xref: /illumos-gate/usr/src/uts/i86pc/io/rootnex.c (revision ad2de4358b2074634b0f2355c34b0986da0e95f9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29 
30 /*
31  * x86 root nexus driver
32  */
33 
34 #include <sys/sysmacros.h>
35 #include <sys/conf.h>
36 #include <sys/autoconf.h>
37 #include <sys/sysmacros.h>
38 #include <sys/debug.h>
39 #include <sys/psw.h>
40 #include <sys/ddidmareq.h>
41 #include <sys/promif.h>
42 #include <sys/devops.h>
43 #include <sys/kmem.h>
44 #include <sys/cmn_err.h>
45 #include <vm/seg.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_dev.h>
48 #include <sys/vmem.h>
49 #include <sys/mman.h>
50 #include <vm/hat.h>
51 #include <vm/as.h>
52 #include <vm/page.h>
53 #include <sys/avintr.h>
54 #include <sys/errno.h>
55 #include <sys/modctl.h>
56 #include <sys/ddi_impldefs.h>
57 #include <sys/sunddi.h>
58 #include <sys/sunndi.h>
59 #include <sys/mach_intr.h>
60 #include <sys/psm.h>
61 #include <sys/ontrap.h>
62 #include <sys/atomic.h>
63 #include <sys/sdt.h>
64 #include <sys/rootnex.h>
65 #include <vm/hat_i86.h>
66 #include <sys/ddifm.h>
67 #include <sys/ddi_isa.h>
68 #include <sys/apic.h>
69 
70 #ifdef __xpv
71 #include <sys/bootinfo.h>
72 #include <sys/hypervisor.h>
73 #include <sys/bootconf.h>
74 #include <vm/kboot_mmu.h>
75 #endif
76 
77 #if defined(__amd64) && !defined(__xpv)
78 #include <sys/immu.h>
79 #endif
80 
81 
82 /*
83  * enable/disable extra checking of function parameters. Useful for debugging
84  * drivers.
85  */
86 #ifdef	DEBUG
87 int rootnex_alloc_check_parms = 1;
88 int rootnex_bind_check_parms = 1;
89 int rootnex_bind_check_inuse = 1;
90 int rootnex_unbind_verify_buffer = 0;
91 int rootnex_sync_check_parms = 1;
92 #else
93 int rootnex_alloc_check_parms = 0;
94 int rootnex_bind_check_parms = 0;
95 int rootnex_bind_check_inuse = 0;
96 int rootnex_unbind_verify_buffer = 0;
97 int rootnex_sync_check_parms = 0;
98 #endif
99 
100 boolean_t rootnex_dmar_not_setup;
101 
102 /* Master Abort and Target Abort panic flag */
103 int rootnex_fm_ma_ta_panic_flag = 0;
104 
105 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
106 int rootnex_bind_fail = 1;
107 int rootnex_bind_warn = 1;
108 uint8_t *rootnex_warn_list;
109 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
110 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
111 
112 /*
113  * revert back to old broken behavior of always sync'ing entire copy buffer.
114  * This is useful if be have a buggy driver which doesn't correctly pass in
115  * the offset and size into ddi_dma_sync().
116  */
117 int rootnex_sync_ignore_params = 0;
118 
119 /*
120  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
121  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
122  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
123  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
124  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
125  * (< 8K). We will still need to allocate the copy buffer during bind though
126  * (if we need one). These can only be modified in /etc/system before rootnex
127  * attach.
128  */
129 #if defined(__amd64)
130 int rootnex_prealloc_cookies = 65;
131 int rootnex_prealloc_windows = 4;
132 int rootnex_prealloc_copybuf = 2;
133 #else
134 int rootnex_prealloc_cookies = 33;
135 int rootnex_prealloc_windows = 4;
136 int rootnex_prealloc_copybuf = 2;
137 #endif
138 
139 /* driver global state */
140 static rootnex_state_t *rootnex_state;
141 
142 #ifdef DEBUG
143 /* shortcut to rootnex counters */
144 static uint64_t *rootnex_cnt;
145 #endif
146 
147 /*
148  * XXX - does x86 even need these or are they left over from the SPARC days?
149  */
150 /* statically defined integer/boolean properties for the root node */
151 static rootnex_intprop_t rootnex_intprp[] = {
152 	{ "PAGESIZE",			PAGESIZE },
153 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
154 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
155 	{ DDI_RELATIVE_ADDRESSING,	1 },
156 };
157 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
158 
159 /*
160  * If we're dom0, we're using a real device so we need to load
161  * the cookies with MFNs instead of PFNs.
162  */
163 #ifdef __xpv
164 typedef maddr_t rootnex_addr_t;
165 #define	ROOTNEX_PADDR_TO_RBASE(pa)	\
166 	(DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa))
167 #else
168 typedef paddr_t rootnex_addr_t;
169 #define	ROOTNEX_PADDR_TO_RBASE(pa)	(pa)
170 #endif
171 
172 static struct cb_ops rootnex_cb_ops = {
173 	nodev,		/* open */
174 	nodev,		/* close */
175 	nodev,		/* strategy */
176 	nodev,		/* print */
177 	nodev,		/* dump */
178 	nodev,		/* read */
179 	nodev,		/* write */
180 	nodev,		/* ioctl */
181 	nodev,		/* devmap */
182 	nodev,		/* mmap */
183 	nodev,		/* segmap */
184 	nochpoll,	/* chpoll */
185 	ddi_prop_op,	/* cb_prop_op */
186 	NULL,		/* struct streamtab */
187 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
188 	CB_REV,		/* Rev */
189 	nodev,		/* cb_aread */
190 	nodev		/* cb_awrite */
191 };
192 
193 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
194     off_t offset, off_t len, caddr_t *vaddrp);
195 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
196     struct hat *hat, struct seg *seg, caddr_t addr,
197     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
198 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
199     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
200     ddi_dma_handle_t *handlep);
201 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
202     ddi_dma_handle_t handle);
203 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
204     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
205     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
206 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
207     ddi_dma_handle_t handle);
208 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
209     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
210 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
211     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
212     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
213 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
214     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
215     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
216 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
217     ddi_ctl_enum_t ctlop, void *arg, void *result);
218 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
219     ddi_iblock_cookie_t *ibc);
220 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
221     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
222 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *,
223     void *);
224 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *);
225 
226 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
227     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
228     ddi_dma_handle_t *handlep);
229 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
230     ddi_dma_handle_t handle);
231 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
232     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
233     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
234 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
235     ddi_dma_handle_t handle);
236 #if defined(__amd64) && !defined(__xpv)
237 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
238     ddi_dma_handle_t handle);
239 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
240     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
241 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
242     ddi_dma_cookie_t *cookiep, uint_t ccount);
243 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
244     ddi_dma_handle_t handle);
245 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
246 #endif
247 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
248     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
249 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
250     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
251     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
252 
253 #if defined(__amd64) && !defined(__xpv)
254 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
255     ddi_dma_handle_t handle, void *v);
256 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
257     ddi_dma_handle_t handle);
258 #endif
259 
260 
261 static struct bus_ops rootnex_bus_ops = {
262 	BUSO_REV,
263 	rootnex_map,
264 	NULL,
265 	NULL,
266 	NULL,
267 	rootnex_map_fault,
268 	0,
269 	rootnex_dma_allochdl,
270 	rootnex_dma_freehdl,
271 	rootnex_dma_bindhdl,
272 	rootnex_dma_unbindhdl,
273 	rootnex_dma_sync,
274 	rootnex_dma_win,
275 	rootnex_dma_mctl,
276 	rootnex_ctlops,
277 	ddi_bus_prop_op,
278 	i_ddi_rootnex_get_eventcookie,
279 	i_ddi_rootnex_add_eventcall,
280 	i_ddi_rootnex_remove_eventcall,
281 	i_ddi_rootnex_post_event,
282 	0,			/* bus_intr_ctl */
283 	0,			/* bus_config */
284 	0,			/* bus_unconfig */
285 	rootnex_fm_init,	/* bus_fm_init */
286 	NULL,			/* bus_fm_fini */
287 	NULL,			/* bus_fm_access_enter */
288 	NULL,			/* bus_fm_access_exit */
289 	NULL,			/* bus_powr */
290 	rootnex_intr_ops	/* bus_intr_op */
291 };
292 
293 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
294 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
295 static int rootnex_quiesce(dev_info_t *dip);
296 
297 static struct dev_ops rootnex_ops = {
298 	DEVO_REV,
299 	0,
300 	ddi_no_info,
301 	nulldev,
302 	nulldev,
303 	rootnex_attach,
304 	rootnex_detach,
305 	nulldev,
306 	&rootnex_cb_ops,
307 	&rootnex_bus_ops,
308 	NULL,
309 	rootnex_quiesce,		/* quiesce */
310 };
311 
312 static struct modldrv rootnex_modldrv = {
313 	&mod_driverops,
314 	"i86pc root nexus",
315 	&rootnex_ops
316 };
317 
318 static struct modlinkage rootnex_modlinkage = {
319 	MODREV_1,
320 	(void *)&rootnex_modldrv,
321 	NULL
322 };
323 
324 #if defined(__amd64) && !defined(__xpv)
325 static iommulib_nexops_t iommulib_nexops = {
326 	IOMMU_NEXOPS_VERSION,
327 	"Rootnex IOMMU ops Vers 1.1",
328 	NULL,
329 	rootnex_coredma_allochdl,
330 	rootnex_coredma_freehdl,
331 	rootnex_coredma_bindhdl,
332 	rootnex_coredma_unbindhdl,
333 	rootnex_coredma_reset_cookies,
334 	rootnex_coredma_get_cookies,
335 	rootnex_coredma_set_cookies,
336 	rootnex_coredma_clear_cookies,
337 	rootnex_coredma_get_sleep_flags,
338 	rootnex_coredma_sync,
339 	rootnex_coredma_win,
340 	rootnex_coredma_hdl_setprivate,
341 	rootnex_coredma_hdl_getprivate
342 };
343 #endif
344 
345 /*
346  *  extern hacks
347  */
348 extern struct seg_ops segdev_ops;
349 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
350 #ifdef	DDI_MAP_DEBUG
351 extern int ddi_map_debug_flag;
352 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
353 #endif
354 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
355 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
356 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
357     psm_intr_op_t, int *);
358 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
359 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
360 
361 /*
362  * Use device arena to use for device control register mappings.
363  * Various kernel memory walkers (debugger, dtrace) need to know
364  * to avoid this address range to prevent undesired device activity.
365  */
366 extern void *device_arena_alloc(size_t size, int vm_flag);
367 extern void device_arena_free(void * vaddr, size_t size);
368 
369 
370 /*
371  *  Internal functions
372  */
373 static int rootnex_dma_init();
374 static void rootnex_add_props(dev_info_t *);
375 static int rootnex_ctl_reportdev(dev_info_t *dip);
376 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
377 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
378 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
379 static int rootnex_map_handle(ddi_map_req_t *mp);
380 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
381 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
382 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
383     ddi_dma_attr_t *attr);
384 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
385     rootnex_sglinfo_t *sglinfo);
386 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object,
387     ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo);
388 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
389     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
390 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
391     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
392 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
393 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
394     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
395 static void rootnex_teardown_windows(rootnex_dma_t *dma);
396 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
397     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
398 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
399     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
400     size_t *copybuf_used, page_t **cur_pp);
401 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
402     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
403     ddi_dma_attr_t *attr, off_t cur_offset);
404 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
405     rootnex_dma_t *dma, rootnex_window_t **windowp,
406     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
407 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
408     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
409 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
410     off_t offset, size_t size, uint_t cache_flags);
411 static int rootnex_verify_buffer(rootnex_dma_t *dma);
412 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
413     const void *comp_addr, const void *not_used);
414 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object,
415     rootnex_sglinfo_t *sglinfo);
416 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object);
417 
418 /*
419  * _init()
420  *
421  */
422 int
423 _init(void)
424 {
425 
426 	rootnex_state = NULL;
427 	return (mod_install(&rootnex_modlinkage));
428 }
429 
430 
431 /*
432  * _info()
433  *
434  */
435 int
436 _info(struct modinfo *modinfop)
437 {
438 	return (mod_info(&rootnex_modlinkage, modinfop));
439 }
440 
441 
442 /*
443  * _fini()
444  *
445  */
446 int
447 _fini(void)
448 {
449 	return (EBUSY);
450 }
451 
452 
453 /*
454  * rootnex_attach()
455  *
456  */
457 static int
458 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
459 {
460 	int fmcap;
461 	int e;
462 
463 	switch (cmd) {
464 	case DDI_ATTACH:
465 		break;
466 	case DDI_RESUME:
467 #if defined(__amd64) && !defined(__xpv)
468 		return (immu_unquiesce());
469 #else
470 		return (DDI_SUCCESS);
471 #endif
472 	default:
473 		return (DDI_FAILURE);
474 	}
475 
476 	/*
477 	 * We should only have one instance of rootnex. Save it away since we
478 	 * don't have an easy way to get it back later.
479 	 */
480 	ASSERT(rootnex_state == NULL);
481 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
482 
483 	rootnex_state->r_dip = dip;
484 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
485 	rootnex_state->r_reserved_msg_printed = B_FALSE;
486 #ifdef DEBUG
487 	rootnex_cnt = &rootnex_state->r_counters[0];
488 #endif
489 
490 	/*
491 	 * Set minimum fm capability level for i86pc platforms and then
492 	 * initialize error handling. Since we're the rootnex, we don't
493 	 * care what's returned in the fmcap field.
494 	 */
495 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
496 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
497 	fmcap = ddi_system_fmcap;
498 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
499 
500 	/* initialize DMA related state */
501 	e = rootnex_dma_init();
502 	if (e != DDI_SUCCESS) {
503 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
504 		return (DDI_FAILURE);
505 	}
506 
507 	/* Add static root node properties */
508 	rootnex_add_props(dip);
509 
510 	/* since we can't call ddi_report_dev() */
511 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
512 
513 	/* Initialize rootnex event handle */
514 	i_ddi_rootnex_init_events(dip);
515 
516 #if defined(__amd64) && !defined(__xpv)
517 	e = iommulib_nexus_register(dip, &iommulib_nexops,
518 	    &rootnex_state->r_iommulib_handle);
519 
520 	ASSERT(e == DDI_SUCCESS);
521 #endif
522 
523 	return (DDI_SUCCESS);
524 }
525 
526 
527 /*
528  * rootnex_detach()
529  *
530  */
531 /*ARGSUSED*/
532 static int
533 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
534 {
535 	switch (cmd) {
536 	case DDI_SUSPEND:
537 #if defined(__amd64) && !defined(__xpv)
538 		return (immu_quiesce());
539 #else
540 		return (DDI_SUCCESS);
541 #endif
542 	default:
543 		return (DDI_FAILURE);
544 	}
545 	/*NOTREACHED*/
546 
547 }
548 
549 
550 /*
551  * rootnex_dma_init()
552  *
553  */
554 /*ARGSUSED*/
555 static int
556 rootnex_dma_init()
557 {
558 	size_t bufsize;
559 
560 
561 	/*
562 	 * size of our cookie/window/copybuf state needed in dma bind that we
563 	 * pre-alloc in dma_alloc_handle
564 	 */
565 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
566 	rootnex_state->r_prealloc_size =
567 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
568 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
569 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
570 
571 	/*
572 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
573 	 * allocate 16 extra bytes for struct pointer alignment
574 	 * (p->dmai_private & dma->dp_prealloc_buffer)
575 	 */
576 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
577 	    rootnex_state->r_prealloc_size + 0x10;
578 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
579 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
580 	if (rootnex_state->r_dmahdl_cache == NULL) {
581 		return (DDI_FAILURE);
582 	}
583 
584 	/*
585 	 * allocate array to track which major numbers we have printed warnings
586 	 * for.
587 	 */
588 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
589 	    KM_SLEEP);
590 
591 	return (DDI_SUCCESS);
592 }
593 
594 
595 /*
596  * rootnex_add_props()
597  *
598  */
599 static void
600 rootnex_add_props(dev_info_t *dip)
601 {
602 	rootnex_intprop_t *rpp;
603 	int i;
604 
605 	/* Add static integer/boolean properties to the root node */
606 	rpp = rootnex_intprp;
607 	for (i = 0; i < NROOT_INTPROPS; i++) {
608 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
609 		    rpp[i].prop_name, rpp[i].prop_value);
610 	}
611 }
612 
613 
614 
615 /*
616  * *************************
617  *  ctlops related routines
618  * *************************
619  */
620 
621 /*
622  * rootnex_ctlops()
623  *
624  */
625 /*ARGSUSED*/
626 static int
627 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
628     void *arg, void *result)
629 {
630 	int n, *ptr;
631 	struct ddi_parent_private_data *pdp;
632 
633 	switch (ctlop) {
634 	case DDI_CTLOPS_DMAPMAPC:
635 		/*
636 		 * Return 'partial' to indicate that dma mapping
637 		 * has to be done in the main MMU.
638 		 */
639 		return (DDI_DMA_PARTIAL);
640 
641 	case DDI_CTLOPS_BTOP:
642 		/*
643 		 * Convert byte count input to physical page units.
644 		 * (byte counts that are not a page-size multiple
645 		 * are rounded down)
646 		 */
647 		*(ulong_t *)result = btop(*(ulong_t *)arg);
648 		return (DDI_SUCCESS);
649 
650 	case DDI_CTLOPS_PTOB:
651 		/*
652 		 * Convert size in physical pages to bytes
653 		 */
654 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
655 		return (DDI_SUCCESS);
656 
657 	case DDI_CTLOPS_BTOPR:
658 		/*
659 		 * Convert byte count input to physical page units
660 		 * (byte counts that are not a page-size multiple
661 		 * are rounded up)
662 		 */
663 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
664 		return (DDI_SUCCESS);
665 
666 	case DDI_CTLOPS_INITCHILD:
667 		return (impl_ddi_sunbus_initchild(arg));
668 
669 	case DDI_CTLOPS_UNINITCHILD:
670 		impl_ddi_sunbus_removechild(arg);
671 		return (DDI_SUCCESS);
672 
673 	case DDI_CTLOPS_REPORTDEV:
674 		return (rootnex_ctl_reportdev(rdip));
675 
676 	case DDI_CTLOPS_IOMIN:
677 		/*
678 		 * Nothing to do here but reflect back..
