1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2018 Joyent, Inc. 27 * Copyright (c) 2015 by Delphix. All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2010, Intel Corporation. 31 * All rights reserved. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/t_lock.h> 36 #include <sys/param.h> 37 #include <sys/sysmacros.h> 38 #include <sys/signal.h> 39 #include <sys/systm.h> 40 #include <sys/user.h> 41 #include <sys/mman.h> 42 #include <sys/vm.h> 43 #include <sys/conf.h> 44 #include <sys/avintr.h> 45 #include <sys/autoconf.h> 46 #include <sys/disp.h> 47 #include <sys/class.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/privregs.h> 51 52 #include <sys/proc.h> 53 #include <sys/buf.h> 54 #include <sys/kmem.h> 55 #include <sys/mem.h> 56 #include <sys/kstat.h> 57 58 #include <sys/reboot.h> 59 60 #include <sys/cred.h> 61 #include <sys/vnode.h> 62 #include <sys/file.h> 63 64 #include <sys/procfs.h> 65 66 #include <sys/vfs.h> 67 #include <sys/cmn_err.h> 68 #include <sys/utsname.h> 69 #include <sys/debug.h> 70 #include <sys/kdi.h> 71 72 #include <sys/dumphdr.h> 73 #include <sys/bootconf.h> 74 #include <sys/memlist_plat.h> 75 #include <sys/varargs.h> 76 #include <sys/promif.h> 77 #include <sys/modctl.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/sunndi.h> 81 #include <sys/ndi_impldefs.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/psw.h> 84 #include <sys/regset.h> 85 #include <sys/clock.h> 86 #include <sys/pte.h> 87 #include <sys/tss.h> 88 #include <sys/stack.h> 89 #include <sys/trap.h> 90 #include <sys/fp.h> 91 #include <vm/kboot_mmu.h> 92 #include <vm/anon.h> 93 #include <vm/as.h> 94 #include <vm/page.h> 95 #include <vm/seg.h> 96 #include <vm/seg_dev.h> 97 #include <vm/seg_kmem.h> 98 #include <vm/seg_kpm.h> 99 #include <vm/seg_map.h> 100 #include <vm/seg_vn.h> 101 #include <vm/seg_kp.h> 102 #include <sys/memnode.h> 103 #include <vm/vm_dep.h> 104 #include <sys/thread.h> 105 #include <sys/sysconf.h> 106 #include <sys/vm_machparam.h> 107 #include <sys/archsystm.h> 108 #include <sys/machsystm.h> 109 #include <vm/hat.h> 110 #include <vm/hat_i86.h> 111 #include <sys/pmem.h> 112 #include <sys/smp_impldefs.h> 113 #include <sys/x86_archext.h> 114 #include <sys/cpuvar.h> 115 #include <sys/segments.h> 116 #include <sys/clconf.h> 117 #include <sys/kobj.h> 118 #include <sys/kobj_lex.h> 119 #include <sys/cpc_impl.h> 120 #include <sys/cpu_module.h> 121 #include <sys/smbios.h> 122 #include <sys/debug_info.h> 123 #include <sys/bootinfo.h> 124 #include <sys/ddi_periodic.h> 125 #include <sys/systeminfo.h> 126 #include <sys/multiboot.h> 127 #include <sys/ramdisk.h> 128 129 #ifdef __xpv 130 131 #include <sys/hypervisor.h> 132 #include <sys/xen_mmu.h> 133 #include <sys/evtchn_impl.h> 134 #include <sys/gnttab.h> 135 #include <sys/xpv_panic.h> 136 #include <xen/sys/xenbus_comms.h> 137 #include <xen/public/physdev.h> 138 139 extern void xen_late_startup(void); 140 141 struct xen_evt_data cpu0_evt_data; 142 143 #else /* __xpv */ 144 #include <sys/memlist_impl.h> 145 146 extern void mem_config_init(void); 147 #endif /* __xpv */ 148 149 extern void progressbar_init(void); 150 extern void brand_init(void); 151 extern void pcf_init(void); 152 extern void pg_init(void); 153 extern void ssp_init(void); 154 155 extern int size_pse_array(pgcnt_t, int); 156 157 #if defined(_SOFT_HOSTID) 158 159 #include <sys/rtc.h> 160 161 static int32_t set_soft_hostid(void); 162 static char hostid_file[] = "/etc/hostid"; 163 164 #endif 165 166 void *gfx_devinfo_list; 167 168 #if defined(__amd64) && !defined(__xpv) 169 extern void immu_startup(void); 170 #endif 171 172 /* 173 * XXX make declaration below "static" when drivers no longer use this 174 * interface. 175 */ 176 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 177 178 /* 179 * segkp 180 */ 181 extern int segkp_fromheap; 182 183 static void kvm_init(void); 184 static void startup_init(void); 185 static void startup_memlist(void); 186 static void startup_kmem(void); 187 static void startup_modules(void); 188 static void startup_vm(void); 189 static void startup_end(void); 190 static void layout_kernel_va(void); 191 192 /* 193 * Declare these as initialized data so we can patch them. 194 */ 195 #ifdef __i386 196 197 /* 198 * Due to virtual address space limitations running in 32 bit mode, restrict 199 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 200 * 201 * If the physical max memory size of 64g were allowed to be configured, the 202 * size of user virtual address space will be less than 1g. A limited user 203 * address space greatly reduces the range of applications that can run. 204 * 205 * If more physical memory than PHYSMEM is required, users should preferably 206 * run in 64 bit mode which has far looser virtual address space limitations. 207 * 208 * If 64 bit mode is not available (as in IA32) and/or more physical memory 209 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 210 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 211 * should also be carefully tuned to balance out the need of the user 212 * application while minimizing the risk of kernel heap exhaustion due to 213 * kernelbase being set too high. 214 */ 215 #define PHYSMEM 0x400000 216 217 #else /* __amd64 */ 218 219 /* 220 * For now we can handle memory with physical addresses up to about 221 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 222 * half the VA space for seg_kpm. When systems get bigger than 64TB this 223 * code will need revisiting. There is an implicit assumption that there 224 * are no *huge* holes in the physical address space too. 225 */ 226 #define TERABYTE (1ul << 40) 227 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 228 #define PHYSMEM PHYSMEM_MAX64 229 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 230 231 #endif /* __amd64 */ 232 233 pgcnt_t physmem = PHYSMEM; 234 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 235 236 char *kobj_file_buf; 237 int kobj_file_bufsize; /* set in /etc/system */ 238 239 /* Global variables for MP support. Used in mp_startup */ 240 caddr_t rm_platter_va = 0; 241 uint32_t rm_platter_pa; 242 243 int auto_lpg_disable = 1; 244 245 /* 246 * Some CPUs have holes in the middle of the 64-bit virtual address range. 247 */ 248 uintptr_t hole_start, hole_end; 249 250 /* 251 * kpm mapping window 252 */ 253 caddr_t kpm_vbase; 254 size_t kpm_size; 255 static int kpm_desired; 256 #ifdef __amd64 257 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 258 #endif 259 260 /* 261 * Configuration parameters set at boot time. 262 */ 263 264 caddr_t econtig; /* end of first block of contiguous kernel */ 265 266 struct bootops *bootops = 0; /* passed in from boot */ 267 struct bootops **bootopsp; 268 struct boot_syscalls *sysp; /* passed in from boot */ 269 270 char bootblock_fstype[16]; 271 272 char kern_bootargs[OBP_MAXPATHLEN]; 273 char kern_bootfile[OBP_MAXPATHLEN]; 274 275 /* 276 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 277 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 278 * zio buffers from their own segment, otherwise they are allocated from the 279 * heap. The optimization of allocating zio buffers from their own segment is 280 * only valid on 64-bit kernels. 281 */ 282 #if defined(__amd64) 283 int segzio_fromheap = 0; 284 #else 285 int segzio_fromheap = 1; 286 #endif 287 288 /* 289 * Give folks an escape hatch for disabling SMAP via kmdb. Doesn't work 290 * post-boot. 291 */ 292 int disable_smap = 0; 293 294 /* 295 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 296 * depends on number of BOP_ALLOC calls made and requested size, memory size 297 * combination and whether boot.bin memory needs to be freed. 298 */ 299 #define POSS_NEW_FRAGMENTS 12 300 301 /* 302 * VM data structures 303 */ 304 long page_hashsz; /* Size of page hash table (power of two) */ 305 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 306 struct page *pp_base; /* Base of initial system page struct array */ 307 struct page **page_hash; /* Page hash table */ 308 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 309 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 310 int pse_shift; /* log2(pse_table_size) */ 311 struct seg ktextseg; /* Segment used for kernel executable image */ 312 struct seg kvalloc; /* Segment used for "valloc" mapping */ 313 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 314 struct seg kmapseg; /* Segment used for generic kernel mappings */ 315 struct seg kdebugseg; /* Segment used for the kernel debugger */ 316 317 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 318 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 319 320 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 321 322 #if defined(__amd64) 323 struct seg kvseg_core; /* Segment used for the core heap */ 324 struct seg kpmseg; /* Segment used for physical mapping */ 325 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 326 #else 327 struct seg *segkpm = NULL; /* Unused on IA32 */ 328 #endif 329 330 caddr_t segkp_base; /* Base address of segkp */ 331 caddr_t segzio_base; /* Base address of segzio */ 332 #if defined(__amd64) 333 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 334 #else 335 pgcnt_t segkpsize = 0; 336 #endif 337 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 338 339 /* 340 * A static DR page_t VA map is reserved that can map the page structures 341 * for a domain's entire RA space. The pages that back this space are 342 * dynamically allocated and need not be physically contiguous. The DR 343 * map size is derived from KPM size. 344 * This mechanism isn't used by x86 yet, so just stubs here. 345 */ 346 int ppvm_enable = 0; /* Static virtual map for page structs */ 347 page_t *ppvm_base = NULL; /* Base of page struct map */ 348 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 349 350 /* 351 * VA range available to the debugger 352 */ 353 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 354 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 355 356 struct memseg *memseg_base; 357 struct vnode unused_pages_vp; 358 359 #define FOURGB 0x100000000LL 360 361 struct memlist *memlist; 362 363 caddr_t s_text; /* start of kernel text segment */ 364 caddr_t e_text; /* end of kernel text segment */ 365 caddr_t s_data; /* start of kernel data segment */ 366 caddr_t e_data; /* end of kernel data segment */ 367 caddr_t modtext; /* start of loadable module text reserved */ 368 caddr_t e_modtext; /* end of loadable module text reserved */ 369 caddr_t moddata; /* start of loadable module data reserved */ 370 caddr_t e_moddata; /* end of loadable module data reserved */ 371 372 struct memlist *phys_install; /* Total installed physical memory */ 373 struct memlist *phys_avail; /* Total available physical memory */ 374 struct memlist *bios_rsvd; /* Bios reserved memory */ 375 376 /* 377 * kphysm_init returns the number of pages that were processed 378 */ 379 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 380 381 #define IO_PROP_SIZE 64 /* device property size */ 382 383 /* 384 * a couple useful roundup macros 385 */ 386 #define ROUND_UP_PAGE(x) \ 387 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 388 #define ROUND_UP_LPAGE(x) \ 389 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 390 #define ROUND_UP_4MEG(x) \ 391 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 392 #define ROUND_UP_TOPLEVEL(x) \ 393 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 394 395 /* 396 * 32-bit Kernel's Virtual memory layout. 