1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> /* for "procfs" hack */ 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_kmem.h> 90 #include <vm/seg_kpm.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <sys/memnode.h> 95 #include <vm/vm_dep.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <vm/hat.h> 102 #include <vm/hat_i86.h> 103 #include <sys/pmem.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/x86_archext.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/pg.h> 112 #include <sys/x86_archext.h> 113 #include <sys/cpu_module.h> 114 #include <sys/smbios.h> 115 #include <sys/debug_info.h> 116 117 118 #include <sys/bootinfo.h> 119 #include <vm/kboot_mmu.h> 120 121 extern void progressbar_init(void); 122 extern void progressbar_start(void); 123 extern void brand_init(void); 124 125 extern int size_pse_array(pgcnt_t, int); 126 127 /* 128 * XXX make declaration below "static" when drivers no longer use this 129 * interface. 130 */ 131 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 132 133 /* 134 * segkp 135 */ 136 extern int segkp_fromheap; 137 138 static void kvm_init(void); 139 static void startup_init(void); 140 static void startup_memlist(void); 141 static void startup_kmem(void); 142 static void startup_modules(void); 143 static void startup_vm(void); 144 static void startup_end(void); 145 static void layout_kernel_va(void); 146 147 /* 148 * Declare these as initialized data so we can patch them. 149 */ 150 #ifdef __i386 151 152 /* 153 * Due to virtual address space limitations running in 32 bit mode, restrict 154 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 155 * 156 * If the physical max memory size of 64g were allowed to be configured, the 157 * size of user virtual address space will be less than 1g. A limited user 158 * address space greatly reduces the range of applications that can run. 159 * 160 * If more physical memory than PHYSMEM is required, users should preferably 161 * run in 64 bit mode which has far looser virtual address space limitations. 162 * 163 * If 64 bit mode is not available (as in IA32) and/or more physical memory 164 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 165 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 166 * should also be carefully tuned to balance out the need of the user 167 * application while minimizing the risk of kernel heap exhaustion due to 168 * kernelbase being set too high. 169 */ 170 #define PHYSMEM 0x400000 171 172 #else /* __amd64 */ 173 174 /* 175 * For now we can handle memory with physical addresses up to about 176 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 177 * half the VA space for seg_kpm. When systems get bigger than 64TB this 178 * code will need revisiting. There is an implicit assumption that there 179 * are no *huge* holes in the physical address space too. 180 */ 181 #define TERABYTE (1ul << 40) 182 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 183 #define PHYSMEM PHYSMEM_MAX64 184 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 185 186 #endif /* __amd64 */ 187 188 pgcnt_t physmem = PHYSMEM; 189 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 190 191 char *kobj_file_buf; 192 int kobj_file_bufsize; /* set in /etc/system */ 193 194 /* Global variables for MP support. Used in mp_startup */ 195 caddr_t rm_platter_va; 196 uint32_t rm_platter_pa; 197 198 int auto_lpg_disable = 1; 199 200 /* 201 * Some CPUs have holes in the middle of the 64-bit virtual address range. 202 */ 203 uintptr_t hole_start, hole_end; 204 205 /* 206 * kpm mapping window 207 */ 208 caddr_t kpm_vbase; 209 size_t kpm_size; 210 static int kpm_desired; 211 #ifdef __amd64 212 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 213 #endif 214 215 /* 216 * Configuration parameters set at boot time. 217 */ 218 219 caddr_t econtig; /* end of first block of contiguous kernel */ 220 221 struct bootops *bootops = 0; /* passed in from boot */ 222 struct bootops **bootopsp; 223 struct boot_syscalls *sysp; /* passed in from boot */ 224 225 char bootblock_fstype[16]; 226 227 char kern_bootargs[OBP_MAXPATHLEN]; 228 229 /* 230 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 231 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 232 * zio buffers from their own segment, otherwise they are allocated from the 233 * heap. The optimization of allocating zio buffers from their own segment is 234 * only valid on 64-bit kernels. 235 */ 236 #if defined(__amd64) 237 int segzio_fromheap = 0; 238 #else 239 int segzio_fromheap = 1; 240 #endif 241 242 /* 243 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 244 * depends on number of BOP_ALLOC calls made and requested size, memory size 245 * combination and whether boot.bin memory needs to be freed. 246 */ 247 #define POSS_NEW_FRAGMENTS 12 248 249 /* 250 * VM data structures 251 */ 252 long page_hashsz; /* Size of page hash table (power of two) */ 253 struct page *pp_base; /* Base of initial system page struct array */ 254 struct page **page_hash; /* Page hash table */ 255 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 256 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 257 int pse_shift; /* log2(pse_table_size) */ 258 struct seg ktextseg; /* Segment used for kernel executable image */ 259 struct seg kvalloc; /* Segment used for "valloc" mapping */ 260 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 261 struct seg kmapseg; /* Segment used for generic kernel mappings */ 262 struct seg kdebugseg; /* Segment used for the kernel debugger */ 263 264 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 265 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 266 267 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 268 269 #if defined(__amd64) 270 struct seg kvseg_core; /* Segment used for the core heap */ 271 struct seg kpmseg; /* Segment used for physical mapping */ 272 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 273 #else 274 struct seg *segkpm = NULL; /* Unused on IA32 */ 275 #endif 276 277 caddr_t segkp_base; /* Base address of segkp */ 278 caddr_t segzio_base; /* Base address of segzio */ 279 #if defined(__amd64) 280 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 281 #else 282 pgcnt_t segkpsize = 0; 283 #endif 284 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 285 286 /* 287 * VA range available to the debugger 288 */ 289 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 290 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 291 292 struct memseg *memseg_base; 293 struct vnode unused_pages_vp; 294 295 #define FOURGB 0x100000000LL 296 297 struct memlist *memlist; 298 299 caddr_t s_text; /* start of kernel text segment */ 300 caddr_t e_text; /* end of kernel text segment */ 301 caddr_t s_data; /* start of kernel data segment */ 302 caddr_t e_data; /* end of kernel data segment */ 303 caddr_t modtext; /* start of loadable module text reserved */ 304 caddr_t e_modtext; /* end of loadable module text reserved */ 305 caddr_t moddata; /* start of loadable module data reserved */ 306 caddr_t e_moddata; /* end of loadable module data reserved */ 307 308 struct memlist *phys_install; /* Total installed physical memory */ 309 struct memlist *phys_avail; /* Total available physical memory */ 310 311 /* 312 * kphysm_init returns the number of pages that were processed 313 */ 314 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 315 316 #define IO_PROP_SIZE 64 /* device property size */ 317 318 /* 319 * a couple useful roundup macros 320 */ 321 #define ROUND_UP_PAGE(x) \ 322 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 323 #define ROUND_UP_LPAGE(x) \ 324 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 325 #define ROUND_UP_4MEG(x) \ 326 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 327 #define ROUND_UP_TOPLEVEL(x) \ 328 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 329 330 /* 331 * 32-bit Kernel's Virtual memory layout. 