xref: /illumos-gate/usr/src/uts/i86pc/os/startup.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2018 Joyent, Inc.
27  * Copyright (c) 2015 by Delphix. All rights reserved.
28  */
29 /*
30  * Copyright (c) 2010, Intel Corporation.
31  * All rights reserved.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/t_lock.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/mman.h>
42 #include <sys/vm.h>
43 #include <sys/conf.h>
44 #include <sys/avintr.h>
45 #include <sys/autoconf.h>
46 #include <sys/disp.h>
47 #include <sys/class.h>
48 #include <sys/bitmap.h>
49 
50 #include <sys/privregs.h>
51 
52 #include <sys/proc.h>
53 #include <sys/buf.h>
54 #include <sys/kmem.h>
55 #include <sys/mem.h>
56 #include <sys/kstat.h>
57 
58 #include <sys/reboot.h>
59 
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/file.h>
63 
64 #include <sys/procfs.h>
65 
66 #include <sys/vfs.h>
67 #include <sys/cmn_err.h>
68 #include <sys/utsname.h>
69 #include <sys/debug.h>
70 #include <sys/kdi.h>
71 
72 #include <sys/dumphdr.h>
73 #include <sys/bootconf.h>
74 #include <sys/memlist_plat.h>
75 #include <sys/varargs.h>
76 #include <sys/promif.h>
77 #include <sys/modctl.h>
78 
79 #include <sys/sunddi.h>
80 #include <sys/sunndi.h>
81 #include <sys/ndi_impldefs.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/psw.h>
84 #include <sys/regset.h>
85 #include <sys/clock.h>
86 #include <sys/pte.h>
87 #include <sys/tss.h>
88 #include <sys/stack.h>
89 #include <sys/trap.h>
90 #include <sys/fp.h>
91 #include <vm/kboot_mmu.h>
92 #include <vm/anon.h>
93 #include <vm/as.h>
94 #include <vm/page.h>
95 #include <vm/seg.h>
96 #include <vm/seg_dev.h>
97 #include <vm/seg_kmem.h>
98 #include <vm/seg_kpm.h>
99 #include <vm/seg_map.h>
100 #include <vm/seg_vn.h>
101 #include <vm/seg_kp.h>
102 #include <sys/memnode.h>
103 #include <vm/vm_dep.h>
104 #include <sys/thread.h>
105 #include <sys/sysconf.h>
106 #include <sys/vm_machparam.h>
107 #include <sys/archsystm.h>
108 #include <sys/machsystm.h>
109 #include <vm/hat.h>
110 #include <vm/hat_i86.h>
111 #include <sys/pmem.h>
112 #include <sys/smp_impldefs.h>
113 #include <sys/x86_archext.h>
114 #include <sys/cpuvar.h>
115 #include <sys/segments.h>
116 #include <sys/clconf.h>
117 #include <sys/kobj.h>
118 #include <sys/kobj_lex.h>
119 #include <sys/cpc_impl.h>
120 #include <sys/cpu_module.h>
121 #include <sys/smbios.h>
122 #include <sys/debug_info.h>
123 #include <sys/bootinfo.h>
124 #include <sys/ddi_periodic.h>
125 #include <sys/systeminfo.h>
126 #include <sys/multiboot.h>
127 #include <sys/ramdisk.h>
128 
129 #ifdef	__xpv
130 
131 #include <sys/hypervisor.h>
132 #include <sys/xen_mmu.h>
133 #include <sys/evtchn_impl.h>
134 #include <sys/gnttab.h>
135 #include <sys/xpv_panic.h>
136 #include <xen/sys/xenbus_comms.h>
137 #include <xen/public/physdev.h>
138 
139 extern void xen_late_startup(void);
140 
141 struct xen_evt_data cpu0_evt_data;
142 
143 #else	/* __xpv */
144 #include <sys/memlist_impl.h>
145 
146 extern void mem_config_init(void);
147 #endif /* __xpv */
148 
149 extern void progressbar_init(void);
150 extern void brand_init(void);
151 extern void pcf_init(void);
152 extern void pg_init(void);
153 extern void ssp_init(void);
154 
155 extern int size_pse_array(pgcnt_t, int);
156 
157 #if defined(_SOFT_HOSTID)
158 
159 #include <sys/rtc.h>
160 
161 static int32_t set_soft_hostid(void);
162 static char hostid_file[] = "/etc/hostid";
163 
164 #endif
165 
166 void *gfx_devinfo_list;
167 
168 #if defined(__amd64) && !defined(__xpv)
169 extern void immu_startup(void);
170 #endif
171 
172 /*
173  * XXX make declaration below "static" when drivers no longer use this
174  * interface.
175  */
176 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
177 
178 /*
179  * segkp
180  */
181 extern int segkp_fromheap;
182 
183 static void kvm_init(void);
184 static void startup_init(void);
185 static void startup_memlist(void);
186 static void startup_kmem(void);
187 static void startup_modules(void);
188 static void startup_vm(void);
189 static void startup_end(void);
190 static void layout_kernel_va(void);
191 
192 /*
193  * Declare these as initialized data so we can patch them.
194  */
195 #ifdef __i386
196 
197 /*
198  * Due to virtual address space limitations running in 32 bit mode, restrict
199  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
200  *
201  * If the physical max memory size of 64g were allowed to be configured, the
202  * size of user virtual address space will be less than 1g. A limited user
203  * address space greatly reduces the range of applications that can run.
204  *
205  * If more physical memory than PHYSMEM is required, users should preferably
206  * run in 64 bit mode which has far looser virtual address space limitations.
207  *
208  * If 64 bit mode is not available (as in IA32) and/or more physical memory
209  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
210  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
211  * should also be carefully tuned to balance out the need of the user
212  * application while minimizing the risk of kernel heap exhaustion due to
213  * kernelbase being set too high.
214  */
215 #define	PHYSMEM	0x400000
216 
217 #else /* __amd64 */
218 
219 /*
220  * For now we can handle memory with physical addresses up to about
221  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
222  * half the VA space for seg_kpm. When systems get bigger than 64TB this
223  * code will need revisiting. There is an implicit assumption that there
224  * are no *huge* holes in the physical address space too.
225  */
226 #define	TERABYTE		(1ul << 40)
227 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
228 #define	PHYSMEM			PHYSMEM_MAX64
229 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
230 
231 #endif /* __amd64 */
232 
233 pgcnt_t physmem = PHYSMEM;
234 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
235 
236 char *kobj_file_buf;
237 int kobj_file_bufsize;	/* set in /etc/system */
238 
239 /* Global variables for MP support. Used in mp_startup */
240 caddr_t	rm_platter_va = 0;
241 uint32_t rm_platter_pa;
242 
243 int	auto_lpg_disable = 1;
244 
245 /*
246  * Some CPUs have holes in the middle of the 64-bit virtual address range.
247  */
248 uintptr_t hole_start, hole_end;
249 
250 /*
251  * kpm mapping window
252  */
253 caddr_t kpm_vbase;
254 size_t  kpm_size;
255 static int kpm_desired;
256 #ifdef __amd64
257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
258 #endif
259 
260 /*
261  * Configuration parameters set at boot time.
262  */
263 
264 caddr_t econtig;		/* end of first block of contiguous kernel */
265 
266 struct bootops		*bootops = 0;	/* passed in from boot */
267 struct bootops		**bootopsp;
268 struct boot_syscalls	*sysp;		/* passed in from boot */
269 
270 char bootblock_fstype[16];
271 
272 char kern_bootargs[OBP_MAXPATHLEN];
273 char kern_bootfile[OBP_MAXPATHLEN];
274 
275 /*
276  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
277  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
278  * zio buffers from their own segment, otherwise they are allocated from the
279  * heap.  The optimization of allocating zio buffers from their own segment is
280  * only valid on 64-bit kernels.
281  */
282 #if defined(__amd64)
283 int segzio_fromheap = 0;
284 #else
285 int segzio_fromheap = 1;
286 #endif
287 
288 /*
289  * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work
290  * post-boot.
291  */
292 int disable_smap = 0;
293 
294 /*
295  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
296  * depends on number of BOP_ALLOC calls made and requested size, memory size
297  * combination and whether boot.bin memory needs to be freed.
298  */
299 #define	POSS_NEW_FRAGMENTS	12
300 
301 /*
302  * VM data structures
303  */
304 long page_hashsz;		/* Size of page hash table (power of two) */
305 unsigned int page_hashsz_shift;	/* log2(page_hashsz) */
306 struct page *pp_base;		/* Base of initial system page struct array */
307 struct page **page_hash;	/* Page hash table */
308 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
309 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
310 int pse_shift;			/* log2(pse_table_size) */
311 struct seg ktextseg;		/* Segment used for kernel executable image */
312 struct seg kvalloc;		/* Segment used for "valloc" mapping */
313 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
314 struct seg kmapseg;		/* Segment used for generic kernel mappings */
315 struct seg kdebugseg;		/* Segment used for the kernel debugger */
316 
317 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
318 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
319 
320 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
321 
322 #if defined(__amd64)
323 struct seg kvseg_core;		/* Segment used for the core heap */
324 struct seg kpmseg;		/* Segment used for physical mapping */
325 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
326 #else
327 struct seg *segkpm = NULL;	/* Unused on IA32 */
328 #endif
329 
330 caddr_t segkp_base;		/* Base address of segkp */
331 caddr_t segzio_base;		/* Base address of segzio */
332 #if defined(__amd64)
333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
334 #else
335 pgcnt_t segkpsize = 0;
336 #endif
337 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
338 
339 /*
340  * A static DR page_t VA map is reserved that can map the page structures
341  * for a domain's entire RA space. The pages that back this space are
342  * dynamically allocated and need not be physically contiguous.  The DR
343  * map size is derived from KPM size.
344  * This mechanism isn't used by x86 yet, so just stubs here.
345  */
346 int ppvm_enable = 0;		/* Static virtual map for page structs */
347 page_t *ppvm_base = NULL;	/* Base of page struct map */
348 pgcnt_t ppvm_size = 0;		/* Size of page struct map */
349 
350 /*
351  * VA range available to the debugger
352  */
353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
354 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
355 
356 struct memseg *memseg_base;
357 struct vnode unused_pages_vp;
358 
359 #define	FOURGB	0x100000000LL
360 
361 struct memlist *memlist;
362 
363 caddr_t s_text;		/* start of kernel text segment */
364 caddr_t e_text;		/* end of kernel text segment */
365 caddr_t s_data;		/* start of kernel data segment */
366 caddr_t e_data;		/* end of kernel data segment */
367 caddr_t modtext;	/* start of loadable module text reserved */
368 caddr_t e_modtext;	/* end of loadable module text reserved */
369 caddr_t moddata;	/* start of loadable module data reserved */
370 caddr_t e_moddata;	/* end of loadable module data reserved */
371 
372 struct memlist *phys_install;	/* Total installed physical memory */
373 struct memlist *phys_avail;	/* Total available physical memory */
374 struct memlist *bios_rsvd;	/* Bios reserved memory */
375 
376 /*
377  * kphysm_init returns the number of pages that were processed
378  */
379 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
380 
381 #define	IO_PROP_SIZE	64	/* device property size */
382 
383 /*
384  * a couple useful roundup macros
385  */
386 #define	ROUND_UP_PAGE(x)	\
387 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
388 #define	ROUND_UP_LPAGE(x)	\
389 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
390 #define	ROUND_UP_4MEG(x)	\
391 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
392 #define	ROUND_UP_TOPLEVEL(x)	\
393 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
394 
395 /*
396  *	32-bit Kernel's Virtual memory layout.
397  *		+-----------------------+
398  *		|			|
399  * 0xFFC00000  -|-----------------------|- ARGSBASE
400  *		|	debugger	|
401  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
402  *		|      Kernel Data	|
403  * 0xFEC00000  -|-----------------------|
404  *              |      Kernel Text	|
405  * 0xFE800000  -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
406  *		|---       GDT       ---|- GDT page (GDT_VA)
407  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
408  *		|			|
409  *		|   page_t structures	|
410  *		|   memsegs, memlists,	|
411  *		|   page hash, etc.	|
412  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
413  *		|			|  (segkp is just an arena in the heap)
414  *		|			|
415  *		|	kvseg		|
416  *		|			|
417  *		|			|
418  * ---         -|-----------------------|- kernelheap (floating)
419  *		|        Segkmap	|
420  * 0xC3002000  -|-----------------------|- segmap_start (floating)
421  *		|	Red Zone	|
422  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
423  *		|			|			||
424  *		|     Shared objects	|			\/
425  *		|			|
426  *		:			:
427  *		|	user data	|
428  *		|-----------------------|
429  *		|	user text	|
430  * 0x08048000  -|-----------------------|
431  *		|	user stack	|
432  *		:			:
433  *		|	invalid		|
434  * 0x00000000	+-----------------------+
435  *
436  *
437  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
438  *			+-----------------------+
439  *			|			|
440  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
441  *			|	debugger (?)	|
442  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
443  *			|      unused		|
444  *			+-----------------------+
445  *			|      Kernel Data	|
446  * 0xFFFFFFFF.FBC00000  |-----------------------|
447  *			|      Kernel Text	|
448  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
449  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
450  *			|---       GDT       ---|- GDT page (GDT_VA)
451  *			|---       IDT       ---|- IDT page (IDT_VA)
452  *			|---       LDT       ---|- LDT pages (LDT_VA)
453  *			|			|
454  *			|      Core heap	| (used for loadable modules)
455  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
456  *			|	 Kernel		|
457  *			|	  heap		|
458  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
459  *			|	 segmap		|
460  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
461  *			|    device mappings	|
462  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
463  *			|	  segzio	|
464  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
465  *			|	  segkp		|
466  * ---                  |-----------------------|- segkp_base (floating)
467  *			|   page_t structures	|  valloc_base + valloc_sz
468  *			|   memsegs, memlists,	|
469  *			|   page hash, etc.	|
470  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if >256GB)
471  *			|	 segkpm		|
472  * 0xFFFFFE00.00000000  |-----------------------|
473  *			|	Red Zone	|
474  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if >256GB)
475  *			|     User stack	|- User space memory
476  *			|			|
477  *			| shared objects, etc	|	(grows downwards)
478  *			:			:
479  *			|			|
480  * 0xFFFF8000.00000000  |-----------------------|
481  *			|			|
482  *			| VA Hole / unused	|
483  *			|			|
484  * 0x00008000.00000000  |-----------------------|
485  *			|			|
486  *			|			|
487  *			:			:
488  *			|	user heap	|	(grows upwards)
489  *			|			|
490  *			|	user data	|
491  *			|-----------------------|
492  *			|	user text	|
493  * 0x00000000.04000000  |-----------------------|
494  *			|	invalid		|
495  * 0x00000000.00000000	+-----------------------+
496  *
497  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
498  * kernel, except that userlimit is raised to 0xfe000000
499  *
500  * Floating values:
501  *
502  * valloc_base: start of the kernel's memory management/tracking data
503  * structures.  This region contains page_t structures for
504  * physical memory, memsegs, memlists, and the page hash.