397 * +-----------------------+ 398 * | | 399 * 0xFFC00000 -|-----------------------|- ARGSBASE 400 * | debugger | 401 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 402 * | Kernel Data | 403 * 0xFEC00000 -|-----------------------| 404 * | Kernel Text | 405 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 406 * |--- GDT ---|- GDT page (GDT_VA) 407 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 408 * | | 409 * | page_t structures | 410 * | memsegs, memlists, | 411 * | page hash, etc. | 412 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 413 * | | (segkp is just an arena in the heap) 414 * | | 415 * | kvseg | 416 * | | 417 * | | 418 * --- -|-----------------------|- kernelheap (floating) 419 * | Segkmap | 420 * 0xC3002000 -|-----------------------|- segmap_start (floating) 421 * | Red Zone | 422 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 423 * | | || 424 * | Shared objects | \/ 425 * | | 426 * : : 427 * | user data | 428 * |-----------------------| 429 * | user text | 430 * 0x08048000 -|-----------------------| 431 * | user stack | 432 * : : 433 * | invalid | 434 * 0x00000000 +-----------------------+ 435 * 436 * 437 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 438 * +-----------------------+ 439 * | | 440 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 441 * | debugger (?) | 442 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 443 * | unused | 444 * +-----------------------+ 445 * | Kernel Data | 446 * 0xFFFFFFFF.FBC00000 |-----------------------| 447 * | Kernel Text | 448 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 449 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 450 * |--- GDT ---|- GDT page (GDT_VA) 451 * |--- IDT ---|- IDT page (IDT_VA) 452 * |--- LDT ---|- LDT pages (LDT_VA) 453 * | | 454 * | Core heap | (used for loadable modules) 455 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 456 * | Kernel | 457 * | heap | 458 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 459 * | segmap | 460 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 461 * | device mappings | 462 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 463 * | segzio | 464 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 465 * | segkp | 466 * --- |-----------------------|- segkp_base (floating) 467 * | page_t structures | valloc_base + valloc_sz 468 * | memsegs, memlists, | 469 * | page hash, etc. | 470 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if >256GB) 471 * | segkpm | 472 * 0xFFFFFE00.00000000 |-----------------------| 473 * | Red Zone | 474 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if >256GB) 475 * | User stack |- User space memory 476 * | | 477 * | shared objects, etc | (grows downwards) 478 * : : 479 * | | 480 * 0xFFFF8000.00000000 |-----------------------| 481 * | | 482 * | VA Hole / unused | 483 * | | 484 * 0x00008000.00000000 |-----------------------| 485 * | | 486 * | | 487 * : : 488 * | user heap | (grows upwards) 489 * | | 490 * | user data | 491 * |-----------------------| 492 * | user text | 493 * 0x00000000.04000000 |-----------------------| 494 * | invalid | 495 * 0x00000000.00000000 +-----------------------+ 496 * 497 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 498 * kernel, except that userlimit is raised to 0xfe000000 499 * 500 * Floating values: 501 * 502 * valloc_base: start of the kernel's memory management/tracking data 503 * structures. This region contains page_t structures for 504 * physical memory, memsegs, memlists, and the page hash. 505 * 506 * core_base: start of the kernel's "core" heap area on 64-bit systems. 507 * This area is intended to be used for global data as well as for module 508 * text/data that does not fit into the nucleus pages. The core heap is 509 * restricted to a 2GB range, allowing every address within it to be 510 * accessed using rip-relative addressing 511 * 512 * ekernelheap: end of kernelheap and start of segmap. 513 * 514 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 515 * above a red zone that separates the user's address space from the 516 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 517 * 518 * segmap_start: start of segmap. The length of segmap can be modified 519 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 520 * on 64-bit systems. 521 * 522 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 523 * decreased by 2X the size required for page_t. This allows the kernel 524 * heap to grow in size with physical memory. With sizeof(page_t) == 80 525 * bytes, the following shows the values of kernelbase and kernel heap 526 * sizes for different memory configurations (assuming default segmap and 527 * segkp sizes). 528 * 529 * mem size for kernelbase kernel heap 530 * size page_t's size 531 * ---- --------- ---------- ----------- 532 * 1gb 0x01400000 0xd1800000 684MB 533 * 2gb 0x02800000 0xcf000000 704MB 534 * 4gb 0x05000000 0xca000000 744MB 535 * 6gb 0x07800000 0xc5000000 784MB 536 * 8gb 0x0a000000 0xc0000000 824MB 537 * 16gb 0x14000000 0xac000000 984MB 538 * 32gb 0x28000000 0x84000000 1304MB 539 * 64gb 0x50000000 0x34000000 1944MB (*) 540 * 541 * kernelbase is less than the abi minimum of 0xc0000000 for memory 542 * configurations above 8gb. 543 * 544 * (*) support for memory configurations above 32gb will require manual tuning 545 * of kernelbase to balance out the need of user applications. 546 */ 547 548 /* real-time-clock initialization parameters */ 549 extern time_t process_rtc_config_file(void); 550 551 uintptr_t kernelbase; 552 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 553 uintptr_t eprom_kernelbase; 554 size_t segmapsize; 555 uintptr_t segmap_start; 556 int segmapfreelists; 557 pgcnt_t npages; 558 pgcnt_t orig_npages; 559 size_t core_size; /* size of "core" heap */ 560 uintptr_t core_base; /* base address of "core" heap */ 561 562 /* 563 * List of bootstrap pages. We mark these as allocated in startup. 564 * release_bootstrap() will free them when we're completely done with 565 * the bootstrap. 566 */ 567 static page_t *bootpages; 568 569 /* 570 * boot time pages that have a vnode from the ramdisk will keep that forever. 571 */ 572 static page_t *rd_pages; 573 574 /* 575 * Lower 64K 576 */ 577 static page_t *lower_pages = NULL; 578 static int lower_pages_count = 0; 579 580 struct system_hardware system_hardware; 581 582 /* 583 * Enable some debugging messages concerning memory usage... 584 */ 585 static void 586 print_memlist(char *title, struct memlist *mp) 587 { 588 prom_printf("MEMLIST: %s:\n", title); 589 while (mp != NULL) { 590 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 591 mp->ml_address, mp->ml_size); 592 mp = mp->ml_next; 593 } 594 } 595 596 /* 597 * XX64 need a comment here.. are these just default values, surely 598 * we read the "cpuid" type information to figure this out. 599 */ 600 int l2cache_sz = 0x80000; 601 int l2cache_linesz = 0x40; 602 int l2cache_assoc = 1; 603 604 static size_t textrepl_min_gb = 10; 605 606 /* 607 * on 64 bit we use a predifined VA range for mapping devices in the kernel 608 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 609 */ 610 #ifdef __amd64 611 612 vmem_t *device_arena; 613 uintptr_t toxic_addr = (uintptr_t)NULL; 614 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 615 616 #else /* __i386 */ 617 618 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 619 size_t toxic_bit_map_len = 0; /* in bits */ 620 621 #endif /* __i386 */ 622 623 /* 624 * Simple boot time debug facilities 625 */ 626 static char *prm_dbg_str[] = { 627 "%s:%d: '%s' is 0x%x\n", 628 "%s:%d: '%s' is 0x%llx\n" 629 }; 630 631 int prom_debug; 632 633 #define PRM_DEBUG(q) if (prom_debug) \ 634 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 635 #define PRM_POINT(q) if (prom_debug) \ 636 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 637 638 /* 639 * This structure is used to keep track of the intial allocations 640 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 641 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 642 */ 643 #define NUM_ALLOCATIONS 8 644 int num_allocations = 0; 645 struct { 646 void **al_ptr; 647 size_t al_size; 648 } allocations[NUM_ALLOCATIONS]; 649 size_t valloc_sz = 0; 650 uintptr_t valloc_base; 651 652 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 653 size = ROUND_UP_PAGE(size); \ 654 if (num_allocations == NUM_ALLOCATIONS) \ 655 panic("too many ADD_TO_ALLOCATIONS()"); \ 656 allocations[num_allocations].al_ptr = (void**)&ptr; \ 657 allocations[num_allocations].al_size = size; \ 658 valloc_sz += size; \ 659 ++num_allocations; \ 660 } 661 662 /* 663 * Allocate all the initial memory needed by the page allocator. 664 */ 665 static void 666 perform_allocations(void) 667 { 668 caddr_t mem; 669 int i; 670 int valloc_align; 671 672 PRM_DEBUG(valloc_base); 673 PRM_DEBUG(valloc_sz); 674 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 675 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 676 if (mem != (caddr_t)valloc_base) 677 panic("BOP_ALLOC() failed"); 678 bzero(mem, valloc_sz); 679 for (i = 0; i < num_allocations; ++i) { 680 *allocations[i].al_ptr = (void *)mem; 681 mem += allocations[i].al_size; 682 } 683 } 684 685 /* 686 * Set up and enable SMAP now before we start other CPUs, but after the kernel's 687 * VM has been set up so we can use hot_patch_kernel_text(). 688 * 689 * We can only patch 1, 2, or 4 bytes, but not three bytes. So instead, we 690 * replace the four byte word at the patch point. See uts/intel/ia32/ml/copy.s 691 * for more information on what's going on here. 692 */ 693 static void 694 startup_smap(void) 695 { 696 int i; 697 uint32_t inst; 698 uint8_t *instp; 699 char sym[128]; 700 struct modctl *modp; 701 702 extern int _smap_enable_patch_count; 703 extern int _smap_disable_patch_count; 704 705 if (disable_smap != 0) 706 remove_x86_feature(x86_featureset, X86FSET_SMAP); 707 708 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 709 return; 710 711 for (i = 0; i < _smap_enable_patch_count; i++) { 712 int sizep; 713 714 VERIFY3U(i, <, _smap_enable_patch_count); 715 VERIFY(snprintf(sym, sizeof (sym), "_smap_enable_patch_%d", i) < 716 sizeof (sym)); 717 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 718 VERIFY(instp != 0); 719 inst = (instp[3] << 24) | (SMAP_CLAC_INSTR & 0x00ffffff); 720 hot_patch_kernel_text((caddr_t)instp, inst, 4); 721 } 722 723 for (i = 0; i < _smap_disable_patch_count; i++) { 724 int sizep; 725 726 VERIFY(snprintf(sym, sizeof (sym), "_smap_disable_patch_%d", 727 i) < sizeof (sym)); 728 instp = (uint8_t *)(void *)kobj_getelfsym(sym, NULL, &sizep); 729 VERIFY(instp != 0); 730 inst = (instp[3] << 24) | (SMAP_STAC_INSTR & 0x00ffffff); 731 hot_patch_kernel_text((caddr_t)instp, inst, 4); 732 } 733 734 /* 735 * Hotinline calls to smap_enable and smap_disable within 736 * unix module. Hotinlines in other modules are done on 737 * mod_load(). 738 */ 739 modp = mod_hold_by_name("unix"); 740 do_hotinlines(modp->mod_mp); 741 mod_release_mod(modp); 742 743 setcr4(getcr4() | CR4_SMAP); 744 smap_enable(); 745 } 746 747 /* 748 * Our world looks like this at startup time. 749 * 750 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 751 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 752 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 753 * addresses are fixed in the binary at link time. 754 * 755 * On the text page: 756 * unix/genunix/krtld/module text loads. 757 * 758 * On the data page: 759 * unix/genunix/krtld/module data loads. 760 * 761 * Machine-dependent startup code 762 */ 763 void 764 startup(void) 765 { 766 #if !defined(__xpv) 767 extern void startup_pci_bios(void); 768 #endif 769 extern cpuset_t cpu_ready_set; 770 771 /* 772 * Make sure that nobody tries to use sekpm until we have 773 * initialized it properly. 774 */ 775 #if defined(__amd64) 776 kpm_desired = 1; 777 #endif 778 kpm_enable = 0; 779 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 780 781 #if defined(__xpv) /* XXPV fix me! */ 782 { 783 extern int segvn_use_regions; 784 segvn_use_regions = 0; 785 } 786 #endif 787 ssp_init(); 788 progressbar_init(); 789 startup_init(); 790 #if defined(__xpv) 791 startup_xen_version(); 792 #endif 793 startup_memlist(); 794 startup_kmem(); 795 startup_vm(); 796 #if !defined(__xpv) 797 /* 798 * Note we need to do this even on fast reboot in order to access 799 * the irq routing table (used for pci labels). 800 */ 801 startup_pci_bios(); 802 startup_smap(); 803 #endif 804 #if defined(__xpv) 805 startup_xen_mca(); 806 #endif 807 startup_modules(); 808 809 startup_end(); 810 } 811 812 static void 813 startup_init() 814 { 815 PRM_POINT("startup_init() starting..."); 816 817 /* 818 * Complete the extraction of cpuid data 819 */ 820 cpuid_pass2(CPU); 821 822 (void) check_boot_version(BOP_GETVERSION(bootops)); 823 824 /* 825 * Check for prom_debug in boot environment 826 */ 827 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 828 ++prom_debug; 829 PRM_POINT("prom_debug found in boot enviroment"); 830 } 831 832 /* 833 * Collect node, cpu and memory configuration information. 