xref: /illumos-gate/usr/src/uts/i86pc/io/rootnex.c (revision 7d0b359ca572cd04474eb1f2ceec5a8ff39e36c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 /*
32  * x86 root nexus driver
33  */
34 
35 #include <sys/sysmacros.h>
36 #include <sys/conf.h>
37 #include <sys/autoconf.h>
38 #include <sys/sysmacros.h>
39 #include <sys/debug.h>
40 #include <sys/psw.h>
41 #include <sys/ddidmareq.h>
42 #include <sys/promif.h>
43 #include <sys/devops.h>
44 #include <sys/kmem.h>
45 #include <sys/cmn_err.h>
46 #include <vm/seg.h>
47 #include <vm/seg_kmem.h>
48 #include <vm/seg_dev.h>
49 #include <sys/vmem.h>
50 #include <sys/mman.h>
51 #include <vm/hat.h>
52 #include <vm/as.h>
53 #include <vm/page.h>
54 #include <sys/avintr.h>
55 #include <sys/errno.h>
56 #include <sys/modctl.h>
57 #include <sys/ddi_impldefs.h>
58 #include <sys/sunddi.h>
59 #include <sys/sunndi.h>
60 #include <sys/mach_intr.h>
61 #include <sys/psm.h>
62 #include <sys/ontrap.h>
63 #include <sys/atomic.h>
64 #include <sys/sdt.h>
65 #include <sys/rootnex.h>
66 #include <vm/hat_i86.h>
67 #include <sys/ddifm.h>
68 #include <sys/ddi_isa.h>
69 #include <sys/apic.h>
70 
71 #ifdef __xpv
72 #include <sys/bootinfo.h>
73 #include <sys/hypervisor.h>
74 #include <sys/bootconf.h>
75 #include <vm/kboot_mmu.h>
76 #endif
77 
78 #if defined(__amd64) && !defined(__xpv)
79 #include <sys/immu.h>
80 #endif
81 
82 
83 /*
84  * enable/disable extra checking of function parameters. Useful for debugging
85  * drivers.
86  */
87 #ifdef	DEBUG
88 int rootnex_alloc_check_parms = 1;
89 int rootnex_bind_check_parms = 1;
90 int rootnex_bind_check_inuse = 1;
91 int rootnex_unbind_verify_buffer = 0;
92 int rootnex_sync_check_parms = 1;
93 #else
94 int rootnex_alloc_check_parms = 0;
95 int rootnex_bind_check_parms = 0;
96 int rootnex_bind_check_inuse = 0;
97 int rootnex_unbind_verify_buffer = 0;
98 int rootnex_sync_check_parms = 0;
99 #endif
100 
101 boolean_t rootnex_dmar_not_setup;
102 
103 /* Master Abort and Target Abort panic flag */
104 int rootnex_fm_ma_ta_panic_flag = 0;
105 
106 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
107 int rootnex_bind_fail = 1;
108 int rootnex_bind_warn = 1;
109 uint8_t *rootnex_warn_list;
110 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
111 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
112 
113 /*
114  * revert back to old broken behavior of always sync'ing entire copy buffer.
115  * This is useful if be have a buggy driver which doesn't correctly pass in
116  * the offset and size into ddi_dma_sync().
117  */
118 int rootnex_sync_ignore_params = 0;
119 
120 /*
121  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
122  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
123  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
124  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
125  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
126  * (< 8K). We will still need to allocate the copy buffer during bind though
127  * (if we need one). These can only be modified in /etc/system before rootnex
128  * attach.
129  */
130 #if defined(__amd64)
131 int rootnex_prealloc_cookies = 65;
132 int rootnex_prealloc_windows = 4;
133 int rootnex_prealloc_copybuf = 2;
134 #else
135 int rootnex_prealloc_cookies = 33;
136 int rootnex_prealloc_windows = 4;
137 int rootnex_prealloc_copybuf = 2;
138 #endif
139 
140 /* driver global state */
141 static rootnex_state_t *rootnex_state;
142 
143 #ifdef DEBUG
144 /* shortcut to rootnex counters */
145 static uint64_t *rootnex_cnt;
146 #endif
147 
148 /*
149  * XXX - does x86 even need these or are they left over from the SPARC days?
150  */
151 /* statically defined integer/boolean properties for the root node */
152 static rootnex_intprop_t rootnex_intprp[] = {
153 	{ "PAGESIZE",			PAGESIZE },
154 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
155 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
156 	{ DDI_RELATIVE_ADDRESSING,	1 },
157 };
158 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
159 
160 /*
161  * If we're dom0, we're using a real device so we need to load
162  * the cookies with MFNs instead of PFNs.
163  */
164 #ifdef __xpv
165 typedef maddr_t rootnex_addr_t;
166 #define	ROOTNEX_PADDR_TO_RBASE(pa)	\
167 	(DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa))
168 #else
169 typedef paddr_t rootnex_addr_t;
170 #define	ROOTNEX_PADDR_TO_RBASE(pa)	(pa)
171 #endif
172 
173 static struct cb_ops rootnex_cb_ops = {
174 	nodev,		/* open */
175 	nodev,		/* close */
176 	nodev,		/* strategy */
177 	nodev,		/* print */
178 	nodev,		/* dump */
179 	nodev,		/* read */
180 	nodev,		/* write */
181 	nodev,		/* ioctl */
182 	nodev,		/* devmap */
183 	nodev,		/* mmap */
184 	nodev,		/* segmap */
185 	nochpoll,	/* chpoll */
186 	ddi_prop_op,	/* cb_prop_op */
187 	NULL,		/* struct streamtab */
188 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
189 	CB_REV,		/* Rev */
190 	nodev,		/* cb_aread */
191 	nodev		/* cb_awrite */
192 };
193 
194 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
195     off_t offset, off_t len, caddr_t *vaddrp);
196 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
197     struct hat *hat, struct seg *seg, caddr_t addr,
198     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
199 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
200     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
201     ddi_dma_handle_t *handlep);
202 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
203     ddi_dma_handle_t handle);
204 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
205     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
206     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
207 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
208     ddi_dma_handle_t handle);
209 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
210     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
211 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
212     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
213     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
214 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
215     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
216     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
217 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
218     ddi_ctl_enum_t ctlop, void *arg, void *result);
219 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
220     ddi_iblock_cookie_t *ibc);
221 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
222     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
223 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *,
224     void *);
225 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *);
226 
227 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
228     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
229     ddi_dma_handle_t *handlep);
230 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
231     ddi_dma_handle_t handle);
232 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
233     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
234     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
235 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
236     ddi_dma_handle_t handle);
237 #if defined(__amd64) && !defined(__xpv)
238 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
239     ddi_dma_handle_t handle);
240 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
241     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
242 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
243     ddi_dma_cookie_t *cookiep, uint_t ccount);
244 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
245     ddi_dma_handle_t handle);
246 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
247 #endif
248 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
249     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
250 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
251     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
252     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
253 
254 #if defined(__amd64) && !defined(__xpv)
255 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
256     ddi_dma_handle_t handle, void *v);
257 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
258     ddi_dma_handle_t handle);
259 #endif
260 
261 
262 static struct bus_ops rootnex_bus_ops = {
263 	BUSO_REV,
264 	rootnex_map,
265 	NULL,
266 	NULL,
267 	NULL,
268 	rootnex_map_fault,
269 	0,
270 	rootnex_dma_allochdl,
271 	rootnex_dma_freehdl,
272 	rootnex_dma_bindhdl,
273 	rootnex_dma_unbindhdl,
274 	rootnex_dma_sync,
275 	rootnex_dma_win,
276 	rootnex_dma_mctl,
277 	rootnex_ctlops,
278 	ddi_bus_prop_op,
279 	i_ddi_rootnex_get_eventcookie,
280 	i_ddi_rootnex_add_eventcall,
281 	i_ddi_rootnex_remove_eventcall,
282 	i_ddi_rootnex_post_event,
283 	0,			/* bus_intr_ctl */
284 	0,			/* bus_config */
285 	0,			/* bus_unconfig */
286 	rootnex_fm_init,	/* bus_fm_init */
287 	NULL,			/* bus_fm_fini */
288 	NULL,			/* bus_fm_access_enter */
289 	NULL,			/* bus_fm_access_exit */
290 	NULL,			/* bus_powr */
291 	rootnex_intr_ops	/* bus_intr_op */
292 };
293 
294 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
295 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
296 static int rootnex_quiesce(dev_info_t *dip);
297 
298 static struct dev_ops rootnex_ops = {
299 	DEVO_REV,
300 	0,
301 	ddi_no_info,
302 	nulldev,
303 	nulldev,
304 	rootnex_attach,
305 	rootnex_detach,
306 	nulldev,
307 	&rootnex_cb_ops,
308 	&rootnex_bus_ops,
309 	NULL,
310 	rootnex_quiesce,		/* quiesce */
311 };
312 
313 static struct modldrv rootnex_modldrv = {
314 	&mod_driverops,
315 	"i86pc root nexus",
316 	&rootnex_ops
317 };
318 
319 static struct modlinkage rootnex_modlinkage = {
320 	MODREV_1,
321 	(void *)&rootnex_modldrv,
322 	NULL
323 };
324 
325 #if defined(__amd64) && !defined(__xpv)
326 static iommulib_nexops_t iommulib_nexops = {
327 	IOMMU_NEXOPS_VERSION,
328 	"Rootnex IOMMU ops Vers 1.1",
329 	NULL,
330 	rootnex_coredma_allochdl,
331 	rootnex_coredma_freehdl,
332 	rootnex_coredma_bindhdl,
333 	rootnex_coredma_unbindhdl,
334 	rootnex_coredma_reset_cookies,
335 	rootnex_coredma_get_cookies,
336 	rootnex_coredma_set_cookies,
337 	rootnex_coredma_clear_cookies,
338 	rootnex_coredma_get_sleep_flags,
339 	rootnex_coredma_sync,
340 	rootnex_coredma_win,
341 	rootnex_coredma_hdl_setprivate,
342 	rootnex_coredma_hdl_getprivate
343 };
344 #endif
345 
346 /*
347  *  extern hacks
348  */
349 extern struct seg_ops segdev_ops;
350 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
351 #ifdef	DDI_MAP_DEBUG
352 extern int ddi_map_debug_flag;
353 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
354 #endif
355 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
356 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
357 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
358     psm_intr_op_t, int *);
359 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
360 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
361 
362 /*
363  * Use device arena to use for device control register mappings.
364  * Various kernel memory walkers (debugger, dtrace) need to know
365  * to avoid this address range to prevent undesired device activity.
366  */
367 extern void *device_arena_alloc(size_t size, int vm_flag);
368 extern void device_arena_free(void * vaddr, size_t size);
369 
370 
371 /*
372  *  Internal functions
373  */
374 static int rootnex_dma_init();
375 static void rootnex_add_props(dev_info_t *);
376 static int rootnex_ctl_reportdev(dev_info_t *dip);
377 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
378 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
379 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
380 static int rootnex_map_handle(ddi_map_req_t *mp);
381 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
382 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
383 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
384     ddi_dma_attr_t *attr);
385 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
386     rootnex_sglinfo_t *sglinfo);
387 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object,
388     ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo);
389 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
390     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
391 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
392     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
393 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
394 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
395     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
396 static void rootnex_teardown_windows(rootnex_dma_t *dma);
397 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
398     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
399 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
400     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
401     size_t *copybuf_used, page_t **cur_pp);
402 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
403     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
404     ddi_dma_attr_t *attr, off_t cur_offset);
405 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
406     rootnex_dma_t *dma, rootnex_window_t **windowp,
407     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
408 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
409     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
410 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
411     off_t offset, size_t size, uint_t cache_flags);
412 static int rootnex_verify_buffer(rootnex_dma_t *dma);
413 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
414     const void *comp_addr, const void *not_used);
415 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object,
416     rootnex_sglinfo_t *sglinfo);
417 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object);
418 
419 /*
420  * _init()
421  *
422  */
423 int
424 _init(void)
425 {
426 
427 	rootnex_state = NULL;
428 	return (mod_install(&rootnex_modlinkage));
429 }
430 
431 
432 /*
433  * _info()
434  *
435  */
436 int
437 _info(struct modinfo *modinfop)
438 {
439 	return (mod_info(&rootnex_modlinkage, modinfop));
440 }
441 
442 
443 /*
444  * _fini()
445  *
446  */
447 int
448 _fini(void)
449 {
450 	return (EBUSY);
451 }
452 
453 
454 /*
455  * rootnex_attach()
456  *
457  */
458 static int
459 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
460 {
461 	int fmcap;
462 	int e;
463 
464 	switch (cmd) {
465 	case DDI_ATTACH:
466 		break;
467 	case DDI_RESUME:
468 #if defined(__amd64) && !defined(__xpv)
469 		return (immu_unquiesce());
470 #else
471 		return (DDI_SUCCESS);
472 #endif
473 	default:
474 		return (DDI_FAILURE);
475 	}
476 
477 	/*
478 	 * We should only have one instance of rootnex. Save it away since we
479 	 * don't have an easy way to get it back later.
480 	 */
481 	ASSERT(rootnex_state == NULL);
482 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
483 
484 	rootnex_state->r_dip = dip;
485 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
486 	rootnex_state->r_reserved_msg_printed = B_FALSE;
487 #ifdef DEBUG
488 	rootnex_cnt = &rootnex_state->r_counters[0];
489 #endif
490 
491 	/*
492 	 * Set minimum fm capability level for i86pc platforms and then
493 	 * initialize error handling. Since we're the rootnex, we don't
494 	 * care what's returned in the fmcap field.
495 	 */
496 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
497 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
498 	fmcap = ddi_system_fmcap;
499 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
500 
501 	/* initialize DMA related state */
502 	e = rootnex_dma_init();
503 	if (e != DDI_SUCCESS) {
504 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
505 		return (DDI_FAILURE);
506 	}
507 
508 	/* Add static root node properties */
509 	rootnex_add_props(dip);
510 
511 	/* since we can't call ddi_report_dev() */
512 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
513 
514 	/* Initialize rootnex event handle */
515 	i_ddi_rootnex_init_events(dip);
516 
517 #if defined(__amd64) && !defined(__xpv)
518 	e = iommulib_nexus_register(dip, &iommulib_nexops,
519 	    &rootnex_state->r_iommulib_handle);
520 
521 	ASSERT(e == DDI_SUCCESS);
522 #endif
523 
524 	return (DDI_SUCCESS);
525 }
526 
527 
528 /*
529  * rootnex_detach()
530  *
531  */
532 /*ARGSUSED*/
533 static int
534 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
535 {
536 	switch (cmd) {
537 	case DDI_SUSPEND:
538 #if defined(__amd64) && !defined(__xpv)
539 		return (immu_quiesce());
540 #else
541 		return (DDI_SUCCESS);
542 #endif
543 	default:
544 		return (DDI_FAILURE);
545 	}
546 	/*NOTREACHED*/
547 
548 }
549 
550 
551 /*
552  * rootnex_dma_init()
553  *
554  */
555 /*ARGSUSED*/
556 static int
557 rootnex_dma_init()
558 {
559 	size_t bufsize;
560 
561 
562 	/*
563 	 * size of our cookie/window/copybuf state needed in dma bind that we
564 	 * pre-alloc in dma_alloc_handle
565 	 */
566 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
567 	rootnex_state->r_prealloc_size =
568 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
569 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
570 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
571 
572 	/*
573 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
574 	 * allocate 16 extra bytes for struct pointer alignment
575 	 * (p->dmai_private & dma->dp_prealloc_buffer)
576 	 */
577 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
578 	    rootnex_state->r_prealloc_size + 0x10;
579 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
580 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
581 	if (rootnex_state->r_dmahdl_cache == NULL) {
582 		return (DDI_FAILURE);
583 	}
584 
585 	/*
586 	 * allocate array to track which major numbers we have printed warnings
587 	 * for.
588 	 */
589 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
590 	    KM_SLEEP);
591 
592 	return (DDI_SUCCESS);
593 }
594 
595 
596 /*
597  * rootnex_add_props()
598  *
599  */
600 static void
601 rootnex_add_props(dev_info_t *dip)
602 {
603 	rootnex_intprop_t *rpp;
604 	int i;
605 
606 	/* Add static integer/boolean properties to the root node */
607 	rpp = rootnex_intprp;
608 	for (i = 0; i < NROOT_INTPROPS; i++) {
609 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
610 		    rpp[i].prop_name, rpp[i].prop_value);
611 	}
612 }
613 
614 
615 
616 /*
617  * *************************
618  *  ctlops related routines
619  * *************************
620  */
621 
622 /*
623  * rootnex_ctlops()
624  *
625  */
626 /*ARGSUSED*/
627 static int
628 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
629     void *arg, void *result)
630 {
631 	int n, *ptr;
632 	struct ddi_parent_private_data *pdp;
633 
634 	switch (ctlop) {
635 	case DDI_CTLOPS_DMAPMAPC:
636 		/*
637 		 * Return 'partial' to indicate that dma mapping
638 		 * has to be done in the main MMU.
639 		 */
640 		return (DDI_DMA_PARTIAL);
641 
642 	case DDI_CTLOPS_BTOP:
643 		/*
644 		 * Convert byte count input to physical page units.
645 		 * (byte counts that are not a page-size multiple
646 		 * are rounded down)
647 		 */
648 		*(ulong_t *)result = btop(*(ulong_t *)arg);
649 		return (DDI_SUCCESS);
650 
651 	case DDI_CTLOPS_PTOB:
652 		/*
653 		 * Convert size in physical pages to bytes
654 		 */
655 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
656 		return (DDI_SUCCESS);
657 
658 	case DDI_CTLOPS_BTOPR:
659 		/*
660 		 * Convert byte count input to physical page units
661 		 * (byte counts that are not a page-size multiple
662 		 * are rounded up)
663 		 */
664 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
665 		return (DDI_SUCCESS);
666 
667 	case DDI_CTLOPS_INITCHILD:
668 		return (impl_ddi_sunbus_initchild(arg));
669 
670 	case DDI_CTLOPS_UNINITCHILD:
671 		impl_ddi_sunbus_removechild(arg);
672 		return (DDI_SUCCESS);
673 
674 	case DDI_CTLOPS_REPORTDEV:
675 		return (rootnex_ctl_reportdev(rdip));
676 
677 	case DDI_CTLOPS_IOMIN:
678 		/*
679 		 * Nothing to do here but reflect back..