505  *
506  * core_base: start of the kernel's "core" heap area on 64-bit systems.
507  * This area is intended to be used for global data as well as for module
508  * text/data that does not fit into the nucleus pages.  The core heap is
509  * restricted to a 2GB range, allowing every address within it to be
510  * accessed using rip-relative addressing
511  *
512  * ekernelheap: end of kernelheap and start of segmap.
513  *
514  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
515  * above a red zone that separates the user's address space from the
516  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
517  *
518  * segmap_start: start of segmap. The length of segmap can be modified
519  * through eeprom. The default length is 16MB on 32-bit systems and 64MB
520  * on 64-bit systems.
521  *
522  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
523  * decreased by 2X the size required for page_t.  This allows the kernel
524  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
525  * bytes, the following shows the values of kernelbase and kernel heap
526  * sizes for different memory configurations (assuming default segmap and
527  * segkp sizes).
528  *
529  *	mem	size for	kernelbase	kernel heap
530  *	size	page_t's			size
531  *	----	---------	----------	-----------
532  *	1gb	0x01400000	0xd1800000	684MB
533  *	2gb	0x02800000	0xcf000000	704MB
534  *	4gb	0x05000000	0xca000000	744MB
535  *	6gb	0x07800000	0xc5000000	784MB
536  *	8gb	0x0a000000	0xc0000000	824MB
537  *	16gb	0x14000000	0xac000000	984MB
538  *	32gb	0x28000000	0x84000000	1304MB
539  *	64gb	0x50000000	0x34000000	1944MB (*)
540  *
541  * kernelbase is less than the abi minimum of 0xc0000000 for memory
542  * configurations above 8gb.
543  *
544  * (*) support for memory configurations above 32gb will require manual tuning
545  * of kernelbase to balance out the need of user applications.
546  */
547 
548 /* real-time-clock initialization parameters */
549 extern time_t process_rtc_config_file(void);
550 
551 uintptr_t	kernelbase;
552 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
553 uintptr_t	eprom_kernelbase;
554 size_t		segmapsize;
555 uintptr_t	segmap_start;
556 int		segmapfreelists;
557 pgcnt_t		npages;
558 pgcnt_t		orig_npages;
559 size_t		core_size;		/* size of "core" heap */
560 uintptr_t	core_base;		/* base address of "core" heap */
561 
562 /*
563  * List of bootstrap pages. We mark these as allocated in startup.
564  * release_bootstrap() will free them when we're completely done with
565  * the bootstrap.
566  */
567 static page_t *bootpages;
568 
569 /*
570  * boot time pages that have a vnode from the ramdisk will keep that forever.
571  */
572 static page_t *rd_pages;
573 
574 /*
575  * Lower 64K
576  */
577 static page_t *lower_pages = NULL;
578 static int lower_pages_count = 0;
579 
580 struct system_hardware system_hardware;
581 
582 /*
583  * Enable some debugging messages concerning memory usage...
584  */
585 static void
586 print_memlist(char *title, struct memlist *mp)
587 {
588 	prom_printf("MEMLIST: %s:\n", title);
589 	while (mp != NULL)  {
590 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
591 		    mp->ml_address, mp->ml_size);
592 		mp = mp->ml_next;
593 	}
594 }
595 
596 /*
597  * XX64 need a comment here.. are these just default values, surely
598  * we read the "cpuid" type information to figure this out.
599  */
600 int	l2cache_sz = 0x80000;
601 int	l2cache_linesz = 0x40;
602 int	l2cache_assoc = 1;
603 
604 static size_t	textrepl_min_gb = 10;
605 
606 /*
607  * on 64 bit we use a predifined VA range for mapping devices in the kernel
608  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
609  */
610 #ifdef __amd64
611 
612 vmem_t		*device_arena;
613 uintptr_t	toxic_addr = (uintptr_t)NULL;
614 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
615 
616 #else	/* __i386 */
617 
618 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
619 size_t		toxic_bit_map_len = 0;	/* in bits */
620 
621 #endif	/* __i386 */
622 
623 /*
624  * Simple boot time debug facilities
625  */
626 static char *prm_dbg_str[] = {
627 	"%s:%d: '%s' is 0x%x\n",
628 	"%s:%d: '%s' is 0x%llx\n"
629 };
630 
631 int prom_debug;
632 
633 #define	PRM_DEBUG(q)	if (prom_debug)		\
634 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
635 #define	PRM_POINT(q)	if (prom_debug)		\
636 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
637 
638 /*
639  * This structure is used to keep track of the intial allocations
640  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
641  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
642  */
643 #define	NUM_ALLOCATIONS 8
644 int num_allocations = 0;
645 struct {
646 	void **al_ptr;
647 	size_t al_size;
648 } allocations[NUM_ALLOCATIONS];
649 size_t valloc_sz = 0;
650 uintptr_t valloc_base;
651 
652 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
653 		size = ROUND_UP_PAGE(size);				\
654 		if (num_allocations == NUM_ALLOCATIONS)			\
655 			panic("too many ADD_TO_ALLOCATIONS()");		\
656 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
657 		allocations[num_allocations].al_size = size;		\
658 		valloc_sz += size;					\
659 		++num_allocations;					\
660 	}
661 
662 /*
663  * Allocate all the initial memory needed by the page allocator.
664  */
665 static void
666 perform_allocations(void)
667 {
668 	caddr_t mem;
669 	int i;
670 	int valloc_align;
671 
672 	PRM_DEBUG(valloc_base);
673 	PRM_DEBUG(valloc_sz);
674 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
675 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
676 	if (mem != (caddr_t)valloc_base)
677 		panic("BOP_ALLOC() failed");
678 	bzero(mem, valloc_sz);
679 	for (i = 0; i < num_allocations; ++i) {
680 		*allocations[i].al_ptr = (void *)mem;
681 		mem += allocations[i].al_size;
682 	}
683 }
684 
685 /*
686  * Set up and enable SMAP now before we start other CPUs, but after the kernel's
687  * VM has been set up so we can use hot_patch_kernel_text().
688  *
689  * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we
690  * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s
691  * for more information on what's going on here.
692  */
693 static void
694 startup_smap(void)
695 {
696 	int i;
697 	uint32_t inst;
698 	uint8_t *instp;
699 	char sym[128];
700 
701 	extern int _smap_enable_patch_count;
702 	extern int _smap_disable_patch_count;
703 
704 	if (disable_smap != 0)
705 		remove_x86_feature(x86_featureset, X86FSET_SMAP);
706 
707 	if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE)
708 		return;
709 
710 	for (i = 0; i < _smap_enable_patch_count; i++) {
711 		int sizep;
712 
713 		VERIFY3U(i, <, _smap_enable_patch_count);
714 		VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) <
715 		    sizeof (sym));
716 		instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
717 		VERIFY(instp != 0);
718 		inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff);
719 		hot_patch_kernel_text((caddr_t)instp, inst, 4);
720 	}
721 
722 	for (i = 0; i < _smap_disable_patch_count; i++) {
723 		int sizep;
724 
725 		VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d",
726 		    i) < sizeof (sym));
727 		instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep);
728 		VERIFY(instp != 0);
729 		inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff);
730 		hot_patch_kernel_text((caddr_t)instp, inst, 4);
731 	}
732 
733 	hot_patch_kernel_text((caddr_t)smap_enable, SMAP_CLAC_INSTR, 4);
734 	hot_patch_kernel_text((caddr_t)smap_disable, SMAP_STAC_INSTR, 4);
735 	setcr4(getcr4() | CR4_SMAP);
736 	smap_enable();
737 }
738 
739 /*
740  * Our world looks like this at startup time.
741  *
742  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
743  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
744  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
745  * addresses are fixed in the binary at link time.
746  *
747  * On the text page:
748  * unix/genunix/krtld/module text loads.
749  *
750  * On the data page:
751  * unix/genunix/krtld/module data loads.
752  *
753  * Machine-dependent startup code
754  */
755 void
756 startup(void)
757 {
758 #if !defined(__xpv)
759 	extern void startup_pci_bios(void);
760 #endif
761 	extern cpuset_t cpu_ready_set;
762 
763 	/*
764 	 * Make sure that nobody tries to use sekpm until we have
765 	 * initialized it properly.
766 	 */
767 #if defined(__amd64)
768 	kpm_desired = 1;
769 #endif
770 	kpm_enable = 0;
771 	CPUSET_ONLY(cpu_ready_set, 0);	/* cpu 0 is boot cpu */
772 
773 #if defined(__xpv)	/* XXPV fix me! */
774 	{
775 		extern int segvn_use_regions;
776 		segvn_use_regions = 0;
777 	}
778 #endif
779 	ssp_init();
780 	progressbar_init();
781 	startup_init();
782 #if defined(__xpv)
783 	startup_xen_version();
784 #endif
785 	startup_memlist();
786 	startup_kmem();
787 	startup_vm();
788 #if !defined(__xpv)
789 	/*
790 	 * Note we need to do this even on fast reboot in order to access
791 	 * the irq routing table (used for pci labels).
792 	 */
793 	startup_pci_bios();
794 	startup_smap();
795 #endif
796 #if defined(__xpv)
797 	startup_xen_mca();
798 #endif
799 	startup_modules();
800 
801 	startup_end();
802 }
803 
804 static void
805 startup_init()
806 {
807 	PRM_POINT("startup_init() starting...");
808 
809 	/*
810 	 * Complete the extraction of cpuid data
811 	 */
812 	cpuid_pass2(CPU);
813 
814 	(void) check_boot_version(BOP_GETVERSION(bootops));
815 
816 	/*
817 	 * Check for prom_debug in boot environment
818 	 */
819 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
820 		++prom_debug;
821 		PRM_POINT("prom_debug found in boot enviroment");
822 	}
823 
824 	/*
825 	 * Collect node, cpu and memory configuration information.
826 	 */
827 	get_system_configuration();
828 
829 	/*
830 	 * Halt if this is an unsupported processor.
831 	 */
832 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
833 		printf("\n486 processor (\"%s\") detected.\n",
834 		    CPU->cpu_brandstr);
835 		halt("This processor is not supported by this release "
836 		    "of Solaris.");
837 	}
838 
839 	PRM_POINT("startup_init() done");
840 }
841 
842 /*
843  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
844  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
845  * also filters out physical page zero.  There is some reliance on the
846  * boot loader allocating only a few contiguous physical memory chunks.
847  */
848 static void
849 avail_filter(uint64_t *addr, uint64_t *size)
850 {
851 	uintptr_t va;
852 	uintptr_t next_va;
853 	pfn_t pfn;
854 	uint64_t pfn_addr;
855 	uint64_t pfn_eaddr;
856 	uint_t prot;
857 	size_t len;
858 	uint_t change;
859 
860 	if (prom_debug)
861 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
862 		    *addr, *size);
863 
864 	/*
865 	 * page zero is required for BIOS.. never make it available
866 	 */
867 	if (*addr == 0) {
868 		*addr += MMU_PAGESIZE;
869 		*size -= MMU_PAGESIZE;
870 	}
871 
872 	/*
873 	 * First we trim from the front of the range. Since kbm_probe()
874 	 * walks ranges in virtual order, but addr/size are physical, we need
875 	 * to the list until no changes are seen.  This deals with the case
876 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
877 	 * but w < v.
878 	 */
879 	do {
880 		change = 0;
881 		for (va = KERNEL_TEXT;
882 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
883 		    va = next_va) {
884 
885 			next_va = va + len;
886 			pfn_addr = pfn_to_pa(pfn);
887 			pfn_eaddr = pfn_addr + len;
888 
889 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
890 				change = 1;
891 				while (*size > 0 && len > 0) {
892 					*addr += MMU_PAGESIZE;
893 					*size -= MMU_PAGESIZE;
894 					len -= MMU_PAGESIZE;
895 				}
896 			}
897 		}
898 		if (change && prom_debug)
899 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
900 			    *addr, *size);
901 	} while (change);
902 
903 	/*
904 	 * Trim pages from the end of the range.