834 */ 835 get_system_configuration(); 836 837 /* 838 * Halt if this is an unsupported processor. 839 */ 840 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 841 printf("\n486 processor (\"%s\") detected.\n", 842 CPU->cpu_brandstr); 843 halt("This processor is not supported by this release " 844 "of Solaris."); 845 } 846 847 PRM_POINT("startup_init() done"); 848 } 849 850 /* 851 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 852 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 853 * also filters out physical page zero. There is some reliance on the 854 * boot loader allocating only a few contiguous physical memory chunks. 855 */ 856 static void 857 avail_filter(uint64_t *addr, uint64_t *size) 858 { 859 uintptr_t va; 860 uintptr_t next_va; 861 pfn_t pfn; 862 uint64_t pfn_addr; 863 uint64_t pfn_eaddr; 864 uint_t prot; 865 size_t len; 866 uint_t change; 867 868 if (prom_debug) 869 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 870 *addr, *size); 871 872 /* 873 * page zero is required for BIOS.. never make it available 874 */ 875 if (*addr == 0) { 876 *addr += MMU_PAGESIZE; 877 *size -= MMU_PAGESIZE; 878 } 879 880 /* 881 * First we trim from the front of the range. Since kbm_probe() 882 * walks ranges in virtual order, but addr/size are physical, we need 883 * to the list until no changes are seen. This deals with the case 884 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 885 * but w < v. 886 */ 887 do { 888 change = 0; 889 for (va = KERNEL_TEXT; 890 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 891 va = next_va) { 892 893 next_va = va + len; 894 pfn_addr = pfn_to_pa(pfn); 895 pfn_eaddr = pfn_addr + len; 896 897 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 898 change = 1; 899 while (*size > 0 && len > 0) { 900 *addr += MMU_PAGESIZE; 901 *size -= MMU_PAGESIZE; 902 len -= MMU_PAGESIZE; 903 } 904 } 905 } 906 if (change && prom_debug) 907 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 908 *addr, *size); 909 } while (change); 910 911 /* 912 * Trim pages from the end of the range. 913 */ 914 for (va = KERNEL_TEXT; 915 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 916 va = next_va) { 917 918 next_va = va + len; 919 pfn_addr = pfn_to_pa(pfn); 920 921 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 922 *size = pfn_addr - *addr; 923 } 924 925 if (prom_debug) 926 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 927 *addr, *size); 928 } 929 930 static void 931 kpm_init() 932 { 933 struct segkpm_crargs b; 934 935 /* 936 * These variables were all designed for sfmmu in which segkpm is 937 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 938 * might use 2+ page sizes on a single machine, so none of these 939 * variables have a single correct value. They are set up as if we 940 * always use a 4KB pagesize, which should do no harm. In the long 941 * run, we should get rid of KPM's assumption that only a single 942 * pagesize is used. 943 */ 944 kpm_pgshft = MMU_PAGESHIFT; 945 kpm_pgsz = MMU_PAGESIZE; 946 kpm_pgoff = MMU_PAGEOFFSET; 947 kpmp2pshft = 0; 948 kpmpnpgs = 1; 949 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 950 951 PRM_POINT("about to create segkpm"); 952 rw_enter(&kas.a_lock, RW_WRITER); 953 954 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 955 panic("cannot attach segkpm"); 956 957 b.prot = PROT_READ | PROT_WRITE; 958 b.nvcolors = 1; 959 960 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 961 panic("segkpm_create segkpm"); 962 963 rw_exit(&kas.a_lock); 964 965 kpm_enable = 1; 966 967 /* 968 * As the KPM was disabled while setting up the system, go back and fix 969 * CPU zero's access to its user page table. This is a bit gross, but 970 * we have a chicken and egg problem otherwise. 971 */ 972 ASSERT(CPU->cpu_hat_info->hci_user_l3ptes == NULL); 973 CPU->cpu_hat_info->hci_user_l3ptes = 974 (x86pte_t *)hat_kpm_mapin_pfn(CPU->cpu_hat_info->hci_user_l3pfn); 975 } 976 977 /* 978 * The debug info page provides enough information to allow external 979 * inspectors (e.g. when running under a hypervisor) to bootstrap 980 * themselves into allowing full-blown kernel debugging. 981 */ 982 static void 983 init_debug_info(void) 984 { 985 caddr_t mem; 986 debug_info_t *di; 987 988 #ifndef __lint 989 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 990 #endif 991 992 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 993 MMU_PAGESIZE); 994 995 if (mem != (caddr_t)DEBUG_INFO_VA) 996 panic("BOP_ALLOC() failed"); 997 bzero(mem, MMU_PAGESIZE); 998 999 di = (debug_info_t *)mem; 1000 1001 di->di_magic = DEBUG_INFO_MAGIC; 1002 di->di_version = DEBUG_INFO_VERSION; 1003 di->di_modules = (uintptr_t)&modules; 1004 di->di_s_text = (uintptr_t)s_text; 1005 di->di_e_text = (uintptr_t)e_text; 1006 di->di_s_data = (uintptr_t)s_data; 1007 di->di_e_data = (uintptr_t)e_data; 1008 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 1009 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 1010 } 1011 1012 /* 1013 * Build the memlists and other kernel essential memory system data structures. 1014 * This is everything at valloc_base. 1015 */ 1016 static void 1017 startup_memlist(void) 1018 { 1019 size_t memlist_sz; 1020 size_t memseg_sz; 1021 size_t pagehash_sz; 1022 size_t pp_sz; 1023 uintptr_t va; 1024 size_t len; 1025 uint_t prot; 1026 pfn_t pfn; 1027 int memblocks; 1028 pfn_t rsvd_high_pfn; 1029 pgcnt_t rsvd_pgcnt; 1030 size_t rsvdmemlist_sz; 1031 int rsvdmemblocks; 1032 caddr_t pagecolor_mem; 1033 size_t pagecolor_memsz; 1034 caddr_t page_ctrs_mem; 1035 size_t page_ctrs_size; 1036 size_t pse_table_alloc_size; 1037 struct memlist *current; 1038 extern void startup_build_mem_nodes(struct memlist *); 1039 1040 /* XX64 fix these - they should be in include files */ 1041 extern size_t page_coloring_init(uint_t, int, int); 1042 extern void page_coloring_setup(caddr_t); 1043 1044 PRM_POINT("startup_memlist() starting..."); 1045 1046 /* 1047 * Use leftover large page nucleus text/data space for loadable modules. 1048 * Use at most MODTEXT/MODDATA. 1049 */ 1050 len = kbm_nucleus_size; 1051 ASSERT(len > MMU_PAGESIZE); 1052 1053 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 1054 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 1055 if (e_moddata - moddata > MODDATA) 1056 e_moddata = moddata + MODDATA; 1057 1058 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 1059 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 1060 if (e_modtext - modtext > MODTEXT) 1061 e_modtext = modtext + MODTEXT; 1062 1063 econtig = e_moddata; 1064 1065 PRM_DEBUG(modtext); 1066 PRM_DEBUG(e_modtext); 1067 PRM_DEBUG(moddata); 1068 PRM_DEBUG(e_moddata); 1069 PRM_DEBUG(econtig); 1070 1071 /* 1072 * Examine the boot loader physical memory map to find out: 1073 * - total memory in system - physinstalled 1074 * - the max physical address - physmax 1075 * - the number of discontiguous segments of memory. 1076 */ 1077 if (prom_debug) 1078 print_memlist("boot physinstalled", 1079 bootops->boot_mem->physinstalled); 1080 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 1081 &physinstalled, &memblocks); 1082 PRM_DEBUG(physmax); 1083 PRM_DEBUG(physinstalled); 1084 PRM_DEBUG(memblocks); 1085 1086 /* 1087 * Compute maximum physical address for memory DR operations. 1088 * Memory DR operations are unsupported on xpv or 32bit OSes. 1089 */ 1090 #ifdef __amd64 1091 if (plat_dr_support_memory()) { 1092 if (plat_dr_physmax == 0) { 1093 uint_t pabits = UINT_MAX; 1094 1095 cpuid_get_addrsize(CPU, &pabits, NULL); 1096 plat_dr_physmax = btop(1ULL << pabits); 1097 } 1098 if (plat_dr_physmax > PHYSMEM_MAX64) 1099 plat_dr_physmax = PHYSMEM_MAX64; 1100 } else 1101 #endif 1102 plat_dr_physmax = 0; 1103 1104 /* 1105 * Examine the bios reserved memory to find out: 1106 * - the number of discontiguous segments of memory. 1107 */ 1108 if (prom_debug) 1109 print_memlist("boot reserved mem", 1110 bootops->boot_mem->rsvdmem); 1111 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1112 &rsvd_pgcnt, &rsvdmemblocks); 1113 PRM_DEBUG(rsvd_high_pfn); 1114 PRM_DEBUG(rsvd_pgcnt); 1115 PRM_DEBUG(rsvdmemblocks); 1116 1117 /* 1118 * Initialize hat's mmu parameters. 1119 * Check for enforce-prot-exec in boot environment. It's used to 1120 * enable/disable support for the page table entry NX bit. 1121 * The default is to enforce PROT_EXEC on processors that support NX. 1122 * Boot seems to round up the "len", but 8 seems to be big enough. 1123 */ 1124 mmu_init(); 1125 1126 #ifdef __i386 1127 /* 1128 * physmax is lowered if there is more memory than can be 1129 * physically addressed in 32 bit (PAE/non-PAE) modes. 1130 */ 1131 if (mmu.pae_hat) { 1132 if (PFN_ABOVE64G(physmax)) { 1133 physinstalled -= (physmax - (PFN_64G - 1)); 1134 physmax = PFN_64G - 1; 1135 } 1136 } else { 1137 if (PFN_ABOVE4G(physmax)) { 1138 physinstalled -= (physmax - (PFN_4G - 1)); 1139 physmax = PFN_4G - 1; 1140 } 1141 } 1142 #endif 1143 1144 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1145 1146 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1147 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1148 char value[8]; 1149 1150 if (len < 8) 1151 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1152 else 1153 (void) strcpy(value, ""); 1154 if (strcmp(value, "off") == 0) 1155 mmu.pt_nx = 0; 1156 } 1157 PRM_DEBUG(mmu.pt_nx); 1158 1159 /* 1160 * We will need page_t's for every page in the system, except for 1161 * memory mapped at or above above the start of the kernel text segment. 1162 * 1163 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1164 */ 1165 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1166 obp_pages = 0; 1167 va = KERNEL_TEXT; 1168 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1169 npages -= len >> MMU_PAGESHIFT; 1170 if (va >= (uintptr_t)e_moddata) 1171 obp_pages += len >> MMU_PAGESHIFT; 1172 va += len; 1173 } 1174 PRM_DEBUG(npages); 1175 PRM_DEBUG(obp_pages); 1176 1177 /* 1178 * If physmem is patched to be non-zero, use it instead of the computed 1179 * value unless it is larger than the actual amount of memory on hand. 1180 */ 1181 if (physmem == 0 || physmem > npages) { 1182 physmem = npages; 1183 } else if (physmem < npages) { 1184 orig_npages = npages; 1185 npages = physmem; 1186 } 1187 PRM_DEBUG(physmem); 1188 1189 /* 1190 * We now compute the sizes of all the initial allocations for 1191 * structures the kernel needs in order do kmem_alloc(). These 1192 * include: 1193 * memsegs 1194 * memlists 1195 * page hash table 1196 * page_t's 1197 * page coloring data structs 1198 */ 1199 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1200 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1201 PRM_DEBUG(memseg_sz); 1202 1203 /* 1204 * Reserve space for memlists. There's no real good way to know exactly 1205 * how much room we'll need, but this should be a good upper bound. 1206 */ 1207 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1208 (memblocks + POSS_NEW_FRAGMENTS)); 1209 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1210 PRM_DEBUG(memlist_sz); 1211 1212 /* 1213 * Reserve space for bios reserved memlists. 1214 */ 1215 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1216 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1217 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1218 PRM_DEBUG(rsvdmemlist_sz); 1219 1220 /* LINTED */ 1221 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1222 /* 1223 * The page structure hash table size is a power of 2 1224 * such that the average hash chain length is PAGE_HASHAVELEN. 1225 */ 1226 page_hashsz = npages / PAGE_HASHAVELEN; 1227 page_hashsz_shift = highbit(page_hashsz); 1228 page_hashsz = 1 << page_hashsz_shift; 1229 pagehash_sz = sizeof (struct page *) * page_hashsz; 1230 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1231 PRM_DEBUG(pagehash_sz); 1232 1233 /* 1234 * Set aside room for the page structures themselves. 