332 * +-----------------------+ 333 * | | 334 * 0xFFC00000 -|-----------------------|- ARGSBASE 335 * | debugger | 336 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 337 * | Kernel Data | 338 * 0xFEC00000 -|-----------------------| 339 * | Kernel Text | 340 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 341 * |--- GDT ---|- GDT page (GDT_VA) 342 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 343 * | | 344 * | page_t structures | 345 * | memsegs, memlists, | 346 * | page hash, etc. | 347 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 348 * | | (segkp is just an arena in the heap) 349 * | | 350 * | kvseg | 351 * | | 352 * | | 353 * --- -|-----------------------|- kernelheap (floating) 354 * | Segkmap | 355 * 0xC3002000 -|-----------------------|- segmap_start (floating) 356 * | Red Zone | 357 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 358 * | | || 359 * | Shared objects | \/ 360 * | | 361 * : : 362 * | user data | 363 * |-----------------------| 364 * | user text | 365 * 0x08048000 -|-----------------------| 366 * | user stack | 367 * : : 368 * | invalid | 369 * 0x00000000 +-----------------------+ 370 * 371 * 372 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 373 * +-----------------------+ 374 * | | 375 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 376 * | debugger (?) | 377 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 378 * | unused | 379 * +-----------------------+ 380 * | Kernel Data | 381 * 0xFFFFFFFF.FBC00000 |-----------------------| 382 * | Kernel Text | 383 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 384 * |--- GDT ---|- GDT page (GDT_VA) 385 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 386 * | | 387 * | Core heap | (used for loadable modules) 388 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 389 * | Kernel | 390 * | heap | 391 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 392 * | segmap | 393 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 394 * | device mappings | 395 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 396 * | segzio | 397 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 398 * | segkp | 399 * --- |-----------------------|- segkp_base (floating) 400 * | page_t structures | valloc_base + valloc_sz 401 * | memsegs, memlists, | 402 * | page hash, etc. | 403 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 404 * | segkpm | 405 * 0xFFFFFE00.00000000 |-----------------------| 406 * | Red Zone | 407 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 408 * | User stack |- User space memory 409 * | | 410 * | shared objects, etc | (grows downwards) 411 * : : 412 * | | 413 * 0xFFFF8000.00000000 |-----------------------| 414 * | | 415 * | VA Hole / unused | 416 * | | 417 * 0x00008000.00000000 |-----------------------| 418 * | | 419 * | | 420 * : : 421 * | user heap | (grows upwards) 422 * | | 423 * | user data | 424 * |-----------------------| 425 * | user text | 426 * 0x00000000.04000000 |-----------------------| 427 * | invalid | 428 * 0x00000000.00000000 +-----------------------+ 429 * 430 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 431 * kernel, except that userlimit is raised to 0xfe000000 432 * 433 * Floating values: 434 * 435 * valloc_base: start of the kernel's memory management/tracking data 436 * structures. This region contains page_t structures for 437 * physical memory, memsegs, memlists, and the page hash. 438 * 439 * core_base: start of the kernel's "core" heap area on 64-bit systems. 440 * This area is intended to be used for global data as well as for module 441 * text/data that does not fit into the nucleus pages. The core heap is 442 * restricted to a 2GB range, allowing every address within it to be 443 * accessed using rip-relative addressing 444 * 445 * ekernelheap: end of kernelheap and start of segmap. 446 * 447 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 448 * above a red zone that separates the user's address space from the 449 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 450 * 451 * segmap_start: start of segmap. The length of segmap can be modified 452 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 453 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 454 * 455 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 456 * decreased by 2X the size required for page_t. This allows the kernel 457 * heap to grow in size with physical memory. With sizeof(page_t) == 80 458 * bytes, the following shows the values of kernelbase and kernel heap 459 * sizes for different memory configurations (assuming default segmap and 460 * segkp sizes). 461 * 462 * mem size for kernelbase kernel heap 463 * size page_t's size 464 * ---- --------- ---------- ----------- 465 * 1gb 0x01400000 0xd1800000 684MB 466 * 2gb 0x02800000 0xcf000000 704MB 467 * 4gb 0x05000000 0xca000000 744MB 468 * 6gb 0x07800000 0xc5000000 784MB 469 * 8gb 0x0a000000 0xc0000000 824MB 470 * 16gb 0x14000000 0xac000000 984MB 471 * 32gb 0x28000000 0x84000000 1304MB 472 * 64gb 0x50000000 0x34000000 1944MB (*) 473 * 474 * kernelbase is less than the abi minimum of 0xc0000000 for memory 475 * configurations above 8gb. 476 * 477 * (*) support for memory configurations above 32gb will require manual tuning 478 * of kernelbase to balance out the need of user applications. 479 */ 480 481 /* real-time-clock initialization parameters */ 482 extern time_t process_rtc_config_file(void); 483 484 uintptr_t kernelbase; 485 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 486 uintptr_t eprom_kernelbase; 487 size_t segmapsize; 488 uintptr_t segmap_start; 489 int segmapfreelists; 490 pgcnt_t npages; 491 pgcnt_t orig_npages; 492 size_t core_size; /* size of "core" heap */ 493 uintptr_t core_base; /* base address of "core" heap */ 494 495 /* 496 * List of bootstrap pages. We mark these as allocated in startup. 497 * release_bootstrap() will free them when we're completely done with 498 * the bootstrap. 499 */ 500 static page_t *bootpages; 501 502 /* 503 * boot time pages that have a vnode from the ramdisk will keep that forever. 504 */ 505 static page_t *rd_pages; 506 507 struct system_hardware system_hardware; 508 509 /* 510 * Enable some debugging messages concerning memory usage... 511 */ 512 static void 513 print_memlist(char *title, struct memlist *mp) 514 { 515 prom_printf("MEMLIST: %s:\n", title); 516 while (mp != NULL) { 517 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 518 mp->address, mp->size); 519 mp = mp->next; 520 } 521 } 522 523 /* 524 * XX64 need a comment here.. are these just default values, surely 525 * we read the "cpuid" type information to figure this out. 526 */ 527 int l2cache_sz = 0x80000; 528 int l2cache_linesz = 0x40; 529 int l2cache_assoc = 1; 530 531 static size_t textrepl_min_gb = 10; 532 533 /* 534 * on 64 bit we use a predifined VA range for mapping devices in the kernel 535 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 536 */ 537 #ifdef __amd64 538 539 vmem_t *device_arena; 540 uintptr_t toxic_addr = (uintptr_t)NULL; 541 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 542 543 #else /* __i386 */ 544 545 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 546 size_t toxic_bit_map_len = 0; /* in bits */ 547 548 #endif /* __i386 */ 549 550 /* 551 * Simple boot time debug facilities 552 */ 553 static char *prm_dbg_str[] = { 554 "%s:%d: '%s' is 0x%x\n", 555 "%s:%d: '%s' is 0x%llx\n" 556 }; 557 558 int prom_debug; 559 560 #define PRM_DEBUG(q) if (prom_debug) \ 561 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 562 #define PRM_POINT(q) if (prom_debug) \ 563 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 564 565 /* 566 * This structure is used to keep track of the intial allocations 567 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 568 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 569 */ 570 #define NUM_ALLOCATIONS 7 571 int num_allocations = 0; 572 struct { 573 void **al_ptr; 574 size_t al_size; 575 } allocations[NUM_ALLOCATIONS]; 576 size_t valloc_sz = 0; 577 uintptr_t valloc_base; 578 579 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 580 size = ROUND_UP_PAGE(size); \ 581 if (num_allocations == NUM_ALLOCATIONS) \ 582 panic("too many ADD_TO_ALLOCATIONS()"); \ 583 allocations[num_allocations].al_ptr = (void**)&ptr; \ 584 allocations[num_allocations].al_size = size; \ 585 valloc_sz += size; \ 586 ++num_allocations; \ 587 } 588 589 /* 590 * Allocate all the initial memory needed by the page allocator. 591 */ 592 static void 593 perform_allocations(void) 594 { 595 caddr_t mem; 596 int i; 597 int valloc_align; 598 599 PRM_DEBUG(valloc_base); 600 PRM_DEBUG(valloc_sz); 601 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 602 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 603 if (mem != (caddr_t)valloc_base) 604 panic("BOP_ALLOC() failed"); 605 bzero(mem, valloc_sz); 606 for (i = 0; i < num_allocations; ++i) { 607 *allocations[i].al_ptr = (void *)mem; 608 mem += allocations[i].al_size; 609 } 610 } 611 612 /* 613 * Our world looks like this at startup time. 614 * 615 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 616 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 617 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 618 * addresses are fixed in the binary at link time. 619 * 620 * On the text page: 621 * unix/genunix/krtld/module text loads. 622 * 623 * On the data page: 624 * unix/genunix/krtld/module data loads. 625 * 626 * Machine-dependent startup code 627 */ 628 void 629 startup(void) 630 { 631 extern void startup_bios_disk(void); 632 extern void startup_pci_bios(void); 633 #if defined(__amd64) 634 kpm_desired = 1; 635 #endif 636 kpm_enable = 0; 637 638 progressbar_init(); 639 startup_init(); 640 startup_memlist(); 641 startup_kmem(); 642 startup_vm(); 643 startup_pci_bios(); 644 startup_modules(); 645 startup_bios_disk(); 646 startup_end(); 647 progressbar_start(); 648 } 649 650 static void 651 startup_init() 652 { 653 PRM_POINT("startup_init() starting..."); 654 655 /* 656 * Complete the extraction of cpuid data 657 */ 658 cpuid_pass2(CPU); 659 660 (void) check_boot_version(BOP_GETVERSION(bootops)); 661 662 /* 663 * Check for prom_debug in boot environment 664 */ 665 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 666 ++prom_debug; 667 PRM_POINT("prom_debug found in boot enviroment"); 668 } 669 670 /* 671 * Collect node, cpu and memory configuration information. 