xref: /illumos-gate/usr/src/uts/i86pc/os/mp_machdep.c (revision c5749750a3e052f1194f65a303456224c51dea63)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2018 Joyent, Inc.
29  */
30 
31 #define	PSMI_1_7
32 #include <sys/smp_impldefs.h>
33 #include <sys/psm.h>
34 #include <sys/psm_modctl.h>
35 #include <sys/pit.h>
36 #include <sys/cmn_err.h>
37 #include <sys/strlog.h>
38 #include <sys/clock.h>
39 #include <sys/debug.h>
40 #include <sys/rtc.h>
41 #include <sys/x86_archext.h>
42 #include <sys/cpupart.h>
43 #include <sys/cpuvar.h>
44 #include <sys/cpu_event.h>
45 #include <sys/cmt.h>
46 #include <sys/cpu.h>
47 #include <sys/disp.h>
48 #include <sys/archsystm.h>
49 #include <sys/machsystm.h>
50 #include <sys/sysmacros.h>
51 #include <sys/memlist.h>
52 #include <sys/param.h>
53 #include <sys/promif.h>
54 #include <sys/cpu_pm.h>
55 #if defined(__xpv)
56 #include <sys/hypervisor.h>
57 #endif
58 #include <sys/mach_intr.h>
59 #include <vm/hat_i86.h>
60 #include <sys/kdi_machimpl.h>
61 #include <sys/sdt.h>
62 #include <sys/hpet.h>
63 #include <sys/sunddi.h>
64 #include <sys/sunndi.h>
65 #include <sys/cpc_pcbe.h>
66 
67 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
68 
69 /*
70  *	Local function prototypes
71  */
72 static int mp_disable_intr(processorid_t cpun);
73 static void mp_enable_intr(processorid_t cpun);
74 static void mach_init();
75 static void mach_picinit();
76 static int machhztomhz(uint64_t cpu_freq_hz);
77 static uint64_t mach_getcpufreq(void);
78 static void mach_fixcpufreq(void);
79 static int mach_clkinit(int, int *);
80 static void mach_smpinit(void);
81 static int mach_softlvl_to_vect(int ipl);
82 static void mach_get_platform(int owner);
83 static void mach_construct_info();
84 static int mach_translate_irq(dev_info_t *dip, int irqno);
85 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
86     psm_intr_op_t, int *);
87 static void mach_notify_error(int level, char *errmsg);
88 static hrtime_t dummy_hrtime(void);
89 static void dummy_scalehrtime(hrtime_t *);
90 static uint64_t dummy_unscalehrtime(hrtime_t);
91 void cpu_idle(void);
92 static void cpu_wakeup(cpu_t *, int);
93 #ifndef __xpv
94 void cpu_idle_mwait(void);
95 static void cpu_wakeup_mwait(cpu_t *, int);
96 #endif
97 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
98 
99 /*
100  *	External reference functions
101  */
102 extern void return_instr();
103 extern uint64_t freq_tsc(uint32_t *);
104 #if defined(__i386)
105 extern uint64_t freq_notsc(uint32_t *);
106 #endif
107 extern void pc_gethrestime(timestruc_t *);
108 extern int cpuid_get_coreid(cpu_t *);
109 extern int cpuid_get_chipid(cpu_t *);
110 
111 /*
112  *	PSM functions initialization
113  */
114 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
115 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
116 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
117 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
118 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
119 void (*psminitf)()		= mach_init;
120 void (*picinitf)() 		= return_instr;
121 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
122 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
123 void (*send_dirintf)() 		= return_instr;
124 void (*setspl)(int)		= (void (*)(int))return_instr;
125 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
127 int (*get_pending_spl)(void)	= (int (*)(void))return_instr;
128 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
129     uint64_t *, dev_info_t *) = NULL;
130 void (*remintr)(void *, int, avfunc, int) = NULL;
131 void (*kdisetsoftint)(int, struct av_softinfo *)=
132 	(void (*)(int, struct av_softinfo *))return_instr;
133 void (*setsoftint)(int, struct av_softinfo *)=
134 	(void (*)(int, struct av_softinfo *))return_instr;
135 int (*slvltovect)(int)		= (int (*)(int))return_instr;
136 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
137 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
138 int (*psm_disable_intr)(int)	= mp_disable_intr;
139 void (*psm_enable_intr)(int)	= mp_enable_intr;
140 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
141 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
142 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
143 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
144 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
145 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
146 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
147 int (*psm_get_clockirq)(int) = NULL;
148 int (*psm_get_ipivect)(int, int) = NULL;
149 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
150 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
151 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
152 int (*psm_get_pir_ipivect)(void) = NULL;
153 void (*psm_send_pir_ipi)(processorid_t) = NULL;
154 
155 int (*psm_clkinit)(int) = NULL;
156 void (*psm_timer_reprogram)(hrtime_t) = NULL;
157 void (*psm_timer_enable)(void) = NULL;
158 void (*psm_timer_disable)(void) = NULL;
159 void (*psm_post_cyclic_setup)(void *arg) = NULL;
160 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
161     int *) = mach_intr_ops;
162 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
163     return_instr;
164 
165 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
166 void (*hrtime_tick)(void)	= return_instr;
167 
168 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
169 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
170 
171 /* global IRM pool for APIX (PSM) module */
172 ddi_irm_pool_t *apix_irm_pool_p = NULL;
173 
174 /*
175  * True if the generic TSC code is our source of hrtime, rather than whatever
176  * the PSM can provide.
177  */
178 #ifdef __xpv
179 int tsc_gethrtime_enable = 0;
180 #else
181 int tsc_gethrtime_enable = 1;
182 #endif
183 int tsc_gethrtime_initted = 0;
184 
185 /*
186  * True if the hrtime implementation is "hires"; namely, better than microdata.
187  */
188 int gethrtime_hires = 0;
189 
190 /*
191  * Local Static Data
192  */
193 static struct psm_ops mach_ops;
194 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
195 static ushort_t mach_ver[4] = {0, 0, 0, 0};
196 
197 /*
198  * virtualization support for psm
199  */
200 void *psm_vt_ops = NULL;
201 /*
202  * If non-zero, idle cpus will become "halted" when there's
203  * no work to do.
204  */
205 int	idle_cpu_use_hlt = 1;
206 
207 #ifndef __xpv
208 /*
209  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
210  */
211 int	idle_cpu_prefer_mwait = 1;
212 /*
213  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
214  */
215 int	idle_cpu_assert_cflush_monitor = 1;
216 
217 /*
218  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
219  */
220 int	idle_cpu_no_deep_c = 0;
221 /*
222  * Non-power saving idle loop and wakeup pointers.
223  * Allows user to toggle Deep Idle power saving feature on/off.
224  */
225 void	(*non_deep_idle_cpu)() = cpu_idle;
226 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
227 
228 /*
229  * Object for the kernel to access the HPET.