905 	 */
906 	for (va = KERNEL_TEXT;
907 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
908 	    va = next_va) {
909 
910 		next_va = va + len;
911 		pfn_addr = pfn_to_pa(pfn);
912 
913 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
914 			*size = pfn_addr - *addr;
915 	}
916 
917 	if (prom_debug)
918 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
919 		    *addr, *size);
920 }
921 
922 static void
923 kpm_init()
924 {
925 	struct segkpm_crargs b;
926 
927 	/*
928 	 * These variables were all designed for sfmmu in which segkpm is
929 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
930 	 * might use 2+ page sizes on a single machine, so none of these
931 	 * variables have a single correct value.  They are set up as if we
932 	 * always use a 4KB pagesize, which should do no harm.  In the long
933 	 * run, we should get rid of KPM's assumption that only a single
934 	 * pagesize is used.
935 	 */
936 	kpm_pgshft = MMU_PAGESHIFT;
937 	kpm_pgsz =  MMU_PAGESIZE;
938 	kpm_pgoff = MMU_PAGEOFFSET;
939 	kpmp2pshft = 0;
940 	kpmpnpgs = 1;
941 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
942 
943 	PRM_POINT("about to create segkpm");
944 	rw_enter(&kas.a_lock, RW_WRITER);
945 
946 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
947 		panic("cannot attach segkpm");
948 
949 	b.prot = PROT_READ | PROT_WRITE;
950 	b.nvcolors = 1;
951 
952 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
953 		panic("segkpm_create segkpm");
954 
955 	rw_exit(&kas.a_lock);
956 
957 	kpm_enable = 1;
958 
959 	/*
960 	 * As the KPM was disabled while setting up the system, go back and fix
961 	 * CPU zero's access to its user page table. This is a bit gross, but
962 	 * we have a chicken and egg problem otherwise.
963 	 */
964 	ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL);
965 	CPU->cpu_hat_info->hci_user_l3ptes =
966 	    (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn);
967 }
968 
969 /*
970  * The debug info page provides enough information to allow external
971  * inspectors (e.g. when running under a hypervisor) to bootstrap
972  * themselves into allowing full-blown kernel debugging.
973  */
974 static void
975 init_debug_info(void)
976 {
977 	caddr_t mem;
978 	debug_info_t *di;
979 
980 #ifndef __lint
981 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
982 #endif
983 
984 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
985 	    MMU_PAGESIZE);
986 
987 	if (mem != (caddr_t)DEBUG_INFO_VA)
988 		panic("BOP_ALLOC() failed");
989 	bzero(mem, MMU_PAGESIZE);
990 
991 	di = (debug_info_t *)mem;
992 
993 	di->di_magic = DEBUG_INFO_MAGIC;
994 	di->di_version = DEBUG_INFO_VERSION;
995 	di->di_modules = (uintptr_t)&modules;
996 	di->di_s_text = (uintptr_t)s_text;
997 	di->di_e_text = (uintptr_t)e_text;
998 	di->di_s_data = (uintptr_t)s_data;
999 	di->di_e_data = (uintptr_t)e_data;
1000 	di->di_hat_htable_off = offsetof(hat_t, hat_htable);
1001 	di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
1002 }
1003 
1004 /*
1005  * Build the memlists and other kernel essential memory system data structures.
1006  * This is everything at valloc_base.
1007  */
1008 static void
1009 startup_memlist(void)
1010 {
1011 	size_t memlist_sz;
1012 	size_t memseg_sz;
1013 	size_t pagehash_sz;
1014 	size_t pp_sz;
1015 	uintptr_t va;
1016 	size_t len;
1017 	uint_t prot;
1018 	pfn_t pfn;
1019 	int memblocks;
1020 	pfn_t rsvd_high_pfn;
1021 	pgcnt_t rsvd_pgcnt;
1022 	size_t rsvdmemlist_sz;
1023 	int rsvdmemblocks;
1024 	caddr_t pagecolor_mem;
1025 	size_t pagecolor_memsz;
1026 	caddr_t page_ctrs_mem;
1027 	size_t page_ctrs_size;
1028 	size_t pse_table_alloc_size;
1029 	struct memlist *current;
1030 	extern void startup_build_mem_nodes(struct memlist *);
1031 
1032 	/* XX64 fix these - they should be in include files */
1033 	extern size_t page_coloring_init(uint_t, int, int);
1034 	extern void page_coloring_setup(caddr_t);
1035 
1036 	PRM_POINT("startup_memlist() starting...");
1037 
1038 	/*
1039 	 * Use leftover large page nucleus text/data space for loadable modules.
1040 	 * Use at most MODTEXT/MODDATA.
1041 	 */
1042 	len = kbm_nucleus_size;
1043 	ASSERT(len > MMU_PAGESIZE);
1044 
1045 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
1046 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
1047 	if (e_moddata - moddata > MODDATA)
1048 		e_moddata = moddata + MODDATA;
1049 
1050 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
1051 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
1052 	if (e_modtext - modtext > MODTEXT)
1053 		e_modtext = modtext + MODTEXT;
1054 
1055 	econtig = e_moddata;
1056 
1057 	PRM_DEBUG(modtext);
1058 	PRM_DEBUG(e_modtext);
1059 	PRM_DEBUG(moddata);
1060 	PRM_DEBUG(e_moddata);
1061 	PRM_DEBUG(econtig);
1062 
1063 	/*
1064 	 * Examine the boot loader physical memory map to find out:
1065 	 * - total memory in system - physinstalled
1066 	 * - the max physical address - physmax
1067 	 * - the number of discontiguous segments of memory.
1068 	 */
1069 	if (prom_debug)
1070 		print_memlist("boot physinstalled",
1071 		    bootops->boot_mem->physinstalled);
1072 	installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
1073 	    &physinstalled, &memblocks);
1074 	PRM_DEBUG(physmax);
1075 	PRM_DEBUG(physinstalled);
1076 	PRM_DEBUG(memblocks);
1077 
1078 	/*
1079 	 * Compute maximum physical address for memory DR operations.
1080 	 * Memory DR operations are unsupported on xpv or 32bit OSes.
1081 	 */
1082 #ifdef	__amd64
1083 	if (plat_dr_support_memory()) {
1084 		if (plat_dr_physmax == 0) {
1085 			uint_t pabits = UINT_MAX;
1086 
1087 			cpuid_get_addrsize(CPU, &pabits, NULL);
1088 			plat_dr_physmax = btop(1ULL << pabits);
1089 		}
1090 		if (plat_dr_physmax > PHYSMEM_MAX64)
1091 			plat_dr_physmax = PHYSMEM_MAX64;
1092 	} else
1093 #endif
1094 		plat_dr_physmax = 0;
1095 
1096 	/*
1097 	 * Examine the bios reserved memory to find out:
1098 	 * - the number of discontiguous segments of memory.
1099 	 */
1100 	if (prom_debug)
1101 		print_memlist("boot reserved mem",
1102 		    bootops->boot_mem->rsvdmem);
1103 	installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1104 	    &rsvd_pgcnt, &rsvdmemblocks);
1105 	PRM_DEBUG(rsvd_high_pfn);
1106 	PRM_DEBUG(rsvd_pgcnt);
1107 	PRM_DEBUG(rsvdmemblocks);
1108 
1109 	/*
1110 	 * Initialize hat's mmu parameters.
1111 	 * Check for enforce-prot-exec in boot environment. It's used to
1112 	 * enable/disable support for the page table entry NX bit.
1113 	 * The default is to enforce PROT_EXEC on processors that support NX.
1114 	 * Boot seems to round up the "len", but 8 seems to be big enough.
1115 	 */
1116 	mmu_init();
1117 
1118 #ifdef	__i386
1119 	/*
1120 	 * physmax is lowered if there is more memory than can be
1121 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
1122 	 */
1123 	if (mmu.pae_hat) {
1124 		if (PFN_ABOVE64G(physmax)) {
1125 			physinstalled -= (physmax - (PFN_64G - 1));
1126 			physmax = PFN_64G - 1;
1127 		}
1128 	} else {
1129 		if (PFN_ABOVE4G(physmax)) {
1130 			physinstalled -= (physmax - (PFN_4G - 1));
1131 			physmax = PFN_4G - 1;
1132 		}
1133 	}
1134 #endif
1135 
1136 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1137 
1138 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1139 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1140 		char value[8];
1141 
1142 		if (len < 8)
1143 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1144 		else
1145 			(void) strcpy(value, "");
1146 		if (strcmp(value, "off") == 0)
1147 			mmu.pt_nx = 0;
1148 	}
1149 	PRM_DEBUG(mmu.pt_nx);
1150 
1151 	/*
1152 	 * We will need page_t's for every page in the system, except for
1153 	 * memory mapped at or above above the start of the kernel text segment.
1154 	 *
1155 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1156 	 */
1157 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1158 	obp_pages = 0;
1159 	va = KERNEL_TEXT;
1160 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1161 		npages -= len >> MMU_PAGESHIFT;
1162 		if (va >= (uintptr_t)e_moddata)
1163 			obp_pages += len >> MMU_PAGESHIFT;
1164 		va += len;
1165 	}
1166 	PRM_DEBUG(npages);
1167 	PRM_DEBUG(obp_pages);
1168 
1169 	/*
1170 	 * If physmem is patched to be non-zero, use it instead of the computed
1171 	 * value unless it is larger than the actual amount of memory on hand.
1172 	 */
1173 	if (physmem == 0 || physmem > npages) {
1174 		physmem = npages;
1175 	} else if (physmem < npages) {
1176 		orig_npages = npages;
1177 		npages = physmem;
1178 	}
1179 	PRM_DEBUG(physmem);
1180 
1181 	/*
1182 	 * We now compute the sizes of all the  initial allocations for
1183 	 * structures the kernel needs in order do kmem_alloc(). These
1184 	 * include:
1185 	 *	memsegs
1186 	 *	memlists
1187 	 *	page hash table
1188 	 *	page_t's
1189 	 *	page coloring data structs
1190 	 */
1191 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1192 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1193 	PRM_DEBUG(memseg_sz);
1194 
1195 	/*
1196 	 * Reserve space for memlists. There's no real good way to know exactly
1197 	 * how much room we'll need, but this should be a good upper bound.
1198 	 */
1199 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1200 	    (memblocks + POSS_NEW_FRAGMENTS));
1201 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1202 	PRM_DEBUG(memlist_sz);
1203 
1204 	/*
1205 	 * Reserve space for bios reserved memlists.
1206 	 */
1207 	rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1208 	    (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1209 	ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1210 	PRM_DEBUG(rsvdmemlist_sz);
1211 
1212 	/* LINTED */
1213 	ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1214 	/*
1215 	 * The page structure hash table size is a power of 2
1216 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1217 	 */
1218 	page_hashsz = npages / PAGE_HASHAVELEN;
1219 	page_hashsz_shift = highbit(page_hashsz);
1220 	page_hashsz = 1 << page_hashsz_shift;
1221 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1222 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1223 	PRM_DEBUG(pagehash_sz);
1224 
1225 	/*
1226 	 * Set aside room for the page structures themselves.
1227 	 */
1228 	PRM_DEBUG(npages);
1229 	pp_sz = sizeof (struct page) * npages;
1230 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1231 	PRM_DEBUG(pp_sz);
1232 
1233 	/*
1234 	 * determine l2 cache info and memory size for page coloring
1235 	 */
1236 	(void) getl2cacheinfo(CPU,
1237 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1238 	pagecolor_memsz =
1239 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1240 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1241 	PRM_DEBUG(pagecolor_memsz);
1242 
1243 	page_ctrs_size = page_ctrs_sz();
1244 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1245 	PRM_DEBUG(page_ctrs_size);
1246 
1247 	/*
1248 	 * Allocate the array that protects pp->p_selock.
1249 	 */
1250 	pse_shift = size_pse_array(physmem, max_ncpus);
1251 	pse_table_size = 1 << pse_shift;
1252 	pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1253 	ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1254 
1255 #if defined(__amd64)
1256 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1257 	valloc_base = VALLOC_BASE;
1258 
1259 	/*
1260 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1261 	 * for values of physmax up to 256GB (1/4 TB). They need adjusting when
1262 	 * memory is at addresses above 256GB. When adjusted, segkpm_base must
1263 	 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1264 	 *
1265 	 * In the general case (>256GB), we use (4 * physmem) for the
1266 	 * kernel's virtual addresses, which is divided approximately
1267 	 * as follows:
1268 	 *  - 1 * physmem for segkpm
1269 	 *  - 1.5 * physmem for segzio
1270 	 *  - 1.5 * physmem for heap
1271 	 * Total: 4.0 * physmem
1272 	 *
1273 	 * Note that the segzio and heap sizes are more than physmem so that
1274 	 * VA fragmentation does not prevent either of them from being
1275 	 * able to use nearly all of physmem.  The value of 1.5x is determined
1276 	 * experimentally and may need to change if the workload changes.
1277 	 */
1278 	if (physmax + 1 > mmu_btop(TERABYTE / 4) ||
1279 	    plat_dr_physmax > mmu_btop(TERABYTE / 4)) {
1280 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1281 
1282 		if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1283 			kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1284 		}
1285 
1286 		/*
1287 		 * This is what actually controls the KVA : UVA split.
1288 		 * The kernel uses high VA, and this is lowering the
1289 		 * boundary, thus increasing the amount of VA for the kernel.