672 */ 673 get_system_configuration(); 674 675 /* 676 * Halt if this is an unsupported processor. 677 */ 678 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 679 printf("\n486 processor (\"%s\") detected.\n", 680 CPU->cpu_brandstr); 681 halt("This processor is not supported by this release " 682 "of Solaris."); 683 } 684 685 PRM_POINT("startup_init() done"); 686 } 687 688 /* 689 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 690 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 691 * also filters out physical page zero. There is some reliance on the 692 * boot loader allocating only a few contiguous physical memory chunks. 693 */ 694 static void 695 avail_filter(uint64_t *addr, uint64_t *size) 696 { 697 uintptr_t va; 698 uintptr_t next_va; 699 pfn_t pfn; 700 uint64_t pfn_addr; 701 uint64_t pfn_eaddr; 702 uint_t prot; 703 size_t len; 704 uint_t change; 705 706 if (prom_debug) 707 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 708 *addr, *size); 709 710 /* 711 * page zero is required for BIOS.. never make it available 712 */ 713 if (*addr == 0) { 714 *addr += MMU_PAGESIZE; 715 *size -= MMU_PAGESIZE; 716 } 717 718 /* 719 * First we trim from the front of the range. Since kbm_probe() 720 * walks ranges in virtual order, but addr/size are physical, we need 721 * to the list until no changes are seen. This deals with the case 722 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 723 * but w < v. 724 */ 725 do { 726 change = 0; 727 for (va = KERNEL_TEXT; 728 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 729 va = next_va) { 730 731 next_va = va + len; 732 pfn_addr = pfn_to_pa(pfn); 733 pfn_eaddr = pfn_addr + len; 734 735 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 736 change = 1; 737 while (*size > 0 && len > 0) { 738 *addr += MMU_PAGESIZE; 739 *size -= MMU_PAGESIZE; 740 len -= MMU_PAGESIZE; 741 } 742 } 743 } 744 if (change && prom_debug) 745 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 746 *addr, *size); 747 } while (change); 748 749 /* 750 * Trim pages from the end of the range. 751 */ 752 for (va = KERNEL_TEXT; 753 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 754 va = next_va) { 755 756 next_va = va + len; 757 pfn_addr = pfn_to_pa(pfn); 758 759 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 760 *size = pfn_addr - *addr; 761 } 762 763 if (prom_debug) 764 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 765 *addr, *size); 766 } 767 768 static void 769 kpm_init() 770 { 771 struct segkpm_crargs b; 772 773 /* 774 * These variables were all designed for sfmmu in which segkpm is 775 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 776 * might use 2+ page sizes on a single machine, so none of these 777 * variables have a single correct value. They are set up as if we 778 * always use a 4KB pagesize, which should do no harm. In the long 779 * run, we should get rid of KPM's assumption that only a single 780 * pagesize is used. 781 */ 782 kpm_pgshft = MMU_PAGESHIFT; 783 kpm_pgsz = MMU_PAGESIZE; 784 kpm_pgoff = MMU_PAGEOFFSET; 785 kpmp2pshft = 0; 786 kpmpnpgs = 1; 787 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 788 789 PRM_POINT("about to create segkpm"); 790 rw_enter(&kas.a_lock, RW_WRITER); 791 792 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 793 panic("cannot attach segkpm"); 794 795 b.prot = PROT_READ | PROT_WRITE; 796 b.nvcolors = 1; 797 798 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 799 panic("segkpm_create segkpm"); 800 801 rw_exit(&kas.a_lock); 802 } 803 804 /* 805 * The debug info page provides enough information to allow external 806 * inspectors (e.g. when running under a hypervisor) to bootstrap 807 * themselves into allowing full-blown kernel debugging. 808 */ 809 static void 810 init_debug_info(void) 811 { 812 caddr_t mem; 813 debug_info_t *di; 814 815 #ifndef __lint 816 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 817 #endif 818 819 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 820 MMU_PAGESIZE); 821 822 if (mem != (caddr_t)DEBUG_INFO_VA) 823 panic("BOP_ALLOC() failed"); 824 bzero(mem, MMU_PAGESIZE); 825 826 di = (debug_info_t *)mem; 827 828 di->di_magic = DEBUG_INFO_MAGIC; 829 di->di_version = DEBUG_INFO_VERSION; 830 } 831 832 /* 833 * Build the memlists and other kernel essential memory system data structures. 834 * This is everything at valloc_base. 835 */ 836 static void 837 startup_memlist(void) 838 { 839 size_t memlist_sz; 840 size_t memseg_sz; 841 size_t pagehash_sz; 842 size_t pp_sz; 843 uintptr_t va; 844 size_t len; 845 uint_t prot; 846 pfn_t pfn; 847 int memblocks; 848 caddr_t pagecolor_mem; 849 size_t pagecolor_memsz; 850 caddr_t page_ctrs_mem; 851 size_t page_ctrs_size; 852 size_t pse_table_alloc_size; 853 struct memlist *current; 854 extern void startup_build_mem_nodes(struct memlist *); 855 856 /* XX64 fix these - they should be in include files */ 857 extern size_t page_coloring_init(uint_t, int, int); 858 extern void page_coloring_setup(caddr_t); 859 860 PRM_POINT("startup_memlist() starting..."); 861 862 /* 863 * Use leftover large page nucleus text/data space for loadable modules. 864 * Use at most MODTEXT/MODDATA. 865 */ 866 len = kbm_nucleus_size; 867 ASSERT(len > MMU_PAGESIZE); 868 869 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 870 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 871 if (e_moddata - moddata > MODDATA) 872 e_moddata = moddata + MODDATA; 873 874 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 875 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 876 if (e_modtext - modtext > MODTEXT) 877 e_modtext = modtext + MODTEXT; 878 879 econtig = e_moddata; 880 881 PRM_DEBUG(modtext); 882 PRM_DEBUG(e_modtext); 883 PRM_DEBUG(moddata); 884 PRM_DEBUG(e_moddata); 885 PRM_DEBUG(econtig); 886 887 /* 888 * Examine the boot loader physical memory map to find out: 889 * - total memory in system - physinstalled 890 * - the max physical address - physmax 891 * - the number of discontiguous segments of memory. 892 */ 893 if (prom_debug) 894 print_memlist("boot physinstalled", 895 bootops->boot_mem->physinstalled); 896 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 897 &physinstalled, &memblocks); 898 PRM_DEBUG(physmax); 899 PRM_DEBUG(physinstalled); 900 PRM_DEBUG(memblocks); 901 902 /* 903 * Initialize hat's mmu parameters. 904 * Check for enforce-prot-exec in boot environment. It's used to 905 * enable/disable support for the page table entry NX bit. 906 * The default is to enforce PROT_EXEC on processors that support NX. 907 * Boot seems to round up the "len", but 8 seems to be big enough. 908 */ 909 mmu_init(); 910 911 #ifdef __i386 912 /* 913 * physmax is lowered if there is more memory than can be 914 * physically addressed in 32 bit (PAE/non-PAE) modes. 915 */ 916 if (mmu.pae_hat) { 917 if (PFN_ABOVE64G(physmax)) { 918 physinstalled -= (physmax - (PFN_64G - 1)); 919 physmax = PFN_64G - 1; 920 } 921 } else { 922 if (PFN_ABOVE4G(physmax)) { 923 physinstalled -= (physmax - (PFN_4G - 1)); 924 physmax = PFN_4G - 1; 925 } 926 } 927 #endif 928 929 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 930 931 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 932 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 933 char value[8]; 934 935 if (len < 8) 936 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 937 else 938 (void) strcpy(value, ""); 939 if (strcmp(value, "off") == 0) 940 mmu.pt_nx = 0; 941 } 942 PRM_DEBUG(mmu.pt_nx); 943 944 /* 945 * We will need page_t's for every page in the system, except for 946 * memory mapped at or above above the start of the kernel text segment. 947 * 948 * pages above e_modtext are attributed to kernel debugger (obp_pages) 949 */ 950 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 951 obp_pages = 0; 952 va = KERNEL_TEXT; 953 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 954 npages -= len >> MMU_PAGESHIFT; 955 if (va >= (uintptr_t)e_moddata) 956 obp_pages += len >> MMU_PAGESHIFT; 957 va += len; 958 } 959 PRM_DEBUG(npages); 960 PRM_DEBUG(obp_pages); 961 962 /* 963 * If physmem is patched to be non-zero, use it instead of the computed 964 * value unless it is larger than the actual amount of memory on hand. 965 */ 966 if (physmem == 0 || physmem > npages) { 967 physmem = npages; 968 } else if (physmem < npages) { 969 orig_npages = npages; 970 npages = physmem; 971 } 972 PRM_DEBUG(physmem); 973 974 /* 975 * We now compute the sizes of all the initial allocations for 976 * structures the kernel needs in order do kmem_alloc(). These 977 * include: 978 * memsegs 979 * memlists 980 * page hash table 981 * page_t's 982 * page coloring data structs 983 */ 984 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 985 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 986 PRM_DEBUG(memseg_sz); 987 988 /* 989 * Reserve space for memlists. There's no real good way to know exactly 990 * how much room we'll need, but this should be a good upper bound. 