230  */
231 hpet_t hpet;
232 
233 #endif	/* ifndef __xpv */
234 
235 uint_t cp_haltset_fanout = 0;
236 
237 /*ARGSUSED*/
238 int
239 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
240 {
241 	switch (hw) {
242 	case PGHW_IPIPE:
243 		if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
244 			/*
245 			 * Hyper-threading is SMT
246 			 */
247 			return (1);
248 		} else {
249 			return (0);
250 		}
251 	case PGHW_FPU:
252 		if (cpuid_get_cores_per_compunit(cp) > 1)
253 			return (1);
254 		else
255 			return (0);
256 	case PGHW_PROCNODE:
257 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
258 			return (1);
259 		else
260 			return (0);
261 	case PGHW_CHIP:
262 		if (is_x86_feature(x86_featureset, X86FSET_CMP) ||
263 		    is_x86_feature(x86_featureset, X86FSET_HTT))
264 			return (1);
265 		else
266 			return (0);
267 	case PGHW_CACHE:
268 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
269 			return (1);
270 		else
271 			return (0);
272 	case PGHW_POW_ACTIVE:
273 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
274 			return (1);
275 		else
276 			return (0);
277 	case PGHW_POW_IDLE:
278 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
279 			return (1);
280 		else
281 			return (0);
282 	default:
283 		return (0);
284 	}
285 }
286 
287 /*
288  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
289  * If pghw_type_t is an unsupported hardware type, then return -1
290  */
291 int
292 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
293 {
294 	id_t pgp_a, pgp_b;
295 
296 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
297 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
298 
299 	if (pgp_a == -1 || pgp_b == -1)
300 		return (-1);
301 
302 	return (pgp_a == pgp_b);
303 }
304 
305 /*
306  * Return a physical instance identifier for known hardware sharing
307  * relationships
308  */
309 id_t
310 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
311 {
312 	switch (hw) {
313 	case PGHW_IPIPE:
314 		return (cpuid_get_coreid(cpu));
315 	case PGHW_CACHE:
316 		return (cpuid_get_last_lvl_cacheid(cpu));
317 	case PGHW_FPU:
318 		return (cpuid_get_compunitid(cpu));
319 	case PGHW_PROCNODE:
320 		return (cpuid_get_procnodeid(cpu));
321 	case PGHW_CHIP:
322 		return (cpuid_get_chipid(cpu));
323 	case PGHW_POW_ACTIVE:
324 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
325 	case PGHW_POW_IDLE:
326 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
327 	default:
328 		return (-1);
329 	}
330 }
331 
332 /*
333  * Express preference for optimizing for sharing relationship
334  * hw1 vs hw2
335  */
336 pghw_type_t
337 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
338 {
339 	int i, rank1, rank2;
340 
341 	static pghw_type_t hw_hier[] = {
342 		PGHW_IPIPE,
343 		PGHW_CACHE,
344 		PGHW_FPU,
345 		PGHW_PROCNODE,
346 		PGHW_CHIP,
347 		PGHW_POW_IDLE,
348 		PGHW_POW_ACTIVE,
349 		PGHW_NUM_COMPONENTS
350 	};
351 
352 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
353 		if (hw_hier[i] == hw1)
354 			rank1 = i;
355 		if (hw_hier[i] == hw2)
356 			rank2 = i;
357 	}
358 
359 	if (rank1 > rank2)
360 		return (hw1);
361 	else
362 		return (hw2);
363 }
364 
365 /*
366  * Override the default CMT dispatcher policy for the specified
367  * hardware sharing relationship
368  */
369 pg_cmt_policy_t
370 pg_plat_cmt_policy(pghw_type_t hw)
371 {
372 	/*
373 	 * For shared caches, also load balance across them to
374 	 * maximize aggregate cache capacity
375 	 *
376 	 * On AMD family 0x15 CPUs, cores come in pairs called
377 	 * compute units, sharing the FPU and the I$ and L2
378 	 * caches. Use balancing and cache affinity.
379 	 */
380 	switch (hw) {
381 	case PGHW_FPU:
382 	case PGHW_CACHE:
383 		return (CMT_BALANCE|CMT_AFFINITY);
384 	default:
385 		return (CMT_NO_POLICY);
386 	}
387 }
388 
389 id_t
390 pg_plat_get_core_id(cpu_t *cpu)
391 {
392 	return ((id_t)cpuid_get_coreid(cpu));
393 }
394 
395 void
396 cmp_set_nosteal_interval(void)
397 {
398 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
399 	nosteal_nsec = 100000UL;
400 }
401 
402 /*
403  * Routine to ensure initial callers to hrtime gets 0 as return
404  */
405 static hrtime_t
406 dummy_hrtime(void)
407 {
408 	return (0);
409 }
410 
411 /* ARGSUSED */
412 static void
413 dummy_scalehrtime(hrtime_t *ticks)
414 {}
415 
416 static uint64_t
417 dummy_unscalehrtime(hrtime_t nsecs)
418 {
419 	return ((uint64_t)nsecs);
420 }
421 
422 /*
423  * Supports Deep C-State power saving idle loop.
424  */
425 void
426 cpu_idle_adaptive(void)
427 {
428 	(*CPU->cpu_m.mcpu_idle_cpu)();
429 }
430 
431 /*
432  * Function called by CPU idle notification framework to check whether CPU
433  * has been awakened. It will be called with interrupt disabled.
434  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
435  * notification framework.
436  */
437 /*ARGSUSED*/
438 static void
439 cpu_idle_check_wakeup(void *arg)
440 {
441 	/*
442 	 * Toggle interrupt flag to detect pending interrupts.
443 	 * If interrupt happened, do_interrupt() will notify CPU idle
444 	 * notification framework so no need to call cpu_idle_exit() here.
445 	 */
446 	sti();
447 	SMT_PAUSE();
448 	cli();
449 }
450 
451 /*
452  * Idle the present CPU until wakened via an interrupt
453  */
454 void
455 cpu_idle(void)
456 {
457 	cpu_t		*cpup = CPU;
458 	processorid_t	cpu_sid = cpup->cpu_seqid;
459 	cpupart_t	*cp = cpup->cpu_part;
460 	int		hset_update = 1;
461 
462 	/*
463 	 * If this CPU is online, and there's multiple CPUs
464 	 * in the system, then we should notate our halting
465 	 * by adding ourselves to the partition's halted CPU
466 	 * bitmap. This allows other CPUs to find/awaken us when
467 	 * work becomes available.
468 	 */
469 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
470 		hset_update = 0;
471 
472 	/*
473 	 * Add ourselves to the partition's halted CPUs bitmap
474 	 * and set our HALTED flag, if necessary.
475 	 *
476 	 * When a thread becomes runnable, it is placed on the queue
477 	 * and then the halted CPU bitmap is checked to determine who
478 	 * (if anyone) should be awakened. We therefore need to first
479 	 * add ourselves to the bitmap, and and then check if there
480 	 * is any work available. The order is important to prevent a race
481 	 * that can lead to work languishing on a run queue somewhere while
482 	 * this CPU remains halted.
483 	 *
484 	 * Either the producing CPU will see we're halted and will awaken us,
485 	 * or this CPU will see the work available in disp_anywork().
486 	 *
487 	 * Note that memory barriers after updating the HALTED flag
488 	 * are not necessary since an atomic operation (updating the bitset)
489 	 * immediately follows. On x86 the atomic operation acts as a
490 	 * memory barrier for the update of cpu_disp_flags.
