cpu struct 1505 */ 1506 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1507 #endif 1508 /* 1509 * Initialize kernel memory allocator. 1510 */ 1511 kmem_init(); 1512 1513 /* 1514 * Factor in colorequiv to check additional 'equivalent' bins 1515 */ 1516 page_set_colorequiv_arr(); 1517 1518 /* 1519 * print this out early so that we know what's going on 1520 */ 1521 print_x86_featureset(x86_featureset); 1522 1523 /* 1524 * Initialize bp_mapin(). 1525 */ 1526 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1527 1528 /* 1529 * orig_npages is non-zero if physmem has been configured for less 1530 * than the available memory. 1531 */ 1532 if (orig_npages) { 1533 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1534 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1535 npages, orig_npages); 1536 } 1537 #if defined(__i386) 1538 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1539 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1540 "System using 0x%lx", 1541 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1542 #endif 1543 1544 #ifdef KERNELBASE_ABI_MIN 1545 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1546 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1547 "i386 ABI compliant.", (uintptr_t)kernelbase); 1548 } 1549 #endif 1550 1551 #ifndef __xpv 1552 if (plat_dr_support_memory()) { 1553 mem_config_init(); 1554 } 1555 #else /* __xpv */ 1556 /* 1557 * Some of the xen start information has to be relocated up 1558 * into the kernel's permanent address space. 1559 */ 1560 PRM_POINT("calling xen_relocate_start_info()"); 1561 xen_relocate_start_info(); 1562 PRM_POINT("xen_relocate_start_info() done"); 1563 1564 /* 1565 * (Update the vcpu pointer in our cpu structure to point into 1566 * the relocated shared info.) 1567 */ 1568 CPU->cpu_m.mcpu_vcpu_info = 1569 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1570 #endif /* __xpv */ 1571 1572 PRM_POINT("startup_kmem() done"); 1573 } 1574 1575 #ifndef __xpv 1576 /* 1577 * If we have detected that we are running in an HVM environment, we need 1578 * to prepend the PV driver directory to the module search path. 1579 */ 1580 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1581 static void 1582 update_default_path() 1583 { 1584 char *current, *newpath; 1585 int newlen; 1586 1587 /* 1588 * We are about to resync with krtld. krtld will reset its 1589 * internal module search path iff Solaris has set default_path. 1590 * We want to be sure we're prepending this new directory to the 1591 * right search path. 1592 */ 1593 current = (default_path == NULL) ? kobj_module_path : default_path; 1594 1595 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1596 newpath = kmem_alloc(newlen, KM_SLEEP); 1597 (void) strcpy(newpath, HVM_MOD_DIR); 1598 (void) strcat(newpath, " "); 1599 (void) strcat(newpath, current); 1600 1601 default_path = newpath; 1602 } 1603 #endif 1604 1605 static void 1606 startup_modules(void) 1607 { 1608 int cnt; 1609 extern void prom_setup(void); 1610 int32_t v, h; 1611 char d[11]; 1612 char *cp; 1613 cmi_hdl_t hdl; 1614 1615 PRM_POINT("startup_modules() starting..."); 1616 1617 #ifndef __xpv 1618 /* 1619 * Initialize ten-micro second timer so that drivers will 1620 * not get short changed in their init phase. This was 1621 * not getting called until clkinit which, on fast cpu's 1622 * caused the drv_usecwait to be way too short. 1623 */ 1624 microfind(); 1625 1626 if ((get_hwenv() & HW_XEN_HVM) != 0) 1627 update_default_path(); 1628 #endif 1629 1630 /* 1631 * Read the GMT lag from /etc/rtc_config. 1632 */ 1633 sgmtl(process_rtc_config_file()); 1634 1635 /* 1636 * Calculate default settings of system parameters based upon 1637 * maxusers, yet allow to be overridden via the /etc/system file. 1638 */ 1639 param_calc(0); 1640 1641 mod_setup(); 1642 1643 /* 1644 * Initialize system parameters. 1645 */ 1646 param_init(); 1647 1648 /* 1649 * Initialize the default brands 1650 */ 1651 brand_init(); 1652 1653 /* 1654 * maxmem is the amount of physical memory we're playing with. 1655 */ 1656 maxmem = physmem; 1657 1658 /* 1659 * Initialize segment management stuff. 1660 */ 1661 seg_init(); 1662 1663 if (modload("fs", "specfs") == -1) 1664 halt("Can't load specfs"); 1665 1666 if (modload("fs", "devfs") == -1) 1667 halt("Can't load devfs"); 1668 1669 if (modload("fs", "dev") == -1) 1670 halt("Can't load dev"); 1671 1672 if (modload("fs", "procfs") == -1) 1673 halt("Can't load procfs"); 1674 1675 (void) modloadonly("sys", "lbl_edition"); 1676 1677 dispinit(); 1678 1679 /* Read cluster configuration data. */ 1680 clconf_init(); 1681 1682 #if defined(__xpv) 1683 (void) ec_init(); 1684 gnttab_init(); 1685 (void) xs_early_init(); 1686 #endif /* __xpv */ 1687 1688 /* 1689 * Create a kernel device tree. First, create rootnex and 1690 * then invoke bus specific code to probe devices. 1691 */ 1692 setup_ddi(); 1693 1694 #ifdef __xpv 1695 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1696 #endif 1697 { 1698 id_t smid; 1699 smbios_system_t smsys; 1700 smbios_info_t sminfo; 1701 char *mfg; 1702 /* 1703 * Load the System Management BIOS into the global ksmbios 1704 * handle, if an SMBIOS is present on this system. 1705 * Also set "si-hw-provider" property, if not already set. 1706 */ 1707 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1708 if (ksmbios != NULL && 1709 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1710 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1711 mfg = (char *)sminfo.smbi_manufacturer; 1712 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1713 extern char hw_provider[]; 1714 int i; 1715 for (i = 0; i < SYS_NMLN; i++) { 1716 if (isprint(mfg[i])) 1717 hw_provider[i] = mfg[i]; 1718 else { 1719 hw_provider[i] = '\0'; 1720 break; 1721 } 1722 } 1723 hw_provider[SYS_NMLN - 1] = '\0'; 1724 } 1725 } 1726 } 1727 1728 1729 /* 1730 * Originally clconf_init() apparently needed the hostid. But 1731 * this no longer appears to be true - it uses its own nodeid. 