1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2018 Gary Mills
23 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
31 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
32 /* All Rights Reserved */
33
34 /* Copyright (c) 1987, 1988 Microsoft Corporation */
35 /* All Rights Reserved */
36
37 #include <sys/param.h>
38 #include <sys/time.h>
39 #include <sys/systm.h>
40
41 #include <sys/cpuvar.h>
42 #include <sys/clock.h>
43 #include <sys/debug.h>
44 #include <sys/rtc.h>
45 #include <sys/archsystm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/lockstat.h>
48 #include <sys/stat.h>
49 #include <sys/sunddi.h>
50 #include <sys/ddi.h>
51
52 #include <sys/acpi/acpi.h>
53 #include <sys/acpica.h>
54
55 static int todpc_rtcget(unsigned char *buf);
56 static void todpc_rtcput(unsigned char *buf);
57
58 #define CLOCK_RES 1000 /* 1 microsec in nanosecs */
59
60 int clock_res = CLOCK_RES;
61
62 /*
63 * The minimum sleep time till an alarm can be fired.
64 * This can be tuned in /etc/system, but if the value is too small,
65 * there is a danger that it will be missed if it takes too long to
66 * get from the set point to sleep. Or that it can fire quickly, and
67 * generate a power spike on the hardware. And small values are
68 * probably only usefull for test setups.
69 */
70 int clock_min_alarm = 4;
71
72 /*
73 * Machine-dependent clock routines.
74 */
75
76 extern long gmt_lag;
77
78 struct rtc_offset {
79 int8_t loaded;
80 uint8_t day_alrm;
81 uint8_t mon_alrm;
82 uint8_t century;
83 };
84
85 static struct rtc_offset pc_rtc_offset = {0, 0, 0, 0};
86
87
88 /*
89 * Entry point for ACPI to pass RTC or other clock values that
90 * are useful to TOD.
91 */
92 void
pc_tod_set_rtc_offsets(ACPI_TABLE_FADT * fadt)93 pc_tod_set_rtc_offsets(ACPI_TABLE_FADT *fadt)
94 {
95 int ok = 0;
96
97 /*
98 * ASSERT is for debugging, but we don't want the machine
99 * falling over because for some reason we didn't get a valid
100 * pointer.
101 */
102 ASSERT(fadt);
103 if (fadt == NULL) {
104 return;
105 }
106
107 if (fadt->DayAlarm) {
108 pc_rtc_offset.day_alrm = fadt->DayAlarm;
109 ok = 1;
110 }
111
112 if (fadt->MonthAlarm) {
113 pc_rtc_offset.mon_alrm = fadt->MonthAlarm;
114 ok = 1;
115 }
116
117 if (fadt->Century) {
118 pc_rtc_offset.century = fadt->Century;
119 ok = 1;
120 }
121
122 pc_rtc_offset.loaded = ok;
123 }
124
125
126 /*
127 * Write the specified time into the clock chip.
128 * Must be called with tod_lock held.
129 */
130 /*ARGSUSED*/
131 static void
todpc_set(tod_ops_t * top,timestruc_t ts)132 todpc_set(tod_ops_t *top, timestruc_t ts)
133 {
134 todinfo_t tod = utc_to_tod(ts.tv_sec - ggmtl());
135 struct rtc_t rtc;
136
137 ASSERT(MUTEX_HELD(&tod_lock));
138
139 if (todpc_rtcget((unsigned char *)&rtc))
140 return;
141
142 /*
143 * rtc bytes are in binary-coded decimal, so we have to convert.
144 * We assume that we wrap the rtc year back to zero at 2000.
145 */
146 /* LINTED: YRBASE = 0 for x86 */
147 tod.tod_year -= YRBASE;
148 if (tod.tod_year >= 100) {
149 tod.tod_year -= 100;
150 rtc.rtc_century = BYTE_TO_BCD(20); /* 20xx year */
151 } else
152 rtc.rtc_century = BYTE_TO_BCD(19); /* 19xx year */
153 rtc.rtc_yr = BYTE_TO_BCD(tod.tod_year);
154 rtc.rtc_mon = BYTE_TO_BCD(tod.tod_month);
155 rtc.rtc_dom = BYTE_TO_BCD(tod.tod_day);
156 /* dow < 10, so no conversion */
157 rtc.rtc_dow = (unsigned char)tod.tod_dow;
158 rtc.rtc_hr = BYTE_TO_BCD(tod.tod_hour);
159 rtc.rtc_min = BYTE_TO_BCD(tod.tod_min);
160 rtc.rtc_sec = BYTE_TO_BCD(tod.tod_sec);
161
162 todpc_rtcput((unsigned char *)&rtc);
163 }
164
165 /*
166 * Read the current time from the clock chip and convert to UNIX form.
