/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2009-2010, Intel Corporation. * All rights reserved. * Copyright 2018 Joyent, Inc. */ #define PSMI_1_7 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__xpv) #include #endif #include #include #include #include #include #include #include #include #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m)) /* * Local function prototypes */ static int mp_disable_intr(processorid_t cpun); static void mp_enable_intr(processorid_t cpun); static void mach_init(); static void mach_picinit(); static int machhztomhz(uint64_t cpu_freq_hz); static uint64_t mach_getcpufreq(void); static void mach_fixcpufreq(void); static int mach_clkinit(int, int *); static void mach_smpinit(void); static int mach_softlvl_to_vect(int ipl); static void mach_get_platform(int owner); static void mach_construct_info(); static int mach_translate_irq(dev_info_t *dip, int irqno); static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *); static void mach_notify_error(int level, char *errmsg); static hrtime_t dummy_hrtime(void); static void dummy_scalehrtime(hrtime_t *); static uint64_t dummy_unscalehrtime(hrtime_t); void cpu_idle(void); static void cpu_wakeup(cpu_t *, int); #ifndef __xpv void cpu_idle_mwait(void); static void cpu_wakeup_mwait(cpu_t *, int); #endif static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp); /* * External reference functions */ extern void return_instr(); extern uint64_t freq_tsc(uint32_t *); #if defined(__i386) extern uint64_t freq_notsc(uint32_t *); #endif extern void pc_gethrestime(timestruc_t *); extern int cpuid_get_coreid(cpu_t *); extern int cpuid_get_chipid(cpu_t *); /* * PSM functions initialization */ void (*psm_shutdownf)(int, int) = (void (*)(int, int))return_instr; void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr; void (*psm_notifyf)(int) = (void (*)(int))return_instr; void (*psm_set_idle_cpuf)(int) = (void (*)(int))return_instr; void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr; void (*psminitf)() = mach_init; void (*picinitf)() = return_instr; int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr; int (*ap_mlsetup)() = (int (*)(void))return_instr; void (*send_dirintf)() = return_instr; void (*setspl)(int) = (void (*)(int))return_instr; int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; int (*get_pending_spl)(void) = (int (*)(void))return_instr; int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t, uint64_t *, dev_info_t *) = NULL; void (*remintr)(void *, int, avfunc, int) = NULL; void (*kdisetsoftint)(int, struct av_softinfo *)= (void (*)(int, struct av_softinfo *))return_instr; void (*setsoftint)(int, struct av_softinfo *)= (void (*)(int, struct av_softinfo *))return_instr; int (*slvltovect)(int) = (int (*)(int))return_instr; int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr; void (*setlvlx)(int, int) = (void (*)(int, int))return_instr; int (*psm_disable_intr)(int) = mp_disable_intr; void (*psm_enable_intr)(int) = mp_enable_intr; hrtime_t (*gethrtimef)(void) = dummy_hrtime; hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime; void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime; uint64_t (*unscalehrtimef)(hrtime_t) = dummy_unscalehrtime; int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq; void (*gethrestimef)(timestruc_t *) = pc_gethrestime; void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL; int (*psm_get_clockirq)(int) = NULL; int (*psm_get_ipivect)(int, int) = NULL; uchar_t (*psm_get_ioapicid)(uchar_t) = NULL; uint32_t (*psm_get_localapicid)(uint32_t) = NULL; uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL; int (*psm_get_pir_ipivect)(void) = NULL; void (*psm_send_pir_ipi)(processorid_t) = NULL; int (*psm_clkinit)(int) = NULL; void (*psm_timer_reprogram)(hrtime_t) = NULL; void (*psm_timer_enable)(void) = NULL; void (*psm_timer_disable)(void) = NULL; void (*psm_post_cyclic_setup)(void *arg) = NULL; int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *) = mach_intr_ops; int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *)) return_instr; void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr; void (*hrtime_tick)(void) = return_instr; int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo; int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL; /* global IRM pool for APIX (PSM) module */ ddi_irm_pool_t *apix_irm_pool_p = NULL; /* * True if the generic TSC code is our source of hrtime, rather than whatever * the PSM can provide. */ #ifdef __xpv int tsc_gethrtime_enable = 0; #else int tsc_gethrtime_enable = 1; #endif int tsc_gethrtime_initted = 0; /* * True if the hrtime implementation is "hires"; namely, better than microdata. */ int gethrtime_hires = 0; /* * Local Static Data */ static struct psm_ops mach_ops; static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL}; static ushort_t mach_ver[4] = {0, 0, 0, 0}; /* * virtualization support for psm */ void *psm_vt_ops = NULL; /* * If non-zero, idle cpus will become "halted" when there's * no work to do. */ int idle_cpu_use_hlt = 1; #ifndef __xpv /* * If non-zero, idle cpus will use mwait if available to halt instead of hlt. */ int idle_cpu_prefer_mwait = 1; /* * Set to 0 to avoid MONITOR+CLFLUSH assertion. */ int idle_cpu_assert_cflush_monitor = 1; /* * If non-zero, idle cpus will not use power saving Deep C-States idle loop. */ int idle_cpu_no_deep_c = 0; /* * Non-power saving idle loop and wakeup pointers. * Allows user to