1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 #include <sys/uadmin.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 #include <sys/acct.h> 61 62 #include <sys/vfs.h> 63 #include <sys/dnlc.h> 64 #include <sys/var.h> 65 #include <sys/cmn_err.h> 66 #include <sys/utsname.h> 67 #include <sys/debug.h> 68 #include <sys/kdi.h> 69 70 #include <sys/dumphdr.h> 71 #include <sys/bootconf.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/prom_emul.h> /* for create_prom_prop */ 75 #include <sys/modctl.h> /* for "procfs" hack */ 76 77 #include <sys/consdev.h> 78 #include <sys/frame.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/sunndi.h> 82 #include <sys/ndi_impldefs.h> 83 #include <sys/ddidmareq.h> 84 #include <sys/psw.h> 85 #include <sys/regset.h> 86 #include <sys/clock.h> 87 #include <sys/pte.h> 88 #include <sys/mmu.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/pic.h> 93 #include <sys/fp.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/swap.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/instance.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/prom_emul.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/chip.h> 125 #include <sys/x86_archext.h> 126 #include <sys/smbios.h> 127 128 extern void progressbar_init(void); 129 extern void progressbar_start(void); 130 131 /* 132 * XXX make declaration below "static" when drivers no longer use this 133 * interface. 134 */ 135 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 136 137 /* 138 * segkp 139 */ 140 extern int segkp_fromheap; 141 142 static void kvm_init(void); 143 static void startup_init(void); 144 static void startup_memlist(void); 145 static void startup_modules(void); 146 static void startup_bop_gone(void); 147 static void startup_vm(void); 148 static void startup_end(void); 149 150 /* 151 * Declare these as initialized data so we can patch them. 152 */ 153 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 154 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 155 156 char *kobj_file_buf; 157 int kobj_file_bufsize; /* set in /etc/system */ 158 159 /* Global variables for MP support. Used in mp_startup */ 160 caddr_t rm_platter_va; 161 uint32_t rm_platter_pa; 162 163 /* 164 * Some CPUs have holes in the middle of the 64-bit virtual address range. 165 */ 166 uintptr_t hole_start, hole_end; 167 168 /* 169 * kpm mapping window 170 */ 171 caddr_t kpm_vbase; 172 size_t kpm_size; 173 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 174 175 /* 176 * VA range that must be preserved for boot until we release all of its 177 * mappings. 178 */ 179 #if defined(__amd64) 180 static void *kmem_setaside; 181 #endif 182 183 /* 184 * Configuration parameters set at boot time. 185 */ 186 187 caddr_t econtig; /* end of first block of contiguous kernel */ 188 189 struct bootops *bootops = 0; /* passed in from boot */ 190 struct bootops **bootopsp; 191 struct boot_syscalls *sysp; /* passed in from boot */ 192 193 char bootblock_fstype[16]; 194 195 char kern_bootargs[OBP_MAXPATHLEN]; 196 197 /* 198 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 199 * depends on number of BOP_ALLOC calls made and requested size, memory size 200 * combination and whether boot.bin memory needs to be freed. 201 */ 202 #define POSS_NEW_FRAGMENTS 12 203 204 /* 205 * VM data structures 206 */ 207 long page_hashsz; /* Size of page hash table (power of two) */ 208 struct page *pp_base; /* Base of initial system page struct array */ 209 struct page **page_hash; /* Page hash table */ 210 struct seg ktextseg; /* Segment used for kernel executable image */ 211 struct seg kvalloc; /* Segment used for "valloc" mapping */ 212 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 213 struct seg kmapseg; /* Segment used for generic kernel mappings */ 214 struct seg kdebugseg; /* Segment used for the kernel debugger */ 215 216 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 217 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 218 219 #if defined(__amd64) 220 struct seg kvseg_core; /* Segment used for the core heap */ 221 struct seg kpmseg; /* Segment used for physical mapping */ 222 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 223 #else 224 struct seg *segkpm = NULL; /* Unused on IA32 */ 225 #endif 226 227 caddr_t segkp_base; /* Base address of segkp */ 228 #if defined(__amd64) 229 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 230 #else 231 pgcnt_t segkpsize = 0; 232 #endif 233 234 struct memseg *memseg_base; 235 struct vnode unused_pages_vp; 236 237 #define FOURGB 0x100000000LL 238 239 struct memlist *memlist; 240 241 caddr_t s_text; /* start of kernel text segment */ 242 caddr_t e_text; /* end of kernel text segment */ 243 caddr_t s_data; /* start of kernel data segment */ 244 caddr_t e_data; /* end of kernel data segment */ 245 caddr_t modtext; /* start of loadable module text reserved */ 246 caddr_t e_modtext; /* end of loadable module text reserved */ 247 caddr_t moddata; /* start of loadable module data reserved */ 248 caddr_t e_moddata; /* end of loadable module data reserved */ 249 250 struct memlist *phys_install; /* Total installed physical memory */ 251 struct memlist *phys_avail; /* Total available physical memory */ 252 253 static void memlist_add(uint64_t, uint64_t, struct memlist *, 254 struct memlist **); 255 256 /* 257 * kphysm_init returns the number of pages that were processed 258 */ 259 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 260 261 #define IO_PROP_SIZE 64 /* device property size */ 262 263 /* 264 * a couple useful roundup macros 265 */ 266 #define ROUND_UP_PAGE(x) \ 267 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 268 #define ROUND_UP_LPAGE(x) \ 269 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 270 #define ROUND_UP_4MEG(x) \ 271 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 272 #define ROUND_UP_TOPLEVEL(x) \ 273 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 274 275 /* 276 * 32-bit Kernel's Virtual memory layout. 277 * +-----------------------+ 278 * | psm 1-1 map | 279 * | exec args area | 280 * 0xFFC00000 -|-----------------------|- ARGSBASE 281 * | debugger | 282 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 283 * | Kernel Data | 284 * 0xFEC00000 -|-----------------------| 285 * | Kernel Text | 286 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 287 * | LUFS sinkhole | 288 * 0xFE000000 -|-----------------------|- lufs_addr 289 * --- -|-----------------------|- valloc_base + valloc_sz 290 * | early pp structures | 291 * | memsegs, memlists, | 292 * | page hash, etc. | 293 * --- -|-----------------------|- valloc_base (floating) 294 * | ptable_va | 295 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 296 * | | (segkp is an arena under the heap) 297 * | | 298 * | kvseg | 299 * | | 300 * | | 301 * --- -|-----------------------|- kernelheap (floating) 302 * | Segkmap | 303 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 304 * | Red Zone | 305 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 306 * | | || 307 * | Shared objects | \/ 308 * | | 309 * : : 310 * | user data | 311 * |-----------------------| 312 * | user text | 313 * 0x08048000 -|-----------------------| 314 * | user stack | 315 * : : 316 * | invalid | 317 * 0x00000000 +-----------------------+ 318 * 319 * 320 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 321 * +-----------------------+ 322 * | psm 1-1 map | 323 * | exec args area | 324 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 325 * | debugger (?) | 326 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 327 * | unused | 328 * +-----------------------+ 329 * | Kernel Data | 330 * 0xFFFFFFFF.FBC00000 |-----------------------| 331 * | Kernel Text | 332 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 333 * | LUFS sinkhole | 334 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 335 * --- |-----------------------|- valloc_base + valloc_sz 336 * | early pp structures | 337 * | memsegs, memlists, | 338 * | page hash, etc. | 339 * --- |-----------------------|- valloc_base 340 * | ptable_va | 341 * --- |-----------------------|- ptable_va 342 * | Core heap | (used for loadable modules) 343 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 344 * | Kernel | 345 * | heap | 346 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 347 * | segkmap | 348 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 349 * | device mappings | 350 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 351 * | segkp | 352 * --- |-----------------------|- segkp_base 353 * | segkpm | 354 * 0xFFFFFE00.00000000 |-----------------------| 355 * | Red Zone | 356 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 357 * | User stack |- User space memory 358 * | | 359 * | shared objects, etc | (grows downwards) 360 * : : 361 * | | 362 * 0xFFFF8000.00000000 |-----------------------| 363 * | | 364 * | VA Hole / unused | 365 * | | 366 * 0x00008000.00000000 |-----------------------| 367 * | | 368 * | | 369 * : : 370 * | user heap | (grows upwards) 371 * | | 372 * | user data | 373 * |-----------------------| 374 * | user text | 375 * 0x00000000.04000000 |-----------------------| 376 * | invalid | 377 * 0x00000000.00000000 +-----------------------+ 378 * 379 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 380 * kernel, except that userlimit is raised to 0xfe000000 381 * 382 * Floating values: 383 * 384 * valloc_base: start of the kernel's memory management/tracking data 385 * structures. This region contains page_t structures for the lowest 4GB 386 * of physical memory, memsegs, memlists, and the page hash. 387 * 388 * core_base: start of the kernel's "core" heap area on 64-bit systems. 389 * This area is intended to be used for global data as well as for module 390 * text/data that does not fit into the nucleus pages. The core heap is 391 * restricted to a 2GB range, allowing every address within it to be 392 * accessed using rip-relative addressing 393 * 394 * ekernelheap: end of kernelheap and start of segmap. 