1732 * By placing the hostid logic here, we are able to make use of 1733 * the SMBIOS UUID. 1734 */ 1735 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1736 cmn_err(CE_WARN, "Unable to set hostid"); 1737 } else { 1738 for (v = h, cnt = 0; cnt < 10; cnt++) { 1739 d[cnt] = (char)(v % 10); 1740 v /= 10; 1741 if (v == 0) 1742 break; 1743 } 1744 for (cp = hw_serial; cnt >= 0; cnt--) 1745 *cp++ = d[cnt] + '0'; 1746 *cp = 0; 1747 } 1748 1749 /* 1750 * Set up the CPU module subsystem for the boot cpu in the native 1751 * case, and all physical cpu resource in the xpv dom0 case. 1752 * Modifies the device tree, so this must be done after 1753 * setup_ddi(). 1754 */ 1755 #ifdef __xpv 1756 /* 1757 * If paravirtualized and on dom0 then we initialize all physical 1758 * cpu handles now; if paravirtualized on a domU then do not 1759 * initialize. 1760 */ 1761 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1762 xen_mc_lcpu_cookie_t cpi; 1763 1764 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1765 cpi = xen_physcpu_next(cpi)) { 1766 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1767 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1768 xen_physcpu_strandid(cpi))) != NULL && 1769 is_x86_feature(x86_featureset, X86FSET_MCA)) 1770 cmi_mca_init(hdl); 1771 } 1772 } 1773 #else 1774 /* 1775 * Initialize a handle for the boot cpu - others will initialize 1776 * as they startup. 1777 */ 1778 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1779 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1780 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1781 cmi_mca_init(hdl); 1782 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1783 } 1784 #endif /* __xpv */ 1785 1786 /* 1787 * Fake a prom tree such that /dev/openprom continues to work 1788 */ 1789 PRM_POINT("startup_modules: calling prom_setup..."); 1790 prom_setup(); 1791 PRM_POINT("startup_modules: done"); 1792 1793 /* 1794 * Load all platform specific modules 1795 */ 1796 PRM_POINT("startup_modules: calling psm_modload..."); 1797 psm_modload(); 1798 1799 PRM_POINT("startup_modules() done"); 1800 } 1801 1802 /* 1803 * claim a "setaside" boot page for use in the kernel 1804 */ 1805 page_t * 1806 boot_claim_page(pfn_t pfn) 1807 { 1808 page_t *pp; 1809 1810 pp = page_numtopp_nolock(pfn); 1811 ASSERT(pp != NULL); 1812 1813 if (PP_ISBOOTPAGES(pp)) { 1814 if (pp->p_next != NULL) 1815 pp->p_next->p_prev = pp->p_prev; 1816 if (pp->p_prev == NULL) 1817 bootpages = pp->p_next; 1818 else 1819 pp->p_prev->p_next = pp->p_next; 1820 } else { 1821 /* 1822 * htable_attach() expects a base pagesize page 1823 */ 1824 if (pp->p_szc != 0) 1825 page_boot_demote(pp); 1826 pp = page_numtopp(pfn, SE_EXCL); 1827 } 1828 return (pp); 1829 } 1830 1831 /* 1832 * Walk through the pagetables looking for pages mapped in by boot. If the 1833 * setaside flag is set the pages are expected to be returned to the 1834 * kernel later in boot, so we add them to the bootpages list. 1835 */ 1836 static void 1837 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1838 { 1839 uintptr_t va = low; 1840 size_t len; 1841 uint_t prot; 1842 pfn_t pfn; 1843 page_t *pp; 1844 pgcnt_t boot_protect_cnt = 0; 1845 1846 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1847 if (va + len >= high) 1848 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1849 "legal range.", len, (void *)va); 1850 1851 while (len > 0) { 1852 pp = page_numtopp_alloc(pfn); 1853 if (pp != NULL) { 1854 if (setaside == 0) 1855 panic("Unexpected mapping by boot. " 1856 "addr=%p pfn=%lx\n", 1857 (void *)va, pfn); 1858 1859 pp->p_next = bootpages; 1860 pp->p_prev = NULL; 1861 PP_SETBOOTPAGES(pp); 1862 if (bootpages != NULL) { 1863 bootpages->p_prev = pp; 1864 } 1865 bootpages = pp; 1866 ++boot_protect_cnt; 1867 } 1868 1869 ++pfn; 1870 len -= MMU_PAGESIZE; 1871 va += MMU_PAGESIZE; 1872 } 1873 } 1874 PRM_DEBUG(boot_protect_cnt); 1875 } 1876 1877 /* 1878 * Establish the final size of the kernel's heap, size of segmap, segkp, etc. 1879 */ 1880 static void 1881 layout_kernel_va(void) 1882 { 1883 const size_t physmem_size = mmu_ptob(physmem); 1884 size_t size; 1885 1886 PRM_POINT("layout_kernel_va() starting..."); 1887 1888 kpm_vbase = (caddr_t)segkpm_base; 1889 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1890 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1891 panic("not enough room for kpm!"); 1892 PRM_DEBUG(kpm_size); 1893 PRM_DEBUG(kpm_vbase); 1894 1895 segkp_base = (caddr_t)valloc_base + valloc_sz; 1896 if (!segkp_fromheap) { 1897 size = mmu_ptob(segkpsize); 1898 1899 /* 1900 * determine size of segkp 1901 */ 1902 if (size < SEGKPMINSIZE || size > SEGKPMAXSIZE) { 1903 size = SEGKPDEFSIZE; 1904 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1905 "segkpsize has been reset to %ld pages", 1906 mmu_btop(size)); 1907 } 1908 size = MIN(size, MAX(SEGKPMINSIZE, physmem_size)); 1909 1910 segkpsize = mmu_btop(ROUND_UP_LPAGE(size)); 1911 } 1912 PRM_DEBUG(segkp_base); 1913 PRM_DEBUG(segkpsize); 1914 1915 /* 1916 * segkvmm: backing for vmm guest memory. Like segzio, we have a 1917 * separate segment for two reasons: it makes it easy to skip our pages 1918 * on kernel crash dumps, and it helps avoid fragmentation. With this 1919 * segment, we're expecting significantly-sized allocations only; we'll 1920 * default to 4x the size of physmem. 1921 */ 1922 segkvmm_base = segkp_base + mmu_ptob(segkpsize); 1923 size = segkvmmsize != 0 ? mmu_ptob(segkvmmsize) : (physmem_size * 4); 1924 1925 size = MAX(size, SEGVMMMINSIZE); 1926 segkvmmsize = mmu_btop(ROUND_UP_LPAGE(size)); 1927 1928 PRM_DEBUG(segkvmmsize); 1929 PRM_DEBUG(segkvmm_base); 1930 1931 /* 1932 * segzio is used for ZFS cached data. For segzio, we use 1.5x physmem. 1933 */ 1934 segzio_base = segkvmm_base + mmu_ptob(segkvmmsize); 1935 if (segzio_fromheap) { 1936 segziosize = 0; 1937 } else { 1938 size = (segziosize != 0) ? mmu_ptob(segziosize) : 1939 (physmem_size * 3) / 2; 1940 1941 size = MAX(size, SEGZIOMINSIZE); 1942 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1943 } 1944 PRM_DEBUG(segziosize); 1945 PRM_DEBUG(segzio_base); 1946 1947 /* 1948 * Put the range of VA for device mappings next, kmdb knows to not 1949 * grep in this range of addresses. 1950 */ 1951 toxic_addr = 1952 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1953 PRM_DEBUG(toxic_addr); 1954 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1955 1956 /* 1957 * Users can change segmapsize through eeprom. If the variable 1958 * is tuned through eeprom, there is no upper bound on the 1959 * size of segmap. 