1290 		 * This gives the kernel 4 * (amount of physical memory) VA.
1291 		 *
1292 		 * The maximum VA is UINT64_MAX and we are using
1293 		 * 64-bit 2's complement math, so e.g. if you have 512GB
1294 		 * of memory, segkpm_base = -(4 * 512GB) == -2TB ==
1295 		 * UINT64_MAX - 2TB (approximately).  So the kernel's
1296 		 * VA is [UINT64_MAX-2TB to UINT64_MAX].
1297 		 */
1298 		segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount),
1299 		    KERNEL_REDZONE_SIZE));
1300 
1301 		/* make sure we leave some space for user apps above hole */
1302 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1303 		if (segkpm_base > SEGKPM_BASE)
1304 			segkpm_base = SEGKPM_BASE;
1305 		PRM_DEBUG(segkpm_base);
1306 
1307 		valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1308 		if (valloc_base < segkpm_base)
1309 			panic("not enough kernel VA to support memory size");
1310 		PRM_DEBUG(valloc_base);
1311 	}
1312 #else	/* __i386 */
1313 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1314 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1315 	PRM_DEBUG(valloc_base);
1316 #endif	/* __i386 */
1317 
1318 	/*
1319 	 * do all the initial allocations
1320 	 */
1321 	perform_allocations();
1322 
1323 	/*
1324 	 * Build phys_install and phys_avail in kernel memspace.
1325 	 * - phys_install should be all memory in the system.
1326 	 * - phys_avail is phys_install minus any memory mapped before this
1327 	 *    point above KERNEL_TEXT.
1328 	 */
1329 	current = phys_install = memlist;
1330 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1331 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1332 		panic("physinstalled was too big!");
1333 	if (prom_debug)
1334 		print_memlist("phys_install", phys_install);
1335 
1336 	phys_avail = current;
1337 	PRM_POINT("Building phys_avail:\n");
1338 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1339 	    avail_filter);
1340 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1341 		panic("physavail was too big!");
1342 	if (prom_debug)
1343 		print_memlist("phys_avail", phys_avail);
1344 #ifndef	__xpv
1345 	/*
1346 	 * Free unused memlist items, which may be used by memory DR driver
1347 	 * at runtime.
1348 	 */
1349 	if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1350 		memlist_free_block((caddr_t)current,
1351 		    (caddr_t)memlist + memlist_sz - (caddr_t)current);
1352 	}
1353 #endif
1354 
1355 	/*
1356 	 * Build bios reserved memspace
1357 	 */
1358 	current = bios_rsvd;
1359 	copy_memlist_filter(bootops->boot_mem->rsvdmem, &current, NULL);
1360 	if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1361 		panic("bios_rsvd was too big!");
1362 	if (prom_debug)
1363 		print_memlist("bios_rsvd", bios_rsvd);
1364 #ifndef	__xpv
1365 	/*
1366 	 * Free unused memlist items, which may be used by memory DR driver
1367 	 * at runtime.
1368 	 */
1369 	if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1370 		memlist_free_block((caddr_t)current,
1371 		    (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1372 	}
1373 #endif
1374 
1375 	/*
1376 	 * setup page coloring
1377 	 */
1378 	page_coloring_setup(pagecolor_mem);
1379 	page_lock_init();	/* currently a no-op */
1380 
1381 	/*
1382 	 * free page list counters
1383 	 */
1384 	(void) page_ctrs_alloc(page_ctrs_mem);
1385 
1386 	/*
1387 	 * Size the pcf array based on the number of cpus in the box at
1388 	 * boot time.
1389 	 */
1390 
1391 	pcf_init();
1392 
1393 	/*
1394 	 * Initialize the page structures from the memory lists.
1395 	 */
1396 	availrmem_initial = availrmem = freemem = 0;
1397 	PRM_POINT("Calling kphysm_init()...");
1398 	npages = kphysm_init(pp_base, npages);
1399 	PRM_POINT("kphysm_init() done");
1400 	PRM_DEBUG(npages);
1401 
1402 	init_debug_info();
1403 
1404 	/*
1405 	 * Now that page_t's have been initialized, remove all the
1406 	 * initial allocation pages from the kernel free page lists.
1407 	 */
1408 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1409 	boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1410 	PRM_POINT("startup_memlist() done");
1411 
1412 	PRM_DEBUG(valloc_sz);
1413 
1414 #if defined(__amd64)
1415 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1416 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1417 		extern size_t textrepl_size_thresh;
1418 		textrepl_size_thresh = (16 << 20) - 1;
1419 	}
1420 #endif
1421 }
1422 
1423 /*
1424  * Layout the kernel's part of address space and initialize kmem allocator.
1425  */
1426 static void
1427 startup_kmem(void)
1428 {
1429 	extern void page_set_colorequiv_arr(void);
1430 #if !defined(__xpv)
1431 	extern uint64_t kpti_kbase;
1432 #endif
1433 
1434 	PRM_POINT("startup_kmem() starting...");
1435 
1436 #if defined(__amd64)
1437 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1438 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1439 		    "systems.");
1440 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1441 	core_base = (uintptr_t)COREHEAP_BASE;
1442 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1443 #else	/* __i386 */
1444 	/*
1445 	 * We configure kernelbase based on:
1446 	 *
1447 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1448 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1449 	 *
1450 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1451 	 *    On large memory systems we must lower kernelbase to allow
1452 	 *    enough room for page_t's for all of memory.
1453 	 *
1454 	 * The value set here, might be changed a little later.
1455 	 */
1456 	if (eprom_kernelbase) {
1457 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1458 		if (kernelbase > KERNELBASE_MAX)
1459 			kernelbase = KERNELBASE_MAX;
1460 	} else {
1461 		kernelbase = (uintptr_t)KERNELBASE;
1462 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1463 	}
1464 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1465 	core_base = valloc_base;
1466 	core_size = 0;
1467 #endif	/* __i386 */
1468 
1469 	PRM_DEBUG(core_base);
1470 	PRM_DEBUG(core_size);
1471 	PRM_DEBUG(kernelbase);
1472 
1473 #if defined(__i386)
1474 	segkp_fromheap = 1;
1475 #endif	/* __i386 */
1476 
1477 	ekernelheap = (char *)core_base;
1478 	PRM_DEBUG(ekernelheap);
1479 
1480 	/*
1481 	 * Now that we know the real value of kernelbase,
1482 	 * update variables that were initialized with a value of
1483 	 * KERNELBASE (in common/conf/param.c).
1484 	 *
1485 	 * XXX	The problem with this sort of hackery is that the
1486 	 *	compiler just may feel like putting the const declarations
1487 	 *	(in param.c) into the .text section.  Perhaps they should
1488 	 *	just be declared as variables there?
1489 	 */
1490 
1491 	*(uintptr_t *)&_kernelbase = kernelbase;
1492 	*(uintptr_t *)&_userlimit = kernelbase;
1493 #if defined(__amd64)
1494 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1495 #if !defined(__xpv)
1496 	kpti_kbase = kernelbase;
1497 #endif
1498 #else
1499 	*(uintptr_t *)&_userlimit32 = _userlimit;
1500 #endif
1501 	PRM_DEBUG(_kernelbase);
1502 	PRM_DEBUG(_userlimit);
1503 	PRM_DEBUG(_userlimit32);
1504 
1505 	/* We have to re-do this now that we've modified _userlimit. */
1506 	mmu_calc_user_slots();
1507 
1508 	layout_kernel_va();
1509 
1510 #if defined(__i386)
1511 	/*
1512 	 * If segmap is too large we can push the bottom of the kernel heap
1513 	 * higher than the base.  Or worse, it could exceed the top of the
1514 	 * VA space entirely, causing it to wrap around.
1515 	 */
1516 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1517 		panic("too little address space available for kernelheap,"
1518 		    " use eeprom for lower kernelbase or smaller segmapsize");
1519 #endif	/* __i386 */
1520 
1521 	/*
1522 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1523 	 */
1524 	kernelheap_init(kernelheap, ekernelheap,
1525 	    kernelheap + MMU_PAGESIZE,
1526 	    (void *)core_base, (void *)(core_base + core_size));
1527 
1528 #if defined(__xpv)
1529 	/*
1530 	 * Link pending events struct into cpu struct
1531 	 */
1532 	CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1533 #endif
1534 	/*
1535 	 * Initialize kernel memory allocator.
1536 	 */
1537 	kmem_init();
1538 
1539 	/*
1540 	 * Factor in colorequiv to check additional 'equivalent' bins
1541 	 */
1542 	page_set_colorequiv_arr();
1543 
1544 	/*
1545 	 * print this out early so that we know what's going on
1546 	 */
1547 	print_x86_featureset(x86_featureset);
1548 
1549 	/*
1550 	 * Initialize bp_mapin().
1551 	 */
1552 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1553 
1554 	/*
1555 	 * orig_npages is non-zero if physmem has been configured for less
1556 	 * than the available memory.
1557 	 */
1558 	if (orig_npages) {
1559 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1560 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1561 		    npages, orig_npages);
1562 	}
1563 #if defined(__i386)
1564 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1565 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1566 		    "System using 0x%lx",
1567 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1568 #endif
1569 
1570 #ifdef	KERNELBASE_ABI_MIN
1571 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1572 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1573 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1574 	}
1575 #endif
1576 
1577 #ifndef __xpv
1578 	if (plat_dr_support_memory()) {
1579 		mem_config_init();
1580 	}
1581 #else	/* __xpv */
1582 	/*
1583 	 * Some of the xen start information has to be relocated up
1584 	 * into the kernel's permanent address space.
1585 	 */
1586 	PRM_POINT("calling xen_relocate_start_info()");
1587 	xen_relocate_start_info();
1588 	PRM_POINT("xen_relocate_start_info() done");
1589 
1590 	/*
1591 	 * (Update the vcpu pointer in our cpu structure to point into
1592 	 * the relocated shared info.)
1593 	 */
1594 	CPU->cpu_m.mcpu_vcpu_info =
1595 	    &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1596 #endif	/* __xpv */
1597 
1598 	PRM_POINT("startup_kmem() done");
1599 }
1600 
1601 #ifndef __xpv
1602 /*
1603  * If we have detected that we are running in an HVM environment, we need
1604  * to prepend the PV driver directory to the module search path.
1605  */
1606 #define	HVM_MOD_DIR "/platform/i86hvm/kernel"
1607 static void
1608 update_default_path()
1609 {
1610 	char *current, *newpath;
1611 	int newlen;
1612 
1613 	/*
1614 	 * We are about to resync with krtld.  krtld will reset its
1615 	 * internal module search path iff Solaris has set default_path.
1616 	 * We want to be sure we're prepending this new directory to the
1617 	 * right search path.
1618 	 */
1619 	current = (default_path == NULL) ? kobj_module_path : default_path;
1620 
1621 	newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1622 	newpath = kmem_alloc(newlen, KM_SLEEP);
1623 	(void) strcpy(newpath, HVM_MOD_DIR);
1624 	(void) strcat(newpath, " ");
1625 	(void) strcat(newpath, current);
1626 
1627 	default_path = newpath;
1628 }
1629 #endif
1630 
1631 static void
1632 startup_modules(void)
1633 {
1634 	int cnt;
1635 	extern void prom_setup(void);
1636 	int32_t v, h;
1637 	char d[11];
1638 	char *cp;
1639 	cmi_hdl_t hdl;
1640 
1641 	PRM_POINT("startup_modules() starting...");
1642 
1643 #ifndef __xpv
1644 	/*
1645 	 * Initialize ten-micro second timer so that drivers will
1646 	 * not get short changed in their init phase. This was
1647 	 * not getting called until clkinit which, on fast cpu's
1648 	 * caused the drv_usecwait to be way too short.
1649 	 */
1650 	microfind();
1651 
1652 	if ((get_hwenv() & HW_XEN_HVM) != 0)
1653 		update_default_path();
1654 #endif
1655 
1656 	/*
1657 	 * Read the GMT lag from /etc/rtc_config.
1658 	 */
1659 	sgmtl(process_rtc_config_file());
1660 
1661 	/*
1662 	 * Calculate default settings of system parameters based upon
1663 	 * maxusers, yet allow to be overridden via the /etc/system file.
1664 	 */
1665 	param_calc(0);
1666 
1667 	mod_setup();
1668 
1669 	/*
1670 	 * Initialize system parameters.
1671 	 */
1672 	param_init();
1673 
1674 	/*
1675 	 * Initialize the default brands
1676 	 */
1677 	brand_init();
1678 
1679 	/*
1680 	 * maxmem is the amount of physical memory we're playing with.
1681 	 */
1682 	maxmem = physmem;
1683 
1684 	/*
1685 	 * Initialize segment management stuff.
1686 	 */
1687 	seg_init();
1688 
1689 	if (modload("fs", "specfs") == -1)
1690 		halt("Can't load specfs");
1691 
1692 	if (modload("fs", "devfs") == -1)
1693 		halt("Can't load devfs");
1694 
1695 	if (modload("fs", "dev") == -1)
1696 		halt("Can't load dev");
1697 
1698 	if (modload("fs", "procfs") == -1)
1699 		halt("Can't load procfs");
1700 
1701 	(void) modloadonly("sys", "lbl_edition");
1702 
1703 	dispinit();
1704 
1705 	/* Read cluster configuration data. */
1706 	clconf_init();
1707 
1708 #if defined(__xpv)
1709 	(void) ec_init();
1710 	gnttab_init();
1711 	(void) xs_early_init();
1712 #endif /* __xpv */
1713 
1714 	/*
1715 	 * Create a kernel device tree. First, create rootnex and
1716 	 * then invoke bus specific code to probe devices.
