1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
27 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
28 * Copyright 2017 Joyent, Inc.
29 * Copyright 2020 Ryan Zezeski
30 */
31
32 /*
33 * x86 root nexus driver
34 */
35
36 #include <sys/sysmacros.h>
37 #include <sys/conf.h>
38 #include <sys/autoconf.h>
39 #include <sys/sysmacros.h>
40 #include <sys/debug.h>
41 #include <sys/psw.h>
42 #include <sys/ddidmareq.h>
43 #include <sys/promif.h>
44 #include <sys/devops.h>
45 #include <sys/kmem.h>
46 #include <sys/cmn_err.h>
47 #include <vm/seg.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_dev.h>
50 #include <sys/vmem.h>
51 #include <sys/mman.h>
52 #include <vm/hat.h>
53 #include <vm/as.h>
54 #include <vm/page.h>
55 #include <sys/avintr.h>
56 #include <sys/errno.h>
57 #include <sys/modctl.h>
58 #include <sys/ddi_impldefs.h>
59 #include <sys/sunddi.h>
60 #include <sys/sunndi.h>
61 #include <sys/mach_intr.h>
62 #include <sys/psm.h>
63 #include <sys/ontrap.h>
64 #include <sys/atomic.h>
65 #include <sys/sdt.h>
66 #include <sys/rootnex.h>
67 #include <vm/hat_i86.h>
68 #include <sys/ddifm.h>
69 #include <sys/ddi_isa.h>
70 #include <sys/apic.h>
71
72 #ifdef __xpv
73 #include <sys/bootinfo.h>
74 #include <sys/hypervisor.h>
75 #include <sys/bootconf.h>
76 #include <vm/kboot_mmu.h>
77 #endif
78
79 #if !defined(__xpv)
80 #include <sys/immu.h>
81 #endif
82
83
84 /*
85 * enable/disable extra checking of function parameters. Useful for debugging
86 * drivers.
87 */
88 #ifdef DEBUG
89 int rootnex_alloc_check_parms = 1;
90 int rootnex_bind_check_inuse = 1;
91 int rootnex_unbind_verify_buffer = 0;
92 int rootnex_sync_check_parms = 1;
93 #else
94 int rootnex_alloc_check_parms = 0;
95 int rootnex_bind_check_inuse = 0;
96 int rootnex_unbind_verify_buffer = 0;
97 int rootnex_sync_check_parms = 0;
98 #endif
99
100 boolean_t rootnex_dmar_not_setup;
101
102 /* Master Abort and Target Abort panic flag */
103 int rootnex_fm_ma_ta_panic_flag = 0;
104
105 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
106 int rootnex_bind_fail = 1;
107 int rootnex_bind_warn = 1;
108 uint8_t *rootnex_warn_list;
109 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
110 #define ROOTNEX_BIND_WARNING (0x1 << 0)
111
112 /*
113 * revert back to old broken behavior of always sync'ing entire copy buffer.
114 * This is useful if be have a buggy driver which doesn't correctly pass in
115 * the offset and size into ddi_dma_sync().
116 */
117 int rootnex_sync_ignore_params = 0;
118
119 /*
120 * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
121 * page for alignment. Allocate enough windows to handle a 256K buffer w/ at
122 * least 65 sgllen DMA engine, and enough copybuf buffer state pages to handle
123 * 2 pages (< 8K). We will still need to allocate the copy buffer during bind
124 * though (if we need one). These can only be modified in /etc/system before
125 * rootnex attach.
126 */
127 int rootnex_prealloc_cookies = 65;
128 int rootnex_prealloc_windows = 4;
129 int rootnex_prealloc_copybuf = 2;
130
131 /* driver global state */
132 static rootnex_state_t *rootnex_state;
133
134 #ifdef DEBUG
135 /* shortcut to rootnex counters */
136 static uint64_t *rootnex_cnt;
137 #endif
138
139 /*
140 * XXX - does x86 even need these or are they left over from the SPARC days?
141 */
142 /* statically defined integer/boolean properties for the root node */
143 static rootnex_intprop_t rootnex_intprp[] = {
144 { "PAGESIZE", PAGESIZE },
145 { "MMU_PAGESIZE", MMU_PAGESIZE },
146 { "MMU_PAGEOFFSET", MMU_PAGEOFFSET },
147 { DDI_RELATIVE_ADDRESSING, 1 },
148 };
149 #define NROOT_INTPROPS (sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
150
151 /*
152 * If we're dom0, we're using a real device so we need to load
153 * the cookies with MFNs instead of PFNs.
154 */
155 #ifdef __xpv
156 typedef maddr_t rootnex_addr_t;
157 #define ROOTNEX_PADDR_TO_RBASE(pa) \
158 (DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa))
159 #else
160 typedef paddr_t rootnex_addr_t;
161 #define ROOTNEX_PADDR_TO_RBASE(pa) (pa)
162 #endif
163
164 static struct cb_ops rootnex_cb_ops = {
165 nodev, /* open */
166 nodev, /* close */
167 nodev, /* strategy */
168 nodev, /* print */
169 nodev, /* dump */
170 nodev, /* read */
171 nodev, /* write */
172 nodev, /* ioctl */
173 nodev, /* devmap */
174 nodev, /* mmap */
175 nodev, /* segmap */
176 nochpoll, /* chpoll */
177 ddi_prop_op, /* cb_prop_op */
178 NULL, /* struct streamtab */
179 D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
180 CB_REV, /* Rev */
181 nodev, /* cb_aread */
182 nodev /* cb_awrite */
183 };
184
185 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
186 off_t offset, off_t len, caddr_t *vaddrp);
187 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
188 struct hat *hat, struct seg *seg, caddr_t addr,
189 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
190 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
191 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
192 ddi_dma_handle_t *handlep);
193 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
194 ddi_dma_handle_t handle);
195 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
196 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
197 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
198 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
199 ddi_dma_handle_t handle);
200 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
201 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
202 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
203 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
204 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
205 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
206 ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
207 off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
208 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
209 ddi_ctl_enum_t ctlop, void *arg, void *result);
210 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
211 ddi_iblock_cookie_t *ibc);
212 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
213 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
214 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *,
215 void *);
216 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *);
217
218 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
219 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
220 ddi_dma_handle_t *handlep);
221 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
222 ddi_dma_handle_t handle);
223 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
224 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
225 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
226 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
227 ddi_dma_handle_t handle);
228 #if !defined(__xpv)
229 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
230 ddi_dma_handle_t handle);
231 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
232 ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
233 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
234 ddi_dma_cookie_t *cookiep, uint_t ccount);
235 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
236 ddi_dma_handle_t handle);
237 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
238 #endif
239 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
240 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
241 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
242 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
243 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
244
245 #if !defined(__xpv)
246 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
247 ddi_dma_handle_t handle, void *v);
248 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
249 ddi_dma_handle_t handle);
250 #endif
251
252
253 static struct bus_ops rootnex_bus_ops = {
254 BUSO_REV,
255 rootnex_map,
256 NULL,
257 NULL,
258 NULL,
259 rootnex_map_fault,
260 0,
261 rootnex_dma_allochdl,
262 rootnex_dma_freehdl,
263 rootnex_dma_bindhdl,
264 rootnex_dma_unbindhdl,
265 rootnex_dma_sync,
266 rootnex_dma_win,
267 rootnex_dma_mctl,
268 rootnex_ctlops,
269 ddi_bus_prop_op,
270 i_ddi_rootnex_get_eventcookie,
271 i_ddi_rootnex_add_eventcall,
272 i_ddi_rootnex_remove_eventcall,
273 i_ddi_rootnex_post_event,
274 0, /* bus_intr_ctl */
275 0, /* bus_config */
276 0, /* bus_unconfig */
277 rootnex_fm_init, /* bus_fm_init */
278 NULL, /* bus_fm_fini */
279 NULL, /* bus_fm_access_enter */
280 NULL, /* bus_fm_access_exit */
281 NULL, /* bus_powr */
282 rootnex_intr_ops /* bus_intr_op */
283 };
284
285 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
286 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
287 static int rootnex_quiesce(dev_info_t *dip);
288
289 static struct dev_ops rootnex_ops = {
290 DEVO_REV,
291 0,
292 ddi_no_info,
293 nulldev,
294 nulldev,
295 rootnex_attach,
296 rootnex_detach,
297 nulldev,
298 &rootnex_cb_ops,
299 &rootnex_bus_ops,
300 NULL,
301 rootnex_quiesce, /* quiesce */
302 };
303
304 static struct modldrv rootnex_modldrv = {
305 &mod_driverops,
306 "i86pc root nexus",
307 &rootnex_ops
308 };
309
310 static struct modlinkage rootnex_modlinkage = {
311 MODREV_1,
312 (void *)&rootnex_modldrv,
313 NULL
314 };
315
316 #if !defined(__xpv)
317 static iommulib_nexops_t iommulib_nexops = {
318 IOMMU_NEXOPS_VERSION,
319 "Rootnex IOMMU ops Vers 1.1",
320 NULL,
321 rootnex_coredma_allochdl,
322 rootnex_coredma_freehdl,
323 rootnex_coredma_bindhdl,
324 rootnex_coredma_unbindhdl,
325 rootnex_coredma_reset_cookies,
326 rootnex_coredma_get_cookies,
327 rootnex_coredma_set_cookies,
328 rootnex_coredma_clear_cookies,
329 rootnex_coredma_get_sleep_flags,
330 rootnex_coredma_sync,
331 rootnex_coredma_win,
332 rootnex_coredma_hdl_setprivate,
333 rootnex_coredma_hdl_getprivate
334 };
335 #endif
336
337 /*
338 * extern hacks
339 */
340 extern struct seg_ops segdev_ops;
341 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */
342 #ifdef DDI_MAP_DEBUG
343 extern int ddi_map_debug_flag;
344 #define ddi_map_debug if (ddi_map_debug_flag) prom_printf
345 #endif
346 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
347 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
348 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
349 psm_intr_op_t, int *);
350 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
351 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
352
353 /*
354 * Use device arena to use for device control register mappings.
355 * Various kernel memory walkers (debugger, dtrace) need to know
356 * to avoid this address range to prevent undesired device activity.
357 */
358 extern void *device_arena_alloc(size_t size, int vm_flag);
359 extern void device_arena_free(void * vaddr, size_t size);
360
361
362 /*
363 * Internal functions
364 */
365 static int rootnex_dma_init();
366 static void rootnex_add_props(dev_info_t *);
367 static int rootnex_ctl_reportdev(dev_info_t *dip);
368 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
369 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
370 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
371 static int rootnex_map_handle(ddi_map_req_t *mp);
372 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
373 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
374 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
375 rootnex_sglinfo_t *sglinfo);
376 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object,
377 ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo);
378 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
379 rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
380 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
381 rootnex_dma_t *dma, ddi_dma_attr_t *attr);
382 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
383 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
384 ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
385 static void rootnex_teardown_windows(rootnex_dma_t *dma);
386 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
387 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
388 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
389 rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
390 size_t *copybuf_used, page_t **cur_pp);
391 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
392 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
393 ddi_dma_attr_t *attr, off_t cur_offset);
394 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
395 rootnex_dma_t *dma, rootnex_window_t **windowp,
396 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
397 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
398 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
399 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
400 off_t offset, size_t size, uint_t cache_flags);
401 static int rootnex_verify_buffer(rootnex_dma_t *dma);
402 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
403 const void *comp_addr, const void *not_used);
404 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object,
405 rootnex_sglinfo_t *sglinfo);
406 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object);
407
408 /*
409 * _init()
410 *
411 */
412 int
_init(void)413 _init(void)
414 {
415
416 rootnex_state = NULL;
417 return (mod_install(&rootnex_modlinkage));
418 }
419
420
421 /*
422 * _info()
423 *
424 */
425 int
_info(struct modinfo * modinfop)426 _info(struct modinfo *modinfop)
427 {
428 return (mod_info(&rootnex_modlinkage, modinfop));
429 }
430
431
432 /*
433 * _fini()
434 *
435 */
436 int
_fini(void)437 _fini(void)
438 {
439 return (EBUSY);
440 }
441
442
443 /*
444 * rootnex_attach()
445 *
446 */
447 static int
rootnex_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)448 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
449 {
450 int fmcap;
451 int e;
452
453 switch (cmd) {
454 case DDI_ATTACH:
455 break;
456 case DDI_RESUME:
457 #if !defined(__xpv)
458 return (immu_unquiesce());
459 #else
460 return (DDI_SUCCESS);
461 #endif
462 default:
463 return (DDI_FAILURE);
464 }
465
466 /*
467 * We should only have one instance of rootnex. Save it away since we
468 * don't have an easy way to get it back later.
469 */
470 ASSERT(rootnex_state == NULL);
471 rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
472
473 rootnex_state->r_dip = dip;
474 rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
475 rootnex_state->r_reserved_msg_printed = B_FALSE;
476 #ifdef DEBUG
477 rootnex_cnt = &rootnex_state->r_counters[0];
478 #endif
479
480 /*
481 * Set minimum fm capability level for i86pc platforms and then
482 * initialize error handling. Since we're the rootnex, we don't
483 * care what's returned in the fmcap field.
484 */
485 ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
486 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
487 fmcap = ddi_system_fmcap;
488 ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
489
490 /* initialize DMA related state */
491 e = rootnex_dma_init();
492 if (e != DDI_SUCCESS) {
493 kmem_free(rootnex_state, sizeof (rootnex_state_t));
494 return (DDI_FAILURE);
495 }
496
497 /* Add static root node properties */
498 rootnex_add_props(dip);
499
500 /* since we can't call ddi_report_dev() */
501 cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
502
503 /* Initialize rootnex event handle */
504 i_ddi_rootnex_init_events(dip);
505
506 #if !defined(__xpv)
507 e = iommulib_nexus_register(dip, &iommulib_nexops,
508 &rootnex_state->r_iommulib_handle);
509
510 ASSERT(e == DDI_SUCCESS);
511 #endif
512
513 return (DDI_SUCCESS);
514 }
515
516
517 /*
518 * rootnex_detach()
519 *
520 */
521 /*ARGSUSED*/
522 static int
rootnex_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)523 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
524 {
525 switch (cmd) {
526 case DDI_SUSPEND:
527 #if !defined(__xpv)
528 return (immu_quiesce());
529 #else
530 return (DDI_SUCCESS);
531 #endif
532 default:
533 return (DDI_FAILURE);
534 }
535 /*NOTREACHED*/
536
537 }
538
539
540 /*
541 * rootnex_dma_init()
542 *
543 */
544 /*ARGSUSED*/
545 static int
rootnex_dma_init()546 rootnex_dma_init()
547 {
548 size_t bufsize;
549
550
551 /*
552 * size of our cookie/window/copybuf state needed in dma bind that we
553 * pre-alloc in dma_alloc_handle
554 */
555 rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
556 rootnex_state->r_prealloc_size =
557 (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
558 (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
559 (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
560
561 /*
562 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
563 * allocate 16 extra bytes for struct pointer alignment
564 * (p->dmai_private & dma->dp_prealloc_buffer)
565 */
566 bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
567 rootnex_state->r_prealloc_size + 0x10;
568 rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
569 bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
570 if (rootnex_state->r_dmahdl_cache == NULL) {
571 return (DDI_FAILURE);
572 }
573
574 /*
575 * allocate array to track which major numbers we have printed warnings
576 * for.
577 */
578 rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
579 KM_SLEEP);
580
581 return (DDI_SUCCESS);
582 }
583
584
585 /*
586 * rootnex_add_props()
587 *
588 */
589 static void
rootnex_add_props(dev_info_t * dip)590 rootnex_add_props(dev_info_t *dip)
591 {
592 rootnex_intprop_t *rpp;
593 int i;
594
595 /* Add static integer/boolean properties to the root node */
596 rpp = rootnex_intprp;
597 for (i = 0; i < NROOT_INTPROPS; i++) {
598 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
599 rpp[i].prop_name, rpp[i].prop_value);
600 }
601 }
602
603
604
605 /*
606 * *************************
607 * ctlops related routines
608 * *************************
609 */
610
611 /*
612 * rootnex_ctlops()
613 *
614 */
615 /*ARGSUSED*/
616 static int
rootnex_ctlops(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t ctlop,void * arg,void * result)617 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
618 void *arg, void *result)
619 {
620 int n, *ptr;
621 struct ddi_parent_private_data *pdp;
622
623 switch (ctlop) {
624 case DDI_CTLOPS_DMAPMAPC:
625 /*
626 * Return 'partial' to indicate that dma mapping
627 * has to be done in the main MMU.
628 */
629 return (DDI_DMA_PARTIAL);
630
631 case DDI_CTLOPS_BTOP:
632 /*
633 * Convert byte count input to physical page units.
634 * (byte counts that are not a page-size multiple
635 * are rounded down)
636 */
637 *(ulong_t *)result = btop(*(ulong_t *)arg);
638 return (DDI_SUCCESS);
639
640 case DDI_CTLOPS_PTOB:
641 /*
642 * Convert size in physical pages to bytes
643 */
644 *(ulong_t *)result = ptob(*(ulong_t *)arg);
645 return (DDI_SUCCESS);
646
647 case DDI_CTLOPS_BTOPR:
648 /*
649 * Convert byte count input to physical page units
650 * (byte counts that are not a page-size multiple
651 * are rounded up)
652 */
653 *(ulong_t *)result = btopr(*(ulong_t *)arg);
654 return (DDI_SUCCESS);
655
656 case DDI_CTLOPS_INITCHILD:
657 return (impl_ddi_sunbus_initchild(arg));
658
659 case DDI_CTLOPS_UNINITCHILD:
660 impl_ddi_sunbus_removechild(arg);
661 return (DDI_SUCCESS);
662
663 case DDI_CTLOPS_REPORTDEV:
664 return (rootnex_ctl_reportdev(rdip));
665
666 case DDI_CTLOPS_IOMIN:
667 /*
668 * Nothing to do here but reflect back..