toggle Deep Idle power saving feature on/off. */ void (*non_deep_idle_cpu)() = cpu_idle; void (*non_deep_idle_disp_enq_thread)(cpu_t *, int); /* * Object for the kernel to access the HPET. */ hpet_t hpet; #endif /* ifndef __xpv */ uint_t cp_haltset_fanout = 0; /*ARGSUSED*/ int pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw) { switch (hw) { case PGHW_IPIPE: if (is_x86_feature(x86_featureset, X86FSET_HTT)) { /* * Hyper-threading is SMT */ return (1); } else { return (0); } case PGHW_FPU: if (cpuid_get_cores_per_compunit(cp) > 1) return (1); else return (0); case PGHW_PROCNODE: if (cpuid_get_procnodes_per_pkg(cp) > 1) return (1); else return (0); case PGHW_CHIP: if (is_x86_feature(x86_featureset, X86FSET_CMP) || is_x86_feature(x86_featureset, X86FSET_HTT)) return (1); else return (0); case PGHW_CACHE: if (cpuid_get_ncpu_sharing_last_cache(cp) > 1) return (1); else return (0); case PGHW_POW_ACTIVE: if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1) return (1); else return (0); case PGHW_POW_IDLE: if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1) return (1); else return (0); default: return (0); } } /* * Compare two CPUs and see if they have a pghw_type_t sharing relationship * If pghw_type_t is an unsupported hardware type, then return -1 */ int pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw) { id_t pgp_a, pgp_b; pgp_a = pg_plat_hw_instance_id(cpu_a, hw); pgp_b = pg_plat_hw_instance_id(cpu_b, hw); if (pgp_a == -1 || pgp_b == -1) return (-1); return (pgp_a == pgp_b); } /* * Return a physical instance identifier for known hardware sharing * relationships */ id_t pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw) { switch (hw) { case PGHW_IPIPE: return (cpuid_get_coreid(cpu)); case PGHW_CACHE: return (cpuid_get_last_lvl_cacheid(cpu)); case PGHW_FPU: return (cpuid_get_compunitid(cpu)); case PGHW_PROCNODE: return (cpuid_get_procnodeid(cpu)); case PGHW_CHIP: return (cpuid_get_chipid(cpu)); case PGHW_POW_ACTIVE: return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE)); case PGHW_POW_IDLE: return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE)); default: return (-1); } } /* * Express preference for optimizing for sharing relationship * hw1 vs hw2 */ pghw_type_t pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2) { int i, rank1, rank2; static pghw_type_t hw_hier[] = { PGHW_IPIPE, PGHW_CACHE, PGHW_FPU, PGHW_PROCNODE, PGHW_CHIP, PGHW_POW_IDLE, PGHW_POW_ACTIVE, PGHW_NUM_COMPONENTS }; for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) { if (hw_hier[i] == hw1) rank1 = i; if (hw_hier[i] == hw2) rank2 = i; } if (rank1 > rank2) return (hw1); else return (hw2); } /* * Override the default CMT dispatcher policy for the specified * hardware sharing relationship */ pg_cmt_policy_t pg_plat_cmt_policy(pghw_type_t hw) { /* * For shared caches, also load balance across them to * maximize aggregate cache capacity * * On AMD family 0x15 CPUs, cores come in pairs called * compute units, sharing the FPU and the I$ and L2 * caches. Use balancing and cache affinity. */ switch (hw) { case PGHW_FPU: case PGHW_CACHE: return (CMT_BALANCE|CMT_AFFINITY); default: return (CMT_NO_POLICY); } } id_t pg_plat_get_core_id(cpu_t *cpu) { return ((id_t)cpuid_get_coreid(cpu)); } void cmp_set_nosteal_interval(void) { /* Set the nosteal interval (used by disp_getbest()) to 100us */ nosteal_nsec = 100000UL; } /* * Routine to ensure initial callers to hrtime gets 0 as return */ static hrtime_t dummy_hrtime(void) { return (0); } /* ARGSUSED */ static void dummy_scalehrtime(hrtime_t *ticks) {} static uint64_t dummy_unscalehrtime(hrtime_t nsecs) { return ((uint64_t)nsecs); } /* * Supports Deep C-State power saving idle loop. */ void cpu_idle_adaptive(void) { (*CPU->cpu_m.mcpu_idle_cpu)(); } /* * Function called by CPU idle notification framework to check whether CPU * has been awakened. It will be called with interrupt disabled. * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle * notification framework. */ /*ARGSUSED*/ static void cpu_idle_check_wakeup(void *arg) { /* * Toggle interrupt flag to detect pending interrupts. * If interrupt happened, do_interrupt() will notify CPU idle * notification framework so no need to call cpu_idle_exit() here. */ sti(); SMT_PAUSE(); cli(); } /* * Idle the present CPU until wakened via an interrupt */ void cpu_idle(void) { cpu_t *cpup = CPU; processorid_t cpu_sid = cpup->cpu_seqid; cpupart_t *cp = cpup->cpu_part; int hset_update = 1; /* * If this CPU is online, and there's multiple CPUs * in the system, then we should notate our halting * by adding ourselves to the partition's halted CPU * bitmap. This allows other CPUs to find/awaken us when * work becomes available. */ if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) hset_update = 0; /* * Add ourselves to the partition's halted CPUs bitmap * and set our HALTED flag, if necessary. * * When a thread becomes runnable, it is placed on the queue * and then the halted CPU bitmap is checked to determine who * (if anyone) should be awakened. We therefore need to first * add ourselves to the bitmap, and and then check if there * is any work available. The order is important to prevent a race * that can lead to work languishing on a run queue somewhere while * this CPU remains halted. * * Either the producing CPU will see we're halted and will awaken us, * or this CPU will see the work available in disp_anywork(). * * Note that memory barriers after