1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 #include <sys/systeminfo.h> 118 #include <sys/multiboot.h> 119 120 #ifdef __xpv 121 122 #include <sys/hypervisor.h> 123 #include <sys/xen_mmu.h> 124 #include <sys/evtchn_impl.h> 125 #include <sys/gnttab.h> 126 #include <sys/xpv_panic.h> 127 #include <xen/sys/xenbus_comms.h> 128 #include <xen/public/physdev.h> 129 130 extern void xen_late_startup(void); 131 132 struct xen_evt_data cpu0_evt_data; 133 134 #endif /* __xpv */ 135 136 extern void progressbar_init(void); 137 extern void progressbar_start(void); 138 extern void brand_init(void); 139 extern void pcf_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 /* 155 * XXX make declaration below "static" when drivers no longer use this 156 * interface. 157 */ 158 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 159 160 /* 161 * segkp 162 */ 163 extern int segkp_fromheap; 164 165 static void kvm_init(void); 166 static void startup_init(void); 167 static void startup_memlist(void); 168 static void startup_kmem(void); 169 static void startup_modules(void); 170 static void startup_vm(void); 171 static void startup_end(void); 172 static void layout_kernel_va(void); 173 174 /* 175 * Declare these as initialized data so we can patch them. 176 */ 177 #ifdef __i386 178 179 /* 180 * Due to virtual address space limitations running in 32 bit mode, restrict 181 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 182 * 183 * If the physical max memory size of 64g were allowed to be configured, the 184 * size of user virtual address space will be less than 1g. A limited user 185 * address space greatly reduces the range of applications that can run. 186 * 187 * If more physical memory than PHYSMEM is required, users should preferably 188 * run in 64 bit mode which has far looser virtual address space limitations. 189 * 190 * If 64 bit mode is not available (as in IA32) and/or more physical memory 191 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 192 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 193 * should also be carefully tuned to balance out the need of the user 194 * application while minimizing the risk of kernel heap exhaustion due to 195 * kernelbase being set too high. 196 */ 197 #define PHYSMEM 0x400000 198 199 #else /* __amd64 */ 200 201 /* 202 * For now we can handle memory with physical addresses up to about 203 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 204 * half the VA space for seg_kpm. When systems get bigger than 64TB this 205 * code will need revisiting. There is an implicit assumption that there 206 * are no *huge* holes in the physical address space too. 207 */ 208 #define TERABYTE (1ul << 40) 209 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 210 #define PHYSMEM PHYSMEM_MAX64 211 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 212 213 #endif /* __amd64 */ 214 215 pgcnt_t physmem = PHYSMEM; 216 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 217 218 char *kobj_file_buf; 219 int kobj_file_bufsize; /* set in /etc/system */ 220 221 /* Global variables for MP support. Used in mp_startup */ 222 caddr_t rm_platter_va = 0; 223 uint32_t rm_platter_pa; 224 225 int auto_lpg_disable = 1; 226 227 /* 228 * Some CPUs have holes in the middle of the 64-bit virtual address range. 229 */ 230 uintptr_t hole_start, hole_end; 231 232 /* 233 * kpm mapping window 234 */ 235 caddr_t kpm_vbase; 236 size_t kpm_size; 237 static int kpm_desired; 238 #ifdef __amd64 239 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 240 #endif 241 242 /* 243 * Configuration parameters set at boot time. 244 */ 245 246 caddr_t econtig; /* end of first block of contiguous kernel */ 247 248 struct bootops *bootops = 0; /* passed in from boot */ 249 struct bootops **bootopsp; 250 struct boot_syscalls *sysp; /* passed in from boot */ 251 252 char bootblock_fstype[16]; 253 254 char kern_bootargs[OBP_MAXPATHLEN]; 255 char kern_bootfile[OBP_MAXPATHLEN]; 256 257 /* 258 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 259 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 260 * zio buffers from their own segment, otherwise they are allocated from the 261 * heap. The optimization of allocating zio buffers from their own segment is 262 * only valid on 64-bit kernels. 263 */ 264 #if defined(__amd64) 265 int segzio_fromheap = 0; 266 #else 267 int segzio_fromheap = 1; 268 #endif 269 270 /* 271 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 272 * depends on number of BOP_ALLOC calls made and requested size, memory size 273 * combination and whether boot.bin memory needs to be freed. 274 */ 275 #define POSS_NEW_FRAGMENTS 12 276 277 /* 278 * VM data structures 279 */ 280 long page_hashsz; /* Size of page hash table (power of two) */ 281 struct page *pp_base; /* Base of initial system page struct array */ 282 struct page **page_hash; /* Page hash table */ 283 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 284 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 285 int pse_shift; /* log2(pse_table_size) */ 286 struct seg ktextseg; /* Segment used for kernel executable image */ 287 struct seg kvalloc; /* Segment used for "valloc" mapping */ 288 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 289 struct seg kmapseg; /* Segment used for generic kernel mappings */ 290 struct seg kdebugseg; /* Segment used for the kernel debugger */ 291 292 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 293 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 294 295 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 296 297 #if defined(__amd64) 298 struct seg kvseg_core; /* Segment used for the core heap */ 299 struct seg kpmseg; /* Segment used for physical mapping */ 300 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 301 #else 302 struct seg *segkpm = NULL; /* Unused on IA32 */ 303 #endif 304 305 caddr_t segkp_base; /* Base address of segkp */ 306 caddr_t segzio_base; /* Base address of segzio */ 307 #if defined(__amd64) 308 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 309 #else 310 pgcnt_t segkpsize = 0; 311 #endif 312 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 313 314 /* 315 * VA range available to the debugger 316 */ 317 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 318 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 319 320 struct memseg *memseg_base; 321 struct vnode unused_pages_vp; 322 323 #define FOURGB 0x100000000LL 324 325 struct memlist *memlist; 326 327 caddr_t s_text; /* start of kernel text segment */ 328 caddr_t e_text; /* end of kernel text segment */ 329 caddr_t s_data; /* start of kernel data segment */ 330 caddr_t e_data; /* end of kernel data segment */ 331 caddr_t modtext; /* start of loadable module text reserved */ 332 caddr_t e_modtext; /* end of loadable module text reserved */ 333 caddr_t moddata; /* start of loadable module data reserved */ 334 caddr_t e_moddata; /* end of loadable module data reserved */ 335 336 struct memlist *phys_install; /* Total installed physical memory */ 337 struct memlist *phys_avail; /* Total available physical memory */ 338 339 /* 340 * kphysm_init returns the number of pages that were processed 341 */ 342 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 343 344 #define IO_PROP_SIZE 64 /* device property size */ 345 346 /* 347 * a couple useful roundup macros 348 */ 349 #define ROUND_UP_PAGE(x) \ 350 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 351 #define ROUND_UP_LPAGE(x) \ 352 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 353 #define ROUND_UP_4MEG(x) \ 354 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 355 #define ROUND_UP_TOPLEVEL(x) \ 356 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 357 358 /* 359 * 32-bit Kernel's Virtual memory layout. 360 * +-----------------------+ 361 * | | 362 * 0xFFC00000 -|-----------------------|- ARGSBASE 363 * | debugger | 364 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 365 * | Kernel Data | 366 * 0xFEC00000 -|-----------------------| 367 * | Kernel Text | 368 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 369 * |--- GDT ---|- GDT page (GDT_VA) 370 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 371 * | | 372 * | page_t structures | 373 * | memsegs, memlists, | 374 * | page hash, etc. | 375 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 376 * | | (segkp is just an arena in the heap) 377 * | | 378 * | kvseg | 379 * | | 380 * | | 381 * --- -|-----------------------|- kernelheap (floating) 382 * | Segkmap | 383 * 0xC3002000 -|-----------------------|- segmap_start (floating) 384 * | Red Zone | 385 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 386 * | | || 387 * | Shared objects | \/ 388 * | | 389 * : : 390 * | user data | 391 * |-----------------------| 392 * | user text | 393 * 0x08048000 -|-----------------------| 394 * | user stack | 395 * : : 396 * | invalid | 397 * 0x00000000 +-----------------------+ 398 * 399 * 400 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 401 * +-----------------------+ 402 * | | 403 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 404 * | debugger (?) | 405 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 406 * | unused | 407 * +-----------------------+ 408 * | Kernel Data | 409 * 0xFFFFFFFF.FBC00000 |-----------------------| 410 * | Kernel Text | 411 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 412 * |--- GDT ---|- GDT page (GDT_VA) 413 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 414 * | | 415 * | Core heap | (used for loadable modules) 416 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 417 * | Kernel | 418 * | heap | 419 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 420 * | segmap | 421 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 422 * | device mappings | 423 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 424 * | segzio | 425 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 426 * | segkp | 427 * --- |-----------------------|- segkp_base (floating) 428 * | page_t structures | valloc_base + valloc_sz 429 * | memsegs, memlists, | 430 * | page hash, etc. | 431 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 432 * | segkpm | 433 * 0xFFFFFE00.00000000 |-----------------------| 434 * | Red Zone | 435 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 436 * | User stack |- User space memory 437 * | | 438 * | shared objects, etc | (grows downwards) 439 * : : 440 * | | 441 * 0xFFFF8000.00000000 |-----------------------| 442 * | | 443 * | VA Hole / unused | 444 * | | 445 * 0x00008000.00000000 |-----------------------| 446 * | | 447 * | | 448 * : : 449 * | user heap | (grows upwards) 450 * | | 451 * | user data | 452 * |-----------------------| 453 * | user text | 454 * 0x00000000.04000000 |-----------------------| 455 * | invalid | 456 * 0x00000000.00000000 +-----------------------+ 457 * 458 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 459 * kernel, except that userlimit is raised to 0xfe000000 460 * 461 * Floating values: 462 * 463 * valloc_base: start of the kernel's memory management/tracking data 464 * structures. This region contains page_t structures for 465 * physical memory, memsegs, memlists, and the page hash. 466 * 467 * core_base: start of the kernel's "core" heap area on 64-bit systems. 