xref: /illumos-gate/usr/src/uts/i86pc/io/rootnex.c (revision 97a81520ff6c5b6ca547c9b2932e02f6b1dbd49e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * x86 root nexus driver
28  */
29 
30 #include <sys/sysmacros.h>
31 #include <sys/conf.h>
32 #include <sys/autoconf.h>
33 #include <sys/sysmacros.h>
34 #include <sys/debug.h>
35 #include <sys/psw.h>
36 #include <sys/ddidmareq.h>
37 #include <sys/promif.h>
38 #include <sys/devops.h>
39 #include <sys/kmem.h>
40 #include <sys/cmn_err.h>
41 #include <vm/seg.h>
42 #include <vm/seg_kmem.h>
43 #include <vm/seg_dev.h>
44 #include <sys/vmem.h>
45 #include <sys/mman.h>
46 #include <vm/hat.h>
47 #include <vm/as.h>
48 #include <vm/page.h>
49 #include <sys/avintr.h>
50 #include <sys/errno.h>
51 #include <sys/modctl.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/sunddi.h>
54 #include <sys/sunndi.h>
55 #include <sys/mach_intr.h>
56 #include <sys/psm.h>
57 #include <sys/ontrap.h>
58 #include <sys/atomic.h>
59 #include <sys/sdt.h>
60 #include <sys/rootnex.h>
61 #include <vm/hat_i86.h>
62 #include <sys/ddifm.h>
63 #include <sys/ddi_isa.h>
64 
65 #ifdef __xpv
66 #include <sys/bootinfo.h>
67 #include <sys/hypervisor.h>
68 #include <sys/bootconf.h>
69 #include <vm/kboot_mmu.h>
70 #else
71 #include <sys/intel_iommu.h>
72 #endif
73 
74 
75 /*
76  * enable/disable extra checking of function parameters. Useful for debugging
77  * drivers.
78  */
79 #ifdef	DEBUG
80 int rootnex_alloc_check_parms = 1;
81 int rootnex_bind_check_parms = 1;
82 int rootnex_bind_check_inuse = 1;
83 int rootnex_unbind_verify_buffer = 0;
84 int rootnex_sync_check_parms = 1;
85 #else
86 int rootnex_alloc_check_parms = 0;
87 int rootnex_bind_check_parms = 0;
88 int rootnex_bind_check_inuse = 0;
89 int rootnex_unbind_verify_buffer = 0;
90 int rootnex_sync_check_parms = 0;
91 #endif
92 
93 /* Master Abort and Target Abort panic flag */
94 int rootnex_fm_ma_ta_panic_flag = 0;
95 
96 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
97 int rootnex_bind_fail = 1;
98 int rootnex_bind_warn = 1;
99 uint8_t *rootnex_warn_list;
100 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
101 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
102 
103 /*
104  * revert back to old broken behavior of always sync'ing entire copy buffer.
105  * This is useful if be have a buggy driver which doesn't correctly pass in
106  * the offset and size into ddi_dma_sync().
107  */
108 int rootnex_sync_ignore_params = 0;
109 
110 /*
111  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
112  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
113  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
114  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
115  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
116  * (< 8K). We will still need to allocate the copy buffer during bind though
117  * (if we need one). These can only be modified in /etc/system before rootnex
118  * attach.
119  */
120 #if defined(__amd64)
121 int rootnex_prealloc_cookies = 65;
122 int rootnex_prealloc_windows = 4;
123 int rootnex_prealloc_copybuf = 2;
124 #else
125 int rootnex_prealloc_cookies = 33;
126 int rootnex_prealloc_windows = 4;
127 int rootnex_prealloc_copybuf = 2;
128 #endif
129 
130 /* driver global state */
131 static rootnex_state_t *rootnex_state;
132 
133 /* shortcut to rootnex counters */
134 static uint64_t *rootnex_cnt;
135 
136 /*
137  * XXX - does x86 even need these or are they left over from the SPARC days?
138  */
139 /* statically defined integer/boolean properties for the root node */
140 static rootnex_intprop_t rootnex_intprp[] = {
141 	{ "PAGESIZE",			PAGESIZE },
142 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
143 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
144 	{ DDI_RELATIVE_ADDRESSING,	1 },
145 };
146 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
147 
148 #ifdef __xpv
149 typedef maddr_t rootnex_addr_t;
150 #define	ROOTNEX_PADDR_TO_RBASE(xinfo, pa)	\
151 	(DOMAIN_IS_INITDOMAIN(xinfo) ? pa_to_ma(pa) : (pa))
152 #else
153 typedef paddr_t rootnex_addr_t;
154 #endif
155 
156 #if !defined(__xpv)
157 char _depends_on[] = "mach/pcplusmp misc/iommulib misc/acpica";
158 #endif
159 
160 static struct cb_ops rootnex_cb_ops = {
161 	nodev,		/* open */
162 	nodev,		/* close */
163 	nodev,		/* strategy */
164 	nodev,		/* print */
165 	nodev,		/* dump */
166 	nodev,		/* read */
167 	nodev,		/* write */
168 	nodev,		/* ioctl */
169 	nodev,		/* devmap */
170 	nodev,		/* mmap */
171 	nodev,		/* segmap */
172 	nochpoll,	/* chpoll */
173 	ddi_prop_op,	/* cb_prop_op */
174 	NULL,		/* struct streamtab */
175 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
176 	CB_REV,		/* Rev */
177 	nodev,		/* cb_aread */
178 	nodev		/* cb_awrite */
179 };
180 
181 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
182     off_t offset, off_t len, caddr_t *vaddrp);
183 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
184     struct hat *hat, struct seg *seg, caddr_t addr,
185     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
186 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
187     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep);
188 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
189     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
190     ddi_dma_handle_t *handlep);
191 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
192     ddi_dma_handle_t handle);
193 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
194     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
195     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
196 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
197     ddi_dma_handle_t handle);
198 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
199     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
200 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
201     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
202     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
203 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
204     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
205     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
206 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
207     ddi_ctl_enum_t ctlop, void *arg, void *result);
208 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
209     ddi_iblock_cookie_t *ibc);
210 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
211     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
212 
213 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
214     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
215     ddi_dma_handle_t *handlep);
216 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
217     ddi_dma_handle_t handle);
218 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
219     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
220     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
221 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
222     ddi_dma_handle_t handle);
223 #if !defined(__xpv)
224 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
225     ddi_dma_handle_t handle);
226 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
227     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
228 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
229     ddi_dma_cookie_t *cookiep, uint_t ccount);
230 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
231     ddi_dma_handle_t handle);
232 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
233 #endif
234 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
235     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
236 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
237     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
238     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
239 
240 static struct bus_ops rootnex_bus_ops = {
241 	BUSO_REV,
242 	rootnex_map,
243 	NULL,
244 	NULL,
245 	NULL,
246 	rootnex_map_fault,
247 	rootnex_dma_map,
248 	rootnex_dma_allochdl,
249 	rootnex_dma_freehdl,
250 	rootnex_dma_bindhdl,
251 	rootnex_dma_unbindhdl,
252 	rootnex_dma_sync,
253 	rootnex_dma_win,
254 	rootnex_dma_mctl,
255 	rootnex_ctlops,
256 	ddi_bus_prop_op,
257 	i_ddi_rootnex_get_eventcookie,
258 	i_ddi_rootnex_add_eventcall,
259 	i_ddi_rootnex_remove_eventcall,
260 	i_ddi_rootnex_post_event,
261 	0,			/* bus_intr_ctl */
262 	0,			/* bus_config */
263 	0,			/* bus_unconfig */
264 	rootnex_fm_init,	/* bus_fm_init */
265 	NULL,			/* bus_fm_fini */
266 	NULL,			/* bus_fm_access_enter */
267 	NULL,			/* bus_fm_access_exit */
268 	NULL,			/* bus_powr */
269 	rootnex_intr_ops	/* bus_intr_op */
270 };
271 
272 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
273 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
274 
275 static struct dev_ops rootnex_ops = {
276 	DEVO_REV,
277 	0,
278 	ddi_no_info,
279 	nulldev,
280 	nulldev,
281 	rootnex_attach,
282 	rootnex_detach,
283 	nulldev,
284 	&rootnex_cb_ops,
285 	&rootnex_bus_ops,
286 	NULL,
287 	ddi_quiesce_not_needed,		/* quiesce */
288 };
289 
290 static struct modldrv rootnex_modldrv = {
291 	&mod_driverops,
292 	"i86pc root nexus",
293 	&rootnex_ops
294 };
295 
296 static struct modlinkage rootnex_modlinkage = {
297 	MODREV_1,
298 	(void *)&rootnex_modldrv,
299 	NULL
300 };
301 
302 #if !defined(__xpv)
303 static iommulib_nexops_t iommulib_nexops = {
304 	IOMMU_NEXOPS_VERSION,
305 	"Rootnex IOMMU ops Vers 1.1",
306 	NULL,
307 	rootnex_coredma_allochdl,
308 	rootnex_coredma_freehdl,
309 	rootnex_coredma_bindhdl,
310 	rootnex_coredma_unbindhdl,
311 	rootnex_coredma_reset_cookies,
312 	rootnex_coredma_get_cookies,
313 	rootnex_coredma_set_cookies,
314 	rootnex_coredma_clear_cookies,
315 	rootnex_coredma_get_sleep_flags,
316 	rootnex_coredma_sync,
317 	rootnex_coredma_win,
318 	rootnex_dma_map,
319 	rootnex_dma_mctl
320 };
321 #endif
322 
323 /*
324  *  extern hacks
325  */
326 extern struct seg_ops segdev_ops;
327 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
328 #ifdef	DDI_MAP_DEBUG
329 extern int ddi_map_debug_flag;
330 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
331 #endif
332 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
333 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
334 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
335     psm_intr_op_t, int *);
336 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
337 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
338 
339 /*
340  * Use device arena to use for device control register mappings.
341  * Various kernel memory walkers (debugger, dtrace) need to know
342  * to avoid this address range to prevent undesired device activity.
343  */
344 extern void *device_arena_alloc(size_t size, int vm_flag);
345 extern void device_arena_free(void * vaddr, size_t size);
346 
347 
348 /*
349  *  Internal functions
350  */
351 static int rootnex_dma_init();
352 static void rootnex_add_props(dev_info_t *);
353 static int rootnex_ctl_reportdev(dev_info_t *dip);
354 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
355 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
356 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
357 static int rootnex_map_handle(ddi_map_req_t *mp);
358 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
359 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
360 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
361     ddi_dma_attr_t *attr);
362 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
363     rootnex_sglinfo_t *sglinfo);
364 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
365     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag);
366 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
367     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
368 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
369 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
370     ddi_dma_attr_t *attr, int kmflag);
371 static void rootnex_teardown_windows(rootnex_dma_t *dma);
372 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
373     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
374 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
375     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
376     size_t *copybuf_used, page_t **cur_pp);
377 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
378     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
379     ddi_dma_attr_t *attr, off_t cur_offset);
380 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
381     rootnex_dma_t *dma, rootnex_window_t **windowp,
382     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
383 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
384     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
385 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
386     off_t offset, size_t size, uint_t cache_flags);
387 static int rootnex_verify_buffer(rootnex_dma_t *dma);
388 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
389     const void *comp_addr, const void *not_used);
390 
391 /*
392  * _init()
393  *
394  */
395 int
396 _init(void)
397 {
398 
399 	rootnex_state = NULL;
400 	return (mod_install(&rootnex_modlinkage));
401 }
402 
403 
404 /*
405  * _info()
406  *
407  */
408 int
409 _info(struct modinfo *modinfop)
410 {
411 	return (mod_info(&rootnex_modlinkage, modinfop));
412 }
413 
414 
415 /*
416  * _fini()
417  *
418  */
419 int
420 _fini(void)
421 {
422 	return (EBUSY);
423 }
424 
425 
426 /*
427  * rootnex_attach()
428  *
429  */
430 static int
431 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
432 {
433 	int fmcap;
434 	int e;
435 
436 	switch (cmd) {
437 	case DDI_ATTACH:
438 		break;
439 	case DDI_RESUME:
440 		return (DDI_SUCCESS);
441 	default:
442 		return (DDI_FAILURE);
443 	}
444 
445 	/*
446 	 * We should only have one instance of rootnex. Save it away since we
447 	 * don't have an easy way to get it back later.
448 	 */
449 	ASSERT(rootnex_state == NULL);
450 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
451 
452 	rootnex_state->r_dip = dip;
453 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
454 	rootnex_state->r_reserved_msg_printed = B_FALSE;
455 	rootnex_cnt = &rootnex_state->r_counters[0];
456 	rootnex_state->r_intel_iommu_enabled = B_FALSE;
457 
458 	/*
459 	 * Set minimum fm capability level for i86pc platforms and then
460 	 * initialize error handling. Since we're the rootnex, we don't
461 	 * care what's returned in the fmcap field.
462 	 */
463 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
464 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
465 	fmcap = ddi_system_fmcap;
466 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
467 
468 	/* initialize DMA related state */
469 	e = rootnex_dma_init();
470 	if (e != DDI_SUCCESS) {
471 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
472 		return (DDI_FAILURE);
473 	}
474 
475 	/* Add static root node properties */
476 	rootnex_add_props(dip);
477 
478 	/* since we can't call ddi_report_dev() */
479 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
480 
481 	/* Initialize rootnex event handle */
482 	i_ddi_rootnex_init_events(dip);
483 
484 #if !defined(__xpv)
485 #if defined(__amd64)
486 	/* probe intel iommu */
487 	intel_iommu_probe_and_parse();
488 
489 	/* attach the iommu nodes */
490 	if (intel_iommu_support) {
491 		if (intel_iommu_attach_dmar_nodes() == DDI_SUCCESS) {
492 			rootnex_state->r_intel_iommu_enabled = B_TRUE;
493 		} else {
494 			intel_iommu_release_dmar_info();
495 		}
496 	}
497 #endif
498 
499 	e = iommulib_nexus_register(dip, &iommulib_nexops,
500 	    &rootnex_state->r_iommulib_handle);
501 
502 	ASSERT(e == DDI_SUCCESS);
503 #endif
504 
505 	return (DDI_SUCCESS);
506 }
507 
508 
509 /*
510  * rootnex_detach()
511  *
512  */
513 /*ARGSUSED*/
514 static int
515 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
516 {
517 	switch (cmd) {
518 	case DDI_SUSPEND:
519 		break;
520 	default:
521 		return (DDI_FAILURE);
522 	}
523 
524 	return (DDI_SUCCESS);
525 }
526 
527 
528 /*
529  * rootnex_dma_init()
530  *
531  */
532 /*ARGSUSED*/
533 static int
534 rootnex_dma_init()
535 {
536 	size_t bufsize;
537 
538 
539 	/*
540 	 * size of our cookie/window/copybuf state needed in dma bind that we
541 	 * pre-alloc in dma_alloc_handle
542 	 */
543 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
544 	rootnex_state->r_prealloc_size =
545 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
546 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
547 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
548 
549 	/*
550 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
551 	 * allocate 16 extra bytes for struct pointer alignment
552 	 * (p->dmai_private & dma->dp_prealloc_buffer)
553 	 */
554 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
555 	    rootnex_state->r_prealloc_size + 0x10;
556 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
557 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
558 	if (rootnex_state->r_dmahdl_cache == NULL) {
559 		return (DDI_FAILURE);
560 	}
561 
562 	/*
563 	 * allocate array to track which major numbers we have printed warnings
564 	 * for.
565 	 */
566 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
567 	    KM_SLEEP);
568 
569 	return (DDI_SUCCESS);
570 }
571 
572 
573 /*
574  * rootnex_add_props()
575  *
576  */
577 static void
578 rootnex_add_props(dev_info_t *dip)
579 {
580 	rootnex_intprop_t *rpp;
581 	int i;
582 
583 	/* Add static integer/boolean properties to the root node */
584 	rpp = rootnex_intprp;
585 	for (i = 0; i < NROOT_INTPROPS; i++) {
586 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
587 		    rpp[i].prop_name, rpp[i].prop_value);
588 	}
589 }
590 
591 
592 
593 /*
594  * *************************
595  *  ctlops related routines
596  * *************************
597  */
598 
599 /*
600  * rootnex_ctlops()
601  *
602  */
603 /*ARGSUSED*/
604 static int
605 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
606     void *arg, void *result)
607 {
608 	int n, *ptr;
609 	struct ddi_parent_private_data *pdp;
610 
611 	switch (ctlop) {
612 	case DDI_CTLOPS_DMAPMAPC:
613 		/*
614 		 * Return 'partial' to indicate that dma mapping
615 		 * has to be done in the main MMU.
616 		 */
617 		return (DDI_DMA_PARTIAL);
618 
619 	case DDI_CTLOPS_BTOP:
620 		/*
621 		 * Convert byte count input to physical page units.
622 		 * (byte counts that are not a page-size multiple
623 		 * are rounded down)
624 		 */
625 		*(ulong_t *)result = btop(*(ulong_t *)arg);
626 		return (DDI_SUCCESS);
627 
628 	case DDI_CTLOPS_PTOB:
629 		/*
630 		 * Convert size in physical pages to bytes
631 		 */
632 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
633 		return (DDI_SUCCESS);
634 
635 	case DDI_CTLOPS_BTOPR:
636 		/*
637 		 * Convert byte count input to physical page units
638 		 * (byte counts that are not a page-size multiple
639 		 * are rounded up)
640 		 */
641 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
642 		return (DDI_SUCCESS);
643 
644 	case DDI_CTLOPS_INITCHILD:
645 		return (impl_ddi_sunbus_initchild(arg));
646 
647 	case DDI_CTLOPS_UNINITCHILD:
648 		impl_ddi_sunbus_removechild(arg);
649 		return (DDI_SUCCESS);
650 
651 	case DDI_CTLOPS_REPORTDEV:
652 		return (rootnex_ctl_reportdev(rdip));
653 
654 	case DDI_CTLOPS_IOMIN:
655 		/*
656 		 * Nothing to do here but reflect back..