669 */
670 return (DDI_SUCCESS);
671
672 case DDI_CTLOPS_REGSIZE:
673 case DDI_CTLOPS_NREGS:
674 break;
675
676 case DDI_CTLOPS_SIDDEV:
677 if (ndi_dev_is_prom_node(rdip))
678 return (DDI_SUCCESS);
679 if (ndi_dev_is_persistent_node(rdip))
680 return (DDI_SUCCESS);
681 return (DDI_FAILURE);
682
683 case DDI_CTLOPS_POWER:
684 return ((*pm_platform_power)((power_req_t *)arg));
685
686 case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
687 case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
688 case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
689 case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
690 case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
691 case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
692 if (!rootnex_state->r_reserved_msg_printed) {
693 rootnex_state->r_reserved_msg_printed = B_TRUE;
694 cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
695 "1 or more reserved/obsolete operations.");
696 }
697 return (DDI_FAILURE);
698
699 default:
700 return (DDI_FAILURE);
701 }
702 /*
703 * The rest are for "hardware" properties
704 */
705 if ((pdp = ddi_get_parent_data(rdip)) == NULL)
706 return (DDI_FAILURE);
707
708 if (ctlop == DDI_CTLOPS_NREGS) {
709 ptr = (int *)result;
710 *ptr = pdp->par_nreg;
711 } else {
712 off_t *size = (off_t *)result;
713
714 ptr = (int *)arg;
715 n = *ptr;
716 if (n >= pdp->par_nreg) {
717 return (DDI_FAILURE);
718 }
719 *size = (off_t)pdp->par_reg[n].regspec_size;
720 }
721 return (DDI_SUCCESS);
722 }
723
724
725 /*
726 * rootnex_ctl_reportdev()
727 *
728 */
729 static int
rootnex_ctl_reportdev(dev_info_t * dev)730 rootnex_ctl_reportdev(dev_info_t *dev)
731 {
732 int i, n, len, f_len = 0;
733 char *buf;
734
735 buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
736 f_len += snprintf(buf, REPORTDEV_BUFSIZE,
737 "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
738 len = strlen(buf);
739
740 for (i = 0; i < sparc_pd_getnreg(dev); i++) {
741
742 struct regspec *rp = sparc_pd_getreg(dev, i);
743
744 if (i == 0)
745 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
746 ": ");
747 else
748 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
749 " and ");
750 len = strlen(buf);
751
752 switch (rp->regspec_bustype) {
753
754 case BTEISA:
755 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
756 "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
757 break;
758
759 case BTISA:
760 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
761 "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
762 break;
763
764 default:
765 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
766 "space %x offset %x",
767 rp->regspec_bustype, rp->regspec_addr);
768 break;
769 }
770 len = strlen(buf);
771 }
772 for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
773 int pri;
774
775 if (i != 0) {
776 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
777 ",");
778 len = strlen(buf);
779 }
780 pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
781 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
782 " sparc ipl %d", pri);
783 len = strlen(buf);
784 }
785 #ifdef DEBUG
786 if (f_len + 1 >= REPORTDEV_BUFSIZE) {
787 cmn_err(CE_NOTE, "next message is truncated: "
788 "printed length 1024, real length %d", f_len);
789 }
790 #endif /* DEBUG */
791 cmn_err(CE_CONT, "?%s\n", buf);
792 kmem_free(buf, REPORTDEV_BUFSIZE);
793 return (DDI_SUCCESS);
794 }
795
796
797 /*
798 * ******************
799 * map related code
800 * ******************
801 */
802
803 /*
804 * rootnex_map()
805 *
806 */
807 static int
rootnex_map(dev_info_t * dip,dev_info_t * rdip,ddi_map_req_t * mp,off_t offset,off_t len,caddr_t * vaddrp)808 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
809 off_t len, caddr_t *vaddrp)
810 {
811 struct regspec *orp = NULL;
812 struct regspec64 rp = { 0 };
813 ddi_map_req_t mr = *mp; /* Get private copy of request */
814
815 mp = &mr;
816
817 switch (mp->map_op) {
818 case DDI_MO_MAP_LOCKED:
819 case DDI_MO_UNMAP:
820 case DDI_MO_MAP_HANDLE:
821 break;
822 default:
823 #ifdef DDI_MAP_DEBUG
824 cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
825 mp->map_op);
826 #endif /* DDI_MAP_DEBUG */
827 return (DDI_ME_UNIMPLEMENTED);
828 }
829
830 if (mp->map_flags & DDI_MF_USER_MAPPING) {
831 #ifdef DDI_MAP_DEBUG
832 cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
833 #endif /* DDI_MAP_DEBUG */
834 return (DDI_ME_UNIMPLEMENTED);
835 }
836
837 /*
838 * First, we need to get the original regspec out before we convert it
839 * to the extended format. If we have a register number, then we need to
840 * convert that to a regspec.
841 */
842 if (mp->map_type == DDI_MT_RNUMBER) {
843
844 int rnumber = mp->map_obj.rnumber;
845 #ifdef DDI_MAP_DEBUG
846 static char *out_of_range =
847 "rootnex_map: Out of range rnumber <%d>, device <%s>";
848 #endif /* DDI_MAP_DEBUG */
849
850 orp = i_ddi_rnumber_to_regspec(rdip, rnumber);
851 if (orp == NULL) {
852 #ifdef DDI_MAP_DEBUG
853 cmn_err(CE_WARN, out_of_range, rnumber,
854 ddi_get_name(rdip));
855 #endif /* DDI_MAP_DEBUG */
856 return (DDI_ME_RNUMBER_RANGE);
857 }
858 } else if (!(mp->map_flags & DDI_MF_EXT_REGSPEC)) {
859 orp = mp->map_obj.rp;
860 }
861
862 /*
863 * Ensure that we are always using a 64-bit extended regspec regardless
864 * of what was passed into us. If the child driver is using a 64-bit
865 * regspec, then we need to make sure that we copy this to the local
866 * regspec64, rp.
867 */
868 if (orp != NULL) {
869 rp.regspec_bustype = orp->regspec_bustype;
870 rp.regspec_addr = orp->regspec_addr;
871 rp.regspec_size = orp->regspec_size;
872 } else {
873 struct regspec64 *rp64;
874 rp64 = (struct regspec64 *)mp->map_obj.rp;
875 rp = *rp64;
876 }
877
878 mp->map_type = DDI_MT_REGSPEC;
879 mp->map_flags |= DDI_MF_EXT_REGSPEC;
880 mp->map_obj.rp = (struct regspec *)&rp;
881
882 /*
883 * Adjust offset and length correspnding to called values...
884 * XXX: A non-zero length means override the one in the regspec
885 * XXX: (regardless of what's in the parent's range?)
886 */
887
888 #ifdef DDI_MAP_DEBUG
889 cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
890 "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
891 rp.regspec_bustype, rp.regspec_addr, rp.regspec_size, offset,
892 len, mp->map_handlep);
893 #endif /* DDI_MAP_DEBUG */
894
895 /*
896 * I/O or memory mapping:
897 *
898 * <bustype=0, addr=x, len=x>: memory
899 * <bustype=1, addr=x, len=x>: i/o
900 * <bustype>1, addr=0, len=x>: x86-compatibility i/o
901 */
902
903 if (rp.regspec_bustype > 1 && rp.regspec_addr != 0) {
904 cmn_err(CE_WARN, "<%s,%s> invalid register spec"
905 " <0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRIx64 ">",
906 ddi_get_name(dip), ddi_get_name(rdip), rp.regspec_bustype,
907 rp.regspec_addr, rp.regspec_size);
908 return (DDI_ME_INVAL);
909 }
910
911 if (rp.regspec_bustype > 1 && rp.regspec_addr == 0) {
912 /*
913 * compatibility i/o mapping
914 */
915 rp.regspec_bustype += offset;
916 } else {
917 /*
918 * Normal memory or i/o mapping
919 */
920 rp.regspec_addr += offset;
921 }
922
923 if (len != 0)
924 rp.regspec_size = len;
925
926 #ifdef DDI_MAP_DEBUG
927 cmn_err(CE_CONT, " <%s,%s> <0x%" PRIx64 ", 0x%" PRIx64
928 ", 0x%" PRId64 "> offset %d len %d handle 0x%x\n",
929 ddi_get_name(dip), ddi_get_name(rdip), rp.regspec_bustype,
930 rp.regspec_addr, rp.regspec_size, offset, len, mp->map_handlep);
931 #endif /* DDI_MAP_DEBUG */
932
933
934 /*
935 * The x86 root nexus does not have any notion of valid ranges of
936 * addresses. Its children have valid ranges, but because there are none
937 * for the nexus, we don't need to call i_ddi_apply_range(). Verify
938 * that is the case.
939 */
940 ASSERT0(sparc_pd_getnrng(dip));
941
942 switch (mp->map_op) {
943 case DDI_MO_MAP_LOCKED:
944
945 /*
946 * Set up the locked down kernel mapping to the regspec...
947 */
948
949 return (rootnex_map_regspec(mp, vaddrp));
950
951 case DDI_MO_UNMAP:
952
953 /*
954 * Release mapping...
955 */
956
957 return (rootnex_unmap_regspec(mp, vaddrp));
958
959 case DDI_MO_MAP_HANDLE:
960
961 return (rootnex_map_handle(mp));
962
963 default:
964 return (DDI_ME_UNIMPLEMENTED);
965 }
966 }
967
968
969 /*
970 * rootnex_map_fault()
971 *
972 * fault in mappings for requestors
973 */
974 /*ARGSUSED*/
975 static int
rootnex_map_fault(dev_info_t * dip,dev_info_t * rdip,struct hat * hat,struct seg * seg,caddr_t addr,struct devpage * dp,pfn_t pfn,uint_t prot,uint_t lock)976 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
977 struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
978 uint_t lock)
979 {
980
981 #ifdef DDI_MAP_DEBUG
982 ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
983 ddi_map_debug(" Seg <%s>\n",
984 seg->s_ops == &segdev_ops ? "segdev" :
985 seg == &kvseg ? "segkmem" : "NONE!");
986 #endif /* DDI_MAP_DEBUG */
987
988 /*
989 * This is all terribly broken, but it is a start
990 *
991 * XXX Note that this test means that segdev_ops
992 * must be exported from seg_dev.c.
993 * XXX What about devices with their own segment drivers?
994 */
995 if (seg->s_ops == &segdev_ops) {
996 struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
997
998 if (hat == NULL) {
999 /*
1000 * This is one plausible interpretation of
1001 * a null hat i.e. use the first hat on the
1002 * address space hat list which by convention is
1003 * the hat of the system MMU. At alternative
1004 * would be to panic .. this might well be better ..
1005 */
1006 ASSERT(AS_READ_HELD(seg->s_as));
1007 hat = seg->s_as->a_hat;
1008 cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1009 }
1010 hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1011 (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1012 } else if (seg == &kvseg && dp == NULL) {
1013 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1014 HAT_LOAD_LOCK);
1015 } else
1016 return (DDI_FAILURE);
1017 return (DDI_SUCCESS);
1018 }
1019
1020
1021 static int
rootnex_map_regspec(ddi_map_req_t * mp,caddr_t * vaddrp)1022 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1023 {
1024 rootnex_addr_t rbase;
1025 void *cvaddr;
1026 uint64_t npages, pgoffset;
1027 struct regspec64 *rp;
1028 ddi_acc_hdl_t *hp;
1029 ddi_acc_impl_t *ap;
1030 uint_t hat_acc_flags;
1031 paddr_t pbase;
1032
1033 ASSERT(mp->map_flags & DDI_MF_EXT_REGSPEC);
1034 rp = (struct regspec64 *)mp->map_obj.rp;
1035 hp = mp->map_handlep;
1036
1037 #ifdef DDI_MAP_DEBUG
1038 ddi_map_debug(
1039 "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1040 rp->regspec_bustype, rp->regspec_addr,
1041 rp->regspec_size, mp->map_handlep);
1042 #endif /* DDI_MAP_DEBUG */
1043
1044 /*
1045 * I/O or memory mapping
1046 *
1047 * <bustype=0, addr=x, len=x>: memory
1048 * <bustype=1, addr=x, len=x>: i/o
1049 * <bustype>1, addr=0, len=x>: x86-compatibility i/o
1050 */
1051
1052 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1053 cmn_err(CE_WARN, "rootnex: invalid register spec"
1054 " <0x%" PRIx64 ", 0x%" PRIx64", 0x%" PRIx64">",
1055 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size);
1056 return (DDI_FAILURE);
1057 }
1058
1059 if (rp->regspec_bustype != 0) {
1060 /*
1061 * I/O space - needs a handle.
1062 */
1063 if (hp == NULL) {
1064 return (DDI_FAILURE);
1065 }
1066 ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1067 ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1068 impl_acc_hdl_init(hp);
1069
1070 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1071 #ifdef DDI_MAP_DEBUG
1072 ddi_map_debug("rootnex_map_regspec: mmap() "
1073 "to I/O space is not supported.\n");
1074 #endif /* DDI_MAP_DEBUG */
1075 return (DDI_ME_INVAL);
1076 } else {
1077 /*
1078 * 1275-compliant vs. compatibility i/o mapping
1079 */
1080 *vaddrp =
1081 (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1082 ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1083 ((caddr_t)(uintptr_t)rp->regspec_addr);
1084 #ifdef __xpv
1085 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1086 hp->ah_pfn = xen_assign_pfn(
1087 mmu_btop((ulong_t)rp->regspec_addr &
1088 MMU_PAGEMASK));
1089 } else {
1090 hp->ah_pfn = mmu_btop(
1091 (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1092 }
1093 #else
1094 hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1095 MMU_PAGEMASK);
1096 #endif
1097 hp->ah_pnum = mmu_btopr(rp->regspec_size +
1098 (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1099 }
1100
1101 #ifdef DDI_MAP_DEBUG
1102 ddi_map_debug(
1103 "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1104 rp->regspec_size, *vaddrp);
1105 #endif /* DDI_MAP_DEBUG */
1106 return (DDI_SUCCESS);
1107 }
1108
1109 /*
1110 * Memory space
1111 */
1112
1113 if (hp != NULL) {
1114 /*
1115 * hat layer ignores
1116 * hp->ah_acc.devacc_attr_endian_flags.
1117 */
1118 switch (hp->ah_acc.devacc_attr_dataorder) {
1119 case DDI_STRICTORDER_ACC:
1120 hat_acc_flags = HAT_STRICTORDER;
1121 break;
1122 case DDI_UNORDERED_OK_ACC:
1123 hat_acc_flags = HAT_UNORDERED_OK;
1124 break;
1125 case DDI_MERGING_OK_ACC:
1126 hat_acc_flags = HAT_MERGING_OK;
1127 break;
1128 case DDI_LOADCACHING_OK_ACC:
1129 hat_acc_flags = HAT_LOADCACHING_OK;
1130 break;
1131 case DDI_STORECACHING_OK_ACC:
1132 hat_acc_flags = HAT_STORECACHING_OK;
1133 break;
1134 default:
1135 return (DDI_ME_INVAL);
1136 }
1137 ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1138 ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1139 impl_acc_hdl_init(hp);
1140 hp->ah_hat_flags = hat_acc_flags;
1141 } else {
1142 hat_acc_flags = HAT_STRICTORDER;
1143 }
1144
1145 rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1146 #ifdef __xpv
1147 /*
1148 * If we're dom0, we're using a real device so we need to translate
1149 * the MA to a PA.
1150 */
1151 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1152 pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1153 } else {
1154 pbase = rbase;
1155 }
1156 #else
1157 pbase = rbase;
1158 #endif
1159 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1160
1161 if (rp->regspec_size == 0) {
1162 #ifdef DDI_MAP_DEBUG
1163 ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1164 #endif /* DDI_MAP_DEBUG */
1165 return (DDI_ME_INVAL);
1166 }
1167
1168 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1169 /* extra cast to make gcc happy */
1170 *vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1171 } else {
1172 npages = mmu_btopr(rp->regspec_size + pgoffset);
1173
1174 #ifdef DDI_MAP_DEBUG
1175 ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1176 "physical %llx", npages, pbase);
1177 #endif /* DDI_MAP_DEBUG */
1178
1179 cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1180 if (cvaddr == NULL)
1181 return (DDI_ME_NORESOURCES);
1182
1183 /*
1184 * Now map in the pages we've allocated...
1185 */
1186 hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1187 mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1188 HAT_LOAD_LOCK);
1189 *vaddrp = (caddr_t)cvaddr + pgoffset;
1190
1191 /* save away pfn and npages for FMA */
1192 hp = mp->map_handlep;
1193 if (hp) {
1194 hp->ah_pfn = mmu_btop(pbase);
1195 hp->ah_pnum = npages;
1196 }
1197 }
1198
1199 #ifdef DDI_MAP_DEBUG
1200 ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1201 #endif /* DDI_MAP_DEBUG */
1202 return (DDI_SUCCESS);
1203 }
1204
1205
1206 static int
rootnex_unmap_regspec(ddi_map_req_t * mp,caddr_t * vaddrp)1207 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1208 {
1209 caddr_t addr = (caddr_t)*vaddrp;
1210 uint64_t npages, pgoffset;
1211 struct regspec64 *rp;
1212
1213 if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1214 return (0);
1215
1216 ASSERT(mp->map_flags & DDI_MF_EXT_REGSPEC);
1217 rp = (struct regspec64 *)mp->map_obj.rp;
1218
1219 if (rp->regspec_size == 0) {
1220 #ifdef DDI_MAP_DEBUG
1221 ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1222 #endif /* DDI_MAP_DEBUG */
1223 return (DDI_ME_INVAL);
1224 }
1225
1226 /*
1227 * I/O or memory mapping:
1228 *
1229 * <bustype=0, addr=x, len=x>: memory
1230 * <bustype=1, addr=x, len=x>: i/o
1231 * <bustype>1, addr=0, len=x>: x86-compatibility i/o
1232 */
1233 if (rp->regspec_bustype != 0) {
1234 /*
1235 * This is I/O space, which requires no particular
1236 * processing on unmap since it isn't mapped in the
1237 * first place.
1238 */
1239 return (DDI_SUCCESS);
1240 }
1241
1242 /*
1243 * Memory space
1244 */
1245 pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1246 npages = mmu_btopr(rp->regspec_size + pgoffset);
1247 hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1248 device_arena_free(addr - pgoffset, ptob(npages));
1249
1250 /*
1251 * Destroy the pointer - the mapping has logically gone
1252 */
1253 *vaddrp = NULL;
1254
1255 return (DDI_SUCCESS);
1256 }
1257
1258 static int
rootnex_map_handle(ddi_map_req_t * mp)1259 rootnex_map_handle(ddi_map_req_t *mp)
1260 {
1261 rootnex_addr_t rbase;
1262 ddi_acc_hdl_t *hp;
1263 uint64_t pgoffset;
1264 struct regspec64 *rp;
1265 paddr_t pbase;
1266
1267 rp = (struct regspec64 *)mp->map_obj.rp;
1268
1269 #ifdef DDI_MAP_DEBUG
1270 ddi_map_debug(
1271 "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1272 rp->regspec_bustype, rp->regspec_addr,
1273 rp->regspec_size, mp->map_handlep);
1274 #endif /* DDI_MAP_DEBUG */
1275
1276 /*
1277 * I/O or memory mapping:
1278 *
1279 * <bustype=0, addr=x, len=x>: memory
1280 * <bustype=1, addr=x, len=x>: i/o
1281 * <bustype>1, addr=0, len=x>: x86-compatibility i/o
1282 */
1283 if (rp->regspec_bustype != 0) {
1284 /*
1285 * This refers to I/O space, and we don't support "mapping"
1286 * I/O space to a user.
1287 */
1288 return (DDI_FAILURE);
1289 }
1290
1291 /*
1292 * Set up the hat_flags for the mapping.
1293 */
1294 hp = mp->map_handlep;
1295
1296 switch (hp->ah_acc.devacc_attr_endian_flags) {
1297 case DDI_NEVERSWAP_ACC:
1298 hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1299 break;
1300 case DDI_STRUCTURE_LE_ACC:
1301 hp->ah_hat_flags = HAT_STRUCTURE_LE;
1302 break;
1303 case DDI_STRUCTURE_BE_ACC:
1304 return (DDI_FAILURE);
1305 default:
1306 return (DDI_REGS_ACC_CONFLICT);
1307 }
1308
1309 switch (hp->ah_acc.devacc_attr_dataorder) {
1310 case DDI_STRICTORDER_ACC:
1311 break;
1312 case DDI_UNORDERED_OK_ACC:
1313 hp->ah_hat_flags |= HAT_UNORDERED_OK;
1314 break;
1315 case DDI_MERGING_OK_ACC:
1316 hp->ah_hat_flags |= HAT_MERGING_OK;
1317 break;
1318 case DDI_LOADCACHING_OK_ACC:
1319 hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1320 break;
1321 case DDI_STORECACHING_OK_ACC:
1322 hp->ah_hat_flags |= HAT_STORECACHING_OK;
1323 break;
1324 default:
1325 return (DDI_FAILURE);
1326 }
1327
1328 rbase = (rootnex_addr_t)rp->regspec_addr &
1329 (~(rootnex_addr_t)MMU_PAGEOFFSET);
1330 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1331
1332 if (rp->regspec_size == 0)
1333 return (DDI_ME_INVAL);
1334
1335 #ifdef __xpv
1336 /*
1337 * If we're dom0, we're using a real device so we need to translate
1338 * the MA to a PA.