991 */ 992 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 993 (memblocks + POSS_NEW_FRAGMENTS)); 994 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 995 PRM_DEBUG(memlist_sz); 996 997 /* 998 * The page structure hash table size is a power of 2 999 * such that the average hash chain length is PAGE_HASHAVELEN. 1000 */ 1001 page_hashsz = npages / PAGE_HASHAVELEN; 1002 page_hashsz = 1 << highbit(page_hashsz); 1003 pagehash_sz = sizeof (struct page *) * page_hashsz; 1004 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1005 PRM_DEBUG(pagehash_sz); 1006 1007 /* 1008 * Set aside room for the page structures themselves. 1009 */ 1010 PRM_DEBUG(npages); 1011 pp_sz = sizeof (struct page) * npages; 1012 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1013 PRM_DEBUG(pp_sz); 1014 1015 /* 1016 * determine l2 cache info and memory size for page coloring 1017 */ 1018 (void) getl2cacheinfo(CPU, 1019 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1020 pagecolor_memsz = 1021 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1022 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1023 PRM_DEBUG(pagecolor_memsz); 1024 1025 page_ctrs_size = page_ctrs_sz(); 1026 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1027 PRM_DEBUG(page_ctrs_size); 1028 1029 /* 1030 * Allocate the array that protects pp->p_selock. 1031 */ 1032 pse_shift = size_pse_array(physmem, max_ncpus); 1033 pse_table_size = 1 << pse_shift; 1034 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1035 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1036 1037 #if defined(__amd64) 1038 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1039 valloc_base = VALLOC_BASE; 1040 1041 /* 1042 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1043 * for values of physmax up to 1 Terabyte. They need adjusting when 1044 * memory is at addresses above 1 TB. 1045 */ 1046 if (physmax + 1 > mmu_btop(TERABYTE)) { 1047 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1048 1049 /* Round to largest possible pagesize for now */ 1050 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1051 1052 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1053 1054 /* make sure we leave some space for user apps above hole */ 1055 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1056 if (segkpm_base > SEGKPM_BASE) 1057 segkpm_base = SEGKPM_BASE; 1058 PRM_DEBUG(segkpm_base); 1059 1060 valloc_base = segkpm_base + kpm_resv_amount; 1061 PRM_DEBUG(valloc_base); 1062 } 1063 #else /* __i386 */ 1064 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1065 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1066 PRM_DEBUG(valloc_base); 1067 #endif /* __i386 */ 1068 1069 /* 1070 * do all the initial allocations 1071 */ 1072 perform_allocations(); 1073 1074 /* 1075 * Build phys_install and phys_avail in kernel memspace. 1076 * - phys_install should be all memory in the system. 1077 * - phys_avail is phys_install minus any memory mapped before this 1078 * point above KERNEL_TEXT. 1079 */ 1080 current = phys_install = memlist; 1081 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1082 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1083 panic("physinstalled was too big!"); 1084 if (prom_debug) 1085 print_memlist("phys_install", phys_install); 1086 1087 phys_avail = current; 1088 PRM_POINT("Building phys_avail:\n"); 1089 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1090 avail_filter); 1091 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1092 panic("physavail was too big!"); 1093 if (prom_debug) 1094 print_memlist("phys_avail", phys_avail); 1095 1096 /* 1097 * setup page coloring 1098 */ 1099 page_coloring_setup(pagecolor_mem); 1100 page_lock_init(); /* currently a no-op */ 1101 1102 /* 1103 * free page list counters 1104 */ 1105 (void) page_ctrs_alloc(page_ctrs_mem); 1106 1107 /* 1108 * Initialize the page structures from the memory lists. 1109 */ 1110 availrmem_initial = availrmem = freemem = 0; 1111 PRM_POINT("Calling kphysm_init()..."); 1112 npages = kphysm_init(pp_base, npages); 1113 PRM_POINT("kphysm_init() done"); 1114 PRM_DEBUG(npages); 1115 1116 init_debug_info(); 1117 1118 /* 1119 * Now that page_t's have been initialized, remove all the 1120 * initial allocation pages from the kernel free page lists. 1121 */ 1122 boot_mapin((caddr_t)valloc_base, valloc_sz); 1123 boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE); 1124 boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE); 1125 PRM_POINT("startup_memlist() done"); 1126 1127 PRM_DEBUG(valloc_sz); 1128 1129 #if defined(__amd64) 1130 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1131 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1132 extern size_t textrepl_size_thresh; 1133 textrepl_size_thresh = (16 << 20) - 1; 1134 } 1135 #endif 1136 } 1137 1138 /* 1139 * Layout the kernel's part of address space and initialize kmem allocator. 1140 */ 1141 static void 1142 startup_kmem(void) 1143 { 1144 extern void page_set_colorequiv_arr(void); 1145 1146 PRM_POINT("startup_kmem() starting..."); 1147 1148 #if defined(__amd64) 1149 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1150 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1151 "systems."); 1152 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1153 core_base = (uintptr_t)COREHEAP_BASE; 1154 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1155 #else /* __i386 */ 1156 /* 1157 * We configure kernelbase based on: 1158 * 1159 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1160 * KERNELBASE_MAX. we large page align eprom_kernelbase 1161 * 1162 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1163 * On large memory systems we must lower kernelbase to allow 1164 * enough room for page_t's for all of memory. 1165 * 1166 * The value set here, might be changed a little later. 1167 */ 1168 if (eprom_kernelbase) { 1169 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1170 if (kernelbase > KERNELBASE_MAX) 1171 kernelbase = KERNELBASE_MAX; 1172 } else { 1173 kernelbase = (uintptr_t)KERNELBASE; 1174 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1175 } 1176 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1177 core_base = valloc_base; 1178 core_size = 0; 1179 #endif /* __i386 */ 1180 1181 PRM_DEBUG(core_base); 1182 PRM_DEBUG(core_size); 1183 PRM_DEBUG(kernelbase); 1184 1185 #if defined(__i386) 1186 segkp_fromheap = 1; 1187 #endif /* __i386 */ 1188 1189 ekernelheap = (char *)core_base; 1190 PRM_DEBUG(ekernelheap); 1191 1192 /* 1193 * Now that we know the real value of kernelbase, 1194 * update variables that were initialized with a value of 1195 * KERNELBASE (in common/conf/param.c). 1196 * 1197 * XXX The problem with this sort of hackery is that the 1198 * compiler just may feel like putting the const declarations 1199 * (in param.c) into the .text section. Perhaps they should 1200 * just be declared as variables there? 1201 */ 1202 1203 *(uintptr_t *)&_kernelbase = kernelbase; 1204 *(uintptr_t *)&_userlimit = kernelbase; 1205 #if defined(__amd64) 1206 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1207 #else 1208 *(uintptr_t *)&_userlimit32 = _userlimit; 1209 #endif 1210 PRM_DEBUG(_kernelbase); 1211 PRM_DEBUG(_userlimit); 1212 PRM_DEBUG(_userlimit32); 1213 1214 layout_kernel_va(); 1215 1216 #if defined(__i386) 1217 /* 1218 * If segmap is too large we can push the bottom of the kernel heap 1219 * higher than the base. Or worse, it could exceed the top of the 1220 * VA space entirely, causing it to wrap around. 1221 */ 1222 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1223 panic("too little address space available for kernelheap," 1224 " use eeprom for lower kernelbase or smaller segmapsize"); 1225 #endif /* __i386 */ 1226 1227 /* 1228 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1229 */ 1230 kernelheap_init(kernelheap, ekernelheap, 1231 kernelheap + MMU_PAGESIZE, 1232 (void *)core_base, (void *)(core_base + core_size)); 1233 1234 /* 1235 * Initialize kernel memory allocator. 1236 */ 1237 kmem_init(); 1238 1239 /* 1240 * Factor in colorequiv to check additional 'equivalent' bins 1241 */ 1242 page_set_colorequiv_arr(); 1243 1244 /* 1245 * print this out early so that we know what's going on 1246 */ 1247 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1248 1249 /* 1250 * Initialize bp_mapin(). 1251 */ 1252 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1253 1254 /* 1255 * orig_npages is non-zero if physmem has been configured for less 1256 * than the available memory. 1257 */ 1258 if (orig_npages) { 1259 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1260 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1261 npages, orig_npages); 1262 } 1263 #if defined(__i386) 1264 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1265 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1266 "System using 0x%lx", 1267 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1268 #endif 1269 1270 #ifdef KERNELBASE_ABI_MIN 1271 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1272 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1273 "i386 ABI compliant.", (uintptr_t)kernelbase); 1274 } 1275 #endif 1276 1277 PRM_POINT("startup_kmem() done"); 1278 } 1279 1280 static void 1281 startup_modules(void) 1282 { 1283 unsigned int i; 1284 extern void prom_setup(void); 1285 1286 PRM_POINT("startup_modules() starting..."); 1287 /* 1288 * Initialize ten-micro second timer so that drivers will 1289 * not get short changed in their init phase. This was 1290 * not getting called until clkinit which, on fast cpu's 1291 * caused the drv_usecwait to be way too short. 