491 	 */
492 	if (hset_update) {
493 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
494 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
495 	}
496 
497 	/*
498 	 * Check to make sure there's really nothing to do.
499 	 * Work destined for this CPU may become available after
500 	 * this check. We'll be notified through the clearing of our
501 	 * bit in the halted CPU bitmap, and a poke.
502 	 */
503 	if (disp_anywork()) {
504 		if (hset_update) {
505 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
506 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
507 		}
508 		return;
509 	}
510 
511 	/*
512 	 * We're on our way to being halted.
513 	 *
514 	 * Disable interrupts now, so that we'll awaken immediately
515 	 * after halting if someone tries to poke us between now and
516 	 * the time we actually halt.
517 	 *
518 	 * We check for the presence of our bit after disabling interrupts.
519 	 * If it's cleared, we'll return. If the bit is cleared after
520 	 * we check then the poke will pop us out of the halted state.
521 	 *
522 	 * This means that the ordering of the poke and the clearing
523 	 * of the bit by cpu_wakeup is important.
524 	 * cpu_wakeup() must clear, then poke.
525 	 * cpu_idle() must disable interrupts, then check for the bit.
526 	 */
527 	cli();
528 
529 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
530 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
531 		sti();
532 		return;
533 	}
534 
535 	/*
536 	 * The check for anything locally runnable is here for performance
537 	 * and isn't needed for correctness. disp_nrunnable ought to be
538 	 * in our cache still, so it's inexpensive to check, and if there
539 	 * is anything runnable we won't have to wait for the poke.
540 	 */
541 	if (cpup->cpu_disp->disp_nrunnable != 0) {
542 		if (hset_update) {
543 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
544 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
545 		}
546 		sti();
547 		return;
548 	}
549 
550 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
551 	    cpu_idle_check_wakeup, NULL) == 0) {
552 		mach_cpu_idle();
553 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
554 	}
555 
556 	/*
557 	 * We're no longer halted
558 	 */
559 	if (hset_update) {
560 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
561 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
562 	}
563 }
564 
565 
566 /*
567  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
568  * Otherwise, see if other CPUs in the cpu partition are halted and need to
569  * be woken up so that they can steal the thread we placed on this CPU.
570  * This function is only used on MP systems.
571  */
572 static void
573 cpu_wakeup(cpu_t *cpu, int bound)
574 {
575 	uint_t		cpu_found;
576 	processorid_t	cpu_sid;
577 	cpupart_t	*cp;
578 
579 	cp = cpu->cpu_part;
580 	cpu_sid = cpu->cpu_seqid;
581 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
582 		/*
583 		 * Clear the halted bit for that CPU since it will be
584 		 * poked in a moment.
585 		 */
586 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
587 		/*
588 		 * We may find the current CPU present in the halted cpuset
589 		 * if we're in the context of an interrupt that occurred
590 		 * before we had a chance to clear our bit in cpu_idle().
591 		 * Poking ourself is obviously unnecessary, since if
592 		 * we're here, we're not halted.
593 		 */
594 		if (cpu != CPU)
595 			poke_cpu(cpu->cpu_id);
596 		return;
597 	} else {
598 		/*
599 		 * This cpu isn't halted, but it's idle or undergoing a
600 		 * context switch. No need to awaken anyone else.
601 		 */
602 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
603 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
604 			return;
605 	}
606 
607 	/*
608 	 * No need to wake up other CPUs if this is for a bound thread.
609 	 */
610 	if (bound)
611 		return;
612 
613 	/*
614 	 * The CPU specified for wakeup isn't currently halted, so check
615 	 * to see if there are any other halted CPUs in the partition,
616 	 * and if there are then awaken one.
617 	 */
618 	do {
619 		cpu_found = bitset_find(&cp->cp_haltset);
620 		if (cpu_found == (uint_t)-1)
621 			return;
622 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
623 
624 	if (cpu_found != CPU->cpu_seqid) {
625 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
626 	}
627 }
628 
629 #ifndef __xpv
630 /*
631  * Function called by CPU idle notification framework to check whether CPU
632  * has been awakened. It will be called with interrupt disabled.
633  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
634  * notification framework.
635  */
636 static void
637 cpu_idle_mwait_check_wakeup(void *arg)
638 {
639 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
640 
641 	ASSERT(arg != NULL);
642 	if (*mcpu_mwait != MWAIT_HALTED) {
643 		/*
644 		 * CPU has been awakened, notify CPU idle notification system.
645 		 */
646 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
647 	} else {
648 		/*
649 		 * Toggle interrupt flag to detect pending interrupts.
650 		 * If interrupt happened, do_interrupt() will notify CPU idle
651 		 * notification framework so no need to call cpu_idle_exit()
652 		 * here.
653 		 */
654 		sti();
655 		SMT_PAUSE();
656 		cli();
657 	}
658 }
659 
660 /*
661  * Idle the present CPU until awakened via touching its monitored line
662  */
663 void
664 cpu_idle_mwait(void)
665 {
666 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
667 	cpu_t			*cpup = CPU;
668 	processorid_t		cpu_sid = cpup->cpu_seqid;
669 	cpupart_t		*cp = cpup->cpu_part;
670 	int			hset_update = 1;
671 
672 	/*
673 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
674 	 * wake us between now and when we call mwait.  No other cpu will
675 	 * attempt to set our mcpu_mwait until we add ourself to the halted
676 	 * CPU bitmap.
677 	 */
678 	*mcpu_mwait = MWAIT_HALTED;
679 
680 	/*
681 	 * If this CPU is online, and there's multiple CPUs
682 	 * in the system, then we should note our halting
683 	 * by adding ourselves to the partition's halted CPU
684 	 * bitmap. This allows other CPUs to find/awaken us when
685 	 * work becomes available.
686 	 */
687 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
688 		hset_update = 0;
689 
690 	/*
691 	 * Add ourselves to the partition's halted CPUs bitmap
692 	 * and set our HALTED flag, if necessary.
693 	 *
694 	 * When a thread becomes runnable, it is placed on the queue
695 	 * and then the halted CPU bitmap is checked to determine who
696 	 * (if anyone) should be awakened. We therefore need to first
697 	 * add ourselves to the bitmap, and and then check if there
698 	 * is any work available.
699 	 *
700 	 * Note that memory barriers after updating the HALTED flag
701 	 * are not necessary since an atomic operation (updating the bitmap)
702 	 * immediately follows. On x86 the atomic operation acts as a
703 	 * memory barrier for the update of cpu_disp_flags.
704 	 */
705 	if (hset_update) {
706 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
707 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
708 	}
709 
710 	/*
711 	 * Check to make sure there's really nothing to do.
712 	 * Work destined for this CPU may become available after
713 	 * this check. We'll be notified through the clearing of our
714 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
715 	 *
716 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
717 	 */
718 	if (disp_anywork()) {
719 		if (hset_update) {
720 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
721 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
722 		}
723 		return;
724 	}
725 
726 	/*
727 	 * We're on our way to being halted.
728 	 * To avoid a lost wakeup, arm the monitor before checking if another
729 	 * cpu wrote to mcpu_mwait to wake us up.