1339 */
1340 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1341 pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1342 (rbase & MMU_PAGEOFFSET);
1343 } else {
1344 pbase = rbase;
1345 }
1346 #else
1347 pbase = rbase;
1348 #endif
1349
1350 hp->ah_pfn = mmu_btop(pbase);
1351 hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1352
1353 return (DDI_SUCCESS);
1354 }
1355
1356
1357
1358 /*
1359 * ************************
1360 * interrupt related code
1361 * ************************
1362 */
1363
1364 /*
1365 * rootnex_intr_ops()
1366 * bus_intr_op() function for interrupt support
1367 */
1368 /* ARGSUSED */
1369 static int
rootnex_intr_ops(dev_info_t * pdip,dev_info_t * rdip,ddi_intr_op_t intr_op,ddi_intr_handle_impl_t * hdlp,void * result)1370 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1371 ddi_intr_handle_impl_t *hdlp, void *result)
1372 {
1373 struct intrspec *ispec;
1374
1375 DDI_INTR_NEXDBG((CE_CONT,
1376 "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1377 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1378
1379 /* Process the interrupt operation */
1380 switch (intr_op) {
1381 case DDI_INTROP_GETCAP:
1382 /* First check with pcplusmp */
1383 if (psm_intr_ops == NULL)
1384 return (DDI_FAILURE);
1385
1386 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1387 *(int *)result = 0;
1388 return (DDI_FAILURE);
1389 }
1390 break;
1391 case DDI_INTROP_SETCAP:
1392 if (psm_intr_ops == NULL)
1393 return (DDI_FAILURE);
1394
1395 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1396 return (DDI_FAILURE);
1397 break;
1398 case DDI_INTROP_ALLOC:
1399 ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1400 return (rootnex_alloc_intr_fixed(rdip, hdlp, result));
1401 case DDI_INTROP_FREE:
1402 ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1403 return (rootnex_free_intr_fixed(rdip, hdlp));
1404 case DDI_INTROP_GETPRI:
1405 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1406 return (DDI_FAILURE);
1407 *(int *)result = ispec->intrspec_pri;
1408 break;
1409 case DDI_INTROP_SETPRI:
1410 /* Validate the interrupt priority passed to us */
1411 if (*(int *)result > LOCK_LEVEL)
1412 return (DDI_FAILURE);
1413
1414 /* Ensure that PSM is all initialized and ispec is ok */
1415 if ((psm_intr_ops == NULL) ||
1416 ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1417 return (DDI_FAILURE);
1418
1419 /* Change the priority */
1420 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1421 PSM_FAILURE)
1422 return (DDI_FAILURE);
1423
1424 /* update the ispec with the new priority */
1425 ispec->intrspec_pri = *(int *)result;
1426 break;
1427 case DDI_INTROP_ADDISR:
1428 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1429 return (DDI_FAILURE);
1430 ispec->intrspec_func = hdlp->ih_cb_func;
1431 break;
1432 case DDI_INTROP_REMISR:
1433 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1434 return (DDI_FAILURE);
1435 ispec->intrspec_func = (uint_t (*)()) 0;
1436 break;
1437 case DDI_INTROP_ENABLE:
1438 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1439 return (DDI_FAILURE);
1440
1441 /* Call psmi to translate irq with the dip */
1442 if (psm_intr_ops == NULL)
1443 return (DDI_FAILURE);
1444
1445 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1446 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1447 (int *)&hdlp->ih_vector) == PSM_FAILURE)
1448 return (DDI_FAILURE);
1449
1450 /* Add the interrupt handler */
1451 if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1452 hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1453 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1454 return (DDI_FAILURE);
1455 break;
1456 case DDI_INTROP_DISABLE:
1457 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1458 return (DDI_FAILURE);
1459
1460 /* Call psm_ops() to translate irq with the dip */
1461 if (psm_intr_ops == NULL)
1462 return (DDI_FAILURE);
1463
1464 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1465 (void) (*psm_intr_ops)(rdip, hdlp,
1466 PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1467
1468 /* Remove the interrupt handler */
1469 rem_avintr((void *)hdlp, ispec->intrspec_pri,
1470 hdlp->ih_cb_func, hdlp->ih_vector);
1471 break;
1472 case DDI_INTROP_SETMASK:
1473 if (psm_intr_ops == NULL)
1474 return (DDI_FAILURE);
1475
1476 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1477 return (DDI_FAILURE);
1478 break;
1479 case DDI_INTROP_CLRMASK:
1480 if (psm_intr_ops == NULL)
1481 return (DDI_FAILURE);
1482
1483 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1484 return (DDI_FAILURE);
1485 break;
1486 case DDI_INTROP_GETPENDING:
1487 if (psm_intr_ops == NULL)
1488 return (DDI_FAILURE);
1489
1490 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1491 result)) {
1492 *(int *)result = 0;
1493 return (DDI_FAILURE);
1494 }
1495 break;
1496 case DDI_INTROP_NAVAIL:
1497 case DDI_INTROP_NINTRS:
1498 *(int *)result = i_ddi_get_intx_nintrs(rdip);
1499 if (*(int *)result == 0) {
1500 /*
1501 * Special case for 'pcic' driver' only. This driver
1502 * driver is a child of 'isa' and 'rootnex' drivers.
1503 *
1504 * See detailed comments on this in the function
1505 * rootnex_get_ispec().
1506 *
1507 * Children of 'pcic' send 'NINITR' request all the
1508 * way to rootnex driver. But, the 'pdp->par_nintr'
1509 * field may not initialized. So, we fake it here
1510 * to return 1 (a la what PCMCIA nexus does).
1511 */
1512 if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1513 *(int *)result = 1;
1514 else
1515 return (DDI_FAILURE);
1516 }
1517 break;
1518 case DDI_INTROP_SUPPORTED_TYPES:
1519 *(int *)result = DDI_INTR_TYPE_FIXED; /* Always ... */
1520 break;
1521 default:
1522 return (DDI_FAILURE);
1523 }
1524
1525 return (DDI_SUCCESS);
1526 }
1527
1528
1529 /*
1530 * rootnex_get_ispec()
1531 * convert an interrupt number to an interrupt specification.
1532 * The interrupt number determines which interrupt spec will be
1533 * returned if more than one exists.
1534 *
1535 * Look into the parent private data area of the 'rdip' to find out
1536 * the interrupt specification. First check to make sure there is
1537 * one that matchs "inumber" and then return a pointer to it.
1538 *
1539 * Return NULL if one could not be found.
1540 *
1541 * NOTE: This is needed for rootnex_intr_ops()
1542 */
1543 static struct intrspec *
rootnex_get_ispec(dev_info_t * rdip,int inum)1544 rootnex_get_ispec(dev_info_t *rdip, int inum)
1545 {
1546 struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1547
1548 /*
1549 * Special case handling for drivers that provide their own
1550 * intrspec structures instead of relying on the DDI framework.
1551 *
1552 * A broken hardware driver in ON could potentially provide its
1553 * own intrspec structure, instead of relying on the hardware.
1554 * If these drivers are children of 'rootnex' then we need to
1555 * continue to provide backward compatibility to them here.
1556 *
1557 * Following check is a special case for 'pcic' driver which
1558 * was found to have broken hardwre andby provides its own intrspec.
1559 *
1560 * Verbatim comments from this driver are shown here:
1561 * "Don't use the ddi_add_intr since we don't have a
1562 * default intrspec in all cases."
1563 *
1564 * Since an 'ispec' may not be always created for it,
1565 * check for that and create one if so.
1566 *
1567 * NOTE: Currently 'pcic' is the only driver found to do this.
1568 */
1569 if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1570 pdp->par_nintr = 1;
1571 pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1572 pdp->par_nintr, KM_SLEEP);
1573 }
1574
1575 /* Validate the interrupt number */
1576 if (inum >= pdp->par_nintr)
1577 return (NULL);
1578
1579 /* Get the interrupt structure pointer and return that */
1580 return ((struct intrspec *)&pdp->par_intr[inum]);
1581 }
1582
1583 /*
1584 * Allocate interrupt vector for FIXED (legacy) type.
1585 */
1586 static int
rootnex_alloc_intr_fixed(dev_info_t * rdip,ddi_intr_handle_impl_t * hdlp,void * result)1587 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp,
1588 void *result)
1589 {
1590 struct intrspec *ispec;
1591 ddi_intr_handle_impl_t info_hdl;
1592 int ret;
1593 int free_phdl = 0;
1594 apic_get_type_t type_info;
1595
1596 if (psm_intr_ops == NULL)
1597 return (DDI_FAILURE);
1598
1599 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1600 return (DDI_FAILURE);
1601
1602 /*
1603 * If the PSM module is "APIX" then pass the request for it
1604 * to allocate the vector now.
1605 */
1606 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1607 info_hdl.ih_private = &type_info;
1608 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1609 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1610 if (hdlp->ih_private == NULL) { /* allocate phdl structure */
1611 free_phdl = 1;
1612 i_ddi_alloc_intr_phdl(hdlp);
1613 }
1614 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1615 ret = (*psm_intr_ops)(rdip, hdlp,
1616 PSM_INTR_OP_ALLOC_VECTORS, result);
1617 if (free_phdl) { /* free up the phdl structure */
1618 free_phdl = 0;
1619 i_ddi_free_intr_phdl(hdlp);
1620 hdlp->ih_private = NULL;
1621 }
1622 } else {
1623 /*
1624 * No APIX module; fall back to the old scheme where the
1625 * interrupt vector is allocated during ddi_enable_intr() call.
1626 */
1627 hdlp->ih_pri = ispec->intrspec_pri;
1628 *(int *)result = hdlp->ih_scratch1;
1629 ret = DDI_SUCCESS;
1630 }
1631
1632 return (ret);
1633 }
1634
1635 /*
1636 * Free up interrupt vector for FIXED (legacy) type.
1637 */
1638 static int
rootnex_free_intr_fixed(dev_info_t * rdip,ddi_intr_handle_impl_t * hdlp)1639 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp)
1640 {
1641 struct intrspec *ispec;
1642 struct ddi_parent_private_data *pdp;
1643 ddi_intr_handle_impl_t info_hdl;
1644 int ret;
1645 apic_get_type_t type_info;
1646
1647 if (psm_intr_ops == NULL)
1648 return (DDI_FAILURE);
1649
1650 /*
1651 * If the PSM module is "APIX" then pass the request for it
1652 * to free up the vector now.
1653 */
1654 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1655 info_hdl.ih_private = &type_info;
1656 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1657 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1658 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1659 return (DDI_FAILURE);
1660 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1661 ret = (*psm_intr_ops)(rdip, hdlp,
1662 PSM_INTR_OP_FREE_VECTORS, NULL);
1663 } else {
1664 /*
1665 * No APIX module; fall back to the old scheme where
1666 * the interrupt vector was already freed during
1667 * ddi_disable_intr() call.
1668 */
1669 ret = DDI_SUCCESS;
1670 }
1671
1672 pdp = ddi_get_parent_data(rdip);
1673
1674 /*
1675 * Special case for 'pcic' driver' only.
1676 * If an intrspec was created for it, clean it up here
1677 * See detailed comments on this in the function
1678 * rootnex_get_ispec().
1679 */
1680 if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1681 kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1682 pdp->par_nintr);
1683 /*
1684 * Set it to zero; so that
1685 * DDI framework doesn't free it again
1686 */
1687 pdp->par_intr = NULL;
1688 pdp->par_nintr = 0;
1689 }
1690
1691 return (ret);
1692 }
1693
1694
1695 /*
1696 * ******************
1697 * dma related code
1698 * ******************
1699 */
1700
1701 /*ARGSUSED*/
1702 static int
rootnex_coredma_allochdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_attr_t * attr,int (* waitfp)(caddr_t),caddr_t arg,ddi_dma_handle_t * handlep)1703 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1704 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1705 ddi_dma_handle_t *handlep)
1706 {
1707 uint64_t maxsegmentsize_ll;
1708 uint_t maxsegmentsize;
1709 ddi_dma_impl_t *hp;
1710 rootnex_dma_t *dma;
1711 uint64_t count_max;
1712 uint64_t seg;
1713 int kmflag;
1714 int e;
1715
1716
1717 /* convert our sleep flags */
1718 if (waitfp == DDI_DMA_SLEEP) {
1719 kmflag = KM_SLEEP;
1720 } else {
1721 kmflag = KM_NOSLEEP;
1722 }
1723
1724 /*
1725 * We try to do only one memory allocation here. We'll do a little
1726 * pointer manipulation later. If the bind ends up taking more than
1727 * our prealloc's space, we'll have to allocate more memory in the
1728 * bind operation. Not great, but much better than before and the
1729 * best we can do with the current bind interfaces.
1730 */
1731 hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1732 if (hp == NULL)
1733 return (DDI_DMA_NORESOURCES);
1734
1735 /* Do our pointer manipulation now, align the structures */
1736 hp->dmai_private = (void *)(((uintptr_t)hp +
1737 (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1738 dma = (rootnex_dma_t *)hp->dmai_private;
1739 dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1740 sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1741
1742 /* setup the handle */
1743 rootnex_clean_dmahdl(hp);
1744 hp->dmai_error.err_fep = NULL;
1745 hp->dmai_error.err_cf = NULL;
1746 dma->dp_dip = rdip;
1747 dma->dp_sglinfo.si_flags = attr->dma_attr_flags;
1748 dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1749
1750 /*
1751 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU
1752 * is being used. Set the upper limit to the seg value.
1753 * There will be enough DVMA space to always get addresses
1754 * that will match the constraints.
1755 */
1756 if (IOMMU_USED(rdip) &&
1757 (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) {
1758 dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg;
1759 dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG;
1760 } else
1761 dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1762
1763 hp->dmai_minxfer = attr->dma_attr_minxfer;
1764 hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1765 hp->dmai_rdip = rdip;
1766 hp->dmai_attr = *attr;
1767
1768 if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr)
1769 dma->dp_sglinfo.si_cancross = B_FALSE;
1770 else
1771 dma->dp_sglinfo.si_cancross = B_TRUE;
1772
1773 /* we don't need to worry about the SPL since we do a tryenter */
1774 mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1775
1776 /*
1777 * Figure out our maximum segment size. If the segment size is greater
1778 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1779 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1780 * dma_attr_count_max are size-1 type values.
1781 *
1782 * Maximum segment size is the largest physically contiguous chunk of
1783 * memory that we can return from a bind (i.e. the maximum size of a
1784 * single cookie).
1785 */
1786
1787 /* handle the rollover cases */
1788 seg = attr->dma_attr_seg + 1;
1789 if (seg < attr->dma_attr_seg) {
1790 seg = attr->dma_attr_seg;
1791 }
1792 count_max = attr->dma_attr_count_max + 1;
1793 if (count_max < attr->dma_attr_count_max) {
1794 count_max = attr->dma_attr_count_max;
1795 }
1796
1797 /*
1798 * granularity may or may not be a power of two. If it isn't, we can't
1799 * use a simple mask.
1800 */
1801 if (!ISP2(attr->dma_attr_granular)) {
1802 dma->dp_granularity_power_2 = B_FALSE;
1803 } else {
1804 dma->dp_granularity_power_2 = B_TRUE;
1805 }
1806
1807 /*
1808 * maxxfer should be a whole multiple of granularity. If we're going to
1809 * break up a window because we're greater than maxxfer, we might as
1810 * well make sure it's maxxfer is a whole multiple so we don't have to
1811 * worry about triming the window later on for this case.
1812 */
1813 if (attr->dma_attr_granular > 1) {
1814 if (dma->dp_granularity_power_2) {
1815 dma->dp_maxxfer = attr->dma_attr_maxxfer -
1816 (attr->dma_attr_maxxfer &
1817 (attr->dma_attr_granular - 1));
1818 } else {
1819 dma->dp_maxxfer = attr->dma_attr_maxxfer -
1820 (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1821 }
1822 } else {
1823 dma->dp_maxxfer = attr->dma_attr_maxxfer;
1824 }
1825
1826 maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1827 maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1828 if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1829 maxsegmentsize = 0xFFFFFFFF;
1830 } else {
1831 maxsegmentsize = maxsegmentsize_ll;
1832 }
1833 dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1834 dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1835
1836 /* check the ddi_dma_attr arg to make sure it makes a little sense */
1837 if (rootnex_alloc_check_parms) {
1838 e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1839 if (e != DDI_SUCCESS) {
1840 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1841 (void) rootnex_dma_freehdl(dip, rdip,
1842 (ddi_dma_handle_t)hp);
1843 return (e);
1844 }
1845 }
1846
1847 *handlep = (ddi_dma_handle_t)hp;
1848
1849 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1850 ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1851 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1852
1853 return (DDI_SUCCESS);
1854 }
1855
1856
1857 /*
1858 * rootnex_dma_allochdl()
1859 * called from ddi_dma_alloc_handle().
1860 */
1861 static int
rootnex_dma_allochdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_attr_t * attr,int (* waitfp)(caddr_t),caddr_t arg,ddi_dma_handle_t * handlep)1862 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1863 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1864 {
1865 int retval = DDI_SUCCESS;
1866 #if !defined(__xpv)
1867
1868 if (IOMMU_UNITIALIZED(rdip)) {
1869 retval = iommulib_nex_open(dip, rdip);
1870
1871 if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP)
1872 return (retval);
1873 }
1874
1875 if (IOMMU_UNUSED(rdip)) {
1876 retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1877 handlep);
1878 } else {
1879 retval = iommulib_nexdma_allochdl(dip, rdip, attr,
1880 waitfp, arg, handlep);
1881 }
1882 #else
1883 retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1884 handlep);
1885 #endif
1886 switch (retval) {
1887 case DDI_DMA_NORESOURCES:
1888 if (waitfp != DDI_DMA_DONTWAIT) {
1889 ddi_set_callback(waitfp, arg,
1890 &rootnex_state->r_dvma_call_list_id);
1891 }
1892 break;
1893 case DDI_SUCCESS:
1894 ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL);
1895 break;
1896 default:
1897 break;
1898 }
1899 return (retval);
1900 }
1901
1902 /*ARGSUSED*/
1903 static int
rootnex_coredma_freehdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle)1904 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1905 ddi_dma_handle_t handle)
1906 {
1907 ddi_dma_impl_t *hp;
1908 rootnex_dma_t *dma;
1909
1910
1911 hp = (ddi_dma_impl_t *)handle;
1912 dma = (rootnex_dma_t *)hp->dmai_private;
1913
1914 /* unbind should have been called first */
1915 ASSERT(!dma->dp_inuse);
1916
1917 mutex_destroy(&dma->dp_mutex);
1918 kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1919
1920 ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1921 ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1922 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1923
1924 return (DDI_SUCCESS);
1925 }
1926
1927 /*
1928 * rootnex_dma_freehdl()
1929 * called from ddi_dma_free_handle().