395 * 396 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 397 * above a red zone that separates the user's address space from the 398 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 399 * 400 * segkmap_start: start of segmap. The length of segmap can be modified 401 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 402 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 403 * 404 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 405 * decreased by 2X the size required for page_t. This allows the kernel 406 * heap to grow in size with physical memory. With sizeof(page_t) == 80 407 * bytes, the following shows the values of kernelbase and kernel heap 408 * sizes for different memory configurations (assuming default segmap and 409 * segkp sizes). 410 * 411 * mem size for kernelbase kernel heap 412 * size page_t's size 413 * ---- --------- ---------- ----------- 414 * 1gb 0x01400000 0xd1800000 684MB 415 * 2gb 0x02800000 0xcf000000 704MB 416 * 4gb 0x05000000 0xca000000 744MB 417 * 6gb 0x07800000 0xc5000000 784MB 418 * 8gb 0x0a000000 0xc0000000 824MB 419 * 16gb 0x14000000 0xac000000 984MB 420 * 32gb 0x28000000 0x84000000 1304MB 421 * 64gb 0x50000000 0x34000000 1944MB (*) 422 * 423 * kernelbase is less than the abi minimum of 0xc0000000 for memory 424 * configurations above 8gb. 425 * 426 * (*) support for memory configurations above 32gb will require manual tuning 427 * of kernelbase to balance out the need of user applications. 428 */ 429 430 void init_intr_threads(struct cpu *); 431 432 /* real-time-clock initialization parameters */ 433 long gmt_lag; /* offset in seconds of gmt to local time */ 434 extern long process_rtc_config_file(void); 435 436 char *final_kernelheap; 437 char *boot_kernelheap; 438 uintptr_t kernelbase; 439 uintptr_t eprom_kernelbase; 440 size_t segmapsize; 441 static uintptr_t segmap_reserved; 442 uintptr_t segkmap_start; 443 int segmapfreelists; 444 pgcnt_t boot_npages; 445 pgcnt_t npages; 446 size_t core_size; /* size of "core" heap */ 447 uintptr_t core_base; /* base address of "core" heap */ 448 449 /* 450 * List of bootstrap pages. We mark these as allocated in startup. 451 * release_bootstrap() will free them when we're completely done with 452 * the bootstrap. 453 */ 454 static page_t *bootpages, *rd_pages; 455 456 struct system_hardware system_hardware; 457 458 /* 459 * Enable some debugging messages concerning memory usage... 460 * 461 * XX64 There should only be one print routine once memlist usage between 462 * vmx and the kernel is cleaned up and there is a single memlist structure 463 * shared between kernel and boot. 464 */ 465 static void 466 print_boot_memlist(char *title, struct memlist *mp) 467 { 468 prom_printf("MEMLIST: %s:\n", title); 469 while (mp != NULL) { 470 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 471 mp->address, mp->size); 472 mp = mp->next; 473 } 474 } 475 476 static void 477 print_kernel_memlist(char *title, struct memlist *mp) 478 { 479 prom_printf("MEMLIST: %s:\n", title); 480 while (mp != NULL) { 481 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 482 mp->address, mp->size); 483 mp = mp->next; 484 } 485 } 486 487 /* 488 * XX64 need a comment here.. are these just default values, surely 489 * we read the "cpuid" type information to figure this out. 490 */ 491 int l2cache_sz = 0x80000; 492 int l2cache_linesz = 0x40; 493 int l2cache_assoc = 1; 494 495 /* 496 * on 64 bit we use a predifined VA range for mapping devices in the kernel 497 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 498 */ 499 #ifdef __amd64 500 501 vmem_t *device_arena; 502 uintptr_t toxic_addr = (uintptr_t)NULL; 503 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 504 505 #else /* __i386 */ 506 507 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 508 size_t toxic_bit_map_len = 0; /* in bits */ 509 510 #endif /* __i386 */ 511 512 /* 513 * Simple boot time debug facilities 514 */ 515 static char *prm_dbg_str[] = { 516 "%s:%d: '%s' is 0x%x\n", 517 "%s:%d: '%s' is 0x%llx\n" 518 }; 519 520 int prom_debug; 521 522 #define PRM_DEBUG(q) if (prom_debug) \ 523 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 524 #define PRM_POINT(q) if (prom_debug) \ 525 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 526 527 /* 528 * This structure is used to keep track of the intial allocations 529 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 530 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 531 */ 532 #define NUM_ALLOCATIONS 7 533 int num_allocations = 0; 534 struct { 535 void **al_ptr; 536 size_t al_size; 537 } allocations[NUM_ALLOCATIONS]; 538 size_t valloc_sz = 0; 539 uintptr_t valloc_base; 540 extern uintptr_t ptable_va; 541 extern size_t ptable_sz; 542 543 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 544 size = ROUND_UP_PAGE(size); \ 545 if (num_allocations == NUM_ALLOCATIONS) \ 546 panic("too many ADD_TO_ALLOCATIONS()"); \ 547 allocations[num_allocations].al_ptr = (void**)&ptr; \ 548 allocations[num_allocations].al_size = size; \ 549 valloc_sz += size; \ 550 ++num_allocations; \ 551 } 552 553 static void 554 perform_allocations(void) 555 { 556 caddr_t mem; 557 int i; 558 559 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 560 if (mem != (caddr_t)valloc_base) 561 panic("BOP_ALLOC() failed"); 562 bzero(mem, valloc_sz); 563 for (i = 0; i < num_allocations; ++i) { 564 *allocations[i].al_ptr = (void *)mem; 565 mem += allocations[i].al_size; 566 } 567 } 568 569 /* 570 * Our world looks like this at startup time. 571 * 572 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 573 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 574 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 575 * addresses are fixed in the binary at link time. 576 * 577 * On the text page: 578 * unix/genunix/krtld/module text loads. 579 * 580 * On the data page: 581 * unix/genunix/krtld/module data loads and space for page_t's. 582 */ 583 /* 584 * Machine-dependent startup code 585 */ 586 void 587 startup(void) 588 { 589 extern void startup_bios_disk(); 590 /* 591 * Make sure that nobody tries to use sekpm until we have 592 * initialized it properly. 593 */ 594 #if defined(__amd64) 595 kpm_desired = kpm_enable; 596 #endif 597 kpm_enable = 0; 598 599 progressbar_init(); 600 startup_init(); 601 startup_memlist(); 602 startup_modules(); 603 startup_bios_disk(); 604 startup_bop_gone(); 605 startup_vm(); 606 startup_end(); 607 progressbar_start(); 608 } 609 610 static void 611 startup_init() 612 { 613 PRM_POINT("startup_init() starting..."); 614 615 /* 616 * Complete the extraction of cpuid data 617 */ 618 cpuid_pass2(CPU); 619 620 (void) check_boot_version(BOP_GETVERSION(bootops)); 621 622 /* 623 * Check for prom_debug in boot environment 624 */ 625 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 626 ++prom_debug; 627 PRM_POINT("prom_debug found in boot enviroment"); 628 } 629 630 /* 631 * Collect node, cpu and memory configuration information. 632 */ 633 get_system_configuration(); 634 635 /* 636 * Halt if this is an unsupported processor. 637 */ 638 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 639 printf("\n486 processor (\"%s\") detected.\n", 640 CPU->cpu_brandstr); 641 halt("This processor is not supported by this release " 642 "of Solaris."); 643 } 644 645 PRM_POINT("startup_init() done"); 646 } 647 648 /* 649 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 650 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 651 * also filters out physical page zero. There is some reliance on the 652 * boot loader allocating only a few contiguous physical memory chunks. 653 */ 654 static void 655 avail_filter(uint64_t *addr, uint64_t *size) 656 { 657 uintptr_t va; 658 uintptr_t next_va; 659 pfn_t pfn; 660 uint64_t pfn_addr; 661 uint64_t pfn_eaddr; 662 uint_t prot; 663 size_t len; 664 uint_t change; 665 666 if (prom_debug) 667 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 668 *addr, *size); 669 670 /* 671 * page zero is required for BIOS.. never make it available 672 */ 673 if (*addr == 0) { 674 *addr += MMU_PAGESIZE; 675 *size -= MMU_PAGESIZE; 676 } 677 678 /* 679 * First we trim from the front of the range. Since hat_boot_probe() 680 * walks ranges in virtual order, but addr/size are physical, we need 681 * to the list until no changes are seen. This deals with the case 682 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 683 * but w < v. 684 */ 685 do { 686 change = 0; 687 for (va = KERNEL_TEXT; 688 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 689 va = next_va) { 690 691 next_va = va + len; 692 pfn_addr = ptob((uint64_t)pfn); 693 pfn_eaddr = pfn_addr + len; 694 695 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 696 change = 1; 697 while (*size > 0 && len > 0) { 698 *addr += MMU_PAGESIZE; 699 *size -= MMU_PAGESIZE; 700 len -= MMU_PAGESIZE; 701 } 702 } 703 } 704 if (change && prom_debug) 705 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 706 *addr, *size); 707 } while (change); 708 709 /* 710 * Trim pages from the end of the range. 711 */ 712 for (va = KERNEL_TEXT; 713 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 714 va = next_va) { 715 716 next_va = va + len; 717 pfn_addr = ptob((uint64_t)pfn); 718 719 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 720 *size = pfn_addr - *addr; 721 } 722 723 if (prom_debug) 724 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 725 *addr, *size); 726 } 727 728 static void 729 kpm_init() 730 { 731 struct segkpm_crargs b; 732 uintptr_t start, end; 733 struct memlist *pmem; 734 735 /* 736 * These variables were all designed for sfmmu in which segkpm is 737 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 738 * might use 2+ page sizes on a single machine, so none of these 739 * variables have a single correct value. They are set up as if we 740 * always use a 4KB pagesize, which should do no harm. In the long 741 * run, we should get rid of KPM's assumption that only a single 742 * pagesize is used. 743 */ 744 kpm_pgshft = MMU_PAGESHIFT; 745 kpm_pgsz = MMU_PAGESIZE; 746 kpm_pgoff = MMU_PAGEOFFSET; 747 kpmp2pshft = 0; 748 kpmpnpgs = 1; 749 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 750 751 PRM_POINT("about to create segkpm"); 752 rw_enter(&kas.a_lock, RW_WRITER); 753 754 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 755 panic("cannot attach segkpm"); 756 757 b.prot = PROT_READ | PROT_WRITE; 758 b.nvcolors = 1; 759 760 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 761 panic("segkpm_create segkpm"); 762 763 rw_exit(&kas.a_lock); 764 765 /* 766 * Map each of the memsegs into the kpm segment, coalesing adjacent 767 * memsegs to allow mapping with the largest possible pages. 