679 		 */
680 		return (DDI_SUCCESS);
681 
682 	case DDI_CTLOPS_REGSIZE:
683 	case DDI_CTLOPS_NREGS:
684 		break;
685 
686 	case DDI_CTLOPS_SIDDEV:
687 		if (ndi_dev_is_prom_node(rdip))
688 			return (DDI_SUCCESS);
689 		if (ndi_dev_is_persistent_node(rdip))
690 			return (DDI_SUCCESS);
691 		return (DDI_FAILURE);
692 
693 	case DDI_CTLOPS_POWER:
694 		return ((*pm_platform_power)((power_req_t *)arg));
695 
696 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
697 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
698 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
699 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
700 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
701 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
702 		if (!rootnex_state->r_reserved_msg_printed) {
703 			rootnex_state->r_reserved_msg_printed = B_TRUE;
704 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
705 			    "1 or more reserved/obsolete operations.");
706 		}
707 		return (DDI_FAILURE);
708 
709 	default:
710 		return (DDI_FAILURE);
711 	}
712 	/*
713 	 * The rest are for "hardware" properties
714 	 */
715 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
716 		return (DDI_FAILURE);
717 
718 	if (ctlop == DDI_CTLOPS_NREGS) {
719 		ptr = (int *)result;
720 		*ptr = pdp->par_nreg;
721 	} else {
722 		off_t *size = (off_t *)result;
723 
724 		ptr = (int *)arg;
725 		n = *ptr;
726 		if (n >= pdp->par_nreg) {
727 			return (DDI_FAILURE);
728 		}
729 		*size = (off_t)pdp->par_reg[n].regspec_size;
730 	}
731 	return (DDI_SUCCESS);
732 }
733 
734 
735 /*
736  * rootnex_ctl_reportdev()
737  *
738  */
739 static int
740 rootnex_ctl_reportdev(dev_info_t *dev)
741 {
742 	int i, n, len, f_len = 0;
743 	char *buf;
744 
745 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
746 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
747 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
748 	len = strlen(buf);
749 
750 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
751 
752 		struct regspec *rp = sparc_pd_getreg(dev, i);
753 
754 		if (i == 0)
755 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
756 			    ": ");
757 		else
758 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
759 			    " and ");
760 		len = strlen(buf);
761 
762 		switch (rp->regspec_bustype) {
763 
764 		case BTEISA:
765 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
766 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
767 			break;
768 
769 		case BTISA:
770 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
771 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
772 			break;
773 
774 		default:
775 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
776 			    "space %x offset %x",
777 			    rp->regspec_bustype, rp->regspec_addr);
778 			break;
779 		}
780 		len = strlen(buf);
781 	}
782 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
783 		int pri;
784 
785 		if (i != 0) {
786 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
787 			    ",");
788 			len = strlen(buf);
789 		}
790 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
791 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
792 		    " sparc ipl %d", pri);
793 		len = strlen(buf);
794 	}
795 #ifdef DEBUG
796 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
797 		cmn_err(CE_NOTE, "next message is truncated: "
798 		    "printed length 1024, real length %d", f_len);
799 	}
800 #endif /* DEBUG */
801 	cmn_err(CE_CONT, "?%s\n", buf);
802 	kmem_free(buf, REPORTDEV_BUFSIZE);
803 	return (DDI_SUCCESS);
804 }
805 
806 
807 /*
808  * ******************
809  *  map related code
810  * ******************
811  */
812 
813 /*
814  * rootnex_map()
815  *
816  */
817 static int
818 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
819     off_t len, caddr_t *vaddrp)
820 {
821 	struct regspec *rp, tmp_reg;
822 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
823 	int error;
824 
825 	mp = &mr;
826 
827 	switch (mp->map_op)  {
828 	case DDI_MO_MAP_LOCKED:
829 	case DDI_MO_UNMAP:
830 	case DDI_MO_MAP_HANDLE:
831 		break;
832 	default:
833 #ifdef	DDI_MAP_DEBUG
834 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
835 		    mp->map_op);
836 #endif	/* DDI_MAP_DEBUG */
837 		return (DDI_ME_UNIMPLEMENTED);
838 	}
839 
840 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
841 #ifdef	DDI_MAP_DEBUG
842 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
843 #endif	/* DDI_MAP_DEBUG */
844 		return (DDI_ME_UNIMPLEMENTED);
845 	}
846 
847 	/*
848 	 * First, if given an rnumber, convert it to a regspec...
849 	 * (Presumably, this is on behalf of a child of the root node?)
850 	 */
851 
852 	if (mp->map_type == DDI_MT_RNUMBER)  {
853 
854 		int rnumber = mp->map_obj.rnumber;
855 #ifdef	DDI_MAP_DEBUG
856 		static char *out_of_range =
857 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
858 #endif	/* DDI_MAP_DEBUG */
859 
860 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
861 		if (rp == NULL)  {
862 #ifdef	DDI_MAP_DEBUG
863 			cmn_err(CE_WARN, out_of_range, rnumber,
864 			    ddi_get_name(rdip));
865 #endif	/* DDI_MAP_DEBUG */
866 			return (DDI_ME_RNUMBER_RANGE);
867 		}
868 
869 		/*
870 		 * Convert the given ddi_map_req_t from rnumber to regspec...
871 		 */
872 
873 		mp->map_type = DDI_MT_REGSPEC;
874 		mp->map_obj.rp = rp;
875 	}
876 
877 	/*
878 	 * Adjust offset and length correspnding to called values...
879 	 * XXX: A non-zero length means override the one in the regspec
880 	 * XXX: (regardless of what's in the parent's range?)
881 	 */
882 
883 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
884 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
885 
886 #ifdef	DDI_MAP_DEBUG
887 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
888 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
889 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset,
890 	    len, mp->map_handlep);
891 #endif	/* DDI_MAP_DEBUG */
892 
893 	/*
894 	 * I/O or memory mapping:
895 	 *
896 	 *	<bustype=0, addr=x, len=x>: memory
897 	 *	<bustype=1, addr=x, len=x>: i/o
898 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
899 	 */
900 
901 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
902 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
903 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
904 		    ddi_get_name(rdip), rp->regspec_bustype,
905 		    rp->regspec_addr, rp->regspec_size);
906 		return (DDI_ME_INVAL);
907 	}
908 
909 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
910 		/*
911 		 * compatibility i/o mapping
912 		 */
913 		rp->regspec_bustype += (uint_t)offset;
914 	} else {
915 		/*
916 		 * Normal memory or i/o mapping
917 		 */
918 		rp->regspec_addr += (uint_t)offset;
919 	}
920 
921 	if (len != 0)
922 		rp->regspec_size = (uint_t)len;
923 
924 #ifdef	DDI_MAP_DEBUG
925 	cmn_err(CE_CONT, "             <%s,%s> <0x%x, 0x%x, 0x%d> offset %d "
926 	    "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
927 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
928 	    offset, len, mp->map_handlep);
929 #endif	/* DDI_MAP_DEBUG */
930 
931 	/*
932 	 * Apply any parent ranges at this level, if applicable.
933 	 * (This is where nexus specific regspec translation takes place.
934 	 * Use of this function is implicit agreement that translation is
935 	 * provided via ddi_apply_range.)
936 	 */
937 
938 #ifdef	DDI_MAP_DEBUG
939 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
940 	    ddi_get_name(dip), ddi_get_name(rdip));
941 #endif	/* DDI_MAP_DEBUG */
942 
943 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
944 		return (error);
945 
946 	switch (mp->map_op)  {
947 	case DDI_MO_MAP_LOCKED:
948 
949 		/*
950 		 * Set up the locked down kernel mapping to the regspec...
951 		 */
952 
953 		return (rootnex_map_regspec(mp, vaddrp));
954 
955 	case DDI_MO_UNMAP:
956 
957 		/*
958 		 * Release mapping...
959 		 */
960 
961 		return (rootnex_unmap_regspec(mp, vaddrp));
962 
963 	case DDI_MO_MAP_HANDLE:
964 
965 		return (rootnex_map_handle(mp));
966 
967 	default:
968 		return (DDI_ME_UNIMPLEMENTED);
969 	}
970 }
971 
972 
973 /*
974  * rootnex_map_fault()
975  *
976  *	fault in mappings for requestors
977  */
978 /*ARGSUSED*/
979 static int
980 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
981     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
982     uint_t lock)
983 {
984 
985 #ifdef	DDI_MAP_DEBUG
986 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
987 	ddi_map_debug(" Seg <%s>\n",
988 	    seg->s_ops == &segdev_ops ? "segdev" :
989 	    seg == &kvseg ? "segkmem" : "NONE!");
990 #endif	/* DDI_MAP_DEBUG */
991 
992 	/*
993 	 * This is all terribly broken, but it is a start
994 	 *
995 	 * XXX	Note that this test means that segdev_ops
996 	 *	must be exported from seg_dev.c.
997 	 * XXX	What about devices with their own segment drivers?
998 	 */
999 	if (seg->s_ops == &segdev_ops) {
1000 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
1001 
1002 		if (hat == NULL) {
1003 			/*
1004 			 * This is one plausible interpretation of
1005 			 * a null hat i.e. use the first hat on the
1006 			 * address space hat list which by convention is
1007 			 * the hat of the system MMU.  At alternative
1008 			 * would be to panic .. this might well be better ..
1009 			 */
1010 			ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock));
1011 			hat = seg->s_as->a_hat;
1012 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1013 		}
1014 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1015 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1016 	} else if (seg == &kvseg && dp == NULL) {
1017 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1018 		    HAT_LOAD_LOCK);
1019 	} else
1020 		return (DDI_FAILURE);
1021 	return (DDI_SUCCESS);
1022 }
1023 
1024 
1025 /*
1026  * rootnex_map_regspec()
1027  *     we don't support mapping of I/O cards above 4Gb
1028  */
1029 static int
1030 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1031 {
1032 	rootnex_addr_t rbase;
1033 	void *cvaddr;
1034 	uint_t npages, pgoffset;
1035 	struct regspec *rp;
1036 	ddi_acc_hdl_t *hp;
1037 	ddi_acc_impl_t *ap;
1038 	uint_t	hat_acc_flags;
1039 	paddr_t pbase;
1040 
1041 	rp = mp->map_obj.rp;
1042 	hp = mp->map_handlep;
1043 
1044 #ifdef	DDI_MAP_DEBUG
1045 	ddi_map_debug(
1046 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1047 	    rp->regspec_bustype, rp->regspec_addr,
1048 	    rp->regspec_size, mp->map_handlep);
1049 #endif	/* DDI_MAP_DEBUG */
1050 
1051 	/*
1052 	 * I/O or memory mapping
1053 	 *
1054 	 *	<bustype=0, addr=x, len=x>: memory
1055 	 *	<bustype=1, addr=x, len=x>: i/o
1056 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1057 	 */
1058 
1059 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1060 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1061 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1062 		    rp->regspec_addr, rp->regspec_size);
1063 		return (DDI_FAILURE);
1064 	}
1065 
1066 	if (rp->regspec_bustype != 0) {
1067 		/*
1068 		 * I/O space - needs a handle.
1069 		 */
1070 		if (hp == NULL) {
1071 			return (DDI_FAILURE);
1072 		}
1073 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1074 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1075 		impl_acc_hdl_init(hp);
1076 
1077 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1078 #ifdef  DDI_MAP_DEBUG
1079 			ddi_map_debug("rootnex_map_regspec: mmap() "
1080 			    "to I/O space is not supported.\n");
1081 #endif  /* DDI_MAP_DEBUG */
1082 			return (DDI_ME_INVAL);
1083 		} else {
1084 			/*
1085 			 * 1275-compliant vs. compatibility i/o mapping
1086 			 */
1087 			*vaddrp =
1088 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1089 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1090 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1091 #ifdef __xpv
1092 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1093 				hp->ah_pfn = xen_assign_pfn(
1094 				    mmu_btop((ulong_t)rp->regspec_addr &
1095 				    MMU_PAGEMASK));
1096 			} else {
1097 				hp->ah_pfn = mmu_btop(
1098 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1099 			}
1100 #else
1101 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1102 			    MMU_PAGEMASK);
1103 #endif
1104 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1105 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1106 		}
1107 
1108 #ifdef	DDI_MAP_DEBUG
1109 		ddi_map_debug(
1110 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1111 		    rp->regspec_size, *vaddrp);
1112 #endif	/* DDI_MAP_DEBUG */
1113 		return (DDI_SUCCESS);
1114 	}
1115 
1116 	/*
1117 	 * Memory space
1118 	 */
1119 
1120 	if (hp != NULL) {
1121 		/*
1122 		 * hat layer ignores
1123 		 * hp->ah_acc.devacc_attr_endian_flags.
1124 		 */
1125 		switch (hp->ah_acc.devacc_attr_dataorder) {
1126 		case DDI_STRICTORDER_ACC:
1127 			hat_acc_flags = HAT_STRICTORDER;
1128 			break;
1129 		case DDI_UNORDERED_OK_ACC:
1130 			hat_acc_flags = HAT_UNORDERED_OK;
1131 			break;
1132 		case DDI_MERGING_OK_ACC:
1133 			hat_acc_flags = HAT_MERGING_OK;
1134 			break;
1135 		case DDI_LOADCACHING_OK_ACC:
1136 			hat_acc_flags = HAT_LOADCACHING_OK;
1137 			break;
1138 		case DDI_STORECACHING_OK_ACC:
1139 			hat_acc_flags = HAT_STORECACHING_OK;
1140 			break;
1141 		}
1142 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1143 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1144 		impl_acc_hdl_init(hp);
1145 		hp->ah_hat_flags = hat_acc_flags;
1146 	} else {
1147 		hat_acc_flags = HAT_STRICTORDER;
1148 	}
1149 
1150 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1151 #ifdef __xpv
1152 	/*
1153 	 * If we're dom0, we're using a real device so we need to translate
1154 	 * the MA to a PA.
1155 	 */
1156 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1157 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1158 	} else {
1159 		pbase = rbase;
1160 	}
1161 #else
1162 	pbase = rbase;
1163 #endif
1164 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1165 
1166 	if (rp->regspec_size == 0) {
1167 #ifdef  DDI_MAP_DEBUG
1168 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1169 #endif  /* DDI_MAP_DEBUG */
1170 		return (DDI_ME_INVAL);
1171 	}
1172 
1173 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1174 		/* extra cast to make gcc happy */
1175 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1176 	} else {
1177 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1178 
1179 #ifdef	DDI_MAP_DEBUG
1180 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1181 		    "physical %llx", npages, pbase);
1182 #endif	/* DDI_MAP_DEBUG */
1183 
1184 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1185 		if (cvaddr == NULL)
1186 			return (DDI_ME_NORESOURCES);
1187 
1188 		/*
1189 		 * Now map in the pages we've allocated...
1190 		 */
1191 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1192 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1193 		    HAT_LOAD_LOCK);
1194 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1195 
1196 		/* save away pfn and npages for FMA */
1197 		hp = mp->map_handlep;
1198 		if (hp) {
1199 			hp->ah_pfn = mmu_btop(pbase);
1200 			hp->ah_pnum = npages;
1201 		}
1202 	}
1203 
1204 #ifdef	DDI_MAP_DEBUG
1205 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1206 #endif	/* DDI_MAP_DEBUG */
1207 	return (DDI_SUCCESS);
1208 }
1209 
1210 
1211 /*
1212  * rootnex_unmap_regspec()
1213  *
1214  */
1215 static int
1216 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1217 {
1218 	caddr_t addr = (caddr_t)*vaddrp;
1219 	uint_t npages, pgoffset;
1220 	struct regspec *rp;
1221 
1222 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1223 		return (0);
1224 
1225 	rp = mp->map_obj.rp;
1226 
1227 	if (rp->regspec_size == 0) {
1228 #ifdef  DDI_MAP_DEBUG
1229 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1230 #endif  /* DDI_MAP_DEBUG */
1231 		return (DDI_ME_INVAL);
1232 	}
1233 
1234 	/*
1235 	 * I/O or memory mapping:
1236 	 *
1237 	 *	<bustype=0, addr=x, len=x>: memory
1238 	 *	<bustype=1, addr=x, len=x>: i/o
1239 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1240 	 */
1241 	if (rp->regspec_bustype != 0) {
1242 		/*
1243 		 * This is I/O space, which requires no particular
1244 		 * processing on unmap since it isn't mapped in the
1245 		 * first place.
1246 		 */
1247 		return (DDI_SUCCESS);
1248 	}
1249 
1250 	/*
1251 	 * Memory space
1252 	 */
1253 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1254 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1255 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1256 	device_arena_free(addr - pgoffset, ptob(npages));
1257 
1258 	/*
1259 	 * Destroy the pointer - the mapping has logically gone
1260 	 */
1261 	*vaddrp = NULL;
1262 
1263 	return (DDI_SUCCESS);
1264 }
1265 
1266 
1267 /*
1268  * rootnex_map_handle()
1269  *
1270  */
1271 static int
1272 rootnex_map_handle(ddi_map_req_t *mp)
1273 {
1274 	rootnex_addr_t rbase;
1275 	ddi_acc_hdl_t *hp;
1276 	uint_t pgoffset;
1277 	struct regspec *rp;
1278 	paddr_t pbase;
1279 
1280 	rp = mp->map_obj.rp;
1281 
1282 #ifdef	DDI_MAP_DEBUG
1283 	ddi_map_debug(
1284 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1285 	    rp->regspec_bustype, rp->regspec_addr,
1286 	    rp->regspec_size, mp->map_handlep);
1287 #endif	/* DDI_MAP_DEBUG */
1288 
1289 	/*
1290 	 * I/O or memory mapping:
1291 	 *
1292 	 *	<bustype=0, addr=x, len=x>: memory
1293 	 *	<bustype=1, addr=x, len=x>: i/o
1294 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1295 	 */
1296 	if (rp->regspec_bustype != 0) {
1297 		/*
1298 		 * This refers to I/O space, and we don't support "mapping"
1299 		 * I/O space to a user.
1300 		 */
1301 		return (DDI_FAILURE);
1302 	}
1303 
1304 	/*
1305 	 * Set up the hat_flags for the mapping.
1306 	 */
1307 	hp = mp->map_handlep;
1308 
1309 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1310 	case DDI_NEVERSWAP_ACC:
1311 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1312 		break;
1313 	case DDI_STRUCTURE_LE_ACC:
1314 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1315 		break;
1316 	case DDI_STRUCTURE_BE_ACC:
1317 		return (DDI_FAILURE);
1318 	default:
1319 		return (DDI_REGS_ACC_CONFLICT);
1320 	}
1321 
1322 	switch (hp->ah_acc.devacc_attr_dataorder) {
1323 	case DDI_STRICTORDER_ACC:
1324 		break;
1325 	case DDI_UNORDERED_OK_ACC:
1326 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1327 		break;
1328 	case DDI_MERGING_OK_ACC:
1329 		hp->ah_hat_flags |= HAT_MERGING_OK;
1330 		break;
1331 	case DDI_LOADCACHING_OK_ACC:
1332 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1333 		break;
1334 	case DDI_STORECACHING_OK_ACC:
1335 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1336 		break;
1337 	default:
1338 		return (DDI_FAILURE);
1339 	}
1340 
1341 	rbase = (rootnex_addr_t)rp->regspec_addr &
1342 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1343 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1344 
1345 	if (rp->regspec_size == 0)
1346 		return (DDI_ME_INVAL);
1347 
1348 #ifdef __xpv
1349 	/*
1350 	 * If we're dom0, we're using a real device so we need to translate
1351 	 * the MA to a PA.