1930 */
1931 static int
rootnex_dma_freehdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle)1932 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1933 {
1934 int ret;
1935
1936 ndi_fmc_remove(rdip, DMA_HANDLE, handle);
1937 #if !defined(__xpv)
1938 if (IOMMU_USED(rdip))
1939 ret = iommulib_nexdma_freehdl(dip, rdip, handle);
1940 else
1941 #endif
1942 ret = rootnex_coredma_freehdl(dip, rdip, handle);
1943
1944 if (rootnex_state->r_dvma_call_list_id)
1945 ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1946
1947 return (ret);
1948 }
1949
1950 /*ARGSUSED*/
1951 static int
rootnex_coredma_bindhdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,struct ddi_dma_req * dmareq,ddi_dma_cookie_t * cookiep,uint_t * ccountp)1952 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1953 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1954 ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1955 {
1956 rootnex_sglinfo_t *sinfo;
1957 ddi_dma_obj_t *dmao;
1958 #if !defined(__xpv)
1959 struct dvmaseg *dvs;
1960 ddi_dma_cookie_t *cookie;
1961 #endif
1962 ddi_dma_attr_t *attr;
1963 ddi_dma_impl_t *hp;
1964 rootnex_dma_t *dma;
1965 int kmflag;
1966 int e;
1967 uint_t ncookies;
1968
1969 hp = (ddi_dma_impl_t *)handle;
1970 dma = (rootnex_dma_t *)hp->dmai_private;
1971 dmao = &dma->dp_dma;
1972 sinfo = &dma->dp_sglinfo;
1973 attr = &hp->dmai_attr;
1974
1975 /* convert the sleep flags */
1976 if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1977 dma->dp_sleep_flags = kmflag = KM_SLEEP;
1978 } else {
1979 dma->dp_sleep_flags = kmflag = KM_NOSLEEP;
1980 }
1981
1982 hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1983
1984 /*
1985 * This is useful for debugging a driver. Not as useful in a production
1986 * system. The only time this will fail is if you have a driver bug.
1987 */
1988 if (rootnex_bind_check_inuse) {
1989 /*
1990 * No one else should ever have this lock unless someone else
1991 * is trying to use this handle. So contention on the lock
1992 * is the same as inuse being set.
1993 */
1994 e = mutex_tryenter(&dma->dp_mutex);
1995 if (e == 0) {
1996 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1997 return (DDI_DMA_INUSE);
1998 }
1999 if (dma->dp_inuse) {
2000 mutex_exit(&dma->dp_mutex);
2001 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2002 return (DDI_DMA_INUSE);
2003 }
2004 dma->dp_inuse = B_TRUE;
2005 mutex_exit(&dma->dp_mutex);
2006 }
2007
2008 /* save away the original bind info */
2009 dma->dp_dma = dmareq->dmar_object;
2010
2011 #if !defined(__xpv)
2012 if (IOMMU_USED(rdip)) {
2013 dmao = &dma->dp_dvma;
2014 e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao);
2015 switch (e) {
2016 case DDI_SUCCESS:
2017 if (sinfo->si_cancross ||
2018 dmao->dmao_obj.dvma_obj.dv_nseg != 1 ||
2019 dmao->dmao_size > sinfo->si_max_cookie_size) {
2020 dma->dp_dvma_used = B_TRUE;
2021 break;
2022 }
2023 sinfo->si_sgl_size = 1;
2024 hp->dmai_rflags |= DMP_NOSYNC;
2025
2026 dma->dp_dvma_used = B_TRUE;
2027 dma->dp_need_to_free_cookie = B_FALSE;
2028
2029 dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0];
2030 cookie = hp->dmai_cookie = dma->dp_cookies =
2031 (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2032 cookie->dmac_laddress = dvs->dvs_start +
2033 dmao->dmao_obj.dvma_obj.dv_off;
2034 cookie->dmac_size = dvs->dvs_len;
2035 cookie->dmac_type = 0;
2036
2037 ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *,
2038 rdip);
2039 goto fast;
2040 case DDI_ENOTSUP:
2041 break;
2042 default:
2043 rootnex_clean_dmahdl(hp);
2044 return (e);
2045 }
2046 }
2047 #endif
2048
2049 /*
2050 * Figure out a rough estimate of what maximum number of pages
2051 * this buffer could use (a high estimate of course).
2052 */
2053 sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
2054
2055 if (dma->dp_dvma_used) {
2056 /*
2057 * The number of physical pages is the worst case.
2058 *
2059 * For DVMA, the worst case is the length divided
2060 * by the maximum cookie length, plus 1. Add to that
2061 * the number of segment boundaries potentially crossed, and
2062 * the additional number of DVMA segments that was returned.
2063 *
2064 * In the normal case, for modern devices, si_cancross will
2065 * be false, and dv_nseg will be 1, and the fast path will
2066 * have been taken above.
2067 */
2068 ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size)
2069 + 1;
2070 if (sinfo->si_cancross)
2071 ncookies +=
2072 (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1;
2073 ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1);
2074
2075 sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies);
2076 }
2077
2078 /*
2079 * We'll use the pre-allocated cookies for any bind that will *always*
2080 * fit (more important to be consistent, we don't want to create
2081 * additional degenerate cases).
2082 */
2083 if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
2084 dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2085 dma->dp_need_to_free_cookie = B_FALSE;
2086 ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
2087 uint_t, sinfo->si_max_pages);
2088
2089 /*
2090 * For anything larger than that, we'll go ahead and allocate the
2091 * maximum number of pages we expect to see. Hopefuly, we won't be
2092 * seeing this path in the fast path for high performance devices very
2093 * frequently.
2094 *
2095 * a ddi bind interface that allowed the driver to provide storage to
2096 * the bind interface would speed this case up.
2097 */
2098 } else {
2099 /*
2100 * Save away how much memory we allocated. If we're doing a
2101 * nosleep, the alloc could fail...
2102 */
2103 dma->dp_cookie_size = sinfo->si_max_pages *
2104 sizeof (ddi_dma_cookie_t);
2105 dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
2106 if (dma->dp_cookies == NULL) {
2107 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2108 rootnex_clean_dmahdl(hp);
2109 return (DDI_DMA_NORESOURCES);
2110 }
2111 dma->dp_need_to_free_cookie = B_TRUE;
2112 ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip,
2113 uint_t, sinfo->si_max_pages);
2114 }
2115 hp->dmai_cookie = dma->dp_cookies;
2116
2117 /*
2118 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
2119 * looking at the constraints in the dma structure. It will then put
2120 * some additional state about the sgl in the dma struct (i.e. is
2121 * the sgl clean, or do we need to do some munging; how many pages
2122 * need to be copied, etc.)
2123 */
2124 if (dma->dp_dvma_used)
2125 rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2126 else
2127 rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2128
2129 out:
2130 ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
2131 /* if we don't need a copy buffer, we don't need to sync */
2132 if (sinfo->si_copybuf_req == 0) {
2133 hp->dmai_rflags |= DMP_NOSYNC;
2134 }
2135
2136 /*
2137 * if we don't need the copybuf and we don't need to do a partial, we
2138 * hit the fast path. All the high performance devices should be trying
2139 * to hit this path. To hit this path, a device should be able to reach
2140 * all of memory, shouldn't try to bind more than it can transfer, and
2141 * the buffer shouldn't require more cookies than the driver/device can
2142 * handle [sgllen]).
2143 *
2144 * Note that negative values of dma_attr_sgllen are supposed
2145 * to mean unlimited, but we just cast them to mean a
2146 * "ridiculous large limit". This saves some extra checks on
2147 * hot paths.
2148 */
2149 if ((sinfo->si_copybuf_req == 0) &&
2150 (sinfo->si_sgl_size <= (unsigned)attr->dma_attr_sgllen) &&
2151 (dmao->dmao_size <= dma->dp_maxxfer)) {
2152 fast:
2153 /*
2154 * If the driver supports FMA, insert the handle in the FMA DMA
2155 * handle cache.
2156 */
2157 if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2158 hp->dmai_error.err_cf = rootnex_dma_check;
2159
2160 /*
2161 * copy out the first cookie and ccountp, set the cookie
2162 * pointer to the second cookie. The first cookie is passed
2163 * back on the stack. Additional cookies are accessed via
2164 * ddi_dma_nextcookie()
2165 */
2166 *cookiep = dma->dp_cookies[0];
2167 *ccountp = sinfo->si_sgl_size;
2168 hp->dmai_cookie++;
2169 hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2170 hp->dmai_ncookies = *ccountp;
2171 hp->dmai_curcookie = 1;
2172 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2173 ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip,
2174 uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
2175 uint_t, dmao->dmao_size, uint_t, *ccountp);
2176
2177
2178 return (DDI_DMA_MAPPED);
2179 }
2180
2181 /*
2182 * go to the slow path, we may need to alloc more memory, create
2183 * multiple windows, and munge up a sgl to make the device happy.
2184 */
2185
2186 /*
2187 * With the IOMMU mapobject method used, we should never hit
2188 * the slow path. If we do, something is seriously wrong.
2189 * Clean up and return an error.
2190 */
2191
2192 #if !defined(__xpv)
2193
2194 if (dma->dp_dvma_used) {
2195 (void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2196 &dma->dp_dvma);
2197 e = DDI_DMA_NOMAPPING;
2198 } else {
2199 #endif
2200 e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma,
2201 kmflag);
2202 #if !defined(__xpv)
2203 }
2204 #endif
2205 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2206 if (dma->dp_need_to_free_cookie) {
2207 kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2208 }
2209 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2210 rootnex_clean_dmahdl(hp); /* must be after free cookie */
2211 return (e);
2212 }
2213
2214 /*
2215 * If the driver supports FMA, insert the handle in the FMA DMA handle
2216 * cache.
2217 */
2218 if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2219 hp->dmai_error.err_cf = rootnex_dma_check;
2220
2221 /* if the first window uses the copy buffer, sync it for the device */
2222 if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2223 (hp->dmai_rflags & DDI_DMA_WRITE)) {
2224 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2225 DDI_DMA_SYNC_FORDEV);
2226 }
2227
2228 /*
2229 * copy out the first cookie and ccountp, set the cookie pointer to the
2230 * second cookie. Make sure the partial flag is set/cleared correctly.
2231 * If we have a partial map (i.e. multiple windows), the number of
2232 * cookies we return is the number of cookies in the first window.
2233 */
2234 if (e == DDI_DMA_MAPPED) {
2235 hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2236 *ccountp = sinfo->si_sgl_size;
2237 hp->dmai_nwin = 1;
2238 } else {
2239 hp->dmai_rflags |= DDI_DMA_PARTIAL;
2240 *ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2241 ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2242 }
2243 *cookiep = dma->dp_cookies[0];
2244 hp->dmai_cookie++;
2245 hp->dmai_ncookies = *ccountp;
2246 hp->dmai_curcookie = 1;
2247
2248 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2249 ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2250 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2251 dmao->dmao_size, uint_t, *ccountp);
2252 return (e);
2253 }
2254
2255 /*
2256 * rootnex_dma_bindhdl()
2257 * called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2258 */
2259 static int
rootnex_dma_bindhdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,struct ddi_dma_req * dmareq,ddi_dma_cookie_t * cookiep,uint_t * ccountp)2260 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2261 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2262 ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2263 {
2264 int ret;
2265 #if !defined(__xpv)
2266 if (IOMMU_USED(rdip))
2267 ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2268 cookiep, ccountp);
2269 else
2270 #endif
2271 ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2272 cookiep, ccountp);
2273
2274 if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) {
2275 ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg,
2276 &rootnex_state->r_dvma_call_list_id);
2277 }
2278
2279 return (ret);
2280 }
2281
2282
2283
2284 /*ARGSUSED*/
2285 static int
rootnex_coredma_unbindhdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle)2286 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2287 ddi_dma_handle_t handle)
2288 {
2289 ddi_dma_impl_t *hp;
2290 rootnex_dma_t *dma;
2291 int e;
2292
2293 hp = (ddi_dma_impl_t *)handle;
2294 dma = (rootnex_dma_t *)hp->dmai_private;
2295
2296 /* make sure the buffer wasn't free'd before calling unbind */
2297 if (rootnex_unbind_verify_buffer) {
2298 e = rootnex_verify_buffer(dma);
2299 if (e != DDI_SUCCESS) {
2300 ASSERT(0);
2301 return (DDI_FAILURE);
2302 }
2303 }
2304
2305 /* sync the current window before unbinding the buffer */
2306 if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2307 (hp->dmai_rflags & DDI_DMA_READ)) {
2308 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2309 DDI_DMA_SYNC_FORCPU);
2310 }
2311
2312 /*
2313 * cleanup and copy buffer or window state. if we didn't use the copy
2314 * buffer or windows, there won't be much to do :-)
2315 */
2316 rootnex_teardown_copybuf(dma);
2317 rootnex_teardown_windows(dma);
2318
2319 #if !defined(__xpv)
2320 if (IOMMU_USED(rdip) && dma->dp_dvma_used)
2321 (void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2322 &dma->dp_dvma);
2323 #endif
2324
2325 /*
2326 * If we had to allocate space to for the worse case sgl (it didn't
2327 * fit into our pre-allocate buffer), free that up now
2328 */
2329 if (dma->dp_need_to_free_cookie) {
2330 kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2331 }
2332
2333 /*
2334 * clean up the handle so it's ready for the next bind (i.e. if the
2335 * handle is reused).
2336 */
2337 rootnex_clean_dmahdl(hp);
2338 hp->dmai_error.err_cf = NULL;
2339
2340 ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2341 ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2342 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2343
2344 return (DDI_SUCCESS);
2345 }
2346
2347 /*
2348 * rootnex_dma_unbindhdl()
2349 * called from ddi_dma_unbind_handle()
2350 */
2351 /*ARGSUSED*/
2352 static int
rootnex_dma_unbindhdl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle)2353 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2354 ddi_dma_handle_t handle)
2355 {
2356 int ret;
2357
2358 #if !defined(__xpv)
2359 if (IOMMU_USED(rdip))
2360 ret = iommulib_nexdma_unbindhdl(dip, rdip, handle);
2361 else
2362 #endif
2363 ret = rootnex_coredma_unbindhdl(dip, rdip, handle);
2364
2365 if (rootnex_state->r_dvma_call_list_id)
2366 ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2367
2368 return (ret);
2369 }
2370
2371 #if !defined(__xpv)
2372
2373 static int
rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)2374 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2375 {
2376 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2377 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2378
2379 if (dma->dp_sleep_flags != KM_SLEEP &&
2380 dma->dp_sleep_flags != KM_NOSLEEP)
2381 cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2382 return (dma->dp_sleep_flags);
2383 }
2384 /*ARGSUSED*/
2385 static void
rootnex_coredma_reset_cookies(dev_info_t * dip,ddi_dma_handle_t handle)2386 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2387 {
2388 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2389 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2390 rootnex_window_t *window;
2391
2392 if (dma->dp_window) {
2393 window = &dma->dp_window[dma->dp_current_win];
2394 hp->dmai_cookie = window->wd_first_cookie;
2395 } else {
2396 hp->dmai_cookie = dma->dp_cookies;
2397 }
2398 hp->dmai_cookie++;
2399 hp->dmai_curcookie = 1;
2400 }
2401
2402 /*ARGSUSED*/
2403 static int
rootnex_coredma_get_cookies(dev_info_t * dip,ddi_dma_handle_t handle,ddi_dma_cookie_t ** cookiepp,uint_t * ccountp)2404 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2405 ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2406 {
2407 int i;
2408 int km_flags;
2409 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2410 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2411 rootnex_window_t *window;
2412 ddi_dma_cookie_t *cp;
2413 ddi_dma_cookie_t *cookie;
2414
2415 ASSERT(*cookiepp == NULL);
2416 ASSERT(*ccountp == 0);
2417
2418 if (dma->dp_window) {
2419 window = &dma->dp_window[dma->dp_current_win];
2420 cp = window->wd_first_cookie;
2421 *ccountp = window->wd_cookie_cnt;
2422 } else {
2423 cp = dma->dp_cookies;
2424 *ccountp = dma->dp_sglinfo.si_sgl_size;
2425 }
2426
2427 km_flags = rootnex_coredma_get_sleep_flags(handle);
2428 cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2429 if (cookie == NULL) {
2430 return (DDI_DMA_NORESOURCES);
2431 }
2432
2433 for (i = 0; i < *ccountp; i++) {
2434 cookie[i].dmac_notused = cp[i].dmac_notused;
2435 cookie[i].dmac_type = cp[i].dmac_type;
2436 cookie[i].dmac_address = cp[i].dmac_address;
2437 cookie[i].dmac_size = cp[i].dmac_size;
2438 }
2439
2440 *cookiepp = cookie;
2441
2442 return (DDI_SUCCESS);
2443 }
2444
2445 /*ARGSUSED*/
2446 static int
rootnex_coredma_set_cookies(dev_info_t * dip,ddi_dma_handle_t handle,ddi_dma_cookie_t * cookiep,uint_t ccount)2447 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2448 ddi_dma_cookie_t *cookiep, uint_t ccount)
2449 {
2450 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2451 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2452 rootnex_window_t *window;
2453 ddi_dma_cookie_t *cur_cookiep;
2454
2455 ASSERT(cookiep);
2456 ASSERT(ccount != 0);
2457 ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2458
2459 if (dma->dp_window) {
2460 window = &dma->dp_window[dma->dp_current_win];
2461 dma->dp_saved_cookies = window->wd_first_cookie;
2462 window->wd_first_cookie = cookiep;
2463 ASSERT(ccount == window->wd_cookie_cnt);
2464 cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2465 + window->wd_first_cookie;
2466 } else {
2467 dma->dp_saved_cookies = dma->dp_cookies;
2468 dma->dp_cookies = cookiep;
2469 ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2470 cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2471 + dma->dp_cookies;
2472 }
2473
2474 dma->dp_need_to_switch_cookies = B_TRUE;
2475 hp->dmai_cookie = cur_cookiep;
2476
2477 return (DDI_SUCCESS);
2478 }
2479
2480 /*ARGSUSED*/
2481 static int
rootnex_coredma_clear_cookies(dev_info_t * dip,ddi_dma_handle_t handle)2482 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2483 {
2484 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2485 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2486 rootnex_window_t *window;
2487 ddi_dma_cookie_t *cur_cookiep;
2488 ddi_dma_cookie_t *cookie_array;
2489 uint_t ccount;
2490
2491 /* check if cookies have not been switched */
2492 if (dma->dp_need_to_switch_cookies == B_FALSE)
2493 return (DDI_SUCCESS);
2494
2495 ASSERT(dma->dp_saved_cookies);
2496
2497 if (dma->dp_window) {
2498 window = &dma->dp_window[dma->dp_current_win];
2499 cookie_array = window->wd_first_cookie;
2500 window->wd_first_cookie = dma->dp_saved_cookies;
2501 dma->dp_saved_cookies = NULL;
2502 ccount = window->wd_cookie_cnt;
2503 cur_cookiep = (hp->dmai_cookie - cookie_array)
2504 + window->wd_first_cookie;
2505 } else {
2506 cookie_array = dma->dp_cookies;
2507 dma->dp_cookies = dma->dp_saved_cookies;
2508 dma->dp_saved_cookies = NULL;
2509 ccount = dma->dp_sglinfo.si_sgl_size;
2510 cur_cookiep = (hp->dmai_cookie - cookie_array)
2511 + dma->dp_cookies;
2512 }
2513
2514 kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2515
2516 hp->dmai_cookie = cur_cookiep;
2517
2518 dma->dp_need_to_switch_cookies = B_FALSE;
2519
2520 return (DDI_SUCCESS);
2521 }
2522
2523 #endif
2524
2525 static struct as *
rootnex_get_as(ddi_dma_obj_t * dmao)2526 rootnex_get_as(ddi_dma_obj_t *dmao)
2527 {
2528 struct as *asp;
2529
2530 switch (dmao->dmao_type) {
2531 case DMA_OTYP_VADDR:
2532 case DMA_OTYP_BUFVADDR:
2533 asp = dmao->dmao_obj.virt_obj.v_as;
2534 if (asp == NULL)
2535 asp = &kas;
2536 break;
2537 default:
2538 asp = NULL;
2539 break;
2540 }
2541 return (asp);
2542 }
2543
2544 /*
2545 * rootnex_verify_buffer()
2546 * verify buffer wasn't free'd
2547 */
2548 static int
rootnex_verify_buffer(rootnex_dma_t * dma)2549 rootnex_verify_buffer(rootnex_dma_t *dma)
2550 {
2551 page_t **pplist;
2552 caddr_t vaddr;
2553 uint_t pcnt;
2554 uint_t poff;
2555 page_t *pp;
2556 char b;
2557 int i;
2558
2559 /* Figure out how many pages this buffer occupies */
2560 if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2561 poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2562 } else {
2563 vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2564 poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2565 }
2566 pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2567
2568 switch (dma->dp_dma.dmao_type) {
2569 case DMA_OTYP_PAGES:
2570 /*
2571 * for a linked list of pp's walk through them to make sure
2572 * they're locked and not free.