657 		 */
658 		return (DDI_SUCCESS);
659 
660 	case DDI_CTLOPS_REGSIZE:
661 	case DDI_CTLOPS_NREGS:
662 		break;
663 
664 	case DDI_CTLOPS_SIDDEV:
665 		if (ndi_dev_is_prom_node(rdip))
666 			return (DDI_SUCCESS);
667 		if (ndi_dev_is_persistent_node(rdip))
668 			return (DDI_SUCCESS);
669 		return (DDI_FAILURE);
670 
671 	case DDI_CTLOPS_POWER:
672 		return ((*pm_platform_power)((power_req_t *)arg));
673 
674 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
675 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
676 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
677 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
678 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
679 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
680 		if (!rootnex_state->r_reserved_msg_printed) {
681 			rootnex_state->r_reserved_msg_printed = B_TRUE;
682 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
683 			    "1 or more reserved/obsolete operations.");
684 		}
685 		return (DDI_FAILURE);
686 
687 	default:
688 		return (DDI_FAILURE);
689 	}
690 	/*
691 	 * The rest are for "hardware" properties
692 	 */
693 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
694 		return (DDI_FAILURE);
695 
696 	if (ctlop == DDI_CTLOPS_NREGS) {
697 		ptr = (int *)result;
698 		*ptr = pdp->par_nreg;
699 	} else {
700 		off_t *size = (off_t *)result;
701 
702 		ptr = (int *)arg;
703 		n = *ptr;
704 		if (n >= pdp->par_nreg) {
705 			return (DDI_FAILURE);
706 		}
707 		*size = (off_t)pdp->par_reg[n].regspec_size;
708 	}
709 	return (DDI_SUCCESS);
710 }
711 
712 
713 /*
714  * rootnex_ctl_reportdev()
715  *
716  */
717 static int
718 rootnex_ctl_reportdev(dev_info_t *dev)
719 {
720 	int i, n, len, f_len = 0;
721 	char *buf;
722 
723 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
724 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
725 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
726 	len = strlen(buf);
727 
728 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
729 
730 		struct regspec *rp = sparc_pd_getreg(dev, i);
731 
732 		if (i == 0)
733 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
734 			    ": ");
735 		else
736 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
737 			    " and ");
738 		len = strlen(buf);
739 
740 		switch (rp->regspec_bustype) {
741 
742 		case BTEISA:
743 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
744 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
745 			break;
746 
747 		case BTISA:
748 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
749 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
750 			break;
751 
752 		default:
753 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
754 			    "space %x offset %x",
755 			    rp->regspec_bustype, rp->regspec_addr);
756 			break;
757 		}
758 		len = strlen(buf);
759 	}
760 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
761 		int pri;
762 
763 		if (i != 0) {
764 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
765 			    ",");
766 			len = strlen(buf);
767 		}
768 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
769 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
770 		    " sparc ipl %d", pri);
771 		len = strlen(buf);
772 	}
773 #ifdef DEBUG
774 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
775 		cmn_err(CE_NOTE, "next message is truncated: "
776 		    "printed length 1024, real length %d", f_len);
777 	}
778 #endif /* DEBUG */
779 	cmn_err(CE_CONT, "?%s\n", buf);
780 	kmem_free(buf, REPORTDEV_BUFSIZE);
781 	return (DDI_SUCCESS);
782 }
783 
784 
785 /*
786  * ******************
787  *  map related code
788  * ******************
789  */
790 
791 /*
792  * rootnex_map()
793  *
794  */
795 static int
796 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
797     off_t len, caddr_t *vaddrp)
798 {
799 	struct regspec *rp, tmp_reg;
800 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
801 	int error;
802 
803 	mp = &mr;
804 
805 	switch (mp->map_op)  {
806 	case DDI_MO_MAP_LOCKED:
807 	case DDI_MO_UNMAP:
808 	case DDI_MO_MAP_HANDLE:
809 		break;
810 	default:
811 #ifdef	DDI_MAP_DEBUG
812 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
813 		    mp->map_op);
814 #endif	/* DDI_MAP_DEBUG */
815 		return (DDI_ME_UNIMPLEMENTED);
816 	}
817 
818 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
819 #ifdef	DDI_MAP_DEBUG
820 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
821 #endif	/* DDI_MAP_DEBUG */
822 		return (DDI_ME_UNIMPLEMENTED);
823 	}
824 
825 	/*
826 	 * First, if given an rnumber, convert it to a regspec...
827 	 * (Presumably, this is on behalf of a child of the root node?)
828 	 */
829 
830 	if (mp->map_type == DDI_MT_RNUMBER)  {
831 
832 		int rnumber = mp->map_obj.rnumber;
833 #ifdef	DDI_MAP_DEBUG
834 		static char *out_of_range =
835 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
836 #endif	/* DDI_MAP_DEBUG */
837 
838 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
839 		if (rp == NULL)  {
840 #ifdef	DDI_MAP_DEBUG
841 			cmn_err(CE_WARN, out_of_range, rnumber,
842 			    ddi_get_name(rdip));
843 #endif	/* DDI_MAP_DEBUG */
844 			return (DDI_ME_RNUMBER_RANGE);
845 		}
846 
847 		/*
848 		 * Convert the given ddi_map_req_t from rnumber to regspec...
849 		 */
850 
851 		mp->map_type = DDI_MT_REGSPEC;
852 		mp->map_obj.rp = rp;
853 	}
854 
855 	/*
856 	 * Adjust offset and length correspnding to called values...
857 	 * XXX: A non-zero length means override the one in the regspec
858 	 * XXX: (regardless of what's in the parent's range?)
859 	 */
860 
861 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
862 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
863 
864 #ifdef	DDI_MAP_DEBUG
865 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
866 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
867 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset,
868 	    len, mp->map_handlep);
869 #endif	/* DDI_MAP_DEBUG */
870 
871 	/*
872 	 * I/O or memory mapping:
873 	 *
874 	 *	<bustype=0, addr=x, len=x>: memory
875 	 *	<bustype=1, addr=x, len=x>: i/o
876 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
877 	 */
878 
879 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
880 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
881 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
882 		    ddi_get_name(rdip), rp->regspec_bustype,
883 		    rp->regspec_addr, rp->regspec_size);
884 		return (DDI_ME_INVAL);
885 	}
886 
887 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
888 		/*
889 		 * compatibility i/o mapping
890 		 */
891 		rp->regspec_bustype += (uint_t)offset;
892 	} else {
893 		/*
894 		 * Normal memory or i/o mapping
895 		 */
896 		rp->regspec_addr += (uint_t)offset;
897 	}
898 
899 	if (len != 0)
900 		rp->regspec_size = (uint_t)len;
901 
902 #ifdef	DDI_MAP_DEBUG
903 	cmn_err(CE_CONT, "             <%s,%s> <0x%x, 0x%x, 0x%d> offset %d "
904 	    "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
905 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
906 	    offset, len, mp->map_handlep);
907 #endif	/* DDI_MAP_DEBUG */
908 
909 	/*
910 	 * Apply any parent ranges at this level, if applicable.
911 	 * (This is where nexus specific regspec translation takes place.
912 	 * Use of this function is implicit agreement that translation is
913 	 * provided via ddi_apply_range.)
914 	 */
915 
916 #ifdef	DDI_MAP_DEBUG
917 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
918 	    ddi_get_name(dip), ddi_get_name(rdip));
919 #endif	/* DDI_MAP_DEBUG */
920 
921 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
922 		return (error);
923 
924 	switch (mp->map_op)  {
925 	case DDI_MO_MAP_LOCKED:
926 
927 		/*
928 		 * Set up the locked down kernel mapping to the regspec...
929 		 */
930 
931 		return (rootnex_map_regspec(mp, vaddrp));
932 
933 	case DDI_MO_UNMAP:
934 
935 		/*
936 		 * Release mapping...
937 		 */
938 
939 		return (rootnex_unmap_regspec(mp, vaddrp));
940 
941 	case DDI_MO_MAP_HANDLE:
942 
943 		return (rootnex_map_handle(mp));
944 
945 	default:
946 		return (DDI_ME_UNIMPLEMENTED);
947 	}
948 }
949 
950 
951 /*
952  * rootnex_map_fault()
953  *
954  *	fault in mappings for requestors
955  */
956 /*ARGSUSED*/
957 static int
958 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
959     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
960     uint_t lock)
961 {
962 
963 #ifdef	DDI_MAP_DEBUG
964 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
965 	ddi_map_debug(" Seg <%s>\n",
966 	    seg->s_ops == &segdev_ops ? "segdev" :
967 	    seg == &kvseg ? "segkmem" : "NONE!");
968 #endif	/* DDI_MAP_DEBUG */
969 
970 	/*
971 	 * This is all terribly broken, but it is a start
972 	 *
973 	 * XXX	Note that this test means that segdev_ops
974 	 *	must be exported from seg_dev.c.
975 	 * XXX	What about devices with their own segment drivers?
976 	 */
977 	if (seg->s_ops == &segdev_ops) {
978 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
979 
980 		if (hat == NULL) {
981 			/*
982 			 * This is one plausible interpretation of
983 			 * a null hat i.e. use the first hat on the
984 			 * address space hat list which by convention is
985 			 * the hat of the system MMU.  At alternative
986 			 * would be to panic .. this might well be better ..
987 			 */
988 			ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock));
989 			hat = seg->s_as->a_hat;
990 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
991 		}
992 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
993 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
994 	} else if (seg == &kvseg && dp == NULL) {
995 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
996 		    HAT_LOAD_LOCK);
997 	} else
998 		return (DDI_FAILURE);
999 	return (DDI_SUCCESS);
1000 }
1001 
1002 
1003 /*
1004  * rootnex_map_regspec()
1005  *     we don't support mapping of I/O cards above 4Gb
1006  */
1007 static int
1008 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1009 {
1010 	rootnex_addr_t rbase;
1011 	void *cvaddr;
1012 	uint_t npages, pgoffset;
1013 	struct regspec *rp;
1014 	ddi_acc_hdl_t *hp;
1015 	ddi_acc_impl_t *ap;
1016 	uint_t	hat_acc_flags;
1017 	paddr_t pbase;
1018 
1019 	rp = mp->map_obj.rp;
1020 	hp = mp->map_handlep;
1021 
1022 #ifdef	DDI_MAP_DEBUG
1023 	ddi_map_debug(
1024 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1025 	    rp->regspec_bustype, rp->regspec_addr,
1026 	    rp->regspec_size, mp->map_handlep);
1027 #endif	/* DDI_MAP_DEBUG */
1028 
1029 	/*
1030 	 * I/O or memory mapping
1031 	 *
1032 	 *	<bustype=0, addr=x, len=x>: memory
1033 	 *	<bustype=1, addr=x, len=x>: i/o
1034 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1035 	 */
1036 
1037 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1038 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1039 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1040 		    rp->regspec_addr, rp->regspec_size);
1041 		return (DDI_FAILURE);
1042 	}
1043 
1044 	if (rp->regspec_bustype != 0) {
1045 		/*
1046 		 * I/O space - needs a handle.
1047 		 */
1048 		if (hp == NULL) {
1049 			return (DDI_FAILURE);
1050 		}
1051 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1052 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1053 		impl_acc_hdl_init(hp);
1054 
1055 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1056 #ifdef  DDI_MAP_DEBUG
1057 			ddi_map_debug("rootnex_map_regspec: mmap() "
1058 			    "to I/O space is not supported.\n");
1059 #endif  /* DDI_MAP_DEBUG */
1060 			return (DDI_ME_INVAL);
1061 		} else {
1062 			/*
1063 			 * 1275-compliant vs. compatibility i/o mapping
1064 			 */
1065 			*vaddrp =
1066 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1067 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1068 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1069 #ifdef __xpv
1070 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1071 				hp->ah_pfn = xen_assign_pfn(
1072 				    mmu_btop((ulong_t)rp->regspec_addr &
1073 				    MMU_PAGEMASK));
1074 			} else {
1075 				hp->ah_pfn = mmu_btop(
1076 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1077 			}
1078 #else
1079 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1080 			    MMU_PAGEMASK);
1081 #endif
1082 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1083 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1084 		}
1085 
1086 #ifdef	DDI_MAP_DEBUG
1087 		ddi_map_debug(
1088 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1089 		    rp->regspec_size, *vaddrp);
1090 #endif	/* DDI_MAP_DEBUG */
1091 		return (DDI_SUCCESS);
1092 	}
1093 
1094 	/*
1095 	 * Memory space
1096 	 */
1097 
1098 	if (hp != NULL) {
1099 		/*
1100 		 * hat layer ignores
1101 		 * hp->ah_acc.devacc_attr_endian_flags.
1102 		 */
1103 		switch (hp->ah_acc.devacc_attr_dataorder) {
1104 		case DDI_STRICTORDER_ACC:
1105 			hat_acc_flags = HAT_STRICTORDER;
1106 			break;
1107 		case DDI_UNORDERED_OK_ACC:
1108 			hat_acc_flags = HAT_UNORDERED_OK;
1109 			break;
1110 		case DDI_MERGING_OK_ACC:
1111 			hat_acc_flags = HAT_MERGING_OK;
1112 			break;
1113 		case DDI_LOADCACHING_OK_ACC:
1114 			hat_acc_flags = HAT_LOADCACHING_OK;
1115 			break;
1116 		case DDI_STORECACHING_OK_ACC:
1117 			hat_acc_flags = HAT_STORECACHING_OK;
1118 			break;
1119 		}
1120 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1121 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1122 		impl_acc_hdl_init(hp);
1123 		hp->ah_hat_flags = hat_acc_flags;
1124 	} else {
1125 		hat_acc_flags = HAT_STRICTORDER;
1126 	}
1127 
1128 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1129 #ifdef __xpv
1130 	/*
1131 	 * If we're dom0, we're using a real device so we need to translate
1132 	 * the MA to a PA.
1133 	 */
1134 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1135 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1136 	} else {
1137 		pbase = rbase;
1138 	}
1139 #else
1140 	pbase = rbase;
1141 #endif
1142 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1143 
1144 	if (rp->regspec_size == 0) {
1145 #ifdef  DDI_MAP_DEBUG
1146 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1147 #endif  /* DDI_MAP_DEBUG */
1148 		return (DDI_ME_INVAL);
1149 	}
1150 
1151 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1152 		/* extra cast to make gcc happy */
1153 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1154 	} else {
1155 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1156 
1157 #ifdef	DDI_MAP_DEBUG
1158 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1159 		    "physical %llx", npages, pbase);
1160 #endif	/* DDI_MAP_DEBUG */
1161 
1162 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1163 		if (cvaddr == NULL)
1164 			return (DDI_ME_NORESOURCES);
1165 
1166 		/*
1167 		 * Now map in the pages we've allocated...
1168 		 */
1169 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1170 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1171 		    HAT_LOAD_LOCK);
1172 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1173 
1174 		/* save away pfn and npages for FMA */
1175 		hp = mp->map_handlep;
1176 		if (hp) {
1177 			hp->ah_pfn = mmu_btop(pbase);
1178 			hp->ah_pnum = npages;
1179 		}
1180 	}
1181 
1182 #ifdef	DDI_MAP_DEBUG
1183 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1184 #endif	/* DDI_MAP_DEBUG */
1185 	return (DDI_SUCCESS);
1186 }
1187 
1188 
1189 /*
1190  * rootnex_unmap_regspec()
1191  *
1192  */
1193 static int
1194 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1195 {
1196 	caddr_t addr = (caddr_t)*vaddrp;
1197 	uint_t npages, pgoffset;
1198 	struct regspec *rp;
1199 
1200 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1201 		return (0);
1202 
1203 	rp = mp->map_obj.rp;
1204 
1205 	if (rp->regspec_size == 0) {
1206 #ifdef  DDI_MAP_DEBUG
1207 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1208 #endif  /* DDI_MAP_DEBUG */
1209 		return (DDI_ME_INVAL);
1210 	}
1211 
1212 	/*
1213 	 * I/O or memory mapping:
1214 	 *
1215 	 *	<bustype=0, addr=x, len=x>: memory
1216 	 *	<bustype=1, addr=x, len=x>: i/o
1217 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1218 	 */
1219 	if (rp->regspec_bustype != 0) {
1220 		/*
1221 		 * This is I/O space, which requires no particular
1222 		 * processing on unmap since it isn't mapped in the
1223 		 * first place.
1224 		 */
1225 		return (DDI_SUCCESS);
1226 	}
1227 
1228 	/*
1229 	 * Memory space
1230 	 */
1231 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1232 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1233 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1234 	device_arena_free(addr - pgoffset, ptob(npages));
1235 
1236 	/*
1237 	 * Destroy the pointer - the mapping has logically gone
1238 	 */
1239 	*vaddrp = NULL;
1240 
1241 	return (DDI_SUCCESS);
1242 }
1243 
1244 
1245 /*
1246  * rootnex_map_handle()
1247  *
1248  */
1249 static int
1250 rootnex_map_handle(ddi_map_req_t *mp)
1251 {
1252 	rootnex_addr_t rbase;
1253 	ddi_acc_hdl_t *hp;
1254 	uint_t pgoffset;
1255 	struct regspec *rp;
1256 	paddr_t pbase;
1257 
1258 	rp = mp->map_obj.rp;
1259 
1260 #ifdef	DDI_MAP_DEBUG
1261 	ddi_map_debug(
1262 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1263 	    rp->regspec_bustype, rp->regspec_addr,
1264 	    rp->regspec_size, mp->map_handlep);
1265 #endif	/* DDI_MAP_DEBUG */
1266 
1267 	/*
1268 	 * I/O or memory mapping:
1269 	 *
1270 	 *	<bustype=0, addr=x, len=x>: memory
1271 	 *	<bustype=1, addr=x, len=x>: i/o
1272 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1273 	 */
1274 	if (rp->regspec_bustype != 0) {
1275 		/*
1276 		 * This refers to I/O space, and we don't support "mapping"
1277 		 * I/O space to a user.
1278 		 */
1279 		return (DDI_FAILURE);
1280 	}
1281 
1282 	/*
1283 	 * Set up the hat_flags for the mapping.
1284 	 */
1285 	hp = mp->map_handlep;
1286 
1287 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1288 	case DDI_NEVERSWAP_ACC:
1289 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1290 		break;
1291 	case DDI_STRUCTURE_LE_ACC:
1292 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1293 		break;
1294 	case DDI_STRUCTURE_BE_ACC:
1295 		return (DDI_FAILURE);
1296 	default:
1297 		return (DDI_REGS_ACC_CONFLICT);
1298 	}
1299 
1300 	switch (hp->ah_acc.devacc_attr_dataorder) {
1301 	case DDI_STRICTORDER_ACC:
1302 		break;
1303 	case DDI_UNORDERED_OK_ACC:
1304 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1305 		break;
1306 	case DDI_MERGING_OK_ACC:
1307 		hp->ah_hat_flags |= HAT_MERGING_OK;
1308 		break;
1309 	case DDI_LOADCACHING_OK_ACC:
1310 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1311 		break;
1312 	case DDI_STORECACHING_OK_ACC:
1313 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1314 		break;
1315 	default:
1316 		return (DDI_FAILURE);
1317 	}
1318 
1319 	rbase = (rootnex_addr_t)rp->regspec_addr &
1320 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1321 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1322 
1323 	if (rp->regspec_size == 0)
1324 		return (DDI_ME_INVAL);
1325 
1326 #ifdef __xpv
1327 	/*
1328 	 * If we're dom0, we're using a real device so we need to translate
1329 	 * the MA to a PA.
1330 	 */
1331 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1332 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1333 		    (rbase & MMU_PAGEOFFSET);
1334 	} else {
1335 		pbase = rbase;
1336 	}
1337 #else
1338 	pbase = rbase;
1339 #endif
1340 
1341 	hp->ah_pfn = mmu_btop(pbase);
1342 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1343 
1344 	return (DDI_SUCCESS);
1345 }
1346 
1347 
1348 
1349 /*
1350  * ************************
1351  *  interrupt related code
1352  * ************************
1353  */
1354 
1355 /*
1356  * rootnex_intr_ops()
1357  *	bus_intr_op() function for interrupt support
1358  */
1359 /* ARGSUSED */
1360 static int
1361 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1362     ddi_intr_handle_impl_t *hdlp, void *result)
1363 {
1364 	struct intrspec			*ispec;
1365 	struct ddi_parent_private_data	*pdp;
1366 
1367 	DDI_INTR_NEXDBG((CE_CONT,
1368 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1369 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1370 
1371 	/* Process the interrupt operation */
1372 	switch (intr_op) {
1373 	case DDI_INTROP_GETCAP:
1374 		/* First check with pcplusmp */
1375 		if (psm_intr_ops == NULL)
1376 			return (DDI_FAILURE);
1377 
1378 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1379 			*(int *)result = 0;
1380 			return (DDI_FAILURE);
1381 		}
1382 		break;
1383 	case DDI_INTROP_SETCAP:
1384 		if (psm_intr_ops == NULL)
1385 			return (DDI_FAILURE);
1386 
1387 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1388 			return (DDI_FAILURE);
1389 		break;
1390 	case DDI_INTROP_ALLOC:
1391 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1392 			return (DDI_FAILURE);
1393 		hdlp->ih_pri = ispec->intrspec_pri;
1394 		*(int *)result = hdlp->ih_scratch1;
1395 		break;
1396 	case DDI_INTROP_FREE:
1397 		pdp = ddi_get_parent_data(rdip);
1398 		/*
1399 		 * Special case for 'pcic' driver' only.