1352 	 */
1353 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1354 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1355 		    (rbase & MMU_PAGEOFFSET);
1356 	} else {
1357 		pbase = rbase;
1358 	}
1359 #else
1360 	pbase = rbase;
1361 #endif
1362 
1363 	hp->ah_pfn = mmu_btop(pbase);
1364 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1365 
1366 	return (DDI_SUCCESS);
1367 }
1368 
1369 
1370 
1371 /*
1372  * ************************
1373  *  interrupt related code
1374  * ************************
1375  */
1376 
1377 /*
1378  * rootnex_intr_ops()
1379  *	bus_intr_op() function for interrupt support
1380  */
1381 /* ARGSUSED */
1382 static int
1383 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1384     ddi_intr_handle_impl_t *hdlp, void *result)
1385 {
1386 	struct intrspec			*ispec;
1387 
1388 	DDI_INTR_NEXDBG((CE_CONT,
1389 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1390 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1391 
1392 	/* Process the interrupt operation */
1393 	switch (intr_op) {
1394 	case DDI_INTROP_GETCAP:
1395 		/* First check with pcplusmp */
1396 		if (psm_intr_ops == NULL)
1397 			return (DDI_FAILURE);
1398 
1399 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1400 			*(int *)result = 0;
1401 			return (DDI_FAILURE);
1402 		}
1403 		break;
1404 	case DDI_INTROP_SETCAP:
1405 		if (psm_intr_ops == NULL)
1406 			return (DDI_FAILURE);
1407 
1408 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1409 			return (DDI_FAILURE);
1410 		break;
1411 	case DDI_INTROP_ALLOC:
1412 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1413 		return (rootnex_alloc_intr_fixed(rdip, hdlp, result));
1414 	case DDI_INTROP_FREE:
1415 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1416 		return (rootnex_free_intr_fixed(rdip, hdlp));
1417 	case DDI_INTROP_GETPRI:
1418 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1419 			return (DDI_FAILURE);
1420 		*(int *)result = ispec->intrspec_pri;
1421 		break;
1422 	case DDI_INTROP_SETPRI:
1423 		/* Validate the interrupt priority passed to us */
1424 		if (*(int *)result > LOCK_LEVEL)
1425 			return (DDI_FAILURE);
1426 
1427 		/* Ensure that PSM is all initialized and ispec is ok */
1428 		if ((psm_intr_ops == NULL) ||
1429 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1430 			return (DDI_FAILURE);
1431 
1432 		/* Change the priority */
1433 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1434 		    PSM_FAILURE)
1435 			return (DDI_FAILURE);
1436 
1437 		/* update the ispec with the new priority */
1438 		ispec->intrspec_pri =  *(int *)result;
1439 		break;
1440 	case DDI_INTROP_ADDISR:
1441 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1442 			return (DDI_FAILURE);
1443 		ispec->intrspec_func = hdlp->ih_cb_func;
1444 		break;
1445 	case DDI_INTROP_REMISR:
1446 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1447 			return (DDI_FAILURE);
1448 		ispec->intrspec_func = (uint_t (*)()) 0;
1449 		break;
1450 	case DDI_INTROP_ENABLE:
1451 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1452 			return (DDI_FAILURE);
1453 
1454 		/* Call psmi to translate irq with the dip */
1455 		if (psm_intr_ops == NULL)
1456 			return (DDI_FAILURE);
1457 
1458 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1459 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1460 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1461 			return (DDI_FAILURE);
1462 
1463 		/* Add the interrupt handler */
1464 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1465 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1466 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1467 			return (DDI_FAILURE);
1468 		break;
1469 	case DDI_INTROP_DISABLE:
1470 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1471 			return (DDI_FAILURE);
1472 
1473 		/* Call psm_ops() to translate irq with the dip */
1474 		if (psm_intr_ops == NULL)
1475 			return (DDI_FAILURE);
1476 
1477 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1478 		(void) (*psm_intr_ops)(rdip, hdlp,
1479 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1480 
1481 		/* Remove the interrupt handler */
1482 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1483 		    hdlp->ih_cb_func, hdlp->ih_vector);
1484 		break;
1485 	case DDI_INTROP_SETMASK:
1486 		if (psm_intr_ops == NULL)
1487 			return (DDI_FAILURE);
1488 
1489 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1490 			return (DDI_FAILURE);
1491 		break;
1492 	case DDI_INTROP_CLRMASK:
1493 		if (psm_intr_ops == NULL)
1494 			return (DDI_FAILURE);
1495 
1496 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1497 			return (DDI_FAILURE);
1498 		break;
1499 	case DDI_INTROP_GETPENDING:
1500 		if (psm_intr_ops == NULL)
1501 			return (DDI_FAILURE);
1502 
1503 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1504 		    result)) {
1505 			*(int *)result = 0;
1506 			return (DDI_FAILURE);
1507 		}
1508 		break;
1509 	case DDI_INTROP_NAVAIL:
1510 	case DDI_INTROP_NINTRS:
1511 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1512 		if (*(int *)result == 0) {
1513 			/*
1514 			 * Special case for 'pcic' driver' only. This driver
1515 			 * driver is a child of 'isa' and 'rootnex' drivers.
1516 			 *
1517 			 * See detailed comments on this in the function
1518 			 * rootnex_get_ispec().
1519 			 *
1520 			 * Children of 'pcic' send 'NINITR' request all the
1521 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1522 			 * field may not initialized. So, we fake it here
1523 			 * to return 1 (a la what PCMCIA nexus does).
1524 			 */
1525 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1526 				*(int *)result = 1;
1527 			else
1528 				return (DDI_FAILURE);
1529 		}
1530 		break;
1531 	case DDI_INTROP_SUPPORTED_TYPES:
1532 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1533 		break;
1534 	default:
1535 		return (DDI_FAILURE);
1536 	}
1537 
1538 	return (DDI_SUCCESS);
1539 }
1540 
1541 
1542 /*
1543  * rootnex_get_ispec()
1544  *	convert an interrupt number to an interrupt specification.
1545  *	The interrupt number determines which interrupt spec will be
1546  *	returned if more than one exists.
1547  *
1548  *	Look into the parent private data area of the 'rdip' to find out
1549  *	the interrupt specification.  First check to make sure there is
1550  *	one that matchs "inumber" and then return a pointer to it.
1551  *
1552  *	Return NULL if one could not be found.
1553  *
1554  *	NOTE: This is needed for rootnex_intr_ops()
1555  */
1556 static struct intrspec *
1557 rootnex_get_ispec(dev_info_t *rdip, int inum)
1558 {
1559 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1560 
1561 	/*
1562 	 * Special case handling for drivers that provide their own
1563 	 * intrspec structures instead of relying on the DDI framework.
1564 	 *
1565 	 * A broken hardware driver in ON could potentially provide its
1566 	 * own intrspec structure, instead of relying on the hardware.
1567 	 * If these drivers are children of 'rootnex' then we need to
1568 	 * continue to provide backward compatibility to them here.
1569 	 *
1570 	 * Following check is a special case for 'pcic' driver which
1571 	 * was found to have broken hardwre andby provides its own intrspec.
1572 	 *
1573 	 * Verbatim comments from this driver are shown here:
1574 	 * "Don't use the ddi_add_intr since we don't have a
1575 	 * default intrspec in all cases."
1576 	 *
1577 	 * Since an 'ispec' may not be always created for it,
1578 	 * check for that and create one if so.
1579 	 *
1580 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1581 	 */
1582 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1583 		pdp->par_nintr = 1;
1584 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1585 		    pdp->par_nintr, KM_SLEEP);
1586 	}
1587 
1588 	/* Validate the interrupt number */
1589 	if (inum >= pdp->par_nintr)
1590 		return (NULL);
1591 
1592 	/* Get the interrupt structure pointer and return that */
1593 	return ((struct intrspec *)&pdp->par_intr[inum]);
1594 }
1595 
1596 /*
1597  * Allocate interrupt vector for FIXED (legacy) type.
1598  */
1599 static int
1600 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp,
1601     void *result)
1602 {
1603 	struct intrspec		*ispec;
1604 	ddi_intr_handle_impl_t	info_hdl;
1605 	int			ret;
1606 	int			free_phdl = 0;
1607 	apic_get_type_t		type_info;
1608 
1609 	if (psm_intr_ops == NULL)
1610 		return (DDI_FAILURE);
1611 
1612 	if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1613 		return (DDI_FAILURE);
1614 
1615 	/*
1616 	 * If the PSM module is "APIX" then pass the request for it
1617 	 * to allocate the vector now.
1618 	 */
1619 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1620 	info_hdl.ih_private = &type_info;
1621 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1622 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1623 		if (hdlp->ih_private == NULL) { /* allocate phdl structure */
1624 			free_phdl = 1;
1625 			i_ddi_alloc_intr_phdl(hdlp);
1626 		}
1627 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1628 		ret = (*psm_intr_ops)(rdip, hdlp,
1629 		    PSM_INTR_OP_ALLOC_VECTORS, result);
1630 		if (free_phdl) { /* free up the phdl structure */
1631 			free_phdl = 0;
1632 			i_ddi_free_intr_phdl(hdlp);
1633 			hdlp->ih_private = NULL;
1634 		}
1635 	} else {
1636 		/*
1637 		 * No APIX module; fall back to the old scheme where the
1638 		 * interrupt vector is allocated during ddi_enable_intr() call.
1639 		 */
1640 		hdlp->ih_pri = ispec->intrspec_pri;
1641 		*(int *)result = hdlp->ih_scratch1;
1642 		ret = DDI_SUCCESS;
1643 	}
1644 
1645 	return (ret);
1646 }
1647 
1648 /*
1649  * Free up interrupt vector for FIXED (legacy) type.
1650  */
1651 static int
1652 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp)
1653 {
1654 	struct intrspec			*ispec;
1655 	struct ddi_parent_private_data	*pdp;
1656 	ddi_intr_handle_impl_t		info_hdl;
1657 	int				ret;
1658 	apic_get_type_t			type_info;
1659 
1660 	if (psm_intr_ops == NULL)
1661 		return (DDI_FAILURE);
1662 
1663 	/*
1664 	 * If the PSM module is "APIX" then pass the request for it
1665 	 * to free up the vector now.
1666 	 */
1667 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1668 	info_hdl.ih_private = &type_info;
1669 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1670 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1671 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1672 			return (DDI_FAILURE);
1673 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1674 		ret = (*psm_intr_ops)(rdip, hdlp,
1675 		    PSM_INTR_OP_FREE_VECTORS, NULL);
1676 	} else {
1677 		/*
1678 		 * No APIX module; fall back to the old scheme where
1679 		 * the interrupt vector was already freed during
1680 		 * ddi_disable_intr() call.
1681 		 */
1682 		ret = DDI_SUCCESS;
1683 	}
1684 
1685 	pdp = ddi_get_parent_data(rdip);
1686 
1687 	/*
1688 	 * Special case for 'pcic' driver' only.
1689 	 * If an intrspec was created for it, clean it up here
1690 	 * See detailed comments on this in the function
1691 	 * rootnex_get_ispec().
1692 	 */
1693 	if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1694 		kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1695 		    pdp->par_nintr);
1696 		/*
1697 		 * Set it to zero; so that
1698 		 * DDI framework doesn't free it again
1699 		 */
1700 		pdp->par_intr = NULL;
1701 		pdp->par_nintr = 0;
1702 	}
1703 
1704 	return (ret);
1705 }
1706 
1707 
1708 /*
1709  * ******************
1710  *  dma related code
1711  * ******************
1712  */
1713 
1714 /*ARGSUSED*/
1715 static int
1716 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1717     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1718     ddi_dma_handle_t *handlep)
1719 {
1720 	uint64_t maxsegmentsize_ll;
1721 	uint_t maxsegmentsize;
1722 	ddi_dma_impl_t *hp;
1723 	rootnex_dma_t *dma;
1724 	uint64_t count_max;
1725 	uint64_t seg;
1726 	int kmflag;
1727 	int e;
1728 
1729 
1730 	/* convert our sleep flags */
1731 	if (waitfp == DDI_DMA_SLEEP) {
1732 		kmflag = KM_SLEEP;
1733 	} else {
1734 		kmflag = KM_NOSLEEP;
1735 	}
1736 
1737 	/*
1738 	 * We try to do only one memory allocation here. We'll do a little
1739 	 * pointer manipulation later. If the bind ends up taking more than
1740 	 * our prealloc's space, we'll have to allocate more memory in the
1741 	 * bind operation. Not great, but much better than before and the
1742 	 * best we can do with the current bind interfaces.
1743 	 */
1744 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1745 	if (hp == NULL)
1746 		return (DDI_DMA_NORESOURCES);
1747 
1748 	/* Do our pointer manipulation now, align the structures */
1749 	hp->dmai_private = (void *)(((uintptr_t)hp +
1750 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1751 	dma = (rootnex_dma_t *)hp->dmai_private;
1752 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1753 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1754 
1755 	/* setup the handle */
1756 	rootnex_clean_dmahdl(hp);
1757 	hp->dmai_error.err_fep = NULL;
1758 	hp->dmai_error.err_cf = NULL;
1759 	dma->dp_dip = rdip;
1760 	dma->dp_sglinfo.si_flags = attr->dma_attr_flags;
1761 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1762 
1763 	/*
1764 	 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU
1765 	 * is being used. Set the upper limit to the seg value.
1766 	 * There will be enough DVMA space to always get addresses
1767 	 * that will match the constraints.
1768 	 */
1769 	if (IOMMU_USED(rdip) &&
1770 	    (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) {
1771 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg;
1772 		dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG;
1773 	} else
1774 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1775 
1776 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1777 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1778 	hp->dmai_rdip = rdip;
1779 	hp->dmai_attr = *attr;
1780 
1781 	if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr)
1782 		dma->dp_sglinfo.si_cancross = B_FALSE;
1783 	else
1784 		dma->dp_sglinfo.si_cancross = B_TRUE;
1785 
1786 	/* we don't need to worry about the SPL since we do a tryenter */
1787 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1788 
1789 	/*
1790 	 * Figure out our maximum segment size. If the segment size is greater
1791 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1792 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1793 	 * dma_attr_count_max are size-1 type values.
1794 	 *
1795 	 * Maximum segment size is the largest physically contiguous chunk of
1796 	 * memory that we can return from a bind (i.e. the maximum size of a
1797 	 * single cookie).
1798 	 */
1799 
1800 	/* handle the rollover cases */
1801 	seg = attr->dma_attr_seg + 1;
1802 	if (seg < attr->dma_attr_seg) {
1803 		seg = attr->dma_attr_seg;
1804 	}
1805 	count_max = attr->dma_attr_count_max + 1;
1806 	if (count_max < attr->dma_attr_count_max) {
1807 		count_max = attr->dma_attr_count_max;
1808 	}
1809 
1810 	/*
1811 	 * granularity may or may not be a power of two. If it isn't, we can't
1812 	 * use a simple mask.
1813 	 */
1814 	if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) {
1815 		dma->dp_granularity_power_2 = B_FALSE;
1816 	} else {
1817 		dma->dp_granularity_power_2 = B_TRUE;
1818 	}
1819 
1820 	/*
1821 	 * maxxfer should be a whole multiple of granularity. If we're going to
1822 	 * break up a window because we're greater than maxxfer, we might as
1823 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1824 	 * worry about triming the window later on for this case.
1825 	 */
1826 	if (attr->dma_attr_granular > 1) {
1827 		if (dma->dp_granularity_power_2) {
1828 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1829 			    (attr->dma_attr_maxxfer &
1830 			    (attr->dma_attr_granular - 1));
1831 		} else {
1832 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1833 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1834 		}
1835 	} else {
1836 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1837 	}
1838 
1839 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1840 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1841 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1842 		maxsegmentsize = 0xFFFFFFFF;
1843 	} else {
1844 		maxsegmentsize = maxsegmentsize_ll;
1845 	}
1846 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1847 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1848 
1849 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1850 	if (rootnex_alloc_check_parms) {
1851 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1852 		if (e != DDI_SUCCESS) {
1853 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1854 			(void) rootnex_dma_freehdl(dip, rdip,
1855 			    (ddi_dma_handle_t)hp);
1856 			return (e);
1857 		}
1858 	}
1859 
1860 	*handlep = (ddi_dma_handle_t)hp;
1861 
1862 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1863 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1864 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1865 
1866 	return (DDI_SUCCESS);
1867 }
1868 
1869 
1870 /*
1871  * rootnex_dma_allochdl()
1872  *    called from ddi_dma_alloc_handle().
1873  */
1874 static int
1875 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1876     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1877 {
1878 	int retval = DDI_SUCCESS;
1879 #if defined(__amd64) && !defined(__xpv)
1880 
1881 	if (IOMMU_UNITIALIZED(rdip)) {
1882 		retval = iommulib_nex_open(dip, rdip);
1883 
1884 		if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP)
1885 			return (retval);
1886 	}
1887 
1888 	if (IOMMU_UNUSED(rdip)) {
1889 		retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1890 		    handlep);
1891 	} else {
1892 		retval = iommulib_nexdma_allochdl(dip, rdip, attr,
1893 		    waitfp, arg, handlep);
1894 	}
1895 #else
1896 	retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1897 	    handlep);
1898 #endif
1899 	switch (retval) {
1900 	case DDI_DMA_NORESOURCES:
1901 		if (waitfp != DDI_DMA_DONTWAIT) {
1902 			ddi_set_callback(waitfp, arg,
1903 			    &rootnex_state->r_dvma_call_list_id);
1904 		}
1905 		break;
1906 	case DDI_SUCCESS:
1907 		ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL);
1908 		break;
1909 	default:
1910 		break;
1911 	}
1912 	return (retval);
1913 }
1914 
1915 /*ARGSUSED*/
1916 static int
1917 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1918     ddi_dma_handle_t handle)
1919 {
1920 	ddi_dma_impl_t *hp;
1921 	rootnex_dma_t *dma;
1922 
1923 
1924 	hp = (ddi_dma_impl_t *)handle;
1925 	dma = (rootnex_dma_t *)hp->dmai_private;
1926 
1927 	/* unbind should have been called first */
1928 	ASSERT(!dma->dp_inuse);
1929 
1930 	mutex_destroy(&dma->dp_mutex);
1931 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1932 
1933 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1934 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1935 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1936 
1937 	return (DDI_SUCCESS);
1938 }
1939 
1940 /*
1941  * rootnex_dma_freehdl()
1942  *    called from ddi_dma_free_handle().
1943  */
1944 static int
1945 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1946 {
1947 	int ret;
1948 
1949 	ndi_fmc_remove(rdip, DMA_HANDLE, handle);
1950 #if defined(__amd64) && !defined(__xpv)
1951 	if (IOMMU_USED(rdip))
1952 		ret = iommulib_nexdma_freehdl(dip, rdip, handle);
1953 	else
1954 #endif
1955 	ret = rootnex_coredma_freehdl(dip, rdip, handle);
1956 
1957 	if (rootnex_state->r_dvma_call_list_id)
1958 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1959 
1960 	return (ret);
1961 }
1962 
1963 /*ARGSUSED*/
1964 static int
1965 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1966     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1967     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1968 {
1969 	rootnex_sglinfo_t *sinfo;
1970 	ddi_dma_obj_t *dmao;
1971 #if defined(__amd64) && !defined(__xpv)
1972 	struct dvmaseg *dvs;
1973 	ddi_dma_cookie_t *cookie;
1974 #endif
1975 	ddi_dma_attr_t *attr;
1976 	ddi_dma_impl_t *hp;
1977 	rootnex_dma_t *dma;
1978 	int kmflag;
1979 	int e;
1980 	uint_t ncookies;
1981 
1982 	hp = (ddi_dma_impl_t *)handle;
1983 	dma = (rootnex_dma_t *)hp->dmai_private;
1984 	dmao = &dma->dp_dma;
1985 	sinfo = &dma->dp_sglinfo;
1986 	attr = &hp->dmai_attr;
1987 
1988 	/* convert the sleep flags */
1989 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1990 		dma->dp_sleep_flags = kmflag = KM_SLEEP;
1991 	} else {
1992 		dma->dp_sleep_flags = kmflag = KM_NOSLEEP;
1993 	}
1994 
1995 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1996 
1997 	/*
1998 	 * This is useful for debugging a driver. Not as useful in a production
1999 	 * system. The only time this will fail is if you have a driver bug.
2000 	 */
2001 	if (rootnex_bind_check_inuse) {
2002 		/*
2003 		 * No one else should ever have this lock unless someone else
2004 		 * is trying to use this handle. So contention on the lock
2005 		 * is the same as inuse being set.
2006 		 */
2007 		e = mutex_tryenter(&dma->dp_mutex);
2008 		if (e == 0) {
2009 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2010 			return (DDI_DMA_INUSE);
2011 		}
2012 		if (dma->dp_inuse) {
2013 			mutex_exit(&dma->dp_mutex);
2014 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2015 			return (DDI_DMA_INUSE);
2016 		}
2017 		dma->dp_inuse = B_TRUE;
2018 		mutex_exit(&dma->dp_mutex);
2019 	}
2020 
2021 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
2022 	if (rootnex_bind_check_parms) {
2023 		e = rootnex_valid_bind_parms(dmareq, attr);
2024 		if (e != DDI_SUCCESS) {
2025 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2026 			rootnex_clean_dmahdl(hp);
2027 			return (e);
2028 		}
2029 	}
2030 
2031 	/* save away the original bind info */
2032 	dma->dp_dma = dmareq->dmar_object;
2033 
2034 #if defined(__amd64) && !defined(__xpv)
2035 	if (IOMMU_USED(rdip)) {
2036 		dmao = &dma->dp_dvma;
2037 		e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao);
2038 		switch (e) {
2039 		case DDI_SUCCESS:
2040 			if (sinfo->si_cancross ||
2041 			    dmao->dmao_obj.dvma_obj.dv_nseg != 1 ||
2042 			    dmao->dmao_size > sinfo->si_max_cookie_size) {
2043 				dma->dp_dvma_used = B_TRUE;
2044 				break;
2045 			}
2046 			sinfo->si_sgl_size = 1;
2047 			hp->dmai_rflags |= DMP_NOSYNC;
2048 
2049 			dma->dp_dvma_used = B_TRUE;
2050 			dma->dp_need_to_free_cookie = B_FALSE;
2051 
2052 			dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0];
2053 			cookie = hp->dmai_cookie = dma->dp_cookies =
2054 			    (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2055 			cookie->dmac_laddress = dvs->dvs_start +
2056 			    dmao->dmao_obj.dvma_obj.dv_off;
2057 			cookie->dmac_size = dvs->dvs_len;
2058 			cookie->dmac_type = 0;
2059 
2060 			ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *,
2061 			    rdip);
2062 			goto fast;
2063 		case DDI_ENOTSUP:
2064 			break;
2065 		default:
2066 			rootnex_clean_dmahdl(hp);
2067 			return (e);
2068 		}
2069 	}
2070 #endif
2071 
2072 	/*
2073 	 * Figure out a rough estimate of what maximum number of pages
2074 	 * this buffer could use (a high estimate of course).