1717 	 */
1718 	setup_ddi();
1719 
1720 #ifdef __xpv
1721 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1722 #endif
1723 	{
1724 		id_t smid;
1725 		smbios_system_t smsys;
1726 		smbios_info_t sminfo;
1727 		char *mfg;
1728 		/*
1729 		 * Load the System Management BIOS into the global ksmbios
1730 		 * handle, if an SMBIOS is present on this system.
1731 		 * Also set "si-hw-provider" property, if not already set.
1732 		 */
1733 		ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1734 		if (ksmbios != NULL &&
1735 		    ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) &&
1736 		    (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) {
1737 			mfg = (char *)sminfo.smbi_manufacturer;
1738 			if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) {
1739 				extern char hw_provider[];
1740 				int i;
1741 				for (i = 0; i < SYS_NMLN; i++) {
1742 					if (isprint(mfg[i]))
1743 						hw_provider[i] = mfg[i];
1744 					else {
1745 						hw_provider[i] = '\0';
1746 						break;
1747 					}
1748 				}
1749 				hw_provider[SYS_NMLN - 1] = '\0';
1750 			}
1751 		}
1752 	}
1753 
1754 
1755 	/*
1756 	 * Originally clconf_init() apparently needed the hostid.  But
1757 	 * this no longer appears to be true - it uses its own nodeid.
1758 	 * By placing the hostid logic here, we are able to make use of
1759 	 * the SMBIOS UUID.
1760 	 */
1761 	if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1762 		cmn_err(CE_WARN, "Unable to set hostid");
1763 	} else {
1764 		for (v = h, cnt = 0; cnt < 10; cnt++) {
1765 			d[cnt] = (char)(v % 10);
1766 			v /= 10;
1767 			if (v == 0)
1768 				break;
1769 		}
1770 		for (cp = hw_serial; cnt >= 0; cnt--)
1771 			*cp++ = d[cnt] + '0';
1772 		*cp = 0;
1773 	}
1774 
1775 	/*
1776 	 * Set up the CPU module subsystem for the boot cpu in the native
1777 	 * case, and all physical cpu resource in the xpv dom0 case.
1778 	 * Modifies the device tree, so this must be done after
1779 	 * setup_ddi().
1780 	 */
1781 #ifdef __xpv
1782 	/*
1783 	 * If paravirtualized and on dom0 then we initialize all physical
1784 	 * cpu handles now;  if paravirtualized on a domU then do not
1785 	 * initialize.
1786 	 */
1787 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1788 		xen_mc_lcpu_cookie_t cpi;
1789 
1790 		for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1791 		    cpi = xen_physcpu_next(cpi)) {
1792 			if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1793 			    xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1794 			    xen_physcpu_strandid(cpi))) != NULL &&
1795 			    is_x86_feature(x86_featureset, X86FSET_MCA))
1796 				cmi_mca_init(hdl);
1797 		}
1798 	}
1799 #else
1800 	/*
1801 	 * Initialize a handle for the boot cpu - others will initialize
1802 	 * as they startup.
1803 	 */
1804 	if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1805 	    cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1806 		if (is_x86_feature(x86_featureset, X86FSET_MCA))
1807 			cmi_mca_init(hdl);
1808 		CPU->cpu_m.mcpu_cmi_hdl = hdl;
1809 	}
1810 #endif	/* __xpv */
1811 
1812 	/*
1813 	 * Fake a prom tree such that /dev/openprom continues to work
1814 	 */
1815 	PRM_POINT("startup_modules: calling prom_setup...");
1816 	prom_setup();
1817 	PRM_POINT("startup_modules: done");
1818 
1819 	/*
1820 	 * Load all platform specific modules
1821 	 */
1822 	PRM_POINT("startup_modules: calling psm_modload...");
1823 	psm_modload();
1824 
1825 	PRM_POINT("startup_modules() done");
1826 }
1827 
1828 /*
1829  * claim a "setaside" boot page for use in the kernel
1830  */
1831 page_t *
1832 boot_claim_page(pfn_t pfn)
1833 {
1834 	page_t *pp;
1835 
1836 	pp = page_numtopp_nolock(pfn);
1837 	ASSERT(pp != NULL);
1838 
1839 	if (PP_ISBOOTPAGES(pp)) {
1840 		if (pp->p_next != NULL)
1841 			pp->p_next->p_prev = pp->p_prev;
1842 		if (pp->p_prev == NULL)
1843 			bootpages = pp->p_next;
1844 		else
1845 			pp->p_prev->p_next = pp->p_next;
1846 	} else {
1847 		/*
1848 		 * htable_attach() expects a base pagesize page
1849 		 */
1850 		if (pp->p_szc != 0)
1851 			page_boot_demote(pp);
1852 		pp = page_numtopp(pfn, SE_EXCL);
1853 	}
1854 	return (pp);
1855 }
1856 
1857 /*
1858  * Walk through the pagetables looking for pages mapped in by boot.  If the
1859  * setaside flag is set the pages are expected to be returned to the
1860  * kernel later in boot, so we add them to the bootpages list.
1861  */
1862 static void
1863 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1864 {
1865 	uintptr_t va = low;
1866 	size_t len;
1867 	uint_t prot;
1868 	pfn_t pfn;
1869 	page_t *pp;
1870 	pgcnt_t boot_protect_cnt = 0;
1871 
1872 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1873 		if (va + len >= high)
1874 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1875 			    "legal range.", len, (void *)va);
1876 
1877 		while (len > 0) {
1878 			pp = page_numtopp_alloc(pfn);
1879 			if (pp != NULL) {
1880 				if (setaside == 0)
1881 					panic("Unexpected mapping by boot.  "
1882 					    "addr=%p pfn=%lx\n",
1883 					    (void *)va, pfn);
1884 
1885 				pp->p_next = bootpages;
1886 				pp->p_prev = NULL;
1887 				PP_SETBOOTPAGES(pp);
1888 				if (bootpages != NULL) {
1889 					bootpages->p_prev = pp;
1890 				}
1891 				bootpages = pp;
1892 				++boot_protect_cnt;
1893 			}
1894 
1895 			++pfn;
1896 			len -= MMU_PAGESIZE;
1897 			va += MMU_PAGESIZE;
1898 		}
1899 	}
1900 	PRM_DEBUG(boot_protect_cnt);
1901 }
1902 
1903 /*
1904  *
1905  */
1906 static void
1907 layout_kernel_va(void)
1908 {
1909 	PRM_POINT("layout_kernel_va() starting...");
1910 	/*
1911 	 * Establish the final size of the kernel's heap, size of segmap,
1912 	 * segkp, etc.
1913 	 */
1914 
1915 #if defined(__amd64)
1916 
1917 	kpm_vbase = (caddr_t)segkpm_base;
1918 	if (physmax + 1 < plat_dr_physmax) {
1919 		kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1920 	} else {
1921 		kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1922 	}
1923 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1924 		panic("not enough room for kpm!");
1925 	PRM_DEBUG(kpm_size);
1926 	PRM_DEBUG(kpm_vbase);
1927 
1928 	/*
1929 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1930 	 * faster to access than embedding it in the heap.
1931 	 */
1932 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1933 	if (!segkp_fromheap) {
1934 		size_t sz = mmu_ptob(segkpsize);
1935 
1936 		/*
1937 		 * determine size of segkp
1938 		 */
1939 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1940 			sz = SEGKPDEFSIZE;
1941 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1942 			    "segkpsize has been reset to %ld pages",
1943 			    mmu_btop(sz));
1944 		}
1945 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1946 
1947 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1948 	}
1949 	PRM_DEBUG(segkp_base);
1950 	PRM_DEBUG(segkpsize);
1951 
1952 	/*
1953 	 * segzio is used for ZFS cached data. It uses a distinct VA
1954 	 * segment (from kernel heap) so that we can easily tell not to
1955 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1956 	 * to give it lots of VA, but not constrain the kernel heap.
1957 	 * We can use 1.5x physmem for segzio, leaving approximately
1958 	 * another 1.5x physmem for heap.  See also the comment in
1959 	 * startup_memlist().
1960 	 */
1961 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1962 	if (segzio_fromheap) {
1963 		segziosize = 0;
1964 	} else {
1965 		size_t physmem_size = mmu_ptob(physmem);
1966 		size_t size = (segziosize == 0) ?
1967 		    physmem_size * 3 / 2 : mmu_ptob(segziosize);
1968 
1969 		if (size < SEGZIOMINSIZE)
1970 			size = SEGZIOMINSIZE;
1971 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1972 	}
1973 	PRM_DEBUG(segziosize);
1974 	PRM_DEBUG(segzio_base);
1975 
1976 	/*
1977 	 * Put the range of VA for device mappings next, kmdb knows to not
1978 	 * grep in this range of addresses.
1979 	 */
1980 	toxic_addr =
1981 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1982 	PRM_DEBUG(toxic_addr);
1983 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1984 #else /* __i386 */
1985 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1986 #endif /* __i386 */
1987 	PRM_DEBUG(segmap_start);
1988 
1989 	/*
1990 	 * Users can change segmapsize through eeprom. If the variable
1991 	 * is tuned through eeprom, there is no upper bound on the
1992 	 * size of segmap.
1993 	 */
1994 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1995 
1996 #if defined(__i386)
1997 	/*
1998 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1999 	 * the bottom of the kernel's address range.  Set aside space for a
2000 	 * small red zone just below the start of segmap.
2001 	 */
2002 	segmap_start += KERNEL_REDZONE_SIZE;
2003 	segmapsize -= KERNEL_REDZONE_SIZE;
2004 #endif
2005 
2006 	PRM_DEBUG(segmap_start);
2007 	PRM_DEBUG(segmapsize);
2008 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
2009 	PRM_DEBUG(kernelheap);
2010 	PRM_POINT("layout_kernel_va() done...");
2011 }
2012 
2013 /*
2014  * Finish initializing the VM system, now that we are no longer
2015  * relying on the boot time memory allocators.
2016  */
2017 static void
2018 startup_vm(void)
2019 {
2020 	struct segmap_crargs a;
2021 
2022 	extern int use_brk_lpg, use_stk_lpg;
2023 
2024 	PRM_POINT("startup_vm() starting...");
2025 
2026 	/*
2027 	 * Initialize the hat layer.
2028 	 */
2029 	hat_init();
2030 
2031 	/*
2032 	 * Do final allocations of HAT data structures that need to
2033 	 * be allocated before quiescing the boot loader.
2034 	 */
2035 	PRM_POINT("Calling hat_kern_alloc()...");
2036 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
2037 	PRM_POINT("hat_kern_alloc() done");
2038 
2039 #ifndef __xpv
2040 	/*
2041 	 * Setup Page Attribute Table
2042 	 */
2043 	pat_sync();
2044 #endif
2045 
2046 	/*
2047 	 * The next two loops are done in distinct steps in order
2048 	 * to be sure that any page that is doubly mapped (both above
2049 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
2050 	 * Note this may never happen, but it might someday.
2051 	 */
2052 	bootpages = NULL;
2053 	PRM_POINT("Protecting boot pages");
2054 
2055 	/*
2056 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
2057 	 * page_t's. This can only happen if something weird allocated
2058 	 * in this range (like kadb/kmdb).
2059 	 */
2060 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
2061 
2062 	/*
2063 	 * Before we can take over memory allocation/mapping from the boot
2064 	 * loader we must remove from our free page lists any boot allocated
2065 	 * pages that stay mapped until release_bootstrap().
2066 	 */
2067 	protect_boot_range(0, kernelbase, 1);
2068 
2069 
2070 	/*
2071 	 * Switch to running on regular HAT (not boot_mmu)
2072 	 */
2073 	PRM_POINT("Calling hat_kern_setup()...");
2074 	hat_kern_setup();
2075 
2076 	/*
2077 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
2078 	 */
2079 	bop_no_more_mem();
2080 
2081 	PRM_POINT("hat_kern_setup() done");
2082 
2083 	hat_cpu_online(CPU);
2084 
2085 	/*
2086 	 * Initialize VM system
2087 	 */
2088 	PRM_POINT("Calling kvm_init()...");
2089 	kvm_init();
2090 	PRM_POINT("kvm_init() done");
2091 
2092 	/*
2093 	 * Tell kmdb that the VM system is now working
2094 	 */
2095 	if (boothowto & RB_DEBUG)
2096 		kdi_dvec_vmready();
2097 
2098 #if defined(__xpv)
2099 	/*
2100 	 * Populate the I/O pool on domain 0
2101 	 */
2102 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2103 		extern long populate_io_pool(void);
2104 		long init_io_pool_cnt;
2105 
2106 		PRM_POINT("Populating reserve I/O page pool");
2107 		init_io_pool_cnt = populate_io_pool();
2108 		PRM_DEBUG(init_io_pool_cnt);
2109 	}
2110 #endif
2111 	/*
2112 	 * Mangle the brand string etc.