730 	 */
731 	i86_monitor(mcpu_mwait, 0, 0);
732 	if (*mcpu_mwait == MWAIT_HALTED) {
733 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
734 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
735 			if (*mcpu_mwait == MWAIT_HALTED) {
736 				i86_mwait(0, 0);
737 			}
738 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
739 		}
740 	}
741 
742 	/*
743 	 * We're no longer halted
744 	 */
745 	if (hset_update) {
746 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
747 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
748 	}
749 }
750 
751 /*
752  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
753  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
754  * need to be woken up so that they can steal the thread we placed on this CPU.
755  * This function is only used on MP systems.
756  */
757 static void
758 cpu_wakeup_mwait(cpu_t *cp, int bound)
759 {
760 	cpupart_t	*cpu_part;
761 	uint_t		cpu_found;
762 	processorid_t	cpu_sid;
763 
764 	cpu_part = cp->cpu_part;
765 	cpu_sid = cp->cpu_seqid;
766 
767 	/*
768 	 * Clear the halted bit for that CPU since it will be woken up
769 	 * in a moment.
770 	 */
771 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
772 		/*
773 		 * Clear the halted bit for that CPU since it will be
774 		 * poked in a moment.
775 		 */
776 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
777 		/*
778 		 * We may find the current CPU present in the halted cpuset
779 		 * if we're in the context of an interrupt that occurred
780 		 * before we had a chance to clear our bit in cpu_idle().
781 		 * Waking ourself is obviously unnecessary, since if
782 		 * we're here, we're not halted.
783 		 *
784 		 * monitor/mwait wakeup via writing to our cache line is
785 		 * harmless and less expensive than always checking if we
786 		 * are waking ourself which is an uncommon case.
787 		 */
788 		MWAIT_WAKEUP(cp);	/* write to monitored line */
789 		return;
790 	} else {
791 		/*
792 		 * This cpu isn't halted, but it's idle or undergoing a
793 		 * context switch. No need to awaken anyone else.
794 		 */
795 		if (cp->cpu_thread == cp->cpu_idle_thread ||
796 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
797 			return;
798 	}
799 
800 	/*
801 	 * No need to wake up other CPUs if the thread we just enqueued
802 	 * is bound.
803 	 */
804 	if (bound || ncpus == 1)
805 		return;
806 
807 	/*
808 	 * See if there's any other halted CPUs. If there are, then
809 	 * select one, and awaken it.
810 	 * It's possible that after we find a CPU, somebody else
811 	 * will awaken it before we get the chance.
812 	 * In that case, look again.
813 	 */
814 	do {
815 		cpu_found = bitset_find(&cpu_part->cp_haltset);
816 		if (cpu_found == (uint_t)-1)
817 			return;
818 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
819 	    cpu_found) < 0);
820 
821 	/*
822 	 * Do not check if cpu_found is ourself as monitor/mwait
823 	 * wakeup is cheap.
824 	 */
825 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
826 }
827 
828 #endif
829 
830 void (*cpu_pause_handler)(volatile char *) = NULL;
831 
832 static int
833 mp_disable_intr(int cpun)
834 {
835 	/*
836 	 * switch to the offline cpu
837 	 */
838 	affinity_set(cpun);
839 	/*
840 	 * raise ipl to just below cross call
841 	 */
842 	splx(XC_SYS_PIL - 1);
843 	/*
844 	 *	set base spl to prevent the next swtch to idle from
845 	 *	lowering back to ipl 0
846 	 */
847 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
848 	set_base_spl();
849 	affinity_clear();
850 	return (DDI_SUCCESS);
851 }
852 
853 static void
854 mp_enable_intr(int cpun)
855 {
856 	/*
857 	 * switch to the online cpu
858 	 */
859 	affinity_set(cpun);
860 	/*
861 	 * clear the interrupt active mask
862 	 */
863 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
864 	set_base_spl();
865 	(void) spl0();
866 	affinity_clear();
867 }
868 
869 static void
870 mach_get_platform(int owner)
871 {
872 	void		**srv_opsp;
873 	void		**clt_opsp;
874 	int		i;
875 	int		total_ops;
876 
877 	/* fix up psm ops */
878 	srv_opsp = (void **)mach_set[0];
879 	clt_opsp = (void **)mach_set[owner];
880 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
881 		total_ops = sizeof (struct psm_ops_ver01) /
882 		    sizeof (void (*)(void));
883 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
884 		/* no psm_notify_func */
885 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
886 		    sizeof (void (*)(void));
887 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
888 		/* no psm_timer funcs */
889 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
890 		    sizeof (void (*)(void));
891 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
892 		/* no psm_preshutdown function */
893 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
894 		    sizeof (void (*)(void));
895 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
896 		/* no psm_intr_ops function */
897 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
898 		    sizeof (void (*)(void));
899 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
900 		/* no psm_state function */
901 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
902 		    sizeof (void (*)(void));
903 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
904 		/* no psm_cpu_ops function */
905 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
906 		    sizeof (void (*)(void));
907 	else
908 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
909 
910 	/*
911 	 * Save the version of the PSM module, in case we need to
912 	 * behave differently based on version.
913 	 */
914 	mach_ver[0] = mach_ver[owner];
915 
916 	for (i = 0; i < total_ops; i++)
917 		if (clt_opsp[i] != NULL)
918 			srv_opsp[i] = clt_opsp[i];
919 }
920 
921 static void
922 mach_construct_info()
923 {
924 	struct psm_sw *swp;
925 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
926 	int	conflict_owner = 0;
927 
928 	if (psmsw->psw_forw == psmsw)
929 		panic("No valid PSM modules found");
930 	mutex_enter(&psmsw_lock);
931 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
932 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
933 			continue;
934 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
935 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
936 		mach_cnt[swp->psw_infop->p_owner]++;
937 	}
938 	mutex_exit(&psmsw_lock);
939 
940 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
941 
942 	/* check to see are there any conflicts */
943 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
944 		conflict_owner = PSM_OWN_EXCLUSIVE;
945 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
946 		conflict_owner = PSM_OWN_OVERRIDE;
947 	if (conflict_owner) {
948 		/* remove all psm modules except uppc */
949 		cmn_err(CE_WARN,
950 		    "Conflicts detected on the following PSM modules:");
951 		mutex_enter(&psmsw_lock);
952 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
953 			if (swp->psw_infop->p_owner == conflict_owner)
954 				cmn_err(CE_WARN, "%s ",
955 				    swp->psw_infop->p_mach_idstring);
956 		}
957 		mutex_exit(&psmsw_lock);
958 		cmn_err(CE_WARN,
959 		    "Setting the system back to SINGLE processor mode!");
960 		cmn_err(CE_WARN,
961 		    "Please edit /etc/mach to remove the invalid PSM module.");
962 		return;
963 	}
964 
965 	if (mach_set[PSM_OWN_EXCLUSIVE])
966 		mach_get_platform(PSM_OWN_EXCLUSIVE);
967 
968 	if (mach_set[PSM_OWN_OVERRIDE])
969 		mach_get_platform(PSM_OWN_OVERRIDE);
970 }
971 
972 static void
973 mach_init()
974 {
975 	struct psm_ops  *pops;
976 
977 	mach_construct_info();
978 
979 	pops = mach_set[0];
980 
981 	/* register the interrupt and clock initialization rotuines */
982 	picinitf = mach_picinit;
983 	clkinitf = mach_clkinit;
984 	psm_get_clockirq = pops->psm_get_clockirq;
985 
986 	/* register the interrupt setup code */
987 	slvltovect = mach_softlvl_to_vect;
988 	addspl	= pops->psm_addspl;
989 	delspl	= pops->psm_delspl;
990 
991 	if (pops->psm_translate_irq)
992 		psm_translate_irq = pops->psm_translate_irq;
993 	if (pops->psm_intr_ops)
994 		psm_intr_ops = pops->psm_intr_ops;
995 
996 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
997 	/*
998 	 * Time-of-day functionality now handled in TOD modules.
