xref: /illumos-gate/usr/src/uts/common/vm/seg_vn.c (revision 88f8b78a88cbdc6d8c1af5c3e54bc49d25095c98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - shared or copy-on-write from a vnode/anonymous memory.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/t_lock.h>
49 #include <sys/errno.h>
50 #include <sys/systm.h>
51 #include <sys/mman.h>
52 #include <sys/debug.h>
53 #include <sys/cred.h>
54 #include <sys/vmsystm.h>
55 #include <sys/tuneable.h>
56 #include <sys/bitmap.h>
57 #include <sys/swap.h>
58 #include <sys/kmem.h>
59 #include <sys/sysmacros.h>
60 #include <sys/vtrace.h>
61 #include <sys/cmn_err.h>
62 #include <sys/vm.h>
63 #include <sys/dumphdr.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_vn.h>
70 #include <vm/pvn.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/vpage.h>
74 
75 /*
76  * Private seg op routines.
77  */
78 static int	segvn_dup(struct seg *seg, struct seg *newseg);
79 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
80 static void	segvn_free(struct seg *seg);
81 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
82 		    caddr_t addr, size_t len, enum fault_type type,
83 		    enum seg_rw rw);
84 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
85 static int	segvn_setprot(struct seg *seg, caddr_t addr,
86 		    size_t len, uint_t prot);
87 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
88 		    size_t len, uint_t prot);
89 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
90 static size_t	segvn_swapout(struct seg *seg);
91 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
92 		    int attr, uint_t flags);
93 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
94 		    char *vec);
95 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
96 		    int attr, int op, ulong_t *lockmap, size_t pos);
97 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
98 		    uint_t *protv);
99 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
100 static int	segvn_gettype(struct seg *seg, caddr_t addr);
101 static int	segvn_getvp(struct seg *seg, caddr_t addr,
102 		    struct vnode **vpp);
103 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
104 		    uint_t behav);
105 static void	segvn_dump(struct seg *seg);
106 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
107 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
108 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
109 		    uint_t szc);
110 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
111 		    memid_t *memidp);
112 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
113 static int	segvn_capable(struct seg *seg, segcapability_t capable);
114 
115 struct	seg_ops segvn_ops = {
116 	segvn_dup,
117 	segvn_unmap,
118 	segvn_free,
119 	segvn_fault,
120 	segvn_faulta,
121 	segvn_setprot,
122 	segvn_checkprot,
123 	segvn_kluster,
124 	segvn_swapout,
125 	segvn_sync,
126 	segvn_incore,
127 	segvn_lockop,
128 	segvn_getprot,
129 	segvn_getoffset,
130 	segvn_gettype,
131 	segvn_getvp,
132 	segvn_advise,
133 	segvn_dump,
134 	segvn_pagelock,
135 	segvn_setpagesize,
136 	segvn_getmemid,
137 	segvn_getpolicy,
138 	segvn_capable,
139 };
140 
141 /*
142  * Common zfod structures, provided as a shorthand for others to use.