167 * Assumes that the year in the clock chip is valid.
168 * Must be called with tod_lock held.
169 */
170 /*ARGSUSED*/
171 static timestruc_t
todpc_get(tod_ops_t * top)172 todpc_get(tod_ops_t *top)
173 {
174 timestruc_t ts;
175 todinfo_t tod;
176 struct rtc_t rtc;
177 int compute_century;
178 static int century_warn = 1; /* only warn once, not each time called */
179 static int range_warn = 1;
180
181 ASSERT(MUTEX_HELD(&tod_lock));
182
183 if (todpc_rtcget((unsigned char *)&rtc)) {
184 tod_status_set(TOD_GET_FAILED);
185 return (hrestime);
186 }
187
188 /* assume that we wrap the rtc year back to zero at 2000 */
189 tod.tod_year = BCD_TO_BYTE(rtc.rtc_yr);
190 if (tod.tod_year < 69) {
191 if (range_warn && tod.tod_year > 38) {
192 cmn_err(CE_WARN, "hardware real-time clock is out "
193 "of range -- time needs to be reset");
194 range_warn = 0;
195 }
196 tod.tod_year += 100 + YRBASE; /* 20xx year */
197 compute_century = 20;
198 } else {
199 /* LINTED: YRBASE = 0 for x86 */
200 tod.tod_year += YRBASE; /* 19xx year */
201 compute_century = 19;
202 }
203 if (century_warn && BCD_TO_BYTE(rtc.rtc_century) != compute_century) {
204 cmn_err(CE_NOTE,
205 "The hardware real-time clock appears to have the "
206 "wrong century: %d.\nSolaris will still operate "
207 "correctly, but other OS's/firmware agents may "
208 "not.\nUse date(1) to set the date to the current "
209 "time to correct the RTC.",
210 BCD_TO_BYTE(rtc.rtc_century));
211 century_warn = 0;
212 }
213 tod.tod_month = BCD_TO_BYTE(rtc.rtc_mon);
214 tod.tod_day = BCD_TO_BYTE(rtc.rtc_dom);
215 tod.tod_dow = rtc.rtc_dow; /* dow < 10, so no conversion needed */
216 tod.tod_hour = BCD_TO_BYTE(rtc.rtc_hr);
217 tod.tod_min = BCD_TO_BYTE(rtc.rtc_min);
218 tod.tod_sec = BCD_TO_BYTE(rtc.rtc_sec);
219
220 /* read was successful so ensure failure flag is clear */
221 tod_status_clear(TOD_GET_FAILED);
222
223 ts.tv_sec = tod_to_utc(tod) + ggmtl();
224 ts.tv_nsec = 0;
225
226 return (ts);
227 }
228
229 #include <sys/promif.h>
230 /*
231 * Write the specified wakeup alarm into the clock chip.
232 * Must be called with tod_lock held.
233 */
234 void
235 /*ARGSUSED*/
todpc_setalarm(tod_ops_t * top,int nsecs)236 todpc_setalarm(tod_ops_t *top, int nsecs)
237 {
238 struct rtc_t rtc;
239 int delta, asec, amin, ahr, adom, amon;
240 int day_alrm = pc_rtc_offset.day_alrm;
241 int mon_alrm = pc_rtc_offset.mon_alrm;
242
243 ASSERT(MUTEX_HELD(&tod_lock));
244
245 /* A delay of zero is not allowed */
246 if (nsecs == 0)
247 return;
248
249 /* Make sure that we delay no less than the minimum time */
250 if (nsecs < clock_min_alarm)
251 nsecs = clock_min_alarm;
252
253 if (todpc_rtcget((unsigned char *)&rtc))
254 return;
255
256 /*
257 * Compute alarm secs, mins and hrs, and where appropriate, dom
258 * and mon. rtc bytes are in binary-coded decimal, so we have
259 * to convert.