2075 	 */
2076 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
2077 
2078 	if (dma->dp_dvma_used) {
2079 		/*
2080 		 * The number of physical pages is the worst case.
2081 		 *
2082 		 * For DVMA, the worst case is the length divided
2083 		 * by the maximum cookie length, plus 1. Add to that
2084 		 * the number of segment boundaries potentially crossed, and
2085 		 * the additional number of DVMA segments that was returned.
2086 		 *
2087 		 * In the normal case, for modern devices, si_cancross will
2088 		 * be false, and dv_nseg will be 1, and the fast path will
2089 		 * have been taken above.
2090 		 */
2091 		ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size)
2092 		    + 1;
2093 		if (sinfo->si_cancross)
2094 			ncookies +=
2095 			    (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1;
2096 		ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1);
2097 
2098 		sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies);
2099 	}
2100 
2101 	/*
2102 	 * We'll use the pre-allocated cookies for any bind that will *always*
2103 	 * fit (more important to be consistent, we don't want to create
2104 	 * additional degenerate cases).
2105 	 */
2106 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
2107 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2108 		dma->dp_need_to_free_cookie = B_FALSE;
2109 		ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
2110 		    uint_t, sinfo->si_max_pages);
2111 
2112 	/*
2113 	 * For anything larger than that, we'll go ahead and allocate the
2114 	 * maximum number of pages we expect to see. Hopefuly, we won't be
2115 	 * seeing this path in the fast path for high performance devices very
2116 	 * frequently.
2117 	 *
2118 	 * a ddi bind interface that allowed the driver to provide storage to
2119 	 * the bind interface would speed this case up.
2120 	 */
2121 	} else {
2122 		/*
2123 		 * Save away how much memory we allocated. If we're doing a
2124 		 * nosleep, the alloc could fail...
2125 		 */
2126 		dma->dp_cookie_size = sinfo->si_max_pages *
2127 		    sizeof (ddi_dma_cookie_t);
2128 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
2129 		if (dma->dp_cookies == NULL) {
2130 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2131 			rootnex_clean_dmahdl(hp);
2132 			return (DDI_DMA_NORESOURCES);
2133 		}
2134 		dma->dp_need_to_free_cookie = B_TRUE;
2135 		ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip,
2136 		    uint_t, sinfo->si_max_pages);
2137 	}
2138 	hp->dmai_cookie = dma->dp_cookies;
2139 
2140 	/*
2141 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
2142 	 * looking at the constraints in the dma structure. It will then put
2143 	 * some additional state about the sgl in the dma struct (i.e. is
2144 	 * the sgl clean, or do we need to do some munging; how many pages
2145 	 * need to be copied, etc.)
2146 	 */
2147 	if (dma->dp_dvma_used)
2148 		rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2149 	else
2150 		rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2151 
2152 out:
2153 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
2154 	/* if we don't need a copy buffer, we don't need to sync */
2155 	if (sinfo->si_copybuf_req == 0) {
2156 		hp->dmai_rflags |= DMP_NOSYNC;
2157 	}
2158 
2159 	/*
2160 	 * if we don't need the copybuf and we don't need to do a partial,  we
2161 	 * hit the fast path. All the high performance devices should be trying
2162 	 * to hit this path. To hit this path, a device should be able to reach
2163 	 * all of memory, shouldn't try to bind more than it can transfer, and
2164 	 * the buffer shouldn't require more cookies than the driver/device can
2165 	 * handle [sgllen]).
2166 	 *
2167 	 * Note that negative values of dma_attr_sgllen are supposed
2168 	 * to mean unlimited, but we just cast them to mean a
2169 	 * "ridiculous large limit".  This saves some extra checks on
2170 	 * hot paths.
2171 	 */
2172 	if ((sinfo->si_copybuf_req == 0) &&
2173 	    (sinfo->si_sgl_size <= (unsigned)attr->dma_attr_sgllen) &&
2174 	    (dmao->dmao_size < dma->dp_maxxfer)) {
2175 fast:
2176 		/*
2177 		 * If the driver supports FMA, insert the handle in the FMA DMA
2178 		 * handle cache.
2179 		 */
2180 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2181 			hp->dmai_error.err_cf = rootnex_dma_check;
2182 
2183 		/*
2184 		 * copy out the first cookie and ccountp, set the cookie
2185 		 * pointer to the second cookie. The first cookie is passed
2186 		 * back on the stack. Additional cookies are accessed via
2187 		 * ddi_dma_nextcookie()
2188 		 */
2189 		*cookiep = dma->dp_cookies[0];
2190 		*ccountp = sinfo->si_sgl_size;
2191 		hp->dmai_cookie++;
2192 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2193 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2194 		ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip,
2195 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
2196 		    uint_t, dmao->dmao_size, uint_t, *ccountp);
2197 
2198 
2199 		return (DDI_DMA_MAPPED);
2200 	}
2201 
2202 	/*
2203 	 * go to the slow path, we may need to alloc more memory, create
2204 	 * multiple windows, and munge up a sgl to make the device happy.
2205 	 */
2206 
2207 	/*
2208 	 * With the IOMMU mapobject method used, we should never hit
2209 	 * the slow path. If we do, something is seriously wrong.
2210 	 * Clean up and return an error.
2211 	 */
2212 
2213 #if defined(__amd64) && !defined(__xpv)
2214 
2215 	if (dma->dp_dvma_used) {
2216 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2217 		    &dma->dp_dvma);
2218 		e = DDI_DMA_NOMAPPING;
2219 	} else {
2220 #endif
2221 		e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma,
2222 		    kmflag);
2223 #if defined(__amd64) && !defined(__xpv)
2224 	}
2225 #endif
2226 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2227 		if (dma->dp_need_to_free_cookie) {
2228 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2229 		}
2230 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2231 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2232 		return (e);
2233 	}
2234 
2235 	/*
2236 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2237 	 * cache.
2238 	 */
2239 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2240 		hp->dmai_error.err_cf = rootnex_dma_check;
2241 
2242 	/* if the first window uses the copy buffer, sync it for the device */
2243 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2244 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2245 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2246 		    DDI_DMA_SYNC_FORDEV);
2247 	}
2248 
2249 	/*
2250 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2251 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2252 	 * If we have a partial map (i.e. multiple windows), the number of
2253 	 * cookies we return is the number of cookies in the first window.
2254 	 */
2255 	if (e == DDI_DMA_MAPPED) {
2256 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2257 		*ccountp = sinfo->si_sgl_size;
2258 		hp->dmai_nwin = 1;
2259 	} else {
2260 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2261 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2262 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2263 	}
2264 	*cookiep = dma->dp_cookies[0];
2265 	hp->dmai_cookie++;
2266 
2267 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2268 	ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2269 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2270 	    dmao->dmao_size, uint_t, *ccountp);
2271 	return (e);
2272 }
2273 
2274 /*
2275  * rootnex_dma_bindhdl()
2276  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2277  */
2278 static int
2279 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2280     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2281     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2282 {
2283 	int ret;
2284 #if defined(__amd64) && !defined(__xpv)
2285 	if (IOMMU_USED(rdip))
2286 		ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2287 		    cookiep, ccountp);
2288 	else
2289 #endif
2290 	ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2291 	    cookiep, ccountp);
2292 
2293 	if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) {
2294 		ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg,
2295 		    &rootnex_state->r_dvma_call_list_id);
2296 	}
2297 
2298 	return (ret);
2299 }
2300 
2301 
2302 
2303 /*ARGSUSED*/
2304 static int
2305 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2306     ddi_dma_handle_t handle)
2307 {
2308 	ddi_dma_impl_t *hp;
2309 	rootnex_dma_t *dma;
2310 	int e;
2311 
2312 	hp = (ddi_dma_impl_t *)handle;
2313 	dma = (rootnex_dma_t *)hp->dmai_private;
2314 
2315 	/* make sure the buffer wasn't free'd before calling unbind */
2316 	if (rootnex_unbind_verify_buffer) {
2317 		e = rootnex_verify_buffer(dma);
2318 		if (e != DDI_SUCCESS) {
2319 			ASSERT(0);
2320 			return (DDI_FAILURE);
2321 		}
2322 	}
2323 
2324 	/* sync the current window before unbinding the buffer */
2325 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2326 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2327 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2328 		    DDI_DMA_SYNC_FORCPU);
2329 	}
2330 
2331 	/*
2332 	 * cleanup and copy buffer or window state. if we didn't use the copy
2333 	 * buffer or windows, there won't be much to do :-)
2334 	 */
2335 	rootnex_teardown_copybuf(dma);
2336 	rootnex_teardown_windows(dma);
2337 
2338 #if defined(__amd64) && !defined(__xpv)
2339 	if (IOMMU_USED(rdip))
2340 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2341 		    &dma->dp_dvma);
2342 #endif
2343 
2344 	/*
2345 	 * If we had to allocate space to for the worse case sgl (it didn't
2346 	 * fit into our pre-allocate buffer), free that up now
2347 	 */
2348 	if (dma->dp_need_to_free_cookie) {
2349 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2350 	}
2351 
2352 	/*
2353 	 * clean up the handle so it's ready for the next bind (i.e. if the
2354 	 * handle is reused).
2355 	 */
2356 	rootnex_clean_dmahdl(hp);
2357 	hp->dmai_error.err_cf = NULL;
2358 
2359 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2360 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2361 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2362 
2363 	return (DDI_SUCCESS);
2364 }
2365 
2366 /*
2367  * rootnex_dma_unbindhdl()
2368  *    called from ddi_dma_unbind_handle()
2369  */
2370 /*ARGSUSED*/
2371 static int
2372 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2373     ddi_dma_handle_t handle)
2374 {
2375 	int ret;
2376 
2377 #if defined(__amd64) && !defined(__xpv)
2378 	if (IOMMU_USED(rdip))
2379 		ret = iommulib_nexdma_unbindhdl(dip, rdip, handle);
2380 	else
2381 #endif
2382 	ret = rootnex_coredma_unbindhdl(dip, rdip, handle);
2383 
2384 	if (rootnex_state->r_dvma_call_list_id)
2385 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2386 
2387 	return (ret);
2388 }
2389 
2390 #if defined(__amd64) && !defined(__xpv)
2391 
2392 static int
2393 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2394 {
2395 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2396 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2397 
2398 	if (dma->dp_sleep_flags != KM_SLEEP &&
2399 	    dma->dp_sleep_flags != KM_NOSLEEP)
2400 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2401 	return (dma->dp_sleep_flags);
2402 }
2403 /*ARGSUSED*/
2404 static void
2405 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2406 {
2407 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2408 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2409 	rootnex_window_t *window;
2410 
2411 	if (dma->dp_window) {
2412 		window = &dma->dp_window[dma->dp_current_win];
2413 		hp->dmai_cookie = window->wd_first_cookie;
2414 	} else {
2415 		hp->dmai_cookie = dma->dp_cookies;
2416 	}
2417 	hp->dmai_cookie++;
2418 }
2419 
2420 /*ARGSUSED*/
2421 static int
2422 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2423     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2424 {
2425 	int i;
2426 	int km_flags;
2427 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2428 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2429 	rootnex_window_t *window;
2430 	ddi_dma_cookie_t *cp;
2431 	ddi_dma_cookie_t *cookie;
2432 
2433 	ASSERT(*cookiepp == NULL);
2434 	ASSERT(*ccountp == 0);
2435 
2436 	if (dma->dp_window) {
2437 		window = &dma->dp_window[dma->dp_current_win];
2438 		cp = window->wd_first_cookie;
2439 		*ccountp = window->wd_cookie_cnt;
2440 	} else {
2441 		cp = dma->dp_cookies;
2442 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2443 	}
2444 
2445 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2446 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2447 	if (cookie == NULL) {
2448 		return (DDI_DMA_NORESOURCES);
2449 	}
2450 
2451 	for (i = 0; i < *ccountp; i++) {
2452 		cookie[i].dmac_notused = cp[i].dmac_notused;
2453 		cookie[i].dmac_type = cp[i].dmac_type;
2454 		cookie[i].dmac_address = cp[i].dmac_address;
2455 		cookie[i].dmac_size = cp[i].dmac_size;
2456 	}
2457 
2458 	*cookiepp = cookie;
2459 
2460 	return (DDI_SUCCESS);
2461 }
2462 
2463 /*ARGSUSED*/
2464 static int
2465 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2466     ddi_dma_cookie_t *cookiep, uint_t ccount)
2467 {
2468 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2469 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2470 	rootnex_window_t *window;
2471 	ddi_dma_cookie_t *cur_cookiep;
2472 
2473 	ASSERT(cookiep);
2474 	ASSERT(ccount != 0);
2475 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2476 
2477 	if (dma->dp_window) {
2478 		window = &dma->dp_window[dma->dp_current_win];
2479 		dma->dp_saved_cookies = window->wd_first_cookie;
2480 		window->wd_first_cookie = cookiep;
2481 		ASSERT(ccount == window->wd_cookie_cnt);
2482 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2483 		    + window->wd_first_cookie;
2484 	} else {
2485 		dma->dp_saved_cookies = dma->dp_cookies;
2486 		dma->dp_cookies = cookiep;
2487 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2488 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2489 		    + dma->dp_cookies;
2490 	}
2491 
2492 	dma->dp_need_to_switch_cookies = B_TRUE;
2493 	hp->dmai_cookie = cur_cookiep;
2494 
2495 	return (DDI_SUCCESS);
2496 }
2497 
2498 /*ARGSUSED*/
2499 static int
2500 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2501 {
2502 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2503 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2504 	rootnex_window_t *window;
2505 	ddi_dma_cookie_t *cur_cookiep;
2506 	ddi_dma_cookie_t *cookie_array;
2507 	uint_t ccount;
2508 
2509 	/* check if cookies have not been switched */
2510 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2511 		return (DDI_SUCCESS);
2512 
2513 	ASSERT(dma->dp_saved_cookies);
2514 
2515 	if (dma->dp_window) {
2516 		window = &dma->dp_window[dma->dp_current_win];
2517 		cookie_array = window->wd_first_cookie;
2518 		window->wd_first_cookie = dma->dp_saved_cookies;
2519 		dma->dp_saved_cookies = NULL;
2520 		ccount = window->wd_cookie_cnt;
2521 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2522 		    + window->wd_first_cookie;
2523 	} else {
2524 		cookie_array = dma->dp_cookies;
2525 		dma->dp_cookies = dma->dp_saved_cookies;
2526 		dma->dp_saved_cookies = NULL;
2527 		ccount = dma->dp_sglinfo.si_sgl_size;
2528 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2529 		    + dma->dp_cookies;
2530 	}
2531 
2532 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2533 
2534 	hp->dmai_cookie = cur_cookiep;
2535 
2536 	dma->dp_need_to_switch_cookies = B_FALSE;
2537 
2538 	return (DDI_SUCCESS);
2539 }
2540 
2541 #endif
2542 
2543 static struct as *
2544 rootnex_get_as(ddi_dma_obj_t *dmao)
2545 {
2546 	struct as *asp;
2547 
2548 	switch (dmao->dmao_type) {
2549 	case DMA_OTYP_VADDR:
2550 	case DMA_OTYP_BUFVADDR:
2551 		asp = dmao->dmao_obj.virt_obj.v_as;
2552 		if (asp == NULL)
2553 			asp = &kas;
2554 		break;
2555 	default:
2556 		asp = NULL;
2557 		break;
2558 	}
2559 	return (asp);
2560 }
2561 
2562 /*
2563  * rootnex_verify_buffer()
2564  *   verify buffer wasn't free'd
2565  */
2566 static int
2567 rootnex_verify_buffer(rootnex_dma_t *dma)
2568 {
2569 	page_t **pplist;
2570 	caddr_t vaddr;
2571 	uint_t pcnt;
2572 	uint_t poff;
2573 	page_t *pp;
2574 	char b;
2575 	int i;
2576 
2577 	/* Figure out how many pages this buffer occupies */
2578 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2579 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2580 	} else {
2581 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2582 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2583 	}
2584 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2585 
2586 	switch (dma->dp_dma.dmao_type) {
2587 	case DMA_OTYP_PAGES:
2588 		/*
2589 		 * for a linked list of pp's walk through them to make sure
2590 		 * they're locked and not free.
2591 		 */
2592 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2593 		for (i = 0; i < pcnt; i++) {
2594 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2595 				return (DDI_FAILURE);
2596 			}
2597 			pp = pp->p_next;
2598 		}
2599 		break;
2600 
2601 	case DMA_OTYP_VADDR:
2602 	case DMA_OTYP_BUFVADDR:
2603 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2604 		/*
2605 		 * for an array of pp's walk through them to make sure they're
2606 		 * not free. It's possible that they may not be locked.
2607 		 */
2608 		if (pplist) {
2609 			for (i = 0; i < pcnt; i++) {
2610 				if (PP_ISFREE(pplist[i])) {
2611 					return (DDI_FAILURE);
2612 				}
2613 			}
2614 
2615 		/* For a virtual address, try to peek at each page */
2616 		} else {
2617 			if (rootnex_get_as(&dma->dp_dma) == &kas) {
2618 				for (i = 0; i < pcnt; i++) {
2619 					if (ddi_peek8(NULL, vaddr, &b) ==
2620 					    DDI_FAILURE)
2621 						return (DDI_FAILURE);
2622 					vaddr += MMU_PAGESIZE;
2623 				}
2624 			}
2625 		}
2626 		break;
2627 
2628 	default:
2629 		cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object");
2630 		break;
2631 	}
2632 
2633 	return (DDI_SUCCESS);
2634 }
2635 
2636 
2637 /*
2638  * rootnex_clean_dmahdl()
2639  *    Clean the dma handle. This should be called on a handle alloc and an
2640  *    unbind handle. Set the handle state to the default settings.
2641  */
2642 static void
2643 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2644 {
2645 	rootnex_dma_t *dma;
2646 
2647 
2648 	dma = (rootnex_dma_t *)hp->dmai_private;
2649 
2650 	hp->dmai_nwin = 0;
2651 	dma->dp_current_cookie = 0;
2652 	dma->dp_copybuf_size = 0;
2653 	dma->dp_window = NULL;
2654 	dma->dp_cbaddr = NULL;
2655 	dma->dp_inuse = B_FALSE;
2656 	dma->dp_dvma_used = B_FALSE;
2657 	dma->dp_need_to_free_cookie = B_FALSE;
2658 	dma->dp_need_to_switch_cookies = B_FALSE;
2659 	dma->dp_saved_cookies = NULL;
2660 	dma->dp_sleep_flags = KM_PANIC;
2661 	dma->dp_need_to_free_window = B_FALSE;
2662 	dma->dp_partial_required = B_FALSE;
2663 	dma->dp_trim_required = B_FALSE;
2664 	dma->dp_sglinfo.si_copybuf_req = 0;
2665 #if !defined(__amd64)
2666 	dma->dp_cb_remaping = B_FALSE;
2667 	dma->dp_kva = NULL;
2668 #endif
2669 
2670 	/* FMA related initialization */
2671 	hp->dmai_fault = 0;
2672 	hp->dmai_fault_check = NULL;
2673 	hp->dmai_fault_notify = NULL;
2674 	hp->dmai_error.err_ena = 0;
2675 	hp->dmai_error.err_status = DDI_FM_OK;
2676 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2677 	hp->dmai_error.err_ontrap = NULL;
2678 }
2679 
2680 
2681 /*
2682  * rootnex_valid_alloc_parms()
2683  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2684  */
2685 static int
2686 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2687 {
2688 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2689 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2690 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2691 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2692 		return (DDI_DMA_BADATTR);
2693 	}
2694 
2695 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2696 		return (DDI_DMA_BADATTR);
2697 	}
2698 
2699 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2700 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2701 	    attr->dma_attr_sgllen == 0) {
2702 		return (DDI_DMA_BADATTR);
2703 	}
2704 
2705 	/* We should be able to DMA into every byte offset in a page */
2706 	if (maxsegmentsize < MMU_PAGESIZE) {
2707 		return (DDI_DMA_BADATTR);
2708 	}
2709 
2710 	/* if we're bouncing on seg, seg must be <= addr_hi */
2711 	if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) &&
2712 	    (attr->dma_attr_seg > attr->dma_attr_addr_hi)) {
2713 		return (DDI_DMA_BADATTR);
2714 	}
2715 	return (DDI_SUCCESS);
2716 }
2717 
2718 /*
2719  * rootnex_valid_bind_parms()
2720  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2721  */
2722 /* ARGSUSED */
2723 static int
2724 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2725 {
2726 #if !defined(__amd64)
2727 	/*
2728 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2729 	 * we can track the offset for the obsoleted interfaces.