680 		 */
681 		return (DDI_SUCCESS);
682 
683 	case DDI_CTLOPS_REGSIZE:
684 	case DDI_CTLOPS_NREGS:
685 		break;
686 
687 	case DDI_CTLOPS_SIDDEV:
688 		if (ndi_dev_is_prom_node(rdip))
689 			return (DDI_SUCCESS);
690 		if (ndi_dev_is_persistent_node(rdip))
691 			return (DDI_SUCCESS);
692 		return (DDI_FAILURE);
693 
694 	case DDI_CTLOPS_POWER:
695 		return ((*pm_platform_power)((power_req_t *)arg));
696 
697 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
698 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
699 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
700 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
701 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
702 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
703 		if (!rootnex_state->r_reserved_msg_printed) {
704 			rootnex_state->r_reserved_msg_printed = B_TRUE;
705 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
706 			    "1 or more reserved/obsolete operations.");
707 		}
708 		return (DDI_FAILURE);
709 
710 	default:
711 		return (DDI_FAILURE);
712 	}
713 	/*
714 	 * The rest are for "hardware" properties
715 	 */
716 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
717 		return (DDI_FAILURE);
718 
719 	if (ctlop == DDI_CTLOPS_NREGS) {
720 		ptr = (int *)result;
721 		*ptr = pdp->par_nreg;
722 	} else {
723 		off_t *size = (off_t *)result;
724 
725 		ptr = (int *)arg;
726 		n = *ptr;
727 		if (n >= pdp->par_nreg) {
728 			return (DDI_FAILURE);
729 		}
730 		*size = (off_t)pdp->par_reg[n].regspec_size;
731 	}
732 	return (DDI_SUCCESS);
733 }
734 
735 
736 /*
737  * rootnex_ctl_reportdev()
738  *
739  */
740 static int
741 rootnex_ctl_reportdev(dev_info_t *dev)
742 {
743 	int i, n, len, f_len = 0;
744 	char *buf;
745 
746 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
747 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
748 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
749 	len = strlen(buf);
750 
751 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
752 
753 		struct regspec *rp = sparc_pd_getreg(dev, i);
754 
755 		if (i == 0)
756 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
757 			    ": ");
758 		else
759 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
760 			    " and ");
761 		len = strlen(buf);
762 
763 		switch (rp->regspec_bustype) {
764 
765 		case BTEISA:
766 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
767 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
768 			break;
769 
770 		case BTISA:
771 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
772 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
773 			break;
774 
775 		default:
776 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
777 			    "space %x offset %x",
778 			    rp->regspec_bustype, rp->regspec_addr);
779 			break;
780 		}
781 		len = strlen(buf);
782 	}
783 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
784 		int pri;
785 
786 		if (i != 0) {
787 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
788 			    ",");
789 			len = strlen(buf);
790 		}
791 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
792 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
793 		    " sparc ipl %d", pri);
794 		len = strlen(buf);
795 	}
796 #ifdef DEBUG
797 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
798 		cmn_err(CE_NOTE, "next message is truncated: "
799 		    "printed length 1024, real length %d", f_len);
800 	}
801 #endif /* DEBUG */
802 	cmn_err(CE_CONT, "?%s\n", buf);
803 	kmem_free(buf, REPORTDEV_BUFSIZE);
804 	return (DDI_SUCCESS);
805 }
806 
807 
808 /*
809  * ******************
810  *  map related code
811  * ******************
812  */
813 
814 /*
815  * rootnex_map()
816  *
817  */
818 static int
819 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
820     off_t len, caddr_t *vaddrp)
821 {
822 	struct regspec *rp, tmp_reg;
823 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
824 	int error;
825 
826 	mp = &mr;
827 
828 	switch (mp->map_op)  {
829 	case DDI_MO_MAP_LOCKED:
830 	case DDI_MO_UNMAP:
831 	case DDI_MO_MAP_HANDLE:
832 		break;
833 	default:
834 #ifdef	DDI_MAP_DEBUG
835 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
836 		    mp->map_op);
837 #endif	/* DDI_MAP_DEBUG */
838 		return (DDI_ME_UNIMPLEMENTED);
839 	}
840 
841 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
842 #ifdef	DDI_MAP_DEBUG
843 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
844 #endif	/* DDI_MAP_DEBUG */
845 		return (DDI_ME_UNIMPLEMENTED);
846 	}
847 
848 	/*
849 	 * First, if given an rnumber, convert it to a regspec...
850 	 * (Presumably, this is on behalf of a child of the root node?)
851 	 */
852 
853 	if (mp->map_type == DDI_MT_RNUMBER)  {
854 
855 		int rnumber = mp->map_obj.rnumber;
856 #ifdef	DDI_MAP_DEBUG
857 		static char *out_of_range =
858 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
859 #endif	/* DDI_MAP_DEBUG */
860 
861 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
862 		if (rp == NULL)  {
863 #ifdef	DDI_MAP_DEBUG
864 			cmn_err(CE_WARN, out_of_range, rnumber,
865 			    ddi_get_name(rdip));
866 #endif	/* DDI_MAP_DEBUG */
867 			return (DDI_ME_RNUMBER_RANGE);
868 		}
869 
870 		/*
871 		 * Convert the given ddi_map_req_t from rnumber to regspec...
872 		 */
873 
874 		mp->map_type = DDI_MT_REGSPEC;
875 		mp->map_obj.rp = rp;
876 	}
877 
878 	/*
879 	 * Adjust offset and length correspnding to called values...
880 	 * XXX: A non-zero length means override the one in the regspec
881 	 * XXX: (regardless of what's in the parent's range?)
882 	 */
883 
884 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
885 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
886 
887 #ifdef	DDI_MAP_DEBUG
888 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
889 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
890 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset,
891 	    len, mp->map_handlep);
892 #endif	/* DDI_MAP_DEBUG */
893 
894 	/*
895 	 * I/O or memory mapping:
896 	 *
897 	 *	<bustype=0, addr=x, len=x>: memory
898 	 *	<bustype=1, addr=x, len=x>: i/o
899 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
900 	 */
901 
902 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
903 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
904 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
905 		    ddi_get_name(rdip), rp->regspec_bustype,
906 		    rp->regspec_addr, rp->regspec_size);
907 		return (DDI_ME_INVAL);
908 	}
909 
910 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
911 		/*
912 		 * compatibility i/o mapping
913 		 */
914 		rp->regspec_bustype += (uint_t)offset;
915 	} else {
916 		/*
917 		 * Normal memory or i/o mapping
918 		 */
919 		rp->regspec_addr += (uint_t)offset;
920 	}
921 
922 	if (len != 0)
923 		rp->regspec_size = (uint_t)len;
924 
925 #ifdef	DDI_MAP_DEBUG
926 	cmn_err(CE_CONT, "             <%s,%s> <0x%x, 0x%x, 0x%d> offset %d "
927 	    "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
928 	    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
929 	    offset, len, mp->map_handlep);
930 #endif	/* DDI_MAP_DEBUG */
931 
932 	/*
933 	 * Apply any parent ranges at this level, if applicable.
934 	 * (This is where nexus specific regspec translation takes place.
935 	 * Use of this function is implicit agreement that translation is
936 	 * provided via ddi_apply_range.)
937 	 */
938 
939 #ifdef	DDI_MAP_DEBUG
940 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
941 	    ddi_get_name(dip), ddi_get_name(rdip));
942 #endif	/* DDI_MAP_DEBUG */
943 
944 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
945 		return (error);
946 
947 	switch (mp->map_op)  {
948 	case DDI_MO_MAP_LOCKED:
949 
950 		/*
951 		 * Set up the locked down kernel mapping to the regspec...
952 		 */
953 
954 		return (rootnex_map_regspec(mp, vaddrp));
955 
956 	case DDI_MO_UNMAP:
957 
958 		/*
959 		 * Release mapping...
960 		 */
961 
962 		return (rootnex_unmap_regspec(mp, vaddrp));
963 
964 	case DDI_MO_MAP_HANDLE:
965 
966 		return (rootnex_map_handle(mp));
967 
968 	default:
969 		return (DDI_ME_UNIMPLEMENTED);
970 	}
971 }
972 
973 
974 /*
975  * rootnex_map_fault()
976  *
977  *	fault in mappings for requestors
978  */
979 /*ARGSUSED*/
980 static int
981 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
982     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
983     uint_t lock)
984 {
985 
986 #ifdef	DDI_MAP_DEBUG
987 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
988 	ddi_map_debug(" Seg <%s>\n",
989 	    seg->s_ops == &segdev_ops ? "segdev" :
990 	    seg == &kvseg ? "segkmem" : "NONE!");
991 #endif	/* DDI_MAP_DEBUG */
992 
993 	/*
994 	 * This is all terribly broken, but it is a start
995 	 *
996 	 * XXX	Note that this test means that segdev_ops
997 	 *	must be exported from seg_dev.c.
998 	 * XXX	What about devices with their own segment drivers?
999 	 */
1000 	if (seg->s_ops == &segdev_ops) {
1001 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
1002 
1003 		if (hat == NULL) {
1004 			/*
1005 			 * This is one plausible interpretation of
1006 			 * a null hat i.e. use the first hat on the
1007 			 * address space hat list which by convention is
1008 			 * the hat of the system MMU.  At alternative
1009 			 * would be to panic .. this might well be better ..
1010 			 */
1011 			ASSERT(AS_READ_HELD(seg->s_as));
1012 			hat = seg->s_as->a_hat;
1013 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1014 		}
1015 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1016 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1017 	} else if (seg == &kvseg && dp == NULL) {
1018 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1019 		    HAT_LOAD_LOCK);
1020 	} else
1021 		return (DDI_FAILURE);
1022 	return (DDI_SUCCESS);
1023 }
1024 
1025 
1026 /*
1027  * rootnex_map_regspec()
1028  *     we don't support mapping of I/O cards above 4Gb
1029  */
1030 static int
1031 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1032 {
1033 	rootnex_addr_t rbase;
1034 	void *cvaddr;
1035 	uint_t npages, pgoffset;
1036 	struct regspec *rp;
1037 	ddi_acc_hdl_t *hp;
1038 	ddi_acc_impl_t *ap;
1039 	uint_t	hat_acc_flags;
1040 	paddr_t pbase;
1041 
1042 	rp = mp->map_obj.rp;
1043 	hp = mp->map_handlep;
1044 
1045 #ifdef	DDI_MAP_DEBUG
1046 	ddi_map_debug(
1047 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1048 	    rp->regspec_bustype, rp->regspec_addr,
1049 	    rp->regspec_size, mp->map_handlep);
1050 #endif	/* DDI_MAP_DEBUG */
1051 
1052 	/*
1053 	 * I/O or memory mapping
1054 	 *
1055 	 *	<bustype=0, addr=x, len=x>: memory
1056 	 *	<bustype=1, addr=x, len=x>: i/o
1057 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1058 	 */
1059 
1060 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1061 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1062 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1063 		    rp->regspec_addr, rp->regspec_size);
1064 		return (DDI_FAILURE);
1065 	}
1066 
1067 	if (rp->regspec_bustype != 0) {
1068 		/*
1069 		 * I/O space - needs a handle.
1070 		 */
1071 		if (hp == NULL) {
1072 			return (DDI_FAILURE);
1073 		}
1074 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1075 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1076 		impl_acc_hdl_init(hp);
1077 
1078 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1079 #ifdef  DDI_MAP_DEBUG
1080 			ddi_map_debug("rootnex_map_regspec: mmap() "
1081 			    "to I/O space is not supported.\n");
1082 #endif  /* DDI_MAP_DEBUG */
1083 			return (DDI_ME_INVAL);
1084 		} else {
1085 			/*
1086 			 * 1275-compliant vs. compatibility i/o mapping
1087 			 */
1088 			*vaddrp =
1089 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1090 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1091 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1092 #ifdef __xpv
1093 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1094 				hp->ah_pfn = xen_assign_pfn(
1095 				    mmu_btop((ulong_t)rp->regspec_addr &
1096 				    MMU_PAGEMASK));
1097 			} else {
1098 				hp->ah_pfn = mmu_btop(
1099 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1100 			}
1101 #else
1102 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1103 			    MMU_PAGEMASK);
1104 #endif
1105 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1106 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1107 		}
1108 
1109 #ifdef	DDI_MAP_DEBUG
1110 		ddi_map_debug(
1111 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1112 		    rp->regspec_size, *vaddrp);
1113 #endif	/* DDI_MAP_DEBUG */
1114 		return (DDI_SUCCESS);
1115 	}
1116 
1117 	/*
1118 	 * Memory space
1119 	 */
1120 
1121 	if (hp != NULL) {
1122 		/*
1123 		 * hat layer ignores
1124 		 * hp->ah_acc.devacc_attr_endian_flags.
1125 		 */
1126 		switch (hp->ah_acc.devacc_attr_dataorder) {
1127 		case DDI_STRICTORDER_ACC:
1128 			hat_acc_flags = HAT_STRICTORDER;
1129 			break;
1130 		case DDI_UNORDERED_OK_ACC:
1131 			hat_acc_flags = HAT_UNORDERED_OK;
1132 			break;
1133 		case DDI_MERGING_OK_ACC:
1134 			hat_acc_flags = HAT_MERGING_OK;
1135 			break;
1136 		case DDI_LOADCACHING_OK_ACC:
1137 			hat_acc_flags = HAT_LOADCACHING_OK;
1138 			break;
1139 		case DDI_STORECACHING_OK_ACC:
1140 			hat_acc_flags = HAT_STORECACHING_OK;
1141 			break;
1142 		}
1143 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1144 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1145 		impl_acc_hdl_init(hp);
1146 		hp->ah_hat_flags = hat_acc_flags;
1147 	} else {
1148 		hat_acc_flags = HAT_STRICTORDER;
1149 	}
1150 
1151 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1152 #ifdef __xpv
1153 	/*
1154 	 * If we're dom0, we're using a real device so we need to translate
1155 	 * the MA to a PA.
1156 	 */
1157 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1158 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1159 	} else {
1160 		pbase = rbase;
1161 	}
1162 #else
1163 	pbase = rbase;
1164 #endif
1165 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1166 
1167 	if (rp->regspec_size == 0) {
1168 #ifdef  DDI_MAP_DEBUG
1169 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1170 #endif  /* DDI_MAP_DEBUG */
1171 		return (DDI_ME_INVAL);
1172 	}
1173 
1174 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1175 		/* extra cast to make gcc happy */
1176 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1177 	} else {
1178 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1179 
1180 #ifdef	DDI_MAP_DEBUG
1181 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1182 		    "physical %llx", npages, pbase);
1183 #endif	/* DDI_MAP_DEBUG */
1184 
1185 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1186 		if (cvaddr == NULL)
1187 			return (DDI_ME_NORESOURCES);
1188 
1189 		/*
1190 		 * Now map in the pages we've allocated...
1191 		 */
1192 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1193 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1194 		    HAT_LOAD_LOCK);
1195 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1196 
1197 		/* save away pfn and npages for FMA */
1198 		hp = mp->map_handlep;
1199 		if (hp) {
1200 			hp->ah_pfn = mmu_btop(pbase);
1201 			hp->ah_pnum = npages;
1202 		}
1203 	}
1204 
1205 #ifdef	DDI_MAP_DEBUG
1206 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1207 #endif	/* DDI_MAP_DEBUG */
1208 	return (DDI_SUCCESS);
1209 }
1210 
1211 
1212 /*
1213  * rootnex_unmap_regspec()
1214  *
1215  */
1216 static int
1217 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1218 {
1219 	caddr_t addr = (caddr_t)*vaddrp;
1220 	uint_t npages, pgoffset;
1221 	struct regspec *rp;
1222 
1223 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1224 		return (0);
1225 
1226 	rp = mp->map_obj.rp;
1227 
1228 	if (rp->regspec_size == 0) {
1229 #ifdef  DDI_MAP_DEBUG
1230 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1231 #endif  /* DDI_MAP_DEBUG */
1232 		return (DDI_ME_INVAL);
1233 	}
1234 
1235 	/*
1236 	 * I/O or memory mapping:
1237 	 *
1238 	 *	<bustype=0, addr=x, len=x>: memory
1239 	 *	<bustype=1, addr=x, len=x>: i/o
1240 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1241 	 */
1242 	if (rp->regspec_bustype != 0) {
1243 		/*
1244 		 * This is I/O space, which requires no particular
1245 		 * processing on unmap since it isn't mapped in the
1246 		 * first place.
1247 		 */
1248 		return (DDI_SUCCESS);
1249 	}
1250 
1251 	/*
1252 	 * Memory space
1253 	 */
1254 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1255 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1256 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1257 	device_arena_free(addr - pgoffset, ptob(npages));
1258 
1259 	/*
1260 	 * Destroy the pointer - the mapping has logically gone
1261 	 */
1262 	*vaddrp = NULL;
1263 
1264 	return (DDI_SUCCESS);
1265 }
1266 
1267 
1268 /*
1269  * rootnex_map_handle()
1270  *
1271  */
1272 static int
1273 rootnex_map_handle(ddi_map_req_t *mp)
1274 {
1275 	rootnex_addr_t rbase;
1276 	ddi_acc_hdl_t *hp;
1277 	uint_t pgoffset;
1278 	struct regspec *rp;
1279 	paddr_t pbase;
1280 
1281 	rp = mp->map_obj.rp;
1282 
1283 #ifdef	DDI_MAP_DEBUG
1284 	ddi_map_debug(
1285 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1286 	    rp->regspec_bustype, rp->regspec_addr,
1287 	    rp->regspec_size, mp->map_handlep);
1288 #endif	/* DDI_MAP_DEBUG */
1289 
1290 	/*
1291 	 * I/O or memory mapping:
1292 	 *
1293 	 *	<bustype=0, addr=x, len=x>: memory
1294 	 *	<bustype=1, addr=x, len=x>: i/o
1295 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1296 	 */
1297 	if (rp->regspec_bustype != 0) {
1298 		/*
1299 		 * This refers to I/O space, and we don't support "mapping"
1300 		 * I/O space to a user.
1301 		 */
1302 		return (DDI_FAILURE);
1303 	}
1304 
1305 	/*
1306 	 * Set up the hat_flags for the mapping.
1307 	 */
1308 	hp = mp->map_handlep;
1309 
1310 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1311 	case DDI_NEVERSWAP_ACC:
1312 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1313 		break;
1314 	case DDI_STRUCTURE_LE_ACC:
1315 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1316 		break;
1317 	case DDI_STRUCTURE_BE_ACC:
1318 		return (DDI_FAILURE);
1319 	default:
1320 		return (DDI_REGS_ACC_CONFLICT);
1321 	}
1322 
1323 	switch (hp->ah_acc.devacc_attr_dataorder) {
1324 	case DDI_STRICTORDER_ACC:
1325 		break;
1326 	case DDI_UNORDERED_OK_ACC:
1327 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1328 		break;
1329 	case DDI_MERGING_OK_ACC:
1330 		hp->ah_hat_flags |= HAT_MERGING_OK;
1331 		break;
1332 	case DDI_LOADCACHING_OK_ACC:
1333 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1334 		break;
1335 	case DDI_STORECACHING_OK_ACC:
1336 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1337 		break;
1338 	default:
1339 		return (DDI_FAILURE);
1340 	}
1341 
1342 	rbase = (rootnex_addr_t)rp->regspec_addr &
1343 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1344 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1345 
1346 	if (rp->regspec_size == 0)
1347 		return (DDI_ME_INVAL);
1348 
1349 #ifdef __xpv
1350 	/*
1351 	 * If we're dom0, we're using a real device so we need to translate
1352 	 * the MA to a PA.