1960 */ 1961 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1962 1963 PRM_DEBUG(segmap_start); 1964 PRM_DEBUG(segmapsize); 1965 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1966 PRM_DEBUG(kernelheap); 1967 PRM_POINT("layout_kernel_va() done..."); 1968 } 1969 1970 /* 1971 * Finish initializing the VM system, now that we are no longer 1972 * relying on the boot time memory allocators. 1973 */ 1974 static void 1975 startup_vm(void) 1976 { 1977 struct segmap_crargs a; 1978 1979 extern int use_brk_lpg, use_stk_lpg; 1980 1981 PRM_POINT("startup_vm() starting..."); 1982 1983 /* 1984 * Initialize the hat layer. 1985 */ 1986 hat_init(); 1987 1988 /* 1989 * Do final allocations of HAT data structures that need to 1990 * be allocated before quiescing the boot loader. 1991 */ 1992 PRM_POINT("Calling hat_kern_alloc()..."); 1993 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1994 PRM_POINT("hat_kern_alloc() done"); 1995 1996 #ifndef __xpv 1997 /* 1998 * Setup Page Attribute Table 1999 */ 2000 pat_sync(); 2001 #endif 2002 2003 /* 2004 * The next two loops are done in distinct steps in order 2005 * to be sure that any page that is doubly mapped (both above 2006 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 2007 * Note this may never happen, but it might someday. 2008 */ 2009 bootpages = NULL; 2010 PRM_POINT("Protecting boot pages"); 2011 2012 /* 2013 * Protect any pages mapped above KERNEL_TEXT that somehow have 2014 * page_t's. This can only happen if something weird allocated 2015 * in this range (like kadb/kmdb). 2016 */ 2017 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 2018 2019 /* 2020 * Before we can take over memory allocation/mapping from the boot 2021 * loader we must remove from our free page lists any boot allocated 2022 * pages that stay mapped until release_bootstrap(). 2023 */ 2024 protect_boot_range(0, kernelbase, 1); 2025 2026 2027 /* 2028 * Switch to running on regular HAT (not boot_mmu) 2029 */ 2030 PRM_POINT("Calling hat_kern_setup()..."); 2031 hat_kern_setup(); 2032 2033 /* 2034 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 2035 */ 2036 bop_no_more_mem(); 2037 2038 PRM_POINT("hat_kern_setup() done"); 2039 2040 hat_cpu_online(CPU); 2041 2042 /* 2043 * Initialize VM system 2044 */ 2045 PRM_POINT("Calling kvm_init()..."); 2046 kvm_init(); 2047 PRM_POINT("kvm_init() done"); 2048 2049 /* 2050 * Tell kmdb that the VM system is now working 2051 */ 2052 if (boothowto & RB_DEBUG) 2053 kdi_dvec_vmready(); 2054 2055 #if defined(__xpv) 2056 /* 2057 * Populate the I/O pool on domain 0 2058 */ 2059 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2060 extern long populate_io_pool(void); 2061 long init_io_pool_cnt; 2062 2063 PRM_POINT("Populating reserve I/O page pool"); 2064 init_io_pool_cnt = populate_io_pool(); 2065 PRM_DEBUG(init_io_pool_cnt); 2066 } 2067 #endif 2068 /* 2069 * Mangle the brand string etc. 2070 */ 2071 cpuid_pass3(CPU); 2072 2073 #if defined(__amd64) 2074 2075 /* 2076 * Create the device arena for toxic (to dtrace/kmdb) mappings. 2077 */ 2078 device_arena = vmem_create("device", (void *)toxic_addr, 2079 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 2080 2081 #else /* __i386 */ 2082 2083 /* 2084 * allocate the bit map that tracks toxic pages 2085 */ 2086 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 2087 PRM_DEBUG(toxic_bit_map_len); 2088 toxic_bit_map = 2089 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2090 ASSERT(toxic_bit_map != NULL); 2091 PRM_DEBUG(toxic_bit_map); 2092 2093 #endif /* __i386 */ 2094 2095 2096 /* 2097 * Now that we've got more VA, as well as the ability to allocate from 2098 * it, tell the debugger. 2099 */ 2100 if (boothowto & RB_DEBUG) 2101 kdi_dvec_memavail(); 2102 2103 #if !defined(__xpv) 2104 /* 2105 * Map page pfn=0 for drivers, such as kd, that need to pick up 2106 * parameters left there by controllers/BIOS. 2107 */ 2108 PRM_POINT("setup up p0_va"); 2109 p0_va = i86devmap(0, 1, PROT_READ); 2110 PRM_DEBUG(p0_va); 2111 #endif 2112 2113 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2114 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2115 2116 /* 2117 * disable automatic large pages for small memory systems or 2118 * when the disable flag is set. 2119 * 2120 * Do not yet consider page sizes larger than 2m/4m. 2121 */ 2122 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2123 max_uheap_lpsize = LEVEL_SIZE(1); 2124 max_ustack_lpsize = LEVEL_SIZE(1); 2125 max_privmap_lpsize = LEVEL_SIZE(1); 2126 max_uidata_lpsize = LEVEL_SIZE(1); 2127 max_utext_lpsize = LEVEL_SIZE(1); 2128 max_shm_lpsize = LEVEL_SIZE(1); 2129 } 2130 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2131 auto_lpg_disable) { 2132 use_brk_lpg = 0; 2133 use_stk_lpg = 0; 2134 } 2135 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2136 2137 PRM_POINT("Calling hat_init_finish()..."); 2138 hat_init_finish(); 2139 PRM_POINT("hat_init_finish() done"); 2140 2141 /* 2142 * Initialize the segkp segment type. 2143 */ 2144 rw_enter(&kas.a_lock, RW_WRITER); 2145 PRM_POINT("Attaching segkp"); 2146 if (segkp_fromheap) { 2147 segkp->s_as = &kas; 2148 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2149 segkp) < 0) { 2150 panic("startup: cannot attach segkp"); 2151 /*NOTREACHED*/ 2152 } 2153 PRM_POINT("Doing segkp_create()"); 2154 if (segkp_create(segkp) != 0) { 2155 panic("startup: segkp_create failed"); 2156 /*NOTREACHED*/ 2157 } 2158 PRM_DEBUG(segkp); 2159 rw_exit(&kas.a_lock); 2160 2161 /* 2162 * kpm segment 2163 */ 2164 segmap_kpm = 0; 2165 if (kpm_desired) 2166 kpm_init(); 2167 2168 /* 2169 * Now create segmap segment. 2170 */ 2171 rw_enter(&kas.a_lock, RW_WRITER); 2172 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2173 panic("cannot attach segmap"); 2174 /*NOTREACHED*/ 2175 } 2176 PRM_DEBUG(segmap); 2177 2178 a.prot = PROT_READ | PROT_WRITE; 2179 a.shmsize = 0; 2180 a.nfreelist = segmapfreelists; 2181 2182 if (segmap_create(segmap, (caddr_t)&a) != 0) 2183 panic("segmap_create segmap"); 2184 rw_exit(&kas.a_lock); 2185 2186 setup_vaddr_for_ppcopy(CPU); 2187 2188 segdev_init(); 2189 #if defined(__xpv) 2190 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2191 #endif 2192 pmem_init(); 2193 2194 PRM_POINT("startup_vm() done"); 2195 } 2196 2197 /* 2198 * Load a tod module for the non-standard tod part found on this system. 