1400 		 * If an intrspec was created for it, clean it up here
1401 		 * See detailed comments on this in the function
1402 		 * rootnex_get_ispec().
1403 		 */
1404 		if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1405 			kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1406 			    pdp->par_nintr);
1407 			/*
1408 			 * Set it to zero; so that
1409 			 * DDI framework doesn't free it again
1410 			 */
1411 			pdp->par_intr = NULL;
1412 			pdp->par_nintr = 0;
1413 		}
1414 		break;
1415 	case DDI_INTROP_GETPRI:
1416 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1417 			return (DDI_FAILURE);
1418 		*(int *)result = ispec->intrspec_pri;
1419 		break;
1420 	case DDI_INTROP_SETPRI:
1421 		/* Validate the interrupt priority passed to us */
1422 		if (*(int *)result > LOCK_LEVEL)
1423 			return (DDI_FAILURE);
1424 
1425 		/* Ensure that PSM is all initialized and ispec is ok */
1426 		if ((psm_intr_ops == NULL) ||
1427 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1428 			return (DDI_FAILURE);
1429 
1430 		/* Change the priority */
1431 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1432 		    PSM_FAILURE)
1433 			return (DDI_FAILURE);
1434 
1435 		/* update the ispec with the new priority */
1436 		ispec->intrspec_pri =  *(int *)result;
1437 		break;
1438 	case DDI_INTROP_ADDISR:
1439 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1440 			return (DDI_FAILURE);
1441 		ispec->intrspec_func = hdlp->ih_cb_func;
1442 		break;
1443 	case DDI_INTROP_REMISR:
1444 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1445 			return (DDI_FAILURE);
1446 		ispec->intrspec_func = (uint_t (*)()) 0;
1447 		break;
1448 	case DDI_INTROP_ENABLE:
1449 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1450 			return (DDI_FAILURE);
1451 
1452 		/* Call psmi to translate irq with the dip */
1453 		if (psm_intr_ops == NULL)
1454 			return (DDI_FAILURE);
1455 
1456 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1457 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1458 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1459 			return (DDI_FAILURE);
1460 
1461 		/* Add the interrupt handler */
1462 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1463 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1464 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1465 			return (DDI_FAILURE);
1466 		break;
1467 	case DDI_INTROP_DISABLE:
1468 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1469 			return (DDI_FAILURE);
1470 
1471 		/* Call psm_ops() to translate irq with the dip */
1472 		if (psm_intr_ops == NULL)
1473 			return (DDI_FAILURE);
1474 
1475 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1476 		(void) (*psm_intr_ops)(rdip, hdlp,
1477 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1478 
1479 		/* Remove the interrupt handler */
1480 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1481 		    hdlp->ih_cb_func, hdlp->ih_vector);
1482 		break;
1483 	case DDI_INTROP_SETMASK:
1484 		if (psm_intr_ops == NULL)
1485 			return (DDI_FAILURE);
1486 
1487 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1488 			return (DDI_FAILURE);
1489 		break;
1490 	case DDI_INTROP_CLRMASK:
1491 		if (psm_intr_ops == NULL)
1492 			return (DDI_FAILURE);
1493 
1494 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1495 			return (DDI_FAILURE);
1496 		break;
1497 	case DDI_INTROP_GETPENDING:
1498 		if (psm_intr_ops == NULL)
1499 			return (DDI_FAILURE);
1500 
1501 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1502 		    result)) {
1503 			*(int *)result = 0;
1504 			return (DDI_FAILURE);
1505 		}
1506 		break;
1507 	case DDI_INTROP_NAVAIL:
1508 	case DDI_INTROP_NINTRS:
1509 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1510 		if (*(int *)result == 0) {
1511 			/*
1512 			 * Special case for 'pcic' driver' only. This driver
1513 			 * driver is a child of 'isa' and 'rootnex' drivers.
1514 			 *
1515 			 * See detailed comments on this in the function
1516 			 * rootnex_get_ispec().
1517 			 *
1518 			 * Children of 'pcic' send 'NINITR' request all the
1519 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1520 			 * field may not initialized. So, we fake it here
1521 			 * to return 1 (a la what PCMCIA nexus does).
1522 			 */
1523 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1524 				*(int *)result = 1;
1525 			else
1526 				return (DDI_FAILURE);
1527 		}
1528 		break;
1529 	case DDI_INTROP_SUPPORTED_TYPES:
1530 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1531 		break;
1532 	default:
1533 		return (DDI_FAILURE);
1534 	}
1535 
1536 	return (DDI_SUCCESS);
1537 }
1538 
1539 
1540 /*
1541  * rootnex_get_ispec()
1542  *	convert an interrupt number to an interrupt specification.
1543  *	The interrupt number determines which interrupt spec will be
1544  *	returned if more than one exists.
1545  *
1546  *	Look into the parent private data area of the 'rdip' to find out
1547  *	the interrupt specification.  First check to make sure there is
1548  *	one that matchs "inumber" and then return a pointer to it.
1549  *
1550  *	Return NULL if one could not be found.
1551  *
1552  *	NOTE: This is needed for rootnex_intr_ops()
1553  */
1554 static struct intrspec *
1555 rootnex_get_ispec(dev_info_t *rdip, int inum)
1556 {
1557 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1558 
1559 	/*
1560 	 * Special case handling for drivers that provide their own
1561 	 * intrspec structures instead of relying on the DDI framework.
1562 	 *
1563 	 * A broken hardware driver in ON could potentially provide its
1564 	 * own intrspec structure, instead of relying on the hardware.
1565 	 * If these drivers are children of 'rootnex' then we need to
1566 	 * continue to provide backward compatibility to them here.
1567 	 *
1568 	 * Following check is a special case for 'pcic' driver which
1569 	 * was found to have broken hardwre andby provides its own intrspec.
1570 	 *
1571 	 * Verbatim comments from this driver are shown here:
1572 	 * "Don't use the ddi_add_intr since we don't have a
1573 	 * default intrspec in all cases."
1574 	 *
1575 	 * Since an 'ispec' may not be always created for it,
1576 	 * check for that and create one if so.
1577 	 *
1578 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1579 	 */
1580 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1581 		pdp->par_nintr = 1;
1582 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1583 		    pdp->par_nintr, KM_SLEEP);
1584 	}
1585 
1586 	/* Validate the interrupt number */
1587 	if (inum >= pdp->par_nintr)
1588 		return (NULL);
1589 
1590 	/* Get the interrupt structure pointer and return that */
1591 	return ((struct intrspec *)&pdp->par_intr[inum]);
1592 }
1593 
1594 
1595 /*
1596  * ******************
1597  *  dma related code
1598  * ******************
1599  */
1600 
1601 /*ARGSUSED*/
1602 static int
1603 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1604     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1605     ddi_dma_handle_t *handlep)
1606 {
1607 	uint64_t maxsegmentsize_ll;
1608 	uint_t maxsegmentsize;
1609 	ddi_dma_impl_t *hp;
1610 	rootnex_dma_t *dma;
1611 	uint64_t count_max;
1612 	uint64_t seg;
1613 	int kmflag;
1614 	int e;
1615 
1616 
1617 	/* convert our sleep flags */
1618 	if (waitfp == DDI_DMA_SLEEP) {
1619 		kmflag = KM_SLEEP;
1620 	} else {
1621 		kmflag = KM_NOSLEEP;
1622 	}
1623 
1624 	/*
1625 	 * We try to do only one memory allocation here. We'll do a little
1626 	 * pointer manipulation later. If the bind ends up taking more than
1627 	 * our prealloc's space, we'll have to allocate more memory in the
1628 	 * bind operation. Not great, but much better than before and the
1629 	 * best we can do with the current bind interfaces.
1630 	 */
1631 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1632 	if (hp == NULL) {
1633 		if (waitfp != DDI_DMA_DONTWAIT) {
1634 			ddi_set_callback(waitfp, arg,
1635 			    &rootnex_state->r_dvma_call_list_id);
1636 		}
1637 		return (DDI_DMA_NORESOURCES);
1638 	}
1639 
1640 	/* Do our pointer manipulation now, align the structures */
1641 	hp->dmai_private = (void *)(((uintptr_t)hp +
1642 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1643 	dma = (rootnex_dma_t *)hp->dmai_private;
1644 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1645 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1646 
1647 	/* setup the handle */
1648 	rootnex_clean_dmahdl(hp);
1649 	dma->dp_dip = rdip;
1650 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1651 	dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1652 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1653 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1654 	hp->dmai_rdip = rdip;
1655 	hp->dmai_attr = *attr;
1656 
1657 	/* we don't need to worry about the SPL since we do a tryenter */
1658 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1659 
1660 	/*
1661 	 * Figure out our maximum segment size. If the segment size is greater
1662 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1663 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1664 	 * dma_attr_count_max are size-1 type values.
1665 	 *
1666 	 * Maximum segment size is the largest physically contiguous chunk of
1667 	 * memory that we can return from a bind (i.e. the maximum size of a
1668 	 * single cookie).
1669 	 */
1670 
1671 	/* handle the rollover cases */
1672 	seg = attr->dma_attr_seg + 1;
1673 	if (seg < attr->dma_attr_seg) {
1674 		seg = attr->dma_attr_seg;
1675 	}
1676 	count_max = attr->dma_attr_count_max + 1;
1677 	if (count_max < attr->dma_attr_count_max) {
1678 		count_max = attr->dma_attr_count_max;
1679 	}
1680 
1681 	/*
1682 	 * granularity may or may not be a power of two. If it isn't, we can't
1683 	 * use a simple mask.
1684 	 */
1685 	if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) {
1686 		dma->dp_granularity_power_2 = B_FALSE;
1687 	} else {
1688 		dma->dp_granularity_power_2 = B_TRUE;
1689 	}
1690 
1691 	/*
1692 	 * maxxfer should be a whole multiple of granularity. If we're going to
1693 	 * break up a window because we're greater than maxxfer, we might as
1694 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1695 	 * worry about triming the window later on for this case.
1696 	 */
1697 	if (attr->dma_attr_granular > 1) {
1698 		if (dma->dp_granularity_power_2) {
1699 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1700 			    (attr->dma_attr_maxxfer &
1701 			    (attr->dma_attr_granular - 1));
1702 		} else {
1703 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1704 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1705 		}
1706 	} else {
1707 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1708 	}
1709 
1710 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1711 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1712 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1713 		maxsegmentsize = 0xFFFFFFFF;
1714 	} else {
1715 		maxsegmentsize = maxsegmentsize_ll;
1716 	}
1717 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1718 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1719 
1720 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1721 	if (rootnex_alloc_check_parms) {
1722 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1723 		if (e != DDI_SUCCESS) {
1724 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1725 			(void) rootnex_dma_freehdl(dip, rdip,
1726 			    (ddi_dma_handle_t)hp);
1727 			return (e);
1728 		}
1729 	}
1730 
1731 	*handlep = (ddi_dma_handle_t)hp;
1732 
1733 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1734 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1735 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1736 
1737 	return (DDI_SUCCESS);
1738 }
1739 
1740 
1741 /*
1742  * rootnex_dma_allochdl()
1743  *    called from ddi_dma_alloc_handle().
1744  */
1745 static int
1746 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1747     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1748 {
1749 #if !defined(__xpv)
1750 	uint_t error = ENOTSUP;
1751 	int retval;
1752 
1753 	retval = iommulib_nex_open(rdip, &error);
1754 
1755 	if (retval != DDI_SUCCESS && error == ENOTSUP) {
1756 		/* No IOMMU */
1757 		return (rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1758 		    handlep));
1759 	} else if (retval != DDI_SUCCESS) {
1760 		return (DDI_FAILURE);
1761 	}
1762 
1763 	ASSERT(IOMMU_USED(rdip));
1764 
1765 	/* has an IOMMU */
1766 	return (iommulib_nexdma_allochdl(dip, rdip, attr,
1767 	    waitfp, arg, handlep));
1768 #else
1769 	return (rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1770 	    handlep));
1771 #endif
1772 }
1773 
1774 /*ARGSUSED*/
1775 static int
1776 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1777     ddi_dma_handle_t handle)
1778 {
1779 	ddi_dma_impl_t *hp;
1780 	rootnex_dma_t *dma;
1781 
1782 
1783 	hp = (ddi_dma_impl_t *)handle;
1784 	dma = (rootnex_dma_t *)hp->dmai_private;
1785 
1786 	/* unbind should have been called first */
1787 	ASSERT(!dma->dp_inuse);
1788 
1789 	mutex_destroy(&dma->dp_mutex);
1790 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1791 
1792 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1793 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1794 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1795 
1796 	if (rootnex_state->r_dvma_call_list_id)
1797 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1798 
1799 	return (DDI_SUCCESS);
1800 }
1801 
1802 /*
1803  * rootnex_dma_freehdl()
1804  *    called from ddi_dma_free_handle().
1805  */
1806 static int
1807 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1808 {
1809 #if !defined(__xpv)
1810 	if (IOMMU_USED(rdip)) {
1811 		return (iommulib_nexdma_freehdl(dip, rdip, handle));
1812 	}
1813 #endif
1814 	return (rootnex_coredma_freehdl(dip, rdip, handle));
1815 }
1816 
1817 
1818 /*ARGSUSED*/
1819 static int
1820 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1821     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1822     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1823 {
1824 	rootnex_sglinfo_t *sinfo;
1825 	ddi_dma_attr_t *attr;
1826 	ddi_dma_impl_t *hp;
1827 	rootnex_dma_t *dma;
1828 	int kmflag;
1829 	int e;
1830 
1831 
1832 	hp = (ddi_dma_impl_t *)handle;
1833 	dma = (rootnex_dma_t *)hp->dmai_private;
1834 	sinfo = &dma->dp_sglinfo;
1835 	attr = &hp->dmai_attr;
1836 
1837 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1838 		dma->dp_sleep_flags = KM_SLEEP;
1839 	} else {
1840 		dma->dp_sleep_flags = KM_NOSLEEP;
1841 	}
1842 
1843 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1844 
1845 	/*
1846 	 * This is useful for debugging a driver. Not as useful in a production
1847 	 * system. The only time this will fail is if you have a driver bug.
1848 	 */
1849 	if (rootnex_bind_check_inuse) {
1850 		/*
1851 		 * No one else should ever have this lock unless someone else
1852 		 * is trying to use this handle. So contention on the lock
1853 		 * is the same as inuse being set.
1854 		 */
1855 		e = mutex_tryenter(&dma->dp_mutex);
1856 		if (e == 0) {
1857 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1858 			return (DDI_DMA_INUSE);
1859 		}
1860 		if (dma->dp_inuse) {
1861 			mutex_exit(&dma->dp_mutex);
1862 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1863 			return (DDI_DMA_INUSE);
1864 		}
1865 		dma->dp_inuse = B_TRUE;
1866 		mutex_exit(&dma->dp_mutex);
1867 	}
1868 
1869 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1870 	if (rootnex_bind_check_parms) {
1871 		e = rootnex_valid_bind_parms(dmareq, attr);
1872 		if (e != DDI_SUCCESS) {
1873 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1874 			rootnex_clean_dmahdl(hp);
1875 			return (e);
1876 		}
1877 	}
1878 
1879 	/* save away the original bind info */
1880 	dma->dp_dma = dmareq->dmar_object;
1881 
1882 #if !defined(__xpv)
1883 	if (rootnex_state->r_intel_iommu_enabled) {
1884 		e = intel_iommu_map_sgl(handle, dmareq,
1885 		    rootnex_state->r_prealloc_cookies);
1886 
1887 		switch (e) {
1888 		case IOMMU_SGL_SUCCESS:
1889 			goto rootnex_sgl_end;
1890 
1891 		case IOMMU_SGL_DISABLE:
1892 			goto rootnex_sgl_start;
1893 
1894 		case IOMMU_SGL_NORESOURCES:
1895 			cmn_err(CE_WARN, "iommu map sgl failed for %s",
1896 			    ddi_node_name(dma->dp_dip));
1897 			rootnex_clean_dmahdl(hp);
1898 			return (DDI_DMA_NORESOURCES);
1899 
1900 		default:
1901 			cmn_err(CE_WARN,
1902 			    "undefined value returned from"
1903 			    " intel_iommu_map_sgl: %d",
1904 			    e);
1905 			rootnex_clean_dmahdl(hp);
1906 			return (DDI_DMA_NORESOURCES);
1907 		}
1908 	}
1909 #endif
1910 
1911 rootnex_sgl_start:
1912 	/*
1913 	 * Figure out a rough estimate of what maximum number of pages this
1914 	 * buffer could use (a high estimate of course).
1915 	 */
1916 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
1917 
1918 	/*
1919 	 * We'll use the pre-allocated cookies for any bind that will *always*
1920 	 * fit (more important to be consistent, we don't want to create
1921 	 * additional degenerate cases).
1922 	 */
1923 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
1924 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
1925 		dma->dp_need_to_free_cookie = B_FALSE;
1926 		DTRACE_PROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
1927 		    uint_t, sinfo->si_max_pages);
1928 
1929 	/*
1930 	 * For anything larger than that, we'll go ahead and allocate the
1931 	 * maximum number of pages we expect to see. Hopefuly, we won't be
1932 	 * seeing this path in the fast path for high performance devices very
1933 	 * frequently.
1934 	 *
1935 	 * a ddi bind interface that allowed the driver to provide storage to
1936 	 * the bind interface would speed this case up.
1937 	 */
1938 	} else {
1939 		/* convert the sleep flags */
1940 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1941 			kmflag =  KM_SLEEP;
1942 		} else {
1943 			kmflag =  KM_NOSLEEP;
1944 		}
1945 
1946 		/*
1947 		 * Save away how much memory we allocated. If we're doing a
1948 		 * nosleep, the alloc could fail...
1949 		 */
1950 		dma->dp_cookie_size = sinfo->si_max_pages *
1951 		    sizeof (ddi_dma_cookie_t);
1952 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
1953 		if (dma->dp_cookies == NULL) {
1954 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1955 			rootnex_clean_dmahdl(hp);
1956 			return (DDI_DMA_NORESOURCES);
1957 		}
1958 		dma->dp_need_to_free_cookie = B_TRUE;
1959 		DTRACE_PROBE2(rootnex__bind__alloc, dev_info_t *, rdip, uint_t,
1960 		    sinfo->si_max_pages);
1961 	}
1962 	hp->dmai_cookie = dma->dp_cookies;
1963 
1964 	/*
1965 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
1966 	 * looking at the contraints in the dma structure. It will then put some
1967 	 * additional state about the sgl in the dma struct (i.e. is the sgl
1968 	 * clean, or do we need to do some munging; how many pages need to be
1969 	 * copied, etc.)