999 	 * (Warn about PSM modules that think that we're going to use
1000 	 * their ops vectors.)
1001 	 */
1002 	if (pops->psm_tod_get)
1003 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
1004 		    (void *)pops->psm_tod_get);
1005 
1006 	if (pops->psm_tod_set)
1007 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
1008 		    (void *)pops->psm_tod_set);
1009 #endif
1010 
1011 	if (pops->psm_notify_error) {
1012 		psm_notify_error = mach_notify_error;
1013 		notify_error = pops->psm_notify_error;
1014 	}
1015 
1016 	(*pops->psm_softinit)();
1017 
1018 	/*
1019 	 * Initialize the dispatcher's function hooks to enable CPU halting
1020 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
1021 	 *
1022 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1023 	 * Platform deep-idle driver will reset our idle loop to
1024 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1025 	 *
1026 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1027 	 * or idle_cpu_prefer_mwait is not set.
1028 	 * Allocate monitor/mwait buffer for cpu0.
1029 	 */
1030 #ifndef __xpv
1031 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1032 #endif
1033 	if (idle_cpu_use_hlt) {
1034 		idle_cpu = cpu_idle_adaptive;
1035 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1036 #ifndef __xpv
1037 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1038 		    idle_cpu_prefer_mwait) {
1039 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1040 			/*
1041 			 * Protect ourself from insane mwait size.
1042 			 */
1043 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1044 #ifdef DEBUG
1045 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1046 				    "handle cpu 0 mwait size.");
1047 #endif
1048 				idle_cpu_prefer_mwait = 0;
1049 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1050 			} else {
1051 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1052 			}
1053 		} else {
1054 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1055 		}
1056 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1057 
1058 		/*
1059 		 * Disable power saving deep idle loop?
1060 		 */
1061 		if (idle_cpu_no_deep_c) {
1062 			idle_cpu = non_deep_idle_cpu;
1063 		}
1064 #endif
1065 	}
1066 
1067 	mach_smpinit();
1068 }
1069 
1070 static void
1071 mach_smpinit(void)
1072 {
1073 	struct psm_ops  *pops;
1074 	processorid_t cpu_id;
1075 	int cnt;
1076 	cpuset_t cpumask;
1077 
1078 	pops = mach_set[0];
1079 	CPUSET_ZERO(cpumask);
1080 
1081 	cpu_id = -1;
1082 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1083 	/*
1084 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1085 	 * by CPU DR driver at runtime.
1086 	 */
1087 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1088 		CPUSET_ADD(cpumask, cpu_id);
1089 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1090 	}
1091 
1092 	mp_cpus = cpumask;
1093 
1094 	/* MP related routines */
1095 	ap_mlsetup = pops->psm_post_cpu_start;
1096 	send_dirintf = pops->psm_send_ipi;
1097 
1098 	/* optional MP related routines */
1099 	if (pops->psm_shutdown)
1100 		psm_shutdownf = pops->psm_shutdown;
1101 	if (pops->psm_preshutdown)
1102 		psm_preshutdownf = pops->psm_preshutdown;
1103 	if (pops->psm_notify_func)
1104 		psm_notifyf = pops->psm_notify_func;
1105 	if (pops->psm_set_idlecpu)
1106 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1107 	if (pops->psm_unset_idlecpu)
1108 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1109 
1110 	psm_clkinit = pops->psm_clkinit;
1111 
1112 	if (pops->psm_timer_reprogram)
1113 		psm_timer_reprogram = pops->psm_timer_reprogram;
1114 
1115 	if (pops->psm_timer_enable)
1116 		psm_timer_enable = pops->psm_timer_enable;
1117 
1118 	if (pops->psm_timer_disable)
1119 		psm_timer_disable = pops->psm_timer_disable;
1120 
1121 	if (pops->psm_post_cyclic_setup)
1122 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1123 
1124 	if (pops->psm_state)
1125 		psm_state = pops->psm_state;
1126 
1127 	/*
1128 	 * Set these vectors here so they can be used by Suspend/Resume
1129 	 * on UP machines.
1130 	 */
1131 	if (pops->psm_disable_intr)
1132 		psm_disable_intr = pops->psm_disable_intr;
1133 	if (pops->psm_enable_intr)
1134 		psm_enable_intr  = pops->psm_enable_intr;
1135 
1136 	/* check for multiple CPUs */
1137 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1138 		return;
1139 
1140 	/* check for MP platforms */
1141 	if (pops->psm_cpu_start == NULL)
1142 		return;
1143 
1144 	/*
1145 	 * Set the dispatcher hook to enable cpu "wake up"
1146 	 * when a thread becomes runnable.
1147 	 */
1148 	if (idle_cpu_use_hlt) {
1149 		disp_enq_thread = cpu_wakeup;
1150 #ifndef __xpv
1151 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1152 		    idle_cpu_prefer_mwait)
1153 			disp_enq_thread = cpu_wakeup_mwait;
1154 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1155 #endif
1156 	}
1157 
1158 	psm_get_ipivect = pops->psm_get_ipivect;
1159 	psm_get_pir_ipivect = pops->psm_get_pir_ipivect;
1160 	psm_send_pir_ipi = pops->psm_send_pir_ipi;
1161 
1162 
1163 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1164 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1165 	    NULL, NULL, NULL, NULL);
1166 
1167 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1168 }
1169 
1170 static void
1171 mach_picinit()
1172 {
1173 	struct psm_ops  *pops;
1174 
1175 	pops = mach_set[0];
1176 
1177 	/* register the interrupt handlers */
1178 	setlvl = pops->psm_intr_enter;
1179 	setlvlx = pops->psm_intr_exit;
1180 
1181 	/* initialize the interrupt hardware */
1182 	(*pops->psm_picinit)();
1183 
1184 	/* set interrupt mask for current ipl */
1185 	setspl = pops->psm_setspl;
1186 	cli();
1187 	setspl(CPU->cpu_pri);
1188 }
1189 
1190 uint_t	cpu_freq;	/* MHz */
1191 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1192 
1193 #define	MEGA_HZ		1000000
1194 
1195 #ifdef __xpv
1196 
1197 int xpv_cpufreq_workaround = 1;
1198 int xpv_cpufreq_verbose = 0;
1199 
1200 #else	/* __xpv */
1201 
1202 static uint64_t
1203 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1204 {
1205 	uint64_t cpu_hz;
1206 
1207 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1208 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1209 		return (0);
1210 
1211 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1212 
1213 	return (cpu_hz);
1214 }
1215 
1216 #endif	/* __xpv */
1217 
1218 static uint64_t
1219 mach_getcpufreq(void)
1220 {
1221 #if defined(__xpv)
1222 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1223 	uint64_t cpu_hz;
1224 
1225 	/*
1226 	 * During dom0 bringup, it was noted that on at least one older
1227 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1228 	 * value that is quite wrong (the 3.06GHz clock was reported
1229 	 * as 4.77GHz)
1230 	 *
1231 	 * The curious thing is, that if you stop the kernel at entry,
1232 	 * breakpoint here and inspect the value with kmdb, the value
1233 	 * is correct - but if you don't stop and simply enable the
1234 	 * printf statement (below), you can see the bad value printed
1235 	 * here.  Almost as if something kmdb did caused the hypervisor to
1236 	 * figure it out correctly.  And, note that the hypervisor
1237 	 * eventually -does- figure it out correctly ... if you look at
1238 	 * the field later in the life of dom0, it is correct.