1353 	 */
1354 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1355 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1356 		    (rbase & MMU_PAGEOFFSET);
1357 	} else {
1358 		pbase = rbase;
1359 	}
1360 #else
1361 	pbase = rbase;
1362 #endif
1363 
1364 	hp->ah_pfn = mmu_btop(pbase);
1365 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1366 
1367 	return (DDI_SUCCESS);
1368 }
1369 
1370 
1371 
1372 /*
1373  * ************************
1374  *  interrupt related code
1375  * ************************
1376  */
1377 
1378 /*
1379  * rootnex_intr_ops()
1380  *	bus_intr_op() function for interrupt support
1381  */
1382 /* ARGSUSED */
1383 static int
1384 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1385     ddi_intr_handle_impl_t *hdlp, void *result)
1386 {
1387 	struct intrspec			*ispec;
1388 
1389 	DDI_INTR_NEXDBG((CE_CONT,
1390 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1391 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1392 
1393 	/* Process the interrupt operation */
1394 	switch (intr_op) {
1395 	case DDI_INTROP_GETCAP:
1396 		/* First check with pcplusmp */
1397 		if (psm_intr_ops == NULL)
1398 			return (DDI_FAILURE);
1399 
1400 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1401 			*(int *)result = 0;
1402 			return (DDI_FAILURE);
1403 		}
1404 		break;
1405 	case DDI_INTROP_SETCAP:
1406 		if (psm_intr_ops == NULL)
1407 			return (DDI_FAILURE);
1408 
1409 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1410 			return (DDI_FAILURE);
1411 		break;
1412 	case DDI_INTROP_ALLOC:
1413 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1414 		return (rootnex_alloc_intr_fixed(rdip, hdlp, result));
1415 	case DDI_INTROP_FREE:
1416 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1417 		return (rootnex_free_intr_fixed(rdip, hdlp));
1418 	case DDI_INTROP_GETPRI:
1419 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1420 			return (DDI_FAILURE);
1421 		*(int *)result = ispec->intrspec_pri;
1422 		break;
1423 	case DDI_INTROP_SETPRI:
1424 		/* Validate the interrupt priority passed to us */
1425 		if (*(int *)result > LOCK_LEVEL)
1426 			return (DDI_FAILURE);
1427 
1428 		/* Ensure that PSM is all initialized and ispec is ok */
1429 		if ((psm_intr_ops == NULL) ||
1430 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1431 			return (DDI_FAILURE);
1432 
1433 		/* Change the priority */
1434 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1435 		    PSM_FAILURE)
1436 			return (DDI_FAILURE);
1437 
1438 		/* update the ispec with the new priority */
1439 		ispec->intrspec_pri =  *(int *)result;
1440 		break;
1441 	case DDI_INTROP_ADDISR:
1442 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1443 			return (DDI_FAILURE);
1444 		ispec->intrspec_func = hdlp->ih_cb_func;
1445 		break;
1446 	case DDI_INTROP_REMISR:
1447 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1448 			return (DDI_FAILURE);
1449 		ispec->intrspec_func = (uint_t (*)()) 0;
1450 		break;
1451 	case DDI_INTROP_ENABLE:
1452 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1453 			return (DDI_FAILURE);
1454 
1455 		/* Call psmi to translate irq with the dip */
1456 		if (psm_intr_ops == NULL)
1457 			return (DDI_FAILURE);
1458 
1459 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1460 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1461 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1462 			return (DDI_FAILURE);
1463 
1464 		/* Add the interrupt handler */
1465 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1466 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1467 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1468 			return (DDI_FAILURE);
1469 		break;
1470 	case DDI_INTROP_DISABLE:
1471 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1472 			return (DDI_FAILURE);
1473 
1474 		/* Call psm_ops() to translate irq with the dip */
1475 		if (psm_intr_ops == NULL)
1476 			return (DDI_FAILURE);
1477 
1478 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1479 		(void) (*psm_intr_ops)(rdip, hdlp,
1480 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1481 
1482 		/* Remove the interrupt handler */
1483 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1484 		    hdlp->ih_cb_func, hdlp->ih_vector);
1485 		break;
1486 	case DDI_INTROP_SETMASK:
1487 		if (psm_intr_ops == NULL)
1488 			return (DDI_FAILURE);
1489 
1490 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1491 			return (DDI_FAILURE);
1492 		break;
1493 	case DDI_INTROP_CLRMASK:
1494 		if (psm_intr_ops == NULL)
1495 			return (DDI_FAILURE);
1496 
1497 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1498 			return (DDI_FAILURE);
1499 		break;
1500 	case DDI_INTROP_GETPENDING:
1501 		if (psm_intr_ops == NULL)
1502 			return (DDI_FAILURE);
1503 
1504 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1505 		    result)) {
1506 			*(int *)result = 0;
1507 			return (DDI_FAILURE);
1508 		}
1509 		break;
1510 	case DDI_INTROP_NAVAIL:
1511 	case DDI_INTROP_NINTRS:
1512 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1513 		if (*(int *)result == 0) {
1514 			/*
1515 			 * Special case for 'pcic' driver' only. This driver
1516 			 * driver is a child of 'isa' and 'rootnex' drivers.
1517 			 *
1518 			 * See detailed comments on this in the function
1519 			 * rootnex_get_ispec().
1520 			 *
1521 			 * Children of 'pcic' send 'NINITR' request all the
1522 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1523 			 * field may not initialized. So, we fake it here
1524 			 * to return 1 (a la what PCMCIA nexus does).
1525 			 */
1526 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1527 				*(int *)result = 1;
1528 			else
1529 				return (DDI_FAILURE);
1530 		}
1531 		break;
1532 	case DDI_INTROP_SUPPORTED_TYPES:
1533 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1534 		break;
1535 	default:
1536 		return (DDI_FAILURE);
1537 	}
1538 
1539 	return (DDI_SUCCESS);
1540 }
1541 
1542 
1543 /*
1544  * rootnex_get_ispec()
1545  *	convert an interrupt number to an interrupt specification.
1546  *	The interrupt number determines which interrupt spec will be
1547  *	returned if more than one exists.
1548  *
1549  *	Look into the parent private data area of the 'rdip' to find out
1550  *	the interrupt specification.  First check to make sure there is
1551  *	one that matchs "inumber" and then return a pointer to it.
1552  *
1553  *	Return NULL if one could not be found.
1554  *
1555  *	NOTE: This is needed for rootnex_intr_ops()
1556  */
1557 static struct intrspec *
1558 rootnex_get_ispec(dev_info_t *rdip, int inum)
1559 {
1560 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1561 
1562 	/*
1563 	 * Special case handling for drivers that provide their own
1564 	 * intrspec structures instead of relying on the DDI framework.
1565 	 *
1566 	 * A broken hardware driver in ON could potentially provide its
1567 	 * own intrspec structure, instead of relying on the hardware.
1568 	 * If these drivers are children of 'rootnex' then we need to
1569 	 * continue to provide backward compatibility to them here.
1570 	 *
1571 	 * Following check is a special case for 'pcic' driver which
1572 	 * was found to have broken hardwre andby provides its own intrspec.
1573 	 *
1574 	 * Verbatim comments from this driver are shown here:
1575 	 * "Don't use the ddi_add_intr since we don't have a
1576 	 * default intrspec in all cases."
1577 	 *
1578 	 * Since an 'ispec' may not be always created for it,
1579 	 * check for that and create one if so.
1580 	 *
1581 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1582 	 */
1583 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1584 		pdp->par_nintr = 1;
1585 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1586 		    pdp->par_nintr, KM_SLEEP);
1587 	}
1588 
1589 	/* Validate the interrupt number */
1590 	if (inum >= pdp->par_nintr)
1591 		return (NULL);
1592 
1593 	/* Get the interrupt structure pointer and return that */
1594 	return ((struct intrspec *)&pdp->par_intr[inum]);
1595 }
1596 
1597 /*
1598  * Allocate interrupt vector for FIXED (legacy) type.
1599  */
1600 static int
1601 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp,
1602     void *result)
1603 {
1604 	struct intrspec		*ispec;
1605 	ddi_intr_handle_impl_t	info_hdl;
1606 	int			ret;
1607 	int			free_phdl = 0;
1608 	apic_get_type_t		type_info;
1609 
1610 	if (psm_intr_ops == NULL)
1611 		return (DDI_FAILURE);
1612 
1613 	if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1614 		return (DDI_FAILURE);
1615 
1616 	/*
1617 	 * If the PSM module is "APIX" then pass the request for it
1618 	 * to allocate the vector now.
1619 	 */
1620 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1621 	info_hdl.ih_private = &type_info;
1622 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1623 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1624 		if (hdlp->ih_private == NULL) { /* allocate phdl structure */
1625 			free_phdl = 1;
1626 			i_ddi_alloc_intr_phdl(hdlp);
1627 		}
1628 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1629 		ret = (*psm_intr_ops)(rdip, hdlp,
1630 		    PSM_INTR_OP_ALLOC_VECTORS, result);
1631 		if (free_phdl) { /* free up the phdl structure */
1632 			free_phdl = 0;
1633 			i_ddi_free_intr_phdl(hdlp);
1634 			hdlp->ih_private = NULL;
1635 		}
1636 	} else {
1637 		/*
1638 		 * No APIX module; fall back to the old scheme where the
1639 		 * interrupt vector is allocated during ddi_enable_intr() call.
1640 		 */
1641 		hdlp->ih_pri = ispec->intrspec_pri;
1642 		*(int *)result = hdlp->ih_scratch1;
1643 		ret = DDI_SUCCESS;
1644 	}
1645 
1646 	return (ret);
1647 }
1648 
1649 /*
1650  * Free up interrupt vector for FIXED (legacy) type.
1651  */
1652 static int
1653 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp)
1654 {
1655 	struct intrspec			*ispec;
1656 	struct ddi_parent_private_data	*pdp;
1657 	ddi_intr_handle_impl_t		info_hdl;
1658 	int				ret;
1659 	apic_get_type_t			type_info;
1660 
1661 	if (psm_intr_ops == NULL)
1662 		return (DDI_FAILURE);
1663 
1664 	/*
1665 	 * If the PSM module is "APIX" then pass the request for it
1666 	 * to free up the vector now.
1667 	 */
1668 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1669 	info_hdl.ih_private = &type_info;
1670 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1671 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1672 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1673 			return (DDI_FAILURE);
1674 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1675 		ret = (*psm_intr_ops)(rdip, hdlp,
1676 		    PSM_INTR_OP_FREE_VECTORS, NULL);
1677 	} else {
1678 		/*
1679 		 * No APIX module; fall back to the old scheme where
1680 		 * the interrupt vector was already freed during
1681 		 * ddi_disable_intr() call.
1682 		 */
1683 		ret = DDI_SUCCESS;
1684 	}
1685 
1686 	pdp = ddi_get_parent_data(rdip);
1687 
1688 	/*
1689 	 * Special case for 'pcic' driver' only.
1690 	 * If an intrspec was created for it, clean it up here
1691 	 * See detailed comments on this in the function
1692 	 * rootnex_get_ispec().
1693 	 */
1694 	if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1695 		kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1696 		    pdp->par_nintr);
1697 		/*
1698 		 * Set it to zero; so that
1699 		 * DDI framework doesn't free it again
1700 		 */
1701 		pdp->par_intr = NULL;
1702 		pdp->par_nintr = 0;
1703 	}
1704 
1705 	return (ret);
1706 }
1707 
1708 
1709 /*
1710  * ******************
1711  *  dma related code
1712  * ******************
1713  */
1714 
1715 /*ARGSUSED*/
1716 static int
1717 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1718     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1719     ddi_dma_handle_t *handlep)
1720 {
1721 	uint64_t maxsegmentsize_ll;
1722 	uint_t maxsegmentsize;
1723 	ddi_dma_impl_t *hp;
1724 	rootnex_dma_t *dma;
1725 	uint64_t count_max;
1726 	uint64_t seg;
1727 	int kmflag;
1728 	int e;
1729 
1730 
1731 	/* convert our sleep flags */
1732 	if (waitfp == DDI_DMA_SLEEP) {
1733 		kmflag = KM_SLEEP;
1734 	} else {
1735 		kmflag = KM_NOSLEEP;
1736 	}
1737 
1738 	/*
1739 	 * We try to do only one memory allocation here. We'll do a little
1740 	 * pointer manipulation later. If the bind ends up taking more than
1741 	 * our prealloc's space, we'll have to allocate more memory in the
1742 	 * bind operation. Not great, but much better than before and the
1743 	 * best we can do with the current bind interfaces.
1744 	 */
1745 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1746 	if (hp == NULL)
1747 		return (DDI_DMA_NORESOURCES);
1748 
1749 	/* Do our pointer manipulation now, align the structures */
1750 	hp->dmai_private = (void *)(((uintptr_t)hp +
1751 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1752 	dma = (rootnex_dma_t *)hp->dmai_private;
1753 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1754 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1755 
1756 	/* setup the handle */
1757 	rootnex_clean_dmahdl(hp);
1758 	hp->dmai_error.err_fep = NULL;
1759 	hp->dmai_error.err_cf = NULL;
1760 	dma->dp_dip = rdip;
1761 	dma->dp_sglinfo.si_flags = attr->dma_attr_flags;
1762 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1763 
1764 	/*
1765 	 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU
1766 	 * is being used. Set the upper limit to the seg value.
1767 	 * There will be enough DVMA space to always get addresses
1768 	 * that will match the constraints.
1769 	 */
1770 	if (IOMMU_USED(rdip) &&
1771 	    (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) {
1772 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg;
1773 		dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG;
1774 	} else
1775 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1776 
1777 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1778 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1779 	hp->dmai_rdip = rdip;
1780 	hp->dmai_attr = *attr;
1781 
1782 	if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr)
1783 		dma->dp_sglinfo.si_cancross = B_FALSE;
1784 	else
1785 		dma->dp_sglinfo.si_cancross = B_TRUE;
1786 
1787 	/* we don't need to worry about the SPL since we do a tryenter */
1788 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1789 
1790 	/*
1791 	 * Figure out our maximum segment size. If the segment size is greater
1792 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1793 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1794 	 * dma_attr_count_max are size-1 type values.
1795 	 *
1796 	 * Maximum segment size is the largest physically contiguous chunk of
1797 	 * memory that we can return from a bind (i.e. the maximum size of a
1798 	 * single cookie).
1799 	 */
1800 
1801 	/* handle the rollover cases */
1802 	seg = attr->dma_attr_seg + 1;
1803 	if (seg < attr->dma_attr_seg) {
1804 		seg = attr->dma_attr_seg;
1805 	}
1806 	count_max = attr->dma_attr_count_max + 1;
1807 	if (count_max < attr->dma_attr_count_max) {
1808 		count_max = attr->dma_attr_count_max;
1809 	}
1810 
1811 	/*
1812 	 * granularity may or may not be a power of two. If it isn't, we can't
1813 	 * use a simple mask.
1814 	 */
1815 	if (!ISP2(attr->dma_attr_granular)) {
1816 		dma->dp_granularity_power_2 = B_FALSE;
1817 	} else {
1818 		dma->dp_granularity_power_2 = B_TRUE;
1819 	}
1820 
1821 	/*
1822 	 * maxxfer should be a whole multiple of granularity. If we're going to
1823 	 * break up a window because we're greater than maxxfer, we might as
1824 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1825 	 * worry about triming the window later on for this case.
1826 	 */
1827 	if (attr->dma_attr_granular > 1) {
1828 		if (dma->dp_granularity_power_2) {
1829 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1830 			    (attr->dma_attr_maxxfer &
1831 			    (attr->dma_attr_granular - 1));
1832 		} else {
1833 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1834 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1835 		}
1836 	} else {
1837 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1838 	}
1839 
1840 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1841 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1842 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1843 		maxsegmentsize = 0xFFFFFFFF;
1844 	} else {
1845 		maxsegmentsize = maxsegmentsize_ll;
1846 	}
1847 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1848 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1849 
1850 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1851 	if (rootnex_alloc_check_parms) {
1852 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1853 		if (e != DDI_SUCCESS) {
1854 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1855 			(void) rootnex_dma_freehdl(dip, rdip,
1856 			    (ddi_dma_handle_t)hp);
1857 			return (e);
1858 		}
1859 	}
1860 
1861 	*handlep = (ddi_dma_handle_t)hp;
1862 
1863 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1864 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1865 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1866 
1867 	return (DDI_SUCCESS);
1868 }
1869 
1870 
1871 /*
1872  * rootnex_dma_allochdl()
1873  *    called from ddi_dma_alloc_handle().
1874  */
1875 static int
1876 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1877     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1878 {
1879 	int retval = DDI_SUCCESS;
1880 #if defined(__amd64) && !defined(__xpv)
1881 
1882 	if (IOMMU_UNITIALIZED(rdip)) {
1883 		retval = iommulib_nex_open(dip, rdip);
1884 
1885 		if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP)
1886 			return (retval);
1887 	}
1888 
1889 	if (IOMMU_UNUSED(rdip)) {
1890 		retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1891 		    handlep);
1892 	} else {
1893 		retval = iommulib_nexdma_allochdl(dip, rdip, attr,
1894 		    waitfp, arg, handlep);
1895 	}
1896 #else
1897 	retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1898 	    handlep);
1899 #endif
1900 	switch (retval) {
1901 	case DDI_DMA_NORESOURCES:
1902 		if (waitfp != DDI_DMA_DONTWAIT) {
1903 			ddi_set_callback(waitfp, arg,
1904 			    &rootnex_state->r_dvma_call_list_id);
1905 		}
1906 		break;
1907 	case DDI_SUCCESS:
1908 		ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL);
1909 		break;
1910 	default:
1911 		break;
1912 	}
1913 	return (retval);
1914 }
1915 
1916 /*ARGSUSED*/
1917 static int
1918 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1919     ddi_dma_handle_t handle)
1920 {
1921 	ddi_dma_impl_t *hp;
1922 	rootnex_dma_t *dma;
1923 
1924 
1925 	hp = (ddi_dma_impl_t *)handle;
1926 	dma = (rootnex_dma_t *)hp->dmai_private;
1927 
1928 	/* unbind should have been called first */
1929 	ASSERT(!dma->dp_inuse);
1930 
1931 	mutex_destroy(&dma->dp_mutex);
1932 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1933 
1934 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1935 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1936 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1937 
1938 	return (DDI_SUCCESS);
1939 }
1940 
1941 /*
1942  * rootnex_dma_freehdl()
1943  *    called from ddi_dma_free_handle().
1944  */
1945 static int
1946 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1947 {
1948 	int ret;
1949 
1950 	ndi_fmc_remove(rdip, DMA_HANDLE, handle);
1951 #if defined(__amd64) && !defined(__xpv)
1952 	if (IOMMU_USED(rdip))
1953 		ret = iommulib_nexdma_freehdl(dip, rdip, handle);
1954 	else
1955 #endif
1956 	ret = rootnex_coredma_freehdl(dip, rdip, handle);
1957 
1958 	if (rootnex_state->r_dvma_call_list_id)
1959 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1960 
1961 	return (ret);
1962 }
1963 
1964 /*ARGSUSED*/
1965 static int
1966 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1967     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1968     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1969 {
1970 	rootnex_sglinfo_t *sinfo;
1971 	ddi_dma_obj_t *dmao;
1972 #if defined(__amd64) && !defined(__xpv)
1973 	struct dvmaseg *dvs;
1974 	ddi_dma_cookie_t *cookie;
1975 #endif
1976 	ddi_dma_attr_t *attr;
1977 	ddi_dma_impl_t *hp;
1978 	rootnex_dma_t *dma;
1979 	int kmflag;
1980 	int e;
1981 	uint_t ncookies;
1982 
1983 	hp = (ddi_dma_impl_t *)handle;
1984 	dma = (rootnex_dma_t *)hp->dmai_private;
1985 	dmao = &dma->dp_dma;
1986 	sinfo = &dma->dp_sglinfo;
1987 	attr = &hp->dmai_attr;
1988 
1989 	/* convert the sleep flags */
1990 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1991 		dma->dp_sleep_flags = kmflag = KM_SLEEP;
1992 	} else {
1993 		dma->dp_sleep_flags = kmflag = KM_NOSLEEP;
1994 	}
1995 
1996 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1997 
1998 	/*
1999 	 * This is useful for debugging a driver. Not as useful in a production
2000 	 * system. The only time this will fail is if you have a driver bug.
2001 	 */
2002 	if (rootnex_bind_check_inuse) {
2003 		/*
2004 		 * No one else should ever have this lock unless someone else
2005 		 * is trying to use this handle. So contention on the lock
2006 		 * is the same as inuse being set.
2007 		 */
2008 		e = mutex_tryenter(&dma->dp_mutex);
2009 		if (e == 0) {
2010 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2011 			return (DDI_DMA_INUSE);
2012 		}
2013 		if (dma->dp_inuse) {
2014 			mutex_exit(&dma->dp_mutex);
2015 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2016 			return (DDI_DMA_INUSE);
2017 		}
2018 		dma->dp_inuse = B_TRUE;
2019 		mutex_exit(&dma->dp_mutex);
2020 	}
2021 
2022 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
2023 	if (rootnex_bind_check_parms) {
2024 		e = rootnex_valid_bind_parms(dmareq, attr);
2025 		if (e != DDI_SUCCESS) {
2026 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2027 			rootnex_clean_dmahdl(hp);
2028 			return (e);
2029 		}
2030 	}
2031 
2032 	/* save away the original bind info */
2033 	dma->dp_dma = dmareq->dmar_object;
2034 
2035 #if defined(__amd64) && !defined(__xpv)
2036 	if (IOMMU_USED(rdip)) {
2037 		dmao = &dma->dp_dvma;
2038 		e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao);
2039 		switch (e) {
2040 		case DDI_SUCCESS:
2041 			if (sinfo->si_cancross ||
2042 			    dmao->dmao_obj.dvma_obj.dv_nseg != 1 ||
2043 			    dmao->dmao_size > sinfo->si_max_cookie_size) {
2044 				dma->dp_dvma_used = B_TRUE;
2045 				break;
2046 			}
2047 			sinfo->si_sgl_size = 1;
2048 			hp->dmai_rflags |= DMP_NOSYNC;
2049 
2050 			dma->dp_dvma_used = B_TRUE;
2051 			dma->dp_need_to_free_cookie = B_FALSE;
2052 
2053 			dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0];
2054 			cookie = hp->dmai_cookie = dma->dp_cookies =
2055 			    (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2056 			cookie->dmac_laddress = dvs->dvs_start +
2057 			    dmao->dmao_obj.dvma_obj.dv_off;
2058 			cookie->dmac_size = dvs->dvs_len;
2059 			cookie->dmac_type = 0;
2060 
2061 			ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *,
2062 			    rdip);
2063 			goto fast;
2064 		case DDI_ENOTSUP:
2065 			break;
2066 		default:
2067 			rootnex_clean_dmahdl(hp);
2068 			return (e);
2069 		}
2070 	}
2071 #endif
2072 
2073 	/*
2074 	 * Figure out a rough estimate of what maximum number of pages
2075 	 * this buffer could use (a high estimate of course).