1970 	 */
1971 	rootnex_get_sgl(&dmareq->dmar_object, dma->dp_cookies,
1972 	    &dma->dp_sglinfo);
1973 
1974 rootnex_sgl_end:
1975 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
1976 	/* if we don't need a copy buffer, we don't need to sync */
1977 	if (sinfo->si_copybuf_req == 0) {
1978 		hp->dmai_rflags |= DMP_NOSYNC;
1979 	}
1980 
1981 	/*
1982 	 * if we don't need the copybuf and we don't need to do a partial,  we
1983 	 * hit the fast path. All the high performance devices should be trying
1984 	 * to hit this path. To hit this path, a device should be able to reach
1985 	 * all of memory, shouldn't try to bind more than it can transfer, and
1986 	 * the buffer shouldn't require more cookies than the driver/device can
1987 	 * handle [sgllen]).
1988 	 */
1989 	if ((sinfo->si_copybuf_req == 0) &&
1990 	    (sinfo->si_sgl_size <= attr->dma_attr_sgllen) &&
1991 	    (dma->dp_dma.dmao_size < dma->dp_maxxfer)) {
1992 		/*
1993 		 * If the driver supports FMA, insert the handle in the FMA DMA
1994 		 * handle cache.
1995 		 */
1996 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR) {
1997 			hp->dmai_error.err_cf = rootnex_dma_check;
1998 			(void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL);
1999 		}
2000 
2001 		/*
2002 		 * copy out the first cookie and ccountp, set the cookie
2003 		 * pointer to the second cookie. The first cookie is passed
2004 		 * back on the stack. Additional cookies are accessed via
2005 		 * ddi_dma_nextcookie()
2006 		 */
2007 		*cookiep = dma->dp_cookies[0];
2008 		*ccountp = sinfo->si_sgl_size;
2009 		hp->dmai_cookie++;
2010 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2011 		hp->dmai_nwin = 1;
2012 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2013 		ROOTNEX_DPROBE3(rootnex__bind__fast, dev_info_t *, rdip,
2014 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2015 		    dma->dp_dma.dmao_size);
2016 		return (DDI_DMA_MAPPED);
2017 	}
2018 
2019 	/*
2020 	 * go to the slow path, we may need to alloc more memory, create
2021 	 * multiple windows, and munge up a sgl to make the device happy.
2022 	 */
2023 	e = rootnex_bind_slowpath(hp, dmareq, dma, attr, kmflag);
2024 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2025 		if (dma->dp_need_to_free_cookie) {
2026 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2027 		}
2028 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2029 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2030 		return (e);
2031 	}
2032 
2033 	/*
2034 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2035 	 * cache.
2036 	 */
2037 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR) {
2038 		hp->dmai_error.err_cf = rootnex_dma_check;
2039 		(void) ndi_fmc_insert(rdip, DMA_HANDLE, hp, NULL);
2040 	}
2041 
2042 	/* if the first window uses the copy buffer, sync it for the device */
2043 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2044 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2045 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2046 		    DDI_DMA_SYNC_FORDEV);
2047 	}
2048 
2049 	/*
2050 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2051 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2052 	 * If we have a partial map (i.e. multiple windows), the number of
2053 	 * cookies we return is the number of cookies in the first window.
2054 	 */
2055 	if (e == DDI_DMA_MAPPED) {
2056 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2057 		*ccountp = sinfo->si_sgl_size;
2058 	} else {
2059 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2060 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2061 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2062 	}
2063 	*cookiep = dma->dp_cookies[0];
2064 	hp->dmai_cookie++;
2065 
2066 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2067 	ROOTNEX_DPROBE3(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2068 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2069 	    dma->dp_dma.dmao_size);
2070 	return (e);
2071 }
2072 
2073 
2074 /*
2075  * rootnex_dma_bindhdl()
2076  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2077  */
2078 static int
2079 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2080     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2081     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2082 {
2083 #if !defined(__xpv)
2084 	if (IOMMU_USED(rdip)) {
2085 		return (iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2086 		    cookiep, ccountp));
2087 	}
2088 #endif
2089 	return (rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2090 	    cookiep, ccountp));
2091 }
2092 
2093 /*ARGSUSED*/
2094 static int
2095 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2096     ddi_dma_handle_t handle)
2097 {
2098 	ddi_dma_impl_t *hp;
2099 	rootnex_dma_t *dma;
2100 	int e;
2101 
2102 	hp = (ddi_dma_impl_t *)handle;
2103 	dma = (rootnex_dma_t *)hp->dmai_private;
2104 
2105 	/* make sure the buffer wasn't free'd before calling unbind */
2106 	if (rootnex_unbind_verify_buffer) {
2107 		e = rootnex_verify_buffer(dma);
2108 		if (e != DDI_SUCCESS) {
2109 			ASSERT(0);
2110 			return (DDI_FAILURE);
2111 		}
2112 	}
2113 
2114 	/* sync the current window before unbinding the buffer */
2115 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2116 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2117 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2118 		    DDI_DMA_SYNC_FORCPU);
2119 	}
2120 
2121 	/*
2122 	 * If the driver supports FMA, remove the handle in the FMA DMA handle
2123 	 * cache.
2124 	 */
2125 	if (hp->dmai_attr.dma_attr_flags & DDI_DMA_FLAGERR) {
2126 		if ((DEVI(rdip)->devi_fmhdl != NULL) &&
2127 		    (DDI_FM_DMA_ERR_CAP(DEVI(rdip)->devi_fmhdl->fh_cap))) {
2128 			(void) ndi_fmc_remove(rdip, DMA_HANDLE, hp);
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * cleanup and copy buffer or window state. if we didn't use the copy
2134 	 * buffer or windows, there won't be much to do :-)
2135 	 */
2136 	rootnex_teardown_copybuf(dma);
2137 	rootnex_teardown_windows(dma);
2138 
2139 #if !defined(__xpv)
2140 	/*
2141 	 * If intel iommu enabled, clean up the page tables and free the dvma
2142 	 */
2143 	if (rootnex_state->r_intel_iommu_enabled) {
2144 		intel_iommu_unmap_sgl(handle);
2145 	}
2146 #endif
2147 
2148 	/*
2149 	 * If we had to allocate space to for the worse case sgl (it didn't
2150 	 * fit into our pre-allocate buffer), free that up now
2151 	 */
2152 	if (dma->dp_need_to_free_cookie) {
2153 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2154 	}
2155 
2156 	/*
2157 	 * clean up the handle so it's ready for the next bind (i.e. if the
2158 	 * handle is reused).
2159 	 */
2160 	rootnex_clean_dmahdl(hp);
2161 
2162 	if (rootnex_state->r_dvma_call_list_id)
2163 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2164 
2165 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2166 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2167 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2168 
2169 	return (DDI_SUCCESS);
2170 }
2171 
2172 /*
2173  * rootnex_dma_unbindhdl()
2174  *    called from ddi_dma_unbind_handle()
2175  */
2176 /*ARGSUSED*/
2177 static int
2178 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2179     ddi_dma_handle_t handle)
2180 {
2181 #if !defined(__xpv)
2182 	if (IOMMU_USED(rdip)) {
2183 		return (iommulib_nexdma_unbindhdl(dip, rdip, handle));
2184 	}
2185 #endif
2186 	return (rootnex_coredma_unbindhdl(dip, rdip, handle));
2187 }
2188 
2189 #if !defined(__xpv)
2190 
2191 static int
2192 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2193 {
2194 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2195 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2196 
2197 	if (dma->dp_sleep_flags != KM_SLEEP &&
2198 	    dma->dp_sleep_flags != KM_NOSLEEP)
2199 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2200 	return (dma->dp_sleep_flags);
2201 }
2202 /*ARGSUSED*/
2203 static void
2204 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2205 {
2206 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2207 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2208 	rootnex_window_t *window;
2209 
2210 	if (dma->dp_window) {
2211 		window = &dma->dp_window[dma->dp_current_win];
2212 		hp->dmai_cookie = window->wd_first_cookie;
2213 	} else {
2214 		hp->dmai_cookie = dma->dp_cookies;
2215 	}
2216 	hp->dmai_cookie++;
2217 }
2218 
2219 /*ARGSUSED*/
2220 static int
2221 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2222     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2223 {
2224 	int i;
2225 	int km_flags;
2226 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2227 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2228 	rootnex_window_t *window;
2229 	ddi_dma_cookie_t *cp;
2230 	ddi_dma_cookie_t *cookie;
2231 
2232 	ASSERT(*cookiepp == NULL);
2233 	ASSERT(*ccountp == 0);
2234 
2235 	if (dma->dp_window) {
2236 		window = &dma->dp_window[dma->dp_current_win];
2237 		cp = window->wd_first_cookie;
2238 		*ccountp = window->wd_cookie_cnt;
2239 	} else {
2240 		cp = dma->dp_cookies;
2241 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2242 	}
2243 
2244 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2245 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2246 	if (cookie == NULL) {
2247 		return (DDI_DMA_NORESOURCES);
2248 	}
2249 
2250 	for (i = 0; i < *ccountp; i++) {
2251 		cookie[i].dmac_notused = cp[i].dmac_notused;
2252 		cookie[i].dmac_type = cp[i].dmac_type;
2253 		cookie[i].dmac_address = cp[i].dmac_address;
2254 		cookie[i].dmac_size = cp[i].dmac_size;
2255 	}
2256 
2257 	*cookiepp = cookie;
2258 
2259 	return (DDI_SUCCESS);
2260 }
2261 
2262 /*ARGSUSED*/
2263 static int
2264 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2265     ddi_dma_cookie_t *cookiep, uint_t ccount)
2266 {
2267 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2268 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2269 	rootnex_window_t *window;
2270 	ddi_dma_cookie_t *cur_cookiep;
2271 
2272 	ASSERT(cookiep);
2273 	ASSERT(ccount != 0);
2274 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2275 
2276 	if (dma->dp_window) {
2277 		window = &dma->dp_window[dma->dp_current_win];
2278 		dma->dp_saved_cookies = window->wd_first_cookie;
2279 		window->wd_first_cookie = cookiep;
2280 		ASSERT(ccount == window->wd_cookie_cnt);
2281 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2282 		    + window->wd_first_cookie;
2283 	} else {
2284 		dma->dp_saved_cookies = dma->dp_cookies;
2285 		dma->dp_cookies = cookiep;
2286 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2287 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2288 		    + dma->dp_cookies;
2289 	}
2290 
2291 	dma->dp_need_to_switch_cookies = B_TRUE;
2292 	hp->dmai_cookie = cur_cookiep;
2293 
2294 	return (DDI_SUCCESS);
2295 }
2296 
2297 /*ARGSUSED*/
2298 static int
2299 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2300 {
2301 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2302 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2303 	rootnex_window_t *window;
2304 	ddi_dma_cookie_t *cur_cookiep;
2305 	ddi_dma_cookie_t *cookie_array;
2306 	uint_t ccount;
2307 
2308 	/* check if cookies have not been switched */
2309 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2310 		return (DDI_SUCCESS);
2311 
2312 	ASSERT(dma->dp_saved_cookies);
2313 
2314 	if (dma->dp_window) {
2315 		window = &dma->dp_window[dma->dp_current_win];
2316 		cookie_array = window->wd_first_cookie;
2317 		window->wd_first_cookie = dma->dp_saved_cookies;
2318 		dma->dp_saved_cookies = NULL;
2319 		ccount = window->wd_cookie_cnt;
2320 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2321 		    + window->wd_first_cookie;
2322 	} else {
2323 		cookie_array = dma->dp_cookies;
2324 		dma->dp_cookies = dma->dp_saved_cookies;
2325 		dma->dp_saved_cookies = NULL;
2326 		ccount = dma->dp_sglinfo.si_sgl_size;
2327 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2328 		    + dma->dp_cookies;
2329 	}
2330 
2331 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2332 
2333 	hp->dmai_cookie = cur_cookiep;
2334 
2335 	dma->dp_need_to_switch_cookies = B_FALSE;
2336 
2337 	return (DDI_SUCCESS);
2338 }
2339 
2340 #endif
2341 
2342 /*
2343  * rootnex_verify_buffer()
2344  *   verify buffer wasn't free'd
2345  */
2346 static int
2347 rootnex_verify_buffer(rootnex_dma_t *dma)
2348 {
2349 	page_t **pplist;
2350 	caddr_t vaddr;
2351 	uint_t pcnt;
2352 	uint_t poff;
2353 	page_t *pp;
2354 	char b;
2355 	int i;
2356 
2357 	/* Figure out how many pages this buffer occupies */
2358 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2359 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2360 	} else {
2361 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2362 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2363 	}
2364 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2365 
2366 	switch (dma->dp_dma.dmao_type) {
2367 	case DMA_OTYP_PAGES:
2368 		/*
2369 		 * for a linked list of pp's walk through them to make sure
2370 		 * they're locked and not free.
2371 		 */
2372 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2373 		for (i = 0; i < pcnt; i++) {
2374 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2375 				return (DDI_FAILURE);
2376 			}
2377 			pp = pp->p_next;
2378 		}
2379 		break;
2380 
2381 	case DMA_OTYP_VADDR:
2382 	case DMA_OTYP_BUFVADDR:
2383 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2384 		/*
2385 		 * for an array of pp's walk through them to make sure they're
2386 		 * not free. It's possible that they may not be locked.
2387 		 */
2388 		if (pplist) {
2389 			for (i = 0; i < pcnt; i++) {
2390 				if (PP_ISFREE(pplist[i])) {
2391 					return (DDI_FAILURE);
2392 				}
2393 			}
2394 
2395 		/* For a virtual address, try to peek at each page */
2396 		} else {
2397 			if (dma->dp_sglinfo.si_asp == &kas) {
2398 				for (i = 0; i < pcnt; i++) {
2399 					if (ddi_peek8(NULL, vaddr, &b) ==
2400 					    DDI_FAILURE)
2401 						return (DDI_FAILURE);
2402 					vaddr += MMU_PAGESIZE;
2403 				}
2404 			}
2405 		}
2406 		break;
2407 
2408 	default:
2409 		ASSERT(0);
2410 		break;
2411 	}
2412 
2413 	return (DDI_SUCCESS);
2414 }
2415 
2416 
2417 /*
2418  * rootnex_clean_dmahdl()
2419  *    Clean the dma handle. This should be called on a handle alloc and an
2420  *    unbind handle. Set the handle state to the default settings.
2421  */
2422 static void
2423 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2424 {
2425 	rootnex_dma_t *dma;
2426 
2427 
2428 	dma = (rootnex_dma_t *)hp->dmai_private;
2429 
2430 	hp->dmai_nwin = 0;
2431 	dma->dp_current_cookie = 0;
2432 	dma->dp_copybuf_size = 0;
2433 	dma->dp_window = NULL;
2434 	dma->dp_cbaddr = NULL;
2435 	dma->dp_inuse = B_FALSE;
2436 	dma->dp_need_to_free_cookie = B_FALSE;
2437 	dma->dp_need_to_switch_cookies = B_FALSE;
2438 	dma->dp_saved_cookies = NULL;
2439 	dma->dp_sleep_flags = KM_PANIC;
2440 	dma->dp_need_to_free_window = B_FALSE;
2441 	dma->dp_partial_required = B_FALSE;
2442 	dma->dp_trim_required = B_FALSE;
2443 	dma->dp_sglinfo.si_copybuf_req = 0;
2444 #if !defined(__amd64)
2445 	dma->dp_cb_remaping = B_FALSE;
2446 	dma->dp_kva = NULL;
2447 #endif
2448 
2449 	/* FMA related initialization */
2450 	hp->dmai_fault = 0;
2451 	hp->dmai_fault_check = NULL;
2452 	hp->dmai_fault_notify = NULL;
2453 	hp->dmai_error.err_ena = 0;
2454 	hp->dmai_error.err_status = DDI_FM_OK;
2455 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2456 	hp->dmai_error.err_ontrap = NULL;
2457 	hp->dmai_error.err_fep = NULL;
2458 	hp->dmai_error.err_cf = NULL;
2459 }
2460 
2461 
2462 /*
2463  * rootnex_valid_alloc_parms()
2464  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2465  */
2466 static int
2467 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2468 {
2469 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2470 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2471 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2472 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2473 		return (DDI_DMA_BADATTR);
2474 	}
2475 
2476 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2477 		return (DDI_DMA_BADATTR);
2478 	}
2479 
2480 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2481 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2482 	    attr->dma_attr_sgllen <= 0) {
2483 		return (DDI_DMA_BADATTR);
2484 	}
2485 
2486 	/* We should be able to DMA into every byte offset in a page */
2487 	if (maxsegmentsize < MMU_PAGESIZE) {
2488 		return (DDI_DMA_BADATTR);
2489 	}
2490 
2491 	return (DDI_SUCCESS);
2492 }
2493 
2494 
2495 /*
2496  * rootnex_valid_bind_parms()
2497  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2498  */
2499 /* ARGSUSED */
2500 static int
2501 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2502 {
2503 #if !defined(__amd64)
2504 	/*
2505 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2506 	 * we can track the offset for the obsoleted interfaces.
2507 	 */
2508 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2509 		return (DDI_DMA_TOOBIG);
2510 	}
2511 #endif
2512 
2513 	return (DDI_SUCCESS);
2514 }
2515 
2516 
2517 /*
2518  * rootnex_get_sgl()
2519  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2520  *    with a call to the vm layer when vm2.0 comes around...
2521  */
2522 static void
2523 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2524     rootnex_sglinfo_t *sglinfo)
2525 {
2526 	ddi_dma_atyp_t buftype;
2527 	rootnex_addr_t raddr;
2528 	uint64_t last_page;
2529 	uint64_t offset;
2530 	uint64_t addrhi;
2531 	uint64_t addrlo;
2532 	uint64_t maxseg;
2533 	page_t **pplist;
2534 	uint64_t paddr;
2535 	uint32_t psize;
2536 	uint32_t size;
2537 	caddr_t vaddr;
2538 	uint_t pcnt;
2539 	page_t *pp;
2540 	uint_t cnt;
2541 
2542 
2543 	/* shortcuts */
2544 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2545 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2546 	maxseg = sglinfo->si_max_cookie_size;
2547 	buftype = dmar_object->dmao_type;
2548 	addrhi = sglinfo->si_max_addr;
2549 	addrlo = sglinfo->si_min_addr;
2550 	size = dmar_object->dmao_size;
2551 
2552 	pcnt = 0;
2553 	cnt = 0;
2554 
2555 	/*
2556 	 * if we were passed down a linked list of pages, i.e. pointer to
2557 	 * page_t, use this to get our physical address and buf offset.
2558 	 */
2559 	if (buftype == DMA_OTYP_PAGES) {
2560 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2561 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2562 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2563 		    MMU_PAGEOFFSET;
2564 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2565 		psize = MIN(size, (MMU_PAGESIZE - offset));
2566 		pp = pp->p_next;
2567 		sglinfo->si_asp = NULL;
2568 
2569 	/*
2570 	 * We weren't passed down a linked list of pages, but if we were passed
2571 	 * down an array of pages, use this to get our physical address and buf
2572 	 * offset.