2730 	 */
2731 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2732 		return (DDI_DMA_TOOBIG);
2733 	}
2734 #endif
2735 
2736 	return (DDI_SUCCESS);
2737 }
2738 
2739 
2740 /*
2741  * rootnex_need_bounce_seg()
2742  *    check to see if the buffer lives on both side of the seg.
2743  */
2744 static boolean_t
2745 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo)
2746 {
2747 	ddi_dma_atyp_t buftype;
2748 	rootnex_addr_t raddr;
2749 	boolean_t lower_addr;
2750 	boolean_t upper_addr;
2751 	uint64_t offset;
2752 	page_t **pplist;
2753 	uint64_t paddr;
2754 	uint32_t psize;
2755 	uint32_t size;
2756 	caddr_t vaddr;
2757 	uint_t pcnt;
2758 	page_t *pp;
2759 
2760 
2761 	/* shortcuts */
2762 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2763 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2764 	buftype = dmar_object->dmao_type;
2765 	size = dmar_object->dmao_size;
2766 
2767 	lower_addr = B_FALSE;
2768 	upper_addr = B_FALSE;
2769 	pcnt = 0;
2770 
2771 	/*
2772 	 * Process the first page to handle the initial offset of the buffer.
2773 	 * We'll use the base address we get later when we loop through all
2774 	 * the pages.
2775 	 */
2776 	if (buftype == DMA_OTYP_PAGES) {
2777 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2778 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2779 		    MMU_PAGEOFFSET;
2780 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2781 		psize = MIN(size, (MMU_PAGESIZE - offset));
2782 		pp = pp->p_next;
2783 		sglinfo->si_asp = NULL;
2784 	} else if (pplist != NULL) {
2785 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2786 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2787 		if (sglinfo->si_asp == NULL) {
2788 			sglinfo->si_asp = &kas;
2789 		}
2790 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2791 		paddr += offset;
2792 		psize = MIN(size, (MMU_PAGESIZE - offset));
2793 		pcnt++;
2794 	} else {
2795 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2796 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2797 		if (sglinfo->si_asp == NULL) {
2798 			sglinfo->si_asp = &kas;
2799 		}
2800 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2801 		paddr += offset;
2802 		psize = MIN(size, (MMU_PAGESIZE - offset));
2803 		vaddr += psize;
2804 	}
2805 
2806 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2807 
2808 	if ((raddr + psize) > sglinfo->si_segmask) {
2809 		upper_addr = B_TRUE;
2810 	} else {
2811 		lower_addr = B_TRUE;
2812 	}
2813 	size -= psize;
2814 
2815 	/*
2816 	 * Walk through the rest of the pages in the buffer. Track to see
2817 	 * if we have pages on both sides of the segment boundary.
2818 	 */
2819 	while (size > 0) {
2820 		/* partial or full page */
2821 		psize = MIN(size, MMU_PAGESIZE);
2822 
2823 		if (buftype == DMA_OTYP_PAGES) {
2824 			/* get the paddr from the page_t */
2825 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2826 			paddr = pfn_to_pa(pp->p_pagenum);
2827 			pp = pp->p_next;
2828 		} else if (pplist != NULL) {
2829 			/* index into the array of page_t's to get the paddr */
2830 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2831 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2832 			pcnt++;
2833 		} else {
2834 			/* call into the VM to get the paddr */
2835 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2836 			    vaddr));
2837 			vaddr += psize;
2838 		}
2839 
2840 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2841 
2842 		if ((raddr + psize) > sglinfo->si_segmask) {
2843 			upper_addr = B_TRUE;
2844 		} else {
2845 			lower_addr = B_TRUE;
2846 		}
2847 		/*
2848 		 * if the buffer lives both above and below the segment
2849 		 * boundary, or the current page is the page immediately
2850 		 * after the segment, we will use a copy/bounce buffer for
2851 		 * all pages > seg.
2852 		 */
2853 		if ((lower_addr && upper_addr) ||
2854 		    (raddr == (sglinfo->si_segmask + 1))) {
2855 			return (B_TRUE);
2856 		}
2857 
2858 		size -= psize;
2859 	}
2860 
2861 	return (B_FALSE);
2862 }
2863 
2864 /*
2865  * rootnex_get_sgl()
2866  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2867  *    with a call to the vm layer when vm2.0 comes around...
2868  */
2869 static void
2870 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2871     rootnex_sglinfo_t *sglinfo)
2872 {
2873 	ddi_dma_atyp_t buftype;
2874 	rootnex_addr_t raddr;
2875 	uint64_t last_page;
2876 	uint64_t offset;
2877 	uint64_t addrhi;
2878 	uint64_t addrlo;
2879 	uint64_t maxseg;
2880 	page_t **pplist;
2881 	uint64_t paddr;
2882 	uint32_t psize;
2883 	uint32_t size;
2884 	caddr_t vaddr;
2885 	uint_t pcnt;
2886 	page_t *pp;
2887 	uint_t cnt;
2888 
2889 
2890 	/* shortcuts */
2891 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2892 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2893 	maxseg = sglinfo->si_max_cookie_size;
2894 	buftype = dmar_object->dmao_type;
2895 	addrhi = sglinfo->si_max_addr;
2896 	addrlo = sglinfo->si_min_addr;
2897 	size = dmar_object->dmao_size;
2898 
2899 	pcnt = 0;
2900 	cnt = 0;
2901 
2902 
2903 	/*
2904 	 * check to see if we need to use the copy buffer for pages over
2905 	 * the segment attr.
2906 	 */
2907 	sglinfo->si_bounce_on_seg = B_FALSE;
2908 	if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) {
2909 		sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg(
2910 		    dmar_object, sglinfo);
2911 	}
2912 
2913 	/*
2914 	 * if we were passed down a linked list of pages, i.e. pointer to
2915 	 * page_t, use this to get our physical address and buf offset.
2916 	 */
2917 	if (buftype == DMA_OTYP_PAGES) {
2918 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2919 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2920 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2921 		    MMU_PAGEOFFSET;
2922 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2923 		psize = MIN(size, (MMU_PAGESIZE - offset));
2924 		pp = pp->p_next;
2925 		sglinfo->si_asp = NULL;
2926 
2927 	/*
2928 	 * We weren't passed down a linked list of pages, but if we were passed
2929 	 * down an array of pages, use this to get our physical address and buf
2930 	 * offset.
2931 	 */
2932 	} else if (pplist != NULL) {
2933 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2934 		    (buftype == DMA_OTYP_BUFVADDR));
2935 
2936 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2937 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2938 		if (sglinfo->si_asp == NULL) {
2939 			sglinfo->si_asp = &kas;
2940 		}
2941 
2942 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2943 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2944 		paddr += offset;
2945 		psize = MIN(size, (MMU_PAGESIZE - offset));
2946 		pcnt++;
2947 
2948 	/*
2949 	 * All we have is a virtual address, we'll need to call into the VM
2950 	 * to get the physical address.
2951 	 */
2952 	} else {
2953 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2954 		    (buftype == DMA_OTYP_BUFVADDR));
2955 
2956 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2957 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2958 		if (sglinfo->si_asp == NULL) {
2959 			sglinfo->si_asp = &kas;
2960 		}
2961 
2962 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2963 		paddr += offset;
2964 		psize = MIN(size, (MMU_PAGESIZE - offset));
2965 		vaddr += psize;
2966 	}
2967 
2968 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2969 
2970 	/*
2971 	 * Setup the first cookie with the physical address of the page and the
2972 	 * size of the page (which takes into account the initial offset into
2973 	 * the page.
2974 	 */
2975 	sgl[cnt].dmac_laddress = raddr;
2976 	sgl[cnt].dmac_size = psize;
2977 	sgl[cnt].dmac_type = 0;
2978 
2979 	/*
2980 	 * Save away the buffer offset into the page. We'll need this later in
2981 	 * the copy buffer code to help figure out the page index within the
2982 	 * buffer and the offset into the current page.
2983 	 */
2984 	sglinfo->si_buf_offset = offset;
2985 
2986 	/*
2987 	 * If we are using the copy buffer for anything over the segment
2988 	 * boundary, and this page is over the segment boundary.
2989 	 *   OR
2990 	 * if the DMA engine can't reach the physical address.
2991 	 */
2992 	if (((sglinfo->si_bounce_on_seg) &&
2993 	    ((raddr + psize) > sglinfo->si_segmask)) ||
2994 	    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
2995 		/*
2996 		 * Increase how much copy buffer we use. We always increase by
2997 		 * pagesize so we don't have to worry about converting offsets.
2998 		 * Set a flag in the cookies dmac_type to indicate that it uses
2999 		 * the copy buffer. If this isn't the last cookie, go to the
3000 		 * next cookie (since we separate each page which uses the copy
3001 		 * buffer in case the copy buffer is not physically contiguous.
3002 		 */
3003 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
3004 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3005 		if ((cnt + 1) < sglinfo->si_max_pages) {
3006 			cnt++;
3007 			sgl[cnt].dmac_laddress = 0;
3008 			sgl[cnt].dmac_size = 0;
3009 			sgl[cnt].dmac_type = 0;
3010 		}
3011 	}
3012 
3013 	/*
3014 	 * save this page's physical address so we can figure out if the next
3015 	 * page is physically contiguous. Keep decrementing size until we are
3016 	 * done with the buffer.
3017 	 */
3018 	last_page = raddr & MMU_PAGEMASK;
3019 	size -= psize;
3020 
3021 	while (size > 0) {
3022 		/* Get the size for this page (i.e. partial or full page) */
3023 		psize = MIN(size, MMU_PAGESIZE);
3024 
3025 		if (buftype == DMA_OTYP_PAGES) {
3026 			/* get the paddr from the page_t */
3027 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
3028 			paddr = pfn_to_pa(pp->p_pagenum);
3029 			pp = pp->p_next;
3030 		} else if (pplist != NULL) {
3031 			/* index into the array of page_t's to get the paddr */
3032 			ASSERT(!PP_ISFREE(pplist[pcnt]));
3033 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
3034 			pcnt++;
3035 		} else {
3036 			/* call into the VM to get the paddr */
3037 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
3038 			    vaddr));
3039 			vaddr += psize;
3040 		}
3041 
3042 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
3043 
3044 		/*
3045 		 * If we are using the copy buffer for anything over the
3046 		 * segment boundary, and this page is over the segment
3047 		 * boundary.
3048 		 *   OR
3049 		 * if the DMA engine can't reach the physical address.
3050 		 */
3051 		if (((sglinfo->si_bounce_on_seg) &&
3052 		    ((raddr + psize) > sglinfo->si_segmask)) ||
3053 		    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
3054 
3055 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
3056 
3057 			/*
3058 			 * if there is something in the current cookie, go to
3059 			 * the next one. We only want one page in a cookie which
3060 			 * uses the copybuf since the copybuf doesn't have to
3061 			 * be physically contiguous.
3062 			 */
3063 			if (sgl[cnt].dmac_size != 0) {
3064 				cnt++;
3065 			}
3066 			sgl[cnt].dmac_laddress = raddr;
3067 			sgl[cnt].dmac_size = psize;
3068 #if defined(__amd64)
3069 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3070 #else
3071 			/*
3072 			 * save the buf offset for 32-bit kernel. used in the
3073 			 * obsoleted interfaces.
3074 			 */
3075 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
3076 			    (dmar_object->dmao_size - size);
3077 #endif
3078 			/* if this isn't the last cookie, go to the next one */
3079 			if ((cnt + 1) < sglinfo->si_max_pages) {
3080 				cnt++;
3081 				sgl[cnt].dmac_laddress = 0;
3082 				sgl[cnt].dmac_size = 0;
3083 				sgl[cnt].dmac_type = 0;
3084 			}
3085 
3086 		/*
3087 		 * this page didn't need the copy buffer, if it's not physically
3088 		 * contiguous, or it would put us over a segment boundary, or it
3089 		 * puts us over the max cookie size, or the current sgl doesn't
3090 		 * have anything in it.
3091 		 */
3092 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
3093 		    !(raddr & sglinfo->si_segmask) ||
3094 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3095 		    (sgl[cnt].dmac_size == 0)) {
3096 			/*
3097 			 * if we're not already in a new cookie, go to the next
3098 			 * cookie.
3099 			 */
3100 			if (sgl[cnt].dmac_size != 0) {
3101 				cnt++;
3102 			}
3103 
3104 			/* save the cookie information */
3105 			sgl[cnt].dmac_laddress = raddr;
3106 			sgl[cnt].dmac_size = psize;
3107 #if defined(__amd64)
3108 			sgl[cnt].dmac_type = 0;
3109 #else
3110 			/*
3111 			 * save the buf offset for 32-bit kernel. used in the
3112 			 * obsoleted interfaces.
3113 			 */
3114 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
3115 #endif
3116 
3117 		/*
3118 		 * this page didn't need the copy buffer, it is physically
3119 		 * contiguous with the last page, and it's <= the max cookie
3120 		 * size.
3121 		 */
3122 		} else {
3123 			sgl[cnt].dmac_size += psize;
3124 
3125 			/*
3126 			 * if this exactly ==  the maximum cookie size, and
3127 			 * it isn't the last cookie, go to the next cookie.
3128 			 */
3129 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3130 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3131 				cnt++;
3132 				sgl[cnt].dmac_laddress = 0;
3133 				sgl[cnt].dmac_size = 0;
3134 				sgl[cnt].dmac_type = 0;
3135 			}
3136 		}
3137 
3138 		/*
3139 		 * save this page's physical address so we can figure out if the
3140 		 * next page is physically contiguous. Keep decrementing size
3141 		 * until we are done with the buffer.
3142 		 */
3143 		last_page = raddr;
3144 		size -= psize;
3145 	}
3146 
3147 	/* we're done, save away how many cookies the sgl has */
3148 	if (sgl[cnt].dmac_size == 0) {
3149 		ASSERT(cnt < sglinfo->si_max_pages);
3150 		sglinfo->si_sgl_size = cnt;
3151 	} else {
3152 		sglinfo->si_sgl_size = cnt + 1;
3153 	}
3154 }
3155 
3156 static void
3157 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
3158     rootnex_sglinfo_t *sglinfo)
3159 {
3160 	uint64_t offset;
3161 	uint64_t maxseg;
3162 	uint64_t dvaddr;
3163 	struct dvmaseg *dvs;
3164 	uint64_t paddr;
3165 	uint32_t psize, ssize;
3166 	uint32_t size;
3167 	uint_t cnt;
3168 	int physcontig;
3169 
3170 	ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR);
3171 
3172 	/* shortcuts */
3173 	maxseg = sglinfo->si_max_cookie_size;
3174 	size = dmar_object->dmao_size;
3175 
3176 	cnt = 0;
3177 	sglinfo->si_bounce_on_seg = B_FALSE;
3178 
3179 	dvs = dmar_object->dmao_obj.dvma_obj.dv_seg;
3180 	offset = dmar_object->dmao_obj.dvma_obj.dv_off;
3181 	ssize = dvs->dvs_len;
3182 	paddr = dvs->dvs_start;
3183 	paddr += offset;
3184 	psize = MIN(ssize, (maxseg - offset));
3185 	dvaddr = paddr + psize;
3186 	ssize -= psize;
3187 
3188 	sgl[cnt].dmac_laddress = paddr;
3189 	sgl[cnt].dmac_size = psize;
3190 	sgl[cnt].dmac_type = 0;
3191 
3192 	size -= psize;
3193 	while (size > 0) {
3194 		if (ssize == 0) {
3195 			dvs++;
3196 			ssize = dvs->dvs_len;
3197 			dvaddr = dvs->dvs_start;
3198 			physcontig = 0;
3199 		} else
3200 			physcontig = 1;
3201 
3202 		paddr = dvaddr;
3203 		psize = MIN(ssize, maxseg);
3204 		dvaddr += psize;
3205 		ssize -= psize;
3206 
3207 		if (!physcontig || !(paddr & sglinfo->si_segmask) ||
3208 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3209 		    (sgl[cnt].dmac_size == 0)) {
3210 			/*
3211 			 * if we're not already in a new cookie, go to the next
3212 			 * cookie.
3213 			 */
3214 			if (sgl[cnt].dmac_size != 0) {
3215 				cnt++;
3216 			}
3217 
3218 			/* save the cookie information */
3219 			sgl[cnt].dmac_laddress = paddr;
3220 			sgl[cnt].dmac_size = psize;
3221 			sgl[cnt].dmac_type = 0;
3222 		} else {
3223 			sgl[cnt].dmac_size += psize;
3224 
3225 			/*
3226 			 * if this exactly ==  the maximum cookie size, and
3227 			 * it isn't the last cookie, go to the next cookie.
3228 			 */
3229 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3230 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3231 				cnt++;
3232 				sgl[cnt].dmac_laddress = 0;
3233 				sgl[cnt].dmac_size = 0;
3234 				sgl[cnt].dmac_type = 0;
3235 			}
3236 		}
3237 		size -= psize;
3238 	}
3239 
3240 	/* we're done, save away how many cookies the sgl has */
3241 	if (sgl[cnt].dmac_size == 0) {
3242 		sglinfo->si_sgl_size = cnt;
3243 	} else {
3244 		sglinfo->si_sgl_size = cnt + 1;
3245 	}
3246 }
3247 
3248 /*
3249  * rootnex_bind_slowpath()
3250  *    Call in the bind path if the calling driver can't use the sgl without
3251  *    modifying it. We either need to use the copy buffer and/or we will end up
3252  *    with a partial bind.
3253  */
3254 static int
3255 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3256     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3257 {
3258 	rootnex_sglinfo_t *sinfo;
3259 	rootnex_window_t *window;
3260 	ddi_dma_cookie_t *cookie;
3261 	size_t copybuf_used;
3262 	size_t dmac_size;
3263 	boolean_t partial;
3264 	off_t cur_offset;
3265 	page_t *cur_pp;
3266 	major_t mnum;
3267 	int e;
3268 	int i;
3269 
3270 
3271 	sinfo = &dma->dp_sglinfo;
3272 	copybuf_used = 0;
3273 	partial = B_FALSE;
3274 
3275 	/*
3276 	 * If we're using the copybuf, set the copybuf state in dma struct.
3277 	 * Needs to be first since it sets the copy buffer size.
3278 	 */
3279 	if (sinfo->si_copybuf_req != 0) {
3280 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
3281 		if (e != DDI_SUCCESS) {
3282 			return (e);
3283 		}
3284 	} else {
3285 		dma->dp_copybuf_size = 0;
3286 	}
3287 
3288 	/*
3289 	 * Figure out if we need to do a partial mapping. If so, figure out
3290 	 * if we need to trim the buffers when we munge the sgl.