143  */
144 static segvn_crargs_t zfod_segvn_crargs =
145 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
146 static segvn_crargs_t kzfod_segvn_crargs =
147 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
148 	PROT_ALL & ~PROT_USER);
149 static segvn_crargs_t stack_noexec_crargs =
150 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
151 
152 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
153 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
154 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
155 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
156 
157 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
158 
159 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
160 
161 static int	segvn_concat(struct seg *, struct seg *, int);
162 static int	segvn_extend_prev(struct seg *, struct seg *,
163 		    struct segvn_crargs *, size_t);
164 static int	segvn_extend_next(struct seg *, struct seg *,
165 		    struct segvn_crargs *, size_t);
166 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
167 static void	segvn_pagelist_rele(page_t **);
168 static void	segvn_setvnode_mpss(vnode_t *);
169 static void	segvn_relocate_pages(page_t **, page_t *);
170 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
171 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
172     uint_t, page_t **, page_t **, uint_t *, int *);
173 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
174     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
175 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
176     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
177 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
178     u_offset_t, struct vpage *, page_t **, uint_t,
179     enum fault_type, enum seg_rw, int);
180 static void	segvn_vpage(struct seg *);
181 
182 static void segvn_purge(struct seg *seg);
183 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
184     enum seg_rw);
185 
186 static int sameprot(struct seg *, caddr_t, size_t);
187 
188 static int segvn_demote_range(struct seg *, caddr_t, size_t, int);
189 static int segvn_clrszc(struct seg *);
190 static struct seg *segvn_split_seg(struct seg *, caddr_t);
191 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
192     ulong_t, uint_t);
193 
194 static struct kmem_cache *segvn_cache;
195 
196 #ifdef VM_STATS
197 static struct segvnvmstats_str {
198 	ulong_t	fill_vp_pages[31];
199 	ulong_t fltvnpages[49];
200 	ulong_t	fullszcpages[10];
201 	ulong_t	relocatepages[3];
202 	ulong_t	fltanpages[17];
203 	ulong_t pagelock[3];
204 	ulong_t	demoterange[3];
205 } segvnvmstats;
206 #endif /* VM_STATS */
207 
208 #define	SDR_RANGE	1		/* demote entire range */
209 #define	SDR_END		2		/* demote non aligned ends only */
210 
211 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {            \
212 		if ((len) != 0) { 		      	      		      \
213 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
214 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
215 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
216 			    (len)), pgsz);				      \
217 			ASSERT(lpgeaddr > lpgaddr);		      	      \
218 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
219 		} else {					      	      \
220 			lpgeaddr = lpgaddr = (addr);	      		      \
221 		}							      \
222 	}
223 
224 /*ARGSUSED*/
225 static int
226 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
227 {
228 	struct segvn_data *svd = buf;
229 
230 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
231 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
232 	return (0);
233 }
234 
235 /*ARGSUSED1*/
236 static void
237 segvn_cache_destructor(void *buf, void *cdrarg)
238 {
239 	struct segvn_data *svd = buf;
240 
241 	rw_destroy(&svd->lock);
242 	mutex_destroy(&svd->segp_slock);
243 }
244 
245 /*
246  * Patching this variable to non-zero allows the system to run with
247  * stacks marked as "not executable".  It's a bit of a kludge, but is
248  * provided as a tweakable for platforms that export those ABIs
249  * (e.g. sparc V8) that have executable stacks enabled by default.
250  * There are also some restrictions for platforms that don't actually
251  * implement 'noexec' protections.
252  *
253  * Once enabled, the system is (therefore) unable to provide a fully
254  * ABI-compliant execution environment, though practically speaking,
255  * most everything works.  The exceptions are generally some interpreters
256  * and debuggers that create executable code on the stack and jump
257  * into it (without explicitly mprotecting the address range to include
258  * PROT_EXEC).
259  *
260  * One important class of applications that are disabled are those
261  * that have been transformed into malicious agents using one of the
262  * numerous "buffer overflow" attacks.  See 4007890.