updating the HALTED flag * are not necessary since an atomic operation (updating the bitset) * immediately follows. On x86 the atomic operation acts as a * memory barrier for the update of cpu_disp_flags. */ if (hset_update) { cpup->cpu_disp_flags |= CPU_DISP_HALTED; bitset_atomic_add(&cp->cp_haltset, cpu_sid); } /* * Check to make sure there's really nothing to do. * Work destined for this CPU may become available after * this check. We'll be notified through the clearing of our * bit in the halted CPU bitmap, and a poke. */ if (disp_anywork()) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } return; } /* * We're on our way to being halted. * * Disable interrupts now, so that we'll awaken immediately * after halting if someone tries to poke us between now and * the time we actually halt. * * We check for the presence of our bit after disabling interrupts. * If it's cleared, we'll return. If the bit is cleared after * we check then the poke will pop us out of the halted state. * * This means that the ordering of the poke and the clearing * of the bit by cpu_wakeup is important. * cpu_wakeup() must clear, then poke. * cpu_idle() must disable interrupts, then check for the bit. */ cli(); if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; sti(); return; } /* * The check for anything locally runnable is here for performance * and isn't needed for correctness. disp_nrunnable ought to be * in our cache still, so it's inexpensive to check, and if there * is anything runnable we won't have to wait for the poke. */ if (cpup->cpu_disp->disp_nrunnable != 0) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } sti(); return; } if (cpu_idle_enter(IDLE_STATE_C1, 0, cpu_idle_check_wakeup, NULL) == 0) { mach_cpu_idle(); cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); } /* * We're no longer halted */ if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } } /* * If "cpu" is halted, then wake it up clearing its halted bit in advance. * Otherwise, see if other CPUs in the cpu partition are halted and need to * be woken up so that they can steal the thread we placed on this CPU. * This function is only used on MP systems. */ static void cpu_wakeup(cpu_t *cpu, int bound) { uint_t cpu_found; processorid_t cpu_sid; cpupart_t *cp; cp = cpu->cpu_part; cpu_sid = cpu->cpu_seqid; if (bitset_in_set(&cp->cp_haltset, cpu_sid)) { /* * Clear the halted bit for that CPU since it will be * poked in a moment. */ bitset_atomic_del(&cp->cp_haltset, cpu_sid); /* * We may find the current CPU present in the halted cpuset * if we're in the context of an interrupt that occurred * before we had a chance to clear our bit in cpu_idle(). * Poking ourself is obviously unnecessary, since if * we're here, we're not halted. */ if (cpu != CPU) poke_cpu(cpu->cpu_id); return; } else { /* * This cpu isn't halted, but it's idle or undergoing a * context switch. No need to awaken anyone else. */ if (cpu->cpu_thread == cpu->cpu_idle_thread || cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) return; } /* * No need to wake up other CPUs if this is for a bound thread. */ if (bound) return; /* * The CPU specified for wakeup isn't currently halted, so check * to see if there are any other halted CPUs in the partition, * and if there are then awaken one. */ do { cpu_found = bitset_find(&cp->cp_haltset); if (cpu_found == (uint_t)-1) return; } while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0); if (cpu_found != CPU->cpu_seqid) { poke_cpu(cpu_seq[cpu_found]->cpu_id); } } #ifndef __xpv /* * Function called by CPU idle notification framework to check whether CPU * has been awakened. It will be called with interrupt disabled. * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle * notification framework. */ static void cpu_idle_mwait_check_wakeup(void *arg) { volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg; ASSERT(arg != NULL); if (*mcpu_mwait != MWAIT_HALTED) { /* * CPU has been awakened, notify CPU idle notification system. */ cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); } else { /* * Toggle interrupt flag to detect pending interrupts. * If interrupt happened, do_interrupt() will notify CPU idle * notification framework so no need to call cpu_idle_exit() * here. */ sti(); SMT_PAUSE(); cli(); } } /* * Idle the present CPU until awakened via touching its monitored line */ void cpu_idle_mwait(void) { volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait; cpu_t *cpup = CPU; processorid_t cpu_sid = cpup->cpu_seqid; cpupart_t *cp = cpup->cpu_part; int hset_update = 1; /* * Set our mcpu_mwait here, so we can tell if anyone tries to * wake us between now and when we call mwait. No other cpu will * attempt to set our mcpu_mwait until we add ourself to the halted * CPU bitmap. */ *mcpu_mwait = MWAIT_HALTED; /* * If this CPU is online, and there's multiple CPUs * in the system, then we should note our halting * by adding ourselves to the partition's halted CPU * bitmap. This allows other CPUs to find/awaken us when * work becomes available. */ if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) hset_update = 0; /* * Add ourselves to the partition's halted CPUs bitmap * and set our HALTED flag, if necessary. * * When a thread becomes runnable, it is placed on the queue * and then the halted CPU bitmap is checked to determine who * (if anyone) should be awakened. We therefore need to first * add ourselves to the bitmap, and and then check if there * is any