260 */
261 delta = nsecs + BCD_TO_BYTE(rtc.rtc_sec);
262 asec = delta % 60;
263
264 delta = (delta / 60) + BCD_TO_BYTE(rtc.rtc_min);
265 amin = delta % 60;
266
267 delta = (delta / 60) + BCD_TO_BYTE(rtc.rtc_hr);
268 ahr = delta % 24;
269
270 if (day_alrm == 0 && delta >= 24) {
271 prom_printf("No day alarm - set to end of today!\n");
272 asec = 59;
273 amin = 59;
274 ahr = 23;
275 } else {
276 int mon = BCD_TO_BYTE(rtc.rtc_mon);
277 static int dpm[] =
278 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
279
280 adom = (delta / 24) + BCD_TO_BYTE(rtc.rtc_dom);
281
282 if (mon_alrm == 0) {
283 if (adom > dpm[mon]) {
284 prom_printf("No mon alarm - "
285 "set to end of current month!\n");
286 asec = 59;
287 amin = 59;
288 ahr = 23;
289 adom = dpm[mon];
290 }
291 } else {
292 for (amon = mon;
293 amon <= 12 && adom > dpm[amon]; amon++) {
294 adom -= dpm[amon];
295 }
296 if (amon > 12) {
297 prom_printf("Alarm too far in future - "
298 "set to end of current year!\n");
299 asec = 59;
300 amin = 59;
301 ahr = 23;
302 adom = dpm[12];
303 amon = 12;
304 }
305 rtc.rtc_amon = BYTE_TO_BCD(amon);
306 }
307
308 rtc.rtc_adom = BYTE_TO_BCD(adom);
309 }
310
311 rtc.rtc_asec = BYTE_TO_BCD(asec);
312 rtc.rtc_amin = BYTE_TO_BCD(amin);
313 rtc.rtc_ahr = BYTE_TO_BCD(ahr);
314
315 rtc.rtc_statusb |= RTC_AIE; /* Enable alarm interrupt */
316
317 todpc_rtcput((unsigned char *)&rtc);
318 }
319
320 /*
321 * Clear an alarm. This is effectively setting an alarm of 0.
322 */
323 void
324 /*ARGSUSED*/
todpc_clralarm(tod_ops_t * top)325 todpc_clralarm(tod_ops_t *top)
326 {
327 mutex_enter(&tod_lock);
328 todpc_setalarm(top, 0);
329 mutex_exit(&tod_lock);
330 }
331
332 /*
333 * Routine to read contents of real time clock to the specified buffer.
334 * Returns ENXIO if clock not valid, or EAGAIN if clock data cannot be read
335 * else 0.
336 * Some RTC hardware is very slow at asserting the validity flag on
337 * startup. The routine will busy wait for the RTC to become valid.
338 * The routine will also busy wait for the Update-In-Progress flag to clear.
339 * On completion of the reads the Seconds register is re-read and the
340 * UIP flag is rechecked to confirm that an clock update did not occur
341 * during the accesses. Routine will error exit after 256 attempts.
342 * (See bugid 1158298.)
343 * Routine returns RTC_NREG (which is 15) bytes of data, as given in the
344 * technical reference. This data includes both time and status registers.