768 */ 769 pmem = phys_install; 770 start = pmem->address; 771 end = start + pmem->size; 772 for (;;) { 773 if (pmem == NULL || pmem->address > end) { 774 hat_devload(kas.a_hat, kpm_vbase + start, 775 end - start, mmu_btop(start), 776 PROT_READ | PROT_WRITE, 777 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 778 if (pmem == NULL) 779 break; 780 start = pmem->address; 781 } 782 end = pmem->address + pmem->size; 783 pmem = pmem->next; 784 } 785 } 786 787 /* 788 * The purpose of startup memlist is to get the system to the 789 * point where it can use kmem_alloc()'s that operate correctly 790 * relying on BOP_ALLOC(). This includes allocating page_ts, 791 * page hash table, vmem initialized, etc. 792 * 793 * Boot's versions of physinstalled and physavail are insufficient for 794 * the kernel's purposes. Specifically we don't know which pages that 795 * are not in physavail can be reclaimed after boot is gone. 796 * 797 * This code solves the problem by dividing the address space 798 * into 3 regions as it takes over the MMU from the booter. 799 * 800 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 801 * can not be used by the kernel. 802 * 803 * 2) Any free page that happens to be mapped below kernelbase 804 * is protected until the boot loader is released, but will then be reclaimed. 805 * 806 * 3) Boot shouldn't use any address in the remaining area between kernelbase 807 * and KERNEL_TEXT. 808 * 809 * In the case of multiple mappings to the same page, region 1 has precedence 810 * over region 2. 811 */ 812 static void 813 startup_memlist(void) 814 { 815 size_t memlist_sz; 816 size_t memseg_sz; 817 size_t pagehash_sz; 818 size_t pp_sz; 819 uintptr_t va; 820 size_t len; 821 uint_t prot; 822 pfn_t pfn; 823 int memblocks; 824 caddr_t pagecolor_mem; 825 size_t pagecolor_memsz; 826 caddr_t page_ctrs_mem; 827 size_t page_ctrs_size; 828 struct memlist *current; 829 extern void startup_build_mem_nodes(struct memlist *); 830 831 /* XX64 fix these - they should be in include files */ 832 extern ulong_t cr4_value; 833 extern size_t page_coloring_init(uint_t, int, int); 834 extern void page_coloring_setup(caddr_t); 835 836 PRM_POINT("startup_memlist() starting..."); 837 838 /* 839 * Take the most current snapshot we can by calling mem-update. 840 * For this to work properly, we first have to ask boot for its 841 * end address. 842 */ 843 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 844 (void) BOP_GETPROP(bootops, "memory-update", NULL); 845 846 /* 847 * find if the kernel is mapped on a large page 848 */ 849 va = KERNEL_TEXT; 850 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 851 panic("Couldn't find kernel text boot mapping"); 852 853 /* 854 * Use leftover large page nucleus text/data space for loadable modules. 855 * Use at most MODTEXT/MODDATA. 856 */ 857 if (len > MMU_PAGESIZE) { 858 859 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 860 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 861 if (e_moddata - moddata > MODDATA) 862 e_moddata = moddata + MODDATA; 863 864 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 865 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 866 if (e_modtext - modtext > MODTEXT) 867 e_modtext = modtext + MODTEXT; 868 869 870 } else { 871 872 PRM_POINT("Kernel NOT loaded on Large Page!"); 873 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 874 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 875 876 } 877 econtig = e_moddata; 878 879 PRM_DEBUG(modtext); 880 PRM_DEBUG(e_modtext); 881 PRM_DEBUG(moddata); 882 PRM_DEBUG(e_moddata); 883 PRM_DEBUG(econtig); 884 885 /* 886 * For MP machines cr4_value must be set or the non-boot 887 * CPUs will not be able to start. 888 */ 889 if (x86_feature & X86_LARGEPAGE) 890 cr4_value = getcr4(); 891 PRM_DEBUG(cr4_value); 892 893 /* 894 * Examine the boot loaders physical memory map to find out: 895 * - total memory in system - physinstalled 896 * - the max physical address - physmax 897 * - the number of segments the intsalled memory comes in 898 */ 899 if (prom_debug) 900 print_boot_memlist("boot physinstalled", 901 bootops->boot_mem->physinstalled); 902 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 903 &physinstalled, &memblocks); 904 PRM_DEBUG(physmax); 905 PRM_DEBUG(physinstalled); 906 PRM_DEBUG(memblocks); 907 908 if (prom_debug) 909 print_boot_memlist("boot physavail", 910 bootops->boot_mem->physavail); 911 912 /* 913 * Initialize hat's mmu parameters. 914 * Check for enforce-prot-exec in boot environment. It's used to 915 * enable/disable support for the page table entry NX bit. 916 * The default is to enforce PROT_EXEC on processors that support NX. 917 * Boot seems to round up the "len", but 8 seems to be big enough. 918 */ 919 mmu_init(); 920 921 #ifdef __i386 922 /* 923 * physmax is lowered if there is more memory than can be 924 * physically addressed in 32 bit (PAE/non-PAE) modes. 925 */ 926 if (mmu.pae_hat) { 927 if (PFN_ABOVE64G(physmax)) { 928 physinstalled -= (physmax - (PFN_64G - 1)); 929 physmax = PFN_64G - 1; 930 } 931 } else { 932 if (PFN_ABOVE4G(physmax)) { 933 physinstalled -= (physmax - (PFN_4G - 1)); 934 physmax = PFN_4G - 1; 935 } 936 } 937 #endif 938 939 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 940 941 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 942 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 943 char value[8]; 944 945 if (len < 8) 946 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 947 else 948 (void) strcpy(value, ""); 949 if (strcmp(value, "off") == 0) 950 mmu.pt_nx = 0; 951 } 952 PRM_DEBUG(mmu.pt_nx); 953 954 /* 955 * We will need page_t's for every page in the system, except for 956 * memory mapped at or above above the start of the kernel text segment. 957 * 958 * pages above e_modtext are attributed to kernel debugger (obp_pages) 959 */ 960 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 961 obp_pages = 0; 962 va = KERNEL_TEXT; 963 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 964 npages -= len >> MMU_PAGESHIFT; 965 if (va >= (uintptr_t)e_moddata) 966 obp_pages += len >> MMU_PAGESHIFT; 967 va += len; 968 } 969 PRM_DEBUG(npages); 970 PRM_DEBUG(obp_pages); 971 972 /* 973 * If physmem is patched to be non-zero, use it instead of 974 * the computed value unless it is larger than the real 975 * amount of memory on hand. 976 */ 977 if (physmem == 0 || physmem > npages) 978 physmem = npages; 979 else 980 npages = physmem; 981 PRM_DEBUG(physmem); 982 983 /* 984 * We now compute the sizes of all the initial allocations for 985 * structures the kernel needs in order do kmem_alloc(). These 986 * include: 987 * memsegs 988 * memlists 989 * page hash table 990 * page_t's 991 * page coloring data structs 992 */ 993 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 994 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 995 PRM_DEBUG(memseg_sz); 996 997 /* 998 * Reserve space for phys_avail/phys_install memlists. 999 * There's no real good way to know exactly how much room we'll need, 1000 * but this should be a good upper bound. 1001 */ 1002 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1003 (memblocks + POSS_NEW_FRAGMENTS)); 1004 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1005 PRM_DEBUG(memlist_sz); 1006 1007 /* 1008 * The page structure hash table size is a power of 2 1009 * such that the average hash chain length is PAGE_HASHAVELEN. 1010 */ 1011 page_hashsz = npages / PAGE_HASHAVELEN; 1012 page_hashsz = 1 << highbit(page_hashsz); 1013 pagehash_sz = sizeof (struct page *) * page_hashsz; 1014 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1015 PRM_DEBUG(pagehash_sz); 1016 1017 /* 1018 * Set aside room for the page structures themselves. Note: on 1019 * 64-bit systems we don't allocate page_t's for every page here. 1020 * We just allocate enough to map the lowest 4GB of physical 1021 * memory, minus those pages that are used for the "nucleus" kernel 1022 * text and data. The remaining pages are allocated once we can 1023 * map around boot. 1024 * 1025 * boot_npages is used to allocate an area big enough for our 1026 * initial page_t's. kphym_init may use less than that. 1027 */ 1028 boot_npages = npages; 1029 #if defined(__amd64) 1030 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1031 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1032 #endif 1033 PRM_DEBUG(boot_npages); 1034 pp_sz = sizeof (struct page) * boot_npages; 1035 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1036 PRM_DEBUG(pp_sz); 1037 1038 /* 1039 * determine l2 cache info and memory size for page coloring 1040 */ 1041 (void) getl2cacheinfo(CPU, 1042 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1043 pagecolor_memsz = 1044 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1045 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1046 PRM_DEBUG(pagecolor_memsz); 1047 1048 page_ctrs_size = page_ctrs_sz(); 1049 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1050 PRM_DEBUG(page_ctrs_size); 1051 1052 /* 1053 * valloc_base will be below kernel text 1054 * The extra pages are for the HAT and kmdb to map page tables. 1055 */ 1056 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1057 valloc_base = KERNEL_TEXT - valloc_sz; 1058 PRM_DEBUG(valloc_base); 1059 ptable_va = valloc_base - ptable_sz; 1060 1061 #if defined(__amd64) 1062 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1063 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1064 "systems."); 1065 kernelbase = (uintptr_t)KERNELBASE; 1066 core_base = (uintptr_t)COREHEAP_BASE; 1067 core_size = ptable_va - core_base; 1068 #else /* __i386 */ 1069 /* 1070 * We configure kernelbase based on: 1071 * 1072 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1073 * KERNELBASE_MAX. we large page align eprom_kernelbase 1074 * 1075 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1076 * On large memory systems we must lower kernelbase to allow 1077 * enough room for page_t's for all of memory. 