2199 */ 2200 static void 2201 load_tod_module(char *todmod) 2202 { 2203 if (modload("tod", todmod) == -1) 2204 halt("Can't load TOD module"); 2205 } 2206 2207 static void 2208 startup_end(void) 2209 { 2210 int i; 2211 extern void setx86isalist(void); 2212 extern void cpu_event_init(void); 2213 2214 PRM_POINT("startup_end() starting..."); 2215 2216 /* 2217 * Perform tasks that get done after most of the VM 2218 * initialization has been done but before the clock 2219 * and other devices get started. 2220 */ 2221 kern_setup1(); 2222 2223 /* 2224 * Perform CPC initialization for this CPU. 2225 */ 2226 kcpc_hw_init(CPU); 2227 2228 /* 2229 * Initialize cpu event framework. 2230 */ 2231 cpu_event_init(); 2232 2233 #if defined(OPTERON_WORKAROUND_6323525) 2234 if (opteron_workaround_6323525) 2235 patch_workaround_6323525(); 2236 #endif 2237 /* 2238 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2239 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2240 */ 2241 if (tod_module_name != NULL) { 2242 PRM_POINT("load_tod_module()"); 2243 load_tod_module(tod_module_name); 2244 } 2245 2246 #if defined(__xpv) 2247 /* 2248 * Forceload interposing TOD module for the hypervisor. 2249 */ 2250 PRM_POINT("load_tod_module()"); 2251 load_tod_module("xpvtod"); 2252 #endif 2253 2254 /* 2255 * Configure the system. 2256 */ 2257 PRM_POINT("Calling configure()..."); 2258 configure(); /* set up devices */ 2259 PRM_POINT("configure() done"); 2260 2261 /* 2262 * We can now setup for XSAVE because fpu_probe is done in configure(). 2263 */ 2264 if (fp_save_mech == FP_XSAVE) { 2265 PRM_POINT("xsave_setup_msr()"); 2266 xsave_setup_msr(CPU); 2267 } 2268 2269 /* 2270 * Set the isa_list string to the defined instruction sets we 2271 * support. 2272 */ 2273 setx86isalist(); 2274 PRM_POINT("cpu_intr_alloc()"); 2275 cpu_intr_alloc(CPU, NINTR_THREADS); 2276 PRM_POINT("psm_install()"); 2277 psm_install(); 2278 2279 /* 2280 * We're done with bootops. We don't unmap the bootstrap yet because 2281 * we're still using bootsvcs. 2282 */ 2283 PRM_POINT("NULLing out bootops"); 2284 *bootopsp = (struct bootops *)NULL; 2285 bootops = (struct bootops *)NULL; 2286 2287 #if defined(__xpv) 2288 ec_init_debug_irq(); 2289 xs_domu_init(); 2290 #endif 2291 2292 #if !defined(__xpv) 2293 /* 2294 * Intel IOMMU has been setup/initialized in ddi_impl.c 2295 * Start it up now. 2296 */ 2297 immu_startup(); 2298 2299 /* 2300 * Now that we're no longer going to drop into real mode for a BIOS call 2301 * via bootops, we can enable PCID (which requires CR0.PG). 2302 */ 2303 enable_pcid(); 2304 #endif 2305 2306 PRM_POINT("Enabling interrupts"); 2307 (*picinitf)(); 2308 sti(); 2309 #if defined(__xpv) 2310 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2311 xen_late_startup(); 2312 #endif 2313 2314 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2315 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2316 2317 /* 2318 * Register software interrupt handlers for ddi_periodic_add(9F). 2319 * Software interrupts up to the level 10 are supported. 2320 */ 2321 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2322 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2323 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2324 (caddr_t)(uintptr_t)i, NULL); 2325 } 2326 2327 #if !defined(__xpv) 2328 if (modload("drv", "amd_iommu") < 0) { 2329 PRM_POINT("No AMD IOMMU present\n"); 2330 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2331 "amd_iommu")) == NULL) { 2332 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2333 } 2334 #endif 2335 post_startup_cpu_fixups(); 2336 2337 PRM_POINT("startup_end() done"); 2338 } 2339 2340 /* 2341 * Don't remove the following 2 variables. They are necessary 2342 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2343 */ 2344 char *_hs1107 = hw_serial; 2345 ulong_t _bdhs34; 2346 2347 void 2348 post_startup(void) 2349 { 2350 extern void cpupm_init(cpu_t *); 2351 extern void cpu_event_init_cpu(cpu_t *); 2352 2353 /* 2354 * Set the system wide, processor-specific flags to be passed 2355 * to userland via the aux vector for performance hints and 2356 * instruction set extensions. 2357 */ 2358 bind_hwcap(); 2359 2360 #ifdef __xpv 2361 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2362 #endif 2363 { 2364 #if defined(__xpv) 2365 xpv_panic_init(); 2366 #else 2367 /* 2368 * Startup the memory scrubber. 2369 * XXPV This should be running somewhere .. 2370 */ 2371 if ((get_hwenv() & HW_VIRTUAL) == 0) 2372 memscrub_init(); 2373 #endif 2374 } 2375 2376 /* 2377 * Complete CPU module initialization 2378 */ 2379 cmi_post_startup(); 2380 2381 /* 2382 * Perform forceloading tasks for /etc/system. 2383 */ 2384 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2385 2386 /* 2387 * ON4.0: Force /proc module in until clock interrupt handle fixed 2388 * ON4.0: This must be fixed or restated in /etc/systems. 2389 */ 2390 (void) modload("fs", "procfs"); 2391 2392 (void) i_ddi_attach_hw_nodes("pit_beep"); 2393 2394 #if defined(__i386) 2395 /* 2396 * Check for required functional Floating Point hardware, 2397 * unless FP hardware explicitly disabled. 2398 */ 2399 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2400 halt("No working FP hardware found"); 2401 #endif 2402 2403 maxmem = freemem; 2404 2405 cpu_event_init_cpu(CPU); 2406 cpupm_init(CPU); 2407 (void) mach_cpu_create_device_node(CPU, NULL); 2408 2409 pg_init(); 2410 } 2411 2412 static int 2413 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2414 { 2415 return ((pp->p_pagenum >= btop(low_addr)) && 2416 (pp->p_pagenum < btopr(high_addr))); 2417 } 2418 2419 static int 2420 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2421 { 2422 uint_t i; 2423 2424 for (i = 0; modranges[i].phys != 0; i++) { 2425 if (pp_in_range(pp, modranges[i].phys, 2426 modranges[i].phys + modranges[i].size)) 2427 return (1); 2428 } 2429 2430 return (0); 2431 } 2432 2433 void 2434 release_bootstrap(void) 2435 { 2436 int root_is_ramdisk; 2437 page_t *pp; 2438 extern void kobj_boot_unmountroot(void); 2439 extern dev_t rootdev; 2440 uint_t i; 2441 char propname[32]; 2442 rd_existing_t *modranges; 2443 #if !defined(__xpv) 2444 pfn_t pfn; 2445 #endif 2446 2447 /* 2448 * Save the bootfs module ranges so that we can reserve them below 2449 * for the real bootfs. 