345 */
346
347 static int
todpc_rtcget(unsigned char * buf)348 todpc_rtcget(unsigned char *buf)
349 {
350 unsigned char reg;
351 int i;
352 int uip_try = 256;
353 int vrt_try = 512;
354 unsigned char *rawp;
355 unsigned char century = RTC_CENTURY;
356 unsigned char day_alrm;
357 unsigned char mon_alrm;
358
359 ASSERT(MUTEX_HELD(&tod_lock));
360
361 day_alrm = pc_rtc_offset.day_alrm;
362 mon_alrm = pc_rtc_offset.mon_alrm;
363 if (pc_rtc_offset.century != 0) {
364 century = pc_rtc_offset.century;
365 }
366
367 for (;;) {
368 if (vrt_try-- < 0)
369 return (ENXIO);
370 outb(RTC_ADDR, RTC_D); /* check if clock valid */
371 reg = inb(RTC_DATA);
372 if ((reg & RTC_VRT) != 0)
373 break;
374 drv_usecwait(5000); /* Delay for 5000 us */
375 }
376
377
378 checkuip:
379 if (uip_try-- < 0)
380 return (EAGAIN);
381 outb(RTC_ADDR, RTC_A); /* check if update in progress */
382 reg = inb(RTC_DATA);
383 if (reg & RTC_UIP) {
384 tenmicrosec();
385 goto checkuip;
386 }
387
388 for (i = 0, rawp = buf; i < RTC_NREG; i++) {
389 outb(RTC_ADDR, i);
390 *rawp++ = inb(RTC_DATA);
391 }
392 outb(RTC_ADDR, century); /* do century */
393 ((struct rtc_t *)buf)->rtc_century = inb(RTC_DATA);
394
395 if (day_alrm > 0) {
396 outb(RTC_ADDR, day_alrm);
397 ((struct rtc_t *)buf)->rtc_adom = inb(RTC_DATA) & 0x3f;
398 }
399 if (mon_alrm > 0) {
400 outb(RTC_ADDR, mon_alrm);
401 ((struct rtc_t *)buf)->rtc_amon = inb(RTC_DATA);
402 }
403
404 outb(RTC_ADDR, 0); /* re-read Seconds register */
405 reg = inb(RTC_DATA);
406 if (reg != ((struct rtc_t *)buf)->rtc_sec ||
407 (((struct rtc_t *)buf)->rtc_statusa & RTC_UIP))
408 /* update occured during reads */
409 goto checkuip;
410
411 return (0);
412 }
413
414 /*
415 * This routine writes the contents of the given buffer to the real time
416 * clock. It is given RTC_NREGP bytes of data, which are the 10 bytes used
417 * to write the time and set the alarm. It should be called with the priority
418 * raised to 5.
419 */
420 static void
todpc_rtcput(unsigned char * buf)421 todpc_rtcput(unsigned char *buf)
422 {
423 unsigned char reg;
424 int i;
425 unsigned char century = RTC_CENTURY;
426 unsigned char day_alrm = pc_rtc_offset.day_alrm;
427 unsigned char mon_alrm = pc_rtc_offset.mon_alrm;
428 unsigned char tmp;
429
430 if (pc_rtc_offset.century != 0) {
431 century = pc_rtc_offset.century;
432 }
433
434 outb(RTC_ADDR, RTC_B);
435 reg = inb(RTC_DATA);
436 outb(RTC_ADDR, RTC_B);
437 outb(RTC_DATA, reg | RTC_SET); /* allow time set now */
438 for (i = 0; i < RTC_NREGP; i++) { /* set the time */
439 outb(RTC_ADDR, i);
440 outb(RTC_DATA, buf[i]);
441 }
442 outb(RTC_ADDR, century); /* do century */
443 outb(RTC_DATA, ((struct rtc_t *)buf)->rtc_century);
444
445 if (day_alrm > 0) {
446 outb(RTC_ADDR, day_alrm);
447 /* preserve RTC_VRT bit; some virt envs accept writes there */
448 tmp = inb(RTC_DATA) & RTC_VRT;
449 tmp |= ((struct rtc_t *)buf)->rtc_adom & ~RTC_VRT;
450 outb(RTC_DATA, tmp);
451 }
452 if (mon_alrm > 0) {
453 outb(RTC_ADDR, mon_alrm);
454 outb(RTC_DATA, ((struct rtc_t *)buf)->rtc_amon);
455 }
456
457 outb(RTC_ADDR, RTC_B);
458 reg = inb(RTC_DATA);
459 outb(RTC_ADDR, RTC_B);
460 outb(RTC_DATA, reg & ~RTC_SET); /* allow time update */
461 }
462
463 static tod_ops_t todpc_ops = {
464 TOD_OPS_VERSION,
465 todpc_get,
466 todpc_set,
467 NULL,
468 NULL,
469 todpc_setalarm,
470 todpc_clralarm,
471 NULL
472 };
473
474 /*
475 * Initialize for the default TOD ops vector for use on hardware.
476 */
477
478 tod_ops_t *tod_ops = &todpc_ops;
479