3291 	 */
3292 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
3293 	    (dmao->dmao_size > dma->dp_maxxfer) ||
3294 	    ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
3295 		dma->dp_partial_required = B_TRUE;
3296 		if (attr->dma_attr_granular != 1) {
3297 			dma->dp_trim_required = B_TRUE;
3298 		}
3299 	} else {
3300 		dma->dp_partial_required = B_FALSE;
3301 		dma->dp_trim_required = B_FALSE;
3302 	}
3303 
3304 	/* If we need to do a partial bind, make sure the driver supports it */
3305 	if (dma->dp_partial_required &&
3306 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
3307 
3308 		mnum = ddi_driver_major(dma->dp_dip);
3309 		/*
3310 		 * patchable which allows us to print one warning per major
3311 		 * number.
3312 		 */
3313 		if ((rootnex_bind_warn) &&
3314 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
3315 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
3316 			cmn_err(CE_WARN, "!%s: coding error detected, the "
3317 			    "driver is using ddi_dma_attr(9S) incorrectly. "
3318 			    "There is a small risk of data corruption in "
3319 			    "particular with large I/Os. The driver should be "
3320 			    "replaced with a corrected version for proper "
3321 			    "system operation. To disable this warning, add "
3322 			    "'set rootnex:rootnex_bind_warn=0' to "
3323 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
3324 		}
3325 		return (DDI_DMA_TOOBIG);
3326 	}
3327 
3328 	/*
3329 	 * we might need multiple windows, setup state to handle them. In this
3330 	 * code path, we will have at least one window.
3331 	 */
3332 	e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag);
3333 	if (e != DDI_SUCCESS) {
3334 		rootnex_teardown_copybuf(dma);
3335 		return (e);
3336 	}
3337 
3338 	window = &dma->dp_window[0];
3339 	cookie = &dma->dp_cookies[0];
3340 	cur_offset = 0;
3341 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
3342 	if (dmao->dmao_type == DMA_OTYP_PAGES) {
3343 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
3344 	}
3345 
3346 	/* loop though all the cookies we got back from get_sgl() */
3347 	for (i = 0; i < sinfo->si_sgl_size; i++) {
3348 		/*
3349 		 * If we're using the copy buffer, check this cookie and setup
3350 		 * its associated copy buffer state. If this cookie uses the
3351 		 * copy buffer, make sure we sync this window during dma_sync.
3352 		 */
3353 		if (dma->dp_copybuf_size > 0) {
3354 			rootnex_setup_cookie(dmao, dma, cookie,
3355 			    cur_offset, &copybuf_used, &cur_pp);
3356 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3357 				window->wd_dosync = B_TRUE;
3358 			}
3359 		}
3360 
3361 		/*
3362 		 * save away the cookie size, since it could be modified in
3363 		 * the windowing code.
3364 		 */
3365 		dmac_size = cookie->dmac_size;
3366 
3367 		/* if we went over max copybuf size */
3368 		if (dma->dp_copybuf_size &&
3369 		    (copybuf_used > dma->dp_copybuf_size)) {
3370 			partial = B_TRUE;
3371 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
3372 			    cookie, cur_offset, &copybuf_used);
3373 			if (e != DDI_SUCCESS) {
3374 				rootnex_teardown_copybuf(dma);
3375 				rootnex_teardown_windows(dma);
3376 				return (e);
3377 			}
3378 
3379 			/*
3380 			 * if the coookie uses the copy buffer, make sure the
3381 			 * new window we just moved to is set to sync.
3382 			 */
3383 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3384 				window->wd_dosync = B_TRUE;
3385 			}
3386 			ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *,
3387 			    dma->dp_dip);
3388 
3389 		/* if the cookie cnt == max sgllen, move to the next window */
3390 		} else if (window->wd_cookie_cnt >=
3391 		    (unsigned)attr->dma_attr_sgllen) {
3392 			partial = B_TRUE;
3393 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
3394 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
3395 			    cookie, attr, cur_offset);
3396 			if (e != DDI_SUCCESS) {
3397 				rootnex_teardown_copybuf(dma);
3398 				rootnex_teardown_windows(dma);
3399 				return (e);
3400 			}
3401 
3402 			/*
3403 			 * if the coookie uses the copy buffer, make sure the
3404 			 * new window we just moved to is set to sync.
3405 			 */
3406 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3407 				window->wd_dosync = B_TRUE;
3408 			}
3409 			ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *,
3410 			    dma->dp_dip);
3411 
3412 		/* else if we will be over maxxfer */
3413 		} else if ((window->wd_size + dmac_size) >
3414 		    dma->dp_maxxfer) {
3415 			partial = B_TRUE;
3416 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
3417 			    cookie);
3418 			if (e != DDI_SUCCESS) {
3419 				rootnex_teardown_copybuf(dma);
3420 				rootnex_teardown_windows(dma);
3421 				return (e);
3422 			}
3423 
3424 			/*
3425 			 * if the coookie uses the copy buffer, make sure the
3426 			 * new window we just moved to is set to sync.
3427 			 */
3428 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3429 				window->wd_dosync = B_TRUE;
3430 			}
3431 			ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *,
3432 			    dma->dp_dip);
3433 
3434 		/* else this cookie fits in the current window */
3435 		} else {
3436 			window->wd_cookie_cnt++;
3437 			window->wd_size += dmac_size;
3438 		}
3439 
3440 		/* track our offset into the buffer, go to the next cookie */
3441 		ASSERT(dmac_size <= dmao->dmao_size);
3442 		ASSERT(cookie->dmac_size <= dmac_size);
3443 		cur_offset += dmac_size;
3444 		cookie++;
3445 	}
3446 
3447 	/* if we ended up with a zero sized window in the end, clean it up */
3448 	if (window->wd_size == 0) {
3449 		hp->dmai_nwin--;
3450 		window--;
3451 	}
3452 
3453 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3454 
3455 	if (!partial) {
3456 		return (DDI_DMA_MAPPED);
3457 	}
3458 
3459 	ASSERT(dma->dp_partial_required);
3460 	return (DDI_DMA_PARTIAL_MAP);
3461 }
3462 
3463 /*
3464  * rootnex_setup_copybuf()
3465  *    Called in bind slowpath. Figures out if we're going to use the copy
3466  *    buffer, and if we do, sets up the basic state to handle it.
3467  */
3468 static int
3469 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3470     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3471 {
3472 	rootnex_sglinfo_t *sinfo;
3473 	ddi_dma_attr_t lattr;
3474 	size_t max_copybuf;
3475 	int cansleep;
3476 	int e;
3477 #if !defined(__amd64)
3478 	int vmflag;
3479 #endif
3480 
3481 	ASSERT(!dma->dp_dvma_used);
3482 
3483 	sinfo = &dma->dp_sglinfo;
3484 
3485 	/* read this first so it's consistent through the routine  */
3486 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3487 
3488 	/* We need to call into the rootnex on ddi_dma_sync() */
3489 	hp->dmai_rflags &= ~DMP_NOSYNC;
3490 
3491 	/* make sure the copybuf size <= the max size */
3492 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3493 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3494 
3495 #if !defined(__amd64)
3496 	/*
3497 	 * if we don't have kva space to copy to/from, allocate the KVA space
3498 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3499 	 * the 64-bit kernel.
3500 	 */
3501 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3502 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3503 
3504 		/* convert the sleep flags */
3505 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3506 			vmflag = VM_SLEEP;
3507 		} else {
3508 			vmflag = VM_NOSLEEP;
3509 		}
3510 
3511 		/* allocate Kernel VA space that we can bcopy to/from */
3512 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3513 		    vmflag);
3514 		if (dma->dp_kva == NULL) {
3515 			return (DDI_DMA_NORESOURCES);
3516 		}
3517 	}
3518 #endif
3519 
3520 	/* convert the sleep flags */
3521 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3522 		cansleep = 1;
3523 	} else {
3524 		cansleep = 0;
3525 	}
3526 
3527 	/*
3528 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3529 	 * engine limits, so we can't use kmem_alloc... We don't need
3530 	 * contiguous memory (sgllen) since we will be forcing windows on
3531 	 * sgllen anyway.
3532 	 */
3533 	lattr = *attr;
3534 	lattr.dma_attr_align = MMU_PAGESIZE;
3535 	lattr.dma_attr_sgllen = -1;	/* no limit */
3536 	/*
3537 	 * if we're using the copy buffer because of seg, use that for our
3538 	 * upper address limit.
3539 	 */
3540 	if (sinfo->si_bounce_on_seg) {
3541 		lattr.dma_attr_addr_hi = lattr.dma_attr_seg;
3542 	}
3543 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3544 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3545 	if (e != DDI_SUCCESS) {
3546 #if !defined(__amd64)
3547 		if (dma->dp_kva != NULL) {
3548 			vmem_free(heap_arena, dma->dp_kva,
3549 			    dma->dp_copybuf_size);
3550 		}
3551 #endif
3552 		return (DDI_DMA_NORESOURCES);
3553 	}
3554 
3555 	ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3556 	    size_t, dma->dp_copybuf_size);
3557 
3558 	return (DDI_SUCCESS);
3559 }
3560 
3561 
3562 /*
3563  * rootnex_setup_windows()
3564  *    Called in bind slowpath to setup the window state. We always have windows
3565  *    in the slowpath. Even if the window count = 1.
3566  */
3567 static int
3568 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3569     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3570 {
3571 	rootnex_window_t *windowp;
3572 	rootnex_sglinfo_t *sinfo;
3573 	size_t copy_state_size;
3574 	size_t win_state_size;
3575 	size_t state_available;
3576 	size_t space_needed;
3577 	uint_t copybuf_win;
3578 	uint_t maxxfer_win;
3579 	size_t space_used;
3580 	uint_t sglwin;
3581 
3582 
3583 	sinfo = &dma->dp_sglinfo;
3584 
3585 	dma->dp_current_win = 0;
3586 	hp->dmai_nwin = 0;
3587 
3588 	/* If we don't need to do a partial, we only have one window */
3589 	if (!dma->dp_partial_required) {
3590 		dma->dp_max_win = 1;
3591 
3592 	/*
3593 	 * we need multiple windows, need to figure out the worse case number
3594 	 * of windows.
3595 	 */
3596 	} else {
3597 		/*
3598 		 * if we need windows because we need more copy buffer that
3599 		 * we allow, the worse case number of windows we could need
3600 		 * here would be (copybuf space required / copybuf space that
3601 		 * we have) plus one for remainder, and plus 2 to handle the
3602 		 * extra pages on the trim for the first and last pages of the
3603 		 * buffer (a page is the minimum window size so under the right
3604 		 * attr settings, you could have a window for each page).
3605 		 * The last page will only be hit here if the size is not a
3606 		 * multiple of the granularity (which theoretically shouldn't
3607 		 * be the case but never has been enforced, so we could have
3608 		 * broken things without it).
3609 		 */
3610 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3611 			ASSERT(dma->dp_copybuf_size > 0);
3612 			copybuf_win = (sinfo->si_copybuf_req /
3613 			    dma->dp_copybuf_size) + 1 + 2;
3614 		} else {
3615 			copybuf_win = 0;
3616 		}
3617 
3618 		/*
3619 		 * if we need windows because we have more cookies than the H/W
3620 		 * can handle, the number of windows we would need here would
3621 		 * be (cookie count / cookies count H/W supports minus 1[for
3622 		 * trim]) plus one for remainder.
3623 		 */
3624 		if ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3625 			sglwin = (sinfo->si_sgl_size /
3626 			    (attr->dma_attr_sgllen - 1)) + 1;
3627 		} else {
3628 			sglwin = 0;
3629 		}
3630 
3631 		/*
3632 		 * if we need windows because we're binding more memory than the
3633 		 * H/W can transfer at once, the number of windows we would need
3634 		 * here would be (xfer count / max xfer H/W supports) plus one
3635 		 * for remainder, and plus 2 to handle the extra pages on the
3636 		 * trim (see above comment about trim)
3637 		 */
3638 		if (dmao->dmao_size > dma->dp_maxxfer) {
3639 			maxxfer_win = (dmao->dmao_size /
3640 			    dma->dp_maxxfer) + 1 + 2;
3641 		} else {
3642 			maxxfer_win = 0;
3643 		}
3644 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3645 		ASSERT(dma->dp_max_win > 0);
3646 	}
3647 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3648 
3649 	/*
3650 	 * Get space for window and potential copy buffer state. Before we
3651 	 * go and allocate memory, see if we can get away with using what's
3652 	 * left in the pre-allocted state or the dynamically allocated sgl.
3653 	 */
3654 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3655 	    sizeof (ddi_dma_cookie_t));
3656 
3657 	/* if we dynamically allocated space for the cookies */
3658 	if (dma->dp_need_to_free_cookie) {
3659 		/* if we have more space in the pre-allocted buffer, use it */
3660 		ASSERT(space_used <= dma->dp_cookie_size);
3661 		if ((dma->dp_cookie_size - space_used) <=
3662 		    rootnex_state->r_prealloc_size) {
3663 			state_available = rootnex_state->r_prealloc_size;
3664 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3665 
3666 		/*
3667 		 * else, we have more free space in the dynamically allocated
3668 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3669 		 * didn't need a lot of cookies.
3670 		 */
3671 		} else {
3672 			state_available = dma->dp_cookie_size - space_used;
3673 			windowp = (rootnex_window_t *)
3674 			    &dma->dp_cookies[sinfo->si_sgl_size];
3675 		}
3676 
3677 	/* we used the pre-alloced buffer */
3678 	} else {
3679 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3680 		state_available = rootnex_state->r_prealloc_size - space_used;
3681 		windowp = (rootnex_window_t *)
3682 		    &dma->dp_cookies[sinfo->si_sgl_size];
3683 	}
3684 
3685 	/*
3686 	 * figure out how much state we need to track the copy buffer. Add an
3687 	 * addition 8 bytes for pointer alignemnt later.
3688 	 */
3689 	if (dma->dp_copybuf_size > 0) {
3690 		copy_state_size = sinfo->si_max_pages *
3691 		    sizeof (rootnex_pgmap_t);
3692 	} else {
3693 		copy_state_size = 0;
3694 	}
3695 	/* add an additional 8 bytes for pointer alignment */
3696 	space_needed = win_state_size + copy_state_size + 0x8;
3697 
3698 	/* if we have enough space already, use it */
3699 	if (state_available >= space_needed) {
3700 		dma->dp_window = windowp;
3701 		dma->dp_need_to_free_window = B_FALSE;
3702 
3703 	/* not enough space, need to allocate more. */
3704 	} else {
3705 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3706 		if (dma->dp_window == NULL) {
3707 			return (DDI_DMA_NORESOURCES);
3708 		}
3709 		dma->dp_need_to_free_window = B_TRUE;
3710 		dma->dp_window_size = space_needed;
3711 		ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3712 		    dma->dp_dip, size_t, space_needed);
3713 	}
3714 
3715 	/*
3716 	 * we allocate copy buffer state and window state at the same time.
3717 	 * setup our copy buffer state pointers. Make sure it's aligned.
3718 	 */
3719 	if (dma->dp_copybuf_size > 0) {
3720 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3721 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3722 
3723 #if !defined(__amd64)
3724 		/*
3725 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3726 		 * false/NULL. Should be quicker to bzero vs loop and set.
3727 		 */
3728 		bzero(dma->dp_pgmap, copy_state_size);
3729 #endif
3730 	} else {
3731 		dma->dp_pgmap = NULL;
3732 	}
3733 
3734 	return (DDI_SUCCESS);
3735 }
3736 
3737 
3738 /*
3739  * rootnex_teardown_copybuf()
3740  *    cleans up after rootnex_setup_copybuf()
3741  */
3742 static void
3743 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3744 {
3745 #if !defined(__amd64)
3746 	int i;
3747 
3748 	/*
3749 	 * if we allocated kernel heap VMEM space, go through all the pages and
3750 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3751 	 * arena. Then free the VMEM space.
3752 	 */
3753 	if (dma->dp_kva != NULL) {
3754 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3755 			if (dma->dp_pgmap[i].pm_mapped) {
3756 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3757 				    MMU_PAGESIZE, HAT_UNLOAD);
3758 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3759 			}
3760 		}
3761 
3762 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3763 	}
3764 
3765 #endif
3766 
3767 	/* if we allocated a copy buffer, free it */
3768 	if (dma->dp_cbaddr != NULL) {
3769 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3770 	}
3771 }
3772 
3773 
3774 /*
3775  * rootnex_teardown_windows()
3776  *    cleans up after rootnex_setup_windows()
3777  */
3778 static void
3779 rootnex_teardown_windows(rootnex_dma_t *dma)
3780 {
3781 	/*
3782 	 * if we had to allocate window state on the last bind (because we
3783 	 * didn't have enough pre-allocated space in the handle), free it.
3784 	 */
3785 	if (dma->dp_need_to_free_window) {
3786 		kmem_free(dma->dp_window, dma->dp_window_size);
3787 	}
3788 }
3789 
3790 
3791 /*
3792  * rootnex_init_win()
3793  *    Called in bind slow path during creation of a new window. Initializes
3794  *    window state to default values.
3795  */
3796 /*ARGSUSED*/
3797 static void
3798 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3799     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3800 {
3801 	hp->dmai_nwin++;
3802 	window->wd_dosync = B_FALSE;
3803 	window->wd_offset = cur_offset;
3804 	window->wd_size = 0;
3805 	window->wd_first_cookie = cookie;
3806 	window->wd_cookie_cnt = 0;
3807 	window->wd_trim.tr_trim_first = B_FALSE;
3808 	window->wd_trim.tr_trim_last = B_FALSE;
3809 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3810 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3811 #if !defined(__amd64)
3812 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3813 #endif
3814 }
3815 
3816 
3817 /*
3818  * rootnex_setup_cookie()
3819  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3820  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3821  *    out if it uses the copy buffer, and if it does, save away everything we'll
3822  *    need during sync.
3823  */
3824 static void
3825 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3826     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3827     page_t **cur_pp)
3828 {
3829 	boolean_t copybuf_sz_power_2;
3830 	rootnex_sglinfo_t *sinfo;
3831 	paddr_t paddr;
3832 	uint_t pidx;
3833 	uint_t pcnt;
3834 	off_t poff;
3835 #if defined(__amd64)
3836 	pfn_t pfn;
3837 #else
3838 	page_t **pplist;
3839 #endif
3840 
3841 	ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR);
3842 
3843 	sinfo = &dma->dp_sglinfo;
3844 
3845 	/*
3846 	 * Calculate the page index relative to the start of the buffer. The
3847 	 * index to the current page for our buffer is the offset into the
3848 	 * first page of the buffer plus our current offset into the buffer
3849 	 * itself, shifted of course...
3850 	 */
3851 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3852 	ASSERT(pidx < sinfo->si_max_pages);
3853 
3854 	/* if this cookie uses the copy buffer */
3855 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3856 		/*
3857 		 * NOTE: we know that since this cookie uses the copy buffer, it
3858 		 * is <= MMU_PAGESIZE.
3859 		 */
3860 
3861 		/*
3862 		 * get the offset into the page. For the 64-bit kernel, get the
3863 		 * pfn which we'll use with seg kpm.
3864 		 */
3865 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3866 #if defined(__amd64)
3867 		/* mfn_to_pfn() is a NOP on i86pc */
3868 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3869 #endif /* __amd64 */
3870 
3871 		/* figure out if the copybuf size is a power of 2 */
3872 		if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) {
3873 			copybuf_sz_power_2 = B_FALSE;
3874 		} else {
3875 			copybuf_sz_power_2 = B_TRUE;
3876 		}
3877 
3878 		/* This page uses the copy buffer */
3879 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3880 
3881 		/*
3882 		 * save the copy buffer KVA that we'll use with this page.
3883 		 * if we still fit within the copybuf, it's a simple add.
3884 		 * otherwise, we need to wrap over using & or % accordingly.
3885 		 */
3886 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3887 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3888 			    *copybuf_used;
3889 		} else {
3890 			if (copybuf_sz_power_2) {
3891 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3892 				    (uintptr_t)dma->dp_cbaddr +
3893 				    (*copybuf_used &
3894 				    (dma->dp_copybuf_size - 1)));
3895 			} else {
3896 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3897 				    (uintptr_t)dma->dp_cbaddr +
3898 				    (*copybuf_used % dma->dp_copybuf_size));
3899 			}
3900 		}
3901 
3902 		/*
3903 		 * over write the cookie physical address with the address of
3904 		 * the physical address of the copy buffer page that we will
3905 		 * use.