2113 	 */
2114 	cpuid_pass3(CPU);
2115 
2116 #if defined(__amd64)
2117 
2118 	/*
2119 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
2120 	 */
2121 	device_arena = vmem_create("device", (void *)toxic_addr,
2122 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
2123 
2124 #else	/* __i386 */
2125 
2126 	/*
2127 	 * allocate the bit map that tracks toxic pages
2128 	 */
2129 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2130 	PRM_DEBUG(toxic_bit_map_len);
2131 	toxic_bit_map =
2132 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2133 	ASSERT(toxic_bit_map != NULL);
2134 	PRM_DEBUG(toxic_bit_map);
2135 
2136 #endif	/* __i386 */
2137 
2138 
2139 	/*
2140 	 * Now that we've got more VA, as well as the ability to allocate from
2141 	 * it, tell the debugger.
2142 	 */
2143 	if (boothowto & RB_DEBUG)
2144 		kdi_dvec_memavail();
2145 
2146 #if !defined(__xpv)
2147 	/*
2148 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
2149 	 * parameters left there by controllers/BIOS.
2150 	 */
2151 	PRM_POINT("setup up p0_va");
2152 	p0_va = i86devmap(0, 1, PROT_READ);
2153 	PRM_DEBUG(p0_va);
2154 #endif
2155 
2156 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2157 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2158 
2159 	/*
2160 	 * disable automatic large pages for small memory systems or
2161 	 * when the disable flag is set.
2162 	 *
2163 	 * Do not yet consider page sizes larger than 2m/4m.
2164 	 */
2165 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
2166 		max_uheap_lpsize = LEVEL_SIZE(1);
2167 		max_ustack_lpsize = LEVEL_SIZE(1);
2168 		max_privmap_lpsize = LEVEL_SIZE(1);
2169 		max_uidata_lpsize = LEVEL_SIZE(1);
2170 		max_utext_lpsize = LEVEL_SIZE(1);
2171 		max_shm_lpsize = LEVEL_SIZE(1);
2172 	}
2173 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2174 	    auto_lpg_disable) {
2175 		use_brk_lpg = 0;
2176 		use_stk_lpg = 0;
2177 	}
2178 	mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2179 
2180 	PRM_POINT("Calling hat_init_finish()...");
2181 	hat_init_finish();
2182 	PRM_POINT("hat_init_finish() done");
2183 
2184 	/*
2185 	 * Initialize the segkp segment type.
2186 	 */
2187 	rw_enter(&kas.a_lock, RW_WRITER);
2188 	PRM_POINT("Attaching segkp");
2189 	if (segkp_fromheap) {
2190 		segkp->s_as = &kas;
2191 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2192 	    segkp) < 0) {
2193 		panic("startup: cannot attach segkp");
2194 		/*NOTREACHED*/
2195 	}
2196 	PRM_POINT("Doing segkp_create()");
2197 	if (segkp_create(segkp) != 0) {
2198 		panic("startup: segkp_create failed");
2199 		/*NOTREACHED*/
2200 	}
2201 	PRM_DEBUG(segkp);
2202 	rw_exit(&kas.a_lock);
2203 
2204 	/*
2205 	 * kpm segment
2206 	 */
2207 	segmap_kpm = 0;
2208 	if (kpm_desired)
2209 		kpm_init();
2210 
2211 	/*
2212 	 * Now create segmap segment.
2213 	 */
2214 	rw_enter(&kas.a_lock, RW_WRITER);
2215 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2216 		panic("cannot attach segmap");
2217 		/*NOTREACHED*/
2218 	}
2219 	PRM_DEBUG(segmap);
2220 
2221 	a.prot = PROT_READ | PROT_WRITE;
2222 	a.shmsize = 0;
2223 	a.nfreelist = segmapfreelists;
2224 
2225 	if (segmap_create(segmap, (caddr_t)&a) != 0)
2226 		panic("segmap_create segmap");
2227 	rw_exit(&kas.a_lock);
2228 
2229 	setup_vaddr_for_ppcopy(CPU);
2230 
2231 	segdev_init();
2232 #if defined(__xpv)
2233 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2234 #endif
2235 		pmem_init();
2236 
2237 	PRM_POINT("startup_vm() done");
2238 }
2239 
2240 /*
2241  * Load a tod module for the non-standard tod part found on this system.
2242  */
2243 static void
2244 load_tod_module(char *todmod)
2245 {
2246 	if (modload("tod", todmod) == -1)
2247 		halt("Can't load TOD module");
2248 }
2249 
2250 static void
2251 startup_end(void)
2252 {
2253 	int i;
2254 	extern void setx86isalist(void);
2255 	extern void cpu_event_init(void);
2256 
2257 	PRM_POINT("startup_end() starting...");
2258 
2259 	/*
2260 	 * Perform tasks that get done after most of the VM
2261 	 * initialization has been done but before the clock
2262 	 * and other devices get started.
2263 	 */
2264 	kern_setup1();
2265 
2266 	/*
2267 	 * Perform CPC initialization for this CPU.
2268 	 */
2269 	kcpc_hw_init(CPU);
2270 
2271 	/*
2272 	 * Initialize cpu event framework.
2273 	 */
2274 	cpu_event_init();
2275 
2276 #if defined(OPTERON_WORKAROUND_6323525)
2277 	if (opteron_workaround_6323525)
2278 		patch_workaround_6323525();
2279 #endif
2280 	/*
2281 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2282 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2283 	 */
2284 	if (tod_module_name != NULL) {
2285 		PRM_POINT("load_tod_module()");
2286 		load_tod_module(tod_module_name);
2287 	}
2288 
2289 #if defined(__xpv)
2290 	/*
2291 	 * Forceload interposing TOD module for the hypervisor.
2292 	 */
2293 	PRM_POINT("load_tod_module()");
2294 	load_tod_module("xpvtod");
2295 #endif
2296 
2297 	/*
2298 	 * Configure the system.
2299 	 */
2300 	PRM_POINT("Calling configure()...");
2301 	configure();		/* set up devices */
2302 	PRM_POINT("configure() done");
2303 
2304 	/*
2305 	 * We can now setup for XSAVE because fpu_probe is done in configure().
2306 	 */
2307 	if (fp_save_mech == FP_XSAVE) {
2308 		xsave_setup_msr(CPU);
2309 	}
2310 
2311 	/*
2312 	 * Set the isa_list string to the defined instruction sets we
2313 	 * support.
2314 	 */
2315 	setx86isalist();
2316 	cpu_intr_alloc(CPU, NINTR_THREADS);
2317 	psm_install();
2318 
2319 	/*
2320 	 * We're done with bootops.  We don't unmap the bootstrap yet because
2321 	 * we're still using bootsvcs.
2322 	 */
2323 	PRM_POINT("NULLing out bootops");
2324 	*bootopsp = (struct bootops *)NULL;
2325 	bootops = (struct bootops *)NULL;
2326 
2327 #if defined(__xpv)
2328 	ec_init_debug_irq();
2329 	xs_domu_init();
2330 #endif
2331 
2332 #if !defined(__xpv)
2333 	/*
2334 	 * Intel IOMMU has been setup/initialized in ddi_impl.c
2335 	 * Start it up now.
2336 	 */
2337 	immu_startup();
2338 
2339 	/*
2340 	 * Now that we're no longer going to drop into real mode for a BIOS call
2341 	 * via bootops, we can enable PCID (which requires CR0.PG).
2342 	 */
2343 	enable_pcid();
2344 #endif
2345 
2346 	PRM_POINT("Enabling interrupts");
2347 	(*picinitf)();
2348 	sti();
2349 #if defined(__xpv)
2350 	ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2351 	xen_late_startup();
2352 #endif
2353 
2354 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2355 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
2356 
2357 	/*
2358 	 * Register software interrupt handlers for ddi_periodic_add(9F).
2359 	 * Software interrupts up to the level 10 are supported.
2360 	 */
2361 	for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2362 		(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2363 		    (avfunc)ddi_periodic_softintr, "ddi_periodic",
2364 		    (caddr_t)(uintptr_t)i, NULL);
2365 	}
2366 
2367 #if !defined(__xpv)
2368 	if (modload("drv", "amd_iommu") < 0) {
2369 		PRM_POINT("No AMD IOMMU present\n");
2370 	} else if (ddi_hold_installed_driver(ddi_name_to_major(
2371 	    "amd_iommu")) == NULL) {
2372 		prom_printf("ERROR: failed to attach AMD IOMMU\n");
2373 	}
2374 #endif
2375 	post_startup_cpu_fixups();
2376 
2377 	PRM_POINT("startup_end() done");
2378 }
2379 
2380 /*
2381  * Don't remove the following 2 variables.  They are necessary
2382  * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2383  */
2384 char *_hs1107 = hw_serial;
2385 ulong_t  _bdhs34;
2386 
2387 void
2388 post_startup(void)
2389 {
2390 	extern void cpupm_init(cpu_t *);
2391 	extern void cpu_event_init_cpu(cpu_t *);
2392 
2393 	/*
2394 	 * Set the system wide, processor-specific flags to be passed
2395 	 * to userland via the aux vector for performance hints and
2396 	 * instruction set extensions.
2397 	 */
2398 	bind_hwcap();
2399 
2400 #ifdef __xpv
2401 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2402 #endif
2403 	{
2404 #if defined(__xpv)
2405 		xpv_panic_init();
2406 #else
2407 		/*
2408 		 * Startup the memory scrubber.
2409 		 * XXPV	This should be running somewhere ..
2410 		 */
2411 		if ((get_hwenv() & HW_VIRTUAL) == 0)
2412 			memscrub_init();
2413 #endif
2414 	}
2415 
2416 	/*
2417 	 * Complete CPU module initialization
2418 	 */
2419 	cmi_post_startup();
2420 
2421 	/*
2422 	 * Perform forceloading tasks for /etc/system.
2423 	 */
2424 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2425 
2426 	/*
2427 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2428 	 * ON4.0: This must be fixed or restated in /etc/systems.
2429 	 */
2430 	(void) modload("fs", "procfs");
2431 
2432 	(void) i_ddi_attach_hw_nodes("pit_beep");
2433 
2434 #if defined(__i386)
2435 	/*
2436 	 * Check for required functional Floating Point hardware,
2437 	 * unless FP hardware explicitly disabled.
2438 	 */
2439 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2440 		halt("No working FP hardware found");
2441 #endif
2442 
2443 	maxmem = freemem;
2444 
2445 	cpu_event_init_cpu(CPU);
2446 	cpupm_init(CPU);
2447 	(void) mach_cpu_create_device_node(CPU, NULL);
2448 
2449 	pg_init();
2450 }
2451 
2452 static int
2453 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2454 {
2455 	return ((pp->p_pagenum >= btop(low_addr)) &&
2456 	    (pp->p_pagenum < btopr(high_addr)));
2457 }
2458 
2459 static int
2460 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2461 {
2462 	uint_t i;
2463 
2464 	for (i = 0; modranges[i].phys != 0; i++) {
2465 		if (pp_in_range(pp, modranges[i].phys,
2466 		    modranges[i].phys + modranges[i].size))
2467 			return (1);
2468 	}
2469 
2470 	return (0);
2471 }
2472 
2473 void
2474 release_bootstrap(void)
2475 {
2476 	int root_is_ramdisk;
2477 	page_t *pp;
2478 	extern void kobj_boot_unmountroot(void);
2479 	extern dev_t rootdev;
2480 	uint_t i;
2481 	char propname[32];
2482 	rd_existing_t *modranges;
2483 #if !defined(__xpv)
2484 	pfn_t	pfn;
2485 #endif
2486 
2487 	/*
2488 	 * Save the bootfs module ranges so that we can reserve them below
2489 	 * for the real bootfs.
2490 	 */
2491 	modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2492 	    KM_SLEEP);
2493 	for (i = 0; ; i++) {
2494 		uint64_t start, size;
2495 
2496 		modranges[i].phys = 0;
2497 
2498 		(void) snprintf(propname, sizeof (propname),
2499 		    "module-addr-%u", i);
2500 		if (do_bsys_getproplen(NULL, propname) <= 0)
2501 			break;
2502 		(void) do_bsys_getprop(NULL, propname, &start);
2503 
2504 		(void) snprintf(propname, sizeof (propname),
2505 		    "module-size-%u", i);
2506 		if (do_bsys_getproplen(NULL, propname) <= 0)
2507 			break;
2508 		(void) do_bsys_getprop(NULL, propname, &size);
2509 
2510 		modranges[i].phys = start;
2511 		modranges[i].size = size;
2512 	}
2513 
2514 	/* unmount boot ramdisk and release kmem usage */
2515 	kobj_boot_unmountroot();
2516 
2517 	/*
2518 	 * We're finished using the boot loader so free its pages.
2519 	 */
2520 	PRM_POINT("Unmapping lower boot pages");
2521 
2522 	clear_boot_mappings(0, _userlimit);
2523 
2524 	postbootkernelbase = kernelbase;
2525 
2526 	/*
2527 	 * If root isn't on ramdisk, destroy the hardcoded
2528 	 * ramdisk node now and release the memory. Else,
2529 	 * ramdisk memory is kept in rd_pages.