1235 */ 1236 PRM_DEBUG(npages); 1237 pp_sz = sizeof (struct page) * npages; 1238 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1239 PRM_DEBUG(pp_sz); 1240 1241 /* 1242 * determine l2 cache info and memory size for page coloring 1243 */ 1244 (void) getl2cacheinfo(CPU, 1245 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1246 pagecolor_memsz = 1247 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1248 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1249 PRM_DEBUG(pagecolor_memsz); 1250 1251 page_ctrs_size = page_ctrs_sz(); 1252 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1253 PRM_DEBUG(page_ctrs_size); 1254 1255 /* 1256 * Allocate the array that protects pp->p_selock. 1257 */ 1258 pse_shift = size_pse_array(physmem, max_ncpus); 1259 pse_table_size = 1 << pse_shift; 1260 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1261 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1262 1263 #if defined(__amd64) 1264 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1265 valloc_base = VALLOC_BASE; 1266 1267 /* 1268 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1269 * for values of physmax up to 256GB (1/4 TB). They need adjusting when 1270 * memory is at addresses above 256GB. When adjusted, segkpm_base must 1271 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1272 * 1273 * In the general case (>256GB), we use (4 * physmem) for the 1274 * kernel's virtual addresses, which is divided approximately 1275 * as follows: 1276 * - 1 * physmem for segkpm 1277 * - 1.5 * physmem for segzio 1278 * - 1.5 * physmem for heap 1279 * Total: 4.0 * physmem 1280 * 1281 * Note that the segzio and heap sizes are more than physmem so that 1282 * VA fragmentation does not prevent either of them from being 1283 * able to use nearly all of physmem. The value of 1.5x is determined 1284 * experimentally and may need to change if the workload changes. 1285 */ 1286 if (physmax + 1 > mmu_btop(TERABYTE / 4) || 1287 plat_dr_physmax > mmu_btop(TERABYTE / 4)) { 1288 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1289 1290 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1291 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1292 } 1293 1294 /* 1295 * This is what actually controls the KVA : UVA split. 1296 * The kernel uses high VA, and this is lowering the 1297 * boundary, thus increasing the amount of VA for the kernel. 1298 * This gives the kernel 4 * (amount of physical memory) VA. 1299 * 1300 * The maximum VA is UINT64_MAX and we are using 1301 * 64-bit 2's complement math, so e.g. if you have 512GB 1302 * of memory, segkpm_base = -(4 * 512GB) == -2TB == 1303 * UINT64_MAX - 2TB (approximately). So the kernel's 1304 * VA is [UINT64_MAX-2TB to UINT64_MAX]. 1305 */ 1306 segkpm_base = -(P2ROUNDUP((4 * kpm_resv_amount), 1307 KERNEL_REDZONE_SIZE)); 1308 1309 /* make sure we leave some space for user apps above hole */ 1310 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1311 if (segkpm_base > SEGKPM_BASE) 1312 segkpm_base = SEGKPM_BASE; 1313 PRM_DEBUG(segkpm_base); 1314 1315 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1316 if (valloc_base < segkpm_base) 1317 panic("not enough kernel VA to support memory size"); 1318 PRM_DEBUG(valloc_base); 1319 } 1320 #else /* __i386 */ 1321 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1322 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1323 PRM_DEBUG(valloc_base); 1324 #endif /* __i386 */ 1325 1326 /* 1327 * do all the initial allocations 1328 */ 1329 perform_allocations(); 1330 1331 /* 1332 * Build phys_install and phys_avail in kernel memspace. 1333 * - phys_install should be all memory in the system. 1334 * - phys_avail is phys_install minus any memory mapped before this 1335 * point above KERNEL_TEXT. 1336 */ 1337 current = phys_install = memlist; 1338 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1339 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1340 panic("physinstalled was too big!"); 1341 if (prom_debug) 1342 print_memlist("phys_install", phys_install); 1343 1344 phys_avail = current; 1345 PRM_POINT("Building phys_avail:\n"); 1346 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1347 avail_filter); 1348 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1349 panic("physavail was too big!"); 1350 if (prom_debug) 1351 print_memlist("phys_avail", phys_avail); 1352 #ifndef __xpv 1353 /* 1354 * Free unused memlist items, which may be used by memory DR driver 1355 * at runtime. 1356 */ 1357 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1358 memlist_free_block((caddr_t)current, 1359 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1360 } 1361 #endif 1362 1363 /* 1364 * Build bios reserved memspace 1365 */ 1366 current = bios_rsvd; 1367 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1368 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1369 panic("bios_rsvd was too big!"); 1370 if (prom_debug) 1371 print_memlist("bios_rsvd", bios_rsvd); 1372 #ifndef __xpv 1373 /* 1374 * Free unused memlist items, which may be used by memory DR driver 1375 * at runtime. 1376 */ 1377 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1378 memlist_free_block((caddr_t)current, 1379 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1380 } 1381 #endif 1382 1383 /* 1384 * setup page coloring 1385 */ 1386 page_coloring_setup(pagecolor_mem); 1387 page_lock_init(); /* currently a no-op */ 1388 1389 /* 1390 * free page list counters 1391 */ 1392 (void) page_ctrs_alloc(page_ctrs_mem); 1393 1394 /* 1395 * Size the pcf array based on the number of cpus in the box at 1396 * boot time. 1397 */ 1398 1399 pcf_init(); 1400 1401 /* 1402 * Initialize the page structures from the memory lists. 1403 */ 1404 availrmem_initial = availrmem = freemem = 0; 1405 PRM_POINT("Calling kphysm_init()..."); 1406 npages = kphysm_init(pp_base, npages); 1407 PRM_POINT("kphysm_init() done"); 1408 PRM_DEBUG(npages); 1409 1410 init_debug_info(); 1411 1412 /* 1413 * Now that page_t's have been initialized, remove all the 1414 * initial allocation pages from the kernel free page lists. 1415 */ 1416 boot_mapin((caddr_t)valloc_base, valloc_sz); 1417 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1418 PRM_POINT("startup_memlist() done"); 1419 1420 PRM_DEBUG(valloc_sz); 1421 1422 #if defined(__amd64) 1423 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1424 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1425 extern size_t textrepl_size_thresh; 1426 textrepl_size_thresh = (16 << 20) - 1; 1427 } 1428 #endif 1429 } 1430 1431 /* 1432 * Layout the kernel's part of address space and initialize kmem allocator. 1433 */ 1434 static void 1435 startup_kmem(void) 1436 { 1437 extern void page_set_colorequiv_arr(void); 1438 #if !defined(__xpv) 1439 extern uint64_t kpti_kbase; 1440 #endif 1441 1442 PRM_POINT("startup_kmem() starting..."); 1443 1444 #if defined(__amd64) 1445 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1446 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1447 "systems."); 1448 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1449 core_base = (uintptr_t)COREHEAP_BASE; 1450 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1451 #else /* __i386 */ 1452 /* 1453 * We configure kernelbase based on: 1454 * 1455 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1456 * KERNELBASE_MAX. we large page align eprom_kernelbase 1457 * 1458 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1459 * On large memory systems we must lower kernelbase to allow 1460 * enough room for page_t's for all of memory. 1461 * 1462 * The value set here, might be changed a little later. 1463 */ 1464 if (eprom_kernelbase) { 1465 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1466 if (kernelbase > KERNELBASE_MAX) 1467 kernelbase = KERNELBASE_MAX; 1468 } else { 1469 kernelbase = (uintptr_t)KERNELBASE; 1470 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1471 } 1472 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1473 core_base = valloc_base; 1474 core_size = 0; 1475 #endif /* __i386 */ 1476 1477 PRM_DEBUG(core_base); 1478 PRM_DEBUG(core_size); 1479 PRM_DEBUG(kernelbase); 1480 1481 #if defined(__i386) 1482 segkp_fromheap = 1; 1483 #endif /* __i386 */ 1484 1485 ekernelheap = (char *)core_base; 1486 PRM_DEBUG(ekernelheap); 1487 1488 /* 1489 * Now that we know the real value of kernelbase, 1490 * update variables that were initialized with a value of 1491 * KERNELBASE (in common/conf/param.c). 1492 * 1493 * XXX The problem with this sort of hackery is that the 1494 * compiler just may feel like putting the const declarations 1495 * (in param.c) into the .text section. Perhaps they should 1496 * just be declared as variables there? 1497 */ 1498 1499 *(uintptr_t *)&_kernelbase = kernelbase; 1500 *(uintptr_t *)&_userlimit = kernelbase; 1501 #if defined(__amd64) 1502 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1503 #if !defined(__xpv) 1504 kpti_kbase = kernelbase; 1505 #endif 1506 #else 1507 *(uintptr_t *)&_userlimit32 = _userlimit; 1508 #endif 1509 PRM_DEBUG(_kernelbase); 1510 PRM_DEBUG(_userlimit); 1511 PRM_DEBUG(_userlimit32); 1512 1513 /* We have to re-do this now that we've modified _userlimit. */ 1514 mmu_calc_user_slots(); 1515 1516 layout_kernel_va(); 1517 1518 #if defined(__i386) 1519 /* 1520 * If segmap is too large we can push the bottom of the kernel heap 1521 * higher than the base. Or worse, it could exceed the top of the 1522 * VA space entirely, causing it to wrap around. 1523 */ 1524 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1525 panic("too little address space available for kernelheap," 1526 " use eeprom for lower kernelbase or smaller segmapsize"); 1527 #endif /* __i386 */ 1528 1529 /* 1530 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1531 */ 1532 kernelheap_init(kernelheap, ekernelheap, 1533 kernelheap + MMU_PAGESIZE, 1534 (void *)core_base, (void *)(core_base + core_size)); 1535 1536 #if defined(__xpv) 1537 /* 1538 * Link pending events struct into cpu struct 1539 */ 1540 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1541 #endif 1542 /* 1543 * Initialize kernel memory allocator. 1544 */ 1545 kmem_init(); 1546 1547 /* 1548 * Factor in colorequiv to check additional 'equivalent' bins 1549 */ 1550 page_set_colorequiv_arr(); 1551 1552 /* 1553 * print this out early so that we know what's going on 1554 */ 1555 print_x86_featureset(x86_featureset); 1556 1557 /* 1558 * Initialize bp_mapin(). 1559 */ 1560 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1561 1562 /* 1563 * orig_npages is non-zero if physmem has been configured for less 1564 * than the available memory. 1565 */ 1566 if (orig_npages) { 1567 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1568 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1569 npages, orig_npages); 1570 } 1571 #if defined(__i386) 1572 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1573 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1574 "System using 0x%lx", 1575 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1576 #endif 1577 1578 #ifdef KERNELBASE_ABI_MIN 1579 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1580 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1581 "i386 ABI compliant.", (uintptr_t)kernelbase); 1582 } 1583 #endif 1584 1585 #ifndef __xpv 1586 if (plat_dr_support_memory()) { 1587 mem_config_init(); 1588 } 1589 #else /* __xpv */ 1590 /* 1591 * Some of the xen start information has to be relocated up 1592 * into the kernel's permanent address space. 