468 * This area is intended to be used for global data as well as for module 469 * text/data that does not fit into the nucleus pages. The core heap is 470 * restricted to a 2GB range, allowing every address within it to be 471 * accessed using rip-relative addressing 472 * 473 * ekernelheap: end of kernelheap and start of segmap. 474 * 475 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 476 * above a red zone that separates the user's address space from the 477 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 478 * 479 * segmap_start: start of segmap. The length of segmap can be modified 480 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 481 * on 64-bit systems. 482 * 483 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 484 * decreased by 2X the size required for page_t. This allows the kernel 485 * heap to grow in size with physical memory. With sizeof(page_t) == 80 486 * bytes, the following shows the values of kernelbase and kernel heap 487 * sizes for different memory configurations (assuming default segmap and 488 * segkp sizes). 489 * 490 * mem size for kernelbase kernel heap 491 * size page_t's size 492 * ---- --------- ---------- ----------- 493 * 1gb 0x01400000 0xd1800000 684MB 494 * 2gb 0x02800000 0xcf000000 704MB 495 * 4gb 0x05000000 0xca000000 744MB 496 * 6gb 0x07800000 0xc5000000 784MB 497 * 8gb 0x0a000000 0xc0000000 824MB 498 * 16gb 0x14000000 0xac000000 984MB 499 * 32gb 0x28000000 0x84000000 1304MB 500 * 64gb 0x50000000 0x34000000 1944MB (*) 501 * 502 * kernelbase is less than the abi minimum of 0xc0000000 for memory 503 * configurations above 8gb. 504 * 505 * (*) support for memory configurations above 32gb will require manual tuning 506 * of kernelbase to balance out the need of user applications. 507 */ 508 509 /* real-time-clock initialization parameters */ 510 extern time_t process_rtc_config_file(void); 511 512 uintptr_t kernelbase; 513 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 514 uintptr_t eprom_kernelbase; 515 size_t segmapsize; 516 uintptr_t segmap_start; 517 int segmapfreelists; 518 pgcnt_t npages; 519 pgcnt_t orig_npages; 520 size_t core_size; /* size of "core" heap */ 521 uintptr_t core_base; /* base address of "core" heap */ 522 523 /* 524 * List of bootstrap pages. We mark these as allocated in startup. 525 * release_bootstrap() will free them when we're completely done with 526 * the bootstrap. 527 */ 528 static page_t *bootpages; 529 530 /* 531 * boot time pages that have a vnode from the ramdisk will keep that forever. 532 */ 533 static page_t *rd_pages; 534 535 /* 536 * Lower 64K 537 */ 538 static page_t *lower_pages = NULL; 539 static int lower_pages_count = 0; 540 541 struct system_hardware system_hardware; 542 543 /* 544 * Is this Solaris instance running in a fully virtualized xVM domain? 545 */ 546 int xpv_is_hvm = 0; 547 548 /* 549 * Enable some debugging messages concerning memory usage... 550 */ 551 static void 552 print_memlist(char *title, struct memlist *mp) 553 { 554 prom_printf("MEMLIST: %s:\n", title); 555 while (mp != NULL) { 556 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 557 mp->address, mp->size); 558 mp = mp->next; 559 } 560 } 561 562 /* 563 * XX64 need a comment here.. are these just default values, surely 564 * we read the "cpuid" type information to figure this out. 565 */ 566 int l2cache_sz = 0x80000; 567 int l2cache_linesz = 0x40; 568 int l2cache_assoc = 1; 569 570 static size_t textrepl_min_gb = 10; 571 572 /* 573 * on 64 bit we use a predifined VA range for mapping devices in the kernel 574 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 575 */ 576 #ifdef __amd64 577 578 vmem_t *device_arena; 579 uintptr_t toxic_addr = (uintptr_t)NULL; 580 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 581 582 #else /* __i386 */ 583 584 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 585 size_t toxic_bit_map_len = 0; /* in bits */ 586 587 #endif /* __i386 */ 588 589 /* 590 * Simple boot time debug facilities 591 */ 592 static char *prm_dbg_str[] = { 593 "%s:%d: '%s' is 0x%x\n", 594 "%s:%d: '%s' is 0x%llx\n" 595 }; 596 597 int prom_debug; 598 599 #define PRM_DEBUG(q) if (prom_debug) \ 600 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 601 #define PRM_POINT(q) if (prom_debug) \ 602 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 603 604 /* 605 * This structure is used to keep track of the intial allocations 606 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 607 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 608 */ 609 #define NUM_ALLOCATIONS 7 610 int num_allocations = 0; 611 struct { 612 void **al_ptr; 613 size_t al_size; 614 } allocations[NUM_ALLOCATIONS]; 615 size_t valloc_sz = 0; 616 uintptr_t valloc_base; 617 618 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 619 size = ROUND_UP_PAGE(size); \ 620 if (num_allocations == NUM_ALLOCATIONS) \ 621 panic("too many ADD_TO_ALLOCATIONS()"); \ 622 allocations[num_allocations].al_ptr = (void**)&ptr; \ 623 allocations[num_allocations].al_size = size; \ 624 valloc_sz += size; \ 625 ++num_allocations; \ 626 } 627 628 /* 629 * Allocate all the initial memory needed by the page allocator. 630 */ 631 static void 632 perform_allocations(void) 633 { 634 caddr_t mem; 635 int i; 636 int valloc_align; 637 638 PRM_DEBUG(valloc_base); 639 PRM_DEBUG(valloc_sz); 640 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 641 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 642 if (mem != (caddr_t)valloc_base) 643 panic("BOP_ALLOC() failed"); 644 bzero(mem, valloc_sz); 645 for (i = 0; i < num_allocations; ++i) { 646 *allocations[i].al_ptr = (void *)mem; 647 mem += allocations[i].al_size; 648 } 649 } 650 651 /* 652 * Our world looks like this at startup time. 653 * 654 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 655 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 656 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 657 * addresses are fixed in the binary at link time. 658 * 659 * On the text page: 660 * unix/genunix/krtld/module text loads. 661 * 662 * On the data page: 663 * unix/genunix/krtld/module data loads. 664 * 665 * Machine-dependent startup code 666 */ 667 void 668 startup(void) 669 { 670 #if !defined(__xpv) 671 extern void startup_bios_disk(void); 672 extern void startup_pci_bios(void); 673 extern int post_fastreboot; 674 #endif 675 extern cpuset_t cpu_ready_set; 676 677 /* 678 * Make sure that nobody tries to use sekpm until we have 679 * initialized it properly. 680 */ 681 #if defined(__amd64) 682 kpm_desired = 1; 683 #endif 684 kpm_enable = 0; 685 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 686 687 #if defined(__xpv) /* XXPV fix me! */ 688 { 689 extern int segvn_use_regions; 690 segvn_use_regions = 0; 691 } 692 #endif 693 progressbar_init(); 694 startup_init(); 695 #if defined(__xpv) 696 startup_xen_version(); 697 #endif 698 startup_memlist(); 699 startup_kmem(); 700 startup_vm(); 701 #if !defined(__xpv) 702 if (!post_fastreboot) 703 startup_pci_bios(); 704 #endif 705 #if defined(__xpv) 706 startup_xen_mca(); 707 #endif 708 startup_modules(); 709 #if !defined(__xpv) 710 if (!post_fastreboot) 711 startup_bios_disk(); 712 #endif 713 startup_end(); 714 progressbar_start(); 715 } 716 717 static void 718 startup_init() 719 { 720 PRM_POINT("startup_init() starting..."); 721 722 /* 723 * Complete the extraction of cpuid data 724 */ 725 cpuid_pass2(CPU); 726 727 (void) check_boot_version(BOP_GETVERSION(bootops)); 728 729 /* 730 * Check for prom_debug in boot environment 731 */ 732 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 733 ++prom_debug; 734 PRM_POINT("prom_debug found in boot enviroment"); 735 } 736 737 /* 738 * Collect node, cpu and memory configuration information. 739 */ 740 get_system_configuration(); 741 742 /* 743 * Halt if this is an unsupported processor. 744 */ 745 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 746 printf("\n486 processor (\"%s\") detected.\n", 747 CPU->cpu_brandstr); 748 halt("This processor is not supported by this release " 749 "of Solaris."); 750 } 751 752 PRM_POINT("startup_init() done"); 753 } 754 755 /* 756 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 757 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 758 * also filters out physical page zero. There is some reliance on the 759 * boot loader allocating only a few contiguous physical memory chunks. 