2573 */
2574 pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2575 for (i = 0; i < pcnt; i++) {
2576 if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2577 return (DDI_FAILURE);
2578 }
2579 pp = pp->p_next;
2580 }
2581 break;
2582
2583 case DMA_OTYP_VADDR:
2584 case DMA_OTYP_BUFVADDR:
2585 pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2586 /*
2587 * for an array of pp's walk through them to make sure they're
2588 * not free. It's possible that they may not be locked.
2589 */
2590 if (pplist) {
2591 for (i = 0; i < pcnt; i++) {
2592 if (PP_ISFREE(pplist[i])) {
2593 return (DDI_FAILURE);
2594 }
2595 }
2596
2597 /* For a virtual address, try to peek at each page */
2598 } else {
2599 if (rootnex_get_as(&dma->dp_dma) == &kas) {
2600 for (i = 0; i < pcnt; i++) {
2601 if (ddi_peek8(NULL, vaddr, &b) ==
2602 DDI_FAILURE)
2603 return (DDI_FAILURE);
2604 vaddr += MMU_PAGESIZE;
2605 }
2606 }
2607 }
2608 break;
2609
2610 default:
2611 cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object");
2612 break;
2613 }
2614
2615 return (DDI_SUCCESS);
2616 }
2617
2618
2619 /*
2620 * rootnex_clean_dmahdl()
2621 * Clean the dma handle. This should be called on a handle alloc and an
2622 * unbind handle. Set the handle state to the default settings.
2623 */
2624 static void
rootnex_clean_dmahdl(ddi_dma_impl_t * hp)2625 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2626 {
2627 rootnex_dma_t *dma;
2628
2629
2630 dma = (rootnex_dma_t *)hp->dmai_private;
2631
2632 hp->dmai_nwin = 0;
2633 dma->dp_current_cookie = 0;
2634 dma->dp_copybuf_size = 0;
2635 dma->dp_window = NULL;
2636 dma->dp_cbaddr = NULL;
2637 dma->dp_inuse = B_FALSE;
2638 dma->dp_dvma_used = B_FALSE;
2639 dma->dp_need_to_free_cookie = B_FALSE;
2640 dma->dp_need_to_switch_cookies = B_FALSE;
2641 dma->dp_saved_cookies = NULL;
2642 dma->dp_sleep_flags = KM_PANIC;
2643 dma->dp_need_to_free_window = B_FALSE;
2644 dma->dp_partial_required = B_FALSE;
2645 dma->dp_trim_required = B_FALSE;
2646 dma->dp_sglinfo.si_copybuf_req = 0;
2647
2648 /* FMA related initialization */
2649 hp->dmai_fault = 0;
2650 hp->dmai_fault_check = NULL;
2651 hp->dmai_fault_notify = NULL;
2652 hp->dmai_error.err_ena = 0;
2653 hp->dmai_error.err_status = DDI_FM_OK;
2654 hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2655 hp->dmai_error.err_ontrap = NULL;
2656
2657 /* Cookie tracking */
2658 hp->dmai_ncookies = 0;
2659 hp->dmai_curcookie = 0;
2660 }
2661
2662
2663 /*
2664 * rootnex_valid_alloc_parms()
2665 * Called in ddi_dma_alloc_handle path to validate its parameters.
2666 */
2667 static int
rootnex_valid_alloc_parms(ddi_dma_attr_t * attr,uint_t maxsegmentsize)2668 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2669 {
2670 if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2671 (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2672 (attr->dma_attr_granular > MMU_PAGESIZE) ||
2673 (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2674 return (DDI_DMA_BADATTR);
2675 }
2676
2677 if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2678 return (DDI_DMA_BADATTR);
2679 }
2680
2681 if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2682 MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2683 attr->dma_attr_sgllen == 0) {
2684 return (DDI_DMA_BADATTR);
2685 }
2686
2687 /* We should be able to DMA into every byte offset in a page */
2688 if (maxsegmentsize < MMU_PAGESIZE) {
2689 return (DDI_DMA_BADATTR);
2690 }
2691
2692 /* if we're bouncing on seg, seg must be <= addr_hi */
2693 if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) &&
2694 (attr->dma_attr_seg > attr->dma_attr_addr_hi)) {
2695 return (DDI_DMA_BADATTR);
2696 }
2697 return (DDI_SUCCESS);
2698 }
2699
2700 /*
2701 * rootnex_need_bounce_seg()
2702 * check to see if the buffer lives on both side of the seg.
2703 */
2704 static boolean_t
rootnex_need_bounce_seg(ddi_dma_obj_t * dmar_object,rootnex_sglinfo_t * sglinfo)2705 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo)
2706 {
2707 ddi_dma_atyp_t buftype;
2708 rootnex_addr_t raddr;
2709 boolean_t lower_addr;
2710 boolean_t upper_addr;
2711 uint64_t offset;
2712 page_t **pplist;
2713 uint64_t paddr;
2714 uint32_t psize;
2715 uint32_t size;
2716 caddr_t vaddr;
2717 uint_t pcnt;
2718 page_t *pp;
2719
2720 pp = NULL;
2721 /* shortcuts */
2722 pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2723 vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2724 buftype = dmar_object->dmao_type;
2725 size = dmar_object->dmao_size;
2726
2727 lower_addr = B_FALSE;
2728 upper_addr = B_FALSE;
2729 pcnt = 0;
2730
2731 /*
2732 * Process the first page to handle the initial offset of the buffer.
2733 * We'll use the base address we get later when we loop through all
2734 * the pages.
2735 */
2736 if (buftype == DMA_OTYP_PAGES) {
2737 pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2738 offset = dmar_object->dmao_obj.pp_obj.pp_offset &
2739 MMU_PAGEOFFSET;
2740 paddr = pfn_to_pa(pp->p_pagenum) + offset;
2741 psize = MIN(size, (MMU_PAGESIZE - offset));
2742 pp = pp->p_next;
2743 sglinfo->si_asp = NULL;
2744 } else if (pplist != NULL) {
2745 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2746 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2747 if (sglinfo->si_asp == NULL) {
2748 sglinfo->si_asp = &kas;
2749 }
2750 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2751 paddr += offset;
2752 psize = MIN(size, (MMU_PAGESIZE - offset));
2753 pcnt++;
2754 } else {
2755 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2756 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2757 if (sglinfo->si_asp == NULL) {
2758 sglinfo->si_asp = &kas;
2759 }
2760 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2761 paddr += offset;
2762 psize = MIN(size, (MMU_PAGESIZE - offset));
2763 vaddr += psize;
2764 }
2765
2766 raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2767
2768 if ((raddr + psize) > sglinfo->si_segmask) {
2769 upper_addr = B_TRUE;
2770 } else {
2771 lower_addr = B_TRUE;
2772 }
2773 size -= psize;
2774
2775 /*
2776 * Walk through the rest of the pages in the buffer. Track to see
2777 * if we have pages on both sides of the segment boundary.
2778 */
2779 while (size > 0) {
2780 /* partial or full page */
2781 psize = MIN(size, MMU_PAGESIZE);
2782
2783 if (buftype == DMA_OTYP_PAGES) {
2784 /* get the paddr from the page_t */
2785 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2786 paddr = pfn_to_pa(pp->p_pagenum);
2787 pp = pp->p_next;
2788 } else if (pplist != NULL) {
2789 /* index into the array of page_t's to get the paddr */
2790 ASSERT(!PP_ISFREE(pplist[pcnt]));
2791 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2792 pcnt++;
2793 } else {
2794 /* call into the VM to get the paddr */
2795 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2796 vaddr));
2797 vaddr += psize;
2798 }
2799
2800 raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2801
2802 if ((raddr + psize) > sglinfo->si_segmask) {
2803 upper_addr = B_TRUE;
2804 } else {
2805 lower_addr = B_TRUE;
2806 }
2807 /*
2808 * if the buffer lives both above and below the segment
2809 * boundary, or the current page is the page immediately
2810 * after the segment, we will use a copy/bounce buffer for
2811 * all pages > seg.
2812 */
2813 if ((lower_addr && upper_addr) ||
2814 (raddr == (sglinfo->si_segmask + 1))) {
2815 return (B_TRUE);
2816 }
2817
2818 size -= psize;
2819 }
2820
2821 return (B_FALSE);
2822 }
2823
2824 /*
2825 * rootnex_get_sgl()
2826 * Called in bind fastpath to get the sgl. Most of this will be replaced
2827 * with a call to the vm layer when vm2.0 comes around...
2828 */
2829 static void
rootnex_get_sgl(ddi_dma_obj_t * dmar_object,ddi_dma_cookie_t * sgl,rootnex_sglinfo_t * sglinfo)2830 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2831 rootnex_sglinfo_t *sglinfo)
2832 {
2833 ddi_dma_atyp_t buftype;
2834 rootnex_addr_t raddr;
2835 uint64_t last_page;
2836 uint64_t offset;
2837 uint64_t addrhi;
2838 uint64_t addrlo;
2839 uint64_t maxseg;
2840 page_t **pplist;
2841 uint64_t paddr;
2842 uint32_t psize;
2843 uint32_t size;
2844 caddr_t vaddr;
2845 uint_t pcnt;
2846 page_t *pp;
2847 uint_t cnt;
2848
2849 pp = NULL;
2850 /* shortcuts */
2851 pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2852 vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2853 maxseg = sglinfo->si_max_cookie_size;
2854 buftype = dmar_object->dmao_type;
2855 addrhi = sglinfo->si_max_addr;
2856 addrlo = sglinfo->si_min_addr;
2857 size = dmar_object->dmao_size;
2858
2859 pcnt = 0;
2860 cnt = 0;
2861
2862
2863 /*
2864 * check to see if we need to use the copy buffer for pages over
2865 * the segment attr.
2866 */
2867 sglinfo->si_bounce_on_seg = B_FALSE;
2868 if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) {
2869 sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg(
2870 dmar_object, sglinfo);
2871 }
2872
2873 /*
2874 * if we were passed down a linked list of pages, i.e. pointer to
2875 * page_t, use this to get our physical address and buf offset.
2876 */
2877 if (buftype == DMA_OTYP_PAGES) {
2878 pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2879 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2880 offset = dmar_object->dmao_obj.pp_obj.pp_offset &
2881 MMU_PAGEOFFSET;
2882 paddr = pfn_to_pa(pp->p_pagenum) + offset;
2883 psize = MIN(size, (MMU_PAGESIZE - offset));
2884 pp = pp->p_next;
2885 sglinfo->si_asp = NULL;
2886
2887 /*
2888 * We weren't passed down a linked list of pages, but if we were passed
2889 * down an array of pages, use this to get our physical address and buf
2890 * offset.
2891 */
2892 } else if (pplist != NULL) {
2893 ASSERT((buftype == DMA_OTYP_VADDR) ||
2894 (buftype == DMA_OTYP_BUFVADDR));
2895
2896 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2897 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2898 if (sglinfo->si_asp == NULL) {
2899 sglinfo->si_asp = &kas;
2900 }
2901
2902 ASSERT(!PP_ISFREE(pplist[pcnt]));
2903 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2904 paddr += offset;
2905 psize = MIN(size, (MMU_PAGESIZE - offset));
2906 pcnt++;
2907
2908 /*
2909 * All we have is a virtual address, we'll need to call into the VM
2910 * to get the physical address.
2911 */
2912 } else {
2913 ASSERT((buftype == DMA_OTYP_VADDR) ||
2914 (buftype == DMA_OTYP_BUFVADDR));
2915
2916 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2917 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2918 if (sglinfo->si_asp == NULL) {
2919 sglinfo->si_asp = &kas;
2920 }
2921
2922 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2923 paddr += offset;
2924 psize = MIN(size, (MMU_PAGESIZE - offset));
2925 vaddr += psize;
2926 }
2927
2928 raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2929
2930 /*
2931 * Setup the first cookie with the physical address of the page and the
2932 * size of the page (which takes into account the initial offset into
2933 * the page.
2934 */
2935 sgl[cnt].dmac_laddress = raddr;
2936 sgl[cnt].dmac_size = psize;
2937 sgl[cnt].dmac_type = 0;
2938
2939 /*
2940 * Save away the buffer offset into the page. We'll need this later in
2941 * the copy buffer code to help figure out the page index within the
2942 * buffer and the offset into the current page.
2943 */
2944 sglinfo->si_buf_offset = offset;
2945
2946 /*
2947 * If we are using the copy buffer for anything over the segment
2948 * boundary, and this page is over the segment boundary.
2949 * OR
2950 * if the DMA engine can't reach the physical address.
2951 */
2952 if (((sglinfo->si_bounce_on_seg) &&
2953 ((raddr + psize) > sglinfo->si_segmask)) ||
2954 ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
2955 /*
2956 * Increase how much copy buffer we use. We always increase by
2957 * pagesize so we don't have to worry about converting offsets.
2958 * Set a flag in the cookies dmac_type to indicate that it uses
2959 * the copy buffer. If this isn't the last cookie, go to the
2960 * next cookie (since we separate each page which uses the copy
2961 * buffer in case the copy buffer is not physically contiguous.
2962 */
2963 sglinfo->si_copybuf_req += MMU_PAGESIZE;
2964 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2965 if ((cnt + 1) < sglinfo->si_max_pages) {
2966 cnt++;
2967 sgl[cnt].dmac_laddress = 0;
2968 sgl[cnt].dmac_size = 0;
2969 sgl[cnt].dmac_type = 0;
2970 }
2971 }
2972
2973 /*
2974 * save this page's physical address so we can figure out if the next
2975 * page is physically contiguous. Keep decrementing size until we are
2976 * done with the buffer.
2977 */
2978 last_page = raddr & MMU_PAGEMASK;
2979 size -= psize;
2980
2981 while (size > 0) {
2982 /* Get the size for this page (i.e. partial or full page) */
2983 psize = MIN(size, MMU_PAGESIZE);
2984
2985 if (buftype == DMA_OTYP_PAGES) {
2986 /* get the paddr from the page_t */
2987 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2988 paddr = pfn_to_pa(pp->p_pagenum);
2989 pp = pp->p_next;
2990 } else if (pplist != NULL) {
2991 /* index into the array of page_t's to get the paddr */
2992 ASSERT(!PP_ISFREE(pplist[pcnt]));
2993 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2994 pcnt++;
2995 } else {
2996 /* call into the VM to get the paddr */
2997 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2998 vaddr));
2999 vaddr += psize;
3000 }
3001
3002 raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
3003
3004 /*
3005 * If we are using the copy buffer for anything over the
3006 * segment boundary, and this page is over the segment
3007 * boundary.
3008 * OR
3009 * if the DMA engine can't reach the physical address.
3010 */
3011 if (((sglinfo->si_bounce_on_seg) &&
3012 ((raddr + psize) > sglinfo->si_segmask)) ||
3013 ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
3014
3015 sglinfo->si_copybuf_req += MMU_PAGESIZE;
3016
3017 /*
3018 * if there is something in the current cookie, go to
3019 * the next one. We only want one page in a cookie which
3020 * uses the copybuf since the copybuf doesn't have to
3021 * be physically contiguous.
3022 */
3023 if (sgl[cnt].dmac_size != 0) {
3024 cnt++;
3025 }
3026 sgl[cnt].dmac_laddress = raddr;
3027 sgl[cnt].dmac_size = psize;
3028 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3029 /* if this isn't the last cookie, go to the next one */
3030 if ((cnt + 1) < sglinfo->si_max_pages) {
3031 cnt++;
3032 sgl[cnt].dmac_laddress = 0;
3033 sgl[cnt].dmac_size = 0;
3034 sgl[cnt].dmac_type = 0;
3035 }
3036
3037 /*
3038 * this page didn't need the copy buffer, if it's not physically
3039 * contiguous, or it would put us over a segment boundary, or it
3040 * puts us over the max cookie size, or the current sgl doesn't
3041 * have anything in it.
3042 */
3043 } else if (((last_page + MMU_PAGESIZE) != raddr) ||
3044 !(raddr & sglinfo->si_segmask) ||
3045 ((sgl[cnt].dmac_size + psize) > maxseg) ||
3046 (sgl[cnt].dmac_size == 0)) {
3047 /*
3048 * if we're not already in a new cookie, go to the next
3049 * cookie.
3050 */
3051 if (sgl[cnt].dmac_size != 0) {
3052 cnt++;
3053 }
3054
3055 /* save the cookie information */
3056 sgl[cnt].dmac_laddress = raddr;
3057 sgl[cnt].dmac_size = psize;
3058 sgl[cnt].dmac_type = 0;
3059
3060 /*
3061 * this page didn't need the copy buffer, it is physically
3062 * contiguous with the last page, and it's <= the max cookie
3063 * size.
3064 */
3065 } else {
3066 sgl[cnt].dmac_size += psize;
3067
3068 /*
3069 * If this cookie is used up, and more cookies
3070 * are available, then move onto the next one.
3071 */
3072 if ((sgl[cnt].dmac_size == maxseg) &&
3073 ((cnt + 1) < sglinfo->si_max_pages)) {
3074 cnt++;
3075 sgl[cnt].dmac_laddress = 0;
3076 sgl[cnt].dmac_size = 0;
3077 sgl[cnt].dmac_type = 0;
3078 }
3079 }
3080
3081 /*
3082 * save this page's physical address so we can figure out if the
3083 * next page is physically contiguous. Keep decrementing size
3084 * until we are done with the buffer.