263  */
264 int noexec_user_stack = 0;
265 int noexec_user_stack_log = 1;
266 
267 int segvn_lpg_disable = 0;
268 uint_t segvn_maxpgszc = 0;
269 
270 ulong_t segvn_vmpss_clrszc_cnt;
271 ulong_t segvn_vmpss_clrszc_err;
272 ulong_t segvn_fltvnpages_clrszc_cnt;
273 ulong_t segvn_fltvnpages_clrszc_err;
274 ulong_t segvn_setpgsz_align_err;
275 ulong_t segvn_setpgsz_getattr_err;
276 ulong_t segvn_setpgsz_eof_err;
277 ulong_t segvn_faultvnmpss_align_err1;
278 ulong_t segvn_faultvnmpss_align_err2;
279 ulong_t segvn_faultvnmpss_align_err3;
280 ulong_t segvn_faultvnmpss_align_err4;
281 ulong_t segvn_faultvnmpss_align_err5;
282 ulong_t	segvn_vmpss_pageio_deadlk_err;
283 
284 /*
285  * Initialize segvn data structures
286  */
287 void
288 segvn_init(void)
289 {
290 	uint_t maxszc;
291 	uint_t szc;
292 	size_t pgsz;
293 
294 	segvn_cache = kmem_cache_create("segvn_cache",
295 		sizeof (struct segvn_data), 0,
296 		segvn_cache_constructor, segvn_cache_destructor, NULL,
297 		NULL, NULL, 0);
298 
299 	if (segvn_lpg_disable != 0)
300 		return;
301 	szc = maxszc = page_num_pagesizes() - 1;
302 	if (szc == 0) {
303 		segvn_lpg_disable = 1;
304 		return;
305 	}
306 	if (page_get_pagesize(0) != PAGESIZE) {
307 		panic("segvn_init: bad szc 0");
308 		/*NOTREACHED*/
309 	}
310 	while (szc != 0) {
311 		pgsz = page_get_pagesize(szc);
312 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
313 			panic("segvn_init: bad szc %d", szc);
314 			/*NOTREACHED*/
315 		}
316 		szc--;
317 	}
318 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
319 		segvn_maxpgszc = maxszc;
320 }
321 
322 #define	SEGVN_PAGEIO	((void *)0x1)
323 #define	SEGVN_NOPAGEIO	((void *)0x2)
324 
325 static void
326 segvn_setvnode_mpss(vnode_t *vp)
327 {
328 	int err;
329 
330 	ASSERT(vp->v_mpssdata == NULL ||
331 	    vp->v_mpssdata == SEGVN_PAGEIO ||
332 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
333 
334 	if (vp->v_mpssdata == NULL) {
335 		if (vn_vmpss_usepageio(vp)) {
336 			err = VOP_PAGEIO(vp, (page_t *)NULL,
337 			    (u_offset_t)0, 0, 0, CRED());
338 		} else {
339 			err = ENOSYS;
340 		}
341 		/*
342 		 * set v_mpssdata just once per vnode life
343 		 * so that it never changes.
344 		 */
345 		mutex_enter(&vp->v_lock);
346 		if (vp->v_mpssdata == NULL) {
347 			if (err == EINVAL) {
348 				vp->v_mpssdata = SEGVN_PAGEIO;
349 			} else {
350 				vp->v_mpssdata = SEGVN_NOPAGEIO;
351 			}
352 		}
353 		mutex_exit(&vp->v_lock);
354 	}
355 }
356 
357 int
358 segvn_create(struct seg *seg, void *argsp)
359 {
360 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
361 	struct segvn_data *svd;
362 	size_t swresv = 0;
363 	struct cred *cred;
364 	struct anon_map *amp;
365 	int error = 0;
366 	size_t pgsz;
367 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
368 
369 
370 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
371 
372 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
373 		panic("segvn_create type");
374 		/*NOTREACHED*/
375 	}
376 
377 	/*
378 	 * Check arguments.  If a shared anon structure is given then
379 	 * it is illegal to also specify a vp.
380 	 */
381 	if (a->amp != NULL && a->vp != NULL) {
382 		panic("segvn_create anon_map");
383 		/*NOTREACHED*/
384 	}
385 
386 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
387 	if (a->type == MAP_SHARED)
388 		a->flags &= ~MAP_NORESERVE;
389 
390 	if (a->szc != 0) {
391 		if (segvn_lpg_disable != 0 || a->amp != NULL ||
392 		    (a->type == MAP_SHARED && a->vp == NULL) ||
393 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
394 			a->szc = 0;
395 		} else {
396 			if (a->szc > segvn_maxpgszc)
397 				a->szc = segvn_maxpgszc;
398 			pgsz = page_get_pagesize(a->szc);
399 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
400 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
401 				a->szc = 0;
402 			} else if (a->vp != NULL) {
403 				extern struct vnode kvp;
404 				if (IS_SWAPFSVP(a->vp) || a->vp == &kvp) {
405 					/*
406 					 * paranoid check.
407 					 * hat_page_demote() is not supported
408 					 * on swapfs pages.