1078 * 1079 * The value set here, might be changed a little later. 1080 */ 1081 if (eprom_kernelbase) { 1082 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1083 if (kernelbase > KERNELBASE_MAX) 1084 kernelbase = KERNELBASE_MAX; 1085 } else { 1086 kernelbase = (uintptr_t)KERNELBASE; 1087 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1088 } 1089 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1090 core_base = ptable_va; 1091 core_size = 0; 1092 #endif 1093 1094 PRM_DEBUG(kernelbase); 1095 PRM_DEBUG(core_base); 1096 PRM_DEBUG(core_size); 1097 1098 /* 1099 * At this point, we can only use a portion of the kernelheap that 1100 * will be available after we boot. Both 32-bit and 64-bit systems 1101 * have this limitation, although the reasons are completely 1102 * different. 1103 * 1104 * On 64-bit systems, the booter only supports allocations in the 1105 * upper 4GB of memory, so we have to work with a reduced kernel 1106 * heap until we take over all allocations. The booter also sits 1107 * in the lower portion of that 4GB range, so we have to raise the 1108 * bottom of the heap even further. 1109 * 1110 * On 32-bit systems we have to leave room to place segmap below 1111 * the heap. We don't yet know how large segmap will be, so we 1112 * have to be very conservative. 1113 */ 1114 #if defined(__amd64) 1115 /* 1116 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1117 * address range. In the long run, that should be fixed. It's 1118 * insane for a booter to need 2 2GB address ranges. 1119 */ 1120 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1121 segmap_reserved = 0; 1122 1123 #else /* __i386 */ 1124 segkp_fromheap = 1; 1125 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1126 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1127 segmap_reserved); 1128 #endif 1129 PRM_DEBUG(boot_kernelheap); 1130 kernelheap = boot_kernelheap; 1131 ekernelheap = (char *)core_base; 1132 1133 /* 1134 * If segmap is too large we can push the bottom of the kernel heap 1135 * higher than the base. Or worse, it could exceed the top of the 1136 * VA space entirely, causing it to wrap around. 1137 */ 1138 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1139 panic("too little memory available for kernelheap," 1140 " use a different kernelbase"); 1141 1142 /* 1143 * Now that we know the real value of kernelbase, 1144 * update variables that were initialized with a value of 1145 * KERNELBASE (in common/conf/param.c). 1146 * 1147 * XXX The problem with this sort of hackery is that the 1148 * compiler just may feel like putting the const declarations 1149 * (in param.c) into the .text section. Perhaps they should 1150 * just be declared as variables there? 1151 */ 1152 1153 #if defined(__amd64) 1154 ASSERT(_kernelbase == KERNELBASE); 1155 ASSERT(_userlimit == USERLIMIT); 1156 /* 1157 * As one final sanity check, verify that the "red zone" between 1158 * kernel and userspace is exactly the size we expected. 1159 */ 1160 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1161 #else 1162 *(uintptr_t *)&_kernelbase = kernelbase; 1163 *(uintptr_t *)&_userlimit = kernelbase; 1164 *(uintptr_t *)&_userlimit32 = _userlimit; 1165 #endif 1166 PRM_DEBUG(_kernelbase); 1167 PRM_DEBUG(_userlimit); 1168 PRM_DEBUG(_userlimit32); 1169 1170 /* 1171 * do all the initial allocations 1172 */ 1173 perform_allocations(); 1174 1175 /* 1176 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1177 */ 1178 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1179 (void *)core_base, (void *)ptable_va); 1180 1181 /* 1182 * Build phys_install and phys_avail in kernel memspace. 1183 * - phys_install should be all memory in the system. 1184 * - phys_avail is phys_install minus any memory mapped before this 1185 * point above KERNEL_TEXT. 1186 */ 1187 current = phys_install = memlist; 1188 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1189 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1190 panic("physinstalled was too big!"); 1191 if (prom_debug) 1192 print_kernel_memlist("phys_install", phys_install); 1193 1194 phys_avail = current; 1195 PRM_POINT("Building phys_avail:\n"); 1196 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1197 avail_filter); 1198 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1199 panic("physavail was too big!"); 1200 if (prom_debug) 1201 print_kernel_memlist("phys_avail", phys_avail); 1202 1203 /* 1204 * setup page coloring 1205 */ 1206 page_coloring_setup(pagecolor_mem); 1207 page_lock_init(); /* currently a no-op */ 1208 1209 /* 1210 * free page list counters 1211 */ 1212 (void) page_ctrs_alloc(page_ctrs_mem); 1213 1214 /* 1215 * Initialize the page structures from the memory lists. 1216 */ 1217 availrmem_initial = availrmem = freemem = 0; 1218 PRM_POINT("Calling kphysm_init()..."); 1219 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1220 PRM_POINT("kphysm_init() done"); 1221 PRM_DEBUG(boot_npages); 1222 1223 /* 1224 * Now that page_t's have been initialized, remove all the 1225 * initial allocation pages from the kernel free page lists. 1226 */ 1227 boot_mapin((caddr_t)valloc_base, valloc_sz); 1228 1229 /* 1230 * Initialize kernel memory allocator. 1231 */ 1232 kmem_init(); 1233 1234 /* 1235 * print this out early so that we know what's going on 1236 */ 1237 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1238 1239 /* 1240 * Initialize bp_mapin(). 1241 */ 1242 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1243 1244 #if defined(__i386) 1245 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1246 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1247 "System using 0x%lx", 1248 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1249 #endif 1250 1251 #ifdef KERNELBASE_ABI_MIN 1252 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1253 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1254 "i386 ABI compliant.", (uintptr_t)kernelbase); 1255 } 1256 #endif 1257 1258 PRM_POINT("startup_memlist() done"); 1259 } 1260 1261 static void 1262 startup_modules(void) 1263 { 1264 unsigned int i; 1265 extern void impl_setup_ddi(void); 1266 extern void prom_setup(void); 1267 1268 PRM_POINT("startup_modules() starting..."); 1269 /* 1270 * Initialize ten-micro second timer so that drivers will 1271 * not get short changed in their init phase. This was 1272 * not getting called until clkinit which, on fast cpu's 1273 * caused the drv_usecwait to be way too short. 1274 */ 1275 microfind(); 1276 1277 /* 1278 * Read the GMT lag from /etc/rtc_config. 1279 */ 1280 gmt_lag = process_rtc_config_file(); 1281 1282 /* 1283 * Calculate default settings of system parameters based upon 1284 * maxusers, yet allow to be overridden via the /etc/system file. 1285 */ 1286 param_calc(0); 1287 1288 mod_setup(); 1289 1290 /* 1291 * Setup machine check architecture on P6 1292 */ 1293 setup_mca(); 1294 1295 /* 1296 * Initialize system parameters. 1297 */ 1298 param_init(); 1299 1300 /* 1301 * maxmem is the amount of physical memory we're playing with. 1302 */ 1303 maxmem = physmem; 1304 1305 /* 1306 * Initialize the hat layer. 1307 */ 1308 hat_init(); 1309 1310 /* 1311 * Initialize segment management stuff. 1312 */ 1313 seg_init(); 1314 1315 if (modload("fs", "specfs") == -1) 1316 halt("Can't load specfs"); 1317 1318 if (modload("fs", "devfs") == -1) 1319 halt("Can't load devfs"); 1320 1321 dispinit(); 1322 1323 /* 1324 * This is needed here to initialize hw_serial[] for cluster booting. 1325 */ 1326 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1327 (void) modunload(i); 1328 else 1329 cmn_err(CE_CONT, "sysinit load failed"); 1330 1331 /* Read cluster configuration data. */ 1332 clconf_init(); 1333 1334 /* 1335 * Create a kernel device tree. First, create rootnex and 1336 * then invoke bus specific code to probe devices. 1337 */ 1338 setup_ddi(); 1339 impl_setup_ddi(); 1340 /* 1341 * Fake a prom tree such that /dev/openprom continues to work 1342 */ 1343 prom_setup(); 1344 1345 /* 1346 * Load all platform specific modules 1347 */ 1348 psm_modload(); 1349 1350 PRM_POINT("startup_modules() done"); 1351 } 1352 1353 static void 1354 startup_bop_gone(void) 1355 { 1356 PRM_POINT("startup_bop_gone() starting..."); 1357 1358 /* 1359 * Do final allocations of HAT data structures that need to 1360 * be allocated before quiescing the boot loader. 1361 */ 1362 PRM_POINT("Calling hat_kern_alloc()..."); 1363 hat_kern_alloc(); 1364 PRM_POINT("hat_kern_alloc() done"); 1365 1366 /* 1367 * Setup MTRR (Memory type range registers) 1368 */ 1369 setup_mtrr(); 1370 PRM_POINT("startup_bop_gone() done"); 1371 } 1372 1373 /* 1374 * Walk through the pagetables looking for pages mapped in by boot. If the 1375 * setaside flag is set the pages are expected to be returned to the 1376 * kernel later in boot, so we add them to the bootpages list. 1377 */ 1378 static void 1379 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1380 { 1381 uintptr_t va = low; 1382 size_t len; 1383 uint_t prot; 1384 pfn_t pfn; 1385 page_t *pp; 1386 pgcnt_t boot_protect_cnt = 0; 1387 1388 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1389 if (va + len >= high) 1390 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1391 "legal range.", len, (void *)va); 1392 1393 while (len > 0) { 1394 pp = page_numtopp_alloc(pfn); 1395 if (pp != NULL) { 1396 if (setaside == 0) 1397 panic("Unexpected mapping by boot. " 1398 "addr=%p pfn=%lx\n", 1399 (void *)va, pfn); 1400 1401 pp->p_next = bootpages; 1402 bootpages = pp; 1403 ++boot_protect_cnt; 1404 } 1405 1406 ++pfn; 1407 len -= MMU_PAGESIZE; 1408 va += MMU_PAGESIZE; 1409 } 1410 } 1411 PRM_DEBUG(boot_protect_cnt); 1412 } 1413 1414 static void 1415 startup_vm(void) 1416 { 1417 struct segmap_crargs a; 1418 extern void hat_kern_setup(void); 1419 pgcnt_t pages_left; 1420 1421 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1422 extern pgcnt_t auto_lpg_min_physmem; 1423 1424 PRM_POINT("startup_vm() starting..."); 1425 1426 /* 1427 * The next two loops are done in distinct steps in order 1428 * to be sure that any page that is doubly mapped (both above 1429 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1430 * Note this may never happen, but it might someday. 