3085 */
3086 last_page = raddr;
3087 size -= psize;
3088 }
3089
3090 /* we're done, save away how many cookies the sgl has */
3091 if (sgl[cnt].dmac_size == 0) {
3092 ASSERT(cnt < sglinfo->si_max_pages);
3093 sglinfo->si_sgl_size = cnt;
3094 } else {
3095 sglinfo->si_sgl_size = cnt + 1;
3096 }
3097 }
3098
3099 static void
rootnex_dvma_get_sgl(ddi_dma_obj_t * dmar_object,ddi_dma_cookie_t * sgl,rootnex_sglinfo_t * sglinfo)3100 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
3101 rootnex_sglinfo_t *sglinfo)
3102 {
3103 uint64_t offset;
3104 uint64_t maxseg;
3105 uint64_t dvaddr;
3106 struct dvmaseg *dvs;
3107 uint64_t paddr;
3108 uint32_t psize, ssize;
3109 uint32_t size;
3110 uint_t cnt;
3111 int physcontig;
3112
3113 ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR);
3114
3115 /* shortcuts */
3116 maxseg = sglinfo->si_max_cookie_size;
3117 size = dmar_object->dmao_size;
3118
3119 cnt = 0;
3120 sglinfo->si_bounce_on_seg = B_FALSE;
3121
3122 dvs = dmar_object->dmao_obj.dvma_obj.dv_seg;
3123 offset = dmar_object->dmao_obj.dvma_obj.dv_off;
3124 ssize = dvs->dvs_len;
3125 paddr = dvs->dvs_start;
3126 paddr += offset;
3127 psize = MIN(ssize, (maxseg - offset));
3128 dvaddr = paddr + psize;
3129 ssize -= psize;
3130
3131 sgl[cnt].dmac_laddress = paddr;
3132 sgl[cnt].dmac_size = psize;
3133 sgl[cnt].dmac_type = 0;
3134
3135 size -= psize;
3136 while (size > 0) {
3137 if (ssize == 0) {
3138 dvs++;
3139 ssize = dvs->dvs_len;
3140 dvaddr = dvs->dvs_start;
3141 physcontig = 0;
3142 } else
3143 physcontig = 1;
3144
3145 paddr = dvaddr;
3146 psize = MIN(ssize, maxseg);
3147 dvaddr += psize;
3148 ssize -= psize;
3149
3150 if (!physcontig || !(paddr & sglinfo->si_segmask) ||
3151 ((sgl[cnt].dmac_size + psize) > maxseg) ||
3152 (sgl[cnt].dmac_size == 0)) {
3153 /*
3154 * if we're not already in a new cookie, go to the next
3155 * cookie.
3156 */
3157 if (sgl[cnt].dmac_size != 0) {
3158 cnt++;
3159 }
3160
3161 /* save the cookie information */
3162 sgl[cnt].dmac_laddress = paddr;
3163 sgl[cnt].dmac_size = psize;
3164 sgl[cnt].dmac_type = 0;
3165 } else {
3166 sgl[cnt].dmac_size += psize;
3167
3168 /*
3169 * If this cookie is used up, and more cookies
3170 * are available, then move onto the next one.
3171 */
3172 if ((sgl[cnt].dmac_size == maxseg) &&
3173 ((cnt + 1) < sglinfo->si_max_pages)) {
3174 cnt++;
3175 sgl[cnt].dmac_laddress = 0;
3176 sgl[cnt].dmac_size = 0;
3177 sgl[cnt].dmac_type = 0;
3178 }
3179 }
3180 size -= psize;
3181 }
3182
3183 /* we're done, save away how many cookies the sgl has */
3184 if (sgl[cnt].dmac_size == 0) {
3185 sglinfo->si_sgl_size = cnt;
3186 } else {
3187 sglinfo->si_sgl_size = cnt + 1;
3188 }
3189 }
3190
3191 /*
3192 * rootnex_bind_slowpath()
3193 * Call in the bind path if the calling driver can't use the sgl without
3194 * modifying it. We either need to use the copy buffer and/or we will end up
3195 * with a partial bind.
3196 */
3197 static int
rootnex_bind_slowpath(ddi_dma_impl_t * hp,struct ddi_dma_req * dmareq,rootnex_dma_t * dma,ddi_dma_attr_t * attr,ddi_dma_obj_t * dmao,int kmflag)3198 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3199 rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3200 {
3201 rootnex_sglinfo_t *sinfo;
3202 rootnex_window_t *window;
3203 ddi_dma_cookie_t *cookie;
3204 size_t copybuf_used;
3205 size_t dmac_size;
3206 boolean_t partial;
3207 off_t cur_offset;
3208 page_t *cur_pp;
3209 major_t mnum;
3210 int e;
3211 int i;
3212
3213
3214 sinfo = &dma->dp_sglinfo;
3215 copybuf_used = 0;
3216 partial = B_FALSE;
3217
3218 /*
3219 * If we're using the copybuf, set the copybuf state in dma struct.
3220 * Needs to be first since it sets the copy buffer size.
3221 */
3222 if (sinfo->si_copybuf_req != 0) {
3223 e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
3224 if (e != DDI_SUCCESS) {
3225 return (e);
3226 }
3227 } else {
3228 dma->dp_copybuf_size = 0;
3229 }
3230
3231 /*
3232 * Figure out if we need to do a partial mapping. If so, figure out
3233 * if we need to trim the buffers when we munge the sgl.
3234 */
3235 if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
3236 (dmao->dmao_size > dma->dp_maxxfer) ||
3237 ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
3238 dma->dp_partial_required = B_TRUE;
3239 if (attr->dma_attr_granular != 1) {
3240 dma->dp_trim_required = B_TRUE;
3241 }
3242 } else {
3243 dma->dp_partial_required = B_FALSE;
3244 dma->dp_trim_required = B_FALSE;
3245 }
3246
3247 /* If we need to do a partial bind, make sure the driver supports it */
3248 if (dma->dp_partial_required &&
3249 !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
3250
3251 mnum = ddi_driver_major(dma->dp_dip);
3252 /*
3253 * patchable which allows us to print one warning per major
3254 * number.
3255 */
3256 if ((rootnex_bind_warn) &&
3257 ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
3258 rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
3259 cmn_err(CE_WARN, "!%s: coding error detected, the "
3260 "driver is using ddi_dma_attr(9S) incorrectly. "
3261 "There is a small risk of data corruption in "
3262 "particular with large I/Os. The driver should be "
3263 "replaced with a corrected version for proper "
3264 "system operation. To disable this warning, add "
3265 "'set rootnex:rootnex_bind_warn=0' to "
3266 "/etc/system(5).", ddi_driver_name(dma->dp_dip));
3267 }
3268 return (DDI_DMA_TOOBIG);
3269 }
3270
3271 /*
3272 * we might need multiple windows, setup state to handle them. In this
3273 * code path, we will have at least one window.
3274 */
3275 e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag);
3276 if (e != DDI_SUCCESS) {
3277 rootnex_teardown_copybuf(dma);
3278 return (e);
3279 }
3280
3281 window = &dma->dp_window[0];
3282 cookie = &dma->dp_cookies[0];
3283 cur_offset = 0;
3284 rootnex_init_win(hp, dma, window, cookie, cur_offset);
3285 if (dmao->dmao_type == DMA_OTYP_PAGES) {
3286 cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
3287 }
3288
3289 /* loop though all the cookies we got back from get_sgl() */
3290 for (i = 0; i < sinfo->si_sgl_size; i++) {
3291 /*
3292 * If we're using the copy buffer, check this cookie and setup
3293 * its associated copy buffer state. If this cookie uses the
3294 * copy buffer, make sure we sync this window during dma_sync.
3295 */
3296 if (dma->dp_copybuf_size > 0) {
3297 rootnex_setup_cookie(dmao, dma, cookie,
3298 cur_offset, ©buf_used, &cur_pp);
3299 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3300 window->wd_dosync = B_TRUE;
3301 }
3302 }
3303
3304 /*
3305 * save away the cookie size, since it could be modified in
3306 * the windowing code.
3307 */
3308 dmac_size = cookie->dmac_size;
3309
3310 /* if we went over max copybuf size */
3311 if (dma->dp_copybuf_size &&
3312 (copybuf_used > dma->dp_copybuf_size)) {
3313 partial = B_TRUE;
3314 e = rootnex_copybuf_window_boundary(hp, dma, &window,
3315 cookie, cur_offset, ©buf_used);
3316 if (e != DDI_SUCCESS) {
3317 rootnex_teardown_copybuf(dma);
3318 rootnex_teardown_windows(dma);
3319 return (e);
3320 }
3321
3322 /*
3323 * if the coookie uses the copy buffer, make sure the
3324 * new window we just moved to is set to sync.
3325 */
3326 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3327 window->wd_dosync = B_TRUE;
3328 }
3329 ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *,
3330 dma->dp_dip);
3331
3332 /* if the cookie cnt == max sgllen, move to the next window */
3333 } else if (window->wd_cookie_cnt >=
3334 (unsigned)attr->dma_attr_sgllen) {
3335 partial = B_TRUE;
3336 ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
3337 e = rootnex_sgllen_window_boundary(hp, dma, &window,
3338 cookie, attr, cur_offset);
3339 if (e != DDI_SUCCESS) {
3340 rootnex_teardown_copybuf(dma);
3341 rootnex_teardown_windows(dma);
3342 return (e);
3343 }
3344
3345 /*
3346 * if the coookie uses the copy buffer, make sure the
3347 * new window we just moved to is set to sync.
3348 */
3349 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3350 window->wd_dosync = B_TRUE;
3351 }
3352 ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *,
3353 dma->dp_dip);
3354
3355 /* else if we will be over maxxfer */
3356 } else if ((window->wd_size + dmac_size) >
3357 dma->dp_maxxfer) {
3358 partial = B_TRUE;
3359 e = rootnex_maxxfer_window_boundary(hp, dma, &window,
3360 cookie);
3361 if (e != DDI_SUCCESS) {
3362 rootnex_teardown_copybuf(dma);
3363 rootnex_teardown_windows(dma);
3364 return (e);
3365 }
3366
3367 /*
3368 * if the coookie uses the copy buffer, make sure the
3369 * new window we just moved to is set to sync.
3370 */
3371 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3372 window->wd_dosync = B_TRUE;
3373 }
3374 ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *,
3375 dma->dp_dip);
3376
3377 /* else this cookie fits in the current window */
3378 } else {
3379 window->wd_cookie_cnt++;
3380 window->wd_size += dmac_size;
3381 }
3382
3383 /* track our offset into the buffer, go to the next cookie */
3384 ASSERT(dmac_size <= dmao->dmao_size);
3385 ASSERT(cookie->dmac_size <= dmac_size);
3386 cur_offset += dmac_size;
3387 cookie++;
3388 }
3389
3390 /* if we ended up with a zero sized window in the end, clean it up */
3391 if (window->wd_size == 0) {
3392 hp->dmai_nwin--;
3393 window--;
3394 }
3395
3396 ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3397
3398 if (!partial) {
3399 return (DDI_DMA_MAPPED);
3400 }
3401
3402 ASSERT(dma->dp_partial_required);
3403 return (DDI_DMA_PARTIAL_MAP);
3404 }
3405
3406 /*
3407 * rootnex_setup_copybuf()
3408 * Called in bind slowpath. Figures out if we're going to use the copy
3409 * buffer, and if we do, sets up the basic state to handle it.
3410 */
3411 static int
rootnex_setup_copybuf(ddi_dma_impl_t * hp,struct ddi_dma_req * dmareq,rootnex_dma_t * dma,ddi_dma_attr_t * attr)3412 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3413 rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3414 {
3415 rootnex_sglinfo_t *sinfo;
3416 ddi_dma_attr_t lattr;
3417 size_t max_copybuf;
3418 int cansleep;
3419 int e;
3420
3421 ASSERT(!dma->dp_dvma_used);
3422
3423 sinfo = &dma->dp_sglinfo;
3424
3425 /* read this first so it's consistent through the routine */
3426 max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3427
3428 /* We need to call into the rootnex on ddi_dma_sync() */
3429 hp->dmai_rflags &= ~DMP_NOSYNC;
3430
3431 /* make sure the copybuf size <= the max size */
3432 dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3433 ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3434
3435
3436 /* convert the sleep flags */
3437 if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3438 cansleep = 1;
3439 } else {
3440 cansleep = 0;
3441 }
3442
3443 /*
3444 * Allocate the actual copy buffer. This needs to fit within the DMA
3445 * engine limits, so we can't use kmem_alloc... We don't need
3446 * contiguous memory (sgllen) since we will be forcing windows on
3447 * sgllen anyway.
3448 */
3449 lattr = *attr;
3450 lattr.dma_attr_align = MMU_PAGESIZE;
3451 lattr.dma_attr_sgllen = -1; /* no limit */
3452 /*
3453 * if we're using the copy buffer because of seg, use that for our
3454 * upper address limit.
3455 */
3456 if (sinfo->si_bounce_on_seg) {
3457 lattr.dma_attr_addr_hi = lattr.dma_attr_seg;
3458 }
3459 e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3460 0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3461 if (e != DDI_SUCCESS) {
3462 return (DDI_DMA_NORESOURCES);
3463 }
3464
3465 ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3466 size_t, dma->dp_copybuf_size);
3467
3468 return (DDI_SUCCESS);
3469 }
3470
3471
3472 /*
3473 * rootnex_setup_windows()
3474 * Called in bind slowpath to setup the window state. We always have windows
3475 * in the slowpath. Even if the window count = 1.
3476 */
3477 static int
rootnex_setup_windows(ddi_dma_impl_t * hp,rootnex_dma_t * dma,ddi_dma_attr_t * attr,ddi_dma_obj_t * dmao,int kmflag)3478 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3479 ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3480 {
3481 rootnex_window_t *windowp;
3482 rootnex_sglinfo_t *sinfo;
3483 size_t copy_state_size;
3484 size_t win_state_size;
3485 size_t state_available;
3486 size_t space_needed;
3487 uint_t copybuf_win;
3488 uint_t maxxfer_win;
3489 size_t space_used;
3490 uint_t sglwin;
3491
3492
3493 sinfo = &dma->dp_sglinfo;
3494
3495 dma->dp_current_win = 0;
3496 hp->dmai_nwin = 0;
3497
3498 /* If we don't need to do a partial, we only have one window */
3499 if (!dma->dp_partial_required) {
3500 dma->dp_max_win = 1;
3501
3502 /*
3503 * we need multiple windows, need to figure out the worse case number
3504 * of windows.
3505 */
3506 } else {
3507 /*
3508 * if we need windows because we need more copy buffer that
3509 * we allow, the worse case number of windows we could need
3510 * here would be (copybuf space required / copybuf space that
3511 * we have) plus one for remainder, and plus 2 to handle the
3512 * extra pages on the trim for the first and last pages of the
3513 * buffer (a page is the minimum window size so under the right
3514 * attr settings, you could have a window for each page).
3515 * The last page will only be hit here if the size is not a
3516 * multiple of the granularity (which theoretically shouldn't
3517 * be the case but never has been enforced, so we could have
3518 * broken things without it).
3519 */
3520 if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3521 ASSERT(dma->dp_copybuf_size > 0);
3522 copybuf_win = (sinfo->si_copybuf_req /
3523 dma->dp_copybuf_size) + 1 + 2;
3524 } else {
3525 copybuf_win = 0;
3526 }
3527
3528 /*
3529 * if we need windows because we have more cookies than the H/W
3530 * can handle, the number of windows we would need here would
3531 * be (cookie count / cookies count H/W supports minus 1[for
3532 * trim]) plus one for remainder.
3533 */
3534 if ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3535 sglwin = (sinfo->si_sgl_size /
3536 (attr->dma_attr_sgllen - 1)) + 1;
3537 } else {
3538 sglwin = 0;
3539 }
3540
3541 /*
3542 * if we need windows because we're binding more memory than the
3543 * H/W can transfer at once, the number of windows we would need
3544 * here would be (xfer count / max xfer H/W supports) plus one
3545 * for remainder, and plus 2 to handle the extra pages on the
3546 * trim (see above comment about trim)
3547 */
3548 if (dmao->dmao_size > dma->dp_maxxfer) {
3549 maxxfer_win = (dmao->dmao_size /
3550 dma->dp_maxxfer) + 1 + 2;
3551 } else {
3552 maxxfer_win = 0;
3553 }
3554 dma->dp_max_win = copybuf_win + sglwin + maxxfer_win;
3555 ASSERT(dma->dp_max_win > 0);
3556 }
3557 win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3558
3559 /*
3560 * Get space for window and potential copy buffer state. Before we
3561 * go and allocate memory, see if we can get away with using what's
3562 * left in the pre-allocted state or the dynamically allocated sgl.
3563 */
3564 space_used = (uintptr_t)(sinfo->si_sgl_size *
3565 sizeof (ddi_dma_cookie_t));
3566
3567 /* if we dynamically allocated space for the cookies */
3568 if (dma->dp_need_to_free_cookie) {
3569 /* if we have more space in the pre-allocted buffer, use it */
3570 ASSERT(space_used <= dma->dp_cookie_size);
3571 if ((dma->dp_cookie_size - space_used) <=
3572 rootnex_state->r_prealloc_size) {
3573 state_available = rootnex_state->r_prealloc_size;
3574 windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3575
3576 /*
3577 * else, we have more free space in the dynamically allocated
3578 * buffer, i.e. the buffer wasn't worse case fragmented so we
3579 * didn't need a lot of cookies.
3580 */
3581 } else {
3582 state_available = dma->dp_cookie_size - space_used;
3583 windowp = (rootnex_window_t *)
3584 &dma->dp_cookies[sinfo->si_sgl_size];
3585 }
3586
3587 /* we used the pre-alloced buffer */
3588 } else {
3589 ASSERT(space_used <= rootnex_state->r_prealloc_size);
3590 state_available = rootnex_state->r_prealloc_size - space_used;
3591 windowp = (rootnex_window_t *)
3592 &dma->dp_cookies[sinfo->si_sgl_size];
3593 }
3594
3595 /*
3596 * figure out how much state we need to track the copy buffer. Add an
3597 * addition 8 bytes for pointer alignemnt later.
3598 */
3599 if (dma->dp_copybuf_size > 0) {
3600 copy_state_size = sinfo->si_max_pages *
3601 sizeof (rootnex_pgmap_t);
3602 } else {
3603 copy_state_size = 0;
3604 }
3605 /* add an additional 8 bytes for pointer alignment */
3606 space_needed = win_state_size + copy_state_size + 0x8;
3607
3608 /* if we have enough space already, use it */
3609 if (state_available >= space_needed) {
3610 dma->dp_window = windowp;
3611 dma->dp_need_to_free_window = B_FALSE;
3612
3613 /* not enough space, need to allocate more. */
3614 } else {
3615 dma->dp_window = kmem_alloc(space_needed, kmflag);
3616 if (dma->dp_window == NULL) {
3617 return (DDI_DMA_NORESOURCES);
3618 }
3619 dma->dp_need_to_free_window = B_TRUE;
3620 dma->dp_window_size = space_needed;
3621 ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3622 dma->dp_dip, size_t, space_needed);
3623 }
3624
3625 /*
3626 * we allocate copy buffer state and window state at the same time.
3627 * setup our copy buffer state pointers. Make sure it's aligned.