2076 	 */
2077 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
2078 
2079 	if (dma->dp_dvma_used) {
2080 		/*
2081 		 * The number of physical pages is the worst case.
2082 		 *
2083 		 * For DVMA, the worst case is the length divided
2084 		 * by the maximum cookie length, plus 1. Add to that
2085 		 * the number of segment boundaries potentially crossed, and
2086 		 * the additional number of DVMA segments that was returned.
2087 		 *
2088 		 * In the normal case, for modern devices, si_cancross will
2089 		 * be false, and dv_nseg will be 1, and the fast path will
2090 		 * have been taken above.
2091 		 */
2092 		ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size)
2093 		    + 1;
2094 		if (sinfo->si_cancross)
2095 			ncookies +=
2096 			    (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1;
2097 		ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1);
2098 
2099 		sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies);
2100 	}
2101 
2102 	/*
2103 	 * We'll use the pre-allocated cookies for any bind that will *always*
2104 	 * fit (more important to be consistent, we don't want to create
2105 	 * additional degenerate cases).
2106 	 */
2107 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
2108 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2109 		dma->dp_need_to_free_cookie = B_FALSE;
2110 		ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
2111 		    uint_t, sinfo->si_max_pages);
2112 
2113 	/*
2114 	 * For anything larger than that, we'll go ahead and allocate the
2115 	 * maximum number of pages we expect to see. Hopefuly, we won't be
2116 	 * seeing this path in the fast path for high performance devices very
2117 	 * frequently.
2118 	 *
2119 	 * a ddi bind interface that allowed the driver to provide storage to
2120 	 * the bind interface would speed this case up.
2121 	 */
2122 	} else {
2123 		/*
2124 		 * Save away how much memory we allocated. If we're doing a
2125 		 * nosleep, the alloc could fail...
2126 		 */
2127 		dma->dp_cookie_size = sinfo->si_max_pages *
2128 		    sizeof (ddi_dma_cookie_t);
2129 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
2130 		if (dma->dp_cookies == NULL) {
2131 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2132 			rootnex_clean_dmahdl(hp);
2133 			return (DDI_DMA_NORESOURCES);
2134 		}
2135 		dma->dp_need_to_free_cookie = B_TRUE;
2136 		ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip,
2137 		    uint_t, sinfo->si_max_pages);
2138 	}
2139 	hp->dmai_cookie = dma->dp_cookies;
2140 
2141 	/*
2142 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
2143 	 * looking at the constraints in the dma structure. It will then put
2144 	 * some additional state about the sgl in the dma struct (i.e. is
2145 	 * the sgl clean, or do we need to do some munging; how many pages
2146 	 * need to be copied, etc.)
2147 	 */
2148 	if (dma->dp_dvma_used)
2149 		rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2150 	else
2151 		rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2152 
2153 out:
2154 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
2155 	/* if we don't need a copy buffer, we don't need to sync */
2156 	if (sinfo->si_copybuf_req == 0) {
2157 		hp->dmai_rflags |= DMP_NOSYNC;
2158 	}
2159 
2160 	/*
2161 	 * if we don't need the copybuf and we don't need to do a partial,  we
2162 	 * hit the fast path. All the high performance devices should be trying
2163 	 * to hit this path. To hit this path, a device should be able to reach
2164 	 * all of memory, shouldn't try to bind more than it can transfer, and
2165 	 * the buffer shouldn't require more cookies than the driver/device can
2166 	 * handle [sgllen]).
2167 	 *
2168 	 * Note that negative values of dma_attr_sgllen are supposed
2169 	 * to mean unlimited, but we just cast them to mean a
2170 	 * "ridiculous large limit".  This saves some extra checks on
2171 	 * hot paths.
2172 	 */
2173 	if ((sinfo->si_copybuf_req == 0) &&
2174 	    (sinfo->si_sgl_size <= (unsigned)attr->dma_attr_sgllen) &&
2175 	    (dmao->dmao_size <= dma->dp_maxxfer)) {
2176 fast:
2177 		/*
2178 		 * If the driver supports FMA, insert the handle in the FMA DMA
2179 		 * handle cache.
2180 		 */
2181 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2182 			hp->dmai_error.err_cf = rootnex_dma_check;
2183 
2184 		/*
2185 		 * copy out the first cookie and ccountp, set the cookie
2186 		 * pointer to the second cookie. The first cookie is passed
2187 		 * back on the stack. Additional cookies are accessed via
2188 		 * ddi_dma_nextcookie()
2189 		 */
2190 		*cookiep = dma->dp_cookies[0];
2191 		*ccountp = sinfo->si_sgl_size;
2192 		hp->dmai_cookie++;
2193 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2194 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2195 		ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip,
2196 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
2197 		    uint_t, dmao->dmao_size, uint_t, *ccountp);
2198 
2199 
2200 		return (DDI_DMA_MAPPED);
2201 	}
2202 
2203 	/*
2204 	 * go to the slow path, we may need to alloc more memory, create
2205 	 * multiple windows, and munge up a sgl to make the device happy.
2206 	 */
2207 
2208 	/*
2209 	 * With the IOMMU mapobject method used, we should never hit
2210 	 * the slow path. If we do, something is seriously wrong.
2211 	 * Clean up and return an error.
2212 	 */
2213 
2214 #if defined(__amd64) && !defined(__xpv)
2215 
2216 	if (dma->dp_dvma_used) {
2217 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2218 		    &dma->dp_dvma);
2219 		e = DDI_DMA_NOMAPPING;
2220 	} else {
2221 #endif
2222 		e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma,
2223 		    kmflag);
2224 #if defined(__amd64) && !defined(__xpv)
2225 	}
2226 #endif
2227 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2228 		if (dma->dp_need_to_free_cookie) {
2229 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2230 		}
2231 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2232 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2233 		return (e);
2234 	}
2235 
2236 	/*
2237 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2238 	 * cache.
2239 	 */
2240 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2241 		hp->dmai_error.err_cf = rootnex_dma_check;
2242 
2243 	/* if the first window uses the copy buffer, sync it for the device */
2244 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2245 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2246 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2247 		    DDI_DMA_SYNC_FORDEV);
2248 	}
2249 
2250 	/*
2251 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2252 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2253 	 * If we have a partial map (i.e. multiple windows), the number of
2254 	 * cookies we return is the number of cookies in the first window.
2255 	 */
2256 	if (e == DDI_DMA_MAPPED) {
2257 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2258 		*ccountp = sinfo->si_sgl_size;
2259 		hp->dmai_nwin = 1;
2260 	} else {
2261 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2262 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2263 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2264 	}
2265 	*cookiep = dma->dp_cookies[0];
2266 	hp->dmai_cookie++;
2267 
2268 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2269 	ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2270 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2271 	    dmao->dmao_size, uint_t, *ccountp);
2272 	return (e);
2273 }
2274 
2275 /*
2276  * rootnex_dma_bindhdl()
2277  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2278  */
2279 static int
2280 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2281     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2282     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2283 {
2284 	int ret;
2285 #if defined(__amd64) && !defined(__xpv)
2286 	if (IOMMU_USED(rdip))
2287 		ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2288 		    cookiep, ccountp);
2289 	else
2290 #endif
2291 	ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2292 	    cookiep, ccountp);
2293 
2294 	if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) {
2295 		ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg,
2296 		    &rootnex_state->r_dvma_call_list_id);
2297 	}
2298 
2299 	return (ret);
2300 }
2301 
2302 
2303 
2304 /*ARGSUSED*/
2305 static int
2306 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2307     ddi_dma_handle_t handle)
2308 {
2309 	ddi_dma_impl_t *hp;
2310 	rootnex_dma_t *dma;
2311 	int e;
2312 
2313 	hp = (ddi_dma_impl_t *)handle;
2314 	dma = (rootnex_dma_t *)hp->dmai_private;
2315 
2316 	/* make sure the buffer wasn't free'd before calling unbind */
2317 	if (rootnex_unbind_verify_buffer) {
2318 		e = rootnex_verify_buffer(dma);
2319 		if (e != DDI_SUCCESS) {
2320 			ASSERT(0);
2321 			return (DDI_FAILURE);
2322 		}
2323 	}
2324 
2325 	/* sync the current window before unbinding the buffer */
2326 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2327 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2328 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2329 		    DDI_DMA_SYNC_FORCPU);
2330 	}
2331 
2332 	/*
2333 	 * cleanup and copy buffer or window state. if we didn't use the copy
2334 	 * buffer or windows, there won't be much to do :-)
2335 	 */
2336 	rootnex_teardown_copybuf(dma);
2337 	rootnex_teardown_windows(dma);
2338 
2339 #if defined(__amd64) && !defined(__xpv)
2340 	if (IOMMU_USED(rdip) && dma->dp_dvma_used)
2341 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2342 		    &dma->dp_dvma);
2343 #endif
2344 
2345 	/*
2346 	 * If we had to allocate space to for the worse case sgl (it didn't
2347 	 * fit into our pre-allocate buffer), free that up now
2348 	 */
2349 	if (dma->dp_need_to_free_cookie) {
2350 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2351 	}
2352 
2353 	/*
2354 	 * clean up the handle so it's ready for the next bind (i.e. if the
2355 	 * handle is reused).
2356 	 */
2357 	rootnex_clean_dmahdl(hp);
2358 	hp->dmai_error.err_cf = NULL;
2359 
2360 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2361 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2362 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2363 
2364 	return (DDI_SUCCESS);
2365 }
2366 
2367 /*
2368  * rootnex_dma_unbindhdl()
2369  *    called from ddi_dma_unbind_handle()
2370  */
2371 /*ARGSUSED*/
2372 static int
2373 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2374     ddi_dma_handle_t handle)
2375 {
2376 	int ret;
2377 
2378 #if defined(__amd64) && !defined(__xpv)
2379 	if (IOMMU_USED(rdip))
2380 		ret = iommulib_nexdma_unbindhdl(dip, rdip, handle);
2381 	else
2382 #endif
2383 	ret = rootnex_coredma_unbindhdl(dip, rdip, handle);
2384 
2385 	if (rootnex_state->r_dvma_call_list_id)
2386 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2387 
2388 	return (ret);
2389 }
2390 
2391 #if defined(__amd64) && !defined(__xpv)
2392 
2393 static int
2394 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2395 {
2396 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2397 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2398 
2399 	if (dma->dp_sleep_flags != KM_SLEEP &&
2400 	    dma->dp_sleep_flags != KM_NOSLEEP)
2401 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2402 	return (dma->dp_sleep_flags);
2403 }
2404 /*ARGSUSED*/
2405 static void
2406 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2407 {
2408 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2409 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2410 	rootnex_window_t *window;
2411 
2412 	if (dma->dp_window) {
2413 		window = &dma->dp_window[dma->dp_current_win];
2414 		hp->dmai_cookie = window->wd_first_cookie;
2415 	} else {
2416 		hp->dmai_cookie = dma->dp_cookies;
2417 	}
2418 	hp->dmai_cookie++;
2419 }
2420 
2421 /*ARGSUSED*/
2422 static int
2423 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2424     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2425 {
2426 	int i;
2427 	int km_flags;
2428 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2429 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2430 	rootnex_window_t *window;
2431 	ddi_dma_cookie_t *cp;
2432 	ddi_dma_cookie_t *cookie;
2433 
2434 	ASSERT(*cookiepp == NULL);
2435 	ASSERT(*ccountp == 0);
2436 
2437 	if (dma->dp_window) {
2438 		window = &dma->dp_window[dma->dp_current_win];
2439 		cp = window->wd_first_cookie;
2440 		*ccountp = window->wd_cookie_cnt;
2441 	} else {
2442 		cp = dma->dp_cookies;
2443 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2444 	}
2445 
2446 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2447 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2448 	if (cookie == NULL) {
2449 		return (DDI_DMA_NORESOURCES);
2450 	}
2451 
2452 	for (i = 0; i < *ccountp; i++) {
2453 		cookie[i].dmac_notused = cp[i].dmac_notused;
2454 		cookie[i].dmac_type = cp[i].dmac_type;
2455 		cookie[i].dmac_address = cp[i].dmac_address;
2456 		cookie[i].dmac_size = cp[i].dmac_size;
2457 	}
2458 
2459 	*cookiepp = cookie;
2460 
2461 	return (DDI_SUCCESS);
2462 }
2463 
2464 /*ARGSUSED*/
2465 static int
2466 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2467     ddi_dma_cookie_t *cookiep, uint_t ccount)
2468 {
2469 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2470 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2471 	rootnex_window_t *window;
2472 	ddi_dma_cookie_t *cur_cookiep;
2473 
2474 	ASSERT(cookiep);
2475 	ASSERT(ccount != 0);
2476 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2477 
2478 	if (dma->dp_window) {
2479 		window = &dma->dp_window[dma->dp_current_win];
2480 		dma->dp_saved_cookies = window->wd_first_cookie;
2481 		window->wd_first_cookie = cookiep;
2482 		ASSERT(ccount == window->wd_cookie_cnt);
2483 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2484 		    + window->wd_first_cookie;
2485 	} else {
2486 		dma->dp_saved_cookies = dma->dp_cookies;
2487 		dma->dp_cookies = cookiep;
2488 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2489 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2490 		    + dma->dp_cookies;
2491 	}
2492 
2493 	dma->dp_need_to_switch_cookies = B_TRUE;
2494 	hp->dmai_cookie = cur_cookiep;
2495 
2496 	return (DDI_SUCCESS);
2497 }
2498 
2499 /*ARGSUSED*/
2500 static int
2501 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2502 {
2503 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2504 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2505 	rootnex_window_t *window;
2506 	ddi_dma_cookie_t *cur_cookiep;
2507 	ddi_dma_cookie_t *cookie_array;
2508 	uint_t ccount;
2509 
2510 	/* check if cookies have not been switched */
2511 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2512 		return (DDI_SUCCESS);
2513 
2514 	ASSERT(dma->dp_saved_cookies);
2515 
2516 	if (dma->dp_window) {
2517 		window = &dma->dp_window[dma->dp_current_win];
2518 		cookie_array = window->wd_first_cookie;
2519 		window->wd_first_cookie = dma->dp_saved_cookies;
2520 		dma->dp_saved_cookies = NULL;
2521 		ccount = window->wd_cookie_cnt;
2522 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2523 		    + window->wd_first_cookie;
2524 	} else {
2525 		cookie_array = dma->dp_cookies;
2526 		dma->dp_cookies = dma->dp_saved_cookies;
2527 		dma->dp_saved_cookies = NULL;
2528 		ccount = dma->dp_sglinfo.si_sgl_size;
2529 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2530 		    + dma->dp_cookies;
2531 	}
2532 
2533 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2534 
2535 	hp->dmai_cookie = cur_cookiep;
2536 
2537 	dma->dp_need_to_switch_cookies = B_FALSE;
2538 
2539 	return (DDI_SUCCESS);
2540 }
2541 
2542 #endif
2543 
2544 static struct as *
2545 rootnex_get_as(ddi_dma_obj_t *dmao)
2546 {
2547 	struct as *asp;
2548 
2549 	switch (dmao->dmao_type) {
2550 	case DMA_OTYP_VADDR:
2551 	case DMA_OTYP_BUFVADDR:
2552 		asp = dmao->dmao_obj.virt_obj.v_as;
2553 		if (asp == NULL)
2554 			asp = &kas;
2555 		break;
2556 	default:
2557 		asp = NULL;
2558 		break;
2559 	}
2560 	return (asp);
2561 }
2562 
2563 /*
2564  * rootnex_verify_buffer()
2565  *   verify buffer wasn't free'd
2566  */
2567 static int
2568 rootnex_verify_buffer(rootnex_dma_t *dma)
2569 {
2570 	page_t **pplist;
2571 	caddr_t vaddr;
2572 	uint_t pcnt;
2573 	uint_t poff;
2574 	page_t *pp;
2575 	char b;
2576 	int i;
2577 
2578 	/* Figure out how many pages this buffer occupies */
2579 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2580 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2581 	} else {
2582 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2583 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2584 	}
2585 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2586 
2587 	switch (dma->dp_dma.dmao_type) {
2588 	case DMA_OTYP_PAGES:
2589 		/*
2590 		 * for a linked list of pp's walk through them to make sure
2591 		 * they're locked and not free.
2592 		 */
2593 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2594 		for (i = 0; i < pcnt; i++) {
2595 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2596 				return (DDI_FAILURE);
2597 			}
2598 			pp = pp->p_next;
2599 		}
2600 		break;
2601 
2602 	case DMA_OTYP_VADDR:
2603 	case DMA_OTYP_BUFVADDR:
2604 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2605 		/*
2606 		 * for an array of pp's walk through them to make sure they're
2607 		 * not free. It's possible that they may not be locked.
2608 		 */
2609 		if (pplist) {
2610 			for (i = 0; i < pcnt; i++) {
2611 				if (PP_ISFREE(pplist[i])) {
2612 					return (DDI_FAILURE);
2613 				}
2614 			}
2615 
2616 		/* For a virtual address, try to peek at each page */
2617 		} else {
2618 			if (rootnex_get_as(&dma->dp_dma) == &kas) {
2619 				for (i = 0; i < pcnt; i++) {
2620 					if (ddi_peek8(NULL, vaddr, &b) ==
2621 					    DDI_FAILURE)
2622 						return (DDI_FAILURE);
2623 					vaddr += MMU_PAGESIZE;
2624 				}
2625 			}
2626 		}
2627 		break;
2628 
2629 	default:
2630 		cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object");
2631 		break;
2632 	}
2633 
2634 	return (DDI_SUCCESS);
2635 }
2636 
2637 
2638 /*
2639  * rootnex_clean_dmahdl()
2640  *    Clean the dma handle. This should be called on a handle alloc and an
2641  *    unbind handle. Set the handle state to the default settings.
2642  */
2643 static void
2644 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2645 {
2646 	rootnex_dma_t *dma;
2647 
2648 
2649 	dma = (rootnex_dma_t *)hp->dmai_private;
2650 
2651 	hp->dmai_nwin = 0;
2652 	dma->dp_current_cookie = 0;
2653 	dma->dp_copybuf_size = 0;
2654 	dma->dp_window = NULL;
2655 	dma->dp_cbaddr = NULL;
2656 	dma->dp_inuse = B_FALSE;
2657 	dma->dp_dvma_used = B_FALSE;
2658 	dma->dp_need_to_free_cookie = B_FALSE;
2659 	dma->dp_need_to_switch_cookies = B_FALSE;
2660 	dma->dp_saved_cookies = NULL;
2661 	dma->dp_sleep_flags = KM_PANIC;
2662 	dma->dp_need_to_free_window = B_FALSE;
2663 	dma->dp_partial_required = B_FALSE;
2664 	dma->dp_trim_required = B_FALSE;
2665 	dma->dp_sglinfo.si_copybuf_req = 0;
2666 #if !defined(__amd64)
2667 	dma->dp_cb_remaping = B_FALSE;
2668 	dma->dp_kva = NULL;
2669 #endif
2670 
2671 	/* FMA related initialization */
2672 	hp->dmai_fault = 0;
2673 	hp->dmai_fault_check = NULL;
2674 	hp->dmai_fault_notify = NULL;
2675 	hp->dmai_error.err_ena = 0;
2676 	hp->dmai_error.err_status = DDI_FM_OK;
2677 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2678 	hp->dmai_error.err_ontrap = NULL;
2679 }
2680 
2681 
2682 /*
2683  * rootnex_valid_alloc_parms()
2684  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2685  */
2686 static int
2687 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2688 {
2689 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2690 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2691 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2692 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2693 		return (DDI_DMA_BADATTR);
2694 	}
2695 
2696 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2697 		return (DDI_DMA_BADATTR);
2698 	}
2699 
2700 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2701 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2702 	    attr->dma_attr_sgllen == 0) {
2703 		return (DDI_DMA_BADATTR);
2704 	}
2705 
2706 	/* We should be able to DMA into every byte offset in a page */
2707 	if (maxsegmentsize < MMU_PAGESIZE) {
2708 		return (DDI_DMA_BADATTR);
2709 	}
2710 
2711 	/* if we're bouncing on seg, seg must be <= addr_hi */
2712 	if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) &&
2713 	    (attr->dma_attr_seg > attr->dma_attr_addr_hi)) {
2714 		return (DDI_DMA_BADATTR);
2715 	}
2716 	return (DDI_SUCCESS);
2717 }
2718 
2719 /*
2720  * rootnex_valid_bind_parms()
2721  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2722  */
2723 /* ARGSUSED */
2724 static int
2725 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2726 {
2727 #if !defined(__amd64)
2728 	/*
2729 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2730 	 * we can track the offset for the obsoleted interfaces.