409 					 */
410 					a->szc = 0;
411 				} else if (map_addr_vacalign_check(seg->s_base,
412 				    a->offset & PAGEMASK)) {
413 					a->szc = 0;
414 				}
415 			}
416 		}
417 	}
418 
419 	/*
420 	 * If segment may need private pages, reserve them now.
421 	 */
422 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
423 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
424 		if (anon_resv(seg->s_size) == 0)
425 			return (EAGAIN);
426 		swresv = seg->s_size;
427 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
428 			seg, swresv, 1);
429 	}
430 
431 	/*
432 	 * Reserve any mapping structures that may be required.
433 	 */
434 	hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
435 
436 	if (a->cred) {
437 		cred = a->cred;
438 		crhold(cred);
439 	} else {
440 		crhold(cred = CRED());
441 	}
442 
443 	/* Inform the vnode of the new mapping */
444 	if (a->vp) {
445 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
446 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
447 		    a->maxprot, a->type, cred);
448 		if (error) {
449 			if (swresv != 0) {
450 				anon_unresv(swresv);
451 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
452 					"anon proc:%p %lu %u",
453 					seg, swresv, 0);
454 			}
455 			crfree(cred);
456 			hat_unload(seg->s_as->a_hat, seg->s_base,
457 				seg->s_size, HAT_UNLOAD_UNMAP);
458 			return (error);
459 		}
460 	}
461 
462 	/*
463 	 * If more than one segment in the address space, and
464 	 * they're adjacent virtually, try to concatenate them.
465 	 * Don't concatenate if an explicit anon_map structure
466 	 * was supplied (e.g., SystemV shared memory).
467 	 */
468 	if (a->amp == NULL) {
469 		struct seg *pseg, *nseg;
470 		struct segvn_data *psvd, *nsvd;
471 		lgrp_mem_policy_t ppolicy, npolicy;
472 		uint_t	lgrp_mem_policy_flags = 0;
473 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
474 
475 		/*
476 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
477 		 * extending stack/heap segments.
478 		 */
479 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
480 			!(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
481 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
482 		} else {
483 			/*
484 			 * Get policy when not extending it from another segment
485 			 */
486 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
487 		}
488 
489 		/*
490 		 * First, try to concatenate the previous and new segments
491 		 */
492 		pseg = AS_SEGPREV(seg->s_as, seg);
493 		if (pseg != NULL &&
494 		    pseg->s_base + pseg->s_size == seg->s_base &&
495 		    pseg->s_ops == &segvn_ops) {
496 			/*
497 			 * Get memory allocation policy from previous segment.
498 			 * When extension is specified (e.g. for heap) apply
499 			 * this policy to the new segment regardless of the
500 			 * outcome of segment concatenation.  Extension occurs
501 			 * for non-default policy otherwise default policy is
502 			 * used and is based on extended segment size.
503 			 */
504 			psvd = (struct segvn_data *)pseg->s_data;
505 			ppolicy = psvd->policy_info.mem_policy;
506 			if (lgrp_mem_policy_flags ==
507 			    LGRP_MP_FLAG_EXTEND_UP) {
508 				if (ppolicy != lgrp_mem_default_policy) {
509 					mpolicy = ppolicy;
510 				} else {
511 					mpolicy = lgrp_mem_policy_default(
512 					    pseg->s_size + seg->s_size,
513 					    a->type);
514 				}
515 			}
516 
517 			if (mpolicy == ppolicy &&
518 			    (pseg->s_size + seg->s_size <=
519 			    segvn_comb_thrshld || psvd->amp == NULL) &&
520 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
521 				/*
522 				 * success! now try to concatenate
523 				 * with following seg
524 				 */
525 				crfree(cred);
526 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
527 				if (nseg != NULL &&
528 				    nseg != pseg &&
529 				    nseg->s_ops == &segvn_ops &&
530 				    pseg->s_base + pseg->s_size ==
531 				    nseg->s_base)
532 					(void) segvn_concat(pseg, nseg, 0);
533 				ASSERT(pseg->s_szc == 0 ||
534 				    (a->szc == pseg->s_szc &&
535 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
536 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
537 				return (0);
538 			}
539 		}
540 
541 		/*
542 		 * Failed, so try to concatenate with following seg
543 		 */
544 		nseg = AS_SEGNEXT(seg->s_as, seg);
545 		if (nseg != NULL &&
546 		    seg->s_base + seg->s_size == nseg->s_base &&
547 		    nseg->s_ops == &segvn_ops) {
548 			/*
549 			 * Get memory allocation policy from next segment.