2573 	 */
2574 	} else if (pplist != NULL) {
2575 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2576 		    (buftype == DMA_OTYP_BUFVADDR));
2577 
2578 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2579 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2580 		if (sglinfo->si_asp == NULL) {
2581 			sglinfo->si_asp = &kas;
2582 		}
2583 
2584 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2585 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2586 		paddr += offset;
2587 		psize = MIN(size, (MMU_PAGESIZE - offset));
2588 		pcnt++;
2589 
2590 	/*
2591 	 * All we have is a virtual address, we'll need to call into the VM
2592 	 * to get the physical address.
2593 	 */
2594 	} else {
2595 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2596 		    (buftype == DMA_OTYP_BUFVADDR));
2597 
2598 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2599 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2600 		if (sglinfo->si_asp == NULL) {
2601 			sglinfo->si_asp = &kas;
2602 		}
2603 
2604 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2605 		paddr += offset;
2606 		psize = MIN(size, (MMU_PAGESIZE - offset));
2607 		vaddr += psize;
2608 	}
2609 
2610 #ifdef __xpv
2611 	/*
2612 	 * If we're dom0, we're using a real device so we need to load
2613 	 * the cookies with MFNs instead of PFNs.
2614 	 */
2615 	raddr = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
2616 #else
2617 	raddr = paddr;
2618 #endif
2619 
2620 	/*
2621 	 * Setup the first cookie with the physical address of the page and the
2622 	 * size of the page (which takes into account the initial offset into
2623 	 * the page.
2624 	 */
2625 	sgl[cnt].dmac_laddress = raddr;
2626 	sgl[cnt].dmac_size = psize;
2627 	sgl[cnt].dmac_type = 0;
2628 
2629 	/*
2630 	 * Save away the buffer offset into the page. We'll need this later in
2631 	 * the copy buffer code to help figure out the page index within the
2632 	 * buffer and the offset into the current page.
2633 	 */
2634 	sglinfo->si_buf_offset = offset;
2635 
2636 	/*
2637 	 * If the DMA engine can't reach the physical address, increase how
2638 	 * much copy buffer we need. We always increase by pagesize so we don't
2639 	 * have to worry about converting offsets. Set a flag in the cookies
2640 	 * dmac_type to indicate that it uses the copy buffer. If this isn't the
2641 	 * last cookie, go to the next cookie (since we separate each page which
2642 	 * uses the copy buffer in case the copy buffer is not physically
2643 	 * contiguous.
2644 	 */
2645 	if ((raddr < addrlo) || ((raddr + psize) > addrhi)) {
2646 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
2647 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2648 		if ((cnt + 1) < sglinfo->si_max_pages) {
2649 			cnt++;
2650 			sgl[cnt].dmac_laddress = 0;
2651 			sgl[cnt].dmac_size = 0;
2652 			sgl[cnt].dmac_type = 0;
2653 		}
2654 	}
2655 
2656 	/*
2657 	 * save this page's physical address so we can figure out if the next
2658 	 * page is physically contiguous. Keep decrementing size until we are
2659 	 * done with the buffer.
2660 	 */
2661 	last_page = raddr & MMU_PAGEMASK;
2662 	size -= psize;
2663 
2664 	while (size > 0) {
2665 		/* Get the size for this page (i.e. partial or full page) */
2666 		psize = MIN(size, MMU_PAGESIZE);
2667 
2668 		if (buftype == DMA_OTYP_PAGES) {
2669 			/* get the paddr from the page_t */
2670 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2671 			paddr = pfn_to_pa(pp->p_pagenum);
2672 			pp = pp->p_next;
2673 		} else if (pplist != NULL) {
2674 			/* index into the array of page_t's to get the paddr */
2675 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2676 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2677 			pcnt++;
2678 		} else {
2679 			/* call into the VM to get the paddr */
2680 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2681 			    vaddr));
2682 			vaddr += psize;
2683 		}
2684 
2685 #ifdef __xpv
2686 		/*
2687 		 * If we're dom0, we're using a real device so we need to load
2688 		 * the cookies with MFNs instead of PFNs.
2689 		 */
2690 		raddr = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
2691 #else
2692 		raddr = paddr;
2693 #endif
2694 		/* check to see if this page needs the copy buffer */
2695 		if ((raddr < addrlo) || ((raddr + psize) > addrhi)) {
2696 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
2697 
2698 			/*
2699 			 * if there is something in the current cookie, go to
2700 			 * the next one. We only want one page in a cookie which
2701 			 * uses the copybuf since the copybuf doesn't have to
2702 			 * be physically contiguous.
2703 			 */
2704 			if (sgl[cnt].dmac_size != 0) {
2705 				cnt++;
2706 			}
2707 			sgl[cnt].dmac_laddress = raddr;
2708 			sgl[cnt].dmac_size = psize;
2709 #if defined(__amd64)
2710 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2711 #else
2712 			/*
2713 			 * save the buf offset for 32-bit kernel. used in the
2714 			 * obsoleted interfaces.
2715 			 */
2716 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
2717 			    (dmar_object->dmao_size - size);
2718 #endif
2719 			/* if this isn't the last cookie, go to the next one */
2720 			if ((cnt + 1) < sglinfo->si_max_pages) {
2721 				cnt++;
2722 				sgl[cnt].dmac_laddress = 0;
2723 				sgl[cnt].dmac_size = 0;
2724 				sgl[cnt].dmac_type = 0;
2725 			}
2726 
2727 		/*
2728 		 * this page didn't need the copy buffer, if it's not physically
2729 		 * contiguous, or it would put us over a segment boundary, or it
2730 		 * puts us over the max cookie size, or the current sgl doesn't
2731 		 * have anything in it.
2732 		 */
2733 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
2734 		    !(raddr & sglinfo->si_segmask) ||
2735 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
2736 		    (sgl[cnt].dmac_size == 0)) {
2737 			/*
2738 			 * if we're not already in a new cookie, go to the next
2739 			 * cookie.
2740 			 */
2741 			if (sgl[cnt].dmac_size != 0) {
2742 				cnt++;
2743 			}
2744 
2745 			/* save the cookie information */
2746 			sgl[cnt].dmac_laddress = raddr;
2747 			sgl[cnt].dmac_size = psize;
2748 #if defined(__amd64)
2749 			sgl[cnt].dmac_type = 0;
2750 #else
2751 			/*
2752 			 * save the buf offset for 32-bit kernel. used in the
2753 			 * obsoleted interfaces.
2754 			 */
2755 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
2756 #endif
2757 
2758 		/*
2759 		 * this page didn't need the copy buffer, it is physically
2760 		 * contiguous with the last page, and it's <= the max cookie
2761 		 * size.
2762 		 */
2763 		} else {
2764 			sgl[cnt].dmac_size += psize;
2765 
2766 			/*
2767 			 * if this exactly ==  the maximum cookie size, and
2768 			 * it isn't the last cookie, go to the next cookie.
2769 			 */
2770 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
2771 			    ((cnt + 1) < sglinfo->si_max_pages)) {
2772 				cnt++;
2773 				sgl[cnt].dmac_laddress = 0;
2774 				sgl[cnt].dmac_size = 0;
2775 				sgl[cnt].dmac_type = 0;
2776 			}
2777 		}
2778 
2779 		/*
2780 		 * save this page's physical address so we can figure out if the
2781 		 * next page is physically contiguous. Keep decrementing size
2782 		 * until we are done with the buffer.
2783 		 */
2784 		last_page = raddr;
2785 		size -= psize;
2786 	}
2787 
2788 	/* we're done, save away how many cookies the sgl has */
2789 	if (sgl[cnt].dmac_size == 0) {
2790 		ASSERT(cnt < sglinfo->si_max_pages);
2791 		sglinfo->si_sgl_size = cnt;
2792 	} else {
2793 		sglinfo->si_sgl_size = cnt + 1;
2794 	}
2795 }
2796 
2797 
2798 /*
2799  * rootnex_bind_slowpath()
2800  *    Call in the bind path if the calling driver can't use the sgl without
2801  *    modifying it. We either need to use the copy buffer and/or we will end up
2802  *    with a partial bind.
2803  */
2804 static int
2805 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
2806     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag)
2807 {
2808 	rootnex_sglinfo_t *sinfo;
2809 	rootnex_window_t *window;
2810 	ddi_dma_cookie_t *cookie;
2811 	size_t copybuf_used;
2812 	size_t dmac_size;
2813 	boolean_t partial;
2814 	off_t cur_offset;
2815 	page_t *cur_pp;
2816 	major_t mnum;
2817 	int e;
2818 	int i;
2819 
2820 
2821 	sinfo = &dma->dp_sglinfo;
2822 	copybuf_used = 0;
2823 	partial = B_FALSE;
2824 
2825 	/*
2826 	 * If we're using the copybuf, set the copybuf state in dma struct.
2827 	 * Needs to be first since it sets the copy buffer size.
2828 	 */
2829 	if (sinfo->si_copybuf_req != 0) {
2830 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
2831 		if (e != DDI_SUCCESS) {
2832 			return (e);
2833 		}
2834 	} else {
2835 		dma->dp_copybuf_size = 0;
2836 	}
2837 
2838 	/*
2839 	 * Figure out if we need to do a partial mapping. If so, figure out
2840 	 * if we need to trim the buffers when we munge the sgl.
2841 	 */
2842 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
2843 	    (dma->dp_dma.dmao_size > dma->dp_maxxfer) ||
2844 	    (attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
2845 		dma->dp_partial_required = B_TRUE;
2846 		if (attr->dma_attr_granular != 1) {
2847 			dma->dp_trim_required = B_TRUE;
2848 		}
2849 	} else {
2850 		dma->dp_partial_required = B_FALSE;
2851 		dma->dp_trim_required = B_FALSE;
2852 	}
2853 
2854 	/* If we need to do a partial bind, make sure the driver supports it */
2855 	if (dma->dp_partial_required &&
2856 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
2857 
2858 		mnum = ddi_driver_major(dma->dp_dip);
2859 		/*
2860 		 * patchable which allows us to print one warning per major
2861 		 * number.
2862 		 */
2863 		if ((rootnex_bind_warn) &&
2864 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
2865 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
2866 			cmn_err(CE_WARN, "!%s: coding error detected, the "
2867 			    "driver is using ddi_dma_attr(9S) incorrectly. "
2868 			    "There is a small risk of data corruption in "
2869 			    "particular with large I/Os. The driver should be "
2870 			    "replaced with a corrected version for proper "
2871 			    "system operation. To disable this warning, add "
2872 			    "'set rootnex:rootnex_bind_warn=0' to "
2873 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
2874 		}
2875 		return (DDI_DMA_TOOBIG);
2876 	}
2877 
2878 	/*
2879 	 * we might need multiple windows, setup state to handle them. In this
2880 	 * code path, we will have at least one window.
2881 	 */
2882 	e = rootnex_setup_windows(hp, dma, attr, kmflag);
2883 	if (e != DDI_SUCCESS) {
2884 		rootnex_teardown_copybuf(dma);
2885 		return (e);
2886 	}
2887 
2888 	window = &dma->dp_window[0];
2889 	cookie = &dma->dp_cookies[0];
2890 	cur_offset = 0;
2891 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
2892 	if (dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) {
2893 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
2894 	}
2895 
2896 	/* loop though all the cookies we got back from get_sgl() */
2897 	for (i = 0; i < sinfo->si_sgl_size; i++) {
2898 		/*
2899 		 * If we're using the copy buffer, check this cookie and setup
2900 		 * its associated copy buffer state. If this cookie uses the
2901 		 * copy buffer, make sure we sync this window during dma_sync.
2902 		 */
2903 		if (dma->dp_copybuf_size > 0) {
2904 			rootnex_setup_cookie(&dmareq->dmar_object, dma, cookie,
2905 			    cur_offset, &copybuf_used, &cur_pp);
2906 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2907 				window->wd_dosync = B_TRUE;
2908 			}
2909 		}
2910 
2911 		/*
2912 		 * save away the cookie size, since it could be modified in
2913 		 * the windowing code.
2914 		 */
2915 		dmac_size = cookie->dmac_size;
2916 
2917 		/* if we went over max copybuf size */
2918 		if (dma->dp_copybuf_size &&
2919 		    (copybuf_used > dma->dp_copybuf_size)) {
2920 			partial = B_TRUE;
2921 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
2922 			    cookie, cur_offset, &copybuf_used);
2923 			if (e != DDI_SUCCESS) {
2924 				rootnex_teardown_copybuf(dma);
2925 				rootnex_teardown_windows(dma);
2926 				return (e);
2927 			}
2928 
2929 			/*
2930 			 * if the coookie uses the copy buffer, make sure the
2931 			 * new window we just moved to is set to sync.
2932 			 */
2933 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2934 				window->wd_dosync = B_TRUE;
2935 			}
2936 			DTRACE_PROBE1(rootnex__copybuf__window, dev_info_t *,
2937 			    dma->dp_dip);
2938 
2939 		/* if the cookie cnt == max sgllen, move to the next window */
2940 		} else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) {
2941 			partial = B_TRUE;
2942 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
2943 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
2944 			    cookie, attr, cur_offset);
2945 			if (e != DDI_SUCCESS) {
2946 				rootnex_teardown_copybuf(dma);
2947 				rootnex_teardown_windows(dma);
2948 				return (e);
2949 			}
2950 
2951 			/*
2952 			 * if the coookie uses the copy buffer, make sure the
2953 			 * new window we just moved to is set to sync.
2954 			 */
2955 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2956 				window->wd_dosync = B_TRUE;
2957 			}
2958 			DTRACE_PROBE1(rootnex__sgllen__window, dev_info_t *,
2959 			    dma->dp_dip);
2960 
2961 		/* else if we will be over maxxfer */
2962 		} else if ((window->wd_size + dmac_size) >
2963 		    dma->dp_maxxfer) {
2964 			partial = B_TRUE;
2965 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
2966 			    cookie);
2967 			if (e != DDI_SUCCESS) {
2968 				rootnex_teardown_copybuf(dma);
2969 				rootnex_teardown_windows(dma);
2970 				return (e);
2971 			}
2972 
2973 			/*
2974 			 * if the coookie uses the copy buffer, make sure the
2975 			 * new window we just moved to is set to sync.
2976 			 */
2977 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2978 				window->wd_dosync = B_TRUE;
2979 			}
2980 			DTRACE_PROBE1(rootnex__maxxfer__window, dev_info_t *,
2981 			    dma->dp_dip);
2982 
2983 		/* else this cookie fits in the current window */
2984 		} else {
2985 			window->wd_cookie_cnt++;
2986 			window->wd_size += dmac_size;
2987 		}
2988 
2989 		/* track our offset into the buffer, go to the next cookie */
2990 		ASSERT(dmac_size <= dma->dp_dma.dmao_size);
2991 		ASSERT(cookie->dmac_size <= dmac_size);
2992 		cur_offset += dmac_size;
2993 		cookie++;
2994 	}
2995 
2996 	/* if we ended up with a zero sized window in the end, clean it up */
2997 	if (window->wd_size == 0) {
2998 		hp->dmai_nwin--;
2999 		window--;
3000 	}
3001 
3002 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3003 
3004 	if (!partial) {
3005 		return (DDI_DMA_MAPPED);
3006 	}
3007 
3008 	ASSERT(dma->dp_partial_required);
3009 	return (DDI_DMA_PARTIAL_MAP);
3010 }
3011 
3012 
3013 /*
3014  * rootnex_setup_copybuf()
3015  *    Called in bind slowpath. Figures out if we're going to use the copy
3016  *    buffer, and if we do, sets up the basic state to handle it.
3017  */
3018 static int
3019 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3020     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3021 {
3022 	rootnex_sglinfo_t *sinfo;
3023 	ddi_dma_attr_t lattr;
3024 	size_t max_copybuf;
3025 	int cansleep;
3026 	int e;
3027 #if !defined(__amd64)
3028 	int vmflag;
3029 #endif
3030 
3031 
3032 	sinfo = &dma->dp_sglinfo;
3033 
3034 	/* read this first so it's consistent through the routine  */
3035 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3036 
3037 	/* We need to call into the rootnex on ddi_dma_sync() */
3038 	hp->dmai_rflags &= ~DMP_NOSYNC;
3039 
3040 	/* make sure the copybuf size <= the max size */
3041 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3042 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3043 
3044 #if !defined(__amd64)
3045 	/*
3046 	 * if we don't have kva space to copy to/from, allocate the KVA space
3047 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3048 	 * the 64-bit kernel.
3049 	 */
3050 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3051 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3052 
3053 		/* convert the sleep flags */
3054 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3055 			vmflag = VM_SLEEP;
3056 		} else {
3057 			vmflag = VM_NOSLEEP;
3058 		}
3059 
3060 		/* allocate Kernel VA space that we can bcopy to/from */
3061 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3062 		    vmflag);
3063 		if (dma->dp_kva == NULL) {
3064 			return (DDI_DMA_NORESOURCES);
3065 		}
3066 	}
3067 #endif
3068 
3069 	/* convert the sleep flags */
3070 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3071 		cansleep = 1;
3072 	} else {
3073 		cansleep = 0;
3074 	}
3075 
3076 	/*
3077 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3078 	 * engine limits, so we can't use kmem_alloc... We don't need
3079 	 * contiguous memory (sgllen) since we will be forcing windows on
3080 	 * sgllen anyway.
3081 	 */
3082 	lattr = *attr;
3083 	lattr.dma_attr_align = MMU_PAGESIZE;
3084 	/*
3085 	 * this should be < 0 to indicate no limit, but due to a bug in
3086 	 * the rootnex, we'll set it to the maximum positive int.
3087 	 */
3088 	lattr.dma_attr_sgllen = 0x7fffffff;
3089 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3090 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3091 	if (e != DDI_SUCCESS) {
3092 #if !defined(__amd64)
3093 		if (dma->dp_kva != NULL) {
3094 			vmem_free(heap_arena, dma->dp_kva,
3095 			    dma->dp_copybuf_size);
3096 		}
3097 #endif
3098 		return (DDI_DMA_NORESOURCES);
3099 	}
3100 
3101 	DTRACE_PROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3102 	    size_t, dma->dp_copybuf_size);
3103 
3104 	return (DDI_SUCCESS);
3105 }
3106 
3107 
3108 /*
3109  * rootnex_setup_windows()
3110  *    Called in bind slowpath to setup the window state. We always have windows
3111  *    in the slowpath. Even if the window count = 1.
3112  */
3113 static int
3114 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3115     ddi_dma_attr_t *attr, int kmflag)
3116 {
3117 	rootnex_window_t *windowp;
3118 	rootnex_sglinfo_t *sinfo;
3119 	size_t copy_state_size;
3120 	size_t win_state_size;
3121 	size_t state_available;
3122 	size_t space_needed;
3123 	uint_t copybuf_win;
3124 	uint_t maxxfer_win;
3125 	size_t space_used;
3126 	uint_t sglwin;
3127 
3128 
3129 	sinfo = &dma->dp_sglinfo;
3130 
3131 	dma->dp_current_win = 0;
3132 	hp->dmai_nwin = 0;
3133 
3134 	/* If we don't need to do a partial, we only have one window */
3135 	if (!dma->dp_partial_required) {
3136 		dma->dp_max_win = 1;
3137 
3138 	/*
3139 	 * we need multiple windows, need to figure out the worse case number
3140 	 * of windows.
3141 	 */
3142 	} else {
3143 		/*
3144 		 * if we need windows because we need more copy buffer that
3145 		 * we allow, the worse case number of windows we could need
3146 		 * here would be (copybuf space required / copybuf space that
3147 		 * we have) plus one for remainder, and plus 2 to handle the
3148 		 * extra pages on the trim for the first and last pages of the
3149 		 * buffer (a page is the minimum window size so under the right
3150 		 * attr settings, you could have a window for each page).