1239 	 *
1240 	 * For now, on dom0, we employ a slightly cheesy workaround of
1241 	 * using the DOM0_PHYSINFO hypercall.
1242 	 */
1243 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1244 		cpu_hz = 1000 * xpv_cpu_khz();
1245 	} else {
1246 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1247 
1248 		if (vti->tsc_shift < 0)
1249 			cpu_hz <<= -vti->tsc_shift;
1250 		else
1251 			cpu_hz >>= vti->tsc_shift;
1252 	}
1253 
1254 	if (xpv_cpufreq_verbose)
1255 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1256 		    "cpu_hz %" PRId64 "Hz\n",
1257 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1258 
1259 	return (cpu_hz);
1260 #else	/* __xpv */
1261 	uint32_t pit_counter;
1262 	uint64_t processor_clks;
1263 
1264 	if (is_x86_feature(x86_featureset, X86FSET_TSC)) {
1265 		/*
1266 		 * We have a TSC. freq_tsc() knows how to measure the number
1267 		 * of clock cycles sampled against the PIT.
1268 		 */
1269 		ulong_t flags = clear_int_flag();
1270 		processor_clks = freq_tsc(&pit_counter);
1271 		restore_int_flag(flags);
1272 		return (mach_calchz(pit_counter, &processor_clks));
1273 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1274 #if defined(__amd64)
1275 		panic("mach_getcpufreq: no TSC!");
1276 #elif defined(__i386)
1277 		/*
1278 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1279 		 * for which freq_notsc() knows how to measure the number of
1280 		 * elapsed clock cycles sampled against the PIT
1281 		 */
1282 		ulong_t flags = clear_int_flag();
1283 		processor_clks = freq_notsc(&pit_counter);
1284 		restore_int_flag(flags);
1285 		return (mach_calchz(pit_counter, &processor_clks));
1286 #endif	/* __i386 */
1287 	}
1288 
1289 	/* We do not know how to calculate cpu frequency for this cpu. */
1290 	return (0);
1291 #endif	/* __xpv */
1292 }
1293 
1294 /*
1295  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1296  * to this array, instead improve the accuracy of the algorithm that determines
1297  * the clock speed of the processor or extend the implementation to support the
1298  * vendor as appropriate. This is here only to support adjusting the speed on
1299  * older slower processors that mach_fixcpufreq() would not be able to account
1300  * for otherwise.
1301  */
1302 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1303 
1304 /*
1305  * On fast processors the clock frequency that is measured may be off by
1306  * a few MHz from the value printed on the part. This is a combination of
1307  * the factors that for such fast parts being off by this much is within
1308  * the tolerances for manufacture and because of the difficulties in the
1309  * measurement that can lead to small error. This function uses some
1310  * heuristics in order to tweak the value that was measured to match what
1311  * is most likely printed on the part.
1312  *
1313  * Some examples:
1314  * 	AMD Athlon 1000 mhz measured as 998 mhz
1315  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1316  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1317  *
1318  * If in the future this function is no longer sufficient to correct
1319  * for the error in the measurement, then the algorithm used to perform
1320  * the measurement will have to be improved in order to increase accuracy
1321  * rather than adding horrible and questionable kludges here.
1322  *
1323  * This is called after the cyclics subsystem because of the potential
1324  * that the heuristics within may give a worse estimate of the clock
1325  * frequency than the value that was measured.
1326  */
1327 static void
1328 mach_fixcpufreq(void)
1329 {
1330 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1331 
1332 	freq = (uint32_t)cpu_freq;
1333 
1334 	/*
1335 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1336 	 * measured speed taking into account that the 667 MHz parts were
1337 	 * the first to round-up.
1338 	 */
1339 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1340 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1341 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1342 
1343 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1344 	mul = (freq + 25) / 50;
1345 	near50 = mul * 50;
1346 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1347 
1348 	/* Find the closer of the two */
1349 	if (delta66 < delta50) {
1350 		fixed = near66;
1351 		delta = delta66;
1352 	} else {
1353 		fixed = near50;
1354 		delta = delta50;
1355 	}
1356 
1357 	if (fixed > INT_MAX)
1358 		return;
1359 
1360 	/*
1361 	 * Some older parts have a core clock frequency that is not an
1362 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1363 	 * clock frequencies is closer to the measured value than any
1364 	 * of the integral multiples of 50 an 66, and if so set fixed
1365 	 * and delta appropriately to represent the closest value.
1366 	 */
1367 	i = sizeof (x86_cpu_freq) / sizeof (int);
1368 	while (i > 0) {
1369 		i--;
1370 
1371 		if (x86_cpu_freq[i] <= freq) {
1372 			mul = freq - x86_cpu_freq[i];
1373 
1374 			if (mul < delta) {
1375 				fixed = x86_cpu_freq[i];
1376 				delta = mul;
1377 			}
1378 
1379 			break;
1380 		}
1381 
1382 		mul = x86_cpu_freq[i] - freq;
1383 
1384 		if (mul < delta) {
1385 			fixed = x86_cpu_freq[i];
1386 			delta = mul;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Set a reasonable maximum for how much to correct the measured
1392 	 * result by. This check is here to prevent the adjustment made
1393 	 * by this function from being more harm than good. It is entirely
1394 	 * possible that in the future parts will be made that are not
1395 	 * integral multiples of 66 or 50 in clock frequency or that
1396 	 * someone may overclock a part to some odd frequency. If the
1397 	 * measured value is farther from the corrected value than
1398 	 * allowed, then assume the corrected value is in error and use
1399 	 * the measured value.