2450 */ 2451 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2452 KM_SLEEP); 2453 for (i = 0; ; i++) { 2454 uint64_t start, size; 2455 2456 modranges[i].phys = 0; 2457 2458 (void) snprintf(propname, sizeof (propname), 2459 "module-addr-%u", i); 2460 if (do_bsys_getproplen(NULL, propname) <= 0) 2461 break; 2462 (void) do_bsys_getprop(NULL, propname, &start); 2463 2464 (void) snprintf(propname, sizeof (propname), 2465 "module-size-%u", i); 2466 if (do_bsys_getproplen(NULL, propname) <= 0) 2467 break; 2468 (void) do_bsys_getprop(NULL, propname, &size); 2469 2470 modranges[i].phys = start; 2471 modranges[i].size = size; 2472 } 2473 2474 /* unmount boot ramdisk and release kmem usage */ 2475 kobj_boot_unmountroot(); 2476 2477 /* 2478 * We're finished using the boot loader so free its pages. 2479 */ 2480 PRM_POINT("Unmapping lower boot pages"); 2481 2482 clear_boot_mappings(0, _userlimit); 2483 2484 postbootkernelbase = kernelbase; 2485 2486 /* 2487 * If root isn't on ramdisk, destroy the hardcoded 2488 * ramdisk node now and release the memory. Else, 2489 * ramdisk memory is kept in rd_pages. 2490 */ 2491 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2492 if (!root_is_ramdisk) { 2493 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2494 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2495 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2496 (void) ddi_remove_child(dip, 0); 2497 } 2498 2499 PRM_POINT("Releasing boot pages"); 2500 while (bootpages) { 2501 extern uint64_t ramdisk_start, ramdisk_end; 2502 pp = bootpages; 2503 bootpages = pp->p_next; 2504 2505 2506 /* Keep pages for the lower 64K */ 2507 if (pp_in_range(pp, 0, 0x40000)) { 2508 pp->p_next = lower_pages; 2509 lower_pages = pp; 2510 lower_pages_count++; 2511 continue; 2512 } 2513 2514 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2515 ramdisk_end) || pp_in_module(pp, modranges)) { 2516 pp->p_next = rd_pages; 2517 rd_pages = pp; 2518 continue; 2519 } 2520 pp->p_next = (struct page *)0; 2521 pp->p_prev = (struct page *)0; 2522 PP_CLRBOOTPAGES(pp); 2523 page_free(pp, 1); 2524 } 2525 PRM_POINT("Boot pages released"); 2526 2527 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2528 2529 #if !defined(__xpv) 2530 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2531 /* 2532 * Find 1 page below 1 MB so that other processors can boot up or 2533 * so that any processor can resume. 2534 * Make sure it has a kernel VA as well as a 1:1 mapping. 2535 * We should have just free'd one up. 2536 */ 2537 2538 /* 2539 * 0x10 pages is 64K. Leave the bottom 64K alone 2540 * for BIOS. 2541 */ 2542 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2543 if (page_numtopp_alloc(pfn) == NULL) 2544 continue; 2545 rm_platter_va = i86devmap(pfn, 1, 2546 PROT_READ | PROT_WRITE | PROT_EXEC); 2547 rm_platter_pa = ptob(pfn); 2548 break; 2549 } 2550 if (pfn == btop(1*1024*1024) && use_mp) 2551 panic("No page below 1M available for starting " 2552 "other processors or for resuming from system-suspend"); 2553 #endif /* !__xpv */ 2554 } 2555 2556 /* 2557 * Initialize the platform-specific parts of a page_t. 2558 */ 2559 void 2560 add_physmem_cb(page_t *pp, pfn_t pnum) 2561 { 2562 pp->p_pagenum = pnum; 2563 pp->p_mapping = NULL; 2564 pp->p_embed = 0; 2565 pp->p_share = 0; 2566 pp->p_mlentry = 0; 2567 } 2568 2569 /* 2570 * kphysm_init() initializes physical memory. 2571 */ 2572 static pgcnt_t 2573 kphysm_init(page_t *pp, pgcnt_t npages) 2574 { 2575 struct memlist *pmem; 2576 struct memseg *cur_memseg; 2577 pfn_t base_pfn; 2578 pfn_t end_pfn; 2579 pgcnt_t num; 2580 pgcnt_t pages_done = 0; 2581 uint64_t addr; 2582 uint64_t size; 2583 extern pfn_t ddiphysmin; 2584 extern int mnode_xwa; 2585 int ms = 0, me = 0; 2586 2587 ASSERT(page_hash != NULL && page_hashsz != 0); 2588 2589 cur_memseg = memseg_base; 2590 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2591 /* 2592 * In a 32 bit kernel can't use higher memory if we're 2593 * not booting in PAE mode. This check takes care of that. 2594 */ 2595 addr = pmem->ml_address; 2596 size = pmem->ml_size; 2597 if (btop(addr) > physmax) 2598 continue; 2599 2600 /* 2601 * align addr and size - they may not be at page boundaries 2602 */ 2603 if ((addr & MMU_PAGEOFFSET) != 0) { 2604 addr += MMU_PAGEOFFSET; 2605 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2606 size -= addr - pmem->ml_address; 2607 } 2608 2609 /* only process pages below or equal to physmax */ 2610 if ((btop(addr + size) - 1) > physmax) 2611 size = ptob(physmax - btop(addr) + 1); 2612 2613 num = btop(size); 2614 if (num == 0) 2615 continue; 2616 2617 if (num > npages) 2618 num = npages; 2619 2620 npages -= num; 2621 pages_done += num; 2622 base_pfn = btop(addr); 2623 2624 if (prom_debug) 2625 prom_printf("MEMSEG addr=0x%" PRIx64 2626 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2627 addr, num, base_pfn, base_pfn + num); 2628 2629 /* 2630 * Ignore pages below ddiphysmin to simplify ddi memory 2631 * allocation with non-zero addr_lo requests. 2632 */ 2633 if (base_pfn < ddiphysmin) { 2634 if (base_pfn + num <= ddiphysmin) 2635 continue; 2636 pp += (ddiphysmin - base_pfn); 2637 num -= (ddiphysmin - base_pfn); 2638 base_pfn = ddiphysmin; 2639 } 2640 2641 /* 2642 * mnode_xwa is greater than 1 when large pages regions can 2643 * cross memory node boundaries. To prevent the formation 2644 * of these large pages, configure the memsegs based on the 2645 * memory node ranges which had been made non-contiguous. 2646 */ 2647 end_pfn = base_pfn + num - 1; 2648 if (mnode_xwa > 1) { 2649 ms = PFN_2_MEM_NODE(base_pfn); 2650 me = PFN_2_MEM_NODE(end_pfn); 2651 2652 if (ms != me) { 2653 /* 2654 * current range spans more than 1 memory node. 2655 * Set num to only the pfn range in the start 2656 * memory node. 2657 */ 2658 num = mem_node_config[ms].physmax - base_pfn 2659 + 1; 2660 ASSERT(end_pfn > mem_node_config[ms].physmax); 2661 } 2662 } 2663 2664 for (;;) { 2665 /* 2666 * Build the memsegs entry 2667 */ 2668 cur_memseg->pages = pp; 2669 cur_memseg->epages = pp + num; 2670 cur_memseg->pages_base = base_pfn; 2671 cur_memseg->pages_end = base_pfn + num; 2672 2673 /* 2674 * Insert into memseg list in decreasing pfn range 2675 * order. Low memory is typically more fragmented such 2676 * that this ordering keeps the larger ranges at the 2677 * front of the list for code that searches memseg. 