1292 */ 1293 microfind(); 1294 1295 /* 1296 * Read the GMT lag from /etc/rtc_config. 1297 */ 1298 sgmtl(process_rtc_config_file()); 1299 1300 /* 1301 * Calculate default settings of system parameters based upon 1302 * maxusers, yet allow to be overridden via the /etc/system file. 1303 */ 1304 param_calc(0); 1305 1306 mod_setup(); 1307 1308 /* 1309 * Initialize system parameters. 1310 */ 1311 param_init(); 1312 1313 /* 1314 * Initialize the default brands 1315 */ 1316 brand_init(); 1317 1318 /* 1319 * maxmem is the amount of physical memory we're playing with. 1320 */ 1321 maxmem = physmem; 1322 1323 /* 1324 * Initialize segment management stuff. 1325 */ 1326 seg_init(); 1327 1328 if (modload("fs", "specfs") == -1) 1329 halt("Can't load specfs"); 1330 1331 if (modload("fs", "devfs") == -1) 1332 halt("Can't load devfs"); 1333 1334 if (modload("fs", "dev") == -1) 1335 halt("Can't load dev"); 1336 1337 (void) modloadonly("sys", "lbl_edition"); 1338 1339 dispinit(); 1340 1341 /* 1342 * This is needed here to initialize hw_serial[] for cluster booting. 1343 */ 1344 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1345 (void) modunload(i); 1346 else 1347 cmn_err(CE_CONT, "sysinit load failed"); 1348 1349 /* Read cluster configuration data. */ 1350 clconf_init(); 1351 1352 /* 1353 * Create a kernel device tree. First, create rootnex and 1354 * then invoke bus specific code to probe devices. 1355 */ 1356 setup_ddi(); 1357 1358 /* 1359 * Set up the CPU module subsystem. Modifies the device tree, so it 1360 * must be done after setup_ddi(). 1361 */ 1362 cmi_init(); 1363 1364 /* 1365 * Initialize the MCA handlers 1366 */ 1367 if (x86_feature & X86_MCA) 1368 cmi_mca_init(); 1369 1370 /* 1371 * Fake a prom tree such that /dev/openprom continues to work 1372 */ 1373 PRM_POINT("startup_modules: calling prom_setup..."); 1374 prom_setup(); 1375 PRM_POINT("startup_modules: done"); 1376 1377 /* 1378 * Load all platform specific modules 1379 */ 1380 PRM_POINT("startup_modules: calling psm_modload..."); 1381 psm_modload(); 1382 1383 PRM_POINT("startup_modules() done"); 1384 } 1385 1386 /* 1387 * claim a "setaside" boot page for use in the kernel 1388 */ 1389 page_t * 1390 boot_claim_page(pfn_t pfn) 1391 { 1392 page_t *pp; 1393 1394 pp = page_numtopp_nolock(pfn); 1395 ASSERT(pp != NULL); 1396 1397 if (PP_ISBOOTPAGES(pp)) { 1398 if (pp->p_next != NULL) 1399 pp->p_next->p_prev = pp->p_prev; 1400 if (pp->p_prev == NULL) 1401 bootpages = pp->p_next; 1402 else 1403 pp->p_prev->p_next = pp->p_next; 1404 } else { 1405 /* 1406 * htable_attach() expects a base pagesize page 1407 */ 1408 if (pp->p_szc != 0) 1409 page_boot_demote(pp); 1410 pp = page_numtopp(pfn, SE_EXCL); 1411 } 1412 return (pp); 1413 } 1414 1415 /* 1416 * Walk through the pagetables looking for pages mapped in by boot. If the 1417 * setaside flag is set the pages are expected to be returned to the 1418 * kernel later in boot, so we add them to the bootpages list. 1419 */ 1420 static void 1421 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1422 { 1423 uintptr_t va = low; 1424 size_t len; 1425 uint_t prot; 1426 pfn_t pfn; 1427 page_t *pp; 1428 pgcnt_t boot_protect_cnt = 0; 1429 1430 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1431 if (va + len >= high) 1432 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1433 "legal range.", len, (void *)va); 1434 1435 while (len > 0) { 1436 pp = page_numtopp_alloc(pfn); 1437 if (pp != NULL) { 1438 if (setaside == 0) 1439 panic("Unexpected mapping by boot. " 1440 "addr=%p pfn=%lx\n", 1441 (void *)va, pfn); 1442 1443 pp->p_next = bootpages; 1444 pp->p_prev = NULL; 1445 PP_SETBOOTPAGES(pp); 1446 if (bootpages != NULL) { 1447 bootpages->p_prev = pp; 1448 } 1449 bootpages = pp; 1450 ++boot_protect_cnt; 1451 } 1452 1453 ++pfn; 1454 len -= MMU_PAGESIZE; 1455 va += MMU_PAGESIZE; 1456 } 1457 } 1458 PRM_DEBUG(boot_protect_cnt); 1459 } 1460 1461 /* 1462 * 1463 */ 1464 static void 1465 layout_kernel_va(void) 1466 { 1467 PRM_POINT("layout_kernel_va() starting..."); 1468 /* 1469 * Establish the final size of the kernel's heap, size of segmap, 1470 * segkp, etc. 1471 */ 1472 1473 #if defined(__amd64) 1474 1475 kpm_vbase = (caddr_t)segkpm_base; 1476 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1477 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1478 panic("not enough room for kpm!"); 1479 PRM_DEBUG(kpm_size); 1480 PRM_DEBUG(kpm_vbase); 1481 1482 /* 1483 * By default we create a seg_kp in 64 bit kernels, it's a little 1484 * faster to access than embedding it in the heap. 1485 */ 1486 segkp_base = (caddr_t)valloc_base + valloc_sz; 1487 if (!segkp_fromheap) { 1488 size_t sz = mmu_ptob(segkpsize); 1489 1490 /* 1491 * determine size of segkp 1492 */ 1493 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1494 sz = SEGKPDEFSIZE; 1495 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1496 "segkpsize has been reset to %ld pages", 1497 mmu_btop(sz)); 1498 } 1499 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1500 1501 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1502 } 1503 PRM_DEBUG(segkp_base); 1504 PRM_DEBUG(segkpsize); 1505 1506 /* 1507 * segzio is used for ZFS cached data. It uses a distinct VA 1508 * segment (from kernel heap) so that we can easily tell not to 1509 * include it in kernel crash dumps on 64 bit kernels. The trick is 1510 * to give it lots of VA, but not constrain the kernel heap. 1511 * We scale the size of segzio linearly with physmem up to 1512 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1513 */ 1514 segzio_base = segkp_base + mmu_ptob(segkpsize); 1515 if (segzio_fromheap) { 1516 segziosize = 0; 1517 } else { 1518 size_t physmem_size = mmu_ptob(physmem); 1519 size_t size = (segziosize == 0) ? 1520 physmem_size : mmu_ptob(segziosize); 1521 1522 if (size < SEGZIOMINSIZE) 1523 size = SEGZIOMINSIZE; 1524 if (size > SEGZIOMAXSIZE) { 1525 size = SEGZIOMAXSIZE; 1526 if (physmem_size > size) 1527 size += (physmem_size - size) / 2; 1528 } 1529 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1530 } 1531 PRM_DEBUG(segziosize); 1532 PRM_DEBUG(segzio_base); 1533 1534 /* 1535 * Put the range of VA for device mappings next, kmdb knows to not 1536 * grep in this range of addresses. 1537 */ 1538 toxic_addr = 1539 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1540 PRM_DEBUG(toxic_addr); 1541 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1542 #else /* __i386 */ 1543 segmap_start = ROUND_UP_LPAGE(kernelbase); 1544 #endif /* __i386 */ 1545 PRM_DEBUG(segmap_start); 1546 1547 /* 1548 * Users can change segmapsize through eeprom or /etc/system. 1549 * If the variable is tuned through eeprom, there is no upper 1550 * bound on the size of segmap. If it is tuned through 1551 * /etc/system on 32-bit systems, it must be no larger than we 1552 * planned for in startup_memlist(). 1553 */ 1554 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1555 1556 #if defined(__i386) 1557 /* 1558 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1559 * the bottom of the kernel's address range. Set aside space for a 1560 * small red zone just below the start of segmap. 1561 */ 1562 segmap_start += KERNEL_REDZONE_SIZE; 1563 segmapsize -= KERNEL_REDZONE_SIZE; 1564 #endif 1565 1566 PRM_DEBUG(segmap_start); 1567 PRM_DEBUG(segmapsize); 1568 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1569 PRM_DEBUG(kernelheap); 1570 PRM_POINT("layout_kernel_va() done..."); 1571 } 1572 1573 /* 1574 * Finish initializing the VM system, now that we are no longer 1575 * relying on the boot time memory allocators. 1576 */ 1577 static void 1578 startup_vm(void) 1579 { 1580 struct segmap_crargs a; 1581 1582 extern int use_brk_lpg, use_stk_lpg; 1583 1584 PRM_POINT("startup_vm() starting..."); 1585 1586 /* 1587 * Initialize the hat layer. 1588 */ 1589 hat_init(); 1590 1591 /* 1592 * Do final allocations of HAT data structures that need to 1593 * be allocated before quiescing the boot loader. 1594 */ 1595 PRM_POINT("Calling hat_kern_alloc()..."); 1596 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1597 PRM_POINT("hat_kern_alloc() done"); 1598 1599 /* 1600 * Setup MTRR (Memory type range registers) 1601 */ 1602 setup_mtrr(); 1603 1604 /* 1605 * The next two loops are done in distinct steps in order 1606 * to be sure that any page that is doubly mapped (both above 1607 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1608 * Note this may never happen, but it might someday. 1609 */ 1610 bootpages = NULL; 1611 PRM_POINT("Protecting boot pages"); 1612 1613 /* 1614 * Protect any pages mapped above KERNEL_TEXT that somehow have 1615 * page_t's. This can only happen if something weird allocated 1616 * in this range (like kadb/kmdb). 