1400 	 */
1401 	if (6 < delta)
1402 		return;
1403 
1404 	cpu_freq = (int)fixed;
1405 }
1406 
1407 
1408 static int
1409 machhztomhz(uint64_t cpu_freq_hz)
1410 {
1411 	uint64_t cpu_mhz;
1412 
1413 	/* Round to nearest MHZ */
1414 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1415 
1416 	if (cpu_mhz > INT_MAX)
1417 		return (0);
1418 
1419 	return ((int)cpu_mhz);
1420 
1421 }
1422 
1423 
1424 static int
1425 mach_clkinit(int preferred_mode, int *set_mode)
1426 {
1427 	struct psm_ops  *pops;
1428 	int resolution;
1429 
1430 	pops = mach_set[0];
1431 
1432 	cpu_freq_hz = mach_getcpufreq();
1433 
1434 	cpu_freq = machhztomhz(cpu_freq_hz);
1435 
1436 	if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0))
1437 		tsc_gethrtime_enable = 0;
1438 
1439 #ifndef __xpv
1440 	if (tsc_gethrtime_enable) {
1441 		tsc_hrtimeinit(cpu_freq_hz);
1442 	} else
1443 #endif
1444 	{
1445 		if (pops->psm_hrtimeinit)
1446 			(*pops->psm_hrtimeinit)();
1447 		gethrtimef = pops->psm_gethrtime;
1448 		gethrtimeunscaledf = gethrtimef;
1449 		/* scalehrtimef will remain dummy */
1450 	}
1451 
1452 	mach_fixcpufreq();
1453 
1454 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1455 		if (preferred_mode == TIMER_ONESHOT) {
1456 
1457 			resolution = (*pops->psm_clkinit)(0);
1458 			if (resolution != 0)  {
1459 				*set_mode = TIMER_ONESHOT;
1460 				return (resolution);
1461 			}
1462 		}
1463 
1464 		/*
1465 		 * either periodic mode was requested or could not set to
1466 		 * one-shot mode
1467 		 */
1468 		resolution = (*pops->psm_clkinit)(hz);
1469 		/*
1470 		 * psm should be able to do periodic, so we do not check
1471 		 * for return value of psm_clkinit here.
1472 		 */
1473 		*set_mode = TIMER_PERIODIC;
1474 		return (resolution);
1475 	} else {
1476 		/*
1477 		 * PSMI interface prior to PSMI_3 does not define a return
1478 		 * value for psm_clkinit, so the return value is ignored.
1479 		 */
1480 		(void) (*pops->psm_clkinit)(hz);
1481 		*set_mode = TIMER_PERIODIC;
1482 		return (nsec_per_tick);
1483 	}
1484 }
1485 
1486 
1487 /*ARGSUSED*/
1488 static int
1489 mach_softlvl_to_vect(int ipl)
1490 {
1491 	setsoftint = av_set_softint_pending;
1492 	kdisetsoftint = kdi_av_set_softint_pending;
1493 
1494 	return (PSM_SV_SOFTWARE);
1495 }
1496 
1497 #ifdef DEBUG
1498 /*
1499  * This is here to allow us to simulate cpus that refuse to start.
1500  */
1501 cpuset_t cpufailset;
1502 #endif
1503 
1504 int
1505 mach_cpu_start(struct cpu *cp, void *ctx)
1506 {
1507 	struct psm_ops *pops = mach_set[0];
1508 	processorid_t id = cp->cpu_id;
1509 
1510 #ifdef DEBUG
1511 	if (CPU_IN_SET(cpufailset, id))
1512 		return (0);
1513 #endif
1514 	return ((*pops->psm_cpu_start)(id, ctx));
1515 }
1516 
1517 int
1518 mach_cpuid_start(processorid_t id, void *ctx)
1519 {
1520 	struct psm_ops *pops = mach_set[0];
1521 
1522 #ifdef DEBUG
1523 	if (CPU_IN_SET(cpufailset, id))
1524 		return (0);
1525 #endif
1526 	return ((*pops->psm_cpu_start)(id, ctx));
1527 }
1528 
1529 int
1530 mach_cpu_stop(cpu_t *cp, void *ctx)
1531 {
1532 	struct psm_ops *pops = mach_set[0];
1533 	psm_cpu_request_t request;
1534 
1535 	if (pops->psm_cpu_ops == NULL) {
1536 		return (ENOTSUP);
1537 	}
1538 
1539 	ASSERT(cp->cpu_id != -1);
1540 	request.pcr_cmd = PSM_CPU_STOP;
1541 	request.req.cpu_stop.cpuid = cp->cpu_id;
1542 	request.req.cpu_stop.ctx = ctx;
1543 
1544 	return ((*pops->psm_cpu_ops)(&request));
1545 }
1546 
1547 int
1548 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1549 {
1550 	int rc;
1551 	struct psm_ops *pops = mach_set[0];
1552 	psm_cpu_request_t request;
1553 
1554 	if (pops->psm_cpu_ops == NULL) {
1555 		return (ENOTSUP);
1556 	}
1557 
1558 	request.pcr_cmd = PSM_CPU_ADD;
1559 	request.req.cpu_add.argp = argp;
1560 	request.req.cpu_add.cpuid = -1;
1561 	rc = (*pops->psm_cpu_ops)(&request);
1562 	if (rc == 0) {
1563 		ASSERT(request.req.cpu_add.cpuid != -1);
1564 		*cpuidp = request.req.cpu_add.cpuid;
1565 	}
1566 
1567 	return (rc);
1568 }
1569 
1570 int
1571 mach_cpu_remove(processorid_t cpuid)
1572 {
1573 	struct psm_ops *pops = mach_set[0];
1574 	psm_cpu_request_t request;
1575 
1576 	if (pops->psm_cpu_ops == NULL) {
1577 		return (ENOTSUP);
1578 	}
1579 
1580 	request.pcr_cmd = PSM_CPU_REMOVE;
1581 	request.req.cpu_remove.cpuid = cpuid;
1582 
1583 	return ((*pops->psm_cpu_ops)(&request));
1584 }
1585 
1586 /*
1587  * Default handler to create device node for CPU.
1588  * One reference count will be held on created device node.
1589  */
1590 static int
1591 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1592 {
1593 	int rv, circ;
1594 	dev_info_t *dip;
1595 	static kmutex_t cpu_node_lock;
1596 	static dev_info_t *cpu_nex_devi = NULL;
1597 
1598 	ASSERT(cp != NULL);
1599 	ASSERT(dipp != NULL);
1600 	*dipp = NULL;
1601 
1602 	if (cpu_nex_devi == NULL) {
1603 		mutex_enter(&cpu_node_lock);
1604 		/* First check whether cpus exists. */
1605 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1606 		/* Create cpus if it doesn't exist. */
1607 		if (cpu_nex_devi == NULL) {
1608 			ndi_devi_enter(ddi_root_node(), &circ);
1609 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1610 			    (pnode_t)DEVI_SID_NODEID, &dip);
1611 			if (rv != NDI_SUCCESS) {
1612 				mutex_exit(&cpu_node_lock);
1613 				cmn_err(CE_CONT,
1614 				    "?failed to create cpu nexus device.\n");
1615 				return (PSM_FAILURE);
1616 			}
1617 			ASSERT(dip != NULL);
1618 			(void) ndi_devi_online(dip, 0);
1619 			ndi_devi_exit(ddi_root_node(), circ);
1620 			cpu_nex_devi = dip;
1621 		}
1622 		mutex_exit(&cpu_node_lock);
1623 	}
1624 
1625 	/*
1626 	 * create a child node for cpu identified as 'cpu_id'
1627 	 */
1628 	ndi_devi_enter(cpu_nex_devi, &circ);
1629 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1630 	if (dip == NULL) {
1631 		cmn_err(CE_CONT,
1632 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1633 		rv = PSM_FAILURE;
1634 	} else {
1635 		*dipp = dip;
1636 		(void) ndi_hold_devi(dip);
1637 		rv = PSM_SUCCESS;
1638 	}
1639 	ndi_devi_exit(cpu_nex_devi, circ);
1640 
1641 	return (rv);
1642 }
1643 
1644 /*
1645  * Create cpu device node in device tree and online it.