1431 */ 1432 1433 bootpages = NULL; 1434 PRM_POINT("Protecting boot pages"); 1435 /* 1436 * Protect any pages mapped above KERNEL_TEXT that somehow have 1437 * page_t's. This can only happen if something weird allocated 1438 * in this range (like kadb/kmdb). 1439 */ 1440 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1441 1442 /* 1443 * Before we can take over memory allocation/mapping from the boot 1444 * loader we must remove from our free page lists any boot pages that 1445 * will stay mapped until release_bootstrap(). 1446 */ 1447 protect_boot_range(0, kernelbase, 1); 1448 #if defined(__amd64) 1449 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1450 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1451 #endif 1452 1453 /* 1454 * Copy in boot's page tables, set up extra page tables for the kernel, 1455 * and switch to the kernel's context. 1456 */ 1457 PRM_POINT("Calling hat_kern_setup()..."); 1458 hat_kern_setup(); 1459 1460 /* 1461 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1462 */ 1463 bootops->bsys_alloc = NULL; 1464 PRM_POINT("hat_kern_setup() done"); 1465 1466 hat_cpu_online(CPU); 1467 1468 /* 1469 * Before we call kvm_init(), we need to establish the final size 1470 * of the kernel's heap. So, we need to figure out how much space 1471 * to set aside for segkp, segkpm, and segmap. 1472 */ 1473 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1474 #if defined(__amd64) 1475 if (kpm_desired) { 1476 /* 1477 * Segkpm appears at the bottom of the kernel's address 1478 * range. To detect accidental overruns of the user 1479 * address space, we leave a "red zone" of unmapped memory 1480 * between kernelbase and the beginning of segkpm. 1481 */ 1482 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1483 kpm_size = mmu_ptob(physmax); 1484 PRM_DEBUG(kpm_vbase); 1485 PRM_DEBUG(kpm_size); 1486 final_kernelheap = 1487 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1488 } 1489 1490 if (!segkp_fromheap) { 1491 size_t sz = mmu_ptob(segkpsize); 1492 1493 /* 1494 * determine size of segkp and adjust the bottom of the 1495 * kernel's heap. 1496 */ 1497 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1498 sz = SEGKPDEFSIZE; 1499 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1500 "segkpsize has been reset to %ld pages", 1501 mmu_btop(sz)); 1502 } 1503 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1504 1505 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1506 segkp_base = final_kernelheap; 1507 PRM_DEBUG(segkpsize); 1508 PRM_DEBUG(segkp_base); 1509 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1510 PRM_DEBUG(final_kernelheap); 1511 } 1512 1513 /* 1514 * put the range of VA for device mappings next 1515 */ 1516 toxic_addr = (uintptr_t)final_kernelheap; 1517 PRM_DEBUG(toxic_addr); 1518 final_kernelheap = (char *)toxic_addr + toxic_size; 1519 #endif 1520 PRM_DEBUG(final_kernelheap); 1521 ASSERT(final_kernelheap < boot_kernelheap); 1522 1523 /* 1524 * Users can change segmapsize through eeprom or /etc/system. 1525 * If the variable is tuned through eeprom, there is no upper 1526 * bound on the size of segmap. If it is tuned through 1527 * /etc/system on 32-bit systems, it must be no larger than we 1528 * planned for in startup_memlist(). 1529 */ 1530 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1531 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1532 1533 #if defined(__i386) 1534 if (segmapsize > segmap_reserved) { 1535 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1536 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1537 segmapsize = segmap_reserved; 1538 } 1539 /* 1540 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1541 * the bottom of the kernel's address range. Set aside space for a 1542 * red zone just below the start of segmap. 1543 */ 1544 segkmap_start += KERNEL_REDZONE_SIZE; 1545 segmapsize -= KERNEL_REDZONE_SIZE; 1546 #endif 1547 final_kernelheap = (char *)(segkmap_start + segmapsize); 1548 1549 PRM_DEBUG(segkmap_start); 1550 PRM_DEBUG(segmapsize); 1551 PRM_DEBUG(final_kernelheap); 1552 1553 /* 1554 * Initialize VM system 1555 */ 1556 PRM_POINT("Calling kvm_init()..."); 1557 kvm_init(); 1558 PRM_POINT("kvm_init() done"); 1559 1560 /* 1561 * Tell kmdb that the VM system is now working 1562 */ 1563 if (boothowto & RB_DEBUG) 1564 kdi_dvec_vmready(); 1565 1566 /* 1567 * Mangle the brand string etc. 1568 */ 1569 cpuid_pass3(CPU); 1570 1571 PRM_DEBUG(final_kernelheap); 1572 1573 /* 1574 * Now that we can use memory outside the top 4GB (on 64-bit 1575 * systems) and we know the size of segmap, we can set the final 1576 * size of the kernel's heap. Note: on 64-bit systems we still 1577 * can't touch anything in the bottom half of the top 4GB range 1578 * because boot still has pages mapped there. 1579 */ 1580 if (final_kernelheap < boot_kernelheap) { 1581 kernelheap_extend(final_kernelheap, boot_kernelheap); 1582 #if defined(__amd64) 1583 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1584 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1585 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1586 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1587 PRM_DEBUG(kmem_setaside); 1588 if (kmem_setaside == NULL) 1589 panic("Could not protect boot's memory"); 1590 #endif 1591 } 1592 /* 1593 * Now that the kernel heap may have grown significantly, we need 1594 * to make all the remaining page_t's available to back that memory. 1595 * 1596 * XX64 this should probably wait till after release boot-strap too. 1597 */ 1598 pages_left = npages - boot_npages; 1599 if (pages_left > 0) { 1600 PRM_DEBUG(pages_left); 1601 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1602 } 1603 1604 #if defined(__amd64) 1605 1606 /* 1607 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1608 */ 1609 device_arena = vmem_create("device", (void *)toxic_addr, 1610 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1611 1612 #else /* __i386 */ 1613 1614 /* 1615 * allocate the bit map that tracks toxic pages 1616 */ 1617 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1618 PRM_DEBUG(toxic_bit_map_len); 1619 toxic_bit_map = 1620 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1621 ASSERT(toxic_bit_map != NULL); 1622 PRM_DEBUG(toxic_bit_map); 1623 1624 #endif /* __i386 */ 1625 1626 1627 /* 1628 * Now that we've got more VA, as well as the ability to allocate from 1629 * it, tell the debugger. 1630 */ 1631 if (boothowto & RB_DEBUG) 1632 kdi_dvec_memavail(); 1633 1634 /* 1635 * The following code installs a special page fault handler (#pf) 1636 * to work around a pentium bug. 1637 */ 1638 #if !defined(__amd64) 1639 if (x86_type == X86_TYPE_P5) { 1640 gate_desc_t *newidt; 1641 desctbr_t newidt_r; 1642 1643 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1644 panic("failed to install pentium_pftrap"); 1645 1646 bcopy(idt0, newidt, sizeof (idt0)); 1647 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1648 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1649 1650 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1651 PROT_READ|PROT_EXEC); 1652 1653 newidt_r.dtr_limit = sizeof (idt0) - 1; 1654 newidt_r.dtr_base = (uintptr_t)newidt; 1655 CPU->cpu_idt = newidt; 1656 wr_idtr(&newidt_r); 1657 } 1658 #endif /* !__amd64 */ 1659 1660 /* 1661 * Map page pfn=0 for drivers, such as kd, that need to pick up 1662 * parameters left there by controllers/BIOS. 1663 */ 1664 PRM_POINT("setup up p0_va"); 1665 p0_va = i86devmap(0, 1, PROT_READ); 1666 PRM_DEBUG(p0_va); 1667 1668 /* 1669 * If the following is true, someone has patched phsymem to be less 1670 * than the number of pages that the system actually has. Remove 1671 * pages until system memory is limited to the requested amount. 1672 * Since we have allocated page structures for all pages, we 1673 * correct the amount of memory we want to remove by the size of 1674 * the memory used to hold page structures for the non-used pages. 1675 */ 1676 if (physmem < npages) { 1677 uint_t diff; 1678 offset_t off; 1679 struct page *pp; 1680 caddr_t rand_vaddr; 1681 struct seg kseg; 1682 1683 cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem); 1684 1685 off = 0; 1686 diff = npages - physmem; 1687 diff -= mmu_btopr(diff * sizeof (struct page)); 1688 kseg.s_as = &kas; 1689 while (diff--) { 1690 rand_vaddr = (caddr_t) 1691 (((uintptr_t)&unused_pages_vp >> 7) ^ 1692 (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT)); 1693 pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE, 1694 PG_WAIT | PG_EXCL, &kseg, rand_vaddr); 1695 if (pp == NULL) { 1696 panic("limited physmem too much!"); 1697 /*NOTREACHED*/ 1698 } 1699 page_io_unlock(pp); 1700 page_downgrade(pp); 1701 availrmem--; 1702 off += MMU_PAGESIZE; 1703 } 1704 } 1705 1706 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1707 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1708 1709 /* For small memory systems disable automatic large pages. */ 1710 if (physmem < auto_lpg_min_physmem) { 1711 exec_lpg_disable = 1; 1712 use_brk_lpg = 0; 1713 use_stk_lpg = 0; 1714 use_zmap_lpg = 0; 1715 } 1716 1717 PRM_POINT("Calling hat_init_finish()..."); 1718 hat_init_finish(); 1719 PRM_POINT("hat_init_finish() done"); 1720 1721 /* 1722 * Initialize the segkp segment type. 1723 */ 1724 rw_enter(&kas.a_lock, RW_WRITER); 1725 if (!segkp_fromheap) { 1726 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1727 segkp) < 0) { 1728 panic("startup: cannot attach segkp"); 1729 /*NOTREACHED*/ 1730 } 1731 } else { 1732 /* 1733 * For 32 bit x86 systems, we will have segkp under the heap. 1734 * There will not be a segkp segment. We do, however, need 1735 * to fill in the seg structure. 1736 */ 1737 segkp->s_as = &kas; 1738 } 1739 if (segkp_create(segkp) != 0) { 1740 panic("startup: segkp_create failed"); 1741 /*NOTREACHED*/ 1742 } 1743 PRM_DEBUG(segkp); 1744 rw_exit(&kas.a_lock); 1745 1746 /* 1747 * kpm segment 1748 */ 1749 segmap_kpm = 0; 1750 if (kpm_desired) { 1751 kpm_init(); 1752 kpm_enable = 1; 1753 } 1754 1755 /* 1756 * Now create segmap segment. 