1617 */ 1618 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1619 1620 /* 1621 * Before we can take over memory allocation/mapping from the boot 1622 * loader we must remove from our free page lists any boot allocated 1623 * pages that stay mapped until release_bootstrap(). 1624 */ 1625 protect_boot_range(0, kernelbase, 1); 1626 1627 /* 1628 * Switch to running on regular HAT (not boot_mmu) 1629 */ 1630 PRM_POINT("Calling hat_kern_setup()..."); 1631 hat_kern_setup(); 1632 1633 /* 1634 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1635 */ 1636 bop_no_more_mem(); 1637 1638 PRM_POINT("hat_kern_setup() done"); 1639 1640 hat_cpu_online(CPU); 1641 1642 /* 1643 * Initialize VM system 1644 */ 1645 PRM_POINT("Calling kvm_init()..."); 1646 kvm_init(); 1647 PRM_POINT("kvm_init() done"); 1648 1649 /* 1650 * Tell kmdb that the VM system is now working 1651 */ 1652 if (boothowto & RB_DEBUG) 1653 kdi_dvec_vmready(); 1654 1655 /* 1656 * Mangle the brand string etc. 1657 */ 1658 cpuid_pass3(CPU); 1659 1660 #if defined(__amd64) 1661 1662 /* 1663 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1664 */ 1665 device_arena = vmem_create("device", (void *)toxic_addr, 1666 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1667 1668 #else /* __i386 */ 1669 1670 /* 1671 * allocate the bit map that tracks toxic pages 1672 */ 1673 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1674 PRM_DEBUG(toxic_bit_map_len); 1675 toxic_bit_map = 1676 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1677 ASSERT(toxic_bit_map != NULL); 1678 PRM_DEBUG(toxic_bit_map); 1679 1680 #endif /* __i386 */ 1681 1682 1683 /* 1684 * Now that we've got more VA, as well as the ability to allocate from 1685 * it, tell the debugger. 1686 */ 1687 if (boothowto & RB_DEBUG) 1688 kdi_dvec_memavail(); 1689 1690 /* 1691 * The following code installs a special page fault handler (#pf) 1692 * to work around a pentium bug. 1693 */ 1694 #if !defined(__amd64) 1695 if (x86_type == X86_TYPE_P5) { 1696 desctbr_t idtr; 1697 gate_desc_t *newidt; 1698 struct machcpu *mcpu = &CPU->cpu_m; 1699 1700 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1701 panic("failed to install pentium_pftrap"); 1702 1703 bcopy(idt0, newidt, sizeof (idt0)); 1704 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1705 KCS_SEL, SDT_SYSIGT, SEL_KPL); 1706 1707 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1708 PROT_READ|PROT_EXEC); 1709 1710 mcpu->mcpu_idt = newidt; 1711 idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt; 1712 idtr.dtr_limit = sizeof (idt0) - 1; 1713 wr_idtr(&idtr); 1714 } 1715 #endif /* !__amd64 */ 1716 1717 /* 1718 * Map page pfn=0 for drivers, such as kd, that need to pick up 1719 * parameters left there by controllers/BIOS. 1720 */ 1721 PRM_POINT("setup up p0_va"); 1722 p0_va = i86devmap(0, 1, PROT_READ); 1723 PRM_DEBUG(p0_va); 1724 1725 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1726 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1727 1728 /* 1729 * disable automatic large pages for small memory systems or 1730 * when the disable flag is set. 1731 */ 1732 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1733 max_uheap_lpsize = LEVEL_SIZE(1); 1734 max_ustack_lpsize = LEVEL_SIZE(1); 1735 max_privmap_lpsize = LEVEL_SIZE(1); 1736 max_uidata_lpsize = LEVEL_SIZE(1); 1737 max_utext_lpsize = LEVEL_SIZE(1); 1738 max_shm_lpsize = LEVEL_SIZE(1); 1739 } 1740 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1741 auto_lpg_disable) { 1742 use_brk_lpg = 0; 1743 use_stk_lpg = 0; 1744 } 1745 if (mmu.max_page_level > 0) { 1746 mcntl0_lpsize = LEVEL_SIZE(1); 1747 } 1748 1749 PRM_POINT("Calling hat_init_finish()..."); 1750 hat_init_finish(); 1751 PRM_POINT("hat_init_finish() done"); 1752 1753 /* 1754 * Initialize the segkp segment type. 1755 */ 1756 rw_enter(&kas.a_lock, RW_WRITER); 1757 PRM_POINT("Attaching segkp"); 1758 if (segkp_fromheap) { 1759 segkp->s_as = &kas; 1760 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1761 segkp) < 0) { 1762 panic("startup: cannot attach segkp"); 1763 /*NOTREACHED*/ 1764 } 1765 PRM_POINT("Doing segkp_create()"); 1766 if (segkp_create(segkp) != 0) { 1767 panic("startup: segkp_create failed"); 1768 /*NOTREACHED*/ 1769 } 1770 PRM_DEBUG(segkp); 1771 rw_exit(&kas.a_lock); 1772 1773 /* 1774 * kpm segment 1775 */ 1776 segmap_kpm = 0; 1777 if (kpm_desired) { 1778 kpm_init(); 1779 kpm_enable = 1; 1780 vpm_enable = 1; 1781 } 1782 1783 /* 1784 * Now create segmap segment. 1785 */ 1786 rw_enter(&kas.a_lock, RW_WRITER); 1787 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1788 panic("cannot attach segmap"); 1789 /*NOTREACHED*/ 1790 } 1791 PRM_DEBUG(segmap); 1792 1793 a.prot = PROT_READ | PROT_WRITE; 1794 a.shmsize = 0; 1795 a.nfreelist = segmapfreelists; 1796 1797 if (segmap_create(segmap, (caddr_t)&a) != 0) 1798 panic("segmap_create segmap"); 1799 rw_exit(&kas.a_lock); 1800 1801 setup_vaddr_for_ppcopy(CPU); 1802 1803 segdev_init(); 1804 pmem_init(); 1805 1806 PRM_POINT("startup_vm() done"); 1807 } 1808 1809 /* 1810 * Load a tod module for the non-standard tod part found on this system. 1811 */ 1812 static void 1813 load_tod_module(char *todmod) 1814 { 1815 if (modload("tod", todmod) == -1) 1816 halt("Can't load TOD module"); 1817 } 1818 1819 static void 1820 startup_end(void) 1821 { 1822 extern void setx86isalist(void); 1823 1824 PRM_POINT("startup_end() starting..."); 1825 1826 /* 1827 * Perform tasks that get done after most of the VM 1828 * initialization has been done but before the clock 1829 * and other devices get started. 1830 */ 1831 kern_setup1(); 1832 1833 /* 1834 * Perform CPC initialization for this CPU. 1835 */ 1836 kcpc_hw_init(CPU); 1837 1838 #if defined(OPTERON_WORKAROUND_6323525) 1839 if (opteron_workaround_6323525) 1840 patch_workaround_6323525(); 1841 #endif 1842 /* 1843 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1844 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1845 */ 1846 if (tod_module_name != NULL) { 1847 PRM_POINT("load_tod_module()"); 1848 load_tod_module(tod_module_name); 1849 } 1850 1851 /* 1852 * Configure the system. 1853 */ 1854 PRM_POINT("Calling configure()..."); 1855 configure(); /* set up devices */ 1856 PRM_POINT("configure() done"); 1857 1858 /* 1859 * Set the isa_list string to the defined instruction sets we 1860 * support. 1861 */ 1862 setx86isalist(); 1863 cpu_intr_alloc(CPU, NINTR_THREADS); 1864 psm_install(); 1865 1866 /* 1867 * We're done with bootops. We don't unmap the bootstrap yet because 1868 * we're still using bootsvcs. 1869 */ 1870 PRM_POINT("NULLing out bootops"); 1871 *bootopsp = (struct bootops *)NULL; 1872 bootops = (struct bootops *)NULL; 1873 1874 PRM_POINT("Enabling interrupts"); 1875 (*picinitf)(); 1876 sti(); 1877 1878 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1879 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1880 1881 PRM_POINT("startup_end() done"); 1882 } 1883 1884 extern char hw_serial[]; 1885 char *_hs1107 = hw_serial; 1886 ulong_t _bdhs34; 1887 1888 void 1889 post_startup(void) 1890 { 1891 /* 1892 * Set the system wide, processor-specific flags to be passed 1893 * to userland via the aux vector for performance hints and 1894 * instruction set extensions. 1895 */ 1896 bind_hwcap(); 1897 1898 /* 1899 * Load the System Management BIOS into the global ksmbios 1900 * handle, if an SMBIOS is present on this system. 1901 */ 1902 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1903 1904 /* 1905 * Startup the memory scrubber. 1906 */ 1907 memscrub_init(); 1908 1909 /* 1910 * Complete CPU module initialization 1911 */ 1912 cmi_post_init(); 1913 1914 /* 1915 * Perform forceloading tasks for /etc/system. 1916 */ 1917 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1918 1919 /* 1920 * ON4.0: Force /proc module in until clock interrupt handle fixed 1921 * ON4.0: This must be fixed or restated in /etc/systems. 1922 */ 1923 (void) modload("fs", "procfs"); 1924 1925 #if defined(__i386) 1926 /* 1927 * Check for required functional Floating Point hardware, 1928 * unless FP hardware explicitly disabled. 1929 */ 1930 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1931 halt("No working FP hardware found"); 1932 #endif 1933 1934 maxmem = freemem; 1935 1936 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1937 } 1938 1939 static int 1940 pp_in_ramdisk(page_t *pp) 1941 { 1942 extern uint64_t ramdisk_start, ramdisk_end; 1943 1944 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1945 (pp->p_pagenum < btopr(ramdisk_end))); 1946 } 1947 1948 void 1949 release_bootstrap(void) 1950 { 1951 int root_is_ramdisk; 1952 page_t *pp; 1953 extern void kobj_boot_unmountroot(void); 1954 extern dev_t rootdev; 1955 1956 /* unmount boot ramdisk and release kmem usage */ 1957 kobj_boot_unmountroot(); 1958 1959 /* 1960 * We're finished using the boot loader so free its pages. 1961 */ 1962 PRM_POINT("Unmapping lower boot pages"); 1963 clear_boot_mappings(0, _userlimit); 1964 postbootkernelbase = kernelbase; 1965 1966 /* 1967 * If root isn't on ramdisk, destroy the hardcoded 1968 * ramdisk node now and release the memory. Else, 1969 * ramdisk memory is kept in rd_pages. 