760 */ 761 static void 762 avail_filter(uint64_t *addr, uint64_t *size) 763 { 764 uintptr_t va; 765 uintptr_t next_va; 766 pfn_t pfn; 767 uint64_t pfn_addr; 768 uint64_t pfn_eaddr; 769 uint_t prot; 770 size_t len; 771 uint_t change; 772 773 if (prom_debug) 774 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 775 *addr, *size); 776 777 /* 778 * page zero is required for BIOS.. never make it available 779 */ 780 if (*addr == 0) { 781 *addr += MMU_PAGESIZE; 782 *size -= MMU_PAGESIZE; 783 } 784 785 /* 786 * First we trim from the front of the range. Since kbm_probe() 787 * walks ranges in virtual order, but addr/size are physical, we need 788 * to the list until no changes are seen. This deals with the case 789 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 790 * but w < v. 791 */ 792 do { 793 change = 0; 794 for (va = KERNEL_TEXT; 795 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 796 va = next_va) { 797 798 next_va = va + len; 799 pfn_addr = pfn_to_pa(pfn); 800 pfn_eaddr = pfn_addr + len; 801 802 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 803 change = 1; 804 while (*size > 0 && len > 0) { 805 *addr += MMU_PAGESIZE; 806 *size -= MMU_PAGESIZE; 807 len -= MMU_PAGESIZE; 808 } 809 } 810 } 811 if (change && prom_debug) 812 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 813 *addr, *size); 814 } while (change); 815 816 /* 817 * Trim pages from the end of the range. 818 */ 819 for (va = KERNEL_TEXT; 820 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 821 va = next_va) { 822 823 next_va = va + len; 824 pfn_addr = pfn_to_pa(pfn); 825 826 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 827 *size = pfn_addr - *addr; 828 } 829 830 if (prom_debug) 831 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 832 *addr, *size); 833 } 834 835 static void 836 kpm_init() 837 { 838 struct segkpm_crargs b; 839 840 /* 841 * These variables were all designed for sfmmu in which segkpm is 842 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 843 * might use 2+ page sizes on a single machine, so none of these 844 * variables have a single correct value. They are set up as if we 845 * always use a 4KB pagesize, which should do no harm. In the long 846 * run, we should get rid of KPM's assumption that only a single 847 * pagesize is used. 848 */ 849 kpm_pgshft = MMU_PAGESHIFT; 850 kpm_pgsz = MMU_PAGESIZE; 851 kpm_pgoff = MMU_PAGEOFFSET; 852 kpmp2pshft = 0; 853 kpmpnpgs = 1; 854 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 855 856 PRM_POINT("about to create segkpm"); 857 rw_enter(&kas.a_lock, RW_WRITER); 858 859 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 860 panic("cannot attach segkpm"); 861 862 b.prot = PROT_READ | PROT_WRITE; 863 b.nvcolors = 1; 864 865 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 866 panic("segkpm_create segkpm"); 867 868 rw_exit(&kas.a_lock); 869 } 870 871 /* 872 * The debug info page provides enough information to allow external 873 * inspectors (e.g. when running under a hypervisor) to bootstrap 874 * themselves into allowing full-blown kernel debugging. 875 */ 876 static void 877 init_debug_info(void) 878 { 879 caddr_t mem; 880 debug_info_t *di; 881 882 #ifndef __lint 883 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 884 #endif 885 886 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 887 MMU_PAGESIZE); 888 889 if (mem != (caddr_t)DEBUG_INFO_VA) 890 panic("BOP_ALLOC() failed"); 891 bzero(mem, MMU_PAGESIZE); 892 893 di = (debug_info_t *)mem; 894 895 di->di_magic = DEBUG_INFO_MAGIC; 896 di->di_version = DEBUG_INFO_VERSION; 897 di->di_modules = (uintptr_t)&modules; 898 di->di_s_text = (uintptr_t)s_text; 899 di->di_e_text = (uintptr_t)e_text; 900 di->di_s_data = (uintptr_t)s_data; 901 di->di_e_data = (uintptr_t)e_data; 902 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 903 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 904 } 905 906 /* 907 * Build the memlists and other kernel essential memory system data structures. 908 * This is everything at valloc_base. 909 */ 910 static void 911 startup_memlist(void) 912 { 913 size_t memlist_sz; 914 size_t memseg_sz; 915 size_t pagehash_sz; 916 size_t pp_sz; 917 uintptr_t va; 918 size_t len; 919 uint_t prot; 920 pfn_t pfn; 921 int memblocks; 922 caddr_t pagecolor_mem; 923 size_t pagecolor_memsz; 924 caddr_t page_ctrs_mem; 925 size_t page_ctrs_size; 926 size_t pse_table_alloc_size; 927 struct memlist *current; 928 extern void startup_build_mem_nodes(struct memlist *); 929 930 /* XX64 fix these - they should be in include files */ 931 extern size_t page_coloring_init(uint_t, int, int); 932 extern void page_coloring_setup(caddr_t); 933 934 PRM_POINT("startup_memlist() starting..."); 935 936 /* 937 * Use leftover large page nucleus text/data space for loadable modules. 938 * Use at most MODTEXT/MODDATA. 939 */ 940 len = kbm_nucleus_size; 941 ASSERT(len > MMU_PAGESIZE); 942 943 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 944 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 945 if (e_moddata - moddata > MODDATA) 946 e_moddata = moddata + MODDATA; 947 948 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 949 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 950 if (e_modtext - modtext > MODTEXT) 951 e_modtext = modtext + MODTEXT; 952 953 econtig = e_moddata; 954 955 PRM_DEBUG(modtext); 956 PRM_DEBUG(e_modtext); 957 PRM_DEBUG(moddata); 958 PRM_DEBUG(e_moddata); 959 PRM_DEBUG(econtig); 960 961 /* 962 * Examine the boot loader physical memory map to find out: 963 * - total memory in system - physinstalled 964 * - the max physical address - physmax 965 * - the number of discontiguous segments of memory. 966 */ 967 if (prom_debug) 968 print_memlist("boot physinstalled", 969 bootops->boot_mem->physinstalled); 970 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 971 &physinstalled, &memblocks); 972 PRM_DEBUG(physmax); 973 PRM_DEBUG(physinstalled); 974 PRM_DEBUG(memblocks); 975 976 /* 977 * Initialize hat's mmu parameters. 978 * Check for enforce-prot-exec in boot environment. It's used to 979 * enable/disable support for the page table entry NX bit. 980 * The default is to enforce PROT_EXEC on processors that support NX. 981 * Boot seems to round up the "len", but 8 seems to be big enough. 982 */ 983 mmu_init(); 984 985 #ifdef __i386 986 /* 987 * physmax is lowered if there is more memory than can be 988 * physically addressed in 32 bit (PAE/non-PAE) modes. 989 */ 990 if (mmu.pae_hat) { 991 if (PFN_ABOVE64G(physmax)) { 992 physinstalled -= (physmax - (PFN_64G - 1)); 993 physmax = PFN_64G - 1; 994 } 995 } else { 996 if (PFN_ABOVE4G(physmax)) { 997 physinstalled -= (physmax - (PFN_4G - 1)); 998 physmax = PFN_4G - 1; 999 } 1000 } 1001 #endif 1002 1003 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1004 1005 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1006 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1007 char value[8]; 1008 1009 if (len < 8) 1010 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1011 else 1012 (void) strcpy(value, ""); 1013 if (strcmp(value, "off") == 0) 1014 mmu.pt_nx = 0; 1015 } 1016 PRM_DEBUG(mmu.pt_nx); 1017 1018 /* 1019 * We will need page_t's for every page in the system, except for 1020 * memory mapped at or above above the start of the kernel text segment. 1021 * 1022 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1023 */ 1024 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1025 obp_pages = 0; 1026 va = KERNEL_TEXT; 1027 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1028 npages -= len >> MMU_PAGESHIFT; 1029 if (va >= (uintptr_t)e_moddata) 1030 obp_pages += len >> MMU_PAGESHIFT; 1031 va += len; 1032 } 1033 PRM_DEBUG(npages); 1034 PRM_DEBUG(obp_pages); 1035 1036 /* 1037 * If physmem is patched to be non-zero, use it instead of the computed 1038 * value unless it is larger than the actual amount of memory on hand. 1039 */ 1040 if (physmem == 0 || physmem > npages) { 1041 physmem = npages; 1042 } else if (physmem < npages) { 1043 orig_npages = npages; 1044 npages = physmem; 1045 } 1046 PRM_DEBUG(physmem); 1047 1048 /* 1049 * We now compute the sizes of all the initial allocations for 1050 * structures the kernel needs in order do kmem_alloc(). These 1051 * include: 1052 * memsegs 1053 * memlists 1054 * page hash table 1055 * page_t's 1056 * page coloring data structs 1057 */ 1058 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1059 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1060 PRM_DEBUG(memseg_sz); 1061 1062 /* 1063 * Reserve space for memlists. There's no real good way to know exactly 1064 * how much room we'll need, but this should be a good upper bound. 1065 */ 1066 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1067 (memblocks + POSS_NEW_FRAGMENTS)); 1068 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1069 PRM_DEBUG(memlist_sz); 1070 1071 /* 1072 * The page structure hash table size is a power of 2 1073 * such that the average hash chain length is PAGE_HASHAVELEN. 1074 */ 1075 page_hashsz = npages / PAGE_HASHAVELEN; 1076 page_hashsz = 1 << highbit(page_hashsz); 1077 pagehash_sz = sizeof (struct page *) * page_hashsz; 1078 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1079 PRM_DEBUG(pagehash_sz); 1080 1081 /* 1082 * Set aside room for the page structures themselves. 1083 */ 1084 PRM_DEBUG(npages); 1085 pp_sz = sizeof (struct page) * npages; 1086 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1087 PRM_DEBUG(pp_sz); 1088 1089 /* 1090 * determine l2 cache info and memory size for page coloring 1091 */ 1092 (void) getl2cacheinfo(CPU, 1093 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1094 pagecolor_memsz = 1095 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1096 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1097 PRM_DEBUG(pagecolor_memsz); 1098 1099 page_ctrs_size = page_ctrs_sz(); 1100 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1101 PRM_DEBUG(page_ctrs_size); 1102 1103 /* 1104 * Allocate the array that protects pp->p_selock. 