2731 	 */
2732 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2733 		return (DDI_DMA_TOOBIG);
2734 	}
2735 #endif
2736 
2737 	return (DDI_SUCCESS);
2738 }
2739 
2740 
2741 /*
2742  * rootnex_need_bounce_seg()
2743  *    check to see if the buffer lives on both side of the seg.
2744  */
2745 static boolean_t
2746 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo)
2747 {
2748 	ddi_dma_atyp_t buftype;
2749 	rootnex_addr_t raddr;
2750 	boolean_t lower_addr;
2751 	boolean_t upper_addr;
2752 	uint64_t offset;
2753 	page_t **pplist;
2754 	uint64_t paddr;
2755 	uint32_t psize;
2756 	uint32_t size;
2757 	caddr_t vaddr;
2758 	uint_t pcnt;
2759 	page_t *pp;
2760 
2761 
2762 	/* shortcuts */
2763 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2764 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2765 	buftype = dmar_object->dmao_type;
2766 	size = dmar_object->dmao_size;
2767 
2768 	lower_addr = B_FALSE;
2769 	upper_addr = B_FALSE;
2770 	pcnt = 0;
2771 
2772 	/*
2773 	 * Process the first page to handle the initial offset of the buffer.
2774 	 * We'll use the base address we get later when we loop through all
2775 	 * the pages.
2776 	 */
2777 	if (buftype == DMA_OTYP_PAGES) {
2778 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2779 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2780 		    MMU_PAGEOFFSET;
2781 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2782 		psize = MIN(size, (MMU_PAGESIZE - offset));
2783 		pp = pp->p_next;
2784 		sglinfo->si_asp = NULL;
2785 	} else if (pplist != NULL) {
2786 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2787 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2788 		if (sglinfo->si_asp == NULL) {
2789 			sglinfo->si_asp = &kas;
2790 		}
2791 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2792 		paddr += offset;
2793 		psize = MIN(size, (MMU_PAGESIZE - offset));
2794 		pcnt++;
2795 	} else {
2796 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2797 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2798 		if (sglinfo->si_asp == NULL) {
2799 			sglinfo->si_asp = &kas;
2800 		}
2801 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2802 		paddr += offset;
2803 		psize = MIN(size, (MMU_PAGESIZE - offset));
2804 		vaddr += psize;
2805 	}
2806 
2807 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2808 
2809 	if ((raddr + psize) > sglinfo->si_segmask) {
2810 		upper_addr = B_TRUE;
2811 	} else {
2812 		lower_addr = B_TRUE;
2813 	}
2814 	size -= psize;
2815 
2816 	/*
2817 	 * Walk through the rest of the pages in the buffer. Track to see
2818 	 * if we have pages on both sides of the segment boundary.
2819 	 */
2820 	while (size > 0) {
2821 		/* partial or full page */
2822 		psize = MIN(size, MMU_PAGESIZE);
2823 
2824 		if (buftype == DMA_OTYP_PAGES) {
2825 			/* get the paddr from the page_t */
2826 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2827 			paddr = pfn_to_pa(pp->p_pagenum);
2828 			pp = pp->p_next;
2829 		} else if (pplist != NULL) {
2830 			/* index into the array of page_t's to get the paddr */
2831 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2832 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2833 			pcnt++;
2834 		} else {
2835 			/* call into the VM to get the paddr */
2836 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2837 			    vaddr));
2838 			vaddr += psize;
2839 		}
2840 
2841 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2842 
2843 		if ((raddr + psize) > sglinfo->si_segmask) {
2844 			upper_addr = B_TRUE;
2845 		} else {
2846 			lower_addr = B_TRUE;
2847 		}
2848 		/*
2849 		 * if the buffer lives both above and below the segment
2850 		 * boundary, or the current page is the page immediately
2851 		 * after the segment, we will use a copy/bounce buffer for
2852 		 * all pages > seg.
2853 		 */
2854 		if ((lower_addr && upper_addr) ||
2855 		    (raddr == (sglinfo->si_segmask + 1))) {
2856 			return (B_TRUE);
2857 		}
2858 
2859 		size -= psize;
2860 	}
2861 
2862 	return (B_FALSE);
2863 }
2864 
2865 /*
2866  * rootnex_get_sgl()
2867  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2868  *    with a call to the vm layer when vm2.0 comes around...
2869  */
2870 static void
2871 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2872     rootnex_sglinfo_t *sglinfo)
2873 {
2874 	ddi_dma_atyp_t buftype;
2875 	rootnex_addr_t raddr;
2876 	uint64_t last_page;
2877 	uint64_t offset;
2878 	uint64_t addrhi;
2879 	uint64_t addrlo;
2880 	uint64_t maxseg;
2881 	page_t **pplist;
2882 	uint64_t paddr;
2883 	uint32_t psize;
2884 	uint32_t size;
2885 	caddr_t vaddr;
2886 	uint_t pcnt;
2887 	page_t *pp;
2888 	uint_t cnt;
2889 
2890 
2891 	/* shortcuts */
2892 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2893 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2894 	maxseg = sglinfo->si_max_cookie_size;
2895 	buftype = dmar_object->dmao_type;
2896 	addrhi = sglinfo->si_max_addr;
2897 	addrlo = sglinfo->si_min_addr;
2898 	size = dmar_object->dmao_size;
2899 
2900 	pcnt = 0;
2901 	cnt = 0;
2902 
2903 
2904 	/*
2905 	 * check to see if we need to use the copy buffer for pages over
2906 	 * the segment attr.
2907 	 */
2908 	sglinfo->si_bounce_on_seg = B_FALSE;
2909 	if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) {
2910 		sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg(
2911 		    dmar_object, sglinfo);
2912 	}
2913 
2914 	/*
2915 	 * if we were passed down a linked list of pages, i.e. pointer to
2916 	 * page_t, use this to get our physical address and buf offset.
2917 	 */
2918 	if (buftype == DMA_OTYP_PAGES) {
2919 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2920 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2921 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2922 		    MMU_PAGEOFFSET;
2923 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2924 		psize = MIN(size, (MMU_PAGESIZE - offset));
2925 		pp = pp->p_next;
2926 		sglinfo->si_asp = NULL;
2927 
2928 	/*
2929 	 * We weren't passed down a linked list of pages, but if we were passed
2930 	 * down an array of pages, use this to get our physical address and buf
2931 	 * offset.
2932 	 */
2933 	} else if (pplist != NULL) {
2934 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2935 		    (buftype == DMA_OTYP_BUFVADDR));
2936 
2937 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2938 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2939 		if (sglinfo->si_asp == NULL) {
2940 			sglinfo->si_asp = &kas;
2941 		}
2942 
2943 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2944 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2945 		paddr += offset;
2946 		psize = MIN(size, (MMU_PAGESIZE - offset));
2947 		pcnt++;
2948 
2949 	/*
2950 	 * All we have is a virtual address, we'll need to call into the VM
2951 	 * to get the physical address.
2952 	 */
2953 	} else {
2954 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2955 		    (buftype == DMA_OTYP_BUFVADDR));
2956 
2957 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2958 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2959 		if (sglinfo->si_asp == NULL) {
2960 			sglinfo->si_asp = &kas;
2961 		}
2962 
2963 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2964 		paddr += offset;
2965 		psize = MIN(size, (MMU_PAGESIZE - offset));
2966 		vaddr += psize;
2967 	}
2968 
2969 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2970 
2971 	/*
2972 	 * Setup the first cookie with the physical address of the page and the
2973 	 * size of the page (which takes into account the initial offset into
2974 	 * the page.
2975 	 */
2976 	sgl[cnt].dmac_laddress = raddr;
2977 	sgl[cnt].dmac_size = psize;
2978 	sgl[cnt].dmac_type = 0;
2979 
2980 	/*
2981 	 * Save away the buffer offset into the page. We'll need this later in
2982 	 * the copy buffer code to help figure out the page index within the
2983 	 * buffer and the offset into the current page.
2984 	 */
2985 	sglinfo->si_buf_offset = offset;
2986 
2987 	/*
2988 	 * If we are using the copy buffer for anything over the segment
2989 	 * boundary, and this page is over the segment boundary.
2990 	 *   OR
2991 	 * if the DMA engine can't reach the physical address.
2992 	 */
2993 	if (((sglinfo->si_bounce_on_seg) &&
2994 	    ((raddr + psize) > sglinfo->si_segmask)) ||
2995 	    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
2996 		/*
2997 		 * Increase how much copy buffer we use. We always increase by
2998 		 * pagesize so we don't have to worry about converting offsets.
2999 		 * Set a flag in the cookies dmac_type to indicate that it uses
3000 		 * the copy buffer. If this isn't the last cookie, go to the
3001 		 * next cookie (since we separate each page which uses the copy
3002 		 * buffer in case the copy buffer is not physically contiguous.
3003 		 */
3004 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
3005 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3006 		if ((cnt + 1) < sglinfo->si_max_pages) {
3007 			cnt++;
3008 			sgl[cnt].dmac_laddress = 0;
3009 			sgl[cnt].dmac_size = 0;
3010 			sgl[cnt].dmac_type = 0;
3011 		}
3012 	}
3013 
3014 	/*
3015 	 * save this page's physical address so we can figure out if the next
3016 	 * page is physically contiguous. Keep decrementing size until we are
3017 	 * done with the buffer.
3018 	 */
3019 	last_page = raddr & MMU_PAGEMASK;
3020 	size -= psize;
3021 
3022 	while (size > 0) {
3023 		/* Get the size for this page (i.e. partial or full page) */
3024 		psize = MIN(size, MMU_PAGESIZE);
3025 
3026 		if (buftype == DMA_OTYP_PAGES) {
3027 			/* get the paddr from the page_t */
3028 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
3029 			paddr = pfn_to_pa(pp->p_pagenum);
3030 			pp = pp->p_next;
3031 		} else if (pplist != NULL) {
3032 			/* index into the array of page_t's to get the paddr */
3033 			ASSERT(!PP_ISFREE(pplist[pcnt]));
3034 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
3035 			pcnt++;
3036 		} else {
3037 			/* call into the VM to get the paddr */
3038 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
3039 			    vaddr));
3040 			vaddr += psize;
3041 		}
3042 
3043 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
3044 
3045 		/*
3046 		 * If we are using the copy buffer for anything over the
3047 		 * segment boundary, and this page is over the segment
3048 		 * boundary.
3049 		 *   OR
3050 		 * if the DMA engine can't reach the physical address.
3051 		 */
3052 		if (((sglinfo->si_bounce_on_seg) &&
3053 		    ((raddr + psize) > sglinfo->si_segmask)) ||
3054 		    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
3055 
3056 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
3057 
3058 			/*
3059 			 * if there is something in the current cookie, go to
3060 			 * the next one. We only want one page in a cookie which
3061 			 * uses the copybuf since the copybuf doesn't have to
3062 			 * be physically contiguous.
3063 			 */
3064 			if (sgl[cnt].dmac_size != 0) {
3065 				cnt++;
3066 			}
3067 			sgl[cnt].dmac_laddress = raddr;
3068 			sgl[cnt].dmac_size = psize;
3069 #if defined(__amd64)
3070 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3071 #else
3072 			/*
3073 			 * save the buf offset for 32-bit kernel. used in the
3074 			 * obsoleted interfaces.
3075 			 */
3076 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
3077 			    (dmar_object->dmao_size - size);
3078 #endif
3079 			/* if this isn't the last cookie, go to the next one */
3080 			if ((cnt + 1) < sglinfo->si_max_pages) {
3081 				cnt++;
3082 				sgl[cnt].dmac_laddress = 0;
3083 				sgl[cnt].dmac_size = 0;
3084 				sgl[cnt].dmac_type = 0;
3085 			}
3086 
3087 		/*
3088 		 * this page didn't need the copy buffer, if it's not physically
3089 		 * contiguous, or it would put us over a segment boundary, or it
3090 		 * puts us over the max cookie size, or the current sgl doesn't
3091 		 * have anything in it.
3092 		 */
3093 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
3094 		    !(raddr & sglinfo->si_segmask) ||
3095 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3096 		    (sgl[cnt].dmac_size == 0)) {
3097 			/*
3098 			 * if we're not already in a new cookie, go to the next
3099 			 * cookie.
3100 			 */
3101 			if (sgl[cnt].dmac_size != 0) {
3102 				cnt++;
3103 			}
3104 
3105 			/* save the cookie information */
3106 			sgl[cnt].dmac_laddress = raddr;
3107 			sgl[cnt].dmac_size = psize;
3108 #if defined(__amd64)
3109 			sgl[cnt].dmac_type = 0;
3110 #else
3111 			/*
3112 			 * save the buf offset for 32-bit kernel. used in the
3113 			 * obsoleted interfaces.
3114 			 */
3115 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
3116 #endif
3117 
3118 		/*
3119 		 * this page didn't need the copy buffer, it is physically
3120 		 * contiguous with the last page, and it's <= the max cookie
3121 		 * size.
3122 		 */
3123 		} else {
3124 			sgl[cnt].dmac_size += psize;
3125 
3126 			/*
3127 			 * if this exactly ==  the maximum cookie size, and
3128 			 * it isn't the last cookie, go to the next cookie.
3129 			 */
3130 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3131 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3132 				cnt++;
3133 				sgl[cnt].dmac_laddress = 0;
3134 				sgl[cnt].dmac_size = 0;
3135 				sgl[cnt].dmac_type = 0;
3136 			}
3137 		}
3138 
3139 		/*
3140 		 * save this page's physical address so we can figure out if the
3141 		 * next page is physically contiguous. Keep decrementing size
3142 		 * until we are done with the buffer.
3143 		 */
3144 		last_page = raddr;
3145 		size -= psize;
3146 	}
3147 
3148 	/* we're done, save away how many cookies the sgl has */
3149 	if (sgl[cnt].dmac_size == 0) {
3150 		ASSERT(cnt < sglinfo->si_max_pages);
3151 		sglinfo->si_sgl_size = cnt;
3152 	} else {
3153 		sglinfo->si_sgl_size = cnt + 1;
3154 	}
3155 }
3156 
3157 static void
3158 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
3159     rootnex_sglinfo_t *sglinfo)
3160 {
3161 	uint64_t offset;
3162 	uint64_t maxseg;
3163 	uint64_t dvaddr;
3164 	struct dvmaseg *dvs;
3165 	uint64_t paddr;
3166 	uint32_t psize, ssize;
3167 	uint32_t size;
3168 	uint_t cnt;
3169 	int physcontig;
3170 
3171 	ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR);
3172 
3173 	/* shortcuts */
3174 	maxseg = sglinfo->si_max_cookie_size;
3175 	size = dmar_object->dmao_size;
3176 
3177 	cnt = 0;
3178 	sglinfo->si_bounce_on_seg = B_FALSE;
3179 
3180 	dvs = dmar_object->dmao_obj.dvma_obj.dv_seg;
3181 	offset = dmar_object->dmao_obj.dvma_obj.dv_off;
3182 	ssize = dvs->dvs_len;
3183 	paddr = dvs->dvs_start;
3184 	paddr += offset;
3185 	psize = MIN(ssize, (maxseg - offset));
3186 	dvaddr = paddr + psize;
3187 	ssize -= psize;
3188 
3189 	sgl[cnt].dmac_laddress = paddr;
3190 	sgl[cnt].dmac_size = psize;
3191 	sgl[cnt].dmac_type = 0;
3192 
3193 	size -= psize;
3194 	while (size > 0) {
3195 		if (ssize == 0) {
3196 			dvs++;
3197 			ssize = dvs->dvs_len;
3198 			dvaddr = dvs->dvs_start;
3199 			physcontig = 0;
3200 		} else
3201 			physcontig = 1;
3202 
3203 		paddr = dvaddr;
3204 		psize = MIN(ssize, maxseg);
3205 		dvaddr += psize;
3206 		ssize -= psize;
3207 
3208 		if (!physcontig || !(paddr & sglinfo->si_segmask) ||
3209 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3210 		    (sgl[cnt].dmac_size == 0)) {
3211 			/*
3212 			 * if we're not already in a new cookie, go to the next
3213 			 * cookie.
3214 			 */
3215 			if (sgl[cnt].dmac_size != 0) {
3216 				cnt++;
3217 			}
3218 
3219 			/* save the cookie information */
3220 			sgl[cnt].dmac_laddress = paddr;
3221 			sgl[cnt].dmac_size = psize;
3222 			sgl[cnt].dmac_type = 0;
3223 		} else {
3224 			sgl[cnt].dmac_size += psize;
3225 
3226 			/*
3227 			 * if this exactly ==  the maximum cookie size, and
3228 			 * it isn't the last cookie, go to the next cookie.
3229 			 */
3230 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3231 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3232 				cnt++;
3233 				sgl[cnt].dmac_laddress = 0;
3234 				sgl[cnt].dmac_size = 0;
3235 				sgl[cnt].dmac_type = 0;
3236 			}
3237 		}
3238 		size -= psize;
3239 	}
3240 
3241 	/* we're done, save away how many cookies the sgl has */
3242 	if (sgl[cnt].dmac_size == 0) {
3243 		sglinfo->si_sgl_size = cnt;
3244 	} else {
3245 		sglinfo->si_sgl_size = cnt + 1;
3246 	}
3247 }
3248 
3249 /*
3250  * rootnex_bind_slowpath()
3251  *    Call in the bind path if the calling driver can't use the sgl without
3252  *    modifying it. We either need to use the copy buffer and/or we will end up
3253  *    with a partial bind.
3254  */
3255 static int
3256 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3257     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3258 {
3259 	rootnex_sglinfo_t *sinfo;
3260 	rootnex_window_t *window;
3261 	ddi_dma_cookie_t *cookie;
3262 	size_t copybuf_used;
3263 	size_t dmac_size;
3264 	boolean_t partial;
3265 	off_t cur_offset;
3266 	page_t *cur_pp;
3267 	major_t mnum;
3268 	int e;
3269 	int i;
3270 
3271 
3272 	sinfo = &dma->dp_sglinfo;
3273 	copybuf_used = 0;
3274 	partial = B_FALSE;
3275 
3276 	/*
3277 	 * If we're using the copybuf, set the copybuf state in dma struct.
3278 	 * Needs to be first since it sets the copy buffer size.
3279 	 */
3280 	if (sinfo->si_copybuf_req != 0) {
3281 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
3282 		if (e != DDI_SUCCESS) {
3283 			return (e);
3284 		}
3285 	} else {
3286 		dma->dp_copybuf_size = 0;
3287 	}
3288 
3289 	/*
3290 	 * Figure out if we need to do a partial mapping. If so, figure out
3291 	 * if we need to trim the buffers when we munge the sgl.