1970 */ 1971 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1972 if (!root_is_ramdisk) { 1973 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1974 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1975 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1976 (void) ddi_remove_child(dip, 0); 1977 } 1978 1979 PRM_POINT("Releasing boot pages"); 1980 while (bootpages) { 1981 pp = bootpages; 1982 bootpages = pp->p_next; 1983 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1984 pp->p_next = rd_pages; 1985 rd_pages = pp; 1986 continue; 1987 } 1988 pp->p_next = (struct page *)0; 1989 pp->p_prev = (struct page *)0; 1990 PP_CLRBOOTPAGES(pp); 1991 page_free(pp, 1); 1992 } 1993 PRM_POINT("Boot pages released"); 1994 1995 /* 1996 * Find 1 page below 1 MB so that other processors can boot up. 1997 * Make sure it has a kernel VA as well as a 1:1 mapping. 1998 * We should have just free'd one up. 1999 */ 2000 if (use_mp) { 2001 pfn_t pfn; 2002 2003 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2004 if (page_numtopp_alloc(pfn) == NULL) 2005 continue; 2006 rm_platter_va = i86devmap(pfn, 1, 2007 PROT_READ | PROT_WRITE | PROT_EXEC); 2008 rm_platter_pa = ptob(pfn); 2009 hat_devload(kas.a_hat, 2010 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2011 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2012 HAT_LOAD_NOCONSIST); 2013 break; 2014 } 2015 if (pfn == btop(1*1024*1024)) 2016 panic("No page available for starting " 2017 "other processors"); 2018 } 2019 2020 } 2021 2022 /* 2023 * Initialize the platform-specific parts of a page_t. 2024 */ 2025 void 2026 add_physmem_cb(page_t *pp, pfn_t pnum) 2027 { 2028 pp->p_pagenum = pnum; 2029 pp->p_mapping = NULL; 2030 pp->p_embed = 0; 2031 pp->p_share = 0; 2032 pp->p_mlentry = 0; 2033 } 2034 2035 /* 2036 * kphysm_init() initializes physical memory. 2037 */ 2038 static pgcnt_t 2039 kphysm_init( 2040 page_t *pp, 2041 pgcnt_t npages) 2042 { 2043 struct memlist *pmem; 2044 struct memseg *cur_memseg; 2045 pfn_t base_pfn; 2046 pgcnt_t num; 2047 pgcnt_t pages_done = 0; 2048 uint64_t addr; 2049 uint64_t size; 2050 extern pfn_t ddiphysmin; 2051 2052 ASSERT(page_hash != NULL && page_hashsz != 0); 2053 2054 cur_memseg = memseg_base; 2055 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2056 /* 2057 * In a 32 bit kernel can't use higher memory if we're 2058 * not booting in PAE mode. This check takes care of that. 2059 */ 2060 addr = pmem->address; 2061 size = pmem->size; 2062 if (btop(addr) > physmax) 2063 continue; 2064 2065 /* 2066 * align addr and size - they may not be at page boundaries 2067 */ 2068 if ((addr & MMU_PAGEOFFSET) != 0) { 2069 addr += MMU_PAGEOFFSET; 2070 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2071 size -= addr - pmem->address; 2072 } 2073 2074 /* only process pages below or equal to physmax */ 2075 if ((btop(addr + size) - 1) > physmax) 2076 size = ptob(physmax - btop(addr) + 1); 2077 2078 num = btop(size); 2079 if (num == 0) 2080 continue; 2081 2082 if (num > npages) 2083 num = npages; 2084 2085 npages -= num; 2086 pages_done += num; 2087 base_pfn = btop(addr); 2088 2089 if (prom_debug) 2090 prom_printf("MEMSEG addr=0x%" PRIx64 2091 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2092 addr, num, base_pfn, base_pfn + num); 2093 2094 /* 2095 * Ignore pages below ddiphysmin to simplify ddi memory 2096 * allocation with non-zero addr_lo requests. 2097 */ 2098 if (base_pfn < ddiphysmin) { 2099 if (base_pfn + num <= ddiphysmin) 2100 continue; 2101 pp += (ddiphysmin - base_pfn); 2102 num -= (ddiphysmin - base_pfn); 2103 base_pfn = ddiphysmin; 2104 } 2105 2106 /* 2107 * Build the memsegs entry 2108 */ 2109 cur_memseg->pages = pp; 2110 cur_memseg->epages = pp + num; 2111 cur_memseg->pages_base = base_pfn; 2112 cur_memseg->pages_end = base_pfn + num; 2113 2114 /* 2115 * Insert into memseg list in decreasing pfn range order. 2116 * Low memory is typically more fragmented such that this 2117 * ordering keeps the larger ranges at the front of the list 2118 * for code that searches memseg. 2119 * This ASSERTS that the memsegs coming in from boot are in 2120 * increasing physical address order and not contiguous. 2121 */ 2122 if (memsegs != NULL) { 2123 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2124 cur_memseg->next = memsegs; 2125 } 2126 memsegs = cur_memseg; 2127 2128 /* 2129 * add_physmem() initializes the PSM part of the page 2130 * struct by calling the PSM back with add_physmem_cb(). 2131 * In addition it coalesces pages into larger pages as 2132 * it initializes them. 2133 */ 2134 add_physmem(pp, num, base_pfn); 2135 cur_memseg++; 2136 availrmem_initial += num; 2137 availrmem += num; 2138 2139 pp += num; 2140 } 2141 2142 PRM_DEBUG(availrmem_initial); 2143 PRM_DEBUG(availrmem); 2144 PRM_DEBUG(freemem); 2145 build_pfn_hash(); 2146 return (pages_done); 2147 } 2148 2149 /* 2150 * Kernel VM initialization. 2151 */ 2152 static void 2153 kvm_init(void) 2154 { 2155 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2156 2157 /* 2158 * Put the kernel segments in kernel address space. 2159 */ 2160 rw_enter(&kas.a_lock, RW_WRITER); 2161 as_avlinit(&kas); 2162 2163 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2164 (void) segkmem_create(&ktextseg); 2165 2166 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2167 (void) segkmem_create(&kvalloc); 2168 2169 (void) seg_attach(&kas, kernelheap, 2170 ekernelheap - kernelheap, &kvseg); 2171 (void) segkmem_create(&kvseg); 2172 2173 if (core_size > 0) { 2174 PRM_POINT("attaching kvseg_core"); 2175 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2176 &kvseg_core); 2177 (void) segkmem_create(&kvseg_core); 2178 } 2179 2180 if (segziosize > 0) { 2181 PRM_POINT("attaching segzio"); 2182 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2183 &kzioseg); 2184 (void) segkmem_zio_create(&kzioseg); 2185 2186 /* create zio area covering new segment */ 2187 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2188 } 2189 2190 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2191 (void) segkmem_create(&kdebugseg); 2192 2193 rw_exit(&kas.a_lock); 2194 2195 /* 2196 * Ensure that the red zone at kernelbase is never accessible. 2197 */ 2198 PRM_POINT("protecting redzone"); 2199 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2200 2201 /* 2202 * Make the text writable so that it can be hot patched by DTrace. 2203 */ 2204 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2205 PROT_READ | PROT_WRITE | PROT_EXEC); 2206 2207 /* 2208 * Make data writable until end. 2209 */ 2210 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2211 PROT_READ | PROT_WRITE | PROT_EXEC); 2212 } 2213 2214 /* 2215 * These are MTTR registers supported by P6 2216 */ 2217 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2218 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2219 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2220 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2221 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2222 uint64_t mtrrdef, pat_attr_reg; 2223 2224 /* 2225 * Disable reprogramming of MTRRs by default. 2226 */ 2227 int enable_relaxed_mtrr = 0; 2228 2229 void 2230 setup_mtrr(void) 2231 { 2232 int i, ecx; 2233 int vcnt; 2234 struct mtrrvar *mtrrphys; 2235 2236 if (!(x86_feature & X86_MTRR)) 2237 return; 2238 2239 mtrrcap = rdmsr(REG_MTRRCAP); 2240 mtrrdef = rdmsr(REG_MTRRDEF); 2241 if (mtrrcap & MTRRCAP_FIX) { 2242 mtrr64k = rdmsr(REG_MTRR64K); 2243 mtrr16k1 = rdmsr(REG_MTRR16K1); 2244 mtrr16k2 = rdmsr(REG_MTRR16K2); 2245 mtrr4k1 = rdmsr(REG_MTRR4K1); 2246 mtrr4k2 = rdmsr(REG_MTRR4K2); 2247 mtrr4k3 = rdmsr(REG_MTRR4K3); 2248 mtrr4k4 = rdmsr(REG_MTRR4K4); 2249 mtrr4k5 = rdmsr(REG_MTRR4K5); 2250 mtrr4k6 = rdmsr(REG_MTRR4K6); 2251 mtrr4k7 = rdmsr(REG_MTRR4K7); 2252 mtrr4k8 = rdmsr(REG_MTRR4K8); 2253 } 2254 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2255 vcnt = MAX_MTRRVAR; 2256 2257 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2258 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2259 mtrrphys->mtrrphys_base = rdmsr(ecx); 2260 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2261 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) 2262 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2263 } 2264 if (x86_feature & X86_PAT) { 2265 if (enable_relaxed_mtrr) 2266 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2267 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2268 } 2269 2270 mtrr_sync(); 2271 } 2272 2273 /* 2274 * Sync current cpu mtrr with the incore copy of mtrr. 2275 * This function has to be invoked with interrupts disabled 2276 * Currently we do not capture other cpu's. This is invoked on cpu0 2277 * just after reading /etc/system. 2278 * On other cpu's its invoked from mp_startup(). 