1105 */ 1106 pse_shift = size_pse_array(physmem, max_ncpus); 1107 pse_table_size = 1 << pse_shift; 1108 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1109 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1110 1111 #if defined(__amd64) 1112 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1113 valloc_base = VALLOC_BASE; 1114 1115 /* 1116 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1117 * for values of physmax up to 1 Terabyte. They need adjusting when 1118 * memory is at addresses above 1 TB. 1119 */ 1120 if (physmax + 1 > mmu_btop(TERABYTE)) { 1121 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1122 1123 /* Round to largest possible pagesize for now */ 1124 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1125 1126 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1127 1128 /* make sure we leave some space for user apps above hole */ 1129 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1130 if (segkpm_base > SEGKPM_BASE) 1131 segkpm_base = SEGKPM_BASE; 1132 PRM_DEBUG(segkpm_base); 1133 1134 valloc_base = segkpm_base + kpm_resv_amount; 1135 PRM_DEBUG(valloc_base); 1136 } 1137 #else /* __i386 */ 1138 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1139 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1140 PRM_DEBUG(valloc_base); 1141 #endif /* __i386 */ 1142 1143 /* 1144 * do all the initial allocations 1145 */ 1146 perform_allocations(); 1147 1148 /* 1149 * Build phys_install and phys_avail in kernel memspace. 1150 * - phys_install should be all memory in the system. 1151 * - phys_avail is phys_install minus any memory mapped before this 1152 * point above KERNEL_TEXT. 1153 */ 1154 current = phys_install = memlist; 1155 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1156 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1157 panic("physinstalled was too big!"); 1158 if (prom_debug) 1159 print_memlist("phys_install", phys_install); 1160 1161 phys_avail = current; 1162 PRM_POINT("Building phys_avail:\n"); 1163 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1164 avail_filter); 1165 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1166 panic("physavail was too big!"); 1167 if (prom_debug) 1168 print_memlist("phys_avail", phys_avail); 1169 1170 /* 1171 * setup page coloring 1172 */ 1173 page_coloring_setup(pagecolor_mem); 1174 page_lock_init(); /* currently a no-op */ 1175 1176 /* 1177 * free page list counters 1178 */ 1179 (void) page_ctrs_alloc(page_ctrs_mem); 1180 1181 /* 1182 * Size the pcf array based on the number of cpus in the box at 1183 * boot time. 1184 */ 1185 1186 pcf_init(); 1187 1188 /* 1189 * Initialize the page structures from the memory lists. 1190 */ 1191 availrmem_initial = availrmem = freemem = 0; 1192 PRM_POINT("Calling kphysm_init()..."); 1193 npages = kphysm_init(pp_base, npages); 1194 PRM_POINT("kphysm_init() done"); 1195 PRM_DEBUG(npages); 1196 1197 init_debug_info(); 1198 1199 /* 1200 * Now that page_t's have been initialized, remove all the 1201 * initial allocation pages from the kernel free page lists. 1202 */ 1203 boot_mapin((caddr_t)valloc_base, valloc_sz); 1204 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1205 PRM_POINT("startup_memlist() done"); 1206 1207 PRM_DEBUG(valloc_sz); 1208 1209 #if defined(__amd64) 1210 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1211 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1212 extern size_t textrepl_size_thresh; 1213 textrepl_size_thresh = (16 << 20) - 1; 1214 } 1215 #endif 1216 } 1217 1218 /* 1219 * Layout the kernel's part of address space and initialize kmem allocator. 1220 */ 1221 static void 1222 startup_kmem(void) 1223 { 1224 extern void page_set_colorequiv_arr(void); 1225 1226 PRM_POINT("startup_kmem() starting..."); 1227 1228 #if defined(__amd64) 1229 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1230 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1231 "systems."); 1232 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1233 core_base = (uintptr_t)COREHEAP_BASE; 1234 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1235 #else /* __i386 */ 1236 /* 1237 * We configure kernelbase based on: 1238 * 1239 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1240 * KERNELBASE_MAX. we large page align eprom_kernelbase 1241 * 1242 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1243 * On large memory systems we must lower kernelbase to allow 1244 * enough room for page_t's for all of memory. 1245 * 1246 * The value set here, might be changed a little later. 1247 */ 1248 if (eprom_kernelbase) { 1249 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1250 if (kernelbase > KERNELBASE_MAX) 1251 kernelbase = KERNELBASE_MAX; 1252 } else { 1253 kernelbase = (uintptr_t)KERNELBASE; 1254 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1255 } 1256 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1257 core_base = valloc_base; 1258 core_size = 0; 1259 #endif /* __i386 */ 1260 1261 PRM_DEBUG(core_base); 1262 PRM_DEBUG(core_size); 1263 PRM_DEBUG(kernelbase); 1264 1265 #if defined(__i386) 1266 segkp_fromheap = 1; 1267 #endif /* __i386 */ 1268 1269 ekernelheap = (char *)core_base; 1270 PRM_DEBUG(ekernelheap); 1271 1272 /* 1273 * Now that we know the real value of kernelbase, 1274 * update variables that were initialized with a value of 1275 * KERNELBASE (in common/conf/param.c). 1276 * 1277 * XXX The problem with this sort of hackery is that the 1278 * compiler just may feel like putting the const declarations 1279 * (in param.c) into the .text section. Perhaps they should 1280 * just be declared as variables there? 1281 */ 1282 1283 *(uintptr_t *)&_kernelbase = kernelbase; 1284 *(uintptr_t *)&_userlimit = kernelbase; 1285 #if defined(__amd64) 1286 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1287 #else 1288 *(uintptr_t *)&_userlimit32 = _userlimit; 1289 #endif 1290 PRM_DEBUG(_kernelbase); 1291 PRM_DEBUG(_userlimit); 1292 PRM_DEBUG(_userlimit32); 1293 1294 layout_kernel_va(); 1295 1296 #if defined(__i386) 1297 /* 1298 * If segmap is too large we can push the bottom of the kernel heap 1299 * higher than the base. Or worse, it could exceed the top of the 1300 * VA space entirely, causing it to wrap around. 1301 */ 1302 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1303 panic("too little address space available for kernelheap," 1304 " use eeprom for lower kernelbase or smaller segmapsize"); 1305 #endif /* __i386 */ 1306 1307 /* 1308 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1309 */ 1310 kernelheap_init(kernelheap, ekernelheap, 1311 kernelheap + MMU_PAGESIZE, 1312 (void *)core_base, (void *)(core_base + core_size)); 1313 1314 #if defined(__xpv) 1315 /* 1316 * Link pending events struct into cpu struct 1317 */ 1318 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1319 #endif 1320 /* 1321 * Initialize kernel memory allocator. 1322 */ 1323 kmem_init(); 1324 1325 /* 1326 * Factor in colorequiv to check additional 'equivalent' bins 1327 */ 1328 page_set_colorequiv_arr(); 1329 1330 /* 1331 * print this out early so that we know what's going on 1332 */ 1333 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1334 1335 /* 1336 * Initialize bp_mapin(). 1337 */ 1338 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1339 1340 /* 1341 * orig_npages is non-zero if physmem has been configured for less 1342 * than the available memory. 1343 */ 1344 if (orig_npages) { 1345 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1346 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1347 npages, orig_npages); 1348 } 1349 #if defined(__i386) 1350 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1351 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1352 "System using 0x%lx", 1353 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1354 #endif 1355 1356 #ifdef KERNELBASE_ABI_MIN 1357 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1358 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1359 "i386 ABI compliant.", (uintptr_t)kernelbase); 1360 } 1361 #endif 1362 1363 #ifdef __xpv 1364 /* 1365 * Some of the xen start information has to be relocated up 1366 * into the kernel's permanent address space. 1367 */ 1368 PRM_POINT("calling xen_relocate_start_info()"); 1369 xen_relocate_start_info(); 1370 PRM_POINT("xen_relocate_start_info() done"); 1371 1372 /* 1373 * (Update the vcpu pointer in our cpu structure to point into 1374 * the relocated shared info.) 1375 */ 1376 CPU->cpu_m.mcpu_vcpu_info = 1377 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1378 #endif 1379 1380 PRM_POINT("startup_kmem() done"); 1381 } 1382 1383 #ifndef __xpv 1384 /* 1385 * If we have detected that we are running in an HVM environment, we need 1386 * to prepend the PV driver directory to the module search path. 1387 */ 1388 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1389 static void 1390 update_default_path() 1391 { 1392 char *current, *newpath; 1393 int newlen; 1394 1395 /* 1396 * We are about to resync with krtld. krtld will reset its 1397 * internal module search path iff Solaris has set default_path. 1398 * We want to be sure we're prepending this new directory to the 1399 * right search path. 1400 */ 1401 current = (default_path == NULL) ? kobj_module_path : default_path; 1402 1403 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1404 newpath = kmem_alloc(newlen, KM_SLEEP); 1405 (void) strcpy(newpath, HVM_MOD_DIR); 1406 (void) strcat(newpath, " "); 1407 (void) strcat(newpath, current); 1408 1409 default_path = newpath; 1410 } 1411 #endif 1412 1413 static void 1414 startup_modules(void) 1415 { 1416 int cnt; 1417 extern void prom_setup(void); 1418 int32_t v, h; 1419 char d[11]; 1420 char *cp; 1421 cmi_hdl_t hdl; 1422 1423 PRM_POINT("startup_modules() starting..."); 1424 1425 #ifndef __xpv 1426 /* 1427 * Initialize ten-micro second timer so that drivers will 1428 * not get short changed in their init phase. This was 1429 * not getting called until clkinit which, on fast cpu's 1430 * caused the drv_usecwait to be way too short. 1431 */ 1432 microfind(); 1433 1434 if (xpv_is_hvm) 1435 update_default_path(); 1436 #endif 1437 1438 /* 1439 * Read the GMT lag from /etc/rtc_config. 1440 */ 1441 sgmtl(process_rtc_config_file()); 1442 1443 /* 1444 * Calculate default settings of system parameters based upon 1445 * maxusers, yet allow to be overridden via the /etc/system file. 1446 */ 1447 param_calc(0); 1448 1449 mod_setup(); 1450 1451 /* 1452 * Initialize system parameters. 1453 */ 1454 param_init(); 1455 1456 /* 1457 * Initialize the default brands 1458 */ 1459 brand_init(); 1460 1461 /* 1462 * maxmem is the amount of physical memory we're playing with. 1463 */ 1464 maxmem = physmem; 1465 1466 /* 1467 * Initialize segment management stuff. 