550 			 * When extension is specified (e.g. for stack) apply
551 			 * this policy to the new segment regardless of the
552 			 * outcome of segment concatenation.  Extension occurs
553 			 * for non-default policy otherwise default policy is
554 			 * used and is based on extended segment size.
555 			 */
556 			nsvd = (struct segvn_data *)nseg->s_data;
557 			npolicy = nsvd->policy_info.mem_policy;
558 			if (lgrp_mem_policy_flags ==
559 			    LGRP_MP_FLAG_EXTEND_DOWN) {
560 				if (npolicy != lgrp_mem_default_policy) {
561 					mpolicy = npolicy;
562 				} else {
563 					mpolicy = lgrp_mem_policy_default(
564 					    nseg->s_size + seg->s_size,
565 					    a->type);
566 				}
567 			}
568 
569 			if (mpolicy == npolicy &&
570 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
571 				crfree(cred);
572 				ASSERT(nseg->s_szc == 0 ||
573 				    (a->szc == nseg->s_szc &&
574 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
575 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
576 				return (0);
577 			}
578 		}
579 	}
580 
581 	if (a->vp != NULL) {
582 		VN_HOLD(a->vp);
583 		if (a->type == MAP_SHARED)
584 			lgrp_shm_policy_init(NULL, a->vp);
585 	}
586 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
587 
588 	seg->s_ops = &segvn_ops;
589 	seg->s_data = (void *)svd;
590 	seg->s_szc = a->szc;
591 
592 	svd->vp = a->vp;
593 	/*
594 	 * Anonymous mappings have no backing file so the offset is meaningless.
595 	 */
596 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
597 	svd->prot = a->prot;
598 	svd->maxprot = a->maxprot;
599 	svd->pageprot = 0;
600 	svd->type = a->type;
601 	svd->vpage = NULL;
602 	svd->cred = cred;
603 	svd->advice = MADV_NORMAL;
604 	svd->pageadvice = 0;
605 	svd->flags = (ushort_t)a->flags;
606 	svd->softlockcnt = 0;
607 	if (a->szc != 0 && a->vp != NULL) {
608 		segvn_setvnode_mpss(a->vp);
609 	}
610 
611 	amp = a->amp;
612 	if ((svd->amp = amp) == NULL) {
613 		svd->anon_index = 0;
614 		if (svd->type == MAP_SHARED) {
615 			svd->swresv = 0;
616 			/*
617 			 * Shared mappings to a vp need no other setup.
618 			 * If we have a shared mapping to an anon_map object
619 			 * which hasn't been allocated yet,  allocate the
620 			 * struct now so that it will be properly shared
621 			 * by remembering the swap reservation there.
622 			 */
623 			if (a->vp == NULL) {
624 				svd->amp = anonmap_alloc(seg->s_size, swresv);
625 				svd->amp->a_szc = seg->s_szc;
626 			}
627 		} else {
628 			/*
629 			 * Private mapping (with or without a vp).
630 			 * Allocate anon_map when needed.
631 			 */
632 			svd->swresv = swresv;
633 		}
634 	} else {
635 		pgcnt_t anon_num;
636 
637 		/*
638 		 * Mapping to an existing anon_map structure without a vp.
639 		 * For now we will insure that the segment size isn't larger
640 		 * than the size - offset gives us.  Later on we may wish to
641 		 * have the anon array dynamically allocated itself so that
642 		 * we don't always have to allocate all the anon pointer slots.