3292 	 */
3293 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
3294 	    (dmao->dmao_size > dma->dp_maxxfer) ||
3295 	    ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
3296 		dma->dp_partial_required = B_TRUE;
3297 		if (attr->dma_attr_granular != 1) {
3298 			dma->dp_trim_required = B_TRUE;
3299 		}
3300 	} else {
3301 		dma->dp_partial_required = B_FALSE;
3302 		dma->dp_trim_required = B_FALSE;
3303 	}
3304 
3305 	/* If we need to do a partial bind, make sure the driver supports it */
3306 	if (dma->dp_partial_required &&
3307 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
3308 
3309 		mnum = ddi_driver_major(dma->dp_dip);
3310 		/*
3311 		 * patchable which allows us to print one warning per major
3312 		 * number.
3313 		 */
3314 		if ((rootnex_bind_warn) &&
3315 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
3316 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
3317 			cmn_err(CE_WARN, "!%s: coding error detected, the "
3318 			    "driver is using ddi_dma_attr(9S) incorrectly. "
3319 			    "There is a small risk of data corruption in "
3320 			    "particular with large I/Os. The driver should be "
3321 			    "replaced with a corrected version for proper "
3322 			    "system operation. To disable this warning, add "
3323 			    "'set rootnex:rootnex_bind_warn=0' to "
3324 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
3325 		}
3326 		return (DDI_DMA_TOOBIG);
3327 	}
3328 
3329 	/*
3330 	 * we might need multiple windows, setup state to handle them. In this
3331 	 * code path, we will have at least one window.
3332 	 */
3333 	e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag);
3334 	if (e != DDI_SUCCESS) {
3335 		rootnex_teardown_copybuf(dma);
3336 		return (e);
3337 	}
3338 
3339 	window = &dma->dp_window[0];
3340 	cookie = &dma->dp_cookies[0];
3341 	cur_offset = 0;
3342 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
3343 	if (dmao->dmao_type == DMA_OTYP_PAGES) {
3344 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
3345 	}
3346 
3347 	/* loop though all the cookies we got back from get_sgl() */
3348 	for (i = 0; i < sinfo->si_sgl_size; i++) {
3349 		/*
3350 		 * If we're using the copy buffer, check this cookie and setup
3351 		 * its associated copy buffer state. If this cookie uses the
3352 		 * copy buffer, make sure we sync this window during dma_sync.
3353 		 */
3354 		if (dma->dp_copybuf_size > 0) {
3355 			rootnex_setup_cookie(dmao, dma, cookie,
3356 			    cur_offset, &copybuf_used, &cur_pp);
3357 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3358 				window->wd_dosync = B_TRUE;
3359 			}
3360 		}
3361 
3362 		/*
3363 		 * save away the cookie size, since it could be modified in
3364 		 * the windowing code.
3365 		 */
3366 		dmac_size = cookie->dmac_size;
3367 
3368 		/* if we went over max copybuf size */
3369 		if (dma->dp_copybuf_size &&
3370 		    (copybuf_used > dma->dp_copybuf_size)) {
3371 			partial = B_TRUE;
3372 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
3373 			    cookie, cur_offset, &copybuf_used);
3374 			if (e != DDI_SUCCESS) {
3375 				rootnex_teardown_copybuf(dma);
3376 				rootnex_teardown_windows(dma);
3377 				return (e);
3378 			}
3379 
3380 			/*
3381 			 * if the coookie uses the copy buffer, make sure the
3382 			 * new window we just moved to is set to sync.
3383 			 */
3384 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3385 				window->wd_dosync = B_TRUE;
3386 			}
3387 			ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *,
3388 			    dma->dp_dip);
3389 
3390 		/* if the cookie cnt == max sgllen, move to the next window */
3391 		} else if (window->wd_cookie_cnt >=
3392 		    (unsigned)attr->dma_attr_sgllen) {
3393 			partial = B_TRUE;
3394 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
3395 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
3396 			    cookie, attr, cur_offset);
3397 			if (e != DDI_SUCCESS) {
3398 				rootnex_teardown_copybuf(dma);
3399 				rootnex_teardown_windows(dma);
3400 				return (e);
3401 			}
3402 
3403 			/*
3404 			 * if the coookie uses the copy buffer, make sure the
3405 			 * new window we just moved to is set to sync.
3406 			 */
3407 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3408 				window->wd_dosync = B_TRUE;
3409 			}
3410 			ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *,
3411 			    dma->dp_dip);
3412 
3413 		/* else if we will be over maxxfer */
3414 		} else if ((window->wd_size + dmac_size) >
3415 		    dma->dp_maxxfer) {
3416 			partial = B_TRUE;
3417 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
3418 			    cookie);
3419 			if (e != DDI_SUCCESS) {
3420 				rootnex_teardown_copybuf(dma);
3421 				rootnex_teardown_windows(dma);
3422 				return (e);
3423 			}
3424 
3425 			/*
3426 			 * if the coookie uses the copy buffer, make sure the
3427 			 * new window we just moved to is set to sync.
3428 			 */
3429 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3430 				window->wd_dosync = B_TRUE;
3431 			}
3432 			ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *,
3433 			    dma->dp_dip);
3434 
3435 		/* else this cookie fits in the current window */
3436 		} else {
3437 			window->wd_cookie_cnt++;
3438 			window->wd_size += dmac_size;
3439 		}
3440 
3441 		/* track our offset into the buffer, go to the next cookie */
3442 		ASSERT(dmac_size <= dmao->dmao_size);
3443 		ASSERT(cookie->dmac_size <= dmac_size);
3444 		cur_offset += dmac_size;
3445 		cookie++;
3446 	}
3447 
3448 	/* if we ended up with a zero sized window in the end, clean it up */
3449 	if (window->wd_size == 0) {
3450 		hp->dmai_nwin--;
3451 		window--;
3452 	}
3453 
3454 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3455 
3456 	if (!partial) {
3457 		return (DDI_DMA_MAPPED);
3458 	}
3459 
3460 	ASSERT(dma->dp_partial_required);
3461 	return (DDI_DMA_PARTIAL_MAP);
3462 }
3463 
3464 /*
3465  * rootnex_setup_copybuf()
3466  *    Called in bind slowpath. Figures out if we're going to use the copy
3467  *    buffer, and if we do, sets up the basic state to handle it.
3468  */
3469 static int
3470 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3471     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3472 {
3473 	rootnex_sglinfo_t *sinfo;
3474 	ddi_dma_attr_t lattr;
3475 	size_t max_copybuf;
3476 	int cansleep;
3477 	int e;
3478 #if !defined(__amd64)
3479 	int vmflag;
3480 #endif
3481 
3482 	ASSERT(!dma->dp_dvma_used);
3483 
3484 	sinfo = &dma->dp_sglinfo;
3485 
3486 	/* read this first so it's consistent through the routine  */
3487 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3488 
3489 	/* We need to call into the rootnex on ddi_dma_sync() */
3490 	hp->dmai_rflags &= ~DMP_NOSYNC;
3491 
3492 	/* make sure the copybuf size <= the max size */
3493 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3494 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3495 
3496 #if !defined(__amd64)
3497 	/*
3498 	 * if we don't have kva space to copy to/from, allocate the KVA space
3499 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3500 	 * the 64-bit kernel.
3501 	 */
3502 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3503 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3504 
3505 		/* convert the sleep flags */
3506 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3507 			vmflag = VM_SLEEP;
3508 		} else {
3509 			vmflag = VM_NOSLEEP;
3510 		}
3511 
3512 		/* allocate Kernel VA space that we can bcopy to/from */
3513 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3514 		    vmflag);
3515 		if (dma->dp_kva == NULL) {
3516 			return (DDI_DMA_NORESOURCES);
3517 		}
3518 	}
3519 #endif
3520 
3521 	/* convert the sleep flags */
3522 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3523 		cansleep = 1;
3524 	} else {
3525 		cansleep = 0;
3526 	}
3527 
3528 	/*
3529 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3530 	 * engine limits, so we can't use kmem_alloc... We don't need
3531 	 * contiguous memory (sgllen) since we will be forcing windows on
3532 	 * sgllen anyway.
3533 	 */
3534 	lattr = *attr;
3535 	lattr.dma_attr_align = MMU_PAGESIZE;
3536 	lattr.dma_attr_sgllen = -1;	/* no limit */
3537 	/*
3538 	 * if we're using the copy buffer because of seg, use that for our
3539 	 * upper address limit.
3540 	 */
3541 	if (sinfo->si_bounce_on_seg) {
3542 		lattr.dma_attr_addr_hi = lattr.dma_attr_seg;
3543 	}
3544 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3545 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3546 	if (e != DDI_SUCCESS) {
3547 #if !defined(__amd64)
3548 		if (dma->dp_kva != NULL) {
3549 			vmem_free(heap_arena, dma->dp_kva,
3550 			    dma->dp_copybuf_size);
3551 		}
3552 #endif
3553 		return (DDI_DMA_NORESOURCES);
3554 	}
3555 
3556 	ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3557 	    size_t, dma->dp_copybuf_size);
3558 
3559 	return (DDI_SUCCESS);
3560 }
3561 
3562 
3563 /*
3564  * rootnex_setup_windows()
3565  *    Called in bind slowpath to setup the window state. We always have windows
3566  *    in the slowpath. Even if the window count = 1.
3567  */
3568 static int
3569 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3570     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3571 {
3572 	rootnex_window_t *windowp;
3573 	rootnex_sglinfo_t *sinfo;
3574 	size_t copy_state_size;
3575 	size_t win_state_size;
3576 	size_t state_available;
3577 	size_t space_needed;
3578 	uint_t copybuf_win;
3579 	uint_t maxxfer_win;
3580 	size_t space_used;
3581 	uint_t sglwin;
3582 
3583 
3584 	sinfo = &dma->dp_sglinfo;
3585 
3586 	dma->dp_current_win = 0;
3587 	hp->dmai_nwin = 0;
3588 
3589 	/* If we don't need to do a partial, we only have one window */
3590 	if (!dma->dp_partial_required) {
3591 		dma->dp_max_win = 1;
3592 
3593 	/*
3594 	 * we need multiple windows, need to figure out the worse case number
3595 	 * of windows.
3596 	 */
3597 	} else {
3598 		/*
3599 		 * if we need windows because we need more copy buffer that
3600 		 * we allow, the worse case number of windows we could need
3601 		 * here would be (copybuf space required / copybuf space that
3602 		 * we have) plus one for remainder, and plus 2 to handle the
3603 		 * extra pages on the trim for the first and last pages of the
3604 		 * buffer (a page is the minimum window size so under the right
3605 		 * attr settings, you could have a window for each page).
3606 		 * The last page will only be hit here if the size is not a
3607 		 * multiple of the granularity (which theoretically shouldn't
3608 		 * be the case but never has been enforced, so we could have
3609 		 * broken things without it).
3610 		 */
3611 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3612 			ASSERT(dma->dp_copybuf_size > 0);
3613 			copybuf_win = (sinfo->si_copybuf_req /
3614 			    dma->dp_copybuf_size) + 1 + 2;
3615 		} else {
3616 			copybuf_win = 0;
3617 		}
3618 
3619 		/*
3620 		 * if we need windows because we have more cookies than the H/W
3621 		 * can handle, the number of windows we would need here would
3622 		 * be (cookie count / cookies count H/W supports minus 1[for
3623 		 * trim]) plus one for remainder.
3624 		 */
3625 		if ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3626 			sglwin = (sinfo->si_sgl_size /
3627 			    (attr->dma_attr_sgllen - 1)) + 1;
3628 		} else {
3629 			sglwin = 0;
3630 		}
3631 
3632 		/*
3633 		 * if we need windows because we're binding more memory than the
3634 		 * H/W can transfer at once, the number of windows we would need
3635 		 * here would be (xfer count / max xfer H/W supports) plus one
3636 		 * for remainder, and plus 2 to handle the extra pages on the
3637 		 * trim (see above comment about trim)
3638 		 */
3639 		if (dmao->dmao_size > dma->dp_maxxfer) {
3640 			maxxfer_win = (dmao->dmao_size /
3641 			    dma->dp_maxxfer) + 1 + 2;
3642 		} else {
3643 			maxxfer_win = 0;
3644 		}
3645 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3646 		ASSERT(dma->dp_max_win > 0);
3647 	}
3648 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3649 
3650 	/*
3651 	 * Get space for window and potential copy buffer state. Before we
3652 	 * go and allocate memory, see if we can get away with using what's
3653 	 * left in the pre-allocted state or the dynamically allocated sgl.
3654 	 */
3655 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3656 	    sizeof (ddi_dma_cookie_t));
3657 
3658 	/* if we dynamically allocated space for the cookies */
3659 	if (dma->dp_need_to_free_cookie) {
3660 		/* if we have more space in the pre-allocted buffer, use it */
3661 		ASSERT(space_used <= dma->dp_cookie_size);
3662 		if ((dma->dp_cookie_size - space_used) <=
3663 		    rootnex_state->r_prealloc_size) {
3664 			state_available = rootnex_state->r_prealloc_size;
3665 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3666 
3667 		/*
3668 		 * else, we have more free space in the dynamically allocated
3669 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3670 		 * didn't need a lot of cookies.
3671 		 */
3672 		} else {
3673 			state_available = dma->dp_cookie_size - space_used;
3674 			windowp = (rootnex_window_t *)
3675 			    &dma->dp_cookies[sinfo->si_sgl_size];
3676 		}
3677 
3678 	/* we used the pre-alloced buffer */
3679 	} else {
3680 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3681 		state_available = rootnex_state->r_prealloc_size - space_used;
3682 		windowp = (rootnex_window_t *)
3683 		    &dma->dp_cookies[sinfo->si_sgl_size];
3684 	}
3685 
3686 	/*
3687 	 * figure out how much state we need to track the copy buffer. Add an
3688 	 * addition 8 bytes for pointer alignemnt later.
3689 	 */
3690 	if (dma->dp_copybuf_size > 0) {
3691 		copy_state_size = sinfo->si_max_pages *
3692 		    sizeof (rootnex_pgmap_t);
3693 	} else {
3694 		copy_state_size = 0;
3695 	}
3696 	/* add an additional 8 bytes for pointer alignment */
3697 	space_needed = win_state_size + copy_state_size + 0x8;
3698 
3699 	/* if we have enough space already, use it */
3700 	if (state_available >= space_needed) {
3701 		dma->dp_window = windowp;
3702 		dma->dp_need_to_free_window = B_FALSE;
3703 
3704 	/* not enough space, need to allocate more. */
3705 	} else {
3706 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3707 		if (dma->dp_window == NULL) {
3708 			return (DDI_DMA_NORESOURCES);
3709 		}
3710 		dma->dp_need_to_free_window = B_TRUE;
3711 		dma->dp_window_size = space_needed;
3712 		ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3713 		    dma->dp_dip, size_t, space_needed);
3714 	}
3715 
3716 	/*
3717 	 * we allocate copy buffer state and window state at the same time.
3718 	 * setup our copy buffer state pointers. Make sure it's aligned.
3719 	 */
3720 	if (dma->dp_copybuf_size > 0) {
3721 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3722 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3723 
3724 #if !defined(__amd64)
3725 		/*
3726 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3727 		 * false/NULL. Should be quicker to bzero vs loop and set.
3728 		 */
3729 		bzero(dma->dp_pgmap, copy_state_size);
3730 #endif
3731 	} else {
3732 		dma->dp_pgmap = NULL;
3733 	}
3734 
3735 	return (DDI_SUCCESS);
3736 }
3737 
3738 
3739 /*
3740  * rootnex_teardown_copybuf()
3741  *    cleans up after rootnex_setup_copybuf()
3742  */
3743 static void
3744 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3745 {
3746 #if !defined(__amd64)
3747 	int i;
3748 
3749 	/*
3750 	 * if we allocated kernel heap VMEM space, go through all the pages and
3751 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3752 	 * arena. Then free the VMEM space.
3753 	 */
3754 	if (dma->dp_kva != NULL) {
3755 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3756 			if (dma->dp_pgmap[i].pm_mapped) {
3757 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3758 				    MMU_PAGESIZE, HAT_UNLOAD);
3759 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3760 			}
3761 		}
3762 
3763 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3764 	}
3765 
3766 #endif
3767 
3768 	/* if we allocated a copy buffer, free it */
3769 	if (dma->dp_cbaddr != NULL) {
3770 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3771 	}
3772 }
3773 
3774 
3775 /*
3776  * rootnex_teardown_windows()
3777  *    cleans up after rootnex_setup_windows()
3778  */
3779 static void
3780 rootnex_teardown_windows(rootnex_dma_t *dma)
3781 {
3782 	/*
3783 	 * if we had to allocate window state on the last bind (because we
3784 	 * didn't have enough pre-allocated space in the handle), free it.
3785 	 */
3786 	if (dma->dp_need_to_free_window) {
3787 		kmem_free(dma->dp_window, dma->dp_window_size);
3788 	}
3789 }
3790 
3791 
3792 /*
3793  * rootnex_init_win()
3794  *    Called in bind slow path during creation of a new window. Initializes
3795  *    window state to default values.
3796  */
3797 /*ARGSUSED*/
3798 static void
3799 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3800     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3801 {
3802 	hp->dmai_nwin++;
3803 	window->wd_dosync = B_FALSE;
3804 	window->wd_offset = cur_offset;
3805 	window->wd_size = 0;
3806 	window->wd_first_cookie = cookie;
3807 	window->wd_cookie_cnt = 0;
3808 	window->wd_trim.tr_trim_first = B_FALSE;
3809 	window->wd_trim.tr_trim_last = B_FALSE;
3810 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3811 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3812 #if !defined(__amd64)
3813 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3814 #endif
3815 }
3816 
3817 
3818 /*
3819  * rootnex_setup_cookie()
3820  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3821  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3822  *    out if it uses the copy buffer, and if it does, save away everything we'll
3823  *    need during sync.
3824  */
3825 static void
3826 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3827     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3828     page_t **cur_pp)
3829 {
3830 	boolean_t copybuf_sz_power_2;
3831 	rootnex_sglinfo_t *sinfo;
3832 	paddr_t paddr;
3833 	uint_t pidx;
3834 	uint_t pcnt;
3835 	off_t poff;
3836 #if defined(__amd64)
3837 	pfn_t pfn;
3838 #else
3839 	page_t **pplist;
3840 #endif
3841 
3842 	ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR);
3843 
3844 	sinfo = &dma->dp_sglinfo;
3845 
3846 	/*
3847 	 * Calculate the page index relative to the start of the buffer. The
3848 	 * index to the current page for our buffer is the offset into the
3849 	 * first page of the buffer plus our current offset into the buffer
3850 	 * itself, shifted of course...
3851 	 */
3852 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3853 	ASSERT(pidx < sinfo->si_max_pages);
3854 
3855 	/* if this cookie uses the copy buffer */
3856 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3857 		/*
3858 		 * NOTE: we know that since this cookie uses the copy buffer, it
3859 		 * is <= MMU_PAGESIZE.
3860 		 */
3861 
3862 		/*
3863 		 * get the offset into the page. For the 64-bit kernel, get the
3864 		 * pfn which we'll use with seg kpm.
3865 		 */
3866 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3867 #if defined(__amd64)
3868 		/* mfn_to_pfn() is a NOP on i86pc */
3869 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3870 #endif /* __amd64 */
3871 
3872 		/* figure out if the copybuf size is a power of 2 */
3873 		if (!ISP2(dma->dp_copybuf_size)) {
3874 			copybuf_sz_power_2 = B_FALSE;
3875 		} else {
3876 			copybuf_sz_power_2 = B_TRUE;
3877 		}
3878 
3879 		/* This page uses the copy buffer */
3880 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3881 
3882 		/*
3883 		 * save the copy buffer KVA that we'll use with this page.
3884 		 * if we still fit within the copybuf, it's a simple add.
3885 		 * otherwise, we need to wrap over using & or % accordingly.
3886 		 */
3887 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3888 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3889 			    *copybuf_used;
3890 		} else {
3891 			if (copybuf_sz_power_2) {
3892 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3893 				    (uintptr_t)dma->dp_cbaddr +
3894 				    (*copybuf_used &
3895 				    (dma->dp_copybuf_size - 1)));
3896 			} else {
3897 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3898 				    (uintptr_t)dma->dp_cbaddr +
3899 				    (*copybuf_used % dma->dp_copybuf_size));
3900 			}
3901 		}
3902 
3903 		/*
3904 		 * over write the cookie physical address with the address of
3905 		 * the physical address of the copy buffer page that we will
3906 		 * use.