1468 */ 1469 seg_init(); 1470 1471 if (modload("fs", "specfs") == -1) 1472 halt("Can't load specfs"); 1473 1474 if (modload("fs", "devfs") == -1) 1475 halt("Can't load devfs"); 1476 1477 if (modload("fs", "dev") == -1) 1478 halt("Can't load dev"); 1479 1480 (void) modloadonly("sys", "lbl_edition"); 1481 1482 dispinit(); 1483 1484 /* 1485 * This is needed here to initialize hw_serial[] for cluster booting. 1486 */ 1487 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1488 cmn_err(CE_WARN, "Unable to set hostid"); 1489 } else { 1490 for (v = h, cnt = 0; cnt < 10; cnt++) { 1491 d[cnt] = (char)(v % 10); 1492 v /= 10; 1493 if (v == 0) 1494 break; 1495 } 1496 for (cp = hw_serial; cnt >= 0; cnt--) 1497 *cp++ = d[cnt] + '0'; 1498 *cp = 0; 1499 } 1500 1501 /* Read cluster configuration data. */ 1502 clconf_init(); 1503 1504 #if defined(__xpv) 1505 ec_init(); 1506 gnttab_init(); 1507 (void) xs_early_init(); 1508 #endif /* __xpv */ 1509 1510 /* 1511 * Create a kernel device tree. First, create rootnex and 1512 * then invoke bus specific code to probe devices. 1513 */ 1514 setup_ddi(); 1515 1516 /* 1517 * Set up the CPU module subsystem for the boot cpu in the native 1518 * case, and all physical cpu resource in the xpv dom0 case. 1519 * Modifies the device tree, so this must be done after 1520 * setup_ddi(). 1521 */ 1522 #ifdef __xpv 1523 /* 1524 * If paravirtualized and on dom0 then we initialize all physical 1525 * cpu handles now; if paravirtualized on a domU then do not 1526 * initialize. 1527 */ 1528 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1529 xen_mc_lcpu_cookie_t cpi; 1530 1531 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1532 cpi = xen_physcpu_next(cpi)) { 1533 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1534 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1535 xen_physcpu_strandid(cpi))) != NULL && 1536 (x86_feature & X86_MCA)) 1537 cmi_mca_init(hdl); 1538 } 1539 } 1540 #else 1541 /* 1542 * Initialize a handle for the boot cpu - others will initialize 1543 * as they startup. Do not do this if we know we are in an HVM domU. 1544 */ 1545 if (!xpv_is_hvm && 1546 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1547 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1548 (x86_feature & X86_MCA)) 1549 cmi_mca_init(hdl); 1550 #endif /* __xpv */ 1551 1552 /* 1553 * Fake a prom tree such that /dev/openprom continues to work 1554 */ 1555 PRM_POINT("startup_modules: calling prom_setup..."); 1556 prom_setup(); 1557 PRM_POINT("startup_modules: done"); 1558 1559 /* 1560 * Load all platform specific modules 1561 */ 1562 PRM_POINT("startup_modules: calling psm_modload..."); 1563 psm_modload(); 1564 1565 PRM_POINT("startup_modules() done"); 1566 } 1567 1568 /* 1569 * claim a "setaside" boot page for use in the kernel 1570 */ 1571 page_t * 1572 boot_claim_page(pfn_t pfn) 1573 { 1574 page_t *pp; 1575 1576 pp = page_numtopp_nolock(pfn); 1577 ASSERT(pp != NULL); 1578 1579 if (PP_ISBOOTPAGES(pp)) { 1580 if (pp->p_next != NULL) 1581 pp->p_next->p_prev = pp->p_prev; 1582 if (pp->p_prev == NULL) 1583 bootpages = pp->p_next; 1584 else 1585 pp->p_prev->p_next = pp->p_next; 1586 } else { 1587 /* 1588 * htable_attach() expects a base pagesize page 1589 */ 1590 if (pp->p_szc != 0) 1591 page_boot_demote(pp); 1592 pp = page_numtopp(pfn, SE_EXCL); 1593 } 1594 return (pp); 1595 } 1596 1597 /* 1598 * Walk through the pagetables looking for pages mapped in by boot. If the 1599 * setaside flag is set the pages are expected to be returned to the 1600 * kernel later in boot, so we add them to the bootpages list. 1601 */ 1602 static void 1603 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1604 { 1605 uintptr_t va = low; 1606 size_t len; 1607 uint_t prot; 1608 pfn_t pfn; 1609 page_t *pp; 1610 pgcnt_t boot_protect_cnt = 0; 1611 1612 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1613 if (va + len >= high) 1614 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1615 "legal range.", len, (void *)va); 1616 1617 while (len > 0) { 1618 pp = page_numtopp_alloc(pfn); 1619 if (pp != NULL) { 1620 if (setaside == 0) 1621 panic("Unexpected mapping by boot. " 1622 "addr=%p pfn=%lx\n", 1623 (void *)va, pfn); 1624 1625 pp->p_next = bootpages; 1626 pp->p_prev = NULL; 1627 PP_SETBOOTPAGES(pp); 1628 if (bootpages != NULL) { 1629 bootpages->p_prev = pp; 1630 } 1631 bootpages = pp; 1632 ++boot_protect_cnt; 1633 } 1634 1635 ++pfn; 1636 len -= MMU_PAGESIZE; 1637 va += MMU_PAGESIZE; 1638 } 1639 } 1640 PRM_DEBUG(boot_protect_cnt); 1641 } 1642 1643 /* 1644 * 1645 */ 1646 static void 1647 layout_kernel_va(void) 1648 { 1649 PRM_POINT("layout_kernel_va() starting..."); 1650 /* 1651 * Establish the final size of the kernel's heap, size of segmap, 1652 * segkp, etc. 1653 */ 1654 1655 #if defined(__amd64) 1656 1657 kpm_vbase = (caddr_t)segkpm_base; 1658 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1659 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1660 panic("not enough room for kpm!"); 1661 PRM_DEBUG(kpm_size); 1662 PRM_DEBUG(kpm_vbase); 1663 1664 /* 1665 * By default we create a seg_kp in 64 bit kernels, it's a little 1666 * faster to access than embedding it in the heap. 1667 */ 1668 segkp_base = (caddr_t)valloc_base + valloc_sz; 1669 if (!segkp_fromheap) { 1670 size_t sz = mmu_ptob(segkpsize); 1671 1672 /* 1673 * determine size of segkp 1674 */ 1675 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1676 sz = SEGKPDEFSIZE; 1677 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1678 "segkpsize has been reset to %ld pages", 1679 mmu_btop(sz)); 1680 } 1681 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1682 1683 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1684 } 1685 PRM_DEBUG(segkp_base); 1686 PRM_DEBUG(segkpsize); 1687 1688 /* 1689 * segzio is used for ZFS cached data. It uses a distinct VA 1690 * segment (from kernel heap) so that we can easily tell not to 1691 * include it in kernel crash dumps on 64 bit kernels. The trick is 1692 * to give it lots of VA, but not constrain the kernel heap. 1693 * We scale the size of segzio linearly with physmem up to 1694 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1695 */ 1696 segzio_base = segkp_base + mmu_ptob(segkpsize); 1697 if (segzio_fromheap) { 1698 segziosize = 0; 1699 } else { 1700 size_t physmem_size = mmu_ptob(physmem); 1701 size_t size = (segziosize == 0) ? 1702 physmem_size : mmu_ptob(segziosize); 1703 1704 if (size < SEGZIOMINSIZE) 1705 size = SEGZIOMINSIZE; 1706 if (size > SEGZIOMAXSIZE) { 1707 size = SEGZIOMAXSIZE; 1708 if (physmem_size > size) 1709 size += (physmem_size - size) / 2; 1710 } 1711 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1712 } 1713 PRM_DEBUG(segziosize); 1714 PRM_DEBUG(segzio_base); 1715 1716 /* 1717 * Put the range of VA for device mappings next, kmdb knows to not 1718 * grep in this range of addresses. 1719 */ 1720 toxic_addr = 1721 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1722 PRM_DEBUG(toxic_addr); 1723 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1724 #else /* __i386 */ 1725 segmap_start = ROUND_UP_LPAGE(kernelbase); 1726 #endif /* __i386 */ 1727 PRM_DEBUG(segmap_start); 1728 1729 /* 1730 * Users can change segmapsize through eeprom. If the variable 1731 * is tuned through eeprom, there is no upper bound on the 1732 * size of segmap. 1733 */ 1734 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1735 1736 #if defined(__i386) 1737 /* 1738 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1739 * the bottom of the kernel's address range. Set aside space for a 1740 * small red zone just below the start of segmap. 1741 */ 1742 segmap_start += KERNEL_REDZONE_SIZE; 1743 segmapsize -= KERNEL_REDZONE_SIZE; 1744 #endif 1745 1746 PRM_DEBUG(segmap_start); 1747 PRM_DEBUG(segmapsize); 1748 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1749 PRM_DEBUG(kernelheap); 1750 PRM_POINT("layout_kernel_va() done..."); 1751 } 1752 1753 /* 1754 * Finish initializing the VM system, now that we are no longer 1755 * relying on the boot time memory allocators. 1756 */ 1757 static void 1758 startup_vm(void) 1759 { 1760 struct segmap_crargs a; 1761 1762 extern int use_brk_lpg, use_stk_lpg; 1763 1764 PRM_POINT("startup_vm() starting..."); 1765 1766 /* 1767 * Initialize the hat layer. 1768 */ 1769 hat_init(); 1770 1771 /* 1772 * Do final allocations of HAT data structures that need to 1773 * be allocated before quiescing the boot loader. 1774 */ 1775 PRM_POINT("Calling hat_kern_alloc()..."); 1776 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1777 PRM_POINT("hat_kern_alloc() done"); 1778 1779 #ifndef __xpv 1780 /* 1781 * Setup Page Attribute Table 1782 */ 1783 pat_sync(); 1784 #endif 1785 1786 /* 1787 * The next two loops are done in distinct steps in order 1788 * to be sure that any page that is doubly mapped (both above 1789 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1790 * Note this may never happen, but it might someday. 1791 */ 1792 bootpages = NULL; 1793 PRM_POINT("Protecting boot pages"); 1794 1795 /* 1796 * Protect any pages mapped above KERNEL_TEXT that somehow have 1797 * page_t's. This can only happen if something weird allocated 1798 * in this range (like kadb/kmdb). 1799 */ 1800 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1801 1802 /* 1803 * Before we can take over memory allocation/mapping from the boot 1804 * loader we must remove from our free page lists any boot allocated 1805 * pages that stay mapped until release_bootstrap(). 