work available. * * Note that memory barriers after updating the HALTED flag * are not necessary since an atomic operation (updating the bitmap) * immediately follows. On x86 the atomic operation acts as a * memory barrier for the update of cpu_disp_flags. */ if (hset_update) { cpup->cpu_disp_flags |= CPU_DISP_HALTED; bitset_atomic_add(&cp->cp_haltset, cpu_sid); } /* * Check to make sure there's really nothing to do. * Work destined for this CPU may become available after * this check. We'll be notified through the clearing of our * bit in the halted CPU bitmap, and a write to our mcpu_mwait. * * disp_anywork() checks disp_nrunnable, so we do not have to later. */ if (disp_anywork()) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } return; } /* * We're on our way to being halted. * To avoid a lost wakeup, arm the monitor before checking if another * cpu wrote to mcpu_mwait to wake us up. */ i86_monitor(mcpu_mwait, 0, 0); if (*mcpu_mwait == MWAIT_HALTED) { if (cpu_idle_enter(IDLE_STATE_C1, 0, cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) { if (*mcpu_mwait == MWAIT_HALTED) { i86_mwait(0, 0); } cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); } } /* * We're no longer halted */ if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } } /* * If "cpu" is halted in mwait, then wake it up clearing its halted bit in * advance. Otherwise, see if other CPUs in the cpu partition are halted and * need to be woken up so that they can steal the thread we placed on this CPU. * This function is only used on MP systems. */ static void cpu_wakeup_mwait(cpu_t *cp, int bound) { cpupart_t *cpu_part; uint_t cpu_found; processorid_t cpu_sid; cpu_part = cp->cpu_part; cpu_sid = cp->cpu_seqid; /* * Clear the halted bit for that CPU since it will be woken up * in a moment. */ if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) { /* * Clear the halted bit for that CPU since it will be * poked in a moment. */ bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid); /* * We may find the current CPU present in the halted cpuset * if we're in the context of an interrupt that occurred * before we had a chance to clear our bit in cpu_idle(). * Waking ourself is obviously unnecessary, since if * we're here, we're not halted. * * monitor/mwait wakeup via writing to our cache line is * harmless and less expensive than always checking if we * are waking ourself which is an uncommon case. */ MWAIT_WAKEUP(cp); /* write to monitored line */ return; } else { /* * This cpu isn't halted, but it's idle or undergoing a * context switch. No need to awaken anyone else. */ if (cp->cpu_thread == cp->cpu_idle_thread || cp->cpu_disp_flags & CPU_DISP_DONTSTEAL) return; } /* * No need to wake up other CPUs if the thread we just enqueued * is bound. */ if (bound || ncpus == 1) return; /* * See if there's any other halted CPUs. If there are, then * select one, and awaken it. * It's possible that after we find a CPU, somebody else * will awaken it before we get the chance. * In that case, look again. */ do { cpu_found = bitset_find(&cpu_part->cp_haltset); if (cpu_found == (uint_t)-1) return; } while (bitset_atomic_test_and_del(&cpu_part->cp_haltset, cpu_found) < 0); /* * Do not check if cpu_found is ourself as monitor/mwait * wakeup is cheap. */ MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */ } #endif void (*cpu_pause_handler)(volatile char *) = NULL; static int mp_disable_intr(int cpun) { /* * switch to the offline cpu */ affinity_set(cpun); /* * raise ipl to just below cross call */ splx(XC_SYS_PIL - 1); /* * set base spl to prevent the next swtch to idle from * lowering back to ipl 0 */ CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1)); set_base_spl(); affinity_clear(); return (DDI_SUCCESS); } static void mp_enable_intr(int cpun) { /* * switch to the online cpu */ affinity_set(cpun); /* * clear the interrupt active mask */ CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1)); set_base_spl(); (void) spl0(); affinity_clear(); } static void mach_get_platform(int owner) { void **srv_opsp; void **clt_opsp; int i; int total_ops; /* fix up psm ops */ srv_opsp = (void **)mach_set[0]; clt_opsp = (void **)mach_set[owner]; if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01) total_ops = sizeof (struct psm_ops_ver01) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1) /* no psm_notify_func */ total_ops = OFFSETOF(struct psm_ops, psm_notify_func) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2) /* no psm_timer funcs */ total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3) /* no psm_preshutdown function */ total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4) /* no psm_intr_ops function */ total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5) /* no psm_state function */ total_ops = OFFSETOF(struct psm_ops, psm_state) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6) /* no psm_cpu_ops function */ total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) / sizeof (void (*)(void)); else total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void)); /* * Save the version of the PSM module, in case we need to * behave differently based on version. */ mach_ver[0] = mach_ver[owner]; for (i = 0; i < total_ops; i++) if (clt_opsp[i] != NULL) srv_opsp[i] = clt_opsp[i]; } static void mach_construct_info() { struct psm_sw *swp; int mach_cnt[PSM_OWN_OVERRIDE+1] = {0}; int conflict_owner = 0; if (psmsw->psw_forw == psmsw) panic("No valid PSM modules found"); mutex_enter(&psmsw_lock); for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { if (!