3907 		 */
3908 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3909 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3910 
3911 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
3912 
3913 		/* if we have a kernel VA, it's easy, just save that address */
3914 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3915 		    (sinfo->si_asp == &kas)) {
3916 			/*
3917 			 * save away the page aligned virtual address of the
3918 			 * driver buffer. Offsets are handled in the sync code.
3919 			 */
3920 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3921 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3922 			    & MMU_PAGEMASK);
3923 #if !defined(__amd64)
3924 			/*
3925 			 * we didn't need to, and will never need to map this
3926 			 * page.
3927 			 */
3928 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3929 #endif
3930 
3931 		/* we don't have a kernel VA. We need one for the bcopy. */
3932 		} else {
3933 #if defined(__amd64)
3934 			/*
3935 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3936 			 * get a Kernel VA for the corresponding pfn.
3937 			 */
3938 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3939 #else
3940 			/*
3941 			 * for the 32-bit kernel, this is a pain. First we'll
3942 			 * save away the page_t or user VA for this page. This
3943 			 * is needed in rootnex_dma_win() when we switch to a
3944 			 * new window which requires us to re-map the copy
3945 			 * buffer.
3946 			 */
3947 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3948 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3949 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3950 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3951 			} else if (pplist != NULL) {
3952 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3953 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3954 			} else {
3955 				dma->dp_pgmap[pidx].pm_pp = NULL;
3956 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3957 				    (((uintptr_t)
3958 				    dmar_object->dmao_obj.virt_obj.v_addr +
3959 				    cur_offset) & MMU_PAGEMASK);
3960 			}
3961 
3962 			/*
3963 			 * save away the page aligned virtual address which was
3964 			 * allocated from the kernel heap arena (taking into
3965 			 * account if we need more copy buffer than we alloced
3966 			 * and use multiple windows to handle this, i.e. &,%).
3967 			 * NOTE: there isn't and physical memory backing up this
3968 			 * virtual address space currently.
3969 			 */
3970 			if ((*copybuf_used + MMU_PAGESIZE) <=
3971 			    dma->dp_copybuf_size) {
3972 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3973 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3974 				    MMU_PAGEMASK);
3975 			} else {
3976 				if (copybuf_sz_power_2) {
3977 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3978 					    (((uintptr_t)dma->dp_kva +
3979 					    (*copybuf_used &
3980 					    (dma->dp_copybuf_size - 1))) &
3981 					    MMU_PAGEMASK);
3982 				} else {
3983 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3984 					    (((uintptr_t)dma->dp_kva +
3985 					    (*copybuf_used %
3986 					    dma->dp_copybuf_size)) &
3987 					    MMU_PAGEMASK);
3988 				}
3989 			}
3990 
3991 			/*
3992 			 * if we haven't used up the available copy buffer yet,
3993 			 * map the kva to the physical page.
3994 			 */
3995 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3996 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3997 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3998 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3999 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
4000 					    dma->dp_pgmap[pidx].pm_kaddr);
4001 				} else {
4002 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
4003 					    sinfo->si_asp,
4004 					    dma->dp_pgmap[pidx].pm_kaddr);
4005 				}
4006 
4007 			/*
4008 			 * we've used up the available copy buffer, this page
4009 			 * will have to be mapped during rootnex_dma_win() when
4010 			 * we switch to a new window which requires a re-map
4011 			 * the copy buffer. (32-bit kernel only)
4012 			 */
4013 			} else {
4014 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4015 			}
4016 #endif
4017 			/* go to the next page_t */
4018 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4019 				*cur_pp = (*cur_pp)->p_next;
4020 			}
4021 		}
4022 
4023 		/* add to the copy buffer count */
4024 		*copybuf_used += MMU_PAGESIZE;
4025 
4026 	/*
4027 	 * This cookie doesn't use the copy buffer. Walk through the pages this
4028 	 * cookie occupies to reflect this.
4029 	 */
4030 	} else {
4031 		/*
4032 		 * figure out how many pages the cookie occupies. We need to
4033 		 * use the original page offset of the buffer and the cookies
4034 		 * offset in the buffer to do this.
4035 		 */
4036 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
4037 		pcnt = mmu_btopr(cookie->dmac_size + poff);
4038 
4039 		while (pcnt > 0) {
4040 #if !defined(__amd64)
4041 			/*
4042 			 * the 32-bit kernel doesn't have seg kpm, so we need
4043 			 * to map in the driver buffer (if it didn't come down
4044 			 * with a kernel VA) on the fly. Since this page doesn't
4045 			 * use the copy buffer, it's not, or will it ever, have
4046 			 * to be mapped in.
4047 			 */
4048 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4049 #endif
4050 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
4051 
4052 			/*
4053 			 * we need to update pidx and cur_pp or we'll loose
4054 			 * track of where we are.
4055 			 */
4056 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4057 				*cur_pp = (*cur_pp)->p_next;
4058 			}
4059 			pidx++;
4060 			pcnt--;
4061 		}
4062 	}
4063 }
4064 
4065 
4066 /*
4067  * rootnex_sgllen_window_boundary()
4068  *    Called in the bind slow path when the next cookie causes us to exceed (in
4069  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
4070  *    length supported by the DMA H/W.
4071  */
4072 static int
4073 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4074     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
4075     off_t cur_offset)
4076 {
4077 	off_t new_offset;
4078 	size_t trim_sz;
4079 	off_t coffset;
4080 
4081 
4082 	/*
4083 	 * if we know we'll never have to trim, it's pretty easy. Just move to
4084 	 * the next window and init it. We're done.
4085 	 */
4086 	if (!dma->dp_trim_required) {
4087 		(*windowp)++;
4088 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4089 		(*windowp)->wd_cookie_cnt++;
4090 		(*windowp)->wd_size = cookie->dmac_size;
4091 		return (DDI_SUCCESS);
4092 	}
4093 
4094 	/* figure out how much we need to trim from the window */
4095 	ASSERT(attr->dma_attr_granular != 0);
4096 	if (dma->dp_granularity_power_2) {
4097 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
4098 	} else {
4099 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
4100 	}
4101 
4102 	/* The window's a whole multiple of granularity. We're done */
4103 	if (trim_sz == 0) {
4104 		(*windowp)++;
4105 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4106 		(*windowp)->wd_cookie_cnt++;
4107 		(*windowp)->wd_size = cookie->dmac_size;
4108 		return (DDI_SUCCESS);
4109 	}
4110 
4111 	/*
4112 	 * The window's not a whole multiple of granularity, since we know this
4113 	 * is due to the sgllen, we need to go back to the last cookie and trim
4114 	 * that one, add the left over part of the old cookie into the new
4115 	 * window, and then add in the new cookie into the new window.
4116 	 */
4117 
4118 	/*
4119 	 * make sure the driver isn't making us do something bad... Trimming and
4120 	 * sgllen == 1 don't go together.
4121 	 */
4122 	if (attr->dma_attr_sgllen == 1) {
4123 		return (DDI_DMA_NOMAPPING);
4124 	}
4125 
4126 	/*
4127 	 * first, setup the current window to account for the trim. Need to go
4128 	 * back to the last cookie for this.
4129 	 */
4130 	cookie--;
4131 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4132 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4133 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4134 	ASSERT(cookie->dmac_size > trim_sz);
4135 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4136 	(*windowp)->wd_size -= trim_sz;
4137 
4138 	/* save the buffer offsets for the next window */
4139 	coffset = cookie->dmac_size - trim_sz;
4140 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4141 
4142 	/*
4143 	 * set this now in case this is the first window. all other cases are
4144 	 * set in dma_win()
4145 	 */
4146 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4147 
4148 	/*
4149 	 * initialize the next window using what's left over in the previous
4150 	 * cookie.
4151 	 */
4152 	(*windowp)++;
4153 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4154 	(*windowp)->wd_cookie_cnt++;
4155 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4156 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4157 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4158 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4159 		(*windowp)->wd_dosync = B_TRUE;
4160 	}
4161 
4162 	/*
4163 	 * now go back to the current cookie and add it to the new window. set
4164 	 * the new window size to the what was left over from the previous
4165 	 * cookie and what's in the current cookie.
4166 	 */
4167 	cookie++;
4168 	(*windowp)->wd_cookie_cnt++;
4169 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4170 
4171 	/*
4172 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
4173 	 * a max size of maxxfer). Handle that case.
4174 	 */
4175 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
4176 		/*
4177 		 * maxxfer is already a whole multiple of granularity, and this
4178 		 * trim will be <= the previous trim (since a cookie can't be
4179 		 * larger than maxxfer). Make things simple here.
4180 		 */
4181 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
4182 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4183 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4184 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4185 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4186 		(*windowp)->wd_size -= trim_sz;
4187 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
4188 
4189 		/* save the buffer offsets for the next window */
4190 		coffset = cookie->dmac_size - trim_sz;
4191 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4192 
4193 		/* setup the next window */
4194 		(*windowp)++;
4195 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4196 		(*windowp)->wd_cookie_cnt++;
4197 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4198 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4199 		    coffset;
4200 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4201 	}
4202 
4203 	return (DDI_SUCCESS);
4204 }
4205 
4206 
4207 /*
4208  * rootnex_copybuf_window_boundary()
4209  *    Called in bind slowpath when we get to a window boundary because we used
4210  *    up all the copy buffer that we have.
4211  */
4212 static int
4213 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4214     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
4215     size_t *copybuf_used)
4216 {
4217 	rootnex_sglinfo_t *sinfo;
4218 	off_t new_offset;
4219 	size_t trim_sz;
4220 	paddr_t paddr;
4221 	off_t coffset;
4222 	uint_t pidx;
4223 	off_t poff;
4224 
4225 
4226 	sinfo = &dma->dp_sglinfo;
4227 
4228 	/*
4229 	 * the copy buffer should be a whole multiple of page size. We know that
4230 	 * this cookie is <= MMU_PAGESIZE.
4231 	 */
4232 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
4233 
4234 	/*
4235 	 * from now on, all new windows in this bind need to be re-mapped during
4236 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
4237 	 * space...
4238 	 */
4239 #if !defined(__amd64)
4240 	dma->dp_cb_remaping = B_TRUE;
4241 #endif
4242 
4243 	/* reset copybuf used */
4244 	*copybuf_used = 0;
4245 
4246 	/*
4247 	 * if we don't have to trim (since granularity is set to 1), go to the
4248 	 * next window and add the current cookie to it. We know the current
4249 	 * cookie uses the copy buffer since we're in this code path.
4250 	 */
4251 	if (!dma->dp_trim_required) {
4252 		(*windowp)++;
4253 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4254 
4255 		/* Add this cookie to the new window */
4256 		(*windowp)->wd_cookie_cnt++;
4257 		(*windowp)->wd_size += cookie->dmac_size;
4258 		*copybuf_used += MMU_PAGESIZE;
4259 		return (DDI_SUCCESS);
4260 	}
4261 
4262 	/*
4263 	 * *** may need to trim, figure it out.
4264 	 */
4265 
4266 	/* figure out how much we need to trim from the window */
4267 	if (dma->dp_granularity_power_2) {
4268 		trim_sz = (*windowp)->wd_size &
4269 		    (hp->dmai_attr.dma_attr_granular - 1);
4270 	} else {
4271 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
4272 	}
4273 
4274 	/*
4275 	 * if the window's a whole multiple of granularity, go to the next
4276 	 * window, init it, then add in the current cookie. We know the current
4277 	 * cookie uses the copy buffer since we're in this code path.
4278 	 */
4279 	if (trim_sz == 0) {
4280 		(*windowp)++;
4281 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4282 
4283 		/* Add this cookie to the new window */
4284 		(*windowp)->wd_cookie_cnt++;
4285 		(*windowp)->wd_size += cookie->dmac_size;
4286 		*copybuf_used += MMU_PAGESIZE;
4287 		return (DDI_SUCCESS);
4288 	}
4289 
4290 	/*
4291 	 * *** We figured it out, we definitly need to trim
4292 	 */
4293 
4294 	/*
4295 	 * make sure the driver isn't making us do something bad...
4296 	 * Trimming and sgllen == 1 don't go together.
4297 	 */
4298 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
4299 		return (DDI_DMA_NOMAPPING);
4300 	}
4301 
4302 	/*
4303 	 * first, setup the current window to account for the trim. Need to go
4304 	 * back to the last cookie for this. Some of the last cookie will be in
4305 	 * the current window, and some of the last cookie will be in the new
4306 	 * window. All of the current cookie will be in the new window.
4307 	 */
4308 	cookie--;
4309 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4310 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4311 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4312 	ASSERT(cookie->dmac_size > trim_sz);
4313 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4314 	(*windowp)->wd_size -= trim_sz;
4315 
4316 	/*
4317 	 * we're trimming the last cookie (not the current cookie). So that
4318 	 * last cookie may have or may not have been using the copy buffer (
4319 	 * we know the cookie passed in uses the copy buffer since we're in
4320 	 * this code path).
4321 	 *
4322 	 * If the last cookie doesn't use the copy buffer, nothing special to
4323 	 * do. However, if it does uses the copy buffer, it will be both the
4324 	 * last page in the current window and the first page in the next
4325 	 * window. Since we are reusing the copy buffer (and KVA space on the
4326 	 * 32-bit kernel), this page will use the end of the copy buffer in the
4327 	 * current window, and the start of the copy buffer in the next window.
4328 	 * Track that info... The cookie physical address was already set to
4329 	 * the copy buffer physical address in setup_cookie..
4330 	 */
4331 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4332 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
4333 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
4334 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
4335 		(*windowp)->wd_trim.tr_last_pidx = pidx;
4336 		(*windowp)->wd_trim.tr_last_cbaddr =
4337 		    dma->dp_pgmap[pidx].pm_cbaddr;
4338 #if !defined(__amd64)
4339 		(*windowp)->wd_trim.tr_last_kaddr =
4340 		    dma->dp_pgmap[pidx].pm_kaddr;
4341 #endif
4342 	}
4343 
4344 	/* save the buffer offsets for the next window */
4345 	coffset = cookie->dmac_size - trim_sz;
4346 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4347 
4348 	/*
4349 	 * set this now in case this is the first window. all other cases are
4350 	 * set in dma_win()
4351 	 */
4352 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4353 
4354 	/*
4355 	 * initialize the next window using what's left over in the previous
4356 	 * cookie.
4357 	 */
4358 	(*windowp)++;
4359 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4360 	(*windowp)->wd_cookie_cnt++;
4361 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4362 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4363 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4364 
4365 	/*
4366 	 * again, we're tracking if the last cookie uses the copy buffer.
4367 	 * read the comment above for more info on why we need to track
4368 	 * additional state.
4369 	 *
4370 	 * For the first cookie in the new window, we need reset the physical
4371 	 * address to DMA into to the start of the copy buffer plus any
4372 	 * initial page offset which may be present.
4373 	 */
4374 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4375 		(*windowp)->wd_dosync = B_TRUE;
4376 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
4377 		(*windowp)->wd_trim.tr_first_pidx = pidx;
4378 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
4379 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
4380 
4381 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
4382 		    poff;
4383 		(*windowp)->wd_trim.tr_first_paddr =
4384 		    ROOTNEX_PADDR_TO_RBASE(paddr);
4385 
4386 #if !defined(__amd64)
4387 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
4388 #endif
4389 		/* account for the cookie copybuf usage in the new window */
4390 		*copybuf_used += MMU_PAGESIZE;
4391 
4392 		/*
4393 		 * every piece of code has to have a hack, and here is this
4394 		 * ones :-)
4395 		 *
4396 		 * There is a complex interaction between setup_cookie and the
4397 		 * copybuf window boundary. The complexity had to be in either
4398 		 * the maxxfer window, or the copybuf window, and I chose the
4399 		 * copybuf code.
4400 		 *
4401 		 * So in this code path, we have taken the last cookie,
4402 		 * virtually broken it in half due to the trim, and it happens
4403 		 * to use the copybuf which further complicates life. At the
4404 		 * same time, we have already setup the current cookie, which
4405 		 * is now wrong. More background info: the current cookie uses
4406 		 * the copybuf, so it is only a page long max. So we need to
4407 		 * fix the current cookies copy buffer address, physical
4408 		 * address, and kva for the 32-bit kernel. We due this by
4409 		 * bumping them by page size (of course, we can't due this on
4410 		 * the physical address since the copy buffer may not be
4411 		 * physically contiguous).
4412 		 */
4413 		cookie++;
4414 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
4415 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
4416 
4417 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
4418 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
4419 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
4420 
4421 #if !defined(__amd64)
4422 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
4423 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
4424 #endif
4425 	} else {
4426 		/* go back to the current cookie */
4427 		cookie++;
4428 	}
4429 
4430 	/*
4431 	 * add the current cookie to the new window. set the new window size to
4432 	 * the what was left over from the previous cookie and what's in the
4433 	 * current cookie.
4434 	 */
4435 	(*windowp)->wd_cookie_cnt++;
4436 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4437 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4438 
4439 	/*
4440 	 * we know that the cookie passed in always uses the copy buffer. We
4441 	 * wouldn't be here if it didn't.
4442 	 */
4443 	*copybuf_used += MMU_PAGESIZE;
4444 
4445 	return (DDI_SUCCESS);
4446 }
4447 
4448 
4449 /*
4450  * rootnex_maxxfer_window_boundary()
4451  *    Called in bind slowpath when we get to a window boundary because we will
4452  *    go over maxxfer.
4453  */
4454 static int
4455 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4456     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4457 {
4458 	size_t dmac_size;
4459 	off_t new_offset;
4460 	size_t trim_sz;
4461 	off_t coffset;
4462 
4463 
4464 	/*
4465 	 * calculate how much we have to trim off of the current cookie to equal
4466 	 * maxxfer. We don't have to account for granularity here since our
4467 	 * maxxfer already takes that into account.
4468 	 */
4469 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4470 	ASSERT(trim_sz <= cookie->dmac_size);
4471 	ASSERT(trim_sz <= dma->dp_maxxfer);
4472 
4473 	/* save cookie size since we need it later and we might change it */
4474 	dmac_size = cookie->dmac_size;
4475 
4476 	/*
4477 	 * if we're not trimming the entire cookie, setup the current window to
4478 	 * account for the trim.
4479 	 */
4480 	if (trim_sz < cookie->dmac_size) {
4481 		(*windowp)->wd_cookie_cnt++;
4482 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4483 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4484 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4485 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4486 		(*windowp)->wd_size = dma->dp_maxxfer;
4487 
4488 		/*
4489 		 * set the adjusted cookie size now in case this is the first
4490 		 * window. All other windows are taken care of in get win
4491 		 */
4492 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4493 	}
4494 
4495 	/*
4496 	 * coffset is the current offset within the cookie, new_offset is the
4497 	 * current offset with the entire buffer.
4498 	 */
4499 	coffset = dmac_size - trim_sz;
4500 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4501 
4502 	/* initialize the next window */
4503 	(*windowp)++;
4504 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4505 	(*windowp)->wd_cookie_cnt++;
4506 	(*windowp)->wd_size = trim_sz;
4507 	if (trim_sz < dmac_size) {
4508 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4509 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4510 		    coffset;
4511 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4512 	}
4513 
4514 	return (DDI_SUCCESS);
4515 }
4516 
4517 
4518 /*ARGSUSED*/
4519 static int
4520 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4521     off_t off, size_t len, uint_t cache_flags)
4522 {
4523 	rootnex_sglinfo_t *sinfo;
4524 	rootnex_pgmap_t *cbpage;
4525 	rootnex_window_t *win;
4526 	ddi_dma_impl_t *hp;
4527 	rootnex_dma_t *dma;
4528 	caddr_t fromaddr;
4529 	caddr_t toaddr;
4530 	uint_t psize;
4531 	off_t offset;
4532 	uint_t pidx;
4533 	size_t size;
4534 	off_t poff;
4535 	int e;
4536 
4537 
4538 	hp = (ddi_dma_impl_t *)handle;
4539 	dma = (rootnex_dma_t *)hp->dmai_private;
4540 	sinfo = &dma->dp_sglinfo;
4541 
4542 	/*
4543 	 * if we don't have any windows, we don't need to sync. A copybuf
4544 	 * will cause us to have at least one window.