1806 */ 1807 protect_boot_range(0, kernelbase, 1); 1808 1809 1810 /* 1811 * Switch to running on regular HAT (not boot_mmu) 1812 */ 1813 PRM_POINT("Calling hat_kern_setup()..."); 1814 hat_kern_setup(); 1815 1816 /* 1817 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1818 */ 1819 bop_no_more_mem(); 1820 1821 PRM_POINT("hat_kern_setup() done"); 1822 1823 hat_cpu_online(CPU); 1824 1825 /* 1826 * Initialize VM system 1827 */ 1828 PRM_POINT("Calling kvm_init()..."); 1829 kvm_init(); 1830 PRM_POINT("kvm_init() done"); 1831 1832 /* 1833 * Tell kmdb that the VM system is now working 1834 */ 1835 if (boothowto & RB_DEBUG) 1836 kdi_dvec_vmready(); 1837 1838 #if defined(__xpv) 1839 /* 1840 * Populate the I/O pool on domain 0 1841 */ 1842 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1843 extern long populate_io_pool(void); 1844 long init_io_pool_cnt; 1845 1846 PRM_POINT("Populating reserve I/O page pool"); 1847 init_io_pool_cnt = populate_io_pool(); 1848 PRM_DEBUG(init_io_pool_cnt); 1849 } 1850 #endif 1851 /* 1852 * Mangle the brand string etc. 1853 */ 1854 cpuid_pass3(CPU); 1855 1856 #if defined(__amd64) 1857 1858 /* 1859 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1860 */ 1861 device_arena = vmem_create("device", (void *)toxic_addr, 1862 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1863 1864 #else /* __i386 */ 1865 1866 /* 1867 * allocate the bit map that tracks toxic pages 1868 */ 1869 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1870 PRM_DEBUG(toxic_bit_map_len); 1871 toxic_bit_map = 1872 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1873 ASSERT(toxic_bit_map != NULL); 1874 PRM_DEBUG(toxic_bit_map); 1875 1876 #endif /* __i386 */ 1877 1878 1879 /* 1880 * Now that we've got more VA, as well as the ability to allocate from 1881 * it, tell the debugger. 1882 */ 1883 if (boothowto & RB_DEBUG) 1884 kdi_dvec_memavail(); 1885 1886 /* 1887 * The following code installs a special page fault handler (#pf) 1888 * to work around a pentium bug. 1889 */ 1890 #if !defined(__amd64) && !defined(__xpv) 1891 if (x86_type == X86_TYPE_P5) { 1892 desctbr_t idtr; 1893 gate_desc_t *newidt; 1894 1895 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1896 panic("failed to install pentium_pftrap"); 1897 1898 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1899 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1900 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1901 1902 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1903 PROT_READ | PROT_EXEC); 1904 1905 CPU->cpu_idt = newidt; 1906 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1907 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1908 wr_idtr(&idtr); 1909 } 1910 #endif /* !__amd64 */ 1911 1912 #if !defined(__xpv) 1913 /* 1914 * Map page pfn=0 for drivers, such as kd, that need to pick up 1915 * parameters left there by controllers/BIOS. 1916 */ 1917 PRM_POINT("setup up p0_va"); 1918 p0_va = i86devmap(0, 1, PROT_READ); 1919 PRM_DEBUG(p0_va); 1920 #endif 1921 1922 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1923 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1924 1925 /* 1926 * disable automatic large pages for small memory systems or 1927 * when the disable flag is set. 1928 * 1929 * Do not yet consider page sizes larger than 2m/4m. 1930 */ 1931 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1932 max_uheap_lpsize = LEVEL_SIZE(1); 1933 max_ustack_lpsize = LEVEL_SIZE(1); 1934 max_privmap_lpsize = LEVEL_SIZE(1); 1935 max_uidata_lpsize = LEVEL_SIZE(1); 1936 max_utext_lpsize = LEVEL_SIZE(1); 1937 max_shm_lpsize = LEVEL_SIZE(1); 1938 } 1939 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1940 auto_lpg_disable) { 1941 use_brk_lpg = 0; 1942 use_stk_lpg = 0; 1943 } 1944 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1945 1946 PRM_POINT("Calling hat_init_finish()..."); 1947 hat_init_finish(); 1948 PRM_POINT("hat_init_finish() done"); 1949 1950 /* 1951 * Initialize the segkp segment type. 1952 */ 1953 rw_enter(&kas.a_lock, RW_WRITER); 1954 PRM_POINT("Attaching segkp"); 1955 if (segkp_fromheap) { 1956 segkp->s_as = &kas; 1957 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1958 segkp) < 0) { 1959 panic("startup: cannot attach segkp"); 1960 /*NOTREACHED*/ 1961 } 1962 PRM_POINT("Doing segkp_create()"); 1963 if (segkp_create(segkp) != 0) { 1964 panic("startup: segkp_create failed"); 1965 /*NOTREACHED*/ 1966 } 1967 PRM_DEBUG(segkp); 1968 rw_exit(&kas.a_lock); 1969 1970 /* 1971 * kpm segment 1972 */ 1973 segmap_kpm = 0; 1974 if (kpm_desired) { 1975 kpm_init(); 1976 kpm_enable = 1; 1977 vpm_enable = 1; 1978 } 1979 1980 /* 1981 * Now create segmap segment. 1982 */ 1983 rw_enter(&kas.a_lock, RW_WRITER); 1984 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1985 panic("cannot attach segmap"); 1986 /*NOTREACHED*/ 1987 } 1988 PRM_DEBUG(segmap); 1989 1990 a.prot = PROT_READ | PROT_WRITE; 1991 a.shmsize = 0; 1992 a.nfreelist = segmapfreelists; 1993 1994 if (segmap_create(segmap, (caddr_t)&a) != 0) 1995 panic("segmap_create segmap"); 1996 rw_exit(&kas.a_lock); 1997 1998 setup_vaddr_for_ppcopy(CPU); 1999 2000 segdev_init(); 2001 #if defined(__xpv) 2002 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2003 #endif 2004 pmem_init(); 2005 2006 PRM_POINT("startup_vm() done"); 2007 } 2008 2009 /* 2010 * Load a tod module for the non-standard tod part found on this system. 2011 */ 2012 static void 2013 load_tod_module(char *todmod) 2014 { 2015 if (modload("tod", todmod) == -1) 2016 halt("Can't load TOD module"); 2017 } 2018 2019 static void 2020 startup_end(void) 2021 { 2022 int i; 2023 extern void setx86isalist(void); 2024 2025 PRM_POINT("startup_end() starting..."); 2026 2027 /* 2028 * Perform tasks that get done after most of the VM 2029 * initialization has been done but before the clock 2030 * and other devices get started. 2031 */ 2032 kern_setup1(); 2033 2034 /* 2035 * Perform CPC initialization for this CPU. 2036 */ 2037 kcpc_hw_init(CPU); 2038 2039 #if defined(OPTERON_WORKAROUND_6323525) 2040 if (opteron_workaround_6323525) 2041 patch_workaround_6323525(); 2042 #endif 2043 /* 2044 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2045 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2046 */ 2047 if (tod_module_name != NULL) { 2048 PRM_POINT("load_tod_module()"); 2049 load_tod_module(tod_module_name); 2050 } 2051 2052 #if defined(__xpv) 2053 /* 2054 * Forceload interposing TOD module for the hypervisor. 2055 */ 2056 PRM_POINT("load_tod_module()"); 2057 load_tod_module("xpvtod"); 2058 #endif 2059 2060 /* 2061 * Configure the system. 2062 */ 2063 PRM_POINT("Calling configure()..."); 2064 configure(); /* set up devices */ 2065 PRM_POINT("configure() done"); 2066 2067 /* 2068 * Set the isa_list string to the defined instruction sets we 2069 * support. 2070 */ 2071 setx86isalist(); 2072 cpu_intr_alloc(CPU, NINTR_THREADS); 2073 psm_install(); 2074 2075 /* 2076 * We're done with bootops. We don't unmap the bootstrap yet because 2077 * we're still using bootsvcs. 2078 */ 2079 PRM_POINT("NULLing out bootops"); 2080 *bootopsp = (struct bootops *)NULL; 2081 bootops = (struct bootops *)NULL; 2082 2083 #if defined(__xpv) 2084 ec_init_debug_irq(); 2085 xs_domu_init(); 2086 #endif 2087 PRM_POINT("Enabling interrupts"); 2088 (*picinitf)(); 2089 sti(); 2090 #if defined(__xpv) 2091 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2092 xen_late_startup(); 2093 #endif 2094 2095 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2096 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2097 2098 /* 2099 * Register these software interrupts for ddi timer. 2100 * Software interrupts up to the level 10 are supported. 2101 */ 2102 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2103 char name[sizeof ("timer_softintr") + 2]; 2104 (void) sprintf(name, "timer_softintr%02d", i); 2105 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2106 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2107 } 2108 2109 #if !defined(__xpv) 2110 if (modload("drv", "amd_iommu") < 0) { 2111 PRM_POINT("No AMD IOMMU present\n"); 2112 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2113 "amd_iommu")) == NULL) { 2114 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2115 } 2116 #endif 2117 2118 PRM_POINT("startup_end() done"); 2119 } 2120 2121 /* 2122 * Don't remove the following 2 variables. They are necessary 2123 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2124 */ 2125 char *_hs1107 = hw_serial; 2126 ulong_t _bdhs34; 2127 2128 void 2129 post_startup(void) 2130 { 2131 /* 2132 * Set the system wide, processor-specific flags to be passed 2133 * to userland via the aux vector for performance hints and 2134 * instruction set extensions. 2135 */ 2136 bind_hwcap(); 2137 2138 #ifdef __xpv 2139 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2140 #endif 2141 { 2142 /* 2143 * Load the System Management BIOS into the global ksmbios 2144 * handle, if an SMBIOS is present on this system. 2145 */ 2146 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2147 2148 #if defined(__xpv) 2149 xpv_panic_init(); 2150 #else 2151 /* 2152 * Startup the memory scrubber. 2153 * XXPV This should be running somewhere .. 2154 */ 2155 if (!xpv_is_hvm) 2156 memscrub_init(); 2157 #endif 2158 } 2159 2160 /* 2161 * Complete CPU module initialization 2162 */ 2163 cmi_post_startup(); 2164 2165 /* 2166 * Perform forceloading tasks for /etc/system. 2167 */ 2168 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2169 2170 /* 2171 * ON4.0: Force /proc module in until clock interrupt handle fixed 2172 * ON4.0: This must be fixed or restated in /etc/systems. 2173 */ 2174 (void) modload("fs", "procfs"); 2175 2176 (void) i_ddi_attach_hw_nodes("pit_beep"); 2177 2178 #if defined(__i386) 2179 /* 2180 * Check for required functional Floating Point hardware, 2181 * unless FP hardware explicitly disabled. 2182 */ 2183 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2184 halt("No working FP hardware found"); 2185 #endif 2186 2187 maxmem = freemem; 2188 2189 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2190 } 2191 2192 static int 2193 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2194 { 2195 return ((pp->p_pagenum >= btop(low_addr)) && 2196 (pp->p_pagenum < btopr(high_addr))); 2197 } 2198 2199 void 2200 release_bootstrap(void) 2201 { 2202 int root_is_ramdisk; 2203 page_t *pp; 2204 extern void kobj_boot_unmountroot(void); 2205 extern dev_t rootdev; 2206 #if !defined(__xpv) 2207 pfn_t pfn; 2208 #endif 2209 2210 /* unmount boot ramdisk and release kmem usage */ 2211 kobj_boot_unmountroot(); 2212 2213 /* 2214 * We're finished using the boot loader so free its pages. 