3151 		 * The last page will only be hit here if the size is not a
3152 		 * multiple of the granularity (which theoretically shouldn't
3153 		 * be the case but never has been enforced, so we could have
3154 		 * broken things without it).
3155 		 */
3156 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3157 			ASSERT(dma->dp_copybuf_size > 0);
3158 			copybuf_win = (sinfo->si_copybuf_req /
3159 			    dma->dp_copybuf_size) + 1 + 2;
3160 		} else {
3161 			copybuf_win = 0;
3162 		}
3163 
3164 		/*
3165 		 * if we need windows because we have more cookies than the H/W
3166 		 * can handle, the number of windows we would need here would
3167 		 * be (cookie count / cookies count H/W supports) plus one for
3168 		 * remainder, and plus 2 to handle the extra pages on the trim
3169 		 * (see above comment about trim)
3170 		 */
3171 		if (attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3172 			sglwin = ((sinfo->si_sgl_size / attr->dma_attr_sgllen)
3173 			    + 1) + 2;
3174 		} else {
3175 			sglwin = 0;
3176 		}
3177 
3178 		/*
3179 		 * if we need windows because we're binding more memory than the
3180 		 * H/W can transfer at once, the number of windows we would need
3181 		 * here would be (xfer count / max xfer H/W supports) plus one
3182 		 * for remainder, and plus 2 to handle the extra pages on the
3183 		 * trim (see above comment about trim)
3184 		 */
3185 		if (dma->dp_dma.dmao_size > dma->dp_maxxfer) {
3186 			maxxfer_win = (dma->dp_dma.dmao_size /
3187 			    dma->dp_maxxfer) + 1 + 2;
3188 		} else {
3189 			maxxfer_win = 0;
3190 		}
3191 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3192 		ASSERT(dma->dp_max_win > 0);
3193 	}
3194 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3195 
3196 	/*
3197 	 * Get space for window and potential copy buffer state. Before we
3198 	 * go and allocate memory, see if we can get away with using what's
3199 	 * left in the pre-allocted state or the dynamically allocated sgl.
3200 	 */
3201 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3202 	    sizeof (ddi_dma_cookie_t));
3203 
3204 	/* if we dynamically allocated space for the cookies */
3205 	if (dma->dp_need_to_free_cookie) {
3206 		/* if we have more space in the pre-allocted buffer, use it */
3207 		ASSERT(space_used <= dma->dp_cookie_size);
3208 		if ((dma->dp_cookie_size - space_used) <=
3209 		    rootnex_state->r_prealloc_size) {
3210 			state_available = rootnex_state->r_prealloc_size;
3211 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3212 
3213 		/*
3214 		 * else, we have more free space in the dynamically allocated
3215 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3216 		 * didn't need a lot of cookies.
3217 		 */
3218 		} else {
3219 			state_available = dma->dp_cookie_size - space_used;
3220 			windowp = (rootnex_window_t *)
3221 			    &dma->dp_cookies[sinfo->si_sgl_size];
3222 		}
3223 
3224 	/* we used the pre-alloced buffer */
3225 	} else {
3226 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3227 		state_available = rootnex_state->r_prealloc_size - space_used;
3228 		windowp = (rootnex_window_t *)
3229 		    &dma->dp_cookies[sinfo->si_sgl_size];
3230 	}
3231 
3232 	/*
3233 	 * figure out how much state we need to track the copy buffer. Add an
3234 	 * addition 8 bytes for pointer alignemnt later.
3235 	 */
3236 	if (dma->dp_copybuf_size > 0) {
3237 		copy_state_size = sinfo->si_max_pages *
3238 		    sizeof (rootnex_pgmap_t);
3239 	} else {
3240 		copy_state_size = 0;
3241 	}
3242 	/* add an additional 8 bytes for pointer alignment */
3243 	space_needed = win_state_size + copy_state_size + 0x8;
3244 
3245 	/* if we have enough space already, use it */
3246 	if (state_available >= space_needed) {
3247 		dma->dp_window = windowp;
3248 		dma->dp_need_to_free_window = B_FALSE;
3249 
3250 	/* not enough space, need to allocate more. */
3251 	} else {
3252 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3253 		if (dma->dp_window == NULL) {
3254 			return (DDI_DMA_NORESOURCES);
3255 		}
3256 		dma->dp_need_to_free_window = B_TRUE;
3257 		dma->dp_window_size = space_needed;
3258 		DTRACE_PROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3259 		    dma->dp_dip, size_t, space_needed);
3260 	}
3261 
3262 	/*
3263 	 * we allocate copy buffer state and window state at the same time.
3264 	 * setup our copy buffer state pointers. Make sure it's aligned.
3265 	 */
3266 	if (dma->dp_copybuf_size > 0) {
3267 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3268 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3269 
3270 #if !defined(__amd64)
3271 		/*
3272 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3273 		 * false/NULL. Should be quicker to bzero vs loop and set.
3274 		 */
3275 		bzero(dma->dp_pgmap, copy_state_size);
3276 #endif
3277 	} else {
3278 		dma->dp_pgmap = NULL;
3279 	}
3280 
3281 	return (DDI_SUCCESS);
3282 }
3283 
3284 
3285 /*
3286  * rootnex_teardown_copybuf()
3287  *    cleans up after rootnex_setup_copybuf()
3288  */
3289 static void
3290 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3291 {
3292 #if !defined(__amd64)
3293 	int i;
3294 
3295 	/*
3296 	 * if we allocated kernel heap VMEM space, go through all the pages and
3297 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3298 	 * arena. Then free the VMEM space.
3299 	 */
3300 	if (dma->dp_kva != NULL) {
3301 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3302 			if (dma->dp_pgmap[i].pm_mapped) {
3303 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3304 				    MMU_PAGESIZE, HAT_UNLOAD);
3305 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3306 			}
3307 		}
3308 
3309 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3310 	}
3311 
3312 #endif
3313 
3314 	/* if we allocated a copy buffer, free it */
3315 	if (dma->dp_cbaddr != NULL) {
3316 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3317 	}
3318 }
3319 
3320 
3321 /*
3322  * rootnex_teardown_windows()
3323  *    cleans up after rootnex_setup_windows()
3324  */
3325 static void
3326 rootnex_teardown_windows(rootnex_dma_t *dma)
3327 {
3328 	/*
3329 	 * if we had to allocate window state on the last bind (because we
3330 	 * didn't have enough pre-allocated space in the handle), free it.
3331 	 */
3332 	if (dma->dp_need_to_free_window) {
3333 		kmem_free(dma->dp_window, dma->dp_window_size);
3334 	}
3335 }
3336 
3337 
3338 /*
3339  * rootnex_init_win()
3340  *    Called in bind slow path during creation of a new window. Initializes
3341  *    window state to default values.
3342  */
3343 /*ARGSUSED*/
3344 static void
3345 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3346     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3347 {
3348 	hp->dmai_nwin++;
3349 	window->wd_dosync = B_FALSE;
3350 	window->wd_offset = cur_offset;
3351 	window->wd_size = 0;
3352 	window->wd_first_cookie = cookie;
3353 	window->wd_cookie_cnt = 0;
3354 	window->wd_trim.tr_trim_first = B_FALSE;
3355 	window->wd_trim.tr_trim_last = B_FALSE;
3356 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3357 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3358 #if !defined(__amd64)
3359 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3360 #endif
3361 }
3362 
3363 
3364 /*
3365  * rootnex_setup_cookie()
3366  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3367  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3368  *    out if it uses the copy buffer, and if it does, save away everything we'll
3369  *    need during sync.
3370  */
3371 static void
3372 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3373     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3374     page_t **cur_pp)
3375 {
3376 	boolean_t copybuf_sz_power_2;
3377 	rootnex_sglinfo_t *sinfo;
3378 	paddr_t paddr;
3379 	uint_t pidx;
3380 	uint_t pcnt;
3381 	off_t poff;
3382 #if defined(__amd64)
3383 	pfn_t pfn;
3384 #else
3385 	page_t **pplist;
3386 #endif
3387 
3388 	sinfo = &dma->dp_sglinfo;
3389 
3390 	/*
3391 	 * Calculate the page index relative to the start of the buffer. The
3392 	 * index to the current page for our buffer is the offset into the
3393 	 * first page of the buffer plus our current offset into the buffer
3394 	 * itself, shifted of course...
3395 	 */
3396 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3397 	ASSERT(pidx < sinfo->si_max_pages);
3398 
3399 	/* if this cookie uses the copy buffer */
3400 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3401 		/*
3402 		 * NOTE: we know that since this cookie uses the copy buffer, it
3403 		 * is <= MMU_PAGESIZE.
3404 		 */
3405 
3406 		/*
3407 		 * get the offset into the page. For the 64-bit kernel, get the
3408 		 * pfn which we'll use with seg kpm.
3409 		 */
3410 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3411 #if defined(__amd64)
3412 		/* mfn_to_pfn() is a NOP on i86pc */
3413 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3414 #endif /* __amd64 */
3415 
3416 		/* figure out if the copybuf size is a power of 2 */
3417 		if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) {
3418 			copybuf_sz_power_2 = B_FALSE;
3419 		} else {
3420 			copybuf_sz_power_2 = B_TRUE;
3421 		}
3422 
3423 		/* This page uses the copy buffer */
3424 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3425 
3426 		/*
3427 		 * save the copy buffer KVA that we'll use with this page.
3428 		 * if we still fit within the copybuf, it's a simple add.
3429 		 * otherwise, we need to wrap over using & or % accordingly.
3430 		 */
3431 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3432 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3433 			    *copybuf_used;
3434 		} else {
3435 			if (copybuf_sz_power_2) {
3436 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3437 				    (uintptr_t)dma->dp_cbaddr +
3438 				    (*copybuf_used &
3439 				    (dma->dp_copybuf_size - 1)));
3440 			} else {
3441 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3442 				    (uintptr_t)dma->dp_cbaddr +
3443 				    (*copybuf_used % dma->dp_copybuf_size));
3444 			}
3445 		}
3446 
3447 		/*
3448 		 * over write the cookie physical address with the address of
3449 		 * the physical address of the copy buffer page that we will
3450 		 * use.
3451 		 */
3452 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3453 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3454 
3455 #ifdef __xpv
3456 		/*
3457 		 * If we're dom0, we're using a real device so we need to load
3458 		 * the cookies with MAs instead of PAs.
3459 		 */
3460 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3461 #else
3462 		cookie->dmac_laddress = paddr;
3463 #endif
3464 
3465 		/* if we have a kernel VA, it's easy, just save that address */
3466 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3467 		    (sinfo->si_asp == &kas)) {
3468 			/*
3469 			 * save away the page aligned virtual address of the
3470 			 * driver buffer. Offsets are handled in the sync code.
3471 			 */
3472 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3473 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3474 			    & MMU_PAGEMASK);
3475 #if !defined(__amd64)
3476 			/*
3477 			 * we didn't need to, and will never need to map this
3478 			 * page.
3479 			 */
3480 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3481 #endif
3482 
3483 		/* we don't have a kernel VA. We need one for the bcopy. */
3484 		} else {
3485 #if defined(__amd64)
3486 			/*
3487 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3488 			 * get a Kernel VA for the corresponding pfn.
3489 			 */
3490 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3491 #else
3492 			/*
3493 			 * for the 32-bit kernel, this is a pain. First we'll
3494 			 * save away the page_t or user VA for this page. This
3495 			 * is needed in rootnex_dma_win() when we switch to a
3496 			 * new window which requires us to re-map the copy
3497 			 * buffer.
3498 			 */
3499 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3500 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3501 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3502 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3503 			} else if (pplist != NULL) {
3504 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3505 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3506 			} else {
3507 				dma->dp_pgmap[pidx].pm_pp = NULL;
3508 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3509 				    (((uintptr_t)
3510 				    dmar_object->dmao_obj.virt_obj.v_addr +
3511 				    cur_offset) & MMU_PAGEMASK);
3512 			}
3513 
3514 			/*
3515 			 * save away the page aligned virtual address which was
3516 			 * allocated from the kernel heap arena (taking into
3517 			 * account if we need more copy buffer than we alloced
3518 			 * and use multiple windows to handle this, i.e. &,%).
3519 			 * NOTE: there isn't and physical memory backing up this
3520 			 * virtual address space currently.
3521 			 */
3522 			if ((*copybuf_used + MMU_PAGESIZE) <=
3523 			    dma->dp_copybuf_size) {
3524 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3525 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3526 				    MMU_PAGEMASK);
3527 			} else {
3528 				if (copybuf_sz_power_2) {
3529 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3530 					    (((uintptr_t)dma->dp_kva +
3531 					    (*copybuf_used &
3532 					    (dma->dp_copybuf_size - 1))) &
3533 					    MMU_PAGEMASK);
3534 				} else {
3535 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3536 					    (((uintptr_t)dma->dp_kva +
3537 					    (*copybuf_used %
3538 					    dma->dp_copybuf_size)) &
3539 					    MMU_PAGEMASK);
3540 				}
3541 			}
3542 
3543 			/*
3544 			 * if we haven't used up the available copy buffer yet,
3545 			 * map the kva to the physical page.
3546 			 */
3547 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3548 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3549 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3550 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3551 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
3552 					    dma->dp_pgmap[pidx].pm_kaddr);
3553 				} else {
3554 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
3555 					    sinfo->si_asp,
3556 					    dma->dp_pgmap[pidx].pm_kaddr);
3557 				}
3558 
3559 			/*
3560 			 * we've used up the available copy buffer, this page
3561 			 * will have to be mapped during rootnex_dma_win() when
3562 			 * we switch to a new window which requires a re-map
3563 			 * the copy buffer. (32-bit kernel only)
3564 			 */
3565 			} else {
3566 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3567 			}
3568 #endif
3569 			/* go to the next page_t */
3570 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3571 				*cur_pp = (*cur_pp)->p_next;
3572 			}
3573 		}
3574 
3575 		/* add to the copy buffer count */
3576 		*copybuf_used += MMU_PAGESIZE;
3577 
3578 	/*
3579 	 * This cookie doesn't use the copy buffer. Walk through the pages this
3580 	 * cookie occupies to reflect this.
3581 	 */
3582 	} else {
3583 		/*
3584 		 * figure out how many pages the cookie occupies. We need to
3585 		 * use the original page offset of the buffer and the cookies
3586 		 * offset in the buffer to do this.
3587 		 */
3588 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
3589 		pcnt = mmu_btopr(cookie->dmac_size + poff);
3590 
3591 		while (pcnt > 0) {
3592 #if !defined(__amd64)
3593 			/*
3594 			 * the 32-bit kernel doesn't have seg kpm, so we need
3595 			 * to map in the driver buffer (if it didn't come down
3596 			 * with a kernel VA) on the fly. Since this page doesn't
3597 			 * use the copy buffer, it's not, or will it ever, have
3598 			 * to be mapped in.
3599 			 */
3600 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3601 #endif
3602 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
3603 
3604 			/*
3605 			 * we need to update pidx and cur_pp or we'll loose
3606 			 * track of where we are.
3607 			 */
3608 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3609 				*cur_pp = (*cur_pp)->p_next;
3610 			}
3611 			pidx++;
3612 			pcnt--;
3613 		}
3614 	}
3615 }
3616 
3617 
3618 /*
3619  * rootnex_sgllen_window_boundary()
3620  *    Called in the bind slow path when the next cookie causes us to exceed (in
3621  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
3622  *    length supported by the DMA H/W.
3623  */
3624 static int
3625 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3626     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
3627     off_t cur_offset)
3628 {
3629 	off_t new_offset;
3630 	size_t trim_sz;
3631 	off_t coffset;
3632 
3633 
3634 	/*
3635 	 * if we know we'll never have to trim, it's pretty easy. Just move to
3636 	 * the next window and init it. We're done.
3637 	 */
3638 	if (!dma->dp_trim_required) {
3639 		(*windowp)++;
3640 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3641 		(*windowp)->wd_cookie_cnt++;
3642 		(*windowp)->wd_size = cookie->dmac_size;
3643 		return (DDI_SUCCESS);
3644 	}
3645 
3646 	/* figure out how much we need to trim from the window */
3647 	ASSERT(attr->dma_attr_granular != 0);
3648 	if (dma->dp_granularity_power_2) {
3649 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
3650 	} else {
3651 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
3652 	}
3653 
3654 	/* The window's a whole multiple of granularity. We're done */
3655 	if (trim_sz == 0) {
3656 		(*windowp)++;
3657 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3658 		(*windowp)->wd_cookie_cnt++;
3659 		(*windowp)->wd_size = cookie->dmac_size;
3660 		return (DDI_SUCCESS);
3661 	}
3662 
3663 	/*
3664 	 * The window's not a whole multiple of granularity, since we know this
3665 	 * is due to the sgllen, we need to go back to the last cookie and trim
3666 	 * that one, add the left over part of the old cookie into the new
3667 	 * window, and then add in the new cookie into the new window.
3668 	 */
3669 
3670 	/*
3671 	 * make sure the driver isn't making us do something bad... Trimming and
3672 	 * sgllen == 1 don't go together.
3673 	 */
3674 	if (attr->dma_attr_sgllen == 1) {
3675 		return (DDI_DMA_NOMAPPING);
3676 	}
3677 
3678 	/*
3679 	 * first, setup the current window to account for the trim. Need to go
3680 	 * back to the last cookie for this.
3681 	 */
3682 	cookie--;
3683 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3684 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3685 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3686 	ASSERT(cookie->dmac_size > trim_sz);
3687 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3688 	(*windowp)->wd_size -= trim_sz;
3689 
3690 	/* save the buffer offsets for the next window */
3691 	coffset = cookie->dmac_size - trim_sz;
3692 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3693 
3694 	/*
3695 	 * set this now in case this is the first window. all other cases are
3696 	 * set in dma_win()
3697 	 */
3698 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3699 
3700 	/*
3701 	 * initialize the next window using what's left over in the previous
3702 	 * cookie.
3703 	 */
3704 	(*windowp)++;
3705 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3706 	(*windowp)->wd_cookie_cnt++;
3707 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3708 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
3709 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3710 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3711 		(*windowp)->wd_dosync = B_TRUE;
3712 	}
3713 
3714 	/*
3715 	 * now go back to the current cookie and add it to the new window. set
3716 	 * the new window size to the what was left over from the previous
3717 	 * cookie and what's in the current cookie.
3718 	 */
3719 	cookie++;
3720 	(*windowp)->wd_cookie_cnt++;
3721 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
3722 
3723 	/*
3724 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
3725 	 * a max size of maxxfer). Handle that case.
3726 	 */
3727 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
3728 		/*
3729 		 * maxxfer is already a whole multiple of granularity, and this
3730 		 * trim will be <= the previous trim (since a cookie can't be
3731 		 * larger than maxxfer). Make things simple here.