643 		 * This of course involves adding extra code to check that we
644 		 * aren't trying to use an anon pointer slot beyond the end
645 		 * of the currently allocated anon array.
646 		 */
647 		if ((amp->size - a->offset) < seg->s_size) {
648 			panic("segvn_create anon_map size");
649 			/*NOTREACHED*/
650 		}
651 
652 		anon_num = btopr(a->offset);
653 
654 		if (a->type == MAP_SHARED) {
655 			/*
656 			 * SHARED mapping to a given anon_map.
657 			 */
658 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
659 			amp->refcnt++;
660 			ANON_LOCK_EXIT(&amp->a_rwlock);
661 			svd->anon_index = anon_num;
662 			svd->swresv = 0;
663 		} else {
664 			/*
665 			 * PRIVATE mapping to a given anon_map.
666 			 * Make sure that all the needed anon
667 			 * structures are created (so that we will
668 			 * share the underlying pages if nothing
669 			 * is written by this mapping) and then
670 			 * duplicate the anon array as is done
671 			 * when a privately mapped segment is dup'ed.
672 			 */
673 			struct anon *ap;
674 			caddr_t addr;
675 			caddr_t eaddr;
676 			ulong_t	anon_idx;
677 			int hat_flag = HAT_LOAD;
678 
679 			if (svd->flags & MAP_TEXT) {
680 				hat_flag |= HAT_LOAD_TEXT;
681 			}
682 
683 			svd->amp = anonmap_alloc(seg->s_size, 0);
684 			svd->amp->a_szc = seg->s_szc;
685 			svd->anon_index = 0;
686 			svd->swresv = swresv;
687 
688 			/*
689 			 * Prevent 2 threads from allocating anon
690 			 * slots simultaneously.
691 			 */
692 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
693 			eaddr = seg->s_base + seg->s_size;
694 
695 			for (anon_idx = anon_num, addr = seg->s_base;
696 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
697 				page_t *pp;
698 
699 				if ((ap = anon_get_ptr(amp->ahp,
700 				    anon_idx)) != NULL)
701 					continue;
702 
703 				/*
704 				 * Allocate the anon struct now.
705 				 * Might as well load up translation
706 				 * to the page while we're at it...
707 				 */
708 				pp = anon_zero(seg, addr, &ap, cred);
709 				if (ap == NULL || pp == NULL) {
710 					panic("segvn_create anon_zero");
711 					/*NOTREACHED*/
712 				}
713 
714 				/*
715 				 * Re-acquire the anon_map lock and
716 				 * initialize the anon array entry.
717 				 */
718 				ASSERT(anon_get_ptr(amp->ahp,
719 				    anon_idx) == NULL);
720 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
721 				    ANON_SLEEP);
722 
723 				ASSERT(seg->s_szc == 0);
724 				ASSERT(!IS_VMODSORT(pp->p_vnode));
725 
726 				hat_memload(seg->s_as->a_hat, addr, pp,
727 					svd->prot & ~PROT_WRITE, hat_flag);
728 
729 				page_unlock(pp);
730 			}
731 			ASSERT(seg->s_szc == 0);
732 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
733 			    0, seg->s_size);
734 			ANON_LOCK_EXIT(&amp->a_rwlock);
735 		}
736 	}
737 
738 	/*
739 	 * Set default memory allocation policy for segment
740 	 *
741 	 * Always set policy for private memory at least for initialization
742 	 * even if this is a shared memory segment
743 	 */
744 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
745 
746 	if (svd->type == MAP_SHARED)
747 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
748 		    svd->vp, svd->offset, seg->s_size);
749 
750 	return (0);
751 }
752 
753 /*
754  * Concatenate two existing segments, if possible.
755  * Return 0 on success, -1 if two segments are not compatible
756  * or -2 on memory allocation failure.
757  * If private == 1 then try and concat segments with private pages.