3628 */
3629 if (dma->dp_copybuf_size > 0) {
3630 dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3631 &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3632
3633 } else {
3634 dma->dp_pgmap = NULL;
3635 }
3636
3637 return (DDI_SUCCESS);
3638 }
3639
3640
3641 /*
3642 * rootnex_teardown_copybuf()
3643 * cleans up after rootnex_setup_copybuf()
3644 */
3645 static void
rootnex_teardown_copybuf(rootnex_dma_t * dma)3646 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3647 {
3648 /* if we allocated a copy buffer, free it */
3649 if (dma->dp_cbaddr != NULL) {
3650 i_ddi_mem_free(dma->dp_cbaddr, NULL);
3651 }
3652 }
3653
3654
3655 /*
3656 * rootnex_teardown_windows()
3657 * cleans up after rootnex_setup_windows()
3658 */
3659 static void
rootnex_teardown_windows(rootnex_dma_t * dma)3660 rootnex_teardown_windows(rootnex_dma_t *dma)
3661 {
3662 /*
3663 * if we had to allocate window state on the last bind (because we
3664 * didn't have enough pre-allocated space in the handle), free it.
3665 */
3666 if (dma->dp_need_to_free_window) {
3667 kmem_free(dma->dp_window, dma->dp_window_size);
3668 }
3669 }
3670
3671
3672 /*
3673 * rootnex_init_win()
3674 * Called in bind slow path during creation of a new window. Initializes
3675 * window state to default values.
3676 */
3677 /*ARGSUSED*/
3678 static void
rootnex_init_win(ddi_dma_impl_t * hp,rootnex_dma_t * dma,rootnex_window_t * window,ddi_dma_cookie_t * cookie,off_t cur_offset)3679 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3680 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3681 {
3682 hp->dmai_nwin++;
3683 window->wd_dosync = B_FALSE;
3684 window->wd_offset = cur_offset;
3685 window->wd_size = 0;
3686 window->wd_first_cookie = cookie;
3687 window->wd_cookie_cnt = 0;
3688 window->wd_trim.tr_trim_first = B_FALSE;
3689 window->wd_trim.tr_trim_last = B_FALSE;
3690 window->wd_trim.tr_first_copybuf_win = B_FALSE;
3691 window->wd_trim.tr_last_copybuf_win = B_FALSE;
3692 }
3693
3694
3695 /*
3696 * rootnex_setup_cookie()
3697 * Called in the bind slow path when the sgl uses the copy buffer. If any of
3698 * the sgl uses the copy buffer, we need to go through each cookie, figure
3699 * out if it uses the copy buffer, and if it does, save away everything we'll
3700 * need during sync.
3701 */
3702 static void
rootnex_setup_cookie(ddi_dma_obj_t * dmar_object,rootnex_dma_t * dma,ddi_dma_cookie_t * cookie,off_t cur_offset,size_t * copybuf_used,page_t ** cur_pp)3703 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3704 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3705 page_t **cur_pp)
3706 {
3707 boolean_t copybuf_sz_power_2;
3708 rootnex_sglinfo_t *sinfo;
3709 paddr_t paddr;
3710 uint_t pidx;
3711 uint_t pcnt;
3712 off_t poff;
3713 pfn_t pfn;
3714
3715 ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR);
3716
3717 sinfo = &dma->dp_sglinfo;
3718
3719 /*
3720 * Calculate the page index relative to the start of the buffer. The
3721 * index to the current page for our buffer is the offset into the
3722 * first page of the buffer plus our current offset into the buffer
3723 * itself, shifted of course...
3724 */
3725 pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3726 ASSERT(pidx < sinfo->si_max_pages);
3727
3728 /* if this cookie uses the copy buffer */
3729 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3730 /*
3731 * NOTE: we know that since this cookie uses the copy buffer, it
3732 * is <= MMU_PAGESIZE.
3733 */
3734
3735 /*
3736 * get the offset into the page. For the 64-bit kernel, get the
3737 * pfn which we'll use with seg kpm.
3738 */
3739 poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3740 /* mfn_to_pfn() is a NOP on i86pc */
3741 pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3742
3743 /* figure out if the copybuf size is a power of 2 */
3744 if (!ISP2(dma->dp_copybuf_size)) {
3745 copybuf_sz_power_2 = B_FALSE;
3746 } else {
3747 copybuf_sz_power_2 = B_TRUE;
3748 }
3749
3750 /* This page uses the copy buffer */
3751 dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3752
3753 /*
3754 * save the copy buffer KVA that we'll use with this page.
3755 * if we still fit within the copybuf, it's a simple add.
3756 * otherwise, we need to wrap over using & or % accordingly.
3757 */
3758 if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3759 dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3760 *copybuf_used;
3761 } else {
3762 if (copybuf_sz_power_2) {
3763 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3764 (uintptr_t)dma->dp_cbaddr +
3765 (*copybuf_used &
3766 (dma->dp_copybuf_size - 1)));
3767 } else {
3768 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3769 (uintptr_t)dma->dp_cbaddr +
3770 (*copybuf_used % dma->dp_copybuf_size));
3771 }
3772 }
3773
3774 /*
3775 * over write the cookie physical address with the address of
3776 * the physical address of the copy buffer page that we will
3777 * use.
3778 */
3779 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3780 dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3781
3782 cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
3783
3784 /* if we have a kernel VA, it's easy, just save that address */
3785 if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3786 (sinfo->si_asp == &kas)) {
3787 /*
3788 * save away the page aligned virtual address of the
3789 * driver buffer. Offsets are handled in the sync code.
3790 */
3791 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3792 dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3793 & MMU_PAGEMASK);
3794
3795 /* we don't have a kernel VA. We need one for the bcopy. */
3796 } else {
3797 /*
3798 * for the 64-bit kernel, it's easy. We use seg kpm to
3799 * get a Kernel VA for the corresponding pfn.
3800 */
3801 dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3802 /* go to the next page_t */
3803 if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3804 *cur_pp = (*cur_pp)->p_next;
3805 }
3806 }
3807
3808 /* add to the copy buffer count */
3809 *copybuf_used += MMU_PAGESIZE;
3810
3811 /*
3812 * This cookie doesn't use the copy buffer. Walk through the pages this
3813 * cookie occupies to reflect this.
3814 */
3815 } else {
3816 /*
3817 * figure out how many pages the cookie occupies. We need to
3818 * use the original page offset of the buffer and the cookies
3819 * offset in the buffer to do this.
3820 */
3821 poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
3822 pcnt = mmu_btopr(cookie->dmac_size + poff);
3823
3824 while (pcnt > 0) {
3825 dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
3826
3827 /*
3828 * we need to update pidx and cur_pp or we'll loose
3829 * track of where we are.
3830 */
3831 if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3832 *cur_pp = (*cur_pp)->p_next;
3833 }
3834 pidx++;
3835 pcnt--;
3836 }
3837 }
3838 }
3839
3840
3841 /*
3842 * rootnex_sgllen_window_boundary()
3843 * Called in the bind slow path when the next cookie causes us to exceed (in
3844 * this case == since we start at 0 and sgllen starts at 1) the maximum sgl
3845 * length supported by the DMA H/W.
3846 */
3847 static int
rootnex_sgllen_window_boundary(ddi_dma_impl_t * hp,rootnex_dma_t * dma,rootnex_window_t ** windowp,ddi_dma_cookie_t * cookie,ddi_dma_attr_t * attr,off_t cur_offset)3848 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3849 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
3850 off_t cur_offset)
3851 {
3852 off_t new_offset;
3853 size_t trim_sz;
3854 off_t coffset;
3855
3856
3857 /*
3858 * if we know we'll never have to trim, it's pretty easy. Just move to
3859 * the next window and init it. We're done.
3860 */
3861 if (!dma->dp_trim_required) {
3862 (*windowp)++;
3863 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3864 (*windowp)->wd_cookie_cnt++;
3865 (*windowp)->wd_size = cookie->dmac_size;
3866 return (DDI_SUCCESS);
3867 }
3868
3869 /* figure out how much we need to trim from the window */
3870 ASSERT(attr->dma_attr_granular != 0);
3871 if (dma->dp_granularity_power_2) {
3872 trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
3873 } else {
3874 trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
3875 }
3876
3877 /* The window's a whole multiple of granularity. We're done */
3878 if (trim_sz == 0) {
3879 (*windowp)++;
3880 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3881 (*windowp)->wd_cookie_cnt++;
3882 (*windowp)->wd_size = cookie->dmac_size;
3883 return (DDI_SUCCESS);
3884 }
3885
3886 /*
3887 * The window's not a whole multiple of granularity, since we know this
3888 * is due to the sgllen, we need to go back to the last cookie and trim
3889 * that one, add the left over part of the old cookie into the new
3890 * window, and then add in the new cookie into the new window.
3891 */
3892
3893 /*
3894 * make sure the driver isn't making us do something bad... Trimming and
3895 * sgllen == 1 don't go together.
3896 */
3897 if (attr->dma_attr_sgllen == 1) {
3898 return (DDI_DMA_NOMAPPING);
3899 }
3900
3901 /*
3902 * first, setup the current window to account for the trim. Need to go
3903 * back to the last cookie for this.
3904 */
3905 cookie--;
3906 (*windowp)->wd_trim.tr_trim_last = B_TRUE;
3907 (*windowp)->wd_trim.tr_last_cookie = cookie;
3908 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3909 ASSERT(cookie->dmac_size > trim_sz);
3910 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3911 (*windowp)->wd_size -= trim_sz;
3912
3913 /* save the buffer offsets for the next window */
3914 coffset = cookie->dmac_size - trim_sz;
3915 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3916
3917 /*
3918 * set this now in case this is the first window. all other cases are
3919 * set in dma_win()
3920 */
3921 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3922
3923 /*
3924 * initialize the next window using what's left over in the previous
3925 * cookie.
3926 */
3927 (*windowp)++;
3928 rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3929 (*windowp)->wd_cookie_cnt++;
3930 (*windowp)->wd_trim.tr_trim_first = B_TRUE;
3931 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
3932 (*windowp)->wd_trim.tr_first_size = trim_sz;
3933 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3934 (*windowp)->wd_dosync = B_TRUE;
3935 }
3936
3937 /*
3938 * now go back to the current cookie and add it to the new window. set
3939 * the new window size to the what was left over from the previous
3940 * cookie and what's in the current cookie.
3941 */
3942 cookie++;
3943 (*windowp)->wd_cookie_cnt++;
3944 (*windowp)->wd_size = trim_sz + cookie->dmac_size;
3945
3946 /*
3947 * trim plus the next cookie could put us over maxxfer (a cookie can be
3948 * a max size of maxxfer). Handle that case.
3949 */
3950 if ((*windowp)->wd_size > dma->dp_maxxfer) {
3951 /*
3952 * maxxfer is already a whole multiple of granularity, and this
3953 * trim will be <= the previous trim (since a cookie can't be
3954 * larger than maxxfer). Make things simple here.
3955 */
3956 trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
3957 (*windowp)->wd_trim.tr_trim_last = B_TRUE;
3958 (*windowp)->wd_trim.tr_last_cookie = cookie;
3959 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3960 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3961 (*windowp)->wd_size -= trim_sz;
3962 ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
3963
3964 /* save the buffer offsets for the next window */
3965 coffset = cookie->dmac_size - trim_sz;
3966 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3967
3968 /* setup the next window */
3969 (*windowp)++;
3970 rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3971 (*windowp)->wd_cookie_cnt++;
3972 (*windowp)->wd_trim.tr_trim_first = B_TRUE;
3973 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
3974 coffset;
3975 (*windowp)->wd_trim.tr_first_size = trim_sz;
3976 }
3977
3978 return (DDI_SUCCESS);
3979 }
3980
3981
3982 /*
3983 * rootnex_copybuf_window_boundary()
3984 * Called in bind slowpath when we get to a window boundary because we used
3985 * up all the copy buffer that we have.
3986 */
3987 static int
rootnex_copybuf_window_boundary(ddi_dma_impl_t * hp,rootnex_dma_t * dma,rootnex_window_t ** windowp,ddi_dma_cookie_t * cookie,off_t cur_offset,size_t * copybuf_used)3988 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3989 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
3990 size_t *copybuf_used)
3991 {
3992 rootnex_sglinfo_t *sinfo;
3993 off_t new_offset;
3994 size_t trim_sz;
3995 paddr_t paddr;
3996 off_t coffset;
3997 uint_t pidx;
3998 off_t poff;
3999
4000 pidx = 0;
4001 sinfo = &dma->dp_sglinfo;
4002
4003 /*
4004 * the copy buffer should be a whole multiple of page size. We know that
4005 * this cookie is <= MMU_PAGESIZE.
4006 */
4007 ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
4008
4009 /* reset copybuf used */
4010 *copybuf_used = 0;
4011
4012 /*
4013 * if we don't have to trim (since granularity is set to 1), go to the
4014 * next window and add the current cookie to it. We know the current
4015 * cookie uses the copy buffer since we're in this code path.
4016 */
4017 if (!dma->dp_trim_required) {
4018 (*windowp)++;
4019 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4020
4021 /* Add this cookie to the new window */
4022 (*windowp)->wd_cookie_cnt++;
4023 (*windowp)->wd_size += cookie->dmac_size;
4024 *copybuf_used += MMU_PAGESIZE;
4025 return (DDI_SUCCESS);
4026 }
4027
4028 /*
4029 * *** may need to trim, figure it out.
4030 */
4031
4032 /* figure out how much we need to trim from the window */
4033 if (dma->dp_granularity_power_2) {
4034 trim_sz = (*windowp)->wd_size &
4035 (hp->dmai_attr.dma_attr_granular - 1);
4036 } else {
4037 trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
4038 }
4039
4040 /*
4041 * if the window's a whole multiple of granularity, go to the next
4042 * window, init it, then add in the current cookie. We know the current
4043 * cookie uses the copy buffer since we're in this code path.
4044 */
4045 if (trim_sz == 0) {
4046 (*windowp)++;
4047 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4048
4049 /* Add this cookie to the new window */
4050 (*windowp)->wd_cookie_cnt++;
4051 (*windowp)->wd_size += cookie->dmac_size;
4052 *copybuf_used += MMU_PAGESIZE;
4053 return (DDI_SUCCESS);
4054 }
4055
4056 /*
4057 * *** We figured it out, we definitly need to trim
4058 */
4059
4060 /*
4061 * make sure the driver isn't making us do something bad...
4062 * Trimming and sgllen == 1 don't go together.
4063 */
4064 if (hp->dmai_attr.dma_attr_sgllen == 1) {
4065 return (DDI_DMA_NOMAPPING);
4066 }
4067
4068 /*
4069 * first, setup the current window to account for the trim. Need to go
4070 * back to the last cookie for this. Some of the last cookie will be in
4071 * the current window, and some of the last cookie will be in the new
4072 * window. All of the current cookie will be in the new window.
4073 */
4074 cookie--;
4075 (*windowp)->wd_trim.tr_trim_last = B_TRUE;
4076 (*windowp)->wd_trim.tr_last_cookie = cookie;
4077 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4078 ASSERT(cookie->dmac_size > trim_sz);
4079 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4080 (*windowp)->wd_size -= trim_sz;
4081
4082 /*
4083 * we're trimming the last cookie (not the current cookie). So that
4084 * last cookie may have or may not have been using the copy buffer (
4085 * we know the cookie passed in uses the copy buffer since we're in
4086 * this code path).
4087 *
4088 * If the last cookie doesn't use the copy buffer, nothing special to
4089 * do. However, if it does uses the copy buffer, it will be both the
4090 * last page in the current window and the first page in the next
4091 * window. Since we are reusing the copy buffer (and KVA space on the
4092 * 32-bit kernel), this page will use the end of the copy buffer in the
4093 * current window, and the start of the copy buffer in the next window.
4094 * Track that info... The cookie physical address was already set to
4095 * the copy buffer physical address in setup_cookie..
4096 */
4097 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4098 pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
4099 (*windowp)->wd_size) >> MMU_PAGESHIFT;
4100 (*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
4101 (*windowp)->wd_trim.tr_last_pidx = pidx;
4102 (*windowp)->wd_trim.tr_last_cbaddr =
4103 dma->dp_pgmap[pidx].pm_cbaddr;
4104 }
4105
4106 /* save the buffer offsets for the next window */
4107 coffset = cookie->dmac_size - trim_sz;
4108 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4109
4110 /*
4111 * set this now in case this is the first window. all other cases are
4112 * set in dma_win()
4113 */
4114 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4115
4116 /*
4117 * initialize the next window using what's left over in the previous
4118 * cookie.
4119 */
4120 (*windowp)++;
4121 rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4122 (*windowp)->wd_cookie_cnt++;
4123 (*windowp)->wd_trim.tr_trim_first = B_TRUE;
4124 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4125 (*windowp)->wd_trim.tr_first_size = trim_sz;
4126
4127 /*
4128 * again, we're tracking if the last cookie uses the copy buffer.
4129 * read the comment above for more info on why we need to track
4130 * additional state.
4131 *
4132 * For the first cookie in the new window, we need reset the physical
4133 * address to DMA into to the start of the copy buffer plus any
4134 * initial page offset which may be present.
4135 */
4136 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4137 (*windowp)->wd_dosync = B_TRUE;
4138 (*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
4139 (*windowp)->wd_trim.tr_first_pidx = pidx;
4140 (*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
4141 poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
4142
4143 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
4144 poff;
4145 (*windowp)->wd_trim.tr_first_paddr =
4146 ROOTNEX_PADDR_TO_RBASE(paddr);
4147
4148 /* account for the cookie copybuf usage in the new window */
4149 *copybuf_used += MMU_PAGESIZE;
4150
4151 /*
4152 * every piece of code has to have a hack, and here is this
4153 * ones :-)
4154 *
4155 * There is a complex interaction between setup_cookie and the
4156 * copybuf window boundary. The complexity had to be in either
4157 * the maxxfer window, or the copybuf window, and I chose the
4158 * copybuf code.
4159 *
4160 * So in this code path, we have taken the last cookie,
4161 * virtually broken it in half due to the trim, and it happens
4162 * to use the copybuf which further complicates life. At the
4163 * same time, we have already setup the current cookie, which
4164 * is now wrong. More background info: the current cookie uses
4165 * the copybuf, so it is only a page long max. So we need to
4166 * fix the current cookies copy buffer address, physical
4167 * address, and kva for the 32-bit kernel. We due this by
4168 * bumping them by page size (of course, we can't due this on
4169 * the physical address since the copy buffer may not be
4170 * physically contiguous).
4171 */
4172 cookie++;
4173 dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
4174 poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
4175
4176 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
4177 dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
4178 cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
4179
4180 } else {
4181 /* go back to the current cookie */
4182 cookie++;
4183 }
4184
4185 /*
4186 * add the current cookie to the new window. set the new window size to
4187 * the what was left over from the previous cookie and what's in the
4188 * current cookie.
4189 */
4190 (*windowp)->wd_cookie_cnt++;
4191 (*windowp)->wd_size = trim_sz + cookie->dmac_size;
4192 ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4193
4194 /*
4195 * we know that the cookie passed in always uses the copy buffer. We
4196 * wouldn't be here if it didn't.
4197 */
4198 *copybuf_used += MMU_PAGESIZE;
4199
4200 return (DDI_SUCCESS);
4201 }
4202
4203
4204 /*
4205 * rootnex_maxxfer_window_boundary()
4206 * Called in bind slowpath when we get to a window boundary because we will
4207 * go over maxxfer.