1646  * Return created dip with reference count held if requested.
1647  */
1648 int
1649 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1650 {
1651 	int rv;
1652 	dev_info_t *dip = NULL;
1653 
1654 	ASSERT(psm_cpu_create_devinfo != NULL);
1655 	rv = psm_cpu_create_devinfo(cp, &dip);
1656 	if (rv == PSM_SUCCESS) {
1657 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1658 		/* Recursively attach driver for parent nexus device. */
1659 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1660 		    DDI_SUCCESS) {
1661 			/* Configure cpu itself and descendants. */
1662 			(void) ndi_devi_online(dip,
1663 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1664 		}
1665 		if (dipp != NULL) {
1666 			*dipp = dip;
1667 		} else {
1668 			(void) ndi_rele_devi(dip);
1669 		}
1670 	}
1671 
1672 	return (rv);
1673 }
1674 
1675 /*
1676  * The dipp contains one of following values on return:
1677  * - NULL if no device node found
1678  * - pointer to device node if found
1679  */
1680 int
1681 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1682 {
1683 	*dipp = NULL;
1684 	if (psm_cpu_get_devinfo != NULL) {
1685 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1686 			return (PSM_SUCCESS);
1687 		}
1688 	}
1689 
1690 	return (PSM_FAILURE);
1691 }
1692 
1693 /*ARGSUSED*/
1694 static int
1695 mach_translate_irq(dev_info_t *dip, int irqno)
1696 {
1697 	return (irqno);	/* default to NO translation */
1698 }
1699 
1700 static void
1701 mach_notify_error(int level, char *errmsg)
1702 {
1703 	/*
1704 	 * SL_FATAL is pass in once panicstr is set, deliver it
1705 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1706 	 * codes for the psmi handler
1707 	 */
1708 	if (level & SL_FATAL)
1709 		(*notify_error)(CE_PANIC, errmsg);
1710 	else if (level & SL_WARN)
1711 		(*notify_error)(CE_WARN, errmsg);
1712 	else if (level & SL_NOTE)
1713 		(*notify_error)(CE_NOTE, errmsg);
1714 	else if (level & SL_CONSOLE)
1715 		(*notify_error)(CE_CONT, errmsg);
1716 }
1717 
1718 /*
1719  * It provides the default basic intr_ops interface for the new DDI
1720  * interrupt framework if the PSM doesn't have one.
1721  *
1722  * Input:
1723  * dip     - pointer to the dev_info structure of the requested device
1724  * hdlp    - pointer to the internal interrupt handle structure for the
1725  *	     requested interrupt
1726  * intr_op - opcode for this call
1727  * result  - pointer to the integer that will hold the result to be
1728  *	     passed back if return value is PSM_SUCCESS
1729  *
1730  * Output:
1731  * return value is either PSM_SUCCESS or PSM_FAILURE
1732  */
1733 static int
1734 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1735     psm_intr_op_t intr_op, int *result)
1736 {
1737 	struct intrspec *ispec;
1738 
1739 	switch (intr_op) {
1740 	case PSM_INTR_OP_CHECK_MSI:
1741 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1742 		    DDI_INTR_TYPE_MSIX);
1743 		break;
1744 	case PSM_INTR_OP_ALLOC_VECTORS:
1745 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1746 			*result = 1;
1747 		else
1748 			*result = 0;
1749 		break;
1750 	case PSM_INTR_OP_FREE_VECTORS:
1751 		break;
1752 	case PSM_INTR_OP_NAVAIL_VECTORS:
1753 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1754 			*result = 1;
1755 		else
1756 			*result = 0;
1757 		break;
1758 	case PSM_INTR_OP_XLATE_VECTOR:
1759 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1760 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1761 		break;
1762 	case PSM_INTR_OP_GET_CAP:
1763 		*result = 0;
1764 		break;
1765 	case PSM_INTR_OP_GET_PENDING:
1766 	case PSM_INTR_OP_CLEAR_MASK:
1767 	case PSM_INTR_OP_SET_MASK:
1768 	case PSM_INTR_OP_GET_SHARED:
1769 	case PSM_INTR_OP_SET_PRI:
1770 	case PSM_INTR_OP_SET_CAP:
1771 	case PSM_INTR_OP_SET_CPU:
1772 	case PSM_INTR_OP_GET_INTR:
1773 	default:
1774 		return (PSM_FAILURE);
1775 	}
1776 	return (PSM_SUCCESS);
1777 }
1778 /*
1779  * Return 1 if CMT load balancing policies should be
1780  * implemented across instances of the specified hardware
1781  * sharing relationship.
1782  */
1783 int
1784 pg_cmt_load_bal_hw(pghw_type_t hw)
1785 {
1786 	if (hw == PGHW_IPIPE ||
1787 	    hw == PGHW_FPU ||
1788 	    hw == PGHW_PROCNODE ||
1789 	    hw == PGHW_CHIP)
1790 		return (1);
1791 	else
1792 		return (0);
1793 }
1794 /*
1795  * Return 1 if thread affinity polices should be implemented
1796  * for instances of the specifed hardware sharing relationship.
1797  */
1798 int
1799 pg_cmt_affinity_hw(pghw_type_t hw)
1800 {
1801 	if (hw == PGHW_CACHE)
1802 		return (1);
1803 	else
1804 		return (0);
1805 }
1806 
1807 /*
1808  * Return number of counter events requested to measure hardware capacity and
1809  * utilization and setup CPC requests for specified CPU as needed
1810  *
1811  * May return 0 when platform or processor specific code knows that no CPC
1812  * events should be programmed on this CPU or -1 when platform or processor
1813  * specific code doesn't know which counter events are best to use and common
1814  * code should decide for itself
1815  */
1816 int
1817 /* LINTED E_FUNC_ARG_UNUSED */
1818 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1819 {
1820 	const char	*impl_name;
1821 
1822 	/*
1823 	 * Return error if pcbe_ops not set
1824 	 */
1825 	if (pcbe_ops == NULL)
1826 		return (-1);
1827 
1828 	/*
1829 	 * Return that no CPC events should be programmed on hyperthreaded
1830 	 * Pentium 4 and return error for all other x86 processors to tell
1831 	 * common code to decide what counter events to program on those CPUs
1832 	 * for measuring hardware capacity and utilization
1833 	 */
1834 	impl_name = pcbe_ops->pcbe_impl_name();
1835 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1836 		return (0);
1837 	else
1838 		return (-1);
1839 }
1840