1757 */ 1758 rw_enter(&kas.a_lock, RW_WRITER); 1759 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1760 panic("cannot attach segkmap"); 1761 /*NOTREACHED*/ 1762 } 1763 PRM_DEBUG(segkmap); 1764 1765 /* 1766 * The 64 bit HAT permanently maps only segmap's page tables. 1767 * The 32 bit HAT maps the heap's page tables too. 1768 */ 1769 #if defined(__amd64) 1770 hat_kmap_init(segkmap_start, segmapsize); 1771 #else /* __i386 */ 1772 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1773 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1774 #endif /* __i386 */ 1775 1776 a.prot = PROT_READ | PROT_WRITE; 1777 a.shmsize = 0; 1778 a.nfreelist = segmapfreelists; 1779 1780 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1781 panic("segmap_create segkmap"); 1782 rw_exit(&kas.a_lock); 1783 1784 setup_vaddr_for_ppcopy(CPU); 1785 1786 segdev_init(); 1787 pmem_init(); 1788 PRM_POINT("startup_vm() done"); 1789 } 1790 1791 static void 1792 startup_end(void) 1793 { 1794 extern void setx86isalist(void); 1795 1796 PRM_POINT("startup_end() starting..."); 1797 1798 /* 1799 * Perform tasks that get done after most of the VM 1800 * initialization has been done but before the clock 1801 * and other devices get started. 1802 */ 1803 kern_setup1(); 1804 1805 /* 1806 * Perform CPC initialization for this CPU. 1807 */ 1808 kcpc_hw_init(CPU); 1809 1810 #if defined(__amd64) 1811 /* 1812 * Validate support for syscall/sysret 1813 * XX64 -- include SSE, SSE2, etc. here too? 1814 */ 1815 if ((x86_feature & X86_ASYSC) == 0) { 1816 cmn_err(CE_WARN, 1817 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1818 } 1819 #endif 1820 /* 1821 * Configure the system. 1822 */ 1823 PRM_POINT("Calling configure()..."); 1824 configure(); /* set up devices */ 1825 PRM_POINT("configure() done"); 1826 1827 /* 1828 * Set the isa_list string to the defined instruction sets we 1829 * support. 1830 */ 1831 setx86isalist(); 1832 init_intr_threads(CPU); 1833 psm_install(); 1834 1835 /* 1836 * We're done with bootops. We don't unmap the bootstrap yet because 1837 * we're still using bootsvcs. 1838 */ 1839 PRM_POINT("zeroing out bootops"); 1840 *bootopsp = (struct bootops *)0; 1841 bootops = (struct bootops *)NULL; 1842 1843 PRM_POINT("Enabling interrupts"); 1844 (*picinitf)(); 1845 sti(); 1846 1847 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1848 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1849 1850 PRM_POINT("startup_end() done"); 1851 } 1852 1853 extern char hw_serial[]; 1854 char *_hs1107 = hw_serial; 1855 ulong_t _bdhs34; 1856 1857 void 1858 post_startup(void) 1859 { 1860 /* 1861 * Set the system wide, processor-specific flags to be passed 1862 * to userland via the aux vector for performance hints and 1863 * instruction set extensions. 1864 */ 1865 bind_hwcap(); 1866 1867 /* 1868 * Load the System Management BIOS into the global ksmbios handle, 1869 * if an SMBIOS is present on this system. 1870 */ 1871 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1872 1873 /* 1874 * Startup memory scrubber. 1875 */ 1876 memscrub_init(); 1877 1878 /* 1879 * Perform forceloading tasks for /etc/system. 1880 */ 1881 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1882 1883 /* 1884 * ON4.0: Force /proc module in until clock interrupt handle fixed 1885 * ON4.0: This must be fixed or restated in /etc/systems. 1886 */ 1887 (void) modload("fs", "procfs"); 1888 1889 #if defined(__i386) 1890 /* 1891 * Check for required functional Floating Point hardware, 1892 * unless FP hardware explicitly disabled. 1893 */ 1894 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1895 halt("No working FP hardware found"); 1896 #endif 1897 1898 maxmem = freemem; 1899 1900 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1901 1902 /* 1903 * Perform the formal initialization of the boot chip, 1904 * and associate the boot cpu with it. 1905 * This must be done after the cpu node for CPU has been 1906 * added to the device tree, when the necessary probing to 1907 * know the chip type and chip "id" is performed. 1908 */ 1909 chip_cpu_init(CPU); 1910 chip_cpu_assign(CPU); 1911 } 1912 1913 static int 1914 pp_in_ramdisk(page_t *pp) 1915 { 1916 extern uint64_t ramdisk_start, ramdisk_end; 1917 1918 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1919 (pp->p_pagenum < btopr(ramdisk_end))); 1920 } 1921 1922 void 1923 release_bootstrap(void) 1924 { 1925 int root_is_ramdisk; 1926 pfn_t pfn; 1927 page_t *pp; 1928 extern void kobj_boot_unmountroot(void); 1929 extern dev_t rootdev; 1930 1931 /* unmount boot ramdisk and release kmem usage */ 1932 kobj_boot_unmountroot(); 1933 1934 /* 1935 * We're finished using the boot loader so free its pages. 1936 */ 1937 PRM_POINT("Unmapping lower boot pages"); 1938 clear_boot_mappings(0, kernelbase); 1939 #if defined(__amd64) 1940 PRM_POINT("Unmapping upper boot pages"); 1941 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1942 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1943 #endif 1944 1945 /* 1946 * If root isn't on ramdisk, destroy the hardcoded 1947 * ramdisk node now and release the memory. Else, 1948 * ramdisk memory is kept in rd_pages. 1949 */ 1950 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1951 if (!root_is_ramdisk) { 1952 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1953 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1954 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1955 (void) ddi_remove_child(dip, 0); 1956 } 1957 1958 PRM_POINT("Releasing boot pages"); 1959 while (bootpages) { 1960 pp = bootpages; 1961 bootpages = pp->p_next; 1962 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1963 pp->p_next = rd_pages; 1964 rd_pages = pp; 1965 continue; 1966 } 1967 pp->p_next = (struct page *)0; 1968 page_free(pp, 1); 1969 } 1970 1971 /* 1972 * Find 1 page below 1 MB so that other processors can boot up. 1973 * Make sure it has a kernel VA as well as a 1:1 mapping. 1974 * We should have just free'd one up. 1975 */ 1976 if (use_mp) { 1977 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1978 if (page_numtopp_alloc(pfn) == NULL) 1979 continue; 1980 rm_platter_va = i86devmap(pfn, 1, 1981 PROT_READ | PROT_WRITE | PROT_EXEC); 1982 rm_platter_pa = ptob(pfn); 1983 hat_devload(kas.a_hat, 1984 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1985 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 1986 HAT_LOAD_NOCONSIST); 1987 break; 1988 } 1989 if (pfn == btop(1*1024*1024)) 1990 panic("No page available for starting " 1991 "other processors"); 1992 } 1993 1994 #if defined(__amd64) 1995 PRM_POINT("Returning boot's VA space to kernel heap"); 1996 if (kmem_setaside != NULL) 1997 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 1998 #endif 1999 } 2000 2001 /* 2002 * Initialize the platform-specific parts of a page_t. 2003 */ 2004 void 2005 add_physmem_cb(page_t *pp, pfn_t pnum) 2006 { 2007 pp->p_pagenum = pnum; 2008 pp->p_mapping = NULL; 2009 pp->p_embed = 0; 2010 pp->p_share = 0; 2011 pp->p_mlentry = 0; 2012 } 2013 2014 /* 2015 * kphysm_init() initializes physical memory. 2016 */ 2017 static pgcnt_t 2018 kphysm_init( 2019 page_t *inpp, 2020 struct memseg *memsegp, 2021 pgcnt_t start, 2022 pgcnt_t npages) 2023 { 2024 struct memlist *pmem; 2025 struct memseg *cur_memseg; 2026 struct memseg **memsegpp; 2027 pfn_t base_pfn; 2028 pgcnt_t num; 2029 pgcnt_t total_skipped = 0; 2030 pgcnt_t skipping = 0; 2031 pgcnt_t pages_done = 0; 2032 pgcnt_t largepgcnt; 2033 uint64_t addr; 2034 uint64_t size; 2035 page_t *pp = inpp; 2036 int dobreak = 0; 2037 extern pfn_t ddiphysmin; 2038 2039 ASSERT(page_hash != NULL && page_hashsz != 0); 2040 2041 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2042 ASSERT(cur_memseg == memsegp || start > 0); 2043 2044 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2045 /* 2046 * In a 32 bit kernel can't use higher memory if we're 2047 * not booting in PAE mode. This check takes care of that. 2048 */ 2049 addr = pmem->address; 2050 size = pmem->size; 2051 if (btop(addr) > physmax) 2052 continue; 2053 2054 /* 2055 * align addr and size - they may not be at page boundaries 2056 */ 2057 if ((addr & MMU_PAGEOFFSET) != 0) { 2058 addr += MMU_PAGEOFFSET; 2059 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2060 size -= addr - pmem->address; 2061 } 2062 2063 /* only process pages below physmax */ 2064 if (btop(addr + size) > physmax) 2065 size = ptob(physmax - btop(addr)); 2066 2067 num = btop(size); 2068 if (num == 0) 2069 continue; 2070 2071 if (total_skipped < start) { 2072 if (start - total_skipped > num) { 2073 total_skipped += num; 2074 continue; 2075 } 2076 skipping = start - total_skipped; 2077 num -= skipping; 2078 addr += (MMU_PAGESIZE * skipping); 2079 total_skipped = start; 2080 } 2081 if (num == 0) 2082 continue; 2083 2084 if (num > npages) 2085 num = npages; 2086 2087 npages -= num; 2088 pages_done += num; 2089 base_pfn = btop(addr); 2090 2091 /* 2092 * If the caller didn't provide space for the page 2093 * structures, carve them out of the memseg they will 2094 * represent. 2095 */ 2096 if (pp == NULL) { 2097 pgcnt_t pp_pgs; 2098 2099 if (num <= 1) 2100 continue; 2101 2102 /* 2103 * Compute how many of the pages we need to use for 2104 * page_ts 2105 */ 2106 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2107 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2108 num - pp_pgs + 1) 2109 --pp_pgs; 2110 PRM_DEBUG(pp_pgs); 2111 2112 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2113 VM_NOSLEEP); 2114 if (pp == NULL) { 2115 cmn_err(CE_WARN, "Unable to add %ld pages to " 2116 "the system.", num); 2117 continue; 2118 } 2119 2120 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2121 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2122 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2123 bzero(pp, mmu_ptob(pp_pgs)); 2124 num -= pp_pgs; 2125 base_pfn += pp_pgs; 2126 } 2127 2128 if (prom_debug) 2129 prom_printf("MEMSEG addr=0x%" PRIx64 2130 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2131 addr, num, base_pfn, base_pfn + num); 2132 2133 /* 2134 * drop pages below ddiphysmin to simplify ddi memory 2135 * allocation with non-zero addr_lo requests. 