4208 */
4209 static int
rootnex_maxxfer_window_boundary(ddi_dma_impl_t * hp,rootnex_dma_t * dma,rootnex_window_t ** windowp,ddi_dma_cookie_t * cookie)4210 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4211 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4212 {
4213 size_t dmac_size;
4214 off_t new_offset;
4215 size_t trim_sz;
4216 off_t coffset;
4217
4218
4219 /*
4220 * calculate how much we have to trim off of the current cookie to equal
4221 * maxxfer. We don't have to account for granularity here since our
4222 * maxxfer already takes that into account.
4223 */
4224 trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4225 ASSERT(trim_sz <= cookie->dmac_size);
4226 ASSERT(trim_sz <= dma->dp_maxxfer);
4227
4228 /* save cookie size since we need it later and we might change it */
4229 dmac_size = cookie->dmac_size;
4230
4231 /*
4232 * if we're not trimming the entire cookie, setup the current window to
4233 * account for the trim.
4234 */
4235 if (trim_sz < cookie->dmac_size) {
4236 (*windowp)->wd_cookie_cnt++;
4237 (*windowp)->wd_trim.tr_trim_last = B_TRUE;
4238 (*windowp)->wd_trim.tr_last_cookie = cookie;
4239 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4240 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4241 (*windowp)->wd_size = dma->dp_maxxfer;
4242
4243 /*
4244 * set the adjusted cookie size now in case this is the first
4245 * window. All other windows are taken care of in get win
4246 */
4247 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4248 }
4249
4250 /*
4251 * coffset is the current offset within the cookie, new_offset is the
4252 * current offset with the entire buffer.
4253 */
4254 coffset = dmac_size - trim_sz;
4255 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4256
4257 /* initialize the next window */
4258 (*windowp)++;
4259 rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4260 (*windowp)->wd_cookie_cnt++;
4261 (*windowp)->wd_size = trim_sz;
4262 if (trim_sz < dmac_size) {
4263 (*windowp)->wd_trim.tr_trim_first = B_TRUE;
4264 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4265 coffset;
4266 (*windowp)->wd_trim.tr_first_size = trim_sz;
4267 }
4268
4269 return (DDI_SUCCESS);
4270 }
4271
4272
4273 /*ARGSUSED*/
4274 static int
rootnex_coredma_sync(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,off_t off,size_t len,uint_t cache_flags)4275 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4276 off_t off, size_t len, uint_t cache_flags)
4277 {
4278 rootnex_sglinfo_t *sinfo;
4279 rootnex_pgmap_t *cbpage;
4280 rootnex_window_t *win;
4281 ddi_dma_impl_t *hp;
4282 rootnex_dma_t *dma;
4283 caddr_t fromaddr;
4284 caddr_t toaddr;
4285 uint_t psize;
4286 off_t offset;
4287 uint_t pidx;
4288 size_t size;
4289 off_t poff;
4290 int e;
4291
4292
4293 hp = (ddi_dma_impl_t *)handle;
4294 dma = (rootnex_dma_t *)hp->dmai_private;
4295 sinfo = &dma->dp_sglinfo;
4296
4297 /*
4298 * if we don't have any windows, we don't need to sync. A copybuf
4299 * will cause us to have at least one window.
4300 */
4301 if (dma->dp_window == NULL) {
4302 return (DDI_SUCCESS);
4303 }
4304
4305 /* This window may not need to be sync'd */
4306 win = &dma->dp_window[dma->dp_current_win];
4307 if (!win->wd_dosync) {
4308 return (DDI_SUCCESS);
4309 }
4310
4311 /* handle off and len special cases */
4312 if ((off == 0) || (rootnex_sync_ignore_params)) {
4313 offset = win->wd_offset;
4314 } else {
4315 offset = off;
4316 }
4317 if ((len == 0) || (rootnex_sync_ignore_params)) {
4318 size = win->wd_size;
4319 } else {
4320 size = len;
4321 }
4322
4323 /* check the sync args to make sure they make a little sense */
4324 if (rootnex_sync_check_parms) {
4325 e = rootnex_valid_sync_parms(hp, win, offset, size,
4326 cache_flags);
4327 if (e != DDI_SUCCESS) {
4328 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4329 return (DDI_FAILURE);
4330 }
4331 }
4332
4333 /*
4334 * special case the first page to handle the offset into the page. The
4335 * offset to the current page for our buffer is the offset into the
4336 * first page of the buffer plus our current offset into the buffer
4337 * itself, masked of course.
4338 */
4339 poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4340 psize = MIN((MMU_PAGESIZE - poff), size);
4341
4342 /* go through all the pages that we want to sync */
4343 while (size > 0) {
4344 /*
4345 * Calculate the page index relative to the start of the buffer.
4346 * The index to the current page for our buffer is the offset
4347 * into the first page of the buffer plus our current offset
4348 * into the buffer itself, shifted of course...
4349 */
4350 pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4351 ASSERT(pidx < sinfo->si_max_pages);
4352
4353 /*
4354 * if this page uses the copy buffer, we need to sync it,
4355 * otherwise, go on to the next page.
4356 */
4357 cbpage = &dma->dp_pgmap[pidx];
4358 ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4359 (cbpage->pm_uses_copybuf == B_FALSE));
4360 if (cbpage->pm_uses_copybuf) {
4361 /* cbaddr and kaddr should be page aligned */
4362 ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4363 MMU_PAGEOFFSET) == 0);
4364 ASSERT(((uintptr_t)cbpage->pm_kaddr &
4365 MMU_PAGEOFFSET) == 0);
4366
4367 /*
4368 * if we're copying for the device, we are going to
4369 * copy from the drivers buffer and to the rootnex
4370 * allocated copy buffer.
4371 */
4372 if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4373 fromaddr = cbpage->pm_kaddr + poff;
4374 toaddr = cbpage->pm_cbaddr + poff;
4375 ROOTNEX_DPROBE2(rootnex__sync__dev,
4376 dev_info_t *, dma->dp_dip, size_t, psize);
4377
4378 /*
4379 * if we're copying for the cpu/kernel, we are going to
4380 * copy from the rootnex allocated copy buffer to the
4381 * drivers buffer.
4382 */
4383 } else {
4384 fromaddr = cbpage->pm_cbaddr + poff;
4385 toaddr = cbpage->pm_kaddr + poff;
4386 ROOTNEX_DPROBE2(rootnex__sync__cpu,
4387 dev_info_t *, dma->dp_dip, size_t, psize);
4388 }
4389
4390 bcopy(fromaddr, toaddr, psize);
4391 }
4392
4393 /*
4394 * decrement size until we're done, update our offset into the
4395 * buffer, and get the next page size.
4396 */
4397 size -= psize;
4398 offset += psize;
4399 psize = MIN(MMU_PAGESIZE, size);
4400
4401 /* page offset is zero for the rest of this loop */
4402 poff = 0;
4403 }
4404
4405 return (DDI_SUCCESS);
4406 }
4407
4408 /*
4409 * rootnex_dma_sync()
4410 * called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4411 * We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4412 * is set, ddi_dma_sync() returns immediately passing back success.
4413 */
4414 /*ARGSUSED*/
4415 static int
rootnex_dma_sync(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,off_t off,size_t len,uint_t cache_flags)4416 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4417 off_t off, size_t len, uint_t cache_flags)
4418 {
4419 #if !defined(__xpv)
4420 if (IOMMU_USED(rdip)) {
4421 return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4422 cache_flags));
4423 }
4424 #endif
4425 return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4426 cache_flags));
4427 }
4428
4429 /*
4430 * rootnex_valid_sync_parms()
4431 * checks the parameters passed to sync to verify they are correct.
4432 */
4433 static int
rootnex_valid_sync_parms(ddi_dma_impl_t * hp,rootnex_window_t * win,off_t offset,size_t size,uint_t cache_flags)4434 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4435 off_t offset, size_t size, uint_t cache_flags)
4436 {
4437 off_t woffset;
4438
4439
4440 /*
4441 * the first part of the test to make sure the offset passed in is
4442 * within the window.
4443 */
4444 if (offset < win->wd_offset) {
4445 return (DDI_FAILURE);
4446 }
4447
4448 /*
4449 * second and last part of the test to make sure the offset and length
4450 * passed in is within the window.
4451 */
4452 woffset = offset - win->wd_offset;
4453 if ((woffset + size) > win->wd_size) {
4454 return (DDI_FAILURE);
4455 }
4456
4457 /*
4458 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4459 * be set too.
4460 */
4461 if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4462 (hp->dmai_rflags & DDI_DMA_WRITE)) {
4463 return (DDI_SUCCESS);
4464 }
4465
4466 /*
4467 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4468 * should be set. Also DDI_DMA_READ should be set in the flags.
4469 */
4470 if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4471 (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4472 (hp->dmai_rflags & DDI_DMA_READ)) {
4473 return (DDI_SUCCESS);
4474 }
4475
4476 return (DDI_FAILURE);
4477 }
4478
4479
4480 /*ARGSUSED*/
4481 static int
rootnex_coredma_win(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,uint_t win,off_t * offp,size_t * lenp,ddi_dma_cookie_t * cookiep,uint_t * ccountp)4482 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4483 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4484 uint_t *ccountp)
4485 {
4486 rootnex_window_t *window;
4487 rootnex_trim_t *trim;
4488 ddi_dma_impl_t *hp;
4489 rootnex_dma_t *dma;
4490 ddi_dma_obj_t *dmao;
4491
4492
4493 hp = (ddi_dma_impl_t *)handle;
4494 dma = (rootnex_dma_t *)hp->dmai_private;
4495
4496 /* If we try and get a window which doesn't exist, return failure */
4497 if (win >= hp->dmai_nwin) {
4498 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4499 return (DDI_FAILURE);
4500 }
4501
4502 dmao = dma->dp_dvma_used ? &dma->dp_dvma : &dma->dp_dma;
4503
4504 /*
4505 * if we don't have any windows, and they're asking for the first
4506 * window, setup the cookie pointer to the first cookie in the bind.
4507 * setup our return values, then increment the cookie since we return
4508 * the first cookie on the stack.
4509 */
4510 if (dma->dp_window == NULL) {
4511 if (win != 0) {
4512 ROOTNEX_DPROF_INC(
4513 &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4514 return (DDI_FAILURE);
4515 }
4516 hp->dmai_cookie = dma->dp_cookies;
4517 *offp = 0;
4518 *lenp = dmao->dmao_size;
4519 *ccountp = dma->dp_sglinfo.si_sgl_size;
4520 *cookiep = hp->dmai_cookie[0];
4521 hp->dmai_cookie++;
4522 hp->dmai_ncookies = *ccountp;
4523 hp->dmai_curcookie = 1;
4524 return (DDI_SUCCESS);
4525 }
4526
4527 /* sync the old window before moving on to the new one */
4528 window = &dma->dp_window[dma->dp_current_win];
4529 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4530 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4531 DDI_DMA_SYNC_FORCPU);
4532 }
4533
4534
4535 /*
4536 * Move to the new window.
4537 * NOTE: current_win must be set for sync to work right
4538 */
4539 dma->dp_current_win = win;
4540 window = &dma->dp_window[win];
4541
4542 /* if needed, adjust the first and/or last cookies for trim */
4543 trim = &window->wd_trim;
4544 if (trim->tr_trim_first) {
4545 window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4546 window->wd_first_cookie->dmac_size = trim->tr_first_size;
4547 if (trim->tr_first_copybuf_win) {
4548 dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4549 trim->tr_first_cbaddr;
4550 }
4551 }
4552 if (trim->tr_trim_last) {
4553 trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4554 trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4555 if (trim->tr_last_copybuf_win) {
4556 dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4557 trim->tr_last_cbaddr;
4558 }
4559 }
4560
4561 /*
4562 * setup the cookie pointer to the first cookie in the window. setup
4563 * our return values, then increment the cookie since we return the
4564 * first cookie on the stack.
4565 */
4566 hp->dmai_cookie = window->wd_first_cookie;
4567 *offp = window->wd_offset;
4568 *lenp = window->wd_size;
4569 *ccountp = window->wd_cookie_cnt;
4570 *cookiep = hp->dmai_cookie[0];
4571 hp->dmai_ncookies = *ccountp;
4572 hp->dmai_curcookie = 1;
4573 hp->dmai_cookie++;
4574
4575
4576 /* if the new window uses the copy buffer, sync it for the device */
4577 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4578 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4579 DDI_DMA_SYNC_FORDEV);
4580 }
4581
4582 return (DDI_SUCCESS);
4583 }
4584
4585 /*
4586 * rootnex_dma_win()
4587 * called from ddi_dma_getwin()
4588 */
4589 /*ARGSUSED*/
4590 static int
rootnex_dma_win(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,uint_t win,off_t * offp,size_t * lenp,ddi_dma_cookie_t * cookiep,uint_t * ccountp)4591 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4592 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4593 uint_t *ccountp)
4594 {
4595 #if !defined(__xpv)
4596 if (IOMMU_USED(rdip)) {
4597 return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4598 cookiep, ccountp));
4599 }
4600 #endif
4601
4602 return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4603 cookiep, ccountp));
4604 }
4605
4606 #if !defined(__xpv)
4607 /*ARGSUSED*/
4608 static int
rootnex_coredma_hdl_setprivate(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,void * v)4609 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
4610 ddi_dma_handle_t handle, void *v)
4611 {
4612 ddi_dma_impl_t *hp;
4613 rootnex_dma_t *dma;
4614
4615 hp = (ddi_dma_impl_t *)handle;
4616 dma = (rootnex_dma_t *)hp->dmai_private;
4617 dma->dp_iommu_private = v;
4618
4619 return (DDI_SUCCESS);
4620 }
4621
4622 /*ARGSUSED*/
4623 static void *
rootnex_coredma_hdl_getprivate(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle)4624 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
4625 ddi_dma_handle_t handle)
4626 {
4627 ddi_dma_impl_t *hp;
4628 rootnex_dma_t *dma;
4629
4630 hp = (ddi_dma_impl_t *)handle;
4631 dma = (rootnex_dma_t *)hp->dmai_private;
4632
4633 return (dma->dp_iommu_private);
4634 }
4635 #endif
4636
4637 /*
4638 * ************************
4639 * obsoleted dma routines
4640 * ************************
4641 */
4642
4643 /*
4644 * rootnex_dma_mctl()
4645 *
4646 * We don't support this legacy interface any more on x86.
4647 */
4648 /* ARGSUSED */
4649 static int
rootnex_dma_mctl(dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t handle,enum ddi_dma_ctlops request,off_t * offp,size_t * lenp,caddr_t * objpp,uint_t cache_flags)4650 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4651 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
4652 uint_t cache_flags)
4653 {
4654 /*
4655 * The only thing dma_mctl is usef for anymore is legacy SPARC
4656 * dvma and sbus-specific routines.
4657 */
4658 return (DDI_FAILURE);
4659 }
4660
4661 /*
4662 * *********
4663 * FMA Code
4664 * *********
4665 */
4666
4667 /*
4668 * rootnex_fm_init()
4669 * FMA init busop
4670 */
4671 /* ARGSUSED */
4672 static int
rootnex_fm_init(dev_info_t * dip,dev_info_t * tdip,int tcap,ddi_iblock_cookie_t * ibc)4673 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
4674 ddi_iblock_cookie_t *ibc)
4675 {
4676 *ibc = rootnex_state->r_err_ibc;
4677
4678 return (ddi_system_fmcap);
4679 }
4680
4681 /*
4682 * rootnex_dma_check()
4683 * Function called after a dma fault occurred to find out whether the
4684 * fault address is associated with a driver that is able to handle faults
4685 * and recover from faults.
4686 */
4687 /* ARGSUSED */
4688 static int
rootnex_dma_check(dev_info_t * dip,const void * handle,const void * addr,const void * not_used)4689 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
4690 const void *not_used)
4691 {
4692 rootnex_window_t *window;
4693 uint64_t start_addr;
4694 uint64_t fault_addr;
4695 ddi_dma_impl_t *hp;
4696 rootnex_dma_t *dma;
4697 uint64_t end_addr;
4698 size_t csize;
4699 int i;
4700 int j;
4701
4702
4703 /* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
4704 hp = (ddi_dma_impl_t *)handle;
4705 ASSERT(hp);
4706
4707 dma = (rootnex_dma_t *)hp->dmai_private;
4708
4709 /* Get the address that we need to search for */
4710 fault_addr = *(uint64_t *)addr;
4711
4712 /*
4713 * if we don't have any windows, we can just walk through all the
4714 * cookies.
4715 */
4716 if (dma->dp_window == NULL) {
4717 /* for each cookie */
4718 for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
4719 /*
4720 * if the faulted address is within the physical address
4721 * range of the cookie, return DDI_FM_NONFATAL.
4722 */
4723 if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
4724 (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
4725 dma->dp_cookies[i].dmac_size))) {
4726 return (DDI_FM_NONFATAL);
4727 }
4728 }
4729
4730 /* fault_addr not within this DMA handle */
4731 return (DDI_FM_UNKNOWN);
4732 }
4733
4734 /* we have mutiple windows, walk through each window */
4735 for (i = 0; i < hp->dmai_nwin; i++) {
4736 window = &dma->dp_window[i];
4737
4738 /* Go through all the cookies in the window */
4739 for (j = 0; j < window->wd_cookie_cnt; j++) {
4740
4741 start_addr = window->wd_first_cookie[j].dmac_laddress;
4742 csize = window->wd_first_cookie[j].dmac_size;
4743
4744 /*
4745 * if we are trimming the first cookie in the window,
4746 * and this is the first cookie, adjust the start
4747 * address and size of the cookie to account for the
4748 * trim.
4749 */
4750 if (window->wd_trim.tr_trim_first && (j == 0)) {
4751 start_addr = window->wd_trim.tr_first_paddr;
4752 csize = window->wd_trim.tr_first_size;
4753 }
4754
4755 /*
4756 * if we are trimming the last cookie in the window,
4757 * and this is the last cookie, adjust the start
4758 * address and size of the cookie to account for the
4759 * trim.
4760 */
4761 if (window->wd_trim.tr_trim_last &&
4762 (j == (window->wd_cookie_cnt - 1))) {
4763 start_addr = window->wd_trim.tr_last_paddr;
4764 csize = window->wd_trim.tr_last_size;
4765 }
4766
4767 end_addr = start_addr + csize;
4768
4769 /*
4770 * if the faulted address is within the physical
4771 * address of the cookie, return DDI_FM_NONFATAL.
4772 */
4773 if ((fault_addr >= start_addr) &&
4774 (fault_addr <= end_addr)) {
4775 return (DDI_FM_NONFATAL);
4776 }
4777 }
4778 }
4779
4780 /* fault_addr not within this DMA handle */
4781 return (DDI_FM_UNKNOWN);
4782 }
4783
4784 /*ARGSUSED*/
4785 static int
rootnex_quiesce(dev_info_t * dip)4786 rootnex_quiesce(dev_info_t *dip)
4787 {
4788 #if !defined(__xpv)
4789 return (immu_quiesce());
4790 #else
4791 return (DDI_SUCCESS);
4792 #endif
4793 }
4794
4795 #if defined(__xpv)
4796 void
immu_init(void)4797 immu_init(void)
4798 {
4799 ;
4800 }
4801
4802 void
immu_startup(void)4803 immu_startup(void)
4804 {
4805 ;
4806 }
4807 /*ARGSUSED*/
4808 void
immu_physmem_update(uint64_t addr,uint64_t size)4809 immu_physmem_update(uint64_t addr, uint64_t size)
4810 {
4811 ;
4812 }
4813 #endif
4814