2530 	 */
2531 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2532 	if (!root_is_ramdisk) {
2533 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2534 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2535 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
2536 		(void) ddi_remove_child(dip, 0);
2537 	}
2538 
2539 	PRM_POINT("Releasing boot pages");
2540 	while (bootpages) {
2541 		extern uint64_t ramdisk_start, ramdisk_end;
2542 		pp = bootpages;
2543 		bootpages = pp->p_next;
2544 
2545 
2546 		/* Keep pages for the lower 64K */
2547 		if (pp_in_range(pp, 0, 0x40000)) {
2548 			pp->p_next = lower_pages;
2549 			lower_pages = pp;
2550 			lower_pages_count++;
2551 			continue;
2552 		}
2553 
2554 		if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2555 		    ramdisk_end) || pp_in_module(pp, modranges)) {
2556 			pp->p_next = rd_pages;
2557 			rd_pages = pp;
2558 			continue;
2559 		}
2560 		pp->p_next = (struct page *)0;
2561 		pp->p_prev = (struct page *)0;
2562 		PP_CLRBOOTPAGES(pp);
2563 		page_free(pp, 1);
2564 	}
2565 	PRM_POINT("Boot pages released");
2566 
2567 	kmem_free(modranges, sizeof (rd_existing_t) * 99);
2568 
2569 #if !defined(__xpv)
2570 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2571 	/*
2572 	 * Find 1 page below 1 MB so that other processors can boot up or
2573 	 * so that any processor can resume.
2574 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
2575 	 * We should have just free'd one up.
2576 	 */
2577 
2578 	/*
2579 	 * 0x10 pages is 64K.  Leave the bottom 64K alone
2580 	 * for BIOS.
2581 	 */
2582 	for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2583 		if (page_numtopp_alloc(pfn) == NULL)
2584 			continue;
2585 		rm_platter_va = i86devmap(pfn, 1,
2586 		    PROT_READ | PROT_WRITE | PROT_EXEC);
2587 		rm_platter_pa = ptob(pfn);
2588 		break;
2589 	}
2590 	if (pfn == btop(1*1024*1024) && use_mp)
2591 		panic("No page below 1M available for starting "
2592 		    "other processors or for resuming from system-suspend");
2593 #endif	/* !__xpv */
2594 }
2595 
2596 /*
2597  * Initialize the platform-specific parts of a page_t.
2598  */
2599 void
2600 add_physmem_cb(page_t *pp, pfn_t pnum)
2601 {
2602 	pp->p_pagenum = pnum;
2603 	pp->p_mapping = NULL;
2604 	pp->p_embed = 0;
2605 	pp->p_share = 0;
2606 	pp->p_mlentry = 0;
2607 }
2608 
2609 /*
2610  * kphysm_init() initializes physical memory.
2611  */
2612 static pgcnt_t
2613 kphysm_init(
2614 	page_t *pp,
2615 	pgcnt_t npages)
2616 {
2617 	struct memlist	*pmem;
2618 	struct memseg	*cur_memseg;
2619 	pfn_t		base_pfn;
2620 	pfn_t		end_pfn;
2621 	pgcnt_t		num;
2622 	pgcnt_t		pages_done = 0;
2623 	uint64_t	addr;
2624 	uint64_t	size;
2625 	extern pfn_t	ddiphysmin;
2626 	extern int	mnode_xwa;
2627 	int		ms = 0, me = 0;
2628 
2629 	ASSERT(page_hash != NULL && page_hashsz != 0);
2630 
2631 	cur_memseg = memseg_base;
2632 	for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2633 		/*
2634 		 * In a 32 bit kernel can't use higher memory if we're
2635 		 * not booting in PAE mode. This check takes care of that.
2636 		 */
2637 		addr = pmem->ml_address;
2638 		size = pmem->ml_size;
2639 		if (btop(addr) > physmax)
2640 			continue;
2641 
2642 		/*
2643 		 * align addr and size - they may not be at page boundaries
2644 		 */
2645 		if ((addr & MMU_PAGEOFFSET) != 0) {
2646 			addr += MMU_PAGEOFFSET;
2647 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2648 			size -= addr - pmem->ml_address;
2649 		}
2650 
2651 		/* only process pages below or equal to physmax */
2652 		if ((btop(addr + size) - 1) > physmax)
2653 			size = ptob(physmax - btop(addr) + 1);
2654 
2655 		num = btop(size);
2656 		if (num == 0)
2657 			continue;
2658 
2659 		if (num > npages)
2660 			num = npages;
2661 
2662 		npages -= num;
2663 		pages_done += num;
2664 		base_pfn = btop(addr);
2665 
2666 		if (prom_debug)
2667 			prom_printf("MEMSEG addr=0x%" PRIx64
2668 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2669 			    addr, num, base_pfn, base_pfn + num);
2670 
2671 		/*
2672 		 * Ignore pages below ddiphysmin to simplify ddi memory
2673 		 * allocation with non-zero addr_lo requests.
2674 		 */
2675 		if (base_pfn < ddiphysmin) {
2676 			if (base_pfn + num <= ddiphysmin)
2677 				continue;
2678 			pp += (ddiphysmin - base_pfn);
2679 			num -= (ddiphysmin - base_pfn);
2680 			base_pfn = ddiphysmin;
2681 		}
2682 
2683 		/*
2684 		 * mnode_xwa is greater than 1 when large pages regions can
2685 		 * cross memory node boundaries. To prevent the formation
2686 		 * of these large pages, configure the memsegs based on the
2687 		 * memory node ranges which had been made non-contiguous.
2688 		 */
2689 		if (mnode_xwa > 1) {
2690 
2691 			end_pfn = base_pfn + num - 1;
2692 			ms = PFN_2_MEM_NODE(base_pfn);
2693 			me = PFN_2_MEM_NODE(end_pfn);
2694 
2695 			if (ms != me) {
2696 				/*
2697 				 * current range spans more than 1 memory node.
2698 				 * Set num to only the pfn range in the start
2699 				 * memory node.
2700 				 */
2701 				num = mem_node_config[ms].physmax - base_pfn
2702 				    + 1;
2703 				ASSERT(end_pfn > mem_node_config[ms].physmax);
2704 			}
2705 		}
2706 
2707 		for (;;) {
2708 			/*
2709 			 * Build the memsegs entry
2710 			 */
2711 			cur_memseg->pages = pp;
2712 			cur_memseg->epages = pp + num;
2713 			cur_memseg->pages_base = base_pfn;
2714 			cur_memseg->pages_end = base_pfn + num;
2715 
2716 			/*
2717 			 * Insert into memseg list in decreasing pfn range
2718 			 * order. Low memory is typically more fragmented such
2719 			 * that this ordering keeps the larger ranges at the
2720 			 * front of the list for code that searches memseg.
2721 			 * This ASSERTS that the memsegs coming in from boot
2722 			 * are in increasing physical address order and not
2723 			 * contiguous.
2724 			 */
2725 			if (memsegs != NULL) {
2726 				ASSERT(cur_memseg->pages_base >=
2727 				    memsegs->pages_end);
2728 				cur_memseg->next = memsegs;
2729 			}
2730 			memsegs = cur_memseg;
2731 
2732 			/*
2733 			 * add_physmem() initializes the PSM part of the page
2734 			 * struct by calling the PSM back with add_physmem_cb().
2735 			 * In addition it coalesces pages into larger pages as
2736 			 * it initializes them.
2737 			 */
2738 			add_physmem(pp, num, base_pfn);
2739 			cur_memseg++;
2740 			availrmem_initial += num;
2741 			availrmem += num;
2742 
2743 			pp += num;
2744 			if (ms >= me)
2745 				break;
2746 
2747 			/* process next memory node range */
2748 			ms++;
2749 			base_pfn = mem_node_config[ms].physbase;
2750 			num = MIN(mem_node_config[ms].physmax,
2751 			    end_pfn) - base_pfn + 1;
2752 		}
2753 	}
2754 
2755 	PRM_DEBUG(availrmem_initial);
2756 	PRM_DEBUG(availrmem);
2757 	PRM_DEBUG(freemem);
2758 	build_pfn_hash();
2759 	return (pages_done);
2760 }
2761 
2762 /*
2763  * Kernel VM initialization.
2764  */
2765 static void
2766 kvm_init(void)
2767 {
2768 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2769 
2770 	/*
2771 	 * Put the kernel segments in kernel address space.
2772 	 */
2773 	rw_enter(&kas.a_lock, RW_WRITER);
2774 	as_avlinit(&kas);
2775 
2776 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2777 	(void) segkmem_create(&ktextseg);
2778 
2779 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2780 	(void) segkmem_create(&kvalloc);
2781 
2782 	(void) seg_attach(&kas, kernelheap,
2783 	    ekernelheap - kernelheap, &kvseg);
2784 	(void) segkmem_create(&kvseg);
2785 
2786 	if (core_size > 0) {
2787 		PRM_POINT("attaching kvseg_core");
2788 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2789 		    &kvseg_core);
2790 		(void) segkmem_create(&kvseg_core);
2791 	}
2792 
2793 	if (segziosize > 0) {
2794 		PRM_POINT("attaching segzio");
2795 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2796 		    &kzioseg);
2797 		(void) segkmem_zio_create(&kzioseg);
2798 
2799 		/* create zio area covering new segment */
2800 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2801 	}
2802 
2803 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2804 	(void) segkmem_create(&kdebugseg);
2805 
2806 	rw_exit(&kas.a_lock);
2807 
2808 	/*
2809 	 * Ensure that the red zone at kernelbase is never accessible.
2810 	 */
2811 	PRM_POINT("protecting redzone");
2812 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2813 
2814 	/*
2815 	 * Make the text writable so that it can be hot patched by DTrace.
2816 	 */
2817 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2818 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2819 
2820 	/*
2821 	 * Make data writable until end.
2822 	 */
2823 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2824 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2825 }
2826 
2827 #ifndef __xpv
2828 /*
2829  * Solaris adds an entry for Write Combining caching to the PAT
2830  */
2831 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2832 
2833 void
2834 pat_sync(void)
2835 {
2836 	ulong_t	cr0, cr0_orig, cr4;
2837 
2838 	if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2839 		return;
2840 	cr0_orig = cr0 = getcr0();
2841 	cr4 = getcr4();
2842 
2843 	/* disable caching and flush all caches and TLBs */
2844 	cr0 |= CR0_CD;
2845 	cr0 &= ~CR0_NW;
2846 	setcr0(cr0);
2847 	invalidate_cache();
2848 	if (cr4 & CR4_PGE) {
2849 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2850 		setcr4(cr4);
2851 	} else {
2852 		reload_cr3();
2853 	}
2854 
2855 	/* add our entry to the PAT */
2856 	wrmsr(REG_PAT, pat_attr_reg);
2857 
2858 	/* flush TLBs and cache again, then reenable cr0 caching */
2859 	if (cr4 & CR4_PGE) {
2860 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
2861 		setcr4(cr4);
2862 	} else {
2863 		reload_cr3();
2864 	}
2865 	invalidate_cache();
2866 	setcr0(cr0_orig);
2867 }
2868 
2869 #endif /* !__xpv */
2870 
2871 #if defined(_SOFT_HOSTID)
2872 /*
2873  * On platforms that do not have a hardware serial number, attempt
2874  * to set one based on the contents of /etc/hostid.  If this file does
2875  * not exist, assume that we are to generate a new hostid and set
2876  * it in the kernel, for subsequent saving by a userland process
2877  * once the system is up and the root filesystem is mounted r/w.
2878  *
2879  * In order to gracefully support upgrade on OpenSolaris, if
2880  * /etc/hostid does not exist, we will attempt to get a serial number
2881  * using the legacy method (/kernel/misc/sysinit).
2882  *
2883  * If that isn't present, we attempt to use an SMBIOS UUID, which is
2884  * a hardware serial number.  Note that we don't automatically trust
2885  * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2886  * UUIDs in violation of the standard), we check against a blacklist.
2887  *
2888  * In an attempt to make the hostid less prone to abuse
2889  * (for license circumvention, etc), we store it in /etc/hostid
2890  * in rot47 format.
2891  */
2892 extern volatile unsigned long tenmicrodata;
2893 static int atoi(char *);
2894 
2895 /*
2896  * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2897  * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2898  * array can be updated.)
2899  */
2900 int smbios_broken_uuid = 0;
2901 
2902 /*
2903  * List of known bad UUIDs.  This is just the lower 32-bit values, since
2904  * that's what we use for the host id.  If your hostid falls here, you need
2905  * to contact your hardware OEM for a fix for your BIOS.
2906  */
2907 static unsigned char
2908 smbios_uuid_blacklist[][16] = {
2909 
2910 	{	/* Reported bad UUID (Google search) */
2911 		0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2912 		0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2913 	},
2914 	{	/* Known bad DELL UUID */
2915 		0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2916 		0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2917 	},
2918 	{	/* Uninitialized flash */
2919 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2920 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2921 	},
2922 	{	/* All zeros */
2923 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2924 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2925 	},
2926 };
2927 
2928 static int32_t
2929 uuid_to_hostid(const uint8_t *uuid)
2930 {
2931 	/*
2932 	 * Although the UUIDs are 128-bits, they may not distribute entropy
2933 	 * evenly.  We would like to use SHA or MD5, but those are located
2934 	 * in loadable modules and not available this early in boot.  As we
2935 	 * don't need the values to be cryptographically strong, we just
2936 	 * generate 32-bit vaue by xor'ing the various sequences together,
2937 	 * which ensures that the entire UUID contributes to the hostid.