2136 */ 2137 if (base_pfn < ddiphysmin) { 2138 if (base_pfn + num <= ddiphysmin) { 2139 /* drop entire range below ddiphysmin */ 2140 continue; 2141 } 2142 /* adjust range to ddiphysmin */ 2143 pp += (ddiphysmin - base_pfn); 2144 num -= (ddiphysmin - base_pfn); 2145 base_pfn = ddiphysmin; 2146 } 2147 /* 2148 * Build the memsegs entry 2149 */ 2150 cur_memseg->pages = pp; 2151 cur_memseg->epages = pp + num; 2152 cur_memseg->pages_base = base_pfn; 2153 cur_memseg->pages_end = base_pfn + num; 2154 2155 /* 2156 * insert in memseg list in decreasing pfn range order. 2157 * Low memory is typically more fragmented such that this 2158 * ordering keeps the larger ranges at the front of the list 2159 * for code that searches memseg. 2160 */ 2161 memsegpp = &memsegs; 2162 for (;;) { 2163 if (*memsegpp == NULL) { 2164 /* empty memsegs */ 2165 memsegs = cur_memseg; 2166 break; 2167 } 2168 /* check for continuity with start of memsegpp */ 2169 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2170 if (cur_memseg->epages == (*memsegpp)->pages) { 2171 /* 2172 * contiguous pfn and page_t's. Merge 2173 * cur_memseg into *memsegpp. Drop 2174 * cur_memseg 2175 */ 2176 (*memsegpp)->pages_base = 2177 cur_memseg->pages_base; 2178 (*memsegpp)->pages = 2179 cur_memseg->pages; 2180 /* 2181 * check if contiguous with the end of 2182 * the next memseg. 2183 */ 2184 if ((*memsegpp)->next && 2185 ((*memsegpp)->pages_base == 2186 (*memsegpp)->next->pages_end)) { 2187 cur_memseg = *memsegpp; 2188 memsegpp = &((*memsegpp)->next); 2189 dobreak = 1; 2190 } else { 2191 break; 2192 } 2193 } else { 2194 /* 2195 * contiguous pfn but not page_t's. 2196 * drop last pfn/page_t in cur_memseg 2197 * to prevent creation of large pages 2198 * with noncontiguous page_t's if not 2199 * aligned to largest page boundary. 2200 */ 2201 largepgcnt = page_get_pagecnt( 2202 page_num_pagesizes() - 1); 2203 2204 if (cur_memseg->pages_end & 2205 (largepgcnt - 1)) { 2206 num--; 2207 cur_memseg->epages--; 2208 cur_memseg->pages_end--; 2209 } 2210 } 2211 } 2212 2213 /* check for continuity with end of memsegpp */ 2214 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2215 if (cur_memseg->pages == (*memsegpp)->epages) { 2216 /* 2217 * contiguous pfn and page_t's. Merge 2218 * cur_memseg into *memsegpp. Drop 2219 * cur_memseg. 2220 */ 2221 if (dobreak) { 2222 /* merge previously done */ 2223 cur_memseg->pages = 2224 (*memsegpp)->pages; 2225 cur_memseg->pages_base = 2226 (*memsegpp)->pages_base; 2227 cur_memseg->next = 2228 (*memsegpp)->next; 2229 } else { 2230 (*memsegpp)->pages_end = 2231 cur_memseg->pages_end; 2232 (*memsegpp)->epages = 2233 cur_memseg->epages; 2234 } 2235 break; 2236 } 2237 /* 2238 * contiguous pfn but not page_t's. 2239 * drop first pfn/page_t in cur_memseg 2240 * to prevent creation of large pages 2241 * with noncontiguous page_t's if not 2242 * aligned to largest page boundary. 2243 */ 2244 largepgcnt = page_get_pagecnt( 2245 page_num_pagesizes() - 1); 2246 if (base_pfn & (largepgcnt - 1)) { 2247 num--; 2248 base_pfn++; 2249 cur_memseg->pages++; 2250 cur_memseg->pages_base++; 2251 pp = cur_memseg->pages; 2252 } 2253 if (dobreak) 2254 break; 2255 } 2256 2257 if (cur_memseg->pages_base >= 2258 (*memsegpp)->pages_end) { 2259 cur_memseg->next = *memsegpp; 2260 *memsegpp = cur_memseg; 2261 break; 2262 } 2263 if ((*memsegpp)->next == NULL) { 2264 cur_memseg->next = NULL; 2265 (*memsegpp)->next = cur_memseg; 2266 break; 2267 } 2268 memsegpp = &((*memsegpp)->next); 2269 ASSERT(*memsegpp != NULL); 2270 } 2271 2272 /* 2273 * add_physmem() initializes the PSM part of the page 2274 * struct by calling the PSM back with add_physmem_cb(). 2275 * In addition it coalesces pages into larger pages as 2276 * it initializes them. 2277 */ 2278 add_physmem(pp, num, base_pfn); 2279 cur_memseg++; 2280 availrmem_initial += num; 2281 availrmem += num; 2282 2283 /* 2284 * If the caller provided the page frames to us, then 2285 * advance in that list. Otherwise, prepare to allocate 2286 * our own page frames for the next memseg. 2287 */ 2288 pp = (inpp == NULL) ? NULL : pp + num; 2289 } 2290 2291 PRM_DEBUG(availrmem_initial); 2292 PRM_DEBUG(availrmem); 2293 PRM_DEBUG(freemem); 2294 build_pfn_hash(); 2295 return (pages_done); 2296 } 2297 2298 /* 2299 * Kernel VM initialization. 2300 */ 2301 static void 2302 kvm_init(void) 2303 { 2304 #ifdef DEBUG 2305 extern void _start(); 2306 2307 ASSERT((caddr_t)_start == s_text); 2308 #endif 2309 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2310 2311 /* 2312 * Put the kernel segments in kernel address space. 2313 */ 2314 rw_enter(&kas.a_lock, RW_WRITER); 2315 as_avlinit(&kas); 2316 2317 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2318 (void) segkmem_create(&ktextseg); 2319 2320 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2321 (void) segkmem_create(&kvalloc); 2322 2323 /* 2324 * We're about to map out /boot. This is the beginning of the 2325 * system resource management transition. We can no longer 2326 * call into /boot for I/O or memory allocations. 2327 * 2328 * XX64 - Is this still correct with kernelheap_extend() being called 2329 * later than this???? 2330 */ 2331 (void) seg_attach(&kas, final_kernelheap, 2332 ekernelheap - final_kernelheap, &kvseg); 2333 (void) segkmem_create(&kvseg); 2334 2335 #if defined(__amd64) 2336 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2337 (void) segkmem_create(&kvseg_core); 2338 #endif 2339 2340 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2341 &kdebugseg); 2342 (void) segkmem_create(&kdebugseg); 2343 2344 rw_exit(&kas.a_lock); 2345 2346 /* 2347 * Ensure that the red zone at kernelbase is never accessible. 2348 */ 2349 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2350 2351 /* 2352 * Make the text writable so that it can be hot patched by DTrace. 2353 */ 2354 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2355 PROT_READ | PROT_WRITE | PROT_EXEC); 2356 2357 /* 2358 * Make data writable until end. 2359 */ 2360 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2361 PROT_READ | PROT_WRITE | PROT_EXEC); 2362 } 2363 2364 /* 2365 * These are MTTR registers supported by P6 2366 */ 2367 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2368 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2369 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2370 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2371 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2372 uint64_t mtrrdef, pat_attr_reg; 2373 2374 /* 2375 * Disable reprogramming of MTRRs by default. 2376 */ 2377 int enable_relaxed_mtrr = 0; 2378 2379 /* 2380 * These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III) 2381 * and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending 2382 * address order (starting from 0x400). The Pentium 4 only implements 2383 * 4 sets, and while they are named 0-3 in the doc, the corresponding 2384 * names for P6 are 0,1,2,4. So define these arrays in address order 2385 * so that they work for both pre-Pentium4 and Pentium 4 processors. 2386 */ 2387 2388 static uint_t mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL, 2389 REG_MC4_CTL, REG_MC3_CTL}; 2390 static uint_t mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS, 2391 REG_MC4_STATUS, REG_MC3_STATUS}; 2392 static uint_t mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR, 2393 REG_MC4_ADDR, REG_MC3_ADDR}; 2394 static int mca_cnt; 2395 2396 2397 void 2398 setup_mca() 2399 { 2400 int i; 2401 uint64_t mca_cap; 2402 2403 if (!(x86_feature & X86_MCA)) 2404 return; 2405 mca_cap = rdmsr(REG_MCG_CAP); 2406 if (mca_cap & MCG_CAP_CTL_P) 2407 wrmsr(REG_MCG_CTL, -1ULL); /* all ones */ 2408 mca_cnt = mca_cap & MCG_CAP_COUNT_MASK; 2409 if (mca_cnt > P6_MCG_CAP_COUNT) 2410 mca_cnt = P6_MCG_CAP_COUNT; 2411 for (i = 1; i < mca_cnt; i++) 2412 wrmsr(mci_ctl[i], -1ULL); /* all ones */ 2413 for (i = 0; i < mca_cnt; i++) 2414 wrmsr(mci_status[i], 0ULL); 2415 setcr4(getcr4() | CR4_MCE); 2416 2417 } 2418 2419 int 2420 mca_exception(struct regs *rp) 2421 { 2422 uint64_t status, addr; 2423 int i, ret = 1, errcode, mserrcode; 2424 2425 status = rdmsr(REG_MCG_STATUS); 2426 if (status & MCG_STATUS_RIPV) 2427 ret = 0; 2428 if (status & MCG_STATUS_EIPV) 2429 cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc); 2430 wrmsr(REG_MCG_STATUS, 0ULL); 2431 for (i = 0; i < mca_cnt; i++) { 2432 status = rdmsr(mci_status[i]); 2433 /* 2434 * If status register not valid skip this bank 2435 */ 2436 if (!(status & MCI_STATUS_VAL)) 2437 continue; 2438 errcode = status & MCI_STATUS_ERRCODE; 2439 mserrcode = (status >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE; 2440 if (status & MCI_STATUS_ADDRV) { 2441 /* 2442 * If mci_addr contains the address where 2443 * error occurred, display the address 2444 */ 2445 addr = rdmsr(mci_addr[i]); 2446 cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\ 2447 "addr = 0x%" PRIx64 ", model errcode = 0x%x", i, 2448 errcode, addr, mserrcode); 2449 } else { 2450 cmn_err(CE_WARN, 2451 "MCE: Bank %d: error code 0x%x, mserrcode = 0x%x", 2452 i, errcode, mserrcode); 2453 } 2454 wrmsr(mci_status[i], 0ULL); 2455 } 2456 return (ret); 2457 } 2458 2459 void 2460 setup_mtrr() 2461 { 2462 int i, ecx; 2463 int vcnt; 2464 struct mtrrvar *mtrrphys; 2465 2466 if (!(x86_feature & X86_MTRR)) 2467 return; 2468 2469 mtrrcap = rdmsr(REG_MTRRCAP); 2470 mtrrdef = rdmsr(REG_MTRRDEF); 2471 if (mtrrcap & MTRRCAP_FIX) { 2472 mtrr64k = rdmsr(REG_MTRR64K); 2473 mtrr16k1 = rdmsr(REG_MTRR16K1); 2474 mtrr16k2 = rdmsr(REG_MTRR16K2); 2475 mtrr4k1 = rdmsr(REG_MTRR4K1); 2476 mtrr4k2 = rdmsr(REG_MTRR4K2); 2477 mtrr4k3 = rdmsr(REG_MTRR4K3); 2478 mtrr4k4 = rdmsr(REG_MTRR4K4); 2479 mtrr4k5 = rdmsr(REG_MTRR4K5); 2480 mtrr4k6 = rdmsr(REG_MTRR4K6); 2481 mtrr4k7 = rdmsr(REG_MTRR4K7); 2482 mtrr4k8 = rdmsr(REG_MTRR4K8); 2483 } 2484 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2485 vcnt = MAX_MTRRVAR; 2486 2487 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2488 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2489 mtrrphys->mtrrphys_base = rdmsr(ecx); 2490 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2491 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2492 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2493 } 2494 } 2495 if (x86_feature & X86_PAT) { 2496 if (enable_relaxed_mtrr) 2497 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2498 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2499 } 2500 2501 mtrr_sync(); 2502 } 2503 2504 /* 2505 * Sync current cpu mtrr with the incore copy of mtrr. 2506 * This function has to be invoked with interrupts disabled 2507 * Currently we do not capture other cpu's. This is invoked on cpu0 2508 * just after reading /etc/system. 