2215 */ 2216 PRM_POINT("Unmapping lower boot pages"); 2217 2218 clear_boot_mappings(0, _userlimit); 2219 2220 postbootkernelbase = kernelbase; 2221 2222 /* 2223 * If root isn't on ramdisk, destroy the hardcoded 2224 * ramdisk node now and release the memory. Else, 2225 * ramdisk memory is kept in rd_pages. 2226 */ 2227 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2228 if (!root_is_ramdisk) { 2229 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2230 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2231 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2232 (void) ddi_remove_child(dip, 0); 2233 } 2234 2235 PRM_POINT("Releasing boot pages"); 2236 while (bootpages) { 2237 extern uint64_t ramdisk_start, ramdisk_end; 2238 pp = bootpages; 2239 bootpages = pp->p_next; 2240 2241 2242 /* Keep pages for the lower 64K */ 2243 if (pp_in_range(pp, 0, 0x40000)) { 2244 pp->p_next = lower_pages; 2245 lower_pages = pp; 2246 lower_pages_count++; 2247 continue; 2248 } 2249 2250 2251 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2252 ramdisk_end)) { 2253 pp->p_next = rd_pages; 2254 rd_pages = pp; 2255 continue; 2256 } 2257 pp->p_next = (struct page *)0; 2258 pp->p_prev = (struct page *)0; 2259 PP_CLRBOOTPAGES(pp); 2260 page_free(pp, 1); 2261 } 2262 PRM_POINT("Boot pages released"); 2263 2264 #if !defined(__xpv) 2265 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2266 /* 2267 * Find 1 page below 1 MB so that other processors can boot up or 2268 * so that any processor can resume. 2269 * Make sure it has a kernel VA as well as a 1:1 mapping. 2270 * We should have just free'd one up. 2271 */ 2272 2273 /* 2274 * 0x10 pages is 64K. Leave the bottom 64K alone 2275 * for BIOS. 2276 */ 2277 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2278 if (page_numtopp_alloc(pfn) == NULL) 2279 continue; 2280 rm_platter_va = i86devmap(pfn, 1, 2281 PROT_READ | PROT_WRITE | PROT_EXEC); 2282 rm_platter_pa = ptob(pfn); 2283 hat_devload(kas.a_hat, 2284 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2285 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2286 HAT_LOAD_NOCONSIST); 2287 break; 2288 } 2289 if (pfn == btop(1*1024*1024) && use_mp) 2290 panic("No page below 1M available for starting " 2291 "other processors or for resuming from system-suspend"); 2292 #endif /* !__xpv */ 2293 } 2294 2295 /* 2296 * Initialize the platform-specific parts of a page_t. 2297 */ 2298 void 2299 add_physmem_cb(page_t *pp, pfn_t pnum) 2300 { 2301 pp->p_pagenum = pnum; 2302 pp->p_mapping = NULL; 2303 pp->p_embed = 0; 2304 pp->p_share = 0; 2305 pp->p_mlentry = 0; 2306 } 2307 2308 /* 2309 * kphysm_init() initializes physical memory. 2310 */ 2311 static pgcnt_t 2312 kphysm_init( 2313 page_t *pp, 2314 pgcnt_t npages) 2315 { 2316 struct memlist *pmem; 2317 struct memseg *cur_memseg; 2318 pfn_t base_pfn; 2319 pgcnt_t num; 2320 pgcnt_t pages_done = 0; 2321 uint64_t addr; 2322 uint64_t size; 2323 extern pfn_t ddiphysmin; 2324 2325 ASSERT(page_hash != NULL && page_hashsz != 0); 2326 2327 cur_memseg = memseg_base; 2328 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2329 /* 2330 * In a 32 bit kernel can't use higher memory if we're 2331 * not booting in PAE mode. This check takes care of that. 2332 */ 2333 addr = pmem->address; 2334 size = pmem->size; 2335 if (btop(addr) > physmax) 2336 continue; 2337 2338 /* 2339 * align addr and size - they may not be at page boundaries 2340 */ 2341 if ((addr & MMU_PAGEOFFSET) != 0) { 2342 addr += MMU_PAGEOFFSET; 2343 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2344 size -= addr - pmem->address; 2345 } 2346 2347 /* only process pages below or equal to physmax */ 2348 if ((btop(addr + size) - 1) > physmax) 2349 size = ptob(physmax - btop(addr) + 1); 2350 2351 num = btop(size); 2352 if (num == 0) 2353 continue; 2354 2355 if (num > npages) 2356 num = npages; 2357 2358 npages -= num; 2359 pages_done += num; 2360 base_pfn = btop(addr); 2361 2362 if (prom_debug) 2363 prom_printf("MEMSEG addr=0x%" PRIx64 2364 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2365 addr, num, base_pfn, base_pfn + num); 2366 2367 /* 2368 * Ignore pages below ddiphysmin to simplify ddi memory 2369 * allocation with non-zero addr_lo requests. 2370 */ 2371 if (base_pfn < ddiphysmin) { 2372 if (base_pfn + num <= ddiphysmin) 2373 continue; 2374 pp += (ddiphysmin - base_pfn); 2375 num -= (ddiphysmin - base_pfn); 2376 base_pfn = ddiphysmin; 2377 } 2378 2379 /* 2380 * Build the memsegs entry 2381 */ 2382 cur_memseg->pages = pp; 2383 cur_memseg->epages = pp + num; 2384 cur_memseg->pages_base = base_pfn; 2385 cur_memseg->pages_end = base_pfn + num; 2386 2387 /* 2388 * Insert into memseg list in decreasing pfn range order. 2389 * Low memory is typically more fragmented such that this 2390 * ordering keeps the larger ranges at the front of the list 2391 * for code that searches memseg. 2392 * This ASSERTS that the memsegs coming in from boot are in 2393 * increasing physical address order and not contiguous. 2394 */ 2395 if (memsegs != NULL) { 2396 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2397 cur_memseg->next = memsegs; 2398 } 2399 memsegs = cur_memseg; 2400 2401 /* 2402 * add_physmem() initializes the PSM part of the page 2403 * struct by calling the PSM back with add_physmem_cb(). 2404 * In addition it coalesces pages into larger pages as 2405 * it initializes them. 2406 */ 2407 add_physmem(pp, num, base_pfn); 2408 cur_memseg++; 2409 availrmem_initial += num; 2410 availrmem += num; 2411 2412 pp += num; 2413 } 2414 2415 PRM_DEBUG(availrmem_initial); 2416 PRM_DEBUG(availrmem); 2417 PRM_DEBUG(freemem); 2418 build_pfn_hash(); 2419 return (pages_done); 2420 } 2421 2422 /* 2423 * Kernel VM initialization. 2424 */ 2425 static void 2426 kvm_init(void) 2427 { 2428 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2429 2430 /* 2431 * Put the kernel segments in kernel address space. 2432 */ 2433 rw_enter(&kas.a_lock, RW_WRITER); 2434 as_avlinit(&kas); 2435 2436 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2437 (void) segkmem_create(&ktextseg); 2438 2439 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2440 (void) segkmem_create(&kvalloc); 2441 2442 (void) seg_attach(&kas, kernelheap, 2443 ekernelheap - kernelheap, &kvseg); 2444 (void) segkmem_create(&kvseg); 2445 2446 if (core_size > 0) { 2447 PRM_POINT("attaching kvseg_core"); 2448 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2449 &kvseg_core); 2450 (void) segkmem_create(&kvseg_core); 2451 } 2452 2453 if (segziosize > 0) { 2454 PRM_POINT("attaching segzio"); 2455 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2456 &kzioseg); 2457 (void) segkmem_zio_create(&kzioseg); 2458 2459 /* create zio area covering new segment */ 2460 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2461 } 2462 2463 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2464 (void) segkmem_create(&kdebugseg); 2465 2466 rw_exit(&kas.a_lock); 2467 2468 /* 2469 * Ensure that the red zone at kernelbase is never accessible. 2470 */ 2471 PRM_POINT("protecting redzone"); 2472 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2473 2474 /* 2475 * Make the text writable so that it can be hot patched by DTrace. 2476 */ 2477 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2478 PROT_READ | PROT_WRITE | PROT_EXEC); 2479 2480 /* 2481 * Make data writable until end. 2482 */ 2483 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2484 PROT_READ | PROT_WRITE | PROT_EXEC); 2485 } 2486 2487 #ifndef __xpv 2488 /* 2489 * Solaris adds an entry for Write Combining caching to the PAT 2490 */ 2491 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2492 2493 void 2494 pat_sync(void) 2495 { 2496 ulong_t cr0, cr0_orig, cr4; 2497 2498 if (!(x86_feature & X86_PAT)) 2499 return; 2500 cr0_orig = cr0 = getcr0(); 2501 cr4 = getcr4(); 2502 2503 /* disable caching and flush all caches and TLBs */ 2504 cr0 |= CR0_CD; 2505 cr0 &= ~CR0_NW; 2506 setcr0(cr0); 2507 invalidate_cache(); 2508 if (cr4 & CR4_PGE) { 2509 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2510 setcr4(cr4); 2511 } else { 2512 reload_cr3(); 2513 } 2514 2515 /* add our entry to the PAT */ 2516 wrmsr(REG_PAT, pat_attr_reg); 2517 2518 /* flush TLBs and cache again, then reenable cr0 caching */ 2519 if (cr4 & CR4_PGE) { 2520 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2521 setcr4(cr4); 2522 } else { 2523 reload_cr3(); 2524 } 2525 invalidate_cache(); 2526 setcr0(cr0_orig); 2527 } 2528 2529 #endif /* !__xpv */ 2530 2531 #if defined(_SOFT_HOSTID) 2532 /* 2533 * On platforms that do not have a hardware serial number, attempt 2534 * to set one based on the contents of /etc/hostid. If this file does 2535 * not exist, assume that we are to generate a new hostid and set 2536 * it in the kernel, for subsequent saving by a userland process 2537 * once the system is up and the root filesystem is mounted r/w. 2538 * 2539 * In order to gracefully support upgrade on OpenSolaris, if 2540 * /etc/hostid does not exist, we will attempt to get a serial number 2541 * using the legacy method (/kernel/misc/sysinit). 2542 * 2543 * In an attempt to make the hostid less prone to abuse 2544 * (for license circumvention, etc), we store it in /etc/hostid 2545 * in rot47 format. 2546 */ 2547 extern volatile unsigned long tenmicrodata; 2548 static int atoi(char *); 2549 2550 static int32_t 2551 set_soft_hostid(void) 2552 { 2553 struct _buf *file; 2554 char tokbuf[MAXNAMELEN]; 2555 token_t token; 2556 int done = 0; 2557 u_longlong_t tmp; 2558 int i; 2559 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2560 unsigned char *c; 2561 hrtime_t tsc; 2562 2563 /* 2564 * If /etc/hostid file not found, we'd like to get a pseudo 2565 * random number to use at the hostid. A nice way to do this 2566 * is to read the real time clock. To remain xen-compatible, 2567 * we can't poke the real hardware, so we use tsc_read() to 2568 * read the real time clock. However, there is an ominous 2569 * warning in tsc_read that says it can return zero, so we 2570 * deal with that possibility by falling back to using the 2571 * (hopefully random enough) value in tenmicrodata. 