3732 		 */
3733 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
3734 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3735 		(*windowp)->wd_trim.tr_last_cookie = cookie;
3736 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3737 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3738 		(*windowp)->wd_size -= trim_sz;
3739 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
3740 
3741 		/* save the buffer offsets for the next window */
3742 		coffset = cookie->dmac_size - trim_sz;
3743 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3744 
3745 		/* setup the next window */
3746 		(*windowp)++;
3747 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3748 		(*windowp)->wd_cookie_cnt++;
3749 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3750 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
3751 		    coffset;
3752 		(*windowp)->wd_trim.tr_first_size = trim_sz;
3753 	}
3754 
3755 	return (DDI_SUCCESS);
3756 }
3757 
3758 
3759 /*
3760  * rootnex_copybuf_window_boundary()
3761  *    Called in bind slowpath when we get to a window boundary because we used
3762  *    up all the copy buffer that we have.
3763  */
3764 static int
3765 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3766     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
3767     size_t *copybuf_used)
3768 {
3769 	rootnex_sglinfo_t *sinfo;
3770 	off_t new_offset;
3771 	size_t trim_sz;
3772 	paddr_t paddr;
3773 	off_t coffset;
3774 	uint_t pidx;
3775 	off_t poff;
3776 
3777 
3778 	sinfo = &dma->dp_sglinfo;
3779 
3780 	/*
3781 	 * the copy buffer should be a whole multiple of page size. We know that
3782 	 * this cookie is <= MMU_PAGESIZE.
3783 	 */
3784 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
3785 
3786 	/*
3787 	 * from now on, all new windows in this bind need to be re-mapped during
3788 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
3789 	 * space...
3790 	 */
3791 #if !defined(__amd64)
3792 	dma->dp_cb_remaping = B_TRUE;
3793 #endif
3794 
3795 	/* reset copybuf used */
3796 	*copybuf_used = 0;
3797 
3798 	/*
3799 	 * if we don't have to trim (since granularity is set to 1), go to the
3800 	 * next window and add the current cookie to it. We know the current
3801 	 * cookie uses the copy buffer since we're in this code path.
3802 	 */
3803 	if (!dma->dp_trim_required) {
3804 		(*windowp)++;
3805 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3806 
3807 		/* Add this cookie to the new window */
3808 		(*windowp)->wd_cookie_cnt++;
3809 		(*windowp)->wd_size += cookie->dmac_size;
3810 		*copybuf_used += MMU_PAGESIZE;
3811 		return (DDI_SUCCESS);
3812 	}
3813 
3814 	/*
3815 	 * *** may need to trim, figure it out.
3816 	 */
3817 
3818 	/* figure out how much we need to trim from the window */
3819 	if (dma->dp_granularity_power_2) {
3820 		trim_sz = (*windowp)->wd_size &
3821 		    (hp->dmai_attr.dma_attr_granular - 1);
3822 	} else {
3823 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
3824 	}
3825 
3826 	/*
3827 	 * if the window's a whole multiple of granularity, go to the next
3828 	 * window, init it, then add in the current cookie. We know the current
3829 	 * cookie uses the copy buffer since we're in this code path.
3830 	 */
3831 	if (trim_sz == 0) {
3832 		(*windowp)++;
3833 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3834 
3835 		/* Add this cookie to the new window */
3836 		(*windowp)->wd_cookie_cnt++;
3837 		(*windowp)->wd_size += cookie->dmac_size;
3838 		*copybuf_used += MMU_PAGESIZE;
3839 		return (DDI_SUCCESS);
3840 	}
3841 
3842 	/*
3843 	 * *** We figured it out, we definitly need to trim
3844 	 */
3845 
3846 	/*
3847 	 * make sure the driver isn't making us do something bad...
3848 	 * Trimming and sgllen == 1 don't go together.
3849 	 */
3850 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
3851 		return (DDI_DMA_NOMAPPING);
3852 	}
3853 
3854 	/*
3855 	 * first, setup the current window to account for the trim. Need to go
3856 	 * back to the last cookie for this. Some of the last cookie will be in
3857 	 * the current window, and some of the last cookie will be in the new
3858 	 * window. All of the current cookie will be in the new window.
3859 	 */
3860 	cookie--;
3861 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3862 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3863 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
3864 	ASSERT(cookie->dmac_size > trim_sz);
3865 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3866 	(*windowp)->wd_size -= trim_sz;
3867 
3868 	/*
3869 	 * we're trimming the last cookie (not the current cookie). So that
3870 	 * last cookie may have or may not have been using the copy buffer (
3871 	 * we know the cookie passed in uses the copy buffer since we're in
3872 	 * this code path).
3873 	 *
3874 	 * If the last cookie doesn't use the copy buffer, nothing special to
3875 	 * do. However, if it does uses the copy buffer, it will be both the
3876 	 * last page in the current window and the first page in the next
3877 	 * window. Since we are reusing the copy buffer (and KVA space on the
3878 	 * 32-bit kernel), this page will use the end of the copy buffer in the
3879 	 * current window, and the start of the copy buffer in the next window.
3880 	 * Track that info... The cookie physical address was already set to
3881 	 * the copy buffer physical address in setup_cookie..
3882 	 */
3883 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3884 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
3885 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
3886 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
3887 		(*windowp)->wd_trim.tr_last_pidx = pidx;
3888 		(*windowp)->wd_trim.tr_last_cbaddr =
3889 		    dma->dp_pgmap[pidx].pm_cbaddr;
3890 #if !defined(__amd64)
3891 		(*windowp)->wd_trim.tr_last_kaddr =
3892 		    dma->dp_pgmap[pidx].pm_kaddr;
3893 #endif
3894 	}
3895 
3896 	/* save the buffer offsets for the next window */
3897 	coffset = cookie->dmac_size - trim_sz;
3898 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3899 
3900 	/*
3901 	 * set this now in case this is the first window. all other cases are
3902 	 * set in dma_win()
3903 	 */
3904 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3905 
3906 	/*
3907 	 * initialize the next window using what's left over in the previous
3908 	 * cookie.
3909 	 */
3910 	(*windowp)++;
3911 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3912 	(*windowp)->wd_cookie_cnt++;
3913 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3914 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
3915 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3916 
3917 	/*
3918 	 * again, we're tracking if the last cookie uses the copy buffer.
3919 	 * read the comment above for more info on why we need to track
3920 	 * additional state.
3921 	 *
3922 	 * For the first cookie in the new window, we need reset the physical
3923 	 * address to DMA into to the start of the copy buffer plus any
3924 	 * initial page offset which may be present.
3925 	 */
3926 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3927 		(*windowp)->wd_dosync = B_TRUE;
3928 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
3929 		(*windowp)->wd_trim.tr_first_pidx = pidx;
3930 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
3931 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
3932 
3933 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
3934 		    poff;
3935 #ifdef __xpv
3936 		/*
3937 		 * If we're dom0, we're using a real device so we need to load
3938 		 * the cookies with MAs instead of PAs.
3939 		 */
3940 		(*windowp)->wd_trim.tr_first_paddr =
3941 		    ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3942 #else
3943 		(*windowp)->wd_trim.tr_first_paddr = paddr;
3944 #endif
3945 
3946 #if !defined(__amd64)
3947 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
3948 #endif
3949 		/* account for the cookie copybuf usage in the new window */
3950 		*copybuf_used += MMU_PAGESIZE;
3951 
3952 		/*
3953 		 * every piece of code has to have a hack, and here is this
3954 		 * ones :-)
3955 		 *
3956 		 * There is a complex interaction between setup_cookie and the
3957 		 * copybuf window boundary. The complexity had to be in either
3958 		 * the maxxfer window, or the copybuf window, and I chose the
3959 		 * copybuf code.
3960 		 *
3961 		 * So in this code path, we have taken the last cookie,
3962 		 * virtually broken it in half due to the trim, and it happens
3963 		 * to use the copybuf which further complicates life. At the
3964 		 * same time, we have already setup the current cookie, which
3965 		 * is now wrong. More background info: the current cookie uses
3966 		 * the copybuf, so it is only a page long max. So we need to
3967 		 * fix the current cookies copy buffer address, physical
3968 		 * address, and kva for the 32-bit kernel. We due this by
3969 		 * bumping them by page size (of course, we can't due this on
3970 		 * the physical address since the copy buffer may not be
3971 		 * physically contiguous).
3972 		 */
3973 		cookie++;
3974 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
3975 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3976 
3977 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3978 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
3979 #ifdef __xpv
3980 		/*
3981 		 * If we're dom0, we're using a real device so we need to load
3982 		 * the cookies with MAs instead of PAs.
3983 		 */
3984 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(xen_info, paddr);
3985 #else
3986 		cookie->dmac_laddress = paddr;
3987 #endif
3988 
3989 #if !defined(__amd64)
3990 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
3991 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
3992 #endif
3993 	} else {
3994 		/* go back to the current cookie */
3995 		cookie++;
3996 	}
3997 
3998 	/*
3999 	 * add the current cookie to the new window. set the new window size to
4000 	 * the what was left over from the previous cookie and what's in the
4001 	 * current cookie.
4002 	 */
4003 	(*windowp)->wd_cookie_cnt++;
4004 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4005 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4006 
4007 	/*
4008 	 * we know that the cookie passed in always uses the copy buffer. We
4009 	 * wouldn't be here if it didn't.
4010 	 */
4011 	*copybuf_used += MMU_PAGESIZE;
4012 
4013 	return (DDI_SUCCESS);
4014 }
4015 
4016 
4017 /*
4018  * rootnex_maxxfer_window_boundary()
4019  *    Called in bind slowpath when we get to a window boundary because we will
4020  *    go over maxxfer.
4021  */
4022 static int
4023 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4024     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4025 {
4026 	size_t dmac_size;
4027 	off_t new_offset;
4028 	size_t trim_sz;
4029 	off_t coffset;
4030 
4031 
4032 	/*
4033 	 * calculate how much we have to trim off of the current cookie to equal
4034 	 * maxxfer. We don't have to account for granularity here since our
4035 	 * maxxfer already takes that into account.
4036 	 */
4037 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4038 	ASSERT(trim_sz <= cookie->dmac_size);
4039 	ASSERT(trim_sz <= dma->dp_maxxfer);
4040 
4041 	/* save cookie size since we need it later and we might change it */
4042 	dmac_size = cookie->dmac_size;
4043 
4044 	/*
4045 	 * if we're not trimming the entire cookie, setup the current window to
4046 	 * account for the trim.
4047 	 */
4048 	if (trim_sz < cookie->dmac_size) {
4049 		(*windowp)->wd_cookie_cnt++;
4050 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4051 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4052 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4053 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4054 		(*windowp)->wd_size = dma->dp_maxxfer;
4055 
4056 		/*
4057 		 * set the adjusted cookie size now in case this is the first
4058 		 * window. All other windows are taken care of in get win
4059 		 */
4060 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4061 	}
4062 
4063 	/*
4064 	 * coffset is the current offset within the cookie, new_offset is the
4065 	 * current offset with the entire buffer.
4066 	 */
4067 	coffset = dmac_size - trim_sz;
4068 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4069 
4070 	/* initialize the next window */
4071 	(*windowp)++;
4072 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4073 	(*windowp)->wd_cookie_cnt++;
4074 	(*windowp)->wd_size = trim_sz;
4075 	if (trim_sz < dmac_size) {
4076 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4077 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4078 		    coffset;
4079 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4080 	}
4081 
4082 	return (DDI_SUCCESS);
4083 }
4084 
4085 
4086 /*ARGSUSED*/
4087 static int
4088 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4089     off_t off, size_t len, uint_t cache_flags)
4090 {
4091 	rootnex_sglinfo_t *sinfo;
4092 	rootnex_pgmap_t *cbpage;
4093 	rootnex_window_t *win;
4094 	ddi_dma_impl_t *hp;
4095 	rootnex_dma_t *dma;
4096 	caddr_t fromaddr;
4097 	caddr_t toaddr;
4098 	uint_t psize;
4099 	off_t offset;
4100 	uint_t pidx;
4101 	size_t size;
4102 	off_t poff;
4103 	int e;
4104 
4105 
4106 	hp = (ddi_dma_impl_t *)handle;
4107 	dma = (rootnex_dma_t *)hp->dmai_private;
4108 	sinfo = &dma->dp_sglinfo;
4109 
4110 	/*
4111 	 * if we don't have any windows, we don't need to sync. A copybuf
4112 	 * will cause us to have at least one window.
4113 	 */
4114 	if (dma->dp_window == NULL) {
4115 		return (DDI_SUCCESS);
4116 	}
4117 
4118 	/* This window may not need to be sync'd */
4119 	win = &dma->dp_window[dma->dp_current_win];
4120 	if (!win->wd_dosync) {
4121 		return (DDI_SUCCESS);
4122 	}
4123 
4124 	/* handle off and len special cases */
4125 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4126 		offset = win->wd_offset;
4127 	} else {
4128 		offset = off;
4129 	}
4130 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4131 		size = win->wd_size;
4132 	} else {
4133 		size = len;
4134 	}
4135 
4136 	/* check the sync args to make sure they make a little sense */
4137 	if (rootnex_sync_check_parms) {
4138 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4139 		    cache_flags);
4140 		if (e != DDI_SUCCESS) {
4141 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4142 			return (DDI_FAILURE);
4143 		}
4144 	}
4145 
4146 	/*
4147 	 * special case the first page to handle the offset into the page. The
4148 	 * offset to the current page for our buffer is the offset into the
4149 	 * first page of the buffer plus our current offset into the buffer
4150 	 * itself, masked of course.
4151 	 */
4152 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4153 	psize = MIN((MMU_PAGESIZE - poff), size);
4154 
4155 	/* go through all the pages that we want to sync */
4156 	while (size > 0) {
4157 		/*
4158 		 * Calculate the page index relative to the start of the buffer.
4159 		 * The index to the current page for our buffer is the offset
4160 		 * into the first page of the buffer plus our current offset
4161 		 * into the buffer itself, shifted of course...
4162 		 */
4163 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4164 		ASSERT(pidx < sinfo->si_max_pages);
4165 
4166 		/*
4167 		 * if this page uses the copy buffer, we need to sync it,
4168 		 * otherwise, go on to the next page.
4169 		 */
4170 		cbpage = &dma->dp_pgmap[pidx];
4171 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4172 		    (cbpage->pm_uses_copybuf == B_FALSE));
4173 		if (cbpage->pm_uses_copybuf) {
4174 			/* cbaddr and kaddr should be page aligned */
4175 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4176 			    MMU_PAGEOFFSET) == 0);
4177 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4178 			    MMU_PAGEOFFSET) == 0);
4179 
4180 			/*
4181 			 * if we're copying for the device, we are going to
4182 			 * copy from the drivers buffer and to the rootnex
4183 			 * allocated copy buffer.
4184 			 */
4185 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4186 				fromaddr = cbpage->pm_kaddr + poff;
4187 				toaddr = cbpage->pm_cbaddr + poff;
4188 				DTRACE_PROBE2(rootnex__sync__dev,
4189 				    dev_info_t *, dma->dp_dip, size_t, psize);
4190 
4191 			/*
4192 			 * if we're copying for the cpu/kernel, we are going to
4193 			 * copy from the rootnex allocated copy buffer to the
4194 			 * drivers buffer.
4195 			 */
4196 			} else {
4197 				fromaddr = cbpage->pm_cbaddr + poff;
4198 				toaddr = cbpage->pm_kaddr + poff;
4199 				DTRACE_PROBE2(rootnex__sync__cpu,
4200 				    dev_info_t *, dma->dp_dip, size_t, psize);
4201 			}
4202 
4203 			bcopy(fromaddr, toaddr, psize);
4204 		}
4205 
4206 		/*
4207 		 * decrement size until we're done, update our offset into the
4208 		 * buffer, and get the next page size.
4209 		 */
4210 		size -= psize;
4211 		offset += psize;
4212 		psize = MIN(MMU_PAGESIZE, size);
4213 
4214 		/* page offset is zero for the rest of this loop */
4215 		poff = 0;
4216 	}
4217 
4218 	return (DDI_SUCCESS);
4219 }
4220 
4221 /*
4222  * rootnex_dma_sync()
4223  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4224  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4225  *    is set, ddi_dma_sync() returns immediately passing back success.
4226  */
4227 /*ARGSUSED*/
4228 static int
4229 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4230     off_t off, size_t len, uint_t cache_flags)
4231 {
4232 #if !defined(__xpv)
4233 	if (IOMMU_USED(rdip)) {
4234 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4235 		    cache_flags));
4236 	}
4237 #endif
4238 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4239 	    cache_flags));
4240 }
4241 
4242 /*
4243  * rootnex_valid_sync_parms()
4244  *    checks the parameters passed to sync to verify they are correct.
4245  */
4246 static int
4247 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4248     off_t offset, size_t size, uint_t cache_flags)
4249 {
4250 	off_t woffset;
4251 
4252 
4253 	/*
4254 	 * the first part of the test to make sure the offset passed in is
4255 	 * within the window.
4256 	 */
4257 	if (offset < win->wd_offset) {
4258 		return (DDI_FAILURE);
4259 	}
4260 
4261 	/*
4262 	 * second and last part of the test to make sure the offset and length
4263 	 * passed in is within the window.
4264 	 */
4265 	woffset = offset - win->wd_offset;
4266 	if ((woffset + size) > win->wd_size) {
4267 		return (DDI_FAILURE);
4268 	}
4269 
4270 	/*
4271 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4272 	 * be set too.
4273 	 */
4274 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4275 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4276 		return (DDI_SUCCESS);
4277 	}
4278 
4279 	/*
4280 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4281 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4282 	 */
4283 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4284 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4285 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4286 		return (DDI_SUCCESS);
4287 	}
4288 
4289 	return (DDI_FAILURE);
4290 }
4291 
4292 
4293 /*ARGSUSED*/
4294 static int
4295 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4296     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4297     uint_t *ccountp)
4298 {
4299 	rootnex_window_t *window;
4300 	rootnex_trim_t *trim;
4301 	ddi_dma_impl_t *hp;
4302 	rootnex_dma_t *dma;
4303 #if !defined(__amd64)
4304 	rootnex_sglinfo_t *sinfo;
4305 	rootnex_pgmap_t *pmap;
4306 	uint_t pidx;
4307 	uint_t pcnt;
4308 	off_t poff;
4309 	int i;
4310 #endif
4311 
4312 
4313 	hp = (ddi_dma_impl_t *)handle;
4314 	dma = (rootnex_dma_t *)hp->dmai_private;
4315 #if !defined(__amd64)
4316 	sinfo = &dma->dp_sglinfo;
4317 #endif
4318 
4319 	/* If we try and get a window which doesn't exist, return failure */
4320 	if (win >= hp->dmai_nwin) {
4321 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4322 		return (DDI_FAILURE);
4323 	}
4324 
4325 	/*
4326 	 * if we don't have any windows, and they're asking for the first
4327 	 * window, setup the cookie pointer to the first cookie in the bind.
4328 	 * setup our return values, then increment the cookie since we return
4329 	 * the first cookie on the stack.
4330 	 */
4331 	if (dma->dp_window == NULL) {
4332 		if (win != 0) {
4333 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4334 			return (DDI_FAILURE);
4335 		}
4336 		hp->dmai_cookie = dma->dp_cookies;
4337 		*offp = 0;
4338 		*lenp = dma->dp_dma.dmao_size;
4339 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4340 		*cookiep = hp->dmai_cookie[0];
4341 		hp->dmai_cookie++;
4342 		return (DDI_SUCCESS);
4343 	}
4344 
4345 	/* sync the old window before moving on to the new one */
4346 	window = &dma->dp_window[dma->dp_current_win];
4347 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4348 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4349 		    DDI_DMA_SYNC_FORCPU);
4350 	}
4351 
4352 #if !defined(__amd64)
4353 	/*
4354 	 * before we move to the next window, if we need to re-map, unmap all
4355 	 * the pages in this window.