2678 * This ASSERTS that the memsegs coming in from boot 2679 * are in increasing physical address order and not 2680 * contiguous. 2681 */ 2682 if (memsegs != NULL) { 2683 ASSERT(cur_memseg->pages_base >= 2684 memsegs->pages_end); 2685 cur_memseg->next = memsegs; 2686 } 2687 memsegs = cur_memseg; 2688 2689 /* 2690 * add_physmem() initializes the PSM part of the page 2691 * struct by calling the PSM back with add_physmem_cb(). 2692 * In addition it coalesces pages into larger pages as 2693 * it initializes them. 2694 */ 2695 add_physmem(pp, num, base_pfn); 2696 cur_memseg++; 2697 availrmem_initial += num; 2698 availrmem += num; 2699 2700 pp += num; 2701 if (ms >= me) 2702 break; 2703 2704 /* process next memory node range */ 2705 ms++; 2706 base_pfn = mem_node_config[ms].physbase; 2707 2708 if (mnode_xwa > 1) { 2709 num = MIN(mem_node_config[ms].physmax, 2710 end_pfn) - base_pfn + 1; 2711 } else { 2712 num = mem_node_config[ms].physmax - 2713 base_pfn + 1; 2714 } 2715 } 2716 } 2717 2718 PRM_DEBUG(availrmem_initial); 2719 PRM_DEBUG(availrmem); 2720 PRM_DEBUG(freemem); 2721 build_pfn_hash(); 2722 return (pages_done); 2723 } 2724 2725 /* 2726 * Kernel VM initialization. 2727 */ 2728 static void 2729 kvm_init(void) 2730 { 2731 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2732 2733 /* 2734 * Put the kernel segments in kernel address space. 2735 */ 2736 rw_enter(&kas.a_lock, RW_WRITER); 2737 as_avlinit(&kas); 2738 2739 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2740 (void) segkmem_create(&ktextseg); 2741 2742 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2743 (void) segkmem_create(&kvalloc); 2744 2745 (void) seg_attach(&kas, kernelheap, 2746 ekernelheap - kernelheap, &kvseg); 2747 (void) segkmem_create(&kvseg); 2748 2749 if (core_size > 0) { 2750 PRM_POINT("attaching kvseg_core"); 2751 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2752 &kvseg_core); 2753 (void) segkmem_create(&kvseg_core); 2754 } 2755 2756 PRM_POINT("attaching segkvmm"); 2757 (void) seg_attach(&kas, segkvmm_base, mmu_ptob(segkvmmsize), &kvmmseg); 2758 (void) segkmem_create(&kvmmseg); 2759 segkmem_kvmm_init(segkvmm_base, mmu_ptob(segkvmmsize)); 2760 2761 if (segziosize > 0) { 2762 PRM_POINT("attaching segzio"); 2763 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2764 &kzioseg); 2765 (void) segkmem_create(&kzioseg); 2766 2767 /* create zio area covering new segment */ 2768 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2769 } 2770 2771 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2772 (void) segkmem_create(&kdebugseg); 2773 2774 rw_exit(&kas.a_lock); 2775 2776 /* 2777 * Ensure that the red zone at kernelbase is never accessible. 2778 */ 2779 PRM_POINT("protecting redzone"); 2780 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2781 2782 /* 2783 * Make the text writable so that it can be hot patched by DTrace. 2784 */ 2785 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2786 PROT_READ | PROT_WRITE | PROT_EXEC); 2787 2788 /* 2789 * Make data writable until end. 2790 */ 2791 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2792 PROT_READ | PROT_WRITE | PROT_EXEC); 2793 } 2794 2795 #ifndef __xpv 2796 /* 2797 * Solaris adds an entry for Write Combining caching to the PAT 2798 */ 2799 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2800 2801 void 2802 pat_sync(void) 2803 { 2804 ulong_t cr0, cr0_orig, cr4; 2805 2806 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2807 return; 2808 cr0_orig = cr0 = getcr0(); 2809 cr4 = getcr4(); 2810 2811 /* disable caching and flush all caches and TLBs */ 2812 cr0 |= CR0_CD; 2813 cr0 &= ~CR0_NW; 2814 setcr0(cr0); 2815 invalidate_cache(); 2816 if (cr4 & CR4_PGE) { 2817 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2818 setcr4(cr4); 2819 } else { 2820 reload_cr3(); 2821 } 2822 2823 /* add our entry to the PAT */ 2824 wrmsr(REG_PAT, pat_attr_reg); 2825 2826 /* flush TLBs and cache again, then reenable cr0 caching */ 2827 if (cr4 & CR4_PGE) { 2828 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2829 setcr4(cr4); 2830 } else { 2831 reload_cr3(); 2832 } 2833 invalidate_cache(); 2834 setcr0(cr0_orig); 2835 } 2836 2837 #endif /* !__xpv */ 2838 2839 #if defined(_SOFT_HOSTID) 2840 /* 2841 * On platforms that do not have a hardware serial number, attempt 2842 * to set one based on the contents of /etc/hostid. If this file does 2843 * not exist, assume that we are to generate a new hostid and set 2844 * it in the kernel, for subsequent saving by a userland process 2845 * once the system is up and the root filesystem is mounted r/w. 2846 * 2847 * In order to gracefully support upgrade on OpenSolaris, if 2848 * /etc/hostid does not exist, we will attempt to get a serial number 2849 * using the legacy method (/kernel/misc/sysinit). 2850 * 2851 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2852 * a hardware serial number. Note that we don't automatically trust 2853 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2854 * UUIDs in violation of the standard), we check against a blacklist. 2855 * 2856 * In an attempt to make the hostid less prone to abuse 2857 * (for license circumvention, etc), we store it in /etc/hostid 2858 * in rot47 format. 2859 */ 2860 extern volatile unsigned long tenmicrodata; 2861 static int atoi(char *); 2862 2863 /* 2864 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2865 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2866 * array can be updated.) 2867 */ 2868 int smbios_broken_uuid = 0; 2869 2870 /* 2871 * List of known bad UUIDs. This is just the lower 32-bit values, since 2872 * that's what we use for the host id. If your hostid falls here, you need 2873 * to contact your hardware OEM for a fix for your BIOS. 2874 */ 2875 static unsigned char 2876 smbios_uuid_blacklist[][16] = { 2877 2878 { /* Reported bad UUID (Google search) */ 2879 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2880 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2881 }, 2882 { /* Known bad DELL UUID */ 2883 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2884 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2885 }, 2886 { /* Uninitialized flash */ 2887 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2888 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2889 }, 2890 { /* All zeros */ 2891 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2892 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2893 }, 2894 }; 2895 2896 static int32_t 2897 uuid_to_hostid(const uint8_t *uuid) 2898 { 2899 /* 2900 * Although the UUIDs are 128-bits, they may not distribute entropy 2901 * evenly. We would like to use SHA or MD5, but those are located 2902 * in loadable modules and not available this early in boot. As we 2903 * don't need the values to be cryptographically strong, we just 2904 * generate 32-bit vaue by xor'ing the various sequences together, 2905 * which ensures that the entire UUID contributes to the hostid. 