(swp->psw_flag & PSM_MOD_IDENTIFY)) continue; mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops; mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version; mach_cnt[swp->psw_infop->p_owner]++; } mutex_exit(&psmsw_lock); mach_get_platform(PSM_OWN_SYS_DEFAULT); /* check to see are there any conflicts */ if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1) conflict_owner = PSM_OWN_EXCLUSIVE; if (mach_cnt[PSM_OWN_OVERRIDE] > 1) conflict_owner = PSM_OWN_OVERRIDE; if (conflict_owner) { /* remove all psm modules except uppc */ cmn_err(CE_WARN, "Conflicts detected on the following PSM modules:"); mutex_enter(&psmsw_lock); for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { if (swp->psw_infop->p_owner == conflict_owner) cmn_err(CE_WARN, "%s ", swp->psw_infop->p_mach_idstring); } mutex_exit(&psmsw_lock); cmn_err(CE_WARN, "Setting the system back to SINGLE processor mode!"); cmn_err(CE_WARN, "Please edit /etc/mach to remove the invalid PSM module."); return; } if (mach_set[PSM_OWN_EXCLUSIVE]) mach_get_platform(PSM_OWN_EXCLUSIVE); if (mach_set[PSM_OWN_OVERRIDE]) mach_get_platform(PSM_OWN_OVERRIDE); } static void mach_init() { struct psm_ops *pops; mach_construct_info(); pops = mach_set[0]; /* register the interrupt and clock initialization rotuines */ picinitf = mach_picinit; clkinitf = mach_clkinit; psm_get_clockirq = pops->psm_get_clockirq; /* register the interrupt setup code */ slvltovect = mach_softlvl_to_vect; addspl = pops->psm_addspl; delspl = pops->psm_delspl; if (pops->psm_translate_irq) psm_translate_irq = pops->psm_translate_irq; if (pops->psm_intr_ops) psm_intr_ops = pops->psm_intr_ops; #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4) /* * Time-of-day functionality now handled in TOD modules. * (Warn about PSM modules that think that we're going to use * their ops vectors.) */ if (pops->psm_tod_get) cmn_err(CE_WARN, "obsolete psm_tod_get op %p", (void *)pops->psm_tod_get); if (pops->psm_tod_set) cmn_err(CE_WARN, "obsolete psm_tod_set op %p", (void *)pops->psm_tod_set); #endif if (pops->psm_notify_error) { psm_notify_error = mach_notify_error; notify_error = pops->psm_notify_error; } (*pops->psm_softinit)(); /* * Initialize the dispatcher's function hooks to enable CPU halting * when idle. Set both the deep-idle and non-deep-idle hooks. * * Assume we can use power saving deep-idle loop cpu_idle_adaptive. * Platform deep-idle driver will reset our idle loop to * non_deep_idle_cpu if power saving deep-idle feature is not available. * * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle) * or idle_cpu_prefer_mwait is not set. * Allocate monitor/mwait buffer for cpu0. */ #ifndef __xpv non_deep_idle_disp_enq_thread = disp_enq_thread; #endif if (idle_cpu_use_hlt) { idle_cpu = cpu_idle_adaptive; CPU->cpu_m.mcpu_idle_cpu = cpu_idle; #ifndef __xpv if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && idle_cpu_prefer_mwait) { CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); /* * Protect ourself from insane mwait size. */ if (CPU->cpu_m.mcpu_mwait == NULL) { #ifdef DEBUG cmn_err(CE_NOTE, "Using hlt idle. Cannot " "handle cpu 0 mwait size."); #endif idle_cpu_prefer_mwait = 0; CPU->cpu_m.mcpu_idle_cpu = cpu_idle; } else { CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; } } else { CPU->cpu_m.mcpu_idle_cpu = cpu_idle; } non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu; /* * Disable power saving deep idle loop? */ if (idle_cpu_no_deep_c) { idle_cpu = non_deep_idle_cpu; } #endif } mach_smpinit(); } static void mach_smpinit(void) { struct psm_ops *pops; processorid_t cpu_id; int cnt; cpuset_t cpumask; pops = mach_set[0]; CPUSET_ZERO(cpumask); cpu_id = -1; cpu_id = (*pops->psm_get_next_processorid)(cpu_id); /* * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled * by CPU DR driver at runtime. */ for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) { CPUSET_ADD(cpumask, cpu_id); cpu_id = (*pops->psm_get_next_processorid)(cpu_id); } mp_cpus = cpumask; /* MP related routines */ ap_mlsetup = pops->psm_post_cpu_start; send_dirintf = pops->psm_send_ipi; /* optional MP related routines */ if (pops->psm_shutdown) psm_shutdownf = pops->psm_shutdown; if (pops->psm_preshutdown) psm_preshutdownf = pops->psm_preshutdown; if (pops->psm_notify_func) psm_notifyf = pops->psm_notify_func; if (pops->psm_set_idlecpu) psm_set_idle_cpuf = pops->psm_set_idlecpu; if (pops->psm_unset_idlecpu) psm_unset_idle_cpuf = pops->psm_unset_idlecpu; psm_clkinit = pops->psm_clkinit; if (pops->psm_timer_reprogram) psm_timer_reprogram = pops->psm_timer_reprogram; if (pops->psm_timer_enable) psm_timer_enable = pops->psm_timer_enable; if (pops->psm_timer_disable) psm_timer_disable = pops->psm_timer_disable; if (pops->psm_post_cyclic_setup) psm_post_cyclic_setup = pops->psm_post_cyclic_setup; if (pops->psm_state) psm_state = pops->psm_state; /* * Set these vectors here so they can be used by Suspend/Resume * on UP machines. */ if (pops->psm_disable_intr) psm_disable_intr = pops->psm_disable_intr; if (pops->psm_enable_intr) psm_enable_intr = pops->psm_enable_intr; /* check for multiple CPUs */ if (cnt < 2 && plat_dr_support_cpu() == B_FALSE) return; /* check for MP platforms */ if (pops->psm_cpu_start == NULL) return; /* * Set the dispatcher hook to enable cpu "wake up" * when a thread becomes runnable. */ if (idle_cpu_use_hlt) { disp_enq_thread = cpu_wakeup; #ifndef __xpv if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && idle_cpu_prefer_mwait) disp_enq_thread = cpu_wakeup_mwait; non_deep_idle_disp_enq_thread = disp_enq_thread; #endif } psm_get_ipivect = pops->psm_get_ipivect; psm_get_pir_ipivect = pops->psm_get_pir_ipivect; psm_send_pir_ipi = pops->psm_send_pir_ipi; (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr", (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI), NULL, NULL, NULL, NULL); (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE); } static void mach_picinit() { struct psm_ops *pops; pops = mach_set[0]; /* register the interrupt handlers */ setlvl = pops->psm_intr_enter; setlvlx = pops->psm_intr_exit; /* initialize the interrupt hardware */ (*pops->psm_picinit)(); /* set interrupt mask for current ipl */ setspl = pops->psm_setspl; cli(); setspl(CPU->cpu_pri); } uint_t cpu_freq; /* MHz */ uint64_t cpu_freq_hz; /* measured (in hertz) */ #define MEGA_HZ 1000000 #ifdef __xpv int xpv_cpufreq_workaround = 1; int xpv_cpufreq_verbose = 0; #else /* __xpv */ static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks) { uint64_t cpu_hz; if ((pit_counter == 0) || (*processor_clks == 0) || (*processor_clks > (((uint64_t)-1) / PIT_HZ))) return (0); cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter; return (cpu_hz); } #endif /* __xpv */ static uint64_t mach_getcpufreq(void) { #if defined(__xpv) vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time; uint64_t cpu_hz; /* * During dom0 bringup, it was noted that on at least one older * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul * value that is quite wrong (the 3.06GHz clock was reported * as 4.77GHz) * * The curious thing is, that if you stop the kernel at entry, * breakpoint here and inspect the value with kmdb, the value * is correct - but if you don't stop and simply enable the * printf statement (below), you can see the bad value printed * here. Almost as if something kmdb did caused the hypervisor to * figure it out correctly. And, note that the hypervisor * eventually -does- figure it out correctly ... if you look at * the field later in the life of dom0, it is correct. * * For now, on dom0, we employ a slightly cheesy workaround of * using the DOM0_PHYSINFO hypercall. */ if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) { cpu_hz = 1000 * xpv_cpu_khz(); } else { cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul; if (vti->tsc_shift < 0) cpu_hz <<= -vti->tsc_shift; else cpu_hz >>= vti->tsc_shift; } if (xpv_cpufreq_verbose) printf("mach_getcpufreq: system_mul 0x%x, shift %d, " "cpu_hz %" PRId64 "Hz\n", vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz); return (cpu_hz); #else /* __xpv */ uint32_t pit_counter; uint64_t processor_clks; if (is_x86_feature(x86_featureset, X86FSET_TSC)) { /* * We have a TSC. freq_tsc() knows how to measure the number * of clock cycles sampled against the PIT. */ ulong_t flags = clear_int_flag(); processor_clks = freq_tsc(&pit_counter); restore_int_flag(flags); return (mach_calchz(pit_counter, &processor_clks)); } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) { #if defined(__amd64) panic("mach_getcpufreq: no TSC!"); #elif defined(__i386) /* * We are a Cyrix based on a 6x86 core or an Intel Pentium * for which freq_notsc() knows how to measure the number of * elapsed clock cycles sampled against the PIT */ ulong_t flags = clear_int_flag(); processor_clks = freq_notsc(&pit_counter); restore_int_flag(flags); return (mach_calchz(pit_counter, &processor_clks)); #endif /* __i386 */ } /* We do not know how to calculate cpu frequency for this cpu. */ return (0); #endif /* __xpv */ } /* * If the clock speed of a cpu is found to be reported incorrectly, do not add * to this array, instead improve the accuracy of the algorithm that determines * the clock speed of the processor or extend the implementation to support the * vendor as appropriate. This is here only to support adjusting the speed on * older slower processors that mach_fixcpufreq() would not be able to account * for otherwise. */ static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 }; /* * On fast processors the clock frequency that is measured may be off by * a few MHz from the value printed on the part. This is a combination of * the factors that for such fast parts being off by this much is within * the tolerances for manufacture and because of the difficulties in the * measurement that can lead to small error. This function uses some * heuristics in order to tweak the value that was measured to match what * is most likely printed on the part. * * Some examples: * AMD Athlon 1000 mhz measured as 998 mhz * Intel Pentium III Xeon 733 mhz measured as 731 mhz * Intel Pentium IV 1500 mhz measured as 1495mhz * * If in the future this function is no longer sufficient to correct * for the error in the measurement, then the algorithm used to perform * the measurement will have to be improved in order to increase accuracy * rather than adding horrible and questionable kludges here. * * This is called after the cyclics subsystem because of the potential * that the heuristics within may give a worse estimate of the clock * frequency than the value that was measured. */ static void mach_fixcpufreq(void) { uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i; freq = (uint32_t)cpu_freq; /* * Find the nearest integer multiple of 200/3 (about 66) MHz to the * measured