3906 		 */
3907 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3908 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3909 
3910 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
3911 
3912 		/* if we have a kernel VA, it's easy, just save that address */
3913 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3914 		    (sinfo->si_asp == &kas)) {
3915 			/*
3916 			 * save away the page aligned virtual address of the
3917 			 * driver buffer. Offsets are handled in the sync code.
3918 			 */
3919 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3920 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3921 			    & MMU_PAGEMASK);
3922 #if !defined(__amd64)
3923 			/*
3924 			 * we didn't need to, and will never need to map this
3925 			 * page.
3926 			 */
3927 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3928 #endif
3929 
3930 		/* we don't have a kernel VA. We need one for the bcopy. */
3931 		} else {
3932 #if defined(__amd64)
3933 			/*
3934 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3935 			 * get a Kernel VA for the corresponding pfn.
3936 			 */
3937 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3938 #else
3939 			/*
3940 			 * for the 32-bit kernel, this is a pain. First we'll
3941 			 * save away the page_t or user VA for this page. This
3942 			 * is needed in rootnex_dma_win() when we switch to a
3943 			 * new window which requires us to re-map the copy
3944 			 * buffer.
3945 			 */
3946 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3947 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3948 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3949 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3950 			} else if (pplist != NULL) {
3951 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3952 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3953 			} else {
3954 				dma->dp_pgmap[pidx].pm_pp = NULL;
3955 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3956 				    (((uintptr_t)
3957 				    dmar_object->dmao_obj.virt_obj.v_addr +
3958 				    cur_offset) & MMU_PAGEMASK);
3959 			}
3960 
3961 			/*
3962 			 * save away the page aligned virtual address which was
3963 			 * allocated from the kernel heap arena (taking into
3964 			 * account if we need more copy buffer than we alloced
3965 			 * and use multiple windows to handle this, i.e. &,%).
3966 			 * NOTE: there isn't and physical memory backing up this
3967 			 * virtual address space currently.
3968 			 */
3969 			if ((*copybuf_used + MMU_PAGESIZE) <=
3970 			    dma->dp_copybuf_size) {
3971 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3972 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3973 				    MMU_PAGEMASK);
3974 			} else {
3975 				if (copybuf_sz_power_2) {
3976 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3977 					    (((uintptr_t)dma->dp_kva +
3978 					    (*copybuf_used &
3979 					    (dma->dp_copybuf_size - 1))) &
3980 					    MMU_PAGEMASK);
3981 				} else {
3982 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3983 					    (((uintptr_t)dma->dp_kva +
3984 					    (*copybuf_used %
3985 					    dma->dp_copybuf_size)) &
3986 					    MMU_PAGEMASK);
3987 				}
3988 			}
3989 
3990 			/*
3991 			 * if we haven't used up the available copy buffer yet,
3992 			 * map the kva to the physical page.
3993 			 */
3994 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3995 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3996 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3997 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3998 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
3999 					    dma->dp_pgmap[pidx].pm_kaddr);
4000 				} else {
4001 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
4002 					    sinfo->si_asp,
4003 					    dma->dp_pgmap[pidx].pm_kaddr);
4004 				}
4005 
4006 			/*
4007 			 * we've used up the available copy buffer, this page
4008 			 * will have to be mapped during rootnex_dma_win() when
4009 			 * we switch to a new window which requires a re-map
4010 			 * the copy buffer. (32-bit kernel only)
4011 			 */
4012 			} else {
4013 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4014 			}
4015 #endif
4016 			/* go to the next page_t */
4017 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4018 				*cur_pp = (*cur_pp)->p_next;
4019 			}
4020 		}
4021 
4022 		/* add to the copy buffer count */
4023 		*copybuf_used += MMU_PAGESIZE;
4024 
4025 	/*
4026 	 * This cookie doesn't use the copy buffer. Walk through the pages this
4027 	 * cookie occupies to reflect this.
4028 	 */
4029 	} else {
4030 		/*
4031 		 * figure out how many pages the cookie occupies. We need to
4032 		 * use the original page offset of the buffer and the cookies
4033 		 * offset in the buffer to do this.
4034 		 */
4035 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
4036 		pcnt = mmu_btopr(cookie->dmac_size + poff);
4037 
4038 		while (pcnt > 0) {
4039 #if !defined(__amd64)
4040 			/*
4041 			 * the 32-bit kernel doesn't have seg kpm, so we need
4042 			 * to map in the driver buffer (if it didn't come down
4043 			 * with a kernel VA) on the fly. Since this page doesn't
4044 			 * use the copy buffer, it's not, or will it ever, have
4045 			 * to be mapped in.
4046 			 */
4047 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4048 #endif
4049 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
4050 
4051 			/*
4052 			 * we need to update pidx and cur_pp or we'll loose
4053 			 * track of where we are.
4054 			 */
4055 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4056 				*cur_pp = (*cur_pp)->p_next;
4057 			}
4058 			pidx++;
4059 			pcnt--;
4060 		}
4061 	}
4062 }
4063 
4064 
4065 /*
4066  * rootnex_sgllen_window_boundary()
4067  *    Called in the bind slow path when the next cookie causes us to exceed (in
4068  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
4069  *    length supported by the DMA H/W.
4070  */
4071 static int
4072 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4073     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
4074     off_t cur_offset)
4075 {
4076 	off_t new_offset;
4077 	size_t trim_sz;
4078 	off_t coffset;
4079 
4080 
4081 	/*
4082 	 * if we know we'll never have to trim, it's pretty easy. Just move to
4083 	 * the next window and init it. We're done.
4084 	 */
4085 	if (!dma->dp_trim_required) {
4086 		(*windowp)++;
4087 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4088 		(*windowp)->wd_cookie_cnt++;
4089 		(*windowp)->wd_size = cookie->dmac_size;
4090 		return (DDI_SUCCESS);
4091 	}
4092 
4093 	/* figure out how much we need to trim from the window */
4094 	ASSERT(attr->dma_attr_granular != 0);
4095 	if (dma->dp_granularity_power_2) {
4096 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
4097 	} else {
4098 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
4099 	}
4100 
4101 	/* The window's a whole multiple of granularity. We're done */
4102 	if (trim_sz == 0) {
4103 		(*windowp)++;
4104 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4105 		(*windowp)->wd_cookie_cnt++;
4106 		(*windowp)->wd_size = cookie->dmac_size;
4107 		return (DDI_SUCCESS);
4108 	}
4109 
4110 	/*
4111 	 * The window's not a whole multiple of granularity, since we know this
4112 	 * is due to the sgllen, we need to go back to the last cookie and trim
4113 	 * that one, add the left over part of the old cookie into the new
4114 	 * window, and then add in the new cookie into the new window.
4115 	 */
4116 
4117 	/*
4118 	 * make sure the driver isn't making us do something bad... Trimming and
4119 	 * sgllen == 1 don't go together.
4120 	 */
4121 	if (attr->dma_attr_sgllen == 1) {
4122 		return (DDI_DMA_NOMAPPING);
4123 	}
4124 
4125 	/*
4126 	 * first, setup the current window to account for the trim. Need to go
4127 	 * back to the last cookie for this.
4128 	 */
4129 	cookie--;
4130 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4131 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4132 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4133 	ASSERT(cookie->dmac_size > trim_sz);
4134 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4135 	(*windowp)->wd_size -= trim_sz;
4136 
4137 	/* save the buffer offsets for the next window */
4138 	coffset = cookie->dmac_size - trim_sz;
4139 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4140 
4141 	/*
4142 	 * set this now in case this is the first window. all other cases are
4143 	 * set in dma_win()
4144 	 */
4145 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4146 
4147 	/*
4148 	 * initialize the next window using what's left over in the previous
4149 	 * cookie.
4150 	 */
4151 	(*windowp)++;
4152 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4153 	(*windowp)->wd_cookie_cnt++;
4154 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4155 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4156 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4157 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4158 		(*windowp)->wd_dosync = B_TRUE;
4159 	}
4160 
4161 	/*
4162 	 * now go back to the current cookie and add it to the new window. set
4163 	 * the new window size to the what was left over from the previous
4164 	 * cookie and what's in the current cookie.
4165 	 */
4166 	cookie++;
4167 	(*windowp)->wd_cookie_cnt++;
4168 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4169 
4170 	/*
4171 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
4172 	 * a max size of maxxfer). Handle that case.
4173 	 */
4174 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
4175 		/*
4176 		 * maxxfer is already a whole multiple of granularity, and this
4177 		 * trim will be <= the previous trim (since a cookie can't be
4178 		 * larger than maxxfer). Make things simple here.
4179 		 */
4180 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
4181 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4182 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4183 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4184 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4185 		(*windowp)->wd_size -= trim_sz;
4186 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
4187 
4188 		/* save the buffer offsets for the next window */
4189 		coffset = cookie->dmac_size - trim_sz;
4190 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4191 
4192 		/* setup the next window */
4193 		(*windowp)++;
4194 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4195 		(*windowp)->wd_cookie_cnt++;
4196 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4197 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4198 		    coffset;
4199 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4200 	}
4201 
4202 	return (DDI_SUCCESS);
4203 }
4204 
4205 
4206 /*
4207  * rootnex_copybuf_window_boundary()
4208  *    Called in bind slowpath when we get to a window boundary because we used
4209  *    up all the copy buffer that we have.
4210  */
4211 static int
4212 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4213     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
4214     size_t *copybuf_used)
4215 {
4216 	rootnex_sglinfo_t *sinfo;
4217 	off_t new_offset;
4218 	size_t trim_sz;
4219 	paddr_t paddr;
4220 	off_t coffset;
4221 	uint_t pidx;
4222 	off_t poff;
4223 
4224 
4225 	sinfo = &dma->dp_sglinfo;
4226 
4227 	/*
4228 	 * the copy buffer should be a whole multiple of page size. We know that
4229 	 * this cookie is <= MMU_PAGESIZE.
4230 	 */
4231 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
4232 
4233 	/*
4234 	 * from now on, all new windows in this bind need to be re-mapped during
4235 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
4236 	 * space...
4237 	 */
4238 #if !defined(__amd64)
4239 	dma->dp_cb_remaping = B_TRUE;
4240 #endif
4241 
4242 	/* reset copybuf used */
4243 	*copybuf_used = 0;
4244 
4245 	/*
4246 	 * if we don't have to trim (since granularity is set to 1), go to the
4247 	 * next window and add the current cookie to it. We know the current
4248 	 * cookie uses the copy buffer since we're in this code path.
4249 	 */
4250 	if (!dma->dp_trim_required) {
4251 		(*windowp)++;
4252 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4253 
4254 		/* Add this cookie to the new window */
4255 		(*windowp)->wd_cookie_cnt++;
4256 		(*windowp)->wd_size += cookie->dmac_size;
4257 		*copybuf_used += MMU_PAGESIZE;
4258 		return (DDI_SUCCESS);
4259 	}
4260 
4261 	/*
4262 	 * *** may need to trim, figure it out.
4263 	 */
4264 
4265 	/* figure out how much we need to trim from the window */
4266 	if (dma->dp_granularity_power_2) {
4267 		trim_sz = (*windowp)->wd_size &
4268 		    (hp->dmai_attr.dma_attr_granular - 1);
4269 	} else {
4270 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
4271 	}
4272 
4273 	/*
4274 	 * if the window's a whole multiple of granularity, go to the next
4275 	 * window, init it, then add in the current cookie. We know the current
4276 	 * cookie uses the copy buffer since we're in this code path.
4277 	 */
4278 	if (trim_sz == 0) {
4279 		(*windowp)++;
4280 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4281 
4282 		/* Add this cookie to the new window */
4283 		(*windowp)->wd_cookie_cnt++;
4284 		(*windowp)->wd_size += cookie->dmac_size;
4285 		*copybuf_used += MMU_PAGESIZE;
4286 		return (DDI_SUCCESS);
4287 	}
4288 
4289 	/*
4290 	 * *** We figured it out, we definitly need to trim
4291 	 */
4292 
4293 	/*
4294 	 * make sure the driver isn't making us do something bad...
4295 	 * Trimming and sgllen == 1 don't go together.
4296 	 */
4297 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
4298 		return (DDI_DMA_NOMAPPING);
4299 	}
4300 
4301 	/*
4302 	 * first, setup the current window to account for the trim. Need to go
4303 	 * back to the last cookie for this. Some of the last cookie will be in
4304 	 * the current window, and some of the last cookie will be in the new
4305 	 * window. All of the current cookie will be in the new window.
4306 	 */
4307 	cookie--;
4308 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4309 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4310 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4311 	ASSERT(cookie->dmac_size > trim_sz);
4312 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4313 	(*windowp)->wd_size -= trim_sz;
4314 
4315 	/*
4316 	 * we're trimming the last cookie (not the current cookie). So that
4317 	 * last cookie may have or may not have been using the copy buffer (
4318 	 * we know the cookie passed in uses the copy buffer since we're in
4319 	 * this code path).
4320 	 *
4321 	 * If the last cookie doesn't use the copy buffer, nothing special to
4322 	 * do. However, if it does uses the copy buffer, it will be both the
4323 	 * last page in the current window and the first page in the next
4324 	 * window. Since we are reusing the copy buffer (and KVA space on the
4325 	 * 32-bit kernel), this page will use the end of the copy buffer in the
4326 	 * current window, and the start of the copy buffer in the next window.
4327 	 * Track that info... The cookie physical address was already set to
4328 	 * the copy buffer physical address in setup_cookie..
4329 	 */
4330 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4331 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
4332 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
4333 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
4334 		(*windowp)->wd_trim.tr_last_pidx = pidx;
4335 		(*windowp)->wd_trim.tr_last_cbaddr =
4336 		    dma->dp_pgmap[pidx].pm_cbaddr;
4337 #if !defined(__amd64)
4338 		(*windowp)->wd_trim.tr_last_kaddr =
4339 		    dma->dp_pgmap[pidx].pm_kaddr;
4340 #endif
4341 	}
4342 
4343 	/* save the buffer offsets for the next window */
4344 	coffset = cookie->dmac_size - trim_sz;
4345 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4346 
4347 	/*
4348 	 * set this now in case this is the first window. all other cases are
4349 	 * set in dma_win()
4350 	 */
4351 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4352 
4353 	/*
4354 	 * initialize the next window using what's left over in the previous
4355 	 * cookie.
4356 	 */
4357 	(*windowp)++;
4358 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4359 	(*windowp)->wd_cookie_cnt++;
4360 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4361 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4362 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4363 
4364 	/*
4365 	 * again, we're tracking if the last cookie uses the copy buffer.
4366 	 * read the comment above for more info on why we need to track
4367 	 * additional state.
4368 	 *
4369 	 * For the first cookie in the new window, we need reset the physical
4370 	 * address to DMA into to the start of the copy buffer plus any
4371 	 * initial page offset which may be present.
4372 	 */
4373 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4374 		(*windowp)->wd_dosync = B_TRUE;
4375 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
4376 		(*windowp)->wd_trim.tr_first_pidx = pidx;
4377 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
4378 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
4379 
4380 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
4381 		    poff;
4382 		(*windowp)->wd_trim.tr_first_paddr =
4383 		    ROOTNEX_PADDR_TO_RBASE(paddr);
4384 
4385 #if !defined(__amd64)
4386 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
4387 #endif
4388 		/* account for the cookie copybuf usage in the new window */
4389 		*copybuf_used += MMU_PAGESIZE;
4390 
4391 		/*
4392 		 * every piece of code has to have a hack, and here is this
4393 		 * ones :-)
4394 		 *
4395 		 * There is a complex interaction between setup_cookie and the
4396 		 * copybuf window boundary. The complexity had to be in either
4397 		 * the maxxfer window, or the copybuf window, and I chose the
4398 		 * copybuf code.
4399 		 *
4400 		 * So in this code path, we have taken the last cookie,
4401 		 * virtually broken it in half due to the trim, and it happens
4402 		 * to use the copybuf which further complicates life. At the
4403 		 * same time, we have already setup the current cookie, which
4404 		 * is now wrong. More background info: the current cookie uses
4405 		 * the copybuf, so it is only a page long max. So we need to
4406 		 * fix the current cookies copy buffer address, physical
4407 		 * address, and kva for the 32-bit kernel. We due this by
4408 		 * bumping them by page size (of course, we can't due this on
4409 		 * the physical address since the copy buffer may not be
4410 		 * physically contiguous).
4411 		 */
4412 		cookie++;
4413 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
4414 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
4415 
4416 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
4417 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
4418 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
4419 
4420 #if !defined(__amd64)
4421 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
4422 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
4423 #endif
4424 	} else {
4425 		/* go back to the current cookie */
4426 		cookie++;
4427 	}
4428 
4429 	/*
4430 	 * add the current cookie to the new window. set the new window size to
4431 	 * the what was left over from the previous cookie and what's in the
4432 	 * current cookie.
4433 	 */
4434 	(*windowp)->wd_cookie_cnt++;
4435 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4436 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4437 
4438 	/*
4439 	 * we know that the cookie passed in always uses the copy buffer. We
4440 	 * wouldn't be here if it didn't.
4441 	 */
4442 	*copybuf_used += MMU_PAGESIZE;
4443 
4444 	return (DDI_SUCCESS);
4445 }
4446 
4447 
4448 /*
4449  * rootnex_maxxfer_window_boundary()
4450  *    Called in bind slowpath when we get to a window boundary because we will
4451  *    go over maxxfer.
4452  */
4453 static int
4454 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4455     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4456 {
4457 	size_t dmac_size;
4458 	off_t new_offset;
4459 	size_t trim_sz;
4460 	off_t coffset;
4461 
4462 
4463 	/*
4464 	 * calculate how much we have to trim off of the current cookie to equal
4465 	 * maxxfer. We don't have to account for granularity here since our
4466 	 * maxxfer already takes that into account.
4467 	 */
4468 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4469 	ASSERT(trim_sz <= cookie->dmac_size);
4470 	ASSERT(trim_sz <= dma->dp_maxxfer);
4471 
4472 	/* save cookie size since we need it later and we might change it */
4473 	dmac_size = cookie->dmac_size;
4474 
4475 	/*
4476 	 * if we're not trimming the entire cookie, setup the current window to
4477 	 * account for the trim.
4478 	 */
4479 	if (trim_sz < cookie->dmac_size) {
4480 		(*windowp)->wd_cookie_cnt++;
4481 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4482 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4483 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4484 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4485 		(*windowp)->wd_size = dma->dp_maxxfer;
4486 
4487 		/*
4488 		 * set the adjusted cookie size now in case this is the first
4489 		 * window. All other windows are taken care of in get win
4490 		 */
4491 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4492 	}
4493 
4494 	/*
4495 	 * coffset is the current offset within the cookie, new_offset is the
4496 	 * current offset with the entire buffer.
4497 	 */
4498 	coffset = dmac_size - trim_sz;
4499 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4500 
4501 	/* initialize the next window */
4502 	(*windowp)++;
4503 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4504 	(*windowp)->wd_cookie_cnt++;
4505 	(*windowp)->wd_size = trim_sz;
4506 	if (trim_sz < dmac_size) {
4507 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4508 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4509 		    coffset;
4510 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4511 	}
4512 
4513 	return (DDI_SUCCESS);
4514 }
4515 
4516 
4517 /*ARGSUSED*/
4518 static int
4519 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4520     off_t off, size_t len, uint_t cache_flags)
4521 {
4522 	rootnex_sglinfo_t *sinfo;
4523 	rootnex_pgmap_t *cbpage;
4524 	rootnex_window_t *win;
4525 	ddi_dma_impl_t *hp;
4526 	rootnex_dma_t *dma;
4527 	caddr_t fromaddr;
4528 	caddr_t toaddr;
4529 	uint_t psize;
4530 	off_t offset;
4531 	uint_t pidx;
4532 	size_t size;
4533 	off_t poff;
4534 	int e;
4535 
4536 
4537 	hp = (ddi_dma_impl_t *)handle;
4538 	dma = (rootnex_dma_t *)hp->dmai_private;
4539 	sinfo = &dma->dp_sglinfo;
4540 
4541 	/*
4542 	 * if we don't have any windows, we don't need to sync. A copybuf
4543 	 * will cause us to have at least one window.