2906 */ 2907 uint32_t id = 0; 2908 2909 /* first check against the blacklist */ 2910 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2911 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2912 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2913 "Contact BIOS manufacturer for repair.\n"); 2914 return ((int32_t)HW_INVALID_HOSTID); 2915 } 2916 } 2917 2918 for (int i = 0; i < 16; i++) 2919 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2920 2921 /* Make sure return value is positive */ 2922 return (id & 0x7fffffff); 2923 } 2924 2925 static int32_t 2926 set_soft_hostid(void) 2927 { 2928 struct _buf *file; 2929 char tokbuf[MAXNAMELEN]; 2930 token_t token; 2931 int done = 0; 2932 u_longlong_t tmp; 2933 int i; 2934 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2935 unsigned char *c; 2936 hrtime_t tsc; 2937 smbios_system_t smsys; 2938 2939 /* 2940 * If /etc/hostid file not found, we'd like to get a pseudo 2941 * random number to use at the hostid. A nice way to do this 2942 * is to read the real time clock. To remain xen-compatible, 2943 * we can't poke the real hardware, so we use tsc_read() to 2944 * read the real time clock. However, there is an ominous 2945 * warning in tsc_read that says it can return zero, so we 2946 * deal with that possibility by falling back to using the 2947 * (hopefully random enough) value in tenmicrodata. 2948 */ 2949 2950 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2951 /* 2952 * hostid file not found - try to load sysinit module 2953 * and see if it has a nonzero hostid value...use that 2954 * instead of generating a new hostid here if so. 2955 */ 2956 if ((i = modload("misc", "sysinit")) != -1) { 2957 if (strlen(hw_serial) > 0) 2958 hostid = (int32_t)atoi(hw_serial); 2959 (void) modunload(i); 2960 } 2961 2962 /* 2963 * We try to use the SMBIOS UUID. But not if it is blacklisted 2964 * in /etc/system. 2965 */ 2966 if ((hostid == HW_INVALID_HOSTID) && 2967 (smbios_broken_uuid == 0) && 2968 (ksmbios != NULL) && 2969 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 2970 (smsys.smbs_uuidlen >= 16)) { 2971 hostid = uuid_to_hostid(smsys.smbs_uuid); 2972 } 2973 2974 /* 2975 * Generate a "random" hostid using the clock. These 2976 * hostids will change on each boot if the value is not 2977 * saved to a persistent /etc/hostid file. 2978 */ 2979 if (hostid == HW_INVALID_HOSTID) { 2980 tsc = tsc_read(); 2981 if (tsc == 0) /* tsc_read can return zero sometimes */ 2982 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2983 else 2984 hostid = (int32_t)tsc & 0x0CFFFFF; 2985 } 2986 } else { 2987 /* hostid file found */ 2988 while (!done) { 2989 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2990 2991 switch (token) { 2992 case POUND: 2993 /* 2994 * skip comments 2995 */ 2996 kobj_find_eol(file); 2997 break; 2998 case STRING: 2999 /* 3000 * un-rot47 - obviously this 3001 * nonsense is ascii-specific 3002 */ 3003 for (c = (unsigned char *)tokbuf; 3004 *c != '\0'; c++) { 3005 *c += 47; 3006 if (*c > '~') 3007 *c -= 94; 3008 else if (*c < '!') 3009 *c += 94; 3010 } 3011 /* 3012 * now we should have a real number 3013 */ 3014 3015 if (kobj_getvalue(tokbuf, &tmp) != 0) 3016 kobj_file_err(CE_WARN, file, 3017 "Bad value %s for hostid", 3018 tokbuf); 3019 else 3020 hostid = (int32_t)tmp; 3021 3022 break; 3023 case EOF: 3024 done = 1; 3025 /* FALLTHROUGH */ 3026 case NEWLINE: 3027 kobj_newline(file); 3028 break; 3029 default: 3030 break; 3031 3032 } 3033 } 3034 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 3035 kobj_file_err(CE_WARN, file, 3036 "hostid missing or corrupt"); 3037 3038 kobj_close_file(file); 3039 } 3040 /* 3041 * hostid is now the value read from /etc/hostid, or the 3042 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 3043 * set. 3044 */ 3045 return (hostid); 3046 } 3047 3048 static int 3049 atoi(char *p) 3050 { 3051 int i = 0; 3052 3053 while (*p != '\0') 3054 i = 10 * i + (*p++ - '0'); 3055 3056 return (i); 3057 } 3058 3059 #endif /* _SOFT_HOSTID */ 3060 3061 void 3062 get_system_configuration(void) 3063 { 3064 char prop[32]; 3065 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 3066 3067 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 3068 BOP_GETPROP(bootops, "nodes", prop) < 0 || 3069 kobj_getvalue(prop, &nodes_ll) == -1 || 3070 nodes_ll > MAXNODES || 3071 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 3072 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 3073 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 3074 system_hardware.hd_nodes = 1; 3075 system_hardware.hd_cpus_per_node = 0; 3076 } else { 3077 system_hardware.hd_nodes = (int)nodes_ll; 3078 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 3079 } 3080 3081 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 3082 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 3083 kobj_getvalue(prop, &lvalue) == -1) 3084 eprom_kernelbase = 0; 3085 else 3086 eprom_kernelbase = (uintptr_t)lvalue; 3087 3088 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 3089 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 3090 kobj_getvalue(prop, &lvalue) == -1) 3091 segmapsize = SEGMAPDEFAULT; 3092 else 3093 segmapsize = (uintptr_t)lvalue; 3094 3095 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 3096 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 3097 kobj_getvalue(prop, &lvalue) == -1) 3098 segmapfreelists = 0; /* use segmap driver default */ 3099 else 3100 segmapfreelists = (int)lvalue; 3101 3102 /* physmem used to be here, but moved much earlier to fakebop.c */ 3103 } 3104 3105 /* 3106 * Add to a memory list. 3107 * start = start of new memory segment 3108 * len = length of new memory segment in bytes 3109 * new = pointer to a new struct memlist 3110 * memlistp = memory list to which to add segment. 