1593 */ 1594 PRM_POINT("calling xen_relocate_start_info()"); 1595 xen_relocate_start_info(); 1596 PRM_POINT("xen_relocate_start_info() done"); 1597 1598 /* 1599 * (Update the vcpu pointer in our cpu structure to point into 1600 * the relocated shared info.) 1601 */ 1602 CPU->cpu_m.mcpu_vcpu_info = 1603 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1604 #endif /* __xpv */ 1605 1606 PRM_POINT("startup_kmem() done"); 1607 } 1608 1609 #ifndef __xpv 1610 /* 1611 * If we have detected that we are running in an HVM environment, we need 1612 * to prepend the PV driver directory to the module search path. 1613 */ 1614 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1615 static void 1616 update_default_path() 1617 { 1618 char *current, *newpath; 1619 int newlen; 1620 1621 /* 1622 * We are about to resync with krtld. krtld will reset its 1623 * internal module search path iff Solaris has set default_path. 1624 * We want to be sure we're prepending this new directory to the 1625 * right search path. 1626 */ 1627 current = (default_path == NULL) ? kobj_module_path : default_path; 1628 1629 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1630 newpath = kmem_alloc(newlen, KM_SLEEP); 1631 (void) strcpy(newpath, HVM_MOD_DIR); 1632 (void) strcat(newpath, " "); 1633 (void) strcat(newpath, current); 1634 1635 default_path = newpath; 1636 } 1637 #endif 1638 1639 static void 1640 startup_modules(void) 1641 { 1642 int cnt; 1643 extern void prom_setup(void); 1644 int32_t v, h; 1645 char d[11]; 1646 char *cp; 1647 cmi_hdl_t hdl; 1648 1649 PRM_POINT("startup_modules() starting..."); 1650 1651 #ifndef __xpv 1652 /* 1653 * Initialize ten-micro second timer so that drivers will 1654 * not get short changed in their init phase. This was 1655 * not getting called until clkinit which, on fast cpu's 1656 * caused the drv_usecwait to be way too short. 1657 */ 1658 microfind(); 1659 1660 if ((get_hwenv() & HW_XEN_HVM) != 0) 1661 update_default_path(); 1662 #endif 1663 1664 /* 1665 * Read the GMT lag from /etc/rtc_config. 1666 */ 1667 sgmtl(process_rtc_config_file()); 1668 1669 /* 1670 * Calculate default settings of system parameters based upon 1671 * maxusers, yet allow to be overridden via the /etc/system file. 1672 */ 1673 param_calc(0); 1674 1675 mod_setup(); 1676 1677 /* 1678 * Initialize system parameters. 1679 */ 1680 param_init(); 1681 1682 /* 1683 * Initialize the default brands 1684 */ 1685 brand_init(); 1686 1687 /* 1688 * maxmem is the amount of physical memory we're playing with. 1689 */ 1690 maxmem = physmem; 1691 1692 /* 1693 * Initialize segment management stuff. 1694 */ 1695 seg_init(); 1696 1697 if (modload("fs", "specfs") == -1) 1698 halt("Can't load specfs"); 1699 1700 if (modload("fs", "devfs") == -1) 1701 halt("Can't load devfs"); 1702 1703 if (modload("fs", "dev") == -1) 1704 halt("Can't load dev"); 1705 1706 if (modload("fs", "procfs") == -1) 1707 halt("Can't load procfs"); 1708 1709 (void) modloadonly("sys", "lbl_edition"); 1710 1711 dispinit(); 1712 1713 /* Read cluster configuration data. */ 1714 clconf_init(); 1715 1716 #if defined(__xpv) 1717 (void) ec_init(); 1718 gnttab_init(); 1719 (void) xs_early_init(); 1720 #endif /* __xpv */ 1721 1722 /* 1723 * Create a kernel device tree. First, create rootnex and 1724 * then invoke bus specific code to probe devices. 1725 */ 1726 setup_ddi(); 1727 1728 #ifdef __xpv 1729 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1730 #endif 1731 { 1732 id_t smid; 1733 smbios_system_t smsys; 1734 smbios_info_t sminfo; 1735 char *mfg; 1736 /* 1737 * Load the System Management BIOS into the global ksmbios 1738 * handle, if an SMBIOS is present on this system. 1739 * Also set "si-hw-provider" property, if not already set. 1740 */ 1741 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1742 if (ksmbios != NULL && 1743 ((smid = smbios_info_system(ksmbios, &smsys)) != SMB_ERR) && 1744 (smbios_info_common(ksmbios, smid, &sminfo)) != SMB_ERR) { 1745 mfg = (char *)sminfo.smbi_manufacturer; 1746 if (BOP_GETPROPLEN(bootops, "si-hw-provider") < 0) { 1747 extern char hw_provider[]; 1748 int i; 1749 for (i = 0; i < SYS_NMLN; i++) { 1750 if (isprint(mfg[i])) 1751 hw_provider[i] = mfg[i]; 1752 else { 1753 hw_provider[i] = '\0'; 1754 break; 1755 } 1756 } 1757 hw_provider[SYS_NMLN - 1] = '\0'; 1758 } 1759 } 1760 } 1761 1762 1763 /* 1764 * Originally clconf_init() apparently needed the hostid. But 1765 * this no longer appears to be true - it uses its own nodeid. 1766 * By placing the hostid logic here, we are able to make use of 1767 * the SMBIOS UUID. 1768 */ 1769 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1770 cmn_err(CE_WARN, "Unable to set hostid"); 1771 } else { 1772 for (v = h, cnt = 0; cnt < 10; cnt++) { 1773 d[cnt] = (char)(v % 10); 1774 v /= 10; 1775 if (v == 0) 1776 break; 1777 } 1778 for (cp = hw_serial; cnt >= 0; cnt--) 1779 *cp++ = d[cnt] + '0'; 1780 *cp = 0; 1781 } 1782 1783 /* 1784 * Set up the CPU module subsystem for the boot cpu in the native 1785 * case, and all physical cpu resource in the xpv dom0 case. 1786 * Modifies the device tree, so this must be done after 1787 * setup_ddi(). 1788 */ 1789 #ifdef __xpv 1790 /* 1791 * If paravirtualized and on dom0 then we initialize all physical 1792 * cpu handles now; if paravirtualized on a domU then do not 1793 * initialize. 1794 */ 1795 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1796 xen_mc_lcpu_cookie_t cpi; 1797 1798 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1799 cpi = xen_physcpu_next(cpi)) { 1800 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1801 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1802 xen_physcpu_strandid(cpi))) != NULL && 1803 is_x86_feature(x86_featureset, X86FSET_MCA)) 1804 cmi_mca_init(hdl); 1805 } 1806 } 1807 #else 1808 /* 1809 * Initialize a handle for the boot cpu - others will initialize 1810 * as they startup. 1811 */ 1812 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1813 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1814 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1815 cmi_mca_init(hdl); 1816 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1817 } 1818 #endif /* __xpv */ 1819 1820 /* 1821 * Fake a prom tree such that /dev/openprom continues to work 1822 */ 1823 PRM_POINT("startup_modules: calling prom_setup..."); 1824 prom_setup(); 1825 PRM_POINT("startup_modules: done"); 1826 1827 /* 1828 * Load all platform specific modules 1829 */ 1830 PRM_POINT("startup_modules: calling psm_modload..."); 1831 psm_modload(); 1832 1833 PRM_POINT("startup_modules() done"); 1834 } 1835 1836 /* 1837 * claim a "setaside" boot page for use in the kernel 1838 */ 1839 page_t * 1840 boot_claim_page(pfn_t pfn) 1841 { 1842 page_t *pp; 1843 1844 pp = page_numtopp_nolock(pfn); 1845 ASSERT(pp != NULL); 1846 1847 if (PP_ISBOOTPAGES(pp)) { 1848 if (pp->p_next != NULL) 1849 pp->p_next->p_prev = pp->p_prev; 1850 if (pp->p_prev == NULL) 1851 bootpages = pp->p_next; 1852 else 1853 pp->p_prev->p_next = pp->p_next; 1854 } else { 1855 /* 1856 * htable_attach() expects a base pagesize page 1857 */ 1858 if (pp->p_szc != 0) 1859 page_boot_demote(pp); 1860 pp = page_numtopp(pfn, SE_EXCL); 1861 } 1862 return (pp); 1863 } 1864 1865 /* 1866 * Walk through the pagetables looking for pages mapped in by boot. If the 1867 * setaside flag is set the pages are expected to be returned to the 1868 * kernel later in boot, so we add them to the bootpages list. 1869 */ 1870 static void 1871 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1872 { 1873 uintptr_t va = low; 1874 size_t len; 1875 uint_t prot; 1876 pfn_t pfn; 1877 page_t *pp; 1878 pgcnt_t boot_protect_cnt = 0; 1879 1880 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1881 if (va + len >= high) 1882 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1883 "legal range.", len, (void *)va); 1884 1885 while (len > 0) { 1886 pp = page_numtopp_alloc(pfn); 1887 if (pp != NULL) { 1888 if (setaside == 0) 1889 panic("Unexpected mapping by boot. " 1890 "addr=%p pfn=%lx\n", 1891 (void *)va, pfn); 1892 1893 pp->p_next = bootpages; 1894 pp->p_prev = NULL; 1895 PP_SETBOOTPAGES(pp); 1896 if (bootpages != NULL) { 1897 bootpages->p_prev = pp; 1898 } 1899 bootpages = pp; 1900 ++boot_protect_cnt; 1901 } 1902 1903 ++pfn; 1904 len -= MMU_PAGESIZE; 1905 va += MMU_PAGESIZE; 1906 } 1907 } 1908 PRM_DEBUG(boot_protect_cnt); 1909 } 1910 1911 /* 1912 * 1913 */ 1914 static void 1915 layout_kernel_va(void) 1916 { 1917 PRM_POINT("layout_kernel_va() starting..."); 1918 /* 1919 * Establish the final size of the kernel's heap, size of segmap, 1920 * segkp, etc. 1921 */ 1922 1923 #if defined(__amd64) 1924 1925 kpm_vbase = (caddr_t)segkpm_base; 1926 if (physmax + 1 < plat_dr_physmax) { 1927 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1928 } else { 1929 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1930 } 1931 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1932 panic("not enough room for kpm!"); 1933 PRM_DEBUG(kpm_size); 1934 PRM_DEBUG(kpm_vbase); 1935 1936 /* 1937 * By default we create a seg_kp in 64 bit kernels, it's a little 1938 * faster to access than embedding it in the heap. 1939 */ 1940 segkp_base = (caddr_t)valloc_base + valloc_sz; 1941 if (!segkp_fromheap) { 1942 size_t sz = mmu_ptob(segkpsize); 1943 1944 /* 1945 * determine size of segkp 1946 */ 1947 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1948 sz = SEGKPDEFSIZE; 1949 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1950 "segkpsize has been reset to %ld pages", 1951 mmu_btop(sz)); 1952 } 1953 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1954 1955 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1956 } 1957 PRM_DEBUG(segkp_base); 1958 PRM_DEBUG(segkpsize); 1959 1960 /* 1961 * segzio is used for ZFS cached data. It uses a distinct VA 1962 * segment (from kernel heap) so that we can easily tell not to 1963 * include it in kernel crash dumps on 64 bit kernels. The trick is 1964 * to give it lots of VA, but not constrain the kernel heap. 1965 * We can use 1.5x physmem for segzio, leaving approximately 1966 * another 1.5x physmem for heap. See also the comment in 1967 * startup_memlist(). 1968 */ 1969 segzio_base = segkp_base + mmu_ptob(segkpsize); 1970 if (segzio_fromheap) { 1971 segziosize = 0; 1972 } else { 1973 size_t physmem_size = mmu_ptob(physmem); 1974 size_t size = (segziosize == 0) ? 1975 physmem_size * 3 / 2 : mmu_ptob(segziosize); 1976 1977 if (size < SEGZIOMINSIZE) 1978 size = SEGZIOMINSIZE; 1979 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1980 } 1981 PRM_DEBUG(segziosize); 1982 PRM_DEBUG(segzio_base); 1983 1984 /* 1985 * Put the range of VA for device mappings next, kmdb knows to not 1986 * grep in this range of addresses. 1987 */ 1988 toxic_addr = 1989 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1990 PRM_DEBUG(toxic_addr); 1991 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1992 #else /* __i386 */ 1993 segmap_start = ROUND_UP_LPAGE(kernelbase); 1994 #endif /* __i386 */ 1995 PRM_DEBUG(segmap_start); 1996 1997 /* 1998 * Users can change segmapsize through eeprom. If the variable 1999 * is tuned through eeprom, there is no upper bound on the 2000 * size of segmap. 2001 */ 2002 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 2003 2004 #if defined(__i386) 2005 /* 2006 * 32-bit systems don't have segkpm or segkp, so segmap appears at 2007 * the bottom of the kernel's address range. Set aside space for a 2008 * small red zone just below the start of segmap. 2009 */ 2010 segmap_start += KERNEL_REDZONE_SIZE; 2011 segmapsize -= KERNEL_REDZONE_SIZE; 2012 #endif 2013 2014 PRM_DEBUG(segmap_start); 2015 PRM_DEBUG(segmapsize); 2016 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 2017 PRM_DEBUG(kernelheap); 2018 PRM_POINT("layout_kernel_va() done..."); 2019 } 2020 2021 /* 2022 * Finish initializing the VM system, now that we are no longer 2023 * relying on the boot time memory allocators. 2024 */ 2025 static void 2026 startup_vm(void) 2027 { 2028 struct segmap_crargs a; 2029 2030 extern int use_brk_lpg, use_stk_lpg; 2031 2032 PRM_POINT("startup_vm() starting..."); 2033 2034 /* 2035 * Initialize the hat layer. 2036 */ 2037 hat_init(); 2038 2039 /* 2040 * Do final allocations of HAT data structures that need to 2041 * be allocated before quiescing the boot loader. 2042 */ 2043 PRM_POINT("Calling hat_kern_alloc()..."); 2044 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 2045 PRM_POINT("hat_kern_alloc() done"); 2046 2047 #ifndef __xpv 2048 /* 2049 * Setup Page Attribute Table 2050 */ 2051 pat_sync(); 2052 #endif 2053 2054 /* 2055 * The next two loops are done in distinct steps in order 2056 * to be sure that any page that is doubly mapped (both above 2057 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 2058 * Note this may never happen, but it might someday. 