2509 * On other cpu's its invoked from mp_startup(). 2510 */ 2511 void 2512 mtrr_sync() 2513 { 2514 uint_t crvalue, cr0_orig; 2515 int vcnt, i, ecx; 2516 struct mtrrvar *mtrrphys; 2517 2518 cr0_orig = crvalue = getcr0(); 2519 crvalue |= CR0_CD; 2520 crvalue &= ~CR0_NW; 2521 setcr0(crvalue); 2522 invalidate_cache(); 2523 setcr3(getcr3()); 2524 2525 if (x86_feature & X86_PAT) 2526 wrmsr(REG_MTRRPAT, pat_attr_reg); 2527 2528 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2529 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2530 2531 if (mtrrcap & MTRRCAP_FIX) { 2532 wrmsr(REG_MTRR64K, mtrr64k); 2533 wrmsr(REG_MTRR16K1, mtrr16k1); 2534 wrmsr(REG_MTRR16K2, mtrr16k2); 2535 wrmsr(REG_MTRR4K1, mtrr4k1); 2536 wrmsr(REG_MTRR4K2, mtrr4k2); 2537 wrmsr(REG_MTRR4K3, mtrr4k3); 2538 wrmsr(REG_MTRR4K4, mtrr4k4); 2539 wrmsr(REG_MTRR4K5, mtrr4k5); 2540 wrmsr(REG_MTRR4K6, mtrr4k6); 2541 wrmsr(REG_MTRR4K7, mtrr4k7); 2542 wrmsr(REG_MTRR4K8, mtrr4k8); 2543 } 2544 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2545 vcnt = MAX_MTRRVAR; 2546 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2547 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2548 wrmsr(ecx, mtrrphys->mtrrphys_base); 2549 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2550 } 2551 wrmsr(REG_MTRRDEF, mtrrdef); 2552 setcr3(getcr3()); 2553 invalidate_cache(); 2554 setcr0(cr0_orig); 2555 } 2556 2557 /* 2558 * resync mtrr so that BIOS is happy. Called from mdboot 2559 */ 2560 void 2561 mtrr_resync() 2562 { 2563 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2564 /* 2565 * We could have changed the default mtrr definition. 2566 * Put it back to uncached which is what it is at power on 2567 */ 2568 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2569 mtrr_sync(); 2570 } 2571 } 2572 2573 void 2574 get_system_configuration() 2575 { 2576 char prop[32]; 2577 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2578 2579 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2580 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2581 (kobj_getvalue(prop, &nodes_ll) == -1) || 2582 (nodes_ll > MAXNODES)) || 2583 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2584 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2585 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2586 2587 system_hardware.hd_nodes = 1; 2588 system_hardware.hd_cpus_per_node = 0; 2589 } else { 2590 system_hardware.hd_nodes = (int)nodes_ll; 2591 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2592 } 2593 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2594 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2595 (kobj_getvalue(prop, &lvalue) == -1)) 2596 eprom_kernelbase = NULL; 2597 else 2598 eprom_kernelbase = (uintptr_t)lvalue; 2599 2600 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2601 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2602 (kobj_getvalue(prop, &lvalue) == -1)) { 2603 segmapsize = SEGMAPDEFAULT; 2604 } else { 2605 segmapsize = (uintptr_t)lvalue; 2606 } 2607 2608 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2609 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2610 (kobj_getvalue(prop, &lvalue) == -1)) { 2611 segmapfreelists = 0; /* use segmap driver default */ 2612 } else { 2613 segmapfreelists = (int)lvalue; 2614 } 2615 } 2616 2617 /* 2618 * Add to a memory list. 2619 * start = start of new memory segment 2620 * len = length of new memory segment in bytes 2621 * new = pointer to a new struct memlist 2622 * memlistp = memory list to which to add segment. 2623 */ 2624 static void 2625 memlist_add( 2626 uint64_t start, 2627 uint64_t len, 2628 struct memlist *new, 2629 struct memlist **memlistp) 2630 { 2631 struct memlist *cur; 2632 uint64_t end = start + len; 2633 2634 new->address = start; 2635 new->size = len; 2636 2637 cur = *memlistp; 2638 2639 while (cur) { 2640 if (cur->address >= end) { 2641 new->next = cur; 2642 *memlistp = new; 2643 new->prev = cur->prev; 2644 cur->prev = new; 2645 return; 2646 } 2647 ASSERT(cur->address + cur->size <= start); 2648 if (cur->next == NULL) { 2649 cur->next = new; 2650 new->prev = cur; 2651 new->next = NULL; 2652 return; 2653 } 2654 memlistp = &cur->next; 2655 cur = cur->next; 2656 } 2657 } 2658 2659 void 2660 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2661 { 2662 size_t tsize = e_modtext - modtext; 2663 size_t dsize = e_moddata - moddata; 2664 2665 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2666 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2667 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2668 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2669 } 2670 2671 caddr_t 2672 kobj_text_alloc(vmem_t *arena, size_t size) 2673 { 2674 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2675 } 2676 2677 /*ARGSUSED*/ 2678 caddr_t 2679 kobj_texthole_alloc(caddr_t addr, size_t size) 2680 { 2681 panic("unexpected call to kobj_texthole_alloc()"); 2682 /*NOTREACHED*/ 2683 return (0); 2684 } 2685 2686 /*ARGSUSED*/ 2687 void 2688 kobj_texthole_free(caddr_t addr, size_t size) 2689 { 2690 panic("unexpected call to kobj_texthole_free()"); 2691 } 2692 2693 /* 2694 * This is called just after configure() in startup(). 2695 * 2696 * The ISALIST concept is a bit hopeless on Intel, because 2697 * there's no guarantee of an ever-more-capable processor 2698 * given that various parts of the instruction set may appear 2699 * and disappear between different implementations. 2700 * 2701 * While it would be possible to correct it and even enhance 2702 * it somewhat, the explicit hardware capability bitmask allows 2703 * more flexibility. 2704 * 2705 * So, we just leave this alone. 2706 */ 2707 void 2708 setx86isalist(void) 2709 { 2710 char *tp; 2711 size_t len; 2712 extern char *isa_list; 2713 2714 #define TBUFSIZE 1024 2715 2716 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2717 *tp = '\0'; 2718 2719 #if defined(__amd64) 2720 (void) strcpy(tp, "amd64 "); 2721 #endif 2722 2723 switch (x86_vendor) { 2724 case X86_VENDOR_Intel: 2725 case X86_VENDOR_AMD: 2726 case X86_VENDOR_TM: 2727 if (x86_feature & X86_CMOV) { 2728 /* 2729 * Pentium Pro or later 2730 */ 2731 (void) strcat(tp, "pentium_pro"); 2732 (void) strcat(tp, x86_feature & X86_MMX ? 2733 "+mmx pentium_pro " : " "); 2734 } 2735 /*FALLTHROUGH*/ 2736 case X86_VENDOR_Cyrix: 2737 /* 2738 * The Cyrix 6x86 does not have any Pentium features 2739 * accessible while not at privilege level 0. 2740 */ 2741 if (x86_feature & X86_CPUID) { 2742 (void) strcat(tp, "pentium"); 2743 (void) strcat(tp, x86_feature & X86_MMX ? 2744 "+mmx pentium " : " "); 2745 } 2746 break; 2747 default: 2748 break; 2749 } 2750 (void) strcat(tp, "i486 i386 i86"); 2751 len = strlen(tp) + 1; /* account for NULL at end of string */ 2752 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2753 kmem_free(tp, TBUFSIZE); 2754 2755 #undef TBUFSIZE 2756 } 2757 2758 2759 #ifdef __amd64 2760 2761 void * 2762 device_arena_alloc(size_t size, int vm_flag) 2763 { 2764 return (vmem_alloc(device_arena, size, vm_flag)); 2765 } 2766 2767 void 2768 device_arena_free(void *vaddr, size_t size) 2769 { 2770 vmem_free(device_arena, vaddr, size); 2771 } 2772 2773 #else 2774 2775 void * 2776 device_arena_alloc(size_t size, int vm_flag) 2777 { 2778 caddr_t vaddr; 2779 uintptr_t v; 2780 size_t start; 2781 size_t end; 2782 2783 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2784 if (vaddr == NULL) 2785 return (NULL); 2786 2787 v = (uintptr_t)vaddr; 2788 ASSERT(v >= kernelbase); 2789 ASSERT(v + size <= ptable_va); 2790 2791 start = btop(v - kernelbase); 2792 end = btop(v + size - 1 - kernelbase); 2793 ASSERT(start < toxic_bit_map_len); 2794 ASSERT(end < toxic_bit_map_len); 2795 2796 while (start <= end) { 2797 BT_ATOMIC_SET(toxic_bit_map, start); 2798 ++start; 2799 } 2800 return (vaddr); 2801 } 2802 2803 void 2804 device_arena_free(void *vaddr, size_t size) 2805 { 2806 uintptr_t v = (uintptr_t)vaddr; 2807 size_t start; 2808 size_t end; 2809 2810 ASSERT(v >= kernelbase); 2811 ASSERT(v + size <= ptable_va); 2812 2813 start = btop(v - kernelbase); 2814 end = btop(v + size - 1 - kernelbase); 2815 ASSERT(start < toxic_bit_map_len); 2816 ASSERT(end < toxic_bit_map_len); 2817 2818 while (start <= end) { 2819 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2820 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2821 ++start; 2822 } 2823 vmem_free(heap_arena, vaddr, size); 2824 } 2825 2826 /* 2827 * returns 1st address in range that is in device arena, or NULL 2828 * if len is not NULL it returns the length of the toxic range 2829 */ 2830 void * 2831 device_arena_contains(void *vaddr, size_t size, size_t *len) 2832 { 2833 uintptr_t v = (uintptr_t)vaddr; 2834 uintptr_t eaddr = v + size; 2835 size_t start; 2836 size_t end; 2837 2838 /* 2839 * if called very early by kmdb, just return NULL 2840 */ 2841 if (toxic_bit_map == NULL) 2842 return (NULL); 2843 2844 /* 2845 * First check if we're completely outside the bitmap range. 2846 */ 2847 if (v >= ptable_va || eaddr < kernelbase) 2848 return (NULL); 2849 2850 /* 2851 * Trim ends of search to look at only what the bitmap covers. 2852 */ 2853 if (v < kernelbase) 2854 v = kernelbase; 2855 start = btop(v - kernelbase); 2856 end = btop(eaddr - kernelbase); 2857 if (end >= toxic_bit_map_len) 2858 end = toxic_bit_map_len; 2859 2860 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2861 return (NULL); 2862 2863 v = kernelbase + ptob(start); 2864 if (len != NULL) 2865 *len = ptob(end - start); 2866 return ((void *)v); 2867 } 2868 2869 #endif 2870