3111 */ 3112 void 3113 memlist_add( 3114 uint64_t start, 3115 uint64_t len, 3116 struct memlist *new, 3117 struct memlist **memlistp) 3118 { 3119 struct memlist *cur; 3120 uint64_t end = start + len; 3121 3122 new->ml_address = start; 3123 new->ml_size = len; 3124 3125 cur = *memlistp; 3126 3127 while (cur) { 3128 if (cur->ml_address >= end) { 3129 new->ml_next = cur; 3130 *memlistp = new; 3131 new->ml_prev = cur->ml_prev; 3132 cur->ml_prev = new; 3133 return; 3134 } 3135 ASSERT(cur->ml_address + cur->ml_size <= start); 3136 if (cur->ml_next == NULL) { 3137 cur->ml_next = new; 3138 new->ml_prev = cur; 3139 new->ml_next = NULL; 3140 return; 3141 } 3142 memlistp = &cur->ml_next; 3143 cur = cur->ml_next; 3144 } 3145 } 3146 3147 void 3148 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3149 { 3150 size_t tsize = e_modtext - modtext; 3151 size_t dsize = e_moddata - moddata; 3152 3153 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3154 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3155 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3156 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3157 } 3158 3159 caddr_t 3160 kobj_text_alloc(vmem_t *arena, size_t size) 3161 { 3162 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3163 } 3164 3165 /*ARGSUSED*/ 3166 caddr_t 3167 kobj_texthole_alloc(caddr_t addr, size_t size) 3168 { 3169 panic("unexpected call to kobj_texthole_alloc()"); 3170 /*NOTREACHED*/ 3171 return (0); 3172 } 3173 3174 /*ARGSUSED*/ 3175 void 3176 kobj_texthole_free(caddr_t addr, size_t size) 3177 { 3178 panic("unexpected call to kobj_texthole_free()"); 3179 } 3180 3181 /* 3182 * This is called just after configure() in startup(). 3183 * 3184 * The ISALIST concept is a bit hopeless on Intel, because 3185 * there's no guarantee of an ever-more-capable processor 3186 * given that various parts of the instruction set may appear 3187 * and disappear between different implementations. 3188 * 3189 * While it would be possible to correct it and even enhance 3190 * it somewhat, the explicit hardware capability bitmask allows 3191 * more flexibility. 3192 * 3193 * So, we just leave this alone. 3194 */ 3195 void 3196 setx86isalist(void) 3197 { 3198 char *tp; 3199 size_t len; 3200 extern char *isa_list; 3201 3202 #define TBUFSIZE 1024 3203 3204 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3205 *tp = '\0'; 3206 3207 #if defined(__amd64) 3208 (void) strcpy(tp, "amd64 "); 3209 #endif 3210 3211 switch (x86_vendor) { 3212 case X86_VENDOR_Intel: 3213 case X86_VENDOR_AMD: 3214 case X86_VENDOR_HYGON: 3215 case X86_VENDOR_TM: 3216 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3217 /* 3218 * Pentium Pro or later 3219 */ 3220 (void) strcat(tp, "pentium_pro"); 3221 (void) strcat(tp, 3222 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3223 "+mmx pentium_pro " : " "); 3224 } 3225 /*FALLTHROUGH*/ 3226 case X86_VENDOR_Cyrix: 3227 /* 3228 * The Cyrix 6x86 does not have any Pentium features 3229 * accessible while not at privilege level 0. 3230 */ 3231 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3232 (void) strcat(tp, "pentium"); 3233 (void) strcat(tp, 3234 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3235 "+mmx pentium " : " "); 3236 } 3237 break; 3238 default: 3239 break; 3240 } 3241 (void) strcat(tp, "i486 i386 i86"); 3242 len = strlen(tp) + 1; /* account for NULL at end of string */ 3243 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3244 kmem_free(tp, TBUFSIZE); 3245 3246 #undef TBUFSIZE 3247 } 3248 3249 3250 #ifdef __amd64 3251 3252 void * 3253 device_arena_alloc(size_t size, int vm_flag) 3254 { 3255 return (vmem_alloc(device_arena, size, vm_flag)); 3256 } 3257 3258 void 3259 device_arena_free(void *vaddr, size_t size) 3260 { 3261 vmem_free(device_arena, vaddr, size); 3262 } 3263 3264 #else /* __i386 */ 3265 3266 void * 3267 device_arena_alloc(size_t size, int vm_flag) 3268 { 3269 caddr_t vaddr; 3270 uintptr_t v; 3271 size_t start; 3272 size_t end; 3273 3274 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3275 if (vaddr == NULL) 3276 return (NULL); 3277 3278 v = (uintptr_t)vaddr; 3279 ASSERT(v >= kernelbase); 3280 ASSERT(v + size <= valloc_base); 3281 3282 start = btop(v - kernelbase); 3283 end = btop(v + size - 1 - kernelbase); 3284 ASSERT(start < toxic_bit_map_len); 3285 ASSERT(end < toxic_bit_map_len); 3286 3287 while (start <= end) { 3288 BT_ATOMIC_SET(toxic_bit_map, start); 3289 ++start; 3290 } 3291 return (vaddr); 3292 } 3293 3294 void 3295 device_arena_free(void *vaddr, size_t size) 3296 { 3297 uintptr_t v = (uintptr_t)vaddr; 3298 size_t start; 3299 size_t end; 3300 3301 ASSERT(v >= kernelbase); 3302 ASSERT(v + size <= valloc_base); 3303 3304 start = btop(v - kernelbase); 3305 end = btop(v + size - 1 - kernelbase); 3306 ASSERT(start < toxic_bit_map_len); 3307 ASSERT(end < toxic_bit_map_len); 3308 3309 while (start <= end) { 3310 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3311 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3312 ++start; 3313 } 3314 vmem_free(heap_arena, vaddr, size); 3315 } 3316 3317 /* 3318 * returns 1st address in range that is in device arena, or NULL 3319 * if len is not NULL it returns the length of the toxic range 3320 */ 3321 void * 3322 device_arena_contains(void *vaddr, size_t size, size_t *len) 3323 { 3324 uintptr_t v = (uintptr_t)vaddr; 3325 uintptr_t eaddr = v + size; 3326 size_t start; 3327 size_t end; 3328 3329 /* 3330 * if called very early by kmdb, just return NULL 3331 */ 3332 if (toxic_bit_map == NULL) 3333 return (NULL); 3334 3335 /* 3336 * First check if we're completely outside the bitmap range. 3337 */ 3338 if (v >= valloc_base || eaddr < kernelbase) 3339 return (NULL); 3340 3341 /* 3342 * Trim ends of search to look at only what the bitmap covers. 3343 */ 3344 if (v < kernelbase) 3345 v = kernelbase; 3346 start = btop(v - kernelbase); 3347 end = btop(eaddr - kernelbase); 3348 if (end >= toxic_bit_map_len) 3349 end = toxic_bit_map_len; 3350 3351 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3352 return (NULL); 3353 3354 v = kernelbase + ptob(start); 3355 if (len != NULL) 3356 *len = ptob(end - start); 3357 return ((void *)v); 3358 } 3359 3360 #endif /* __i386 */ 3361