2059 */ 2060 bootpages = NULL; 2061 PRM_POINT("Protecting boot pages"); 2062 2063 /* 2064 * Protect any pages mapped above KERNEL_TEXT that somehow have 2065 * page_t's. This can only happen if something weird allocated 2066 * in this range (like kadb/kmdb). 2067 */ 2068 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 2069 2070 /* 2071 * Before we can take over memory allocation/mapping from the boot 2072 * loader we must remove from our free page lists any boot allocated 2073 * pages that stay mapped until release_bootstrap(). 2074 */ 2075 protect_boot_range(0, kernelbase, 1); 2076 2077 2078 /* 2079 * Switch to running on regular HAT (not boot_mmu) 2080 */ 2081 PRM_POINT("Calling hat_kern_setup()..."); 2082 hat_kern_setup(); 2083 2084 /* 2085 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 2086 */ 2087 bop_no_more_mem(); 2088 2089 PRM_POINT("hat_kern_setup() done"); 2090 2091 hat_cpu_online(CPU); 2092 2093 /* 2094 * Initialize VM system 2095 */ 2096 PRM_POINT("Calling kvm_init()..."); 2097 kvm_init(); 2098 PRM_POINT("kvm_init() done"); 2099 2100 /* 2101 * Tell kmdb that the VM system is now working 2102 */ 2103 if (boothowto & RB_DEBUG) 2104 kdi_dvec_vmready(); 2105 2106 #if defined(__xpv) 2107 /* 2108 * Populate the I/O pool on domain 0 2109 */ 2110 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2111 extern long populate_io_pool(void); 2112 long init_io_pool_cnt; 2113 2114 PRM_POINT("Populating reserve I/O page pool"); 2115 init_io_pool_cnt = populate_io_pool(); 2116 PRM_DEBUG(init_io_pool_cnt); 2117 } 2118 #endif 2119 /* 2120 * Mangle the brand string etc. 2121 */ 2122 cpuid_pass3(CPU); 2123 2124 #if defined(__amd64) 2125 2126 /* 2127 * Create the device arena for toxic (to dtrace/kmdb) mappings. 2128 */ 2129 device_arena = vmem_create("device", (void *)toxic_addr, 2130 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 2131 2132 #else /* __i386 */ 2133 2134 /* 2135 * allocate the bit map that tracks toxic pages 2136 */ 2137 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 2138 PRM_DEBUG(toxic_bit_map_len); 2139 toxic_bit_map = 2140 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 2141 ASSERT(toxic_bit_map != NULL); 2142 PRM_DEBUG(toxic_bit_map); 2143 2144 #endif /* __i386 */ 2145 2146 2147 /* 2148 * Now that we've got more VA, as well as the ability to allocate from 2149 * it, tell the debugger. 2150 */ 2151 if (boothowto & RB_DEBUG) 2152 kdi_dvec_memavail(); 2153 2154 #if !defined(__xpv) 2155 /* 2156 * Map page pfn=0 for drivers, such as kd, that need to pick up 2157 * parameters left there by controllers/BIOS. 2158 */ 2159 PRM_POINT("setup up p0_va"); 2160 p0_va = i86devmap(0, 1, PROT_READ); 2161 PRM_DEBUG(p0_va); 2162 #endif 2163 2164 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2165 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2166 2167 /* 2168 * disable automatic large pages for small memory systems or 2169 * when the disable flag is set. 2170 * 2171 * Do not yet consider page sizes larger than 2m/4m. 2172 */ 2173 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2174 max_uheap_lpsize = LEVEL_SIZE(1); 2175 max_ustack_lpsize = LEVEL_SIZE(1); 2176 max_privmap_lpsize = LEVEL_SIZE(1); 2177 max_uidata_lpsize = LEVEL_SIZE(1); 2178 max_utext_lpsize = LEVEL_SIZE(1); 2179 max_shm_lpsize = LEVEL_SIZE(1); 2180 } 2181 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2182 auto_lpg_disable) { 2183 use_brk_lpg = 0; 2184 use_stk_lpg = 0; 2185 } 2186 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2187 2188 PRM_POINT("Calling hat_init_finish()..."); 2189 hat_init_finish(); 2190 PRM_POINT("hat_init_finish() done"); 2191 2192 /* 2193 * Initialize the segkp segment type. 2194 */ 2195 rw_enter(&kas.a_lock, RW_WRITER); 2196 PRM_POINT("Attaching segkp"); 2197 if (segkp_fromheap) { 2198 segkp->s_as = &kas; 2199 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2200 segkp) < 0) { 2201 panic("startup: cannot attach segkp"); 2202 /*NOTREACHED*/ 2203 } 2204 PRM_POINT("Doing segkp_create()"); 2205 if (segkp_create(segkp) != 0) { 2206 panic("startup: segkp_create failed"); 2207 /*NOTREACHED*/ 2208 } 2209 PRM_DEBUG(segkp); 2210 rw_exit(&kas.a_lock); 2211 2212 /* 2213 * kpm segment 2214 */ 2215 segmap_kpm = 0; 2216 if (kpm_desired) 2217 kpm_init(); 2218 2219 /* 2220 * Now create segmap segment. 2221 */ 2222 rw_enter(&kas.a_lock, RW_WRITER); 2223 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2224 panic("cannot attach segmap"); 2225 /*NOTREACHED*/ 2226 } 2227 PRM_DEBUG(segmap); 2228 2229 a.prot = PROT_READ | PROT_WRITE; 2230 a.shmsize = 0; 2231 a.nfreelist = segmapfreelists; 2232 2233 if (segmap_create(segmap, (caddr_t)&a) != 0) 2234 panic("segmap_create segmap"); 2235 rw_exit(&kas.a_lock); 2236 2237 setup_vaddr_for_ppcopy(CPU); 2238 2239 segdev_init(); 2240 #if defined(__xpv) 2241 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2242 #endif 2243 pmem_init(); 2244 2245 PRM_POINT("startup_vm() done"); 2246 } 2247 2248 /* 2249 * Load a tod module for the non-standard tod part found on this system. 2250 */ 2251 static void 2252 load_tod_module(char *todmod) 2253 { 2254 if (modload("tod", todmod) == -1) 2255 halt("Can't load TOD module"); 2256 } 2257 2258 static void 2259 startup_end(void) 2260 { 2261 int i; 2262 extern void setx86isalist(void); 2263 extern void cpu_event_init(void); 2264 2265 PRM_POINT("startup_end() starting..."); 2266 2267 /* 2268 * Perform tasks that get done after most of the VM 2269 * initialization has been done but before the clock 2270 * and other devices get started. 2271 */ 2272 kern_setup1(); 2273 2274 /* 2275 * Perform CPC initialization for this CPU. 2276 */ 2277 kcpc_hw_init(CPU); 2278 2279 /* 2280 * Initialize cpu event framework. 2281 */ 2282 cpu_event_init(); 2283 2284 #if defined(OPTERON_WORKAROUND_6323525) 2285 if (opteron_workaround_6323525) 2286 patch_workaround_6323525(); 2287 #endif 2288 /* 2289 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2290 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2291 */ 2292 if (tod_module_name != NULL) { 2293 PRM_POINT("load_tod_module()"); 2294 load_tod_module(tod_module_name); 2295 } 2296 2297 #if defined(__xpv) 2298 /* 2299 * Forceload interposing TOD module for the hypervisor. 2300 */ 2301 PRM_POINT("load_tod_module()"); 2302 load_tod_module("xpvtod"); 2303 #endif 2304 2305 /* 2306 * Configure the system. 2307 */ 2308 PRM_POINT("Calling configure()..."); 2309 configure(); /* set up devices */ 2310 PRM_POINT("configure() done"); 2311 2312 /* 2313 * We can now setup for XSAVE because fpu_probe is done in configure(). 2314 */ 2315 if (fp_save_mech == FP_XSAVE) { 2316 xsave_setup_msr(CPU); 2317 } 2318 2319 /* 2320 * Set the isa_list string to the defined instruction sets we 2321 * support. 2322 */ 2323 setx86isalist(); 2324 cpu_intr_alloc(CPU, NINTR_THREADS); 2325 psm_install(); 2326 2327 /* 2328 * We're done with bootops. We don't unmap the bootstrap yet because 2329 * we're still using bootsvcs. 2330 */ 2331 PRM_POINT("NULLing out bootops"); 2332 *bootopsp = (struct bootops *)NULL; 2333 bootops = (struct bootops *)NULL; 2334 2335 #if defined(__xpv) 2336 ec_init_debug_irq(); 2337 xs_domu_init(); 2338 #endif 2339 2340 #if !defined(__xpv) 2341 /* 2342 * Intel IOMMU has been setup/initialized in ddi_impl.c 2343 * Start it up now. 2344 */ 2345 immu_startup(); 2346 2347 /* 2348 * Now that we're no longer going to drop into real mode for a BIOS call 2349 * via bootops, we can enable PCID (which requires CR0.PG). 2350 */ 2351 enable_pcid(); 2352 #endif 2353 2354 PRM_POINT("Enabling interrupts"); 2355 (*picinitf)(); 2356 sti(); 2357 #if defined(__xpv) 2358 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2359 xen_late_startup(); 2360 #endif 2361 2362 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2363 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2364 2365 /* 2366 * Register software interrupt handlers for ddi_periodic_add(9F). 2367 * Software interrupts up to the level 10 are supported. 2368 */ 2369 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2370 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2371 (avfunc)(uintptr_t)ddi_periodic_softintr, "ddi_periodic", 2372 (caddr_t)(uintptr_t)i, NULL); 2373 } 2374 2375 #if !defined(__xpv) 2376 if (modload("drv", "amd_iommu") < 0) { 2377 PRM_POINT("No AMD IOMMU present\n"); 2378 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2379 "amd_iommu")) == NULL) { 2380 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2381 } 2382 #endif 2383 post_startup_cpu_fixups(); 2384 2385 PRM_POINT("startup_end() done"); 2386 } 2387 2388 /* 2389 * Don't remove the following 2 variables. They are necessary 2390 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2391 */ 2392 char *_hs1107 = hw_serial; 2393 ulong_t _bdhs34; 2394 2395 void 2396 post_startup(void) 2397 { 2398 extern void cpupm_init(cpu_t *); 2399 extern void cpu_event_init_cpu(cpu_t *); 2400 2401 /* 2402 * Set the system wide, processor-specific flags to be passed 2403 * to userland via the aux vector for performance hints and 2404 * instruction set extensions. 2405 */ 2406 bind_hwcap(); 2407 2408 #ifdef __xpv 2409 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2410 #endif 2411 { 2412 #if defined(__xpv) 2413 xpv_panic_init(); 2414 #else 2415 /* 2416 * Startup the memory scrubber. 2417 * XXPV This should be running somewhere .. 2418 */ 2419 if ((get_hwenv() & HW_VIRTUAL) == 0) 2420 memscrub_init(); 2421 #endif 2422 } 2423 2424 /* 2425 * Complete CPU module initialization 2426 */ 2427 cmi_post_startup(); 2428 2429 /* 2430 * Perform forceloading tasks for /etc/system. 2431 */ 2432 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2433 2434 /* 2435 * ON4.0: Force /proc module in until clock interrupt handle fixed 2436 * ON4.0: This must be fixed or restated in /etc/systems. 2437 */ 2438 (void) modload("fs", "procfs"); 2439 2440 (void) i_ddi_attach_hw_nodes("pit_beep"); 2441 2442 #if defined(__i386) 2443 /* 2444 * Check for required functional Floating Point hardware, 2445 * unless FP hardware explicitly disabled. 2446 */ 2447 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2448 halt("No working FP hardware found"); 2449 #endif 2450 2451 maxmem = freemem; 2452 2453 cpu_event_init_cpu(CPU); 2454 cpupm_init(CPU); 2455 (void) mach_cpu_create_device_node(CPU, NULL); 2456 2457 pg_init(); 2458 } 2459 2460 static int 2461 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2462 { 2463 return ((pp->p_pagenum >= btop(low_addr)) && 2464 (pp->p_pagenum < btopr(high_addr))); 2465 } 2466 2467 static int 2468 pp_in_module(page_t *pp, const rd_existing_t *modranges) 2469 { 2470 uint_t i; 2471 2472 for (i = 0; modranges[i].phys != 0; i++) { 2473 if (pp_in_range(pp, modranges[i].phys, 2474 modranges[i].phys + modranges[i].size)) 2475 return (1); 2476 } 2477 2478 return (0); 2479 } 2480 2481 void 2482 release_bootstrap(void) 2483 { 2484 int root_is_ramdisk; 2485 page_t *pp; 2486 extern void kobj_boot_unmountroot(void); 2487 extern dev_t rootdev; 2488 uint_t i; 2489 char propname[32]; 2490 rd_existing_t *modranges; 2491 #if !defined(__xpv) 2492 pfn_t pfn; 2493 #endif 2494 2495 /* 2496 * Save the bootfs module ranges so that we can reserve them below 2497 * for the real bootfs. 2498 */ 2499 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES, 2500 KM_SLEEP); 2501 for (i = 0; ; i++) { 2502 uint64_t start, size; 2503 2504 modranges[i].phys = 0; 2505 2506 (void) snprintf(propname, sizeof (propname), 2507 "module-addr-%u", i); 2508 if (do_bsys_getproplen(NULL, propname) <= 0) 2509 break; 2510 (void) do_bsys_getprop(NULL, propname, &start); 2511 2512 (void) snprintf(propname, sizeof (propname), 2513 "module-size-%u", i); 2514 if (do_bsys_getproplen(NULL, propname) <= 0) 2515 break; 2516 (void) do_bsys_getprop(NULL, propname, &size); 2517 2518 modranges[i].phys = start; 2519 modranges[i].size = size; 2520 } 2521 2522 /* unmount boot ramdisk and release kmem usage */ 2523 kobj_boot_unmountroot(); 2524 2525 /* 2526 * We're finished using the boot loader so free its pages. 