2279 */ 2280 void 2281 mtrr_sync(void) 2282 { 2283 uint_t crvalue, cr0_orig; 2284 int vcnt, i, ecx; 2285 struct mtrrvar *mtrrphys; 2286 2287 cr0_orig = crvalue = getcr0(); 2288 crvalue |= CR0_CD; 2289 crvalue &= ~CR0_NW; 2290 setcr0(crvalue); 2291 invalidate_cache(); 2292 2293 reload_cr3(); 2294 if (x86_feature & X86_PAT) 2295 wrmsr(REG_MTRRPAT, pat_attr_reg); 2296 2297 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2298 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2299 2300 if (mtrrcap & MTRRCAP_FIX) { 2301 wrmsr(REG_MTRR64K, mtrr64k); 2302 wrmsr(REG_MTRR16K1, mtrr16k1); 2303 wrmsr(REG_MTRR16K2, mtrr16k2); 2304 wrmsr(REG_MTRR4K1, mtrr4k1); 2305 wrmsr(REG_MTRR4K2, mtrr4k2); 2306 wrmsr(REG_MTRR4K3, mtrr4k3); 2307 wrmsr(REG_MTRR4K4, mtrr4k4); 2308 wrmsr(REG_MTRR4K5, mtrr4k5); 2309 wrmsr(REG_MTRR4K6, mtrr4k6); 2310 wrmsr(REG_MTRR4K7, mtrr4k7); 2311 wrmsr(REG_MTRR4K8, mtrr4k8); 2312 } 2313 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2314 vcnt = MAX_MTRRVAR; 2315 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2316 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2317 wrmsr(ecx, mtrrphys->mtrrphys_base); 2318 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2319 } 2320 wrmsr(REG_MTRRDEF, mtrrdef); 2321 2322 reload_cr3(); 2323 invalidate_cache(); 2324 setcr0(cr0_orig); 2325 } 2326 2327 /* 2328 * resync mtrr so that BIOS is happy. Called from mdboot 2329 */ 2330 void 2331 mtrr_resync(void) 2332 { 2333 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2334 /* 2335 * We could have changed the default mtrr definition. 2336 * Put it back to uncached which is what it is at power on 2337 */ 2338 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2339 mtrr_sync(); 2340 } 2341 } 2342 2343 void 2344 get_system_configuration(void) 2345 { 2346 char prop[32]; 2347 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2348 2349 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2350 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2351 kobj_getvalue(prop, &nodes_ll) == -1 || 2352 nodes_ll > MAXNODES || 2353 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2354 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2355 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2356 system_hardware.hd_nodes = 1; 2357 system_hardware.hd_cpus_per_node = 0; 2358 } else { 2359 system_hardware.hd_nodes = (int)nodes_ll; 2360 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2361 } 2362 2363 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2364 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2365 kobj_getvalue(prop, &lvalue) == -1) 2366 eprom_kernelbase = NULL; 2367 else 2368 eprom_kernelbase = (uintptr_t)lvalue; 2369 2370 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2371 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2372 kobj_getvalue(prop, &lvalue) == -1) 2373 segmapsize = SEGMAPDEFAULT; 2374 else 2375 segmapsize = (uintptr_t)lvalue; 2376 2377 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2378 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2379 kobj_getvalue(prop, &lvalue) == -1) 2380 segmapfreelists = 0; /* use segmap driver default */ 2381 else 2382 segmapfreelists = (int)lvalue; 2383 2384 /* physmem used to be here, but moved much earlier to fakebop.c */ 2385 } 2386 2387 /* 2388 * Add to a memory list. 2389 * start = start of new memory segment 2390 * len = length of new memory segment in bytes 2391 * new = pointer to a new struct memlist 2392 * memlistp = memory list to which to add segment. 2393 */ 2394 void 2395 memlist_add( 2396 uint64_t start, 2397 uint64_t len, 2398 struct memlist *new, 2399 struct memlist **memlistp) 2400 { 2401 struct memlist *cur; 2402 uint64_t end = start + len; 2403 2404 new->address = start; 2405 new->size = len; 2406 2407 cur = *memlistp; 2408 2409 while (cur) { 2410 if (cur->address >= end) { 2411 new->next = cur; 2412 *memlistp = new; 2413 new->prev = cur->prev; 2414 cur->prev = new; 2415 return; 2416 } 2417 ASSERT(cur->address + cur->size <= start); 2418 if (cur->next == NULL) { 2419 cur->next = new; 2420 new->prev = cur; 2421 new->next = NULL; 2422 return; 2423 } 2424 memlistp = &cur->next; 2425 cur = cur->next; 2426 } 2427 } 2428 2429 void 2430 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2431 { 2432 size_t tsize = e_modtext - modtext; 2433 size_t dsize = e_moddata - moddata; 2434 2435 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2436 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2437 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2438 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2439 } 2440 2441 caddr_t 2442 kobj_text_alloc(vmem_t *arena, size_t size) 2443 { 2444 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2445 } 2446 2447 /*ARGSUSED*/ 2448 caddr_t 2449 kobj_texthole_alloc(caddr_t addr, size_t size) 2450 { 2451 panic("unexpected call to kobj_texthole_alloc()"); 2452 /*NOTREACHED*/ 2453 return (0); 2454 } 2455 2456 /*ARGSUSED*/ 2457 void 2458 kobj_texthole_free(caddr_t addr, size_t size) 2459 { 2460 panic("unexpected call to kobj_texthole_free()"); 2461 } 2462 2463 /* 2464 * This is called just after configure() in startup(). 2465 * 2466 * The ISALIST concept is a bit hopeless on Intel, because 2467 * there's no guarantee of an ever-more-capable processor 2468 * given that various parts of the instruction set may appear 2469 * and disappear between different implementations. 2470 * 2471 * While it would be possible to correct it and even enhance 2472 * it somewhat, the explicit hardware capability bitmask allows 2473 * more flexibility. 2474 * 2475 * So, we just leave this alone. 2476 */ 2477 void 2478 setx86isalist(void) 2479 { 2480 char *tp; 2481 size_t len; 2482 extern char *isa_list; 2483 2484 #define TBUFSIZE 1024 2485 2486 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2487 *tp = '\0'; 2488 2489 #if defined(__amd64) 2490 (void) strcpy(tp, "amd64 "); 2491 #endif 2492 2493 switch (x86_vendor) { 2494 case X86_VENDOR_Intel: 2495 case X86_VENDOR_AMD: 2496 case X86_VENDOR_TM: 2497 if (x86_feature & X86_CMOV) { 2498 /* 2499 * Pentium Pro or later 2500 */ 2501 (void) strcat(tp, "pentium_pro"); 2502 (void) strcat(tp, x86_feature & X86_MMX ? 2503 "+mmx pentium_pro " : " "); 2504 } 2505 /*FALLTHROUGH*/ 2506 case X86_VENDOR_Cyrix: 2507 /* 2508 * The Cyrix 6x86 does not have any Pentium features 2509 * accessible while not at privilege level 0. 2510 */ 2511 if (x86_feature & X86_CPUID) { 2512 (void) strcat(tp, "pentium"); 2513 (void) strcat(tp, x86_feature & X86_MMX ? 2514 "+mmx pentium " : " "); 2515 } 2516 break; 2517 default: 2518 break; 2519 } 2520 (void) strcat(tp, "i486 i386 i86"); 2521 len = strlen(tp) + 1; /* account for NULL at end of string */ 2522 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2523 kmem_free(tp, TBUFSIZE); 2524 2525 #undef TBUFSIZE 2526 } 2527 2528 2529 #ifdef __amd64 2530 2531 void * 2532 device_arena_alloc(size_t size, int vm_flag) 2533 { 2534 return (vmem_alloc(device_arena, size, vm_flag)); 2535 } 2536 2537 void 2538 device_arena_free(void *vaddr, size_t size) 2539 { 2540 vmem_free(device_arena, vaddr, size); 2541 } 2542 2543 #else /* __i386 */ 2544 2545 void * 2546 device_arena_alloc(size_t size, int vm_flag) 2547 { 2548 caddr_t vaddr; 2549 uintptr_t v; 2550 size_t start; 2551 size_t end; 2552 2553 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2554 if (vaddr == NULL) 2555 return (NULL); 2556 2557 v = (uintptr_t)vaddr; 2558 ASSERT(v >= kernelbase); 2559 ASSERT(v + size <= valloc_base); 2560 2561 start = btop(v - kernelbase); 2562 end = btop(v + size - 1 - kernelbase); 2563 ASSERT(start < toxic_bit_map_len); 2564 ASSERT(end < toxic_bit_map_len); 2565 2566 while (start <= end) { 2567 BT_ATOMIC_SET(toxic_bit_map, start); 2568 ++start; 2569 } 2570 return (vaddr); 2571 } 2572 2573 void 2574 device_arena_free(void *vaddr, size_t size) 2575 { 2576 uintptr_t v = (uintptr_t)vaddr; 2577 size_t start; 2578 size_t end; 2579 2580 ASSERT(v >= kernelbase); 2581 ASSERT(v + size <= valloc_base); 2582 2583 start = btop(v - kernelbase); 2584 end = btop(v + size - 1 - kernelbase); 2585 ASSERT(start < toxic_bit_map_len); 2586 ASSERT(end < toxic_bit_map_len); 2587 2588 while (start <= end) { 2589 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2590 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2591 ++start; 2592 } 2593 vmem_free(heap_arena, vaddr, size); 2594 } 2595 2596 /* 2597 * returns 1st address in range that is in device arena, or NULL 2598 * if len is not NULL it returns the length of the toxic range 2599 */ 2600 void * 2601 device_arena_contains(void *vaddr, size_t size, size_t *len) 2602 { 2603 uintptr_t v = (uintptr_t)vaddr; 2604 uintptr_t eaddr = v + size; 2605 size_t start; 2606 size_t end; 2607 2608 /* 2609 * if called very early by kmdb, just return NULL 2610 */ 2611 if (toxic_bit_map == NULL) 2612 return (NULL); 2613 2614 /* 2615 * First check if we're completely outside the bitmap range. 2616 */ 2617 if (v >= valloc_base || eaddr < kernelbase) 2618 return (NULL); 2619 2620 /* 2621 * Trim ends of search to look at only what the bitmap covers. 2622 */ 2623 if (v < kernelbase) 2624 v = kernelbase; 2625 start = btop(v - kernelbase); 2626 end = btop(eaddr - kernelbase); 2627 if (end >= toxic_bit_map_len) 2628 end = toxic_bit_map_len; 2629 2630 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2631 return (NULL); 2632 2633 v = kernelbase + ptob(start); 2634 if (len != NULL) 2635 *len = ptob(end - start); 2636 return ((void *)v); 2637 } 2638 2639 #endif /* __i386 */ 2640