4356 	 */
4357 	if (dma->dp_cb_remaping) {
4358 		/*
4359 		 * If we switch to this window again, we'll need to map in
4360 		 * on the fly next time.
4361 		 */
4362 		window->wd_remap_copybuf = B_TRUE;
4363 
4364 		/*
4365 		 * calculate the page index into the buffer where this window
4366 		 * starts, and the number of pages this window takes up.
4367 		 */
4368 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4369 		    MMU_PAGESHIFT;
4370 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4371 		    MMU_PAGEOFFSET;
4372 		pcnt = mmu_btopr(window->wd_size + poff);
4373 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4374 
4375 		/* unmap pages which are currently mapped in this window */
4376 		for (i = 0; i < pcnt; i++) {
4377 			if (dma->dp_pgmap[pidx].pm_mapped) {
4378 				hat_unload(kas.a_hat,
4379 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4380 				    HAT_UNLOAD);
4381 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4382 			}
4383 			pidx++;
4384 		}
4385 	}
4386 #endif
4387 
4388 	/*
4389 	 * Move to the new window.
4390 	 * NOTE: current_win must be set for sync to work right
4391 	 */
4392 	dma->dp_current_win = win;
4393 	window = &dma->dp_window[win];
4394 
4395 	/* if needed, adjust the first and/or last cookies for trim */
4396 	trim = &window->wd_trim;
4397 	if (trim->tr_trim_first) {
4398 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4399 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4400 #if !defined(__amd64)
4401 		window->wd_first_cookie->dmac_type =
4402 		    (window->wd_first_cookie->dmac_type &
4403 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4404 #endif
4405 		if (trim->tr_first_copybuf_win) {
4406 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4407 			    trim->tr_first_cbaddr;
4408 #if !defined(__amd64)
4409 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4410 			    trim->tr_first_kaddr;
4411 #endif
4412 		}
4413 	}
4414 	if (trim->tr_trim_last) {
4415 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4416 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4417 		if (trim->tr_last_copybuf_win) {
4418 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4419 			    trim->tr_last_cbaddr;
4420 #if !defined(__amd64)
4421 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4422 			    trim->tr_last_kaddr;
4423 #endif
4424 		}
4425 	}
4426 
4427 	/*
4428 	 * setup the cookie pointer to the first cookie in the window. setup
4429 	 * our return values, then increment the cookie since we return the
4430 	 * first cookie on the stack.
4431 	 */
4432 	hp->dmai_cookie = window->wd_first_cookie;
4433 	*offp = window->wd_offset;
4434 	*lenp = window->wd_size;
4435 	*ccountp = window->wd_cookie_cnt;
4436 	*cookiep = hp->dmai_cookie[0];
4437 	hp->dmai_cookie++;
4438 
4439 #if !defined(__amd64)
4440 	/* re-map copybuf if required for this window */
4441 	if (dma->dp_cb_remaping) {
4442 		/*
4443 		 * calculate the page index into the buffer where this
4444 		 * window starts.
4445 		 */
4446 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4447 		    MMU_PAGESHIFT;
4448 		ASSERT(pidx < sinfo->si_max_pages);
4449 
4450 		/*
4451 		 * the first page can get unmapped if it's shared with the
4452 		 * previous window. Even if the rest of this window is already
4453 		 * mapped in, we need to still check this one.
4454 		 */
4455 		pmap = &dma->dp_pgmap[pidx];
4456 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4457 			if (pmap->pm_pp != NULL) {
4458 				pmap->pm_mapped = B_TRUE;
4459 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4460 			} else if (pmap->pm_vaddr != NULL) {
4461 				pmap->pm_mapped = B_TRUE;
4462 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4463 				    pmap->pm_kaddr);
4464 			}
4465 		}
4466 		pidx++;
4467 
4468 		/* map in the rest of the pages if required */
4469 		if (window->wd_remap_copybuf) {
4470 			window->wd_remap_copybuf = B_FALSE;
4471 
4472 			/* figure out many pages this window takes up */
4473 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4474 			    MMU_PAGEOFFSET;
4475 			pcnt = mmu_btopr(window->wd_size + poff);
4476 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4477 
4478 			/* map pages which require it */
4479 			for (i = 1; i < pcnt; i++) {
4480 				pmap = &dma->dp_pgmap[pidx];
4481 				if (pmap->pm_uses_copybuf) {
4482 					ASSERT(pmap->pm_mapped == B_FALSE);
4483 					if (pmap->pm_pp != NULL) {
4484 						pmap->pm_mapped = B_TRUE;
4485 						i86_pp_map(pmap->pm_pp,
4486 						    pmap->pm_kaddr);
4487 					} else if (pmap->pm_vaddr != NULL) {
4488 						pmap->pm_mapped = B_TRUE;
4489 						i86_va_map(pmap->pm_vaddr,
4490 						    sinfo->si_asp,
4491 						    pmap->pm_kaddr);
4492 					}
4493 				}
4494 				pidx++;
4495 			}
4496 		}
4497 	}
4498 #endif
4499 
4500 	/* if the new window uses the copy buffer, sync it for the device */
4501 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4502 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4503 		    DDI_DMA_SYNC_FORDEV);
4504 	}
4505 
4506 	return (DDI_SUCCESS);
4507 }
4508 
4509 /*
4510  * rootnex_dma_win()
4511  *    called from ddi_dma_getwin()
4512  */
4513 /*ARGSUSED*/
4514 static int
4515 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4516     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4517     uint_t *ccountp)
4518 {
4519 #if !defined(__xpv)
4520 	if (IOMMU_USED(rdip)) {
4521 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4522 		    cookiep, ccountp));
4523 	}
4524 #endif
4525 
4526 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4527 	    cookiep, ccountp));
4528 }
4529 
4530 /*
4531  * ************************
4532  *  obsoleted dma routines
4533  * ************************
4534  */
4535 
4536 /*
4537  * rootnex_dma_map()
4538  *    called from ddi_dma_setup()
4539  * NO IOMMU in 32 bit mode. The below routines doesn't work in 64 bit mode.
4540  */
4541 /* ARGSUSED */
4542 static int
4543 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
4544     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep)
4545 {
4546 #if defined(__amd64)
4547 	/*
4548 	 * this interface is not supported in 64-bit x86 kernel. See comment in
4549 	 * rootnex_dma_mctl()
4550 	 */
4551 	return (DDI_DMA_NORESOURCES);
4552 
4553 #else /* 32-bit x86 kernel */
4554 	ddi_dma_handle_t *lhandlep;
4555 	ddi_dma_handle_t lhandle;
4556 	ddi_dma_cookie_t cookie;
4557 	ddi_dma_attr_t dma_attr;
4558 	ddi_dma_lim_t *dma_lim;
4559 	uint_t ccnt;
4560 	int e;
4561 
4562 
4563 	/*
4564 	 * if the driver is just testing to see if it's possible to do the bind,
4565 	 * we'll use local state. Otherwise, use the handle pointer passed in.
4566 	 */
4567 	if (handlep == NULL) {
4568 		lhandlep = &lhandle;
4569 	} else {
4570 		lhandlep = handlep;
4571 	}
4572 
4573 	/* convert the limit structure to a dma_attr one */
4574 	dma_lim = dmareq->dmar_limits;
4575 	dma_attr.dma_attr_version = DMA_ATTR_V0;
4576 	dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo;
4577 	dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi;
4578 	dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer;
4579 	dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max;
4580 	dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max;
4581 	dma_attr.dma_attr_granular = dma_lim->dlim_granular;
4582 	dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen;
4583 	dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize;
4584 	dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes;
4585 	dma_attr.dma_attr_align = MMU_PAGESIZE;
4586 	dma_attr.dma_attr_flags = 0;
4587 
4588 	e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp,
4589 	    dmareq->dmar_arg, lhandlep);
4590 	if (e != DDI_SUCCESS) {
4591 		return (e);
4592 	}
4593 
4594 	e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt);
4595 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
4596 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4597 		return (e);
4598 	}
4599 
4600 	/*
4601 	 * if the driver is just testing to see if it's possible to do the bind,
4602 	 * free up the local state and return the result.
4603 	 */
4604 	if (handlep == NULL) {
4605 		(void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep);
4606 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4607 		if (e == DDI_DMA_MAPPED) {
4608 			return (DDI_DMA_MAPOK);
4609 		} else {
4610 			return (DDI_DMA_NOMAPPING);
4611 		}
4612 	}
4613 
4614 	return (e);
4615 #endif /* defined(__amd64) */
4616 }
4617 
4618 /*
4619  * rootnex_dma_mctl()
4620  *
4621  * No IOMMU in 32 bit mode. The below routine doesn't work in 64 bit mode.
4622  */
4623 /* ARGSUSED */
4624 static int
4625 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4626     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
4627     uint_t cache_flags)
4628 {
4629 #if defined(__amd64)
4630 	/*
4631 	 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a
4632 	 * common implementation in genunix, so they no longer have x86
4633 	 * specific functionality which called into dma_ctl.
4634 	 *
4635 	 * The rest of the obsoleted interfaces were never supported in the
4636 	 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface
4637 	 * was not ported to the x86 64-bit kernel do to serious x86 rootnex
4638 	 * implementation issues.
4639 	 *
4640 	 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and
4641 	 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we
4642 	 * reflect that now too...
4643 	 *
4644 	 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are
4645 	 * not going to put this functionality into the 64-bit x86 kernel now.
4646 	 * It wasn't ported to the 64-bit kernel for s10, no reason to change
4647 	 * that in a future release.
4648 	 */
4649 	return (DDI_FAILURE);
4650 
4651 #else /* 32-bit x86 kernel */
4652 	ddi_dma_cookie_t lcookie;
4653 	ddi_dma_cookie_t *cookie;
4654 	rootnex_window_t *window;
4655 	ddi_dma_impl_t *hp;
4656 	rootnex_dma_t *dma;
4657 	uint_t nwin;
4658 	uint_t ccnt;
4659 	size_t len;
4660 	off_t off;
4661 	int e;
4662 
4663 
4664 	/*
4665 	 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little
4666 	 * hacky since were optimizing for the current interfaces and so we can
4667 	 * cleanup the mess in genunix. Hopefully we will remove the this
4668 	 * obsoleted routines someday soon.
4669 	 */
4670 
4671 	switch (request) {
4672 
4673 	case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */
4674 		hp = (ddi_dma_impl_t *)handle;
4675 		cookie = (ddi_dma_cookie_t *)objpp;
4676 
4677 		/*
4678 		 * convert segment to cookie. We don't distinguish between the
4679 		 * two :-)
4680 		 */
4681 		*cookie = *hp->dmai_cookie;
4682 		*lenp = cookie->dmac_size;
4683 		*offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF;
4684 		return (DDI_SUCCESS);
4685 
4686 	case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */
4687 		hp = (ddi_dma_impl_t *)handle;
4688 		dma = (rootnex_dma_t *)hp->dmai_private;
4689 
4690 		if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) {
4691 			return (DDI_DMA_STALE);
4692 		}
4693 
4694 		/* handle the case where we don't have any windows */
4695 		if (dma->dp_window == NULL) {
4696 			/*
4697 			 * if seg == NULL, and we don't have any windows,
4698 			 * return the first cookie in the sgl.
4699 			 */
4700 			if (*lenp == NULL) {
4701 				dma->dp_current_cookie = 0;
4702 				hp->dmai_cookie = dma->dp_cookies;
4703 				*objpp = (caddr_t)handle;
4704 				return (DDI_SUCCESS);
4705 
4706 			/* if we have more cookies, go to the next cookie */
4707 			} else {
4708 				if ((dma->dp_current_cookie + 1) >=
4709 				    dma->dp_sglinfo.si_sgl_size) {
4710 					return (DDI_DMA_DONE);
4711 				}
4712 				dma->dp_current_cookie++;
4713 				hp->dmai_cookie++;
4714 				return (DDI_SUCCESS);
4715 			}
4716 		}
4717 
4718 		/* We have one or more windows */
4719 		window = &dma->dp_window[dma->dp_current_win];
4720 
4721 		/*
4722 		 * if seg == NULL, return the first cookie in the current
4723 		 * window
4724 		 */
4725 		if (*lenp == NULL) {
4726 			dma->dp_current_cookie = 0;
4727 			hp->dmai_cookie = window->wd_first_cookie;
4728 
4729 		/*
4730 		 * go to the next cookie in the window then see if we done with
4731 		 * this window.
4732 		 */
4733 		} else {
4734 			if ((dma->dp_current_cookie + 1) >=
4735 			    window->wd_cookie_cnt) {
4736 				return (DDI_DMA_DONE);
4737 			}
4738 			dma->dp_current_cookie++;
4739 			hp->dmai_cookie++;
4740 		}
4741 		*objpp = (caddr_t)handle;
4742 		return (DDI_SUCCESS);
4743 
4744 	case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */
4745 		hp = (ddi_dma_impl_t *)handle;
4746 		dma = (rootnex_dma_t *)hp->dmai_private;
4747 
4748 		if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) {
4749 			return (DDI_DMA_STALE);
4750 		}
4751 
4752 		/* if win == NULL, return the first window in the bind */
4753 		if (*offp == NULL) {
4754 			nwin = 0;
4755 
4756 		/*
4757 		 * else, go to the next window then see if we're done with all
4758 		 * the windows.
4759 		 */
4760 		} else {
4761 			nwin = dma->dp_current_win + 1;
4762 			if (nwin >= hp->dmai_nwin) {
4763 				return (DDI_DMA_DONE);
4764 			}
4765 		}
4766 
4767 		/* switch to the next window */
4768 		e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len,
4769 		    &lcookie, &ccnt);
4770 		ASSERT(e == DDI_SUCCESS);
4771 		if (e != DDI_SUCCESS) {
4772 			return (DDI_DMA_STALE);
4773 		}
4774 
4775 		/* reset the cookie back to the first cookie in the window */
4776 		if (dma->dp_window != NULL) {
4777 			window = &dma->dp_window[dma->dp_current_win];
4778 			hp->dmai_cookie = window->wd_first_cookie;
4779 		} else {
4780 			hp->dmai_cookie = dma->dp_cookies;
4781 		}
4782 
4783 		*objpp = (caddr_t)handle;
4784 		return (DDI_SUCCESS);
4785 
4786 	case DDI_DMA_FREE: /* ddi_dma_free() */
4787 		(void) rootnex_dma_unbindhdl(dip, rdip, handle);
4788 		(void) rootnex_dma_freehdl(dip, rdip, handle);
4789 		if (rootnex_state->r_dvma_call_list_id) {
4790 			ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
4791 		}
4792 		return (DDI_SUCCESS);
4793 
4794 	case DDI_DMA_IOPB_ALLOC:	/* get contiguous DMA-able memory */
4795 	case DDI_DMA_SMEM_ALLOC:	/* get contiguous DMA-able memory */
4796 		/* should never get here, handled in genunix */
4797 		ASSERT(0);
4798 		return (DDI_FAILURE);
4799 
4800 	case DDI_DMA_KVADDR:
4801 	case DDI_DMA_GETERR:
4802 	case DDI_DMA_COFF:
4803 		return (DDI_FAILURE);
4804 	}
4805 
4806 	return (DDI_FAILURE);
4807 #endif /* defined(__amd64) */
4808 }
4809 
4810 /*
4811  * *********
4812  *  FMA Code
4813  * *********
4814  */
4815 
4816 /*
4817  * rootnex_fm_init()
4818  *    FMA init busop
4819  */
4820 /* ARGSUSED */
4821 static int
4822 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
4823     ddi_iblock_cookie_t *ibc)
4824 {
4825 	*ibc = rootnex_state->r_err_ibc;
4826 
4827 	return (ddi_system_fmcap);
4828 }
4829 
4830 /*
4831  * rootnex_dma_check()
4832  *    Function called after a dma fault occurred to find out whether the
4833  *    fault address is associated with a driver that is able to handle faults
4834  *    and recover from faults.
4835  */
4836 /* ARGSUSED */
4837 static int
4838 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
4839     const void *not_used)
4840 {
4841 	rootnex_window_t *window;
4842 	uint64_t start_addr;
4843 	uint64_t fault_addr;
4844 	ddi_dma_impl_t *hp;
4845 	rootnex_dma_t *dma;
4846 	uint64_t end_addr;
4847 	size_t csize;
4848 	int i;
4849 	int j;
4850 
4851 
4852 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
4853 	hp = (ddi_dma_impl_t *)handle;
4854 	ASSERT(hp);
4855 
4856 	dma = (rootnex_dma_t *)hp->dmai_private;
4857 
4858 	/* Get the address that we need to search for */
4859 	fault_addr = *(uint64_t *)addr;
4860 
4861 	/*
4862 	 * if we don't have any windows, we can just walk through all the
4863 	 * cookies.
4864 	 */
4865 	if (dma->dp_window == NULL) {
4866 		/* for each cookie */
4867 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
4868 			/*
4869 			 * if the faulted address is within the physical address
4870 			 * range of the cookie, return DDI_FM_NONFATAL.
4871 			 */
4872 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
4873 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
4874 			    dma->dp_cookies[i].dmac_size))) {
4875 				return (DDI_FM_NONFATAL);
4876 			}
4877 		}
4878 
4879 		/* fault_addr not within this DMA handle */
4880 		return (DDI_FM_UNKNOWN);
4881 	}
4882 
4883 	/* we have mutiple windows, walk through each window */
4884 	for (i = 0; i < hp->dmai_nwin; i++) {
4885 		window = &dma->dp_window[i];
4886 
4887 		/* Go through all the cookies in the window */
4888 		for (j = 0; j < window->wd_cookie_cnt; j++) {
4889 
4890 			start_addr = window->wd_first_cookie[j].dmac_laddress;
4891 			csize = window->wd_first_cookie[j].dmac_size;
4892 
4893 			/*
4894 			 * if we are trimming the first cookie in the window,
4895 			 * and this is the first cookie, adjust the start
4896 			 * address and size of the cookie to account for the
4897 			 * trim.
4898 			 */
4899 			if (window->wd_trim.tr_trim_first && (j == 0)) {
4900 				start_addr = window->wd_trim.tr_first_paddr;
4901 				csize = window->wd_trim.tr_first_size;
4902 			}
4903 
4904 			/*
4905 			 * if we are trimming the last cookie in the window,
4906 			 * and this is the last cookie, adjust the start
4907 			 * address and size of the cookie to account for the
4908 			 * trim.
4909 			 */
4910 			if (window->wd_trim.tr_trim_last &&
4911 			    (j == (window->wd_cookie_cnt - 1))) {
4912 				start_addr = window->wd_trim.tr_last_paddr;
4913 				csize = window->wd_trim.tr_last_size;
4914 			}
4915 
4916 			end_addr = start_addr + csize;
4917 
4918 			/*
4919 			 * if the faulted address is within the physical address
4920 			 * range of the cookie, return DDI_FM_NONFATAL.
4921 			 */
4922 			if ((fault_addr >= start_addr) &&
4923 			    (fault_addr <= end_addr)) {
4924 				return (DDI_FM_NONFATAL);
4925 			}
4926 		}
4927 	}
4928 
4929 	/* fault_addr not within this DMA handle */
4930 	return (DDI_FM_UNKNOWN);
4931 }
4932