2527 */ 2528 PRM_POINT("Unmapping lower boot pages"); 2529 2530 clear_boot_mappings(0, _userlimit); 2531 2532 postbootkernelbase = kernelbase; 2533 2534 /* 2535 * If root isn't on ramdisk, destroy the hardcoded 2536 * ramdisk node now and release the memory. Else, 2537 * ramdisk memory is kept in rd_pages. 2538 */ 2539 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2540 if (!root_is_ramdisk) { 2541 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2542 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2543 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2544 (void) ddi_remove_child(dip, 0); 2545 } 2546 2547 PRM_POINT("Releasing boot pages"); 2548 while (bootpages) { 2549 extern uint64_t ramdisk_start, ramdisk_end; 2550 pp = bootpages; 2551 bootpages = pp->p_next; 2552 2553 2554 /* Keep pages for the lower 64K */ 2555 if (pp_in_range(pp, 0, 0x40000)) { 2556 pp->p_next = lower_pages; 2557 lower_pages = pp; 2558 lower_pages_count++; 2559 continue; 2560 } 2561 2562 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2563 ramdisk_end) || pp_in_module(pp, modranges)) { 2564 pp->p_next = rd_pages; 2565 rd_pages = pp; 2566 continue; 2567 } 2568 pp->p_next = (struct page *)0; 2569 pp->p_prev = (struct page *)0; 2570 PP_CLRBOOTPAGES(pp); 2571 page_free(pp, 1); 2572 } 2573 PRM_POINT("Boot pages released"); 2574 2575 kmem_free(modranges, sizeof (rd_existing_t) * 99); 2576 2577 #if !defined(__xpv) 2578 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2579 /* 2580 * Find 1 page below 1 MB so that other processors can boot up or 2581 * so that any processor can resume. 2582 * Make sure it has a kernel VA as well as a 1:1 mapping. 2583 * We should have just free'd one up. 2584 */ 2585 2586 /* 2587 * 0x10 pages is 64K. Leave the bottom 64K alone 2588 * for BIOS. 2589 */ 2590 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2591 if (page_numtopp_alloc(pfn) == NULL) 2592 continue; 2593 rm_platter_va = i86devmap(pfn, 1, 2594 PROT_READ | PROT_WRITE | PROT_EXEC); 2595 rm_platter_pa = ptob(pfn); 2596 break; 2597 } 2598 if (pfn == btop(1*1024*1024) && use_mp) 2599 panic("No page below 1M available for starting " 2600 "other processors or for resuming from system-suspend"); 2601 #endif /* !__xpv */ 2602 } 2603 2604 /* 2605 * Initialize the platform-specific parts of a page_t. 2606 */ 2607 void 2608 add_physmem_cb(page_t *pp, pfn_t pnum) 2609 { 2610 pp->p_pagenum = pnum; 2611 pp->p_mapping = NULL; 2612 pp->p_embed = 0; 2613 pp->p_share = 0; 2614 pp->p_mlentry = 0; 2615 } 2616 2617 /* 2618 * kphysm_init() initializes physical memory. 2619 */ 2620 static pgcnt_t 2621 kphysm_init(page_t *pp, pgcnt_t npages) 2622 { 2623 struct memlist *pmem; 2624 struct memseg *cur_memseg; 2625 pfn_t base_pfn; 2626 pfn_t end_pfn; 2627 pgcnt_t num; 2628 pgcnt_t pages_done = 0; 2629 uint64_t addr; 2630 uint64_t size; 2631 extern pfn_t ddiphysmin; 2632 extern int mnode_xwa; 2633 int ms = 0, me = 0; 2634 2635 ASSERT(page_hash != NULL && page_hashsz != 0); 2636 2637 cur_memseg = memseg_base; 2638 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2639 /* 2640 * In a 32 bit kernel can't use higher memory if we're 2641 * not booting in PAE mode. This check takes care of that. 2642 */ 2643 addr = pmem->ml_address; 2644 size = pmem->ml_size; 2645 if (btop(addr) > physmax) 2646 continue; 2647 2648 /* 2649 * align addr and size - they may not be at page boundaries 2650 */ 2651 if ((addr & MMU_PAGEOFFSET) != 0) { 2652 addr += MMU_PAGEOFFSET; 2653 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2654 size -= addr - pmem->ml_address; 2655 } 2656 2657 /* only process pages below or equal to physmax */ 2658 if ((btop(addr + size) - 1) > physmax) 2659 size = ptob(physmax - btop(addr) + 1); 2660 2661 num = btop(size); 2662 if (num == 0) 2663 continue; 2664 2665 if (num > npages) 2666 num = npages; 2667 2668 npages -= num; 2669 pages_done += num; 2670 base_pfn = btop(addr); 2671 2672 if (prom_debug) 2673 prom_printf("MEMSEG addr=0x%" PRIx64 2674 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2675 addr, num, base_pfn, base_pfn + num); 2676 2677 /* 2678 * Ignore pages below ddiphysmin to simplify ddi memory 2679 * allocation with non-zero addr_lo requests. 2680 */ 2681 if (base_pfn < ddiphysmin) { 2682 if (base_pfn + num <= ddiphysmin) 2683 continue; 2684 pp += (ddiphysmin - base_pfn); 2685 num -= (ddiphysmin - base_pfn); 2686 base_pfn = ddiphysmin; 2687 } 2688 2689 /* 2690 * mnode_xwa is greater than 1 when large pages regions can 2691 * cross memory node boundaries. To prevent the formation 2692 * of these large pages, configure the memsegs based on the 2693 * memory node ranges which had been made non-contiguous. 2694 */ 2695 end_pfn = base_pfn + num - 1; 2696 if (mnode_xwa > 1) { 2697 ms = PFN_2_MEM_NODE(base_pfn); 2698 me = PFN_2_MEM_NODE(end_pfn); 2699 2700 if (ms != me) { 2701 /* 2702 * current range spans more than 1 memory node. 2703 * Set num to only the pfn range in the start 2704 * memory node. 2705 */ 2706 num = mem_node_config[ms].physmax - base_pfn 2707 + 1; 2708 ASSERT(end_pfn > mem_node_config[ms].physmax); 2709 } 2710 } 2711 2712 for (;;) { 2713 /* 2714 * Build the memsegs entry 2715 */ 2716 cur_memseg->pages = pp; 2717 cur_memseg->epages = pp + num; 2718 cur_memseg->pages_base = base_pfn; 2719 cur_memseg->pages_end = base_pfn + num; 2720 2721 /* 2722 * Insert into memseg list in decreasing pfn range 2723 * order. Low memory is typically more fragmented such 2724 * that this ordering keeps the larger ranges at the 2725 * front of the list for code that searches memseg. 2726 * This ASSERTS that the memsegs coming in from boot 2727 * are in increasing physical address order and not 2728 * contiguous. 2729 */ 2730 if (memsegs != NULL) { 2731 ASSERT(cur_memseg->pages_base >= 2732 memsegs->pages_end); 2733 cur_memseg->next = memsegs; 2734 } 2735 memsegs = cur_memseg; 2736 2737 /* 2738 * add_physmem() initializes the PSM part of the page 2739 * struct by calling the PSM back with add_physmem_cb(). 2740 * In addition it coalesces pages into larger pages as 2741 * it initializes them. 2742 */ 2743 add_physmem(pp, num, base_pfn); 2744 cur_memseg++; 2745 availrmem_initial += num; 2746 availrmem += num; 2747 2748 pp += num; 2749 if (ms >= me) 2750 break; 2751 2752 /* process next memory node range */ 2753 ms++; 2754 base_pfn = mem_node_config[ms].physbase; 2755 2756 if (mnode_xwa > 1) { 2757 num = MIN(mem_node_config[ms].physmax, 2758 end_pfn) - base_pfn + 1; 2759 } else { 2760 num = mem_node_config[ms].physmax - 2761 base_pfn + 1; 2762 } 2763 } 2764 } 2765 2766 PRM_DEBUG(availrmem_initial); 2767 PRM_DEBUG(availrmem); 2768 PRM_DEBUG(freemem); 2769 build_pfn_hash(); 2770 return (pages_done); 2771 } 2772 2773 /* 2774 * Kernel VM initialization. 2775 */ 2776 static void 2777 kvm_init(void) 2778 { 2779 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2780 2781 /* 2782 * Put the kernel segments in kernel address space. 2783 */ 2784 rw_enter(&kas.a_lock, RW_WRITER); 2785 as_avlinit(&kas); 2786 2787 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2788 (void) segkmem_create(&ktextseg); 2789 2790 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2791 (void) segkmem_create(&kvalloc); 2792 2793 (void) seg_attach(&kas, kernelheap, 2794 ekernelheap - kernelheap, &kvseg); 2795 (void) segkmem_create(&kvseg); 2796 2797 if (core_size > 0) { 2798 PRM_POINT("attaching kvseg_core"); 2799 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2800 &kvseg_core); 2801 (void) segkmem_create(&kvseg_core); 2802 } 2803 2804 if (segziosize > 0) { 2805 PRM_POINT("attaching segzio"); 2806 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2807 &kzioseg); 2808 (void) segkmem_zio_create(&kzioseg); 2809 2810 /* create zio area covering new segment */ 2811 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2812 } 2813 2814 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2815 (void) segkmem_create(&kdebugseg); 2816 2817 rw_exit(&kas.a_lock); 2818 2819 /* 2820 * Ensure that the red zone at kernelbase is never accessible. 2821 */ 2822 PRM_POINT("protecting redzone"); 2823 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2824 2825 /* 2826 * Make the text writable so that it can be hot patched by DTrace. 2827 */ 2828 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2829 PROT_READ | PROT_WRITE | PROT_EXEC); 2830 2831 /* 2832 * Make data writable until end. 2833 */ 2834 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2835 PROT_READ | PROT_WRITE | PROT_EXEC); 2836 } 2837 2838 #ifndef __xpv 2839 /* 2840 * Solaris adds an entry for Write Combining caching to the PAT 2841 */ 2842 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2843 2844 void 2845 pat_sync(void) 2846 { 2847 ulong_t cr0, cr0_orig, cr4; 2848 2849 if (!is_x86_feature(x86_featureset, X86FSET_PAT)) 2850 return; 2851 cr0_orig = cr0 = getcr0(); 2852 cr4 = getcr4(); 2853 2854 /* disable caching and flush all caches and TLBs */ 2855 cr0 |= CR0_CD; 2856 cr0 &= ~CR0_NW; 2857 setcr0(cr0); 2858 invalidate_cache(); 2859 if (cr4 & CR4_PGE) { 2860 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2861 setcr4(cr4); 2862 } else { 2863 reload_cr3(); 2864 } 2865 2866 /* add our entry to the PAT */ 2867 wrmsr(REG_PAT, pat_attr_reg); 2868 2869 /* flush TLBs and cache again, then reenable cr0 caching */ 2870 if (cr4 & CR4_PGE) { 2871 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2872 setcr4(cr4); 2873 } else { 2874 reload_cr3(); 2875 } 2876 invalidate_cache(); 2877 setcr0(cr0_orig); 2878 } 2879 2880 #endif /* !__xpv */ 2881 2882 #if defined(_SOFT_HOSTID) 2883 /* 2884 * On platforms that do not have a hardware serial number, attempt 2885 * to set one based on the contents of /etc/hostid. If this file does 2886 * not exist, assume that we are to generate a new hostid and set 2887 * it in the kernel, for subsequent saving by a userland process 2888 * once the system is up and the root filesystem is mounted r/w. 2889 * 2890 * In order to gracefully support upgrade on OpenSolaris, if 2891 * /etc/hostid does not exist, we will attempt to get a serial number 2892 * using the legacy method (/kernel/misc/sysinit). 2893 * 2894 * If that isn't present, we attempt to use an SMBIOS UUID, which is 2895 * a hardware serial number. Note that we don't automatically trust 2896 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate 2897 * UUIDs in violation of the standard), we check against a blacklist. 2898 * 2899 * In an attempt to make the hostid less prone to abuse 2900 * (for license circumvention, etc), we store it in /etc/hostid 2901 * in rot47 format. 2902 */ 2903 extern volatile unsigned long tenmicrodata; 2904 static int atoi(char *); 2905 2906 /* 2907 * Set this to non-zero in /etc/system if you think your SMBIOS returns a 2908 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist 2909 * array can be updated.) 2910 */ 2911 int smbios_broken_uuid = 0; 2912 2913 /* 2914 * List of known bad UUIDs. This is just the lower 32-bit values, since 2915 * that's what we use for the host id. If your hostid falls here, you need 2916 * to contact your hardware OEM for a fix for your BIOS. 2917 */ 2918 static unsigned char 2919 smbios_uuid_blacklist[][16] = { 2920 2921 { /* Reported bad UUID (Google search) */ 2922 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 2923 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09, 2924 }, 2925 { /* Known bad DELL UUID */ 2926 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10, 2927 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20, 2928 }, 2929 { /* Uninitialized flash */ 2930 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 2931 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2932 }, 2933 { /* All zeros */ 2934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 2935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 2936 }, 2937 }; 2938 2939 static int32_t 2940 uuid_to_hostid(const uint8_t *uuid) 2941 { 2942 /* 2943 * Although the UUIDs are 128-bits, they may not distribute entropy 2944 * evenly. We would like to use SHA or MD5, but those are located 2945 * in loadable modules and not available this early in boot. As we 2946 * don't need the values to be cryptographically strong, we just 2947 * generate 32-bit vaue by xor'ing the various sequences together, 2948 * which ensures that the entire UUID contributes to the hostid. 