speed taking into account that the 667 MHz parts were * the first to round-up. */ mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200); near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3); delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66); /* Find the nearest integer multiple of 50 MHz to the measured speed */ mul = (freq + 25) / 50; near50 = mul * 50; delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50); /* Find the closer of the two */ if (delta66 < delta50) { fixed = near66; delta = delta66; } else { fixed = near50; delta = delta50; } if (fixed > INT_MAX) return; /* * Some older parts have a core clock frequency that is not an * integral multiple of 50 or 66 MHz. Check if one of the old * clock frequencies is closer to the measured value than any * of the integral multiples of 50 an 66, and if so set fixed * and delta appropriately to represent the closest value. */ i = sizeof (x86_cpu_freq) / sizeof (int); while (i > 0) { i--; if (x86_cpu_freq[i] <= freq) { mul = freq - x86_cpu_freq[i]; if (mul < delta) { fixed = x86_cpu_freq[i]; delta = mul; } break; } mul = x86_cpu_freq[i] - freq; if (mul < delta) { fixed = x86_cpu_freq[i]; delta = mul; } } /* * Set a reasonable maximum for how much to correct the measured * result by. This check is here to prevent the adjustment made * by this function from being more harm than good. It is entirely * possible that in the future parts will be made that are not * integral multiples of 66 or 50 in clock frequency or that * someone may overclock a part to some odd frequency. If the * measured value is farther from the corrected value than * allowed, then assume the corrected value is in error and use * the measured value. */ if (6 < delta) return; cpu_freq = (int)fixed; } static int machhztomhz(uint64_t cpu_freq_hz) { uint64_t cpu_mhz; /* Round to nearest MHZ */ cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ; if (cpu_mhz > INT_MAX) return (0); return ((int)cpu_mhz); } static int mach_clkinit(int preferred_mode, int *set_mode) { struct psm_ops *pops; int resolution; pops = mach_set[0]; cpu_freq_hz = mach_getcpufreq(); cpu_freq = machhztomhz(cpu_freq_hz); if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0)) tsc_gethrtime_enable = 0; #ifndef __xpv if (tsc_gethrtime_enable) { tsc_hrtimeinit(cpu_freq_hz); } else #endif { if (pops->psm_hrtimeinit) (*pops->psm_hrtimeinit)(); gethrtimef = pops->psm_gethrtime; gethrtimeunscaledf = gethrtimef; /* scalehrtimef will remain dummy */ } mach_fixcpufreq(); if (mach_ver[0] >= PSM_INFO_VER01_3) { if (preferred_mode == TIMER_ONESHOT) { resolution = (*pops->psm_clkinit)(0); if (resolution != 0) { *set_mode = TIMER_ONESHOT; return (resolution); } } /* * either periodic mode was requested or could not set to * one-shot mode */ resolution = (*pops->psm_clkinit)(hz); /* * psm should be able to do periodic, so we do not check * for return value of psm_clkinit here. */ *set_mode = TIMER_PERIODIC; return (resolution); } else { /* * PSMI interface prior to PSMI_3 does not define a return * value for psm_clkinit, so the return value is ignored. */ (void) (*pops->psm_clkinit)(hz); *set_mode = TIMER_PERIODIC; return (nsec_per_tick); } } /*ARGSUSED*/ static int mach_softlvl_to_vect(int ipl) { setsoftint = av_set_softint_pending; kdisetsoftint = kdi_av_set_softint_pending; return (PSM_SV_SOFTWARE); } #ifdef DEBUG /* * This is here to allow us to simulate cpus that refuse to start. */ cpuset_t cpufailset; #endif int mach_cpu_start(struct cpu *cp, void *ctx) { struct psm_ops *pops = mach_set[0]; processorid_t id = cp->cpu_id; #ifdef DEBUG if (CPU_IN_SET(cpufailset, id)) return (0); #endif return ((*pops->psm_cpu_start)(id, ctx)); } int mach_cpuid_start(processorid_t id, void *ctx) { struct psm_ops *pops = mach_set[0]; #ifdef DEBUG if (CPU_IN_SET(cpufailset, id)) return (0); #endif return ((*pops->psm_cpu_start)(id, ctx)); } int mach_cpu_stop(cpu_t *cp, void *ctx) { struct psm_ops *pops = mach_set[0]; psm_cpu_request_t request; if (pops->psm_cpu_ops == NULL) { return (ENOTSUP); } ASSERT(cp->cpu_id != -1); request.pcr_cmd = PSM_CPU_STOP; request.req.cpu_stop.cpuid = cp->cpu_id; request.req.cpu_stop.ctx = ctx; return ((*pops->psm_cpu_ops)(&request)); } int mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp) { int rc; struct psm_ops *pops = mach_set[0]; psm_cpu_request_t request; if (pops->psm_cpu_ops == NULL) { return (ENOTSUP); } request.pcr_cmd = PSM_CPU_ADD; request.req.cpu_add.argp = argp; request.req.cpu_add.cpuid = -1; rc = (*pops->psm_cpu_ops)(&request); if (rc == 0) { ASSERT(request.req.cpu_add.cpuid != -1); *cpuidp = request.req.cpu_add.cpuid; } return (rc); } int mach_cpu_remove(processorid_t cpuid) { struct psm_ops *pops = mach_set[0]; psm_cpu_request_t request; if (pops->psm_cpu_ops == NULL) { return (ENOTSUP); } request.pcr_cmd = PSM_CPU_REMOVE; request.req.cpu_remove.cpuid = cpuid; return ((*pops->psm_cpu_ops)(&request)); } /* * Default handler to create device node for CPU. * One reference count will be held on created device node. */ static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp) { int rv, circ; dev_info_t *dip; static kmutex_t cpu_node_lock; static dev_info_t *cpu_nex_devi = NULL; ASSERT(cp != NULL); ASSERT(dipp != NULL); *dipp = NULL; if (cpu_nex_devi == NULL) { mutex_enter(&cpu_node_lock); /* First check whether cpus exists. */ cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0); /* Create cpus if it doesn't exist. */ if (cpu_nex_devi == NULL) { ndi_devi_enter(ddi_root_node(), &circ); rv = ndi_devi_alloc(ddi_root_node(), "cpus", (pnode_t)DEVI_SID_NODEID, &dip); if (rv != NDI_SUCCESS) { mutex_exit(&cpu_node_lock); cmn_err(CE_CONT, "?failed to create cpu nexus device.