4544 	 */
4545 	if (dma->dp_window == NULL) {
4546 		return (DDI_SUCCESS);
4547 	}
4548 
4549 	/* This window may not need to be sync'd */
4550 	win = &dma->dp_window[dma->dp_current_win];
4551 	if (!win->wd_dosync) {
4552 		return (DDI_SUCCESS);
4553 	}
4554 
4555 	/* handle off and len special cases */
4556 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4557 		offset = win->wd_offset;
4558 	} else {
4559 		offset = off;
4560 	}
4561 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4562 		size = win->wd_size;
4563 	} else {
4564 		size = len;
4565 	}
4566 
4567 	/* check the sync args to make sure they make a little sense */
4568 	if (rootnex_sync_check_parms) {
4569 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4570 		    cache_flags);
4571 		if (e != DDI_SUCCESS) {
4572 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4573 			return (DDI_FAILURE);
4574 		}
4575 	}
4576 
4577 	/*
4578 	 * special case the first page to handle the offset into the page. The
4579 	 * offset to the current page for our buffer is the offset into the
4580 	 * first page of the buffer plus our current offset into the buffer
4581 	 * itself, masked of course.
4582 	 */
4583 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4584 	psize = MIN((MMU_PAGESIZE - poff), size);
4585 
4586 	/* go through all the pages that we want to sync */
4587 	while (size > 0) {
4588 		/*
4589 		 * Calculate the page index relative to the start of the buffer.
4590 		 * The index to the current page for our buffer is the offset
4591 		 * into the first page of the buffer plus our current offset
4592 		 * into the buffer itself, shifted of course...
4593 		 */
4594 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4595 		ASSERT(pidx < sinfo->si_max_pages);
4596 
4597 		/*
4598 		 * if this page uses the copy buffer, we need to sync it,
4599 		 * otherwise, go on to the next page.
4600 		 */
4601 		cbpage = &dma->dp_pgmap[pidx];
4602 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4603 		    (cbpage->pm_uses_copybuf == B_FALSE));
4604 		if (cbpage->pm_uses_copybuf) {
4605 			/* cbaddr and kaddr should be page aligned */
4606 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4607 			    MMU_PAGEOFFSET) == 0);
4608 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4609 			    MMU_PAGEOFFSET) == 0);
4610 
4611 			/*
4612 			 * if we're copying for the device, we are going to
4613 			 * copy from the drivers buffer and to the rootnex
4614 			 * allocated copy buffer.
4615 			 */
4616 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4617 				fromaddr = cbpage->pm_kaddr + poff;
4618 				toaddr = cbpage->pm_cbaddr + poff;
4619 				ROOTNEX_DPROBE2(rootnex__sync__dev,
4620 				    dev_info_t *, dma->dp_dip, size_t, psize);
4621 
4622 			/*
4623 			 * if we're copying for the cpu/kernel, we are going to
4624 			 * copy from the rootnex allocated copy buffer to the
4625 			 * drivers buffer.
4626 			 */
4627 			} else {
4628 				fromaddr = cbpage->pm_cbaddr + poff;
4629 				toaddr = cbpage->pm_kaddr + poff;
4630 				ROOTNEX_DPROBE2(rootnex__sync__cpu,
4631 				    dev_info_t *, dma->dp_dip, size_t, psize);
4632 			}
4633 
4634 			bcopy(fromaddr, toaddr, psize);
4635 		}
4636 
4637 		/*
4638 		 * decrement size until we're done, update our offset into the
4639 		 * buffer, and get the next page size.
4640 		 */
4641 		size -= psize;
4642 		offset += psize;
4643 		psize = MIN(MMU_PAGESIZE, size);
4644 
4645 		/* page offset is zero for the rest of this loop */
4646 		poff = 0;
4647 	}
4648 
4649 	return (DDI_SUCCESS);
4650 }
4651 
4652 /*
4653  * rootnex_dma_sync()
4654  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4655  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4656  *    is set, ddi_dma_sync() returns immediately passing back success.
4657  */
4658 /*ARGSUSED*/
4659 static int
4660 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4661     off_t off, size_t len, uint_t cache_flags)
4662 {
4663 #if defined(__amd64) && !defined(__xpv)
4664 	if (IOMMU_USED(rdip)) {
4665 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4666 		    cache_flags));
4667 	}
4668 #endif
4669 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4670 	    cache_flags));
4671 }
4672 
4673 /*
4674  * rootnex_valid_sync_parms()
4675  *    checks the parameters passed to sync to verify they are correct.
4676  */
4677 static int
4678 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4679     off_t offset, size_t size, uint_t cache_flags)
4680 {
4681 	off_t woffset;
4682 
4683 
4684 	/*
4685 	 * the first part of the test to make sure the offset passed in is
4686 	 * within the window.
4687 	 */
4688 	if (offset < win->wd_offset) {
4689 		return (DDI_FAILURE);
4690 	}
4691 
4692 	/*
4693 	 * second and last part of the test to make sure the offset and length
4694 	 * passed in is within the window.
4695 	 */
4696 	woffset = offset - win->wd_offset;
4697 	if ((woffset + size) > win->wd_size) {
4698 		return (DDI_FAILURE);
4699 	}
4700 
4701 	/*
4702 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4703 	 * be set too.
4704 	 */
4705 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4706 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4707 		return (DDI_SUCCESS);
4708 	}
4709 
4710 	/*
4711 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4712 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4713 	 */
4714 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4715 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4716 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4717 		return (DDI_SUCCESS);
4718 	}
4719 
4720 	return (DDI_FAILURE);
4721 }
4722 
4723 
4724 /*ARGSUSED*/
4725 static int
4726 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4727     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4728     uint_t *ccountp)
4729 {
4730 	rootnex_window_t *window;
4731 	rootnex_trim_t *trim;
4732 	ddi_dma_impl_t *hp;
4733 	rootnex_dma_t *dma;
4734 	ddi_dma_obj_t *dmao;
4735 #if !defined(__amd64)
4736 	rootnex_sglinfo_t *sinfo;
4737 	rootnex_pgmap_t *pmap;
4738 	uint_t pidx;
4739 	uint_t pcnt;
4740 	off_t poff;
4741 	int i;
4742 #endif
4743 
4744 
4745 	hp = (ddi_dma_impl_t *)handle;
4746 	dma = (rootnex_dma_t *)hp->dmai_private;
4747 #if !defined(__amd64)
4748 	sinfo = &dma->dp_sglinfo;
4749 #endif
4750 
4751 	/* If we try and get a window which doesn't exist, return failure */
4752 	if (win >= hp->dmai_nwin) {
4753 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4754 		return (DDI_FAILURE);
4755 	}
4756 
4757 	dmao = dma->dp_dvma_used ? &dma->dp_dvma : &dma->dp_dma;
4758 
4759 	/*
4760 	 * if we don't have any windows, and they're asking for the first
4761 	 * window, setup the cookie pointer to the first cookie in the bind.
4762 	 * setup our return values, then increment the cookie since we return
4763 	 * the first cookie on the stack.
4764 	 */
4765 	if (dma->dp_window == NULL) {
4766 		if (win != 0) {
4767 			ROOTNEX_DPROF_INC(
4768 			    &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4769 			return (DDI_FAILURE);
4770 		}
4771 		hp->dmai_cookie = dma->dp_cookies;
4772 		*offp = 0;
4773 		*lenp = dmao->dmao_size;
4774 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4775 		*cookiep = hp->dmai_cookie[0];
4776 		hp->dmai_cookie++;
4777 		return (DDI_SUCCESS);
4778 	}
4779 
4780 	/* sync the old window before moving on to the new one */
4781 	window = &dma->dp_window[dma->dp_current_win];
4782 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4783 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4784 		    DDI_DMA_SYNC_FORCPU);
4785 	}
4786 
4787 #if !defined(__amd64)
4788 	/*
4789 	 * before we move to the next window, if we need to re-map, unmap all
4790 	 * the pages in this window.
4791 	 */
4792 	if (dma->dp_cb_remaping) {
4793 		/*
4794 		 * If we switch to this window again, we'll need to map in
4795 		 * on the fly next time.
4796 		 */
4797 		window->wd_remap_copybuf = B_TRUE;
4798 
4799 		/*
4800 		 * calculate the page index into the buffer where this window
4801 		 * starts, and the number of pages this window takes up.
4802 		 */
4803 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4804 		    MMU_PAGESHIFT;
4805 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4806 		    MMU_PAGEOFFSET;
4807 		pcnt = mmu_btopr(window->wd_size + poff);
4808 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4809 
4810 		/* unmap pages which are currently mapped in this window */
4811 		for (i = 0; i < pcnt; i++) {
4812 			if (dma->dp_pgmap[pidx].pm_mapped) {
4813 				hat_unload(kas.a_hat,
4814 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4815 				    HAT_UNLOAD);
4816 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4817 			}
4818 			pidx++;
4819 		}
4820 	}
4821 #endif
4822 
4823 	/*
4824 	 * Move to the new window.
4825 	 * NOTE: current_win must be set for sync to work right
4826 	 */
4827 	dma->dp_current_win = win;
4828 	window = &dma->dp_window[win];
4829 
4830 	/* if needed, adjust the first and/or last cookies for trim */
4831 	trim = &window->wd_trim;
4832 	if (trim->tr_trim_first) {
4833 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4834 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4835 #if !defined(__amd64)
4836 		window->wd_first_cookie->dmac_type =
4837 		    (window->wd_first_cookie->dmac_type &
4838 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4839 #endif
4840 		if (trim->tr_first_copybuf_win) {
4841 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4842 			    trim->tr_first_cbaddr;
4843 #if !defined(__amd64)
4844 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4845 			    trim->tr_first_kaddr;
4846 #endif
4847 		}
4848 	}
4849 	if (trim->tr_trim_last) {
4850 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4851 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4852 		if (trim->tr_last_copybuf_win) {
4853 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4854 			    trim->tr_last_cbaddr;
4855 #if !defined(__amd64)
4856 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4857 			    trim->tr_last_kaddr;
4858 #endif
4859 		}
4860 	}
4861 
4862 	/*
4863 	 * setup the cookie pointer to the first cookie in the window. setup
4864 	 * our return values, then increment the cookie since we return the
4865 	 * first cookie on the stack.
4866 	 */
4867 	hp->dmai_cookie = window->wd_first_cookie;
4868 	*offp = window->wd_offset;
4869 	*lenp = window->wd_size;
4870 	*ccountp = window->wd_cookie_cnt;
4871 	*cookiep = hp->dmai_cookie[0];
4872 	hp->dmai_cookie++;
4873 
4874 #if !defined(__amd64)
4875 	/* re-map copybuf if required for this window */
4876 	if (dma->dp_cb_remaping) {
4877 		/*
4878 		 * calculate the page index into the buffer where this
4879 		 * window starts.
4880 		 */
4881 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4882 		    MMU_PAGESHIFT;
4883 		ASSERT(pidx < sinfo->si_max_pages);
4884 
4885 		/*
4886 		 * the first page can get unmapped if it's shared with the
4887 		 * previous window. Even if the rest of this window is already
4888 		 * mapped in, we need to still check this one.
4889 		 */
4890 		pmap = &dma->dp_pgmap[pidx];
4891 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4892 			if (pmap->pm_pp != NULL) {
4893 				pmap->pm_mapped = B_TRUE;
4894 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4895 			} else if (pmap->pm_vaddr != NULL) {
4896 				pmap->pm_mapped = B_TRUE;
4897 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4898 				    pmap->pm_kaddr);
4899 			}
4900 		}
4901 		pidx++;
4902 
4903 		/* map in the rest of the pages if required */
4904 		if (window->wd_remap_copybuf) {
4905 			window->wd_remap_copybuf = B_FALSE;
4906 
4907 			/* figure out many pages this window takes up */
4908 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4909 			    MMU_PAGEOFFSET;
4910 			pcnt = mmu_btopr(window->wd_size + poff);
4911 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4912 
4913 			/* map pages which require it */
4914 			for (i = 1; i < pcnt; i++) {
4915 				pmap = &dma->dp_pgmap[pidx];
4916 				if (pmap->pm_uses_copybuf) {
4917 					ASSERT(pmap->pm_mapped == B_FALSE);
4918 					if (pmap->pm_pp != NULL) {
4919 						pmap->pm_mapped = B_TRUE;
4920 						i86_pp_map(pmap->pm_pp,
4921 						    pmap->pm_kaddr);
4922 					} else if (pmap->pm_vaddr != NULL) {
4923 						pmap->pm_mapped = B_TRUE;
4924 						i86_va_map(pmap->pm_vaddr,
4925 						    sinfo->si_asp,
4926 						    pmap->pm_kaddr);
4927 					}
4928 				}
4929 				pidx++;
4930 			}
4931 		}
4932 	}
4933 #endif
4934 
4935 	/* if the new window uses the copy buffer, sync it for the device */
4936 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4937 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4938 		    DDI_DMA_SYNC_FORDEV);
4939 	}
4940 
4941 	return (DDI_SUCCESS);
4942 }
4943 
4944 /*
4945  * rootnex_dma_win()
4946  *    called from ddi_dma_getwin()
4947  */
4948 /*ARGSUSED*/
4949 static int
4950 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4951     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4952     uint_t *ccountp)
4953 {
4954 #if defined(__amd64) && !defined(__xpv)
4955 	if (IOMMU_USED(rdip)) {
4956 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4957 		    cookiep, ccountp));
4958 	}
4959 #endif
4960 
4961 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4962 	    cookiep, ccountp));
4963 }
4964 
4965 #if defined(__amd64) && !defined(__xpv)
4966 /*ARGSUSED*/
4967 static int
4968 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
4969     ddi_dma_handle_t handle, void *v)
4970 {
4971 	ddi_dma_impl_t *hp;
4972 	rootnex_dma_t *dma;
4973 
4974 	hp = (ddi_dma_impl_t *)handle;
4975 	dma = (rootnex_dma_t *)hp->dmai_private;
4976 	dma->dp_iommu_private = v;
4977 
4978 	return (DDI_SUCCESS);
4979 }
4980 
4981 /*ARGSUSED*/
4982 static void *
4983 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
4984     ddi_dma_handle_t handle)
4985 {
4986 	ddi_dma_impl_t *hp;
4987 	rootnex_dma_t *dma;
4988 
4989 	hp = (ddi_dma_impl_t *)handle;
4990 	dma = (rootnex_dma_t *)hp->dmai_private;
4991 
4992 	return (dma->dp_iommu_private);
4993 }
4994 #endif
4995 
4996 /*
4997  * ************************
4998  *  obsoleted dma routines
4999  * ************************
5000  */
5001 
5002 /*
5003  * rootnex_dma_mctl()
5004  *
5005  * We don't support this legacy interface any more on x86.
5006  */
5007 /* ARGSUSED */
5008 static int
5009 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
5010     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
5011     uint_t cache_flags)
5012 {
5013 	/*
5014 	 * The only thing dma_mctl is usef for anymore is legacy SPARC
5015 	 * dvma and sbus-specific routines.
5016 	 */
5017 	return (DDI_FAILURE);
5018 }
5019 
5020 /*
5021  * *********
5022  *  FMA Code
5023  * *********
5024  */
5025 
5026 /*
5027  * rootnex_fm_init()
5028  *    FMA init busop
5029  */
5030 /* ARGSUSED */
5031 static int
5032 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
5033     ddi_iblock_cookie_t *ibc)
5034 {
5035 	*ibc = rootnex_state->r_err_ibc;
5036 
5037 	return (ddi_system_fmcap);
5038 }
5039 
5040 /*
5041  * rootnex_dma_check()
5042  *    Function called after a dma fault occurred to find out whether the
5043  *    fault address is associated with a driver that is able to handle faults
5044  *    and recover from faults.
5045  */
5046 /* ARGSUSED */
5047 static int
5048 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
5049     const void *not_used)
5050 {
5051 	rootnex_window_t *window;
5052 	uint64_t start_addr;
5053 	uint64_t fault_addr;
5054 	ddi_dma_impl_t *hp;
5055 	rootnex_dma_t *dma;
5056 	uint64_t end_addr;
5057 	size_t csize;
5058 	int i;
5059 	int j;
5060 
5061 
5062 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
5063 	hp = (ddi_dma_impl_t *)handle;
5064 	ASSERT(hp);
5065 
5066 	dma = (rootnex_dma_t *)hp->dmai_private;
5067 
5068 	/* Get the address that we need to search for */
5069 	fault_addr = *(uint64_t *)addr;
5070 
5071 	/*
5072 	 * if we don't have any windows, we can just walk through all the
5073 	 * cookies.
5074 	 */
5075 	if (dma->dp_window == NULL) {
5076 		/* for each cookie */
5077 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
5078 			/*
5079 			 * if the faulted address is within the physical address
5080 			 * range of the cookie, return DDI_FM_NONFATAL.
5081 			 */
5082 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
5083 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
5084 			    dma->dp_cookies[i].dmac_size))) {
5085 				return (DDI_FM_NONFATAL);
5086 			}
5087 		}
5088 
5089 		/* fault_addr not within this DMA handle */
5090 		return (DDI_FM_UNKNOWN);
5091 	}
5092 
5093 	/* we have mutiple windows, walk through each window */
5094 	for (i = 0; i < hp->dmai_nwin; i++) {
5095 		window = &dma->dp_window[i];
5096 
5097 		/* Go through all the cookies in the window */
5098 		for (j = 0; j < window->wd_cookie_cnt; j++) {
5099 
5100 			start_addr = window->wd_first_cookie[j].dmac_laddress;
5101 			csize = window->wd_first_cookie[j].dmac_size;
5102 
5103 			/*
5104 			 * if we are trimming the first cookie in the window,
5105 			 * and this is the first cookie, adjust the start
5106 			 * address and size of the cookie to account for the
5107 			 * trim.
5108 			 */
5109 			if (window->wd_trim.tr_trim_first && (j == 0)) {
5110 				start_addr = window->wd_trim.tr_first_paddr;
5111 				csize = window->wd_trim.tr_first_size;
5112 			}
5113 
5114 			/*
5115 			 * if we are trimming the last cookie in the window,
5116 			 * and this is the last cookie, adjust the start
5117 			 * address and size of the cookie to account for the
5118 			 * trim.
5119 			 */
5120 			if (window->wd_trim.tr_trim_last &&
5121 			    (j == (window->wd_cookie_cnt - 1))) {
5122 				start_addr = window->wd_trim.tr_last_paddr;
5123 				csize = window->wd_trim.tr_last_size;
5124 			}
5125 
5126 			end_addr = start_addr + csize;
5127 
5128 			/*
5129 			 * if the faulted address is within the physical
5130 			 * address of the cookie, return DDI_FM_NONFATAL.
5131 			 */
5132 			if ((fault_addr >= start_addr) &&
5133 			    (fault_addr <= end_addr)) {
5134 				return (DDI_FM_NONFATAL);
5135 			}
5136 		}
5137 	}
5138 
5139 	/* fault_addr not within this DMA handle */
5140 	return (DDI_FM_UNKNOWN);
5141 }
5142 
5143 /*ARGSUSED*/
5144 static int
5145 rootnex_quiesce(dev_info_t *dip)
5146 {
5147 #if defined(__amd64) && !defined(__xpv)
5148 	return (immu_quiesce());
5149 #else
5150 	return (DDI_SUCCESS);
5151 #endif
5152 }
5153 
5154 #if defined(__xpv)
5155 void
5156 immu_init(void)
5157 {
5158 	;
5159 }
5160 
5161 void
5162 immu_startup(void)
5163 {
5164 	;
5165 }
5166 /*ARGSUSED*/
5167 void
5168 immu_physmem_update(uint64_t addr, uint64_t size)
5169 {
5170 	;
5171 }
5172 #endif
5173