2949 */ 2950 uint32_t id = 0; 2951 2952 /* first check against the blacklist */ 2953 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) { 2954 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) { 2955 cmn_err(CE_CONT, "?Broken SMBIOS UUID. " 2956 "Contact BIOS manufacturer for repair.\n"); 2957 return ((int32_t)HW_INVALID_HOSTID); 2958 } 2959 } 2960 2961 for (int i = 0; i < 16; i++) 2962 id ^= ((uuid[i]) << (8 * (i % sizeof (id)))); 2963 2964 /* Make sure return value is positive */ 2965 return (id & 0x7fffffff); 2966 } 2967 2968 static int32_t 2969 set_soft_hostid(void) 2970 { 2971 struct _buf *file; 2972 char tokbuf[MAXNAMELEN]; 2973 token_t token; 2974 int done = 0; 2975 u_longlong_t tmp; 2976 int i; 2977 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2978 unsigned char *c; 2979 hrtime_t tsc; 2980 smbios_system_t smsys; 2981 2982 /* 2983 * If /etc/hostid file not found, we'd like to get a pseudo 2984 * random number to use at the hostid. A nice way to do this 2985 * is to read the real time clock. To remain xen-compatible, 2986 * we can't poke the real hardware, so we use tsc_read() to 2987 * read the real time clock. However, there is an ominous 2988 * warning in tsc_read that says it can return zero, so we 2989 * deal with that possibility by falling back to using the 2990 * (hopefully random enough) value in tenmicrodata. 2991 */ 2992 2993 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2994 /* 2995 * hostid file not found - try to load sysinit module 2996 * and see if it has a nonzero hostid value...use that 2997 * instead of generating a new hostid here if so. 2998 */ 2999 if ((i = modload("misc", "sysinit")) != -1) { 3000 if (strlen(hw_serial) > 0) 3001 hostid = (int32_t)atoi(hw_serial); 3002 (void) modunload(i); 3003 } 3004 3005 /* 3006 * We try to use the SMBIOS UUID. But not if it is blacklisted 3007 * in /etc/system. 3008 */ 3009 if ((hostid == HW_INVALID_HOSTID) && 3010 (smbios_broken_uuid == 0) && 3011 (ksmbios != NULL) && 3012 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) && 3013 (smsys.smbs_uuidlen >= 16)) { 3014 hostid = uuid_to_hostid(smsys.smbs_uuid); 3015 } 3016 3017 /* 3018 * Generate a "random" hostid using the clock. These 3019 * hostids will change on each boot if the value is not 3020 * saved to a persistent /etc/hostid file. 3021 */ 3022 if (hostid == HW_INVALID_HOSTID) { 3023 tsc = tsc_read(); 3024 if (tsc == 0) /* tsc_read can return zero sometimes */ 3025 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 3026 else 3027 hostid = (int32_t)tsc & 0x0CFFFFF; 3028 } 3029 } else { 3030 /* hostid file found */ 3031 while (!done) { 3032 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 3033 3034 switch (token) { 3035 case POUND: 3036 /* 3037 * skip comments 3038 */ 3039 kobj_find_eol(file); 3040 break; 3041 case STRING: 3042 /* 3043 * un-rot47 - obviously this 3044 * nonsense is ascii-specific 3045 */ 3046 for (c = (unsigned char *)tokbuf; 3047 *c != '\0'; c++) { 3048 *c += 47; 3049 if (*c > '~') 3050 *c -= 94; 3051 else if (*c < '!') 3052 *c += 94; 3053 } 3054 /* 3055 * now we should have a real number 3056 */ 3057 3058 if (kobj_getvalue(tokbuf, &tmp) != 0) 3059 kobj_file_err(CE_WARN, file, 3060 "Bad value %s for hostid", 3061 tokbuf); 3062 else 3063 hostid = (int32_t)tmp; 3064 3065 break; 3066 case EOF: 3067 done = 1; 3068 /* FALLTHROUGH */ 3069 case NEWLINE: 3070 kobj_newline(file); 3071 break; 3072 default: 3073 break; 3074 3075 } 3076 } 3077 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 3078 kobj_file_err(CE_WARN, file, 3079 "hostid missing or corrupt"); 3080 3081 kobj_close_file(file); 3082 } 3083 /* 3084 * hostid is now the value read from /etc/hostid, or the 3085 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 3086 * set. 3087 */ 3088 return (hostid); 3089 } 3090 3091 static int 3092 atoi(char *p) 3093 { 3094 int i = 0; 3095 3096 while (*p != '\0') 3097 i = 10 * i + (*p++ - '0'); 3098 3099 return (i); 3100 } 3101 3102 #endif /* _SOFT_HOSTID */ 3103 3104 void 3105 get_system_configuration(void) 3106 { 3107 char prop[32]; 3108 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 3109 3110 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 3111 BOP_GETPROP(bootops, "nodes", prop) < 0 || 3112 kobj_getvalue(prop, &nodes_ll) == -1 || 3113 nodes_ll > MAXNODES || 3114 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 3115 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 3116 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 3117 system_hardware.hd_nodes = 1; 3118 system_hardware.hd_cpus_per_node = 0; 3119 } else { 3120 system_hardware.hd_nodes = (int)nodes_ll; 3121 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 3122 } 3123 3124 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 3125 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 3126 kobj_getvalue(prop, &lvalue) == -1) 3127 eprom_kernelbase = 0; 3128 else 3129 eprom_kernelbase = (uintptr_t)lvalue; 3130 3131 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 3132 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 3133 kobj_getvalue(prop, &lvalue) == -1) 3134 segmapsize = SEGMAPDEFAULT; 3135 else 3136 segmapsize = (uintptr_t)lvalue; 3137 3138 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 3139 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 3140 kobj_getvalue(prop, &lvalue) == -1) 3141 segmapfreelists = 0; /* use segmap driver default */ 3142 else 3143 segmapfreelists = (int)lvalue; 3144 3145 /* physmem used to be here, but moved much earlier to fakebop.c */ 3146 } 3147 3148 /* 3149 * Add to a memory list. 3150 * start = start of new memory segment 3151 * len = length of new memory segment in bytes 3152 * new = pointer to a new struct memlist 3153 * memlistp = memory list to which to add segment. 3154 */ 3155 void 3156 memlist_add( 3157 uint64_t start, 3158 uint64_t len, 3159 struct memlist *new, 3160 struct memlist **memlistp) 3161 { 3162 struct memlist *cur; 3163 uint64_t end = start + len; 3164 3165 new->ml_address = start; 3166 new->ml_size = len; 3167 3168 cur = *memlistp; 3169 3170 while (cur) { 3171 if (cur->ml_address >= end) { 3172 new->ml_next = cur; 3173 *memlistp = new; 3174 new->ml_prev = cur->ml_prev; 3175 cur->ml_prev = new; 3176 return; 3177 } 3178 ASSERT(cur->ml_address + cur->ml_size <= start); 3179 if (cur->ml_next == NULL) { 3180 cur->ml_next = new; 3181 new->ml_prev = cur; 3182 new->ml_next = NULL; 3183 return; 3184 } 3185 memlistp = &cur->ml_next; 3186 cur = cur->ml_next; 3187 } 3188 } 3189 3190 void 3191 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3192 { 3193 size_t tsize = e_modtext - modtext; 3194 size_t dsize = e_moddata - moddata; 3195 3196 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 3197 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 3198 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 3199 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3200 } 3201 3202 caddr_t 3203 kobj_text_alloc(vmem_t *arena, size_t size) 3204 { 3205 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 3206 } 3207 3208 /*ARGSUSED*/ 3209 caddr_t 3210 kobj_texthole_alloc(caddr_t addr, size_t size) 3211 { 3212 panic("unexpected call to kobj_texthole_alloc()"); 3213 /*NOTREACHED*/ 3214 return (0); 3215 } 3216 3217 /*ARGSUSED*/ 3218 void 3219 kobj_texthole_free(caddr_t addr, size_t size) 3220 { 3221 panic("unexpected call to kobj_texthole_free()"); 3222 } 3223 3224 /* 3225 * This is called just after configure() in startup(). 3226 * 3227 * The ISALIST concept is a bit hopeless on Intel, because 3228 * there's no guarantee of an ever-more-capable processor 3229 * given that various parts of the instruction set may appear 3230 * and disappear between different implementations. 3231 * 3232 * While it would be possible to correct it and even enhance 3233 * it somewhat, the explicit hardware capability bitmask allows 3234 * more flexibility. 3235 * 3236 * So, we just leave this alone. 3237 */ 3238 void 3239 setx86isalist(void) 3240 { 3241 char *tp; 3242 size_t len; 3243 extern char *isa_list; 3244 3245 #define TBUFSIZE 1024 3246 3247 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 3248 *tp = '\0'; 3249 3250 #if defined(__amd64) 3251 (void) strcpy(tp, "amd64 "); 3252 #endif 3253 3254 switch (x86_vendor) { 3255 case X86_VENDOR_Intel: 3256 case X86_VENDOR_AMD: 3257 case X86_VENDOR_TM: 3258 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) { 3259 /* 3260 * Pentium Pro or later 3261 */ 3262 (void) strcat(tp, "pentium_pro"); 3263 (void) strcat(tp, 3264 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3265 "+mmx pentium_pro " : " "); 3266 } 3267 /*FALLTHROUGH*/ 3268 case X86_VENDOR_Cyrix: 3269 /* 3270 * The Cyrix 6x86 does not have any Pentium features 3271 * accessible while not at privilege level 0. 3272 */ 3273 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3274 (void) strcat(tp, "pentium"); 3275 (void) strcat(tp, 3276 is_x86_feature(x86_featureset, X86FSET_MMX) ? 3277 "+mmx pentium " : " "); 3278 } 3279 break; 3280 default: 3281 break; 3282 } 3283 (void) strcat(tp, "i486 i386 i86"); 3284 len = strlen(tp) + 1; /* account for NULL at end of string */ 3285 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3286 kmem_free(tp, TBUFSIZE); 3287 3288 #undef TBUFSIZE 3289 } 3290 3291 3292 #ifdef __amd64 3293 3294 void * 3295 device_arena_alloc(size_t size, int vm_flag) 3296 { 3297 return (vmem_alloc(device_arena, size, vm_flag)); 3298 } 3299 3300 void 3301 device_arena_free(void *vaddr, size_t size) 3302 { 3303 vmem_free(device_arena, vaddr, size); 3304 } 3305 3306 #else /* __i386 */ 3307 3308 void * 3309 device_arena_alloc(size_t size, int vm_flag) 3310 { 3311 caddr_t vaddr; 3312 uintptr_t v; 3313 size_t start; 3314 size_t end; 3315 3316 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3317 if (vaddr == NULL) 3318 return (NULL); 3319 3320 v = (uintptr_t)vaddr; 3321 ASSERT(v >= kernelbase); 3322 ASSERT(v + size <= valloc_base); 3323 3324 start = btop(v - kernelbase); 3325 end = btop(v + size - 1 - kernelbase); 3326 ASSERT(start < toxic_bit_map_len); 3327 ASSERT(end < toxic_bit_map_len); 3328 3329 while (start <= end) { 3330 BT_ATOMIC_SET(toxic_bit_map, start); 3331 ++start; 3332 } 3333 return (vaddr); 3334 } 3335 3336 void 3337 device_arena_free(void *vaddr, size_t size) 3338 { 3339 uintptr_t v = (uintptr_t)vaddr; 3340 size_t start; 3341 size_t end; 3342 3343 ASSERT(v >= kernelbase); 3344 ASSERT(v + size <= valloc_base); 3345 3346 start = btop(v - kernelbase); 3347 end = btop(v + size - 1 - kernelbase); 3348 ASSERT(start < toxic_bit_map_len); 3349 ASSERT(end < toxic_bit_map_len); 3350 3351 while (start <= end) { 3352 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3353 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3354 ++start; 3355 } 3356 vmem_free(heap_arena, vaddr, size); 3357 } 3358 3359 /* 3360 * returns 1st address in range that is in device arena, or NULL 3361 * if len is not NULL it returns the length of the toxic range 3362 */ 3363 void * 3364 device_arena_contains(void *vaddr, size_t size, size_t *len) 3365 { 3366 uintptr_t v = (uintptr_t)vaddr; 3367 uintptr_t eaddr = v + size; 3368 size_t start; 3369 size_t end; 3370 3371 /* 3372 * if called very early by kmdb, just return NULL 3373 */ 3374 if (toxic_bit_map == NULL) 3375 return (NULL); 3376 3377 /* 3378 * First check if we're completely outside the bitmap range. 3379 */ 3380 if (v >= valloc_base || eaddr < kernelbase) 3381 return (NULL); 3382 3383 /* 3384 * Trim ends of search to look at only what the bitmap covers. 3385 */ 3386 if (v < kernelbase) 3387 v = kernelbase; 3388 start = btop(v - kernelbase); 3389 end = btop(eaddr - kernelbase); 3390 if (end >= toxic_bit_map_len) 3391 end = toxic_bit_map_len; 3392 3393 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3394 return (NULL); 3395 3396 v = kernelbase + ptob(start); 3397 if (len != NULL) 3398 *len = ptob(end - start); 3399 return ((void *)v); 3400 } 3401 3402 #endif /* __i386 */ 3403