4545 	 */
4546 	if (dma->dp_window == NULL) {
4547 		return (DDI_SUCCESS);
4548 	}
4549 
4550 	/* This window may not need to be sync'd */
4551 	win = &dma->dp_window[dma->dp_current_win];
4552 	if (!win->wd_dosync) {
4553 		return (DDI_SUCCESS);
4554 	}
4555 
4556 	/* handle off and len special cases */
4557 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4558 		offset = win->wd_offset;
4559 	} else {
4560 		offset = off;
4561 	}
4562 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4563 		size = win->wd_size;
4564 	} else {
4565 		size = len;
4566 	}
4567 
4568 	/* check the sync args to make sure they make a little sense */
4569 	if (rootnex_sync_check_parms) {
4570 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4571 		    cache_flags);
4572 		if (e != DDI_SUCCESS) {
4573 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4574 			return (DDI_FAILURE);
4575 		}
4576 	}
4577 
4578 	/*
4579 	 * special case the first page to handle the offset into the page. The
4580 	 * offset to the current page for our buffer is the offset into the
4581 	 * first page of the buffer plus our current offset into the buffer
4582 	 * itself, masked of course.
4583 	 */
4584 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4585 	psize = MIN((MMU_PAGESIZE - poff), size);
4586 
4587 	/* go through all the pages that we want to sync */
4588 	while (size > 0) {
4589 		/*
4590 		 * Calculate the page index relative to the start of the buffer.
4591 		 * The index to the current page for our buffer is the offset
4592 		 * into the first page of the buffer plus our current offset
4593 		 * into the buffer itself, shifted of course...
4594 		 */
4595 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4596 		ASSERT(pidx < sinfo->si_max_pages);
4597 
4598 		/*
4599 		 * if this page uses the copy buffer, we need to sync it,
4600 		 * otherwise, go on to the next page.
4601 		 */
4602 		cbpage = &dma->dp_pgmap[pidx];
4603 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4604 		    (cbpage->pm_uses_copybuf == B_FALSE));
4605 		if (cbpage->pm_uses_copybuf) {
4606 			/* cbaddr and kaddr should be page aligned */
4607 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4608 			    MMU_PAGEOFFSET) == 0);
4609 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4610 			    MMU_PAGEOFFSET) == 0);
4611 
4612 			/*
4613 			 * if we're copying for the device, we are going to
4614 			 * copy from the drivers buffer and to the rootnex
4615 			 * allocated copy buffer.
4616 			 */
4617 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4618 				fromaddr = cbpage->pm_kaddr + poff;
4619 				toaddr = cbpage->pm_cbaddr + poff;
4620 				ROOTNEX_DPROBE2(rootnex__sync__dev,
4621 				    dev_info_t *, dma->dp_dip, size_t, psize);
4622 
4623 			/*
4624 			 * if we're copying for the cpu/kernel, we are going to
4625 			 * copy from the rootnex allocated copy buffer to the
4626 			 * drivers buffer.
4627 			 */
4628 			} else {
4629 				fromaddr = cbpage->pm_cbaddr + poff;
4630 				toaddr = cbpage->pm_kaddr + poff;
4631 				ROOTNEX_DPROBE2(rootnex__sync__cpu,
4632 				    dev_info_t *, dma->dp_dip, size_t, psize);
4633 			}
4634 
4635 			bcopy(fromaddr, toaddr, psize);
4636 		}
4637 
4638 		/*
4639 		 * decrement size until we're done, update our offset into the
4640 		 * buffer, and get the next page size.
4641 		 */
4642 		size -= psize;
4643 		offset += psize;
4644 		psize = MIN(MMU_PAGESIZE, size);
4645 
4646 		/* page offset is zero for the rest of this loop */
4647 		poff = 0;
4648 	}
4649 
4650 	return (DDI_SUCCESS);
4651 }
4652 
4653 /*
4654  * rootnex_dma_sync()
4655  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4656  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4657  *    is set, ddi_dma_sync() returns immediately passing back success.
4658  */
4659 /*ARGSUSED*/
4660 static int
4661 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4662     off_t off, size_t len, uint_t cache_flags)
4663 {
4664 #if defined(__amd64) && !defined(__xpv)
4665 	if (IOMMU_USED(rdip)) {
4666 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4667 		    cache_flags));
4668 	}
4669 #endif
4670 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4671 	    cache_flags));
4672 }
4673 
4674 /*
4675  * rootnex_valid_sync_parms()
4676  *    checks the parameters passed to sync to verify they are correct.
4677  */
4678 static int
4679 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4680     off_t offset, size_t size, uint_t cache_flags)
4681 {
4682 	off_t woffset;
4683 
4684 
4685 	/*
4686 	 * the first part of the test to make sure the offset passed in is
4687 	 * within the window.
4688 	 */
4689 	if (offset < win->wd_offset) {
4690 		return (DDI_FAILURE);
4691 	}
4692 
4693 	/*
4694 	 * second and last part of the test to make sure the offset and length
4695 	 * passed in is within the window.
4696 	 */
4697 	woffset = offset - win->wd_offset;
4698 	if ((woffset + size) > win->wd_size) {
4699 		return (DDI_FAILURE);
4700 	}
4701 
4702 	/*
4703 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4704 	 * be set too.
4705 	 */
4706 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4707 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4708 		return (DDI_SUCCESS);
4709 	}
4710 
4711 	/*
4712 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4713 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4714 	 */
4715 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4716 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4717 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4718 		return (DDI_SUCCESS);
4719 	}
4720 
4721 	return (DDI_FAILURE);
4722 }
4723 
4724 
4725 /*ARGSUSED*/
4726 static int
4727 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4728     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4729     uint_t *ccountp)
4730 {
4731 	rootnex_window_t *window;
4732 	rootnex_trim_t *trim;
4733 	ddi_dma_impl_t *hp;
4734 	rootnex_dma_t *dma;
4735 	ddi_dma_obj_t *dmao;
4736 #if !defined(__amd64)
4737 	rootnex_sglinfo_t *sinfo;
4738 	rootnex_pgmap_t *pmap;
4739 	uint_t pidx;
4740 	uint_t pcnt;
4741 	off_t poff;
4742 	int i;
4743 #endif
4744 
4745 
4746 	hp = (ddi_dma_impl_t *)handle;
4747 	dma = (rootnex_dma_t *)hp->dmai_private;
4748 #if !defined(__amd64)
4749 	sinfo = &dma->dp_sglinfo;
4750 #endif
4751 
4752 	/* If we try and get a window which doesn't exist, return failure */
4753 	if (win >= hp->dmai_nwin) {
4754 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4755 		return (DDI_FAILURE);
4756 	}
4757 
4758 	dmao = dma->dp_dvma_used ? &dma->dp_dvma : &dma->dp_dma;
4759 
4760 	/*
4761 	 * if we don't have any windows, and they're asking for the first
4762 	 * window, setup the cookie pointer to the first cookie in the bind.
4763 	 * setup our return values, then increment the cookie since we return
4764 	 * the first cookie on the stack.
4765 	 */
4766 	if (dma->dp_window == NULL) {
4767 		if (win != 0) {
4768 			ROOTNEX_DPROF_INC(
4769 			    &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4770 			return (DDI_FAILURE);
4771 		}
4772 		hp->dmai_cookie = dma->dp_cookies;
4773 		*offp = 0;
4774 		*lenp = dmao->dmao_size;
4775 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4776 		*cookiep = hp->dmai_cookie[0];
4777 		hp->dmai_cookie++;
4778 		return (DDI_SUCCESS);
4779 	}
4780 
4781 	/* sync the old window before moving on to the new one */
4782 	window = &dma->dp_window[dma->dp_current_win];
4783 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4784 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4785 		    DDI_DMA_SYNC_FORCPU);
4786 	}
4787 
4788 #if !defined(__amd64)
4789 	/*
4790 	 * before we move to the next window, if we need to re-map, unmap all
4791 	 * the pages in this window.
4792 	 */
4793 	if (dma->dp_cb_remaping) {
4794 		/*
4795 		 * If we switch to this window again, we'll need to map in
4796 		 * on the fly next time.
4797 		 */
4798 		window->wd_remap_copybuf = B_TRUE;
4799 
4800 		/*
4801 		 * calculate the page index into the buffer where this window
4802 		 * starts, and the number of pages this window takes up.
4803 		 */
4804 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4805 		    MMU_PAGESHIFT;
4806 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4807 		    MMU_PAGEOFFSET;
4808 		pcnt = mmu_btopr(window->wd_size + poff);
4809 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4810 
4811 		/* unmap pages which are currently mapped in this window */
4812 		for (i = 0; i < pcnt; i++) {
4813 			if (dma->dp_pgmap[pidx].pm_mapped) {
4814 				hat_unload(kas.a_hat,
4815 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4816 				    HAT_UNLOAD);
4817 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4818 			}
4819 			pidx++;
4820 		}
4821 	}
4822 #endif
4823 
4824 	/*
4825 	 * Move to the new window.
4826 	 * NOTE: current_win must be set for sync to work right
4827 	 */
4828 	dma->dp_current_win = win;
4829 	window = &dma->dp_window[win];
4830 
4831 	/* if needed, adjust the first and/or last cookies for trim */
4832 	trim = &window->wd_trim;
4833 	if (trim->tr_trim_first) {
4834 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4835 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4836 #if !defined(__amd64)
4837 		window->wd_first_cookie->dmac_type =
4838 		    (window->wd_first_cookie->dmac_type &
4839 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4840 #endif
4841 		if (trim->tr_first_copybuf_win) {
4842 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4843 			    trim->tr_first_cbaddr;
4844 #if !defined(__amd64)
4845 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4846 			    trim->tr_first_kaddr;
4847 #endif
4848 		}
4849 	}
4850 	if (trim->tr_trim_last) {
4851 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4852 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4853 		if (trim->tr_last_copybuf_win) {
4854 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4855 			    trim->tr_last_cbaddr;
4856 #if !defined(__amd64)
4857 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4858 			    trim->tr_last_kaddr;
4859 #endif
4860 		}
4861 	}
4862 
4863 	/*
4864 	 * setup the cookie pointer to the first cookie in the window. setup
4865 	 * our return values, then increment the cookie since we return the
4866 	 * first cookie on the stack.
4867 	 */
4868 	hp->dmai_cookie = window->wd_first_cookie;
4869 	*offp = window->wd_offset;
4870 	*lenp = window->wd_size;
4871 	*ccountp = window->wd_cookie_cnt;
4872 	*cookiep = hp->dmai_cookie[0];
4873 	hp->dmai_cookie++;
4874 
4875 #if !defined(__amd64)
4876 	/* re-map copybuf if required for this window */
4877 	if (dma->dp_cb_remaping) {
4878 		/*
4879 		 * calculate the page index into the buffer where this
4880 		 * window starts.
4881 		 */
4882 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4883 		    MMU_PAGESHIFT;
4884 		ASSERT(pidx < sinfo->si_max_pages);
4885 
4886 		/*
4887 		 * the first page can get unmapped if it's shared with the
4888 		 * previous window. Even if the rest of this window is already
4889 		 * mapped in, we need to still check this one.
4890 		 */
4891 		pmap = &dma->dp_pgmap[pidx];
4892 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4893 			if (pmap->pm_pp != NULL) {
4894 				pmap->pm_mapped = B_TRUE;
4895 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4896 			} else if (pmap->pm_vaddr != NULL) {
4897 				pmap->pm_mapped = B_TRUE;
4898 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4899 				    pmap->pm_kaddr);
4900 			}
4901 		}
4902 		pidx++;
4903 
4904 		/* map in the rest of the pages if required */
4905 		if (window->wd_remap_copybuf) {
4906 			window->wd_remap_copybuf = B_FALSE;
4907 
4908 			/* figure out many pages this window takes up */
4909 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4910 			    MMU_PAGEOFFSET;
4911 			pcnt = mmu_btopr(window->wd_size + poff);
4912 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4913 
4914 			/* map pages which require it */
4915 			for (i = 1; i < pcnt; i++) {
4916 				pmap = &dma->dp_pgmap[pidx];
4917 				if (pmap->pm_uses_copybuf) {
4918 					ASSERT(pmap->pm_mapped == B_FALSE);
4919 					if (pmap->pm_pp != NULL) {
4920 						pmap->pm_mapped = B_TRUE;
4921 						i86_pp_map(pmap->pm_pp,
4922 						    pmap->pm_kaddr);
4923 					} else if (pmap->pm_vaddr != NULL) {
4924 						pmap->pm_mapped = B_TRUE;
4925 						i86_va_map(pmap->pm_vaddr,
4926 						    sinfo->si_asp,
4927 						    pmap->pm_kaddr);
4928 					}
4929 				}
4930 				pidx++;
4931 			}
4932 		}
4933 	}
4934 #endif
4935 
4936 	/* if the new window uses the copy buffer, sync it for the device */
4937 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4938 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4939 		    DDI_DMA_SYNC_FORDEV);
4940 	}
4941 
4942 	return (DDI_SUCCESS);
4943 }
4944 
4945 /*
4946  * rootnex_dma_win()
4947  *    called from ddi_dma_getwin()
4948  */
4949 /*ARGSUSED*/
4950 static int
4951 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4952     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4953     uint_t *ccountp)
4954 {
4955 #if defined(__amd64) && !defined(__xpv)
4956 	if (IOMMU_USED(rdip)) {
4957 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4958 		    cookiep, ccountp));
4959 	}
4960 #endif
4961 
4962 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4963 	    cookiep, ccountp));
4964 }
4965 
4966 #if defined(__amd64) && !defined(__xpv)
4967 /*ARGSUSED*/
4968 static int
4969 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
4970     ddi_dma_handle_t handle, void *v)
4971 {
4972 	ddi_dma_impl_t *hp;
4973 	rootnex_dma_t *dma;
4974 
4975 	hp = (ddi_dma_impl_t *)handle;
4976 	dma = (rootnex_dma_t *)hp->dmai_private;
4977 	dma->dp_iommu_private = v;
4978 
4979 	return (DDI_SUCCESS);
4980 }
4981 
4982 /*ARGSUSED*/
4983 static void *
4984 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
4985     ddi_dma_handle_t handle)
4986 {
4987 	ddi_dma_impl_t *hp;
4988 	rootnex_dma_t *dma;
4989 
4990 	hp = (ddi_dma_impl_t *)handle;
4991 	dma = (rootnex_dma_t *)hp->dmai_private;
4992 
4993 	return (dma->dp_iommu_private);
4994 }
4995 #endif
4996 
4997 /*
4998  * ************************
4999  *  obsoleted dma routines
5000  * ************************
5001  */
5002 
5003 /*
5004  * rootnex_dma_mctl()
5005  *
5006  * We don't support this legacy interface any more on x86.
5007  */
5008 /* ARGSUSED */
5009 static int
5010 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
5011     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
5012     uint_t cache_flags)
5013 {
5014 	/*
5015 	 * The only thing dma_mctl is usef for anymore is legacy SPARC
5016 	 * dvma and sbus-specific routines.
5017 	 */
5018 	return (DDI_FAILURE);
5019 }
5020 
5021 /*
5022  * *********
5023  *  FMA Code
5024  * *********
5025  */
5026 
5027 /*
5028  * rootnex_fm_init()
5029  *    FMA init busop
5030  */
5031 /* ARGSUSED */
5032 static int
5033 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
5034     ddi_iblock_cookie_t *ibc)
5035 {
5036 	*ibc = rootnex_state->r_err_ibc;
5037 
5038 	return (ddi_system_fmcap);
5039 }
5040 
5041 /*
5042  * rootnex_dma_check()
5043  *    Function called after a dma fault occurred to find out whether the
5044  *    fault address is associated with a driver that is able to handle faults
5045  *    and recover from faults.
5046  */
5047 /* ARGSUSED */
5048 static int
5049 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
5050     const void *not_used)
5051 {
5052 	rootnex_window_t *window;
5053 	uint64_t start_addr;
5054 	uint64_t fault_addr;
5055 	ddi_dma_impl_t *hp;
5056 	rootnex_dma_t *dma;
5057 	uint64_t end_addr;
5058 	size_t csize;
5059 	int i;
5060 	int j;
5061 
5062 
5063 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
5064 	hp = (ddi_dma_impl_t *)handle;
5065 	ASSERT(hp);
5066 
5067 	dma = (rootnex_dma_t *)hp->dmai_private;
5068 
5069 	/* Get the address that we need to search for */
5070 	fault_addr = *(uint64_t *)addr;
5071 
5072 	/*
5073 	 * if we don't have any windows, we can just walk through all the
5074 	 * cookies.
5075 	 */
5076 	if (dma->dp_window == NULL) {
5077 		/* for each cookie */
5078 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
5079 			/*
5080 			 * if the faulted address is within the physical address
5081 			 * range of the cookie, return DDI_FM_NONFATAL.
5082 			 */
5083 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
5084 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
5085 			    dma->dp_cookies[i].dmac_size))) {
5086 				return (DDI_FM_NONFATAL);
5087 			}
5088 		}
5089 
5090 		/* fault_addr not within this DMA handle */
5091 		return (DDI_FM_UNKNOWN);
5092 	}
5093 
5094 	/* we have mutiple windows, walk through each window */
5095 	for (i = 0; i < hp->dmai_nwin; i++) {
5096 		window = &dma->dp_window[i];
5097 
5098 		/* Go through all the cookies in the window */
5099 		for (j = 0; j < window->wd_cookie_cnt; j++) {
5100 
5101 			start_addr = window->wd_first_cookie[j].dmac_laddress;
5102 			csize = window->wd_first_cookie[j].dmac_size;
5103 
5104 			/*
5105 			 * if we are trimming the first cookie in the window,
5106 			 * and this is the first cookie, adjust the start
5107 			 * address and size of the cookie to account for the
5108 			 * trim.
5109 			 */
5110 			if (window->wd_trim.tr_trim_first && (j == 0)) {
5111 				start_addr = window->wd_trim.tr_first_paddr;
5112 				csize = window->wd_trim.tr_first_size;
5113 			}
5114 
5115 			/*
5116 			 * if we are trimming the last cookie in the window,
5117 			 * and this is the last cookie, adjust the start
5118 			 * address and size of the cookie to account for the
5119 			 * trim.
5120 			 */
5121 			if (window->wd_trim.tr_trim_last &&
5122 			    (j == (window->wd_cookie_cnt - 1))) {
5123 				start_addr = window->wd_trim.tr_last_paddr;
5124 				csize = window->wd_trim.tr_last_size;
5125 			}
5126 
5127 			end_addr = start_addr + csize;
5128 
5129 			/*
5130 			 * if the faulted address is within the physical
5131 			 * address of the cookie, return DDI_FM_NONFATAL.
5132 			 */
5133 			if ((fault_addr >= start_addr) &&
5134 			    (fault_addr <= end_addr)) {
5135 				return (DDI_FM_NONFATAL);
5136 			}
5137 		}
5138 	}
5139 
5140 	/* fault_addr not within this DMA handle */
5141 	return (DDI_FM_UNKNOWN);
5142 }
5143 
5144 /*ARGSUSED*/
5145 static int
5146 rootnex_quiesce(dev_info_t *dip)
5147 {
5148 #if defined(__amd64) && !defined(__xpv)
5149 	return (immu_quiesce());
5150 #else
5151 	return (DDI_SUCCESS);
5152 #endif
5153 }
5154 
5155 #if defined(__xpv)
5156 void
5157 immu_init(void)
5158 {
5159 	;
5160 }
5161 
5162 void
5163 immu_startup(void)
5164 {
5165 	;
5166 }
5167 /*ARGSUSED*/
5168 void
5169 immu_physmem_update(uint64_t addr, uint64_t size)
5170 {
5171 	;
5172 }
5173 #endif
5174