\n"); return (PSM_FAILURE); } ASSERT(dip != NULL); (void) ndi_devi_online(dip, 0); ndi_devi_exit(ddi_root_node(), circ); cpu_nex_devi = dip; } mutex_exit(&cpu_node_lock); } /* * create a child node for cpu identified as 'cpu_id' */ ndi_devi_enter(cpu_nex_devi, &circ); dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1); if (dip == NULL) { cmn_err(CE_CONT, "?failed to create device node for cpu%d.\n", cp->cpu_id); rv = PSM_FAILURE; } else { *dipp = dip; (void) ndi_hold_devi(dip); rv = PSM_SUCCESS; } ndi_devi_exit(cpu_nex_devi, circ); return (rv); } /* * Create cpu device node in device tree and online it. * Return created dip with reference count held if requested. */ int mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp) { int rv; dev_info_t *dip = NULL; ASSERT(psm_cpu_create_devinfo != NULL); rv = psm_cpu_create_devinfo(cp, &dip); if (rv == PSM_SUCCESS) { cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi); /* Recursively attach driver for parent nexus device. */ if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) == DDI_SUCCESS) { /* Configure cpu itself and descendants. */ (void) ndi_devi_online(dip, NDI_ONLINE_ATTACH | NDI_CONFIG); } if (dipp != NULL) { *dipp = dip; } else { (void) ndi_rele_devi(dip); } } return (rv); } /* * The dipp contains one of following values on return: * - NULL if no device node found * - pointer to device node if found */ int mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp) { *dipp = NULL; if (psm_cpu_get_devinfo != NULL) { if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) { return (PSM_SUCCESS); } } return (PSM_FAILURE); } /*ARGSUSED*/ static int mach_translate_irq(dev_info_t *dip, int irqno) { return (irqno); /* default to NO translation */ } static void mach_notify_error(int level, char *errmsg) { /* * SL_FATAL is pass in once panicstr is set, deliver it * as CE_PANIC. Also, translate SL_ codes back to CE_ * codes for the psmi handler */ if (level & SL_FATAL) (*notify_error)(CE_PANIC, errmsg); else if (level & SL_WARN) (*notify_error)(CE_WARN, errmsg); else if (level & SL_NOTE) (*notify_error)(CE_NOTE, errmsg); else if (level & SL_CONSOLE) (*notify_error)(CE_CONT, errmsg); } /* * It provides the default basic intr_ops interface for the new DDI * interrupt framework if the PSM doesn't have one. * * Input: * dip - pointer to the dev_info structure of the requested device * hdlp - pointer to the internal interrupt handle structure for the * requested interrupt * intr_op - opcode for this call * result - pointer to the integer that will hold the result to be * passed back if return value is PSM_SUCCESS * * Output: * return value is either PSM_SUCCESS or PSM_FAILURE */ static int mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, psm_intr_op_t intr_op, int *result) { struct intrspec *ispec; switch (intr_op) { case PSM_INTR_OP_CHECK_MSI: *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX); break; case PSM_INTR_OP_ALLOC_VECTORS: if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) *result = 1; else *result = 0; break; case PSM_INTR_OP_FREE_VECTORS: break; case PSM_INTR_OP_NAVAIL_VECTORS: if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) *result = 1; else *result = 0; break; case PSM_INTR_OP_XLATE_VECTOR: ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; *result = psm_translate_irq(dip, ispec->intrspec_vec); break; case PSM_INTR_OP_GET_CAP: *result = 0; break; case PSM_INTR_OP_GET_PENDING: case PSM_INTR_OP_CLEAR_MASK: case PSM_INTR_OP_SET_MASK: case PSM_INTR_OP_GET_SHARED: case PSM_INTR_OP_SET_PRI: case PSM_INTR_OP_SET_CAP: case PSM_INTR_OP_SET_CPU: case PSM_INTR_OP_GET_INTR: default: return (PSM_FAILURE); } return (PSM_SUCCESS); } /* * Return 1 if CMT load balancing policies should be * implemented across instances of the specified hardware * sharing relationship. */ int pg_cmt_load_bal_hw(pghw_type_t hw) { if (hw == PGHW_IPIPE || hw == PGHW_FPU || hw == PGHW_PROCNODE || hw == PGHW_CHIP) return (1); else return (0); } /* * Return 1 if thread affinity polices should be implemented * for instances of the specifed hardware sharing relationship. */ int pg_cmt_affinity_hw(pghw_type_t hw) { if (hw == PGHW_CACHE) return (1); else return (0); } /* * Return number of counter events requested to measure hardware capacity and * utilization and setup CPC requests for specified CPU as needed * * May return 0 when platform or processor specific code knows that no CPC * events should be programmed on this CPU or -1 when platform or processor * specific code doesn't know which counter events are best to use and common * code should decide for itself */ int /* LINTED E_FUNC_ARG_UNUSED */ cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs) { const char *impl_name; /* * Return error if pcbe_ops not set */ if (pcbe_ops == NULL) return (-1); /* * Return that no CPC events should be programmed on hyperthreaded * Pentium 4 and return error for all other x86 processors to tell * common code to decide what counter events to program on those CPUs * for measuring hardware capacity and utilization */ impl_name = pcbe_ops->pcbe_impl_name(); if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0) return (0); else return (-1); }