2572 */ 2573 2574 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2575 /* 2576 * hostid file not found - try to load sysinit module 2577 * and see if it has a nonzero hostid value...use that 2578 * instead of generating a new hostid here if so. 2579 */ 2580 if ((i = modload("misc", "sysinit")) != -1) { 2581 if (strlen(hw_serial) > 0) 2582 hostid = (int32_t)atoi(hw_serial); 2583 (void) modunload(i); 2584 } 2585 if (hostid == HW_INVALID_HOSTID) { 2586 tsc = tsc_read(); 2587 if (tsc == 0) /* tsc_read can return zero sometimes */ 2588 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2589 else 2590 hostid = (int32_t)tsc & 0x0CFFFFF; 2591 } 2592 } else { 2593 /* hostid file found */ 2594 while (!done) { 2595 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2596 2597 switch (token) { 2598 case POUND: 2599 /* 2600 * skip comments 2601 */ 2602 kobj_find_eol(file); 2603 break; 2604 case STRING: 2605 /* 2606 * un-rot47 - obviously this 2607 * nonsense is ascii-specific 2608 */ 2609 for (c = (unsigned char *)tokbuf; 2610 *c != '\0'; c++) { 2611 *c += 47; 2612 if (*c > '~') 2613 *c -= 94; 2614 else if (*c < '!') 2615 *c += 94; 2616 } 2617 /* 2618 * now we should have a real number 2619 */ 2620 2621 if (kobj_getvalue(tokbuf, &tmp) != 0) 2622 kobj_file_err(CE_WARN, file, 2623 "Bad value %s for hostid", 2624 tokbuf); 2625 else 2626 hostid = (int32_t)tmp; 2627 2628 break; 2629 case EOF: 2630 done = 1; 2631 /* FALLTHROUGH */ 2632 case NEWLINE: 2633 kobj_newline(file); 2634 break; 2635 default: 2636 break; 2637 2638 } 2639 } 2640 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2641 kobj_file_err(CE_WARN, file, 2642 "hostid missing or corrupt"); 2643 2644 kobj_close_file(file); 2645 } 2646 /* 2647 * hostid is now the value read from /etc/hostid, or the 2648 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2649 * set. 2650 */ 2651 return (hostid); 2652 } 2653 2654 static int 2655 atoi(char *p) 2656 { 2657 int i = 0; 2658 2659 while (*p != '\0') 2660 i = 10 * i + (*p++ - '0'); 2661 2662 return (i); 2663 } 2664 2665 #endif /* _SOFT_HOSTID */ 2666 2667 void 2668 get_system_configuration(void) 2669 { 2670 char prop[32]; 2671 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2672 2673 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2674 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2675 kobj_getvalue(prop, &nodes_ll) == -1 || 2676 nodes_ll > MAXNODES || 2677 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2678 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2679 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2680 system_hardware.hd_nodes = 1; 2681 system_hardware.hd_cpus_per_node = 0; 2682 } else { 2683 system_hardware.hd_nodes = (int)nodes_ll; 2684 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2685 } 2686 2687 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2688 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2689 kobj_getvalue(prop, &lvalue) == -1) 2690 eprom_kernelbase = NULL; 2691 else 2692 eprom_kernelbase = (uintptr_t)lvalue; 2693 2694 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2695 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2696 kobj_getvalue(prop, &lvalue) == -1) 2697 segmapsize = SEGMAPDEFAULT; 2698 else 2699 segmapsize = (uintptr_t)lvalue; 2700 2701 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2702 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2703 kobj_getvalue(prop, &lvalue) == -1) 2704 segmapfreelists = 0; /* use segmap driver default */ 2705 else 2706 segmapfreelists = (int)lvalue; 2707 2708 /* physmem used to be here, but moved much earlier to fakebop.c */ 2709 } 2710 2711 /* 2712 * Add to a memory list. 2713 * start = start of new memory segment 2714 * len = length of new memory segment in bytes 2715 * new = pointer to a new struct memlist 2716 * memlistp = memory list to which to add segment. 2717 */ 2718 void 2719 memlist_add( 2720 uint64_t start, 2721 uint64_t len, 2722 struct memlist *new, 2723 struct memlist **memlistp) 2724 { 2725 struct memlist *cur; 2726 uint64_t end = start + len; 2727 2728 new->address = start; 2729 new->size = len; 2730 2731 cur = *memlistp; 2732 2733 while (cur) { 2734 if (cur->address >= end) { 2735 new->next = cur; 2736 *memlistp = new; 2737 new->prev = cur->prev; 2738 cur->prev = new; 2739 return; 2740 } 2741 ASSERT(cur->address + cur->size <= start); 2742 if (cur->next == NULL) { 2743 cur->next = new; 2744 new->prev = cur; 2745 new->next = NULL; 2746 return; 2747 } 2748 memlistp = &cur->next; 2749 cur = cur->next; 2750 } 2751 } 2752 2753 void 2754 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2755 { 2756 size_t tsize = e_modtext - modtext; 2757 size_t dsize = e_moddata - moddata; 2758 2759 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2760 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2761 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2762 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2763 } 2764 2765 caddr_t 2766 kobj_text_alloc(vmem_t *arena, size_t size) 2767 { 2768 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2769 } 2770 2771 /*ARGSUSED*/ 2772 caddr_t 2773 kobj_texthole_alloc(caddr_t addr, size_t size) 2774 { 2775 panic("unexpected call to kobj_texthole_alloc()"); 2776 /*NOTREACHED*/ 2777 return (0); 2778 } 2779 2780 /*ARGSUSED*/ 2781 void 2782 kobj_texthole_free(caddr_t addr, size_t size) 2783 { 2784 panic("unexpected call to kobj_texthole_free()"); 2785 } 2786 2787 /* 2788 * This is called just after configure() in startup(). 2789 * 2790 * The ISALIST concept is a bit hopeless on Intel, because 2791 * there's no guarantee of an ever-more-capable processor 2792 * given that various parts of the instruction set may appear 2793 * and disappear between different implementations. 2794 * 2795 * While it would be possible to correct it and even enhance 2796 * it somewhat, the explicit hardware capability bitmask allows 2797 * more flexibility. 2798 * 2799 * So, we just leave this alone. 2800 */ 2801 void 2802 setx86isalist(void) 2803 { 2804 char *tp; 2805 size_t len; 2806 extern char *isa_list; 2807 2808 #define TBUFSIZE 1024 2809 2810 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2811 *tp = '\0'; 2812 2813 #if defined(__amd64) 2814 (void) strcpy(tp, "amd64 "); 2815 #endif 2816 2817 switch (x86_vendor) { 2818 case X86_VENDOR_Intel: 2819 case X86_VENDOR_AMD: 2820 case X86_VENDOR_TM: 2821 if (x86_feature & X86_CMOV) { 2822 /* 2823 * Pentium Pro or later 2824 */ 2825 (void) strcat(tp, "pentium_pro"); 2826 (void) strcat(tp, x86_feature & X86_MMX ? 2827 "+mmx pentium_pro " : " "); 2828 } 2829 /*FALLTHROUGH*/ 2830 case X86_VENDOR_Cyrix: 2831 /* 2832 * The Cyrix 6x86 does not have any Pentium features 2833 * accessible while not at privilege level 0. 2834 */ 2835 if (x86_feature & X86_CPUID) { 2836 (void) strcat(tp, "pentium"); 2837 (void) strcat(tp, x86_feature & X86_MMX ? 2838 "+mmx pentium " : " "); 2839 } 2840 break; 2841 default: 2842 break; 2843 } 2844 (void) strcat(tp, "i486 i386 i86"); 2845 len = strlen(tp) + 1; /* account for NULL at end of string */ 2846 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2847 kmem_free(tp, TBUFSIZE); 2848 2849 #undef TBUFSIZE 2850 } 2851 2852 2853 #ifdef __amd64 2854 2855 void * 2856 device_arena_alloc(size_t size, int vm_flag) 2857 { 2858 return (vmem_alloc(device_arena, size, vm_flag)); 2859 } 2860 2861 void 2862 device_arena_free(void *vaddr, size_t size) 2863 { 2864 vmem_free(device_arena, vaddr, size); 2865 } 2866 2867 #else /* __i386 */ 2868 2869 void * 2870 device_arena_alloc(size_t size, int vm_flag) 2871 { 2872 caddr_t vaddr; 2873 uintptr_t v; 2874 size_t start; 2875 size_t end; 2876 2877 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2878 if (vaddr == NULL) 2879 return (NULL); 2880 2881 v = (uintptr_t)vaddr; 2882 ASSERT(v >= kernelbase); 2883 ASSERT(v + size <= valloc_base); 2884 2885 start = btop(v - kernelbase); 2886 end = btop(v + size - 1 - kernelbase); 2887 ASSERT(start < toxic_bit_map_len); 2888 ASSERT(end < toxic_bit_map_len); 2889 2890 while (start <= end) { 2891 BT_ATOMIC_SET(toxic_bit_map, start); 2892 ++start; 2893 } 2894 return (vaddr); 2895 } 2896 2897 void 2898 device_arena_free(void *vaddr, size_t size) 2899 { 2900 uintptr_t v = (uintptr_t)vaddr; 2901 size_t start; 2902 size_t end; 2903 2904 ASSERT(v >= kernelbase); 2905 ASSERT(v + size <= valloc_base); 2906 2907 start = btop(v - kernelbase); 2908 end = btop(v + size - 1 - kernelbase); 2909 ASSERT(start < toxic_bit_map_len); 2910 ASSERT(end < toxic_bit_map_len); 2911 2912 while (start <= end) { 2913 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2914 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2915 ++start; 2916 } 2917 vmem_free(heap_arena, vaddr, size); 2918 } 2919 2920 /* 2921 * returns 1st address in range that is in device arena, or NULL 2922 * if len is not NULL it returns the length of the toxic range 2923 */ 2924 void * 2925 device_arena_contains(void *vaddr, size_t size, size_t *len) 2926 { 2927 uintptr_t v = (uintptr_t)vaddr; 2928 uintptr_t eaddr = v + size; 2929 size_t start; 2930 size_t end; 2931 2932 /* 2933 * if called very early by kmdb, just return NULL 2934 */ 2935 if (toxic_bit_map == NULL) 2936 return (NULL); 2937 2938 /* 2939 * First check if we're completely outside the bitmap range. 2940 */ 2941 if (v >= valloc_base || eaddr < kernelbase) 2942 return (NULL); 2943 2944 /* 2945 * Trim ends of search to look at only what the bitmap covers. 2946 */ 2947 if (v < kernelbase) 2948 v = kernelbase; 2949 start = btop(v - kernelbase); 2950 end = btop(eaddr - kernelbase); 2951 if (end >= toxic_bit_map_len) 2952 end = toxic_bit_map_len; 2953 2954 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2955 return (NULL); 2956 2957 v = kernelbase + ptob(start); 2958 if (len != NULL) 2959 *len = ptob(end - start); 2960 return ((void *)v); 2961 } 2962 2963 #endif /* __i386 */ 2964