2938 	 */
2939 	uint32_t	id = 0;
2940 
2941 	/* first check against the blacklist */
2942 	for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2943 		if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2944 			cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2945 			    "Contact BIOS manufacturer for repair.\n");
2946 			return ((int32_t)HW_INVALID_HOSTID);
2947 		}
2948 	}
2949 
2950 	for (int i = 0; i < 16; i++)
2951 		id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2952 
2953 	/* Make sure return value is positive */
2954 	return (id & 0x7fffffff);
2955 }
2956 
2957 static int32_t
2958 set_soft_hostid(void)
2959 {
2960 	struct _buf *file;
2961 	char tokbuf[MAXNAMELEN];
2962 	token_t token;
2963 	int done = 0;
2964 	u_longlong_t tmp;
2965 	int i;
2966 	int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2967 	unsigned char *c;
2968 	hrtime_t tsc;
2969 	smbios_system_t smsys;
2970 
2971 	/*
2972 	 * If /etc/hostid file not found, we'd like to get a pseudo
2973 	 * random number to use at the hostid.  A nice way to do this
2974 	 * is to read the real time clock.  To remain xen-compatible,
2975 	 * we can't poke the real hardware, so we use tsc_read() to
2976 	 * read the real time clock.  However, there is an ominous
2977 	 * warning in tsc_read that says it can return zero, so we
2978 	 * deal with that possibility by falling back to using the
2979 	 * (hopefully random enough) value in tenmicrodata.
2980 	 */
2981 
2982 	if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2983 		/*
2984 		 * hostid file not found - try to load sysinit module
2985 		 * and see if it has a nonzero hostid value...use that
2986 		 * instead of generating a new hostid here if so.
2987 		 */
2988 		if ((i = modload("misc", "sysinit")) != -1) {
2989 			if (strlen(hw_serial) > 0)
2990 				hostid = (int32_t)atoi(hw_serial);
2991 			(void) modunload(i);
2992 		}
2993 
2994 		/*
2995 		 * We try to use the SMBIOS UUID. But not if it is blacklisted
2996 		 * in /etc/system.
2997 		 */
2998 		if ((hostid == HW_INVALID_HOSTID) &&
2999 		    (smbios_broken_uuid == 0) &&
3000 		    (ksmbios != NULL) &&
3001 		    (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
3002 		    (smsys.smbs_uuidlen >= 16)) {
3003 			hostid = uuid_to_hostid(smsys.smbs_uuid);
3004 		}
3005 
3006 		/*
3007 		 * Generate a "random" hostid using the clock.  These
3008 		 * hostids will change on each boot if the value is not
3009 		 * saved to a persistent /etc/hostid file.
3010 		 */
3011 		if (hostid == HW_INVALID_HOSTID) {
3012 			tsc = tsc_read();
3013 			if (tsc == 0)	/* tsc_read can return zero sometimes */
3014 				hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
3015 			else
3016 				hostid = (int32_t)tsc & 0x0CFFFFF;
3017 		}
3018 	} else {
3019 		/* hostid file found */
3020 		while (!done) {
3021 			token = kobj_lex(file, tokbuf, sizeof (tokbuf));
3022 
3023 			switch (token) {
3024 			case POUND:
3025 				/*
3026 				 * skip comments
3027 				 */
3028 				kobj_find_eol(file);
3029 				break;
3030 			case STRING:
3031 				/*
3032 				 * un-rot47 - obviously this
3033 				 * nonsense is ascii-specific
3034 				 */
3035 				for (c = (unsigned char *)tokbuf;
3036 				    *c != '\0'; c++) {
3037 					*c += 47;
3038 					if (*c > '~')
3039 						*c -= 94;
3040 					else if (*c < '!')
3041 						*c += 94;
3042 				}
3043 				/*
3044 				 * now we should have a real number
3045 				 */
3046 
3047 				if (kobj_getvalue(tokbuf, &tmp) != 0)
3048 					kobj_file_err(CE_WARN, file,
3049 					    "Bad value %s for hostid",
3050 					    tokbuf);
3051 				else
3052 					hostid = (int32_t)tmp;
3053 
3054 				break;
3055 			case EOF:
3056 				done = 1;
3057 				/* FALLTHROUGH */
3058 			case NEWLINE:
3059 				kobj_newline(file);
3060 				break;
3061 			default:
3062 				break;
3063 
3064 			}
3065 		}
3066 		if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
3067 			kobj_file_err(CE_WARN, file,
3068 			    "hostid missing or corrupt");
3069 
3070 		kobj_close_file(file);
3071 	}
3072 	/*
3073 	 * hostid is now the value read from /etc/hostid, or the
3074 	 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
3075 	 * set.
3076 	 */
3077 	return (hostid);
3078 }
3079 
3080 static int
3081 atoi(char *p)
3082 {
3083 	int i = 0;
3084 
3085 	while (*p != '\0')
3086 		i = 10 * i + (*p++ - '0');
3087 
3088 	return (i);
3089 }
3090 
3091 #endif /* _SOFT_HOSTID */
3092 
3093 void
3094 get_system_configuration(void)
3095 {
3096 	char	prop[32];
3097 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
3098 
3099 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
3100 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
3101 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
3102 	    nodes_ll > MAXNODES ||
3103 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
3104 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
3105 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3106 		system_hardware.hd_nodes = 1;
3107 		system_hardware.hd_cpus_per_node = 0;
3108 	} else {
3109 		system_hardware.hd_nodes = (int)nodes_ll;
3110 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3111 	}
3112 
3113 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3114 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3115 	    kobj_getvalue(prop, &lvalue) == -1)
3116 		eprom_kernelbase = 0;
3117 	else
3118 		eprom_kernelbase = (uintptr_t)lvalue;
3119 
3120 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3121 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3122 	    kobj_getvalue(prop, &lvalue) == -1)
3123 		segmapsize = SEGMAPDEFAULT;
3124 	else
3125 		segmapsize = (uintptr_t)lvalue;
3126 
3127 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3128 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3129 	    kobj_getvalue(prop, &lvalue) == -1)
3130 		segmapfreelists = 0;	/* use segmap driver default */
3131 	else
3132 		segmapfreelists = (int)lvalue;
3133 
3134 	/* physmem used to be here, but moved much earlier to fakebop.c */
3135 }
3136 
3137 /*
3138  * Add to a memory list.
3139  * start = start of new memory segment
3140  * len = length of new memory segment in bytes
3141  * new = pointer to a new struct memlist
3142  * memlistp = memory list to which to add segment.
3143  */
3144 void
3145 memlist_add(
3146 	uint64_t start,
3147 	uint64_t len,
3148 	struct memlist *new,
3149 	struct memlist **memlistp)
3150 {
3151 	struct memlist *cur;
3152 	uint64_t end = start + len;
3153 
3154 	new->ml_address = start;
3155 	new->ml_size = len;
3156 
3157 	cur = *memlistp;
3158 
3159 	while (cur) {
3160 		if (cur->ml_address >= end) {
3161 			new->ml_next = cur;
3162 			*memlistp = new;
3163 			new->ml_prev = cur->ml_prev;
3164 			cur->ml_prev = new;
3165 			return;
3166 		}
3167 		ASSERT(cur->ml_address + cur->ml_size <= start);
3168 		if (cur->ml_next == NULL) {
3169 			cur->ml_next = new;
3170 			new->ml_prev = cur;
3171 			new->ml_next = NULL;
3172 			return;
3173 		}
3174 		memlistp = &cur->ml_next;
3175 		cur = cur->ml_next;
3176 	}
3177 }
3178 
3179 void
3180 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3181 {
3182 	size_t tsize = e_modtext - modtext;
3183 	size_t dsize = e_moddata - moddata;
3184 
3185 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3186 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3187 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3188 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3189 }
3190 
3191 caddr_t
3192 kobj_text_alloc(vmem_t *arena, size_t size)
3193 {
3194 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3195 }
3196 
3197 /*ARGSUSED*/
3198 caddr_t
3199 kobj_texthole_alloc(caddr_t addr, size_t size)
3200 {
3201 	panic("unexpected call to kobj_texthole_alloc()");
3202 	/*NOTREACHED*/
3203 	return (0);
3204 }
3205 
3206 /*ARGSUSED*/
3207 void
3208 kobj_texthole_free(caddr_t addr, size_t size)
3209 {
3210 	panic("unexpected call to kobj_texthole_free()");
3211 }
3212 
3213 /*
3214  * This is called just after configure() in startup().
3215  *
3216  * The ISALIST concept is a bit hopeless on Intel, because
3217  * there's no guarantee of an ever-more-capable processor
3218  * given that various parts of the instruction set may appear
3219  * and disappear between different implementations.
3220  *
3221  * While it would be possible to correct it and even enhance
3222  * it somewhat, the explicit hardware capability bitmask allows
3223  * more flexibility.
3224  *
3225  * So, we just leave this alone.
3226  */
3227 void
3228 setx86isalist(void)
3229 {
3230 	char *tp;
3231 	size_t len;
3232 	extern char *isa_list;
3233 
3234 #define	TBUFSIZE	1024
3235 
3236 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3237 	*tp = '\0';
3238 
3239 #if defined(__amd64)
3240 	(void) strcpy(tp, "amd64 ");
3241 #endif
3242 
3243 	switch (x86_vendor) {
3244 	case X86_VENDOR_Intel:
3245 	case X86_VENDOR_AMD:
3246 	case X86_VENDOR_TM:
3247 		if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3248 			/*
3249 			 * Pentium Pro or later
3250 			 */
3251 			(void) strcat(tp, "pentium_pro");
3252 			(void) strcat(tp,
3253 			    is_x86_feature(x86_featureset, X86FSET_MMX) ?
3254 			    "+mmx pentium_pro " : " ");
3255 		}
3256 		/*FALLTHROUGH*/
3257 	case X86_VENDOR_Cyrix:
3258 		/*
3259 		 * The Cyrix 6x86 does not have any Pentium features
3260 		 * accessible while not at privilege level 0.
3261 		 */
3262 		if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3263 			(void) strcat(tp, "pentium");
3264 			(void) strcat(tp,
3265 			    is_x86_feature(x86_featureset, X86FSET_MMX) ?
3266 			    "+mmx pentium " : " ");
3267 		}
3268 		break;
3269 	default:
3270 		break;
3271 	}
3272 	(void) strcat(tp, "i486 i386 i86");
3273 	len = strlen(tp) + 1;   /* account for NULL at end of string */
3274 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3275 	kmem_free(tp, TBUFSIZE);
3276 
3277 #undef TBUFSIZE
3278 }
3279 
3280 
3281 #ifdef __amd64
3282 
3283 void *
3284 device_arena_alloc(size_t size, int vm_flag)
3285 {
3286 	return (vmem_alloc(device_arena, size, vm_flag));
3287 }
3288 
3289 void
3290 device_arena_free(void *vaddr, size_t size)
3291 {
3292 	vmem_free(device_arena, vaddr, size);
3293 }
3294 
3295 #else /* __i386 */
3296 
3297 void *
3298 device_arena_alloc(size_t size, int vm_flag)
3299 {
3300 	caddr_t	vaddr;
3301 	uintptr_t v;
3302 	size_t	start;
3303 	size_t	end;
3304 
3305 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
3306 	if (vaddr == NULL)
3307 		return (NULL);
3308 
3309 	v = (uintptr_t)vaddr;
3310 	ASSERT(v >= kernelbase);
3311 	ASSERT(v + size <= valloc_base);
3312 
3313 	start = btop(v - kernelbase);
3314 	end = btop(v + size - 1 - kernelbase);
3315 	ASSERT(start < toxic_bit_map_len);
3316 	ASSERT(end < toxic_bit_map_len);
3317 
3318 	while (start <= end) {
3319 		BT_ATOMIC_SET(toxic_bit_map, start);
3320 		++start;
3321 	}
3322 	return (vaddr);
3323 }
3324 
3325 void
3326 device_arena_free(void *vaddr, size_t size)
3327 {
3328 	uintptr_t v = (uintptr_t)vaddr;
3329 	size_t	start;
3330 	size_t	end;
3331 
3332 	ASSERT(v >= kernelbase);
3333 	ASSERT(v + size <= valloc_base);
3334 
3335 	start = btop(v - kernelbase);
3336 	end = btop(v + size - 1 - kernelbase);
3337 	ASSERT(start < toxic_bit_map_len);
3338 	ASSERT(end < toxic_bit_map_len);
3339 
3340 	while (start <= end) {
3341 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3342 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
3343 		++start;
3344 	}
3345 	vmem_free(heap_arena, vaddr, size);
3346 }
3347 
3348 /*
3349  * returns 1st address in range that is in device arena, or NULL
3350  * if len is not NULL it returns the length of the toxic range
3351  */
3352 void *
3353 device_arena_contains(void *vaddr, size_t size, size_t *len)
3354 {
3355 	uintptr_t v = (uintptr_t)vaddr;
3356 	uintptr_t eaddr = v + size;
3357 	size_t start;
3358 	size_t end;
3359 
3360 	/*
3361 	 * if called very early by kmdb, just return NULL
3362 	 */
3363 	if (toxic_bit_map == NULL)
3364 		return (NULL);
3365 
3366 	/*
3367 	 * First check if we're completely outside the bitmap range.
3368 	 */
3369 	if (v >= valloc_base || eaddr < kernelbase)
3370 		return (NULL);
3371 
3372 	/*
3373 	 * Trim ends of search to look at only what the bitmap covers.
3374 	 */
3375 	if (v < kernelbase)
3376 		v = kernelbase;
3377 	start = btop(v - kernelbase);
3378 	end = btop(eaddr - kernelbase);
3379 	if (end >= toxic_bit_map_len)
3380 		end = toxic_bit_map_len;
3381 
3382 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3383 		return (NULL);
3384 
3385 	v = kernelbase + ptob(start);
3386 	if (len != NULL)
3387 		*len = ptob(end - start);
3388 	return ((void *)v);
3389 }
3390 
3391 #endif	/* __i386 */
3392