758  */
759 static int
760 segvn_concat(struct seg *seg1, struct seg *seg2, int private)
761 {
762 	struct segvn_data *svd1 = seg1->s_data;
763 	struct segvn_data *svd2 = seg2->s_data;
764 	struct anon_map *amp1 = svd1->amp;
765 	struct anon_map *amp2 = svd2->amp;
766 	struct vpage *vpage1 = svd1->vpage;
767 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
768 	size_t size, nvpsize;
769 	pgcnt_t npages1, npages2;
770 
771 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
772 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
773 	ASSERT(seg1->s_ops == seg2->s_ops);
774 
775 	/* both segments exist, try to merge them */
776 #define	incompat(x)	(svd1->x != svd2->x)
777 	if (incompat(vp) || incompat(maxprot) ||
778 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
779 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
780 	    incompat(type) || incompat(cred) || incompat(flags) ||
781 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
782 	    (svd2->softlockcnt > 0))
783 		return (-1);
784 #undef incompat
785 
786 	/*
787 	 * vp == NULL implies zfod, offset doesn't matter
788 	 */
789 	if (svd1->vp != NULL &&
790 	    svd1->offset + seg1->s_size != svd2->offset) {
791 		return (-1);
792 	}
793 
794 	/*
795 	 * Fail early if we're not supposed to concatenate
796 	 * private pages.
797 	 */
798 	if ((private == 0 || svd1->type != MAP_PRIVATE) &&
799 	    (amp1 != NULL || amp2 != NULL)) {
800 		return (-1);
801 	}
802 
803 	/*
804 	 * If either seg has vpages, create a new merged vpage array.
805 	 */
806 	if (vpage1 != NULL || vpage2 != NULL) {
807 		struct vpage *vp;
808 
809 		npages1 = seg_pages(seg1);
810 		npages2 = seg_pages(seg2);
811 		nvpsize = vpgtob(npages1 + npages2);
812 
813 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
814 			return (-2);
815 		}
816 		if (vpage1 != NULL) {
817 			bcopy(vpage1, nvpage, vpgtob(npages1));
818 		}
819 		if (vpage2 != NULL) {
820 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
821 		}
822 		for (vp = nvpage; vp < nvpage + npages1; vp++) {
823 			if (svd2->pageprot && !svd1->pageprot) {
824 				VPP_SETPROT(vp, svd1->prot);
825 			}
826 			if (svd2->pageadvice && !svd1->pageadvice) {
827 				VPP_SETADVICE(vp, svd1->advice);
828 			}
829 		}
830 		for (vp = nvpage + npages1;
831 		    vp < nvpage + npages1 + npages2; vp++) {
832 			if (svd1->pageprot && !svd2->pageprot) {
833 				VPP_SETPROT(vp, svd2->prot);
834 			}
835 			if (svd1->pageadvice && !svd2->pageadvice) {
836 				VPP_SETADVICE(vp, svd2->advice);
837 			}
838 		}
839 	}
840 
841 	/*
842 	 * If either segment has private pages, create a new merged anon
843 	 * array.
844 	 */
845 	if (amp1 != NULL || amp2 != NULL) {
846 		struct anon_hdr *nahp;
847 		struct anon_map *namp = NULL;
848 		size_t asize = seg1->s_size + seg2->s_size;
849 
850 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
851 			if (nvpage != NULL) {
852 				kmem_free(nvpage, nvpsize);
853 			}
854 			return (-2);
855 		}
856 		if (amp1 != NULL) {
857 			/*
858 			 * XXX anon rwlock is not really needed because
859 			 * this is a private segment and we are writers.
860 			 */
861 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
862 			ASSERT(amp1->refcnt == 1);
863 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
864 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
865 				anon_release(nahp, btop(asize));
866 				ANON_LOCK_EXIT(&amp1->a_rwlock);
867 				if (nvpage != NULL) {
868 					kmem_free(nvpage, nvpsize);
869 				}
870 				return (-2);
871 			}
872 		}
873 		if (amp2 != NULL) {
874 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
875 			ASSERT(amp2->refcnt == 1);
876 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
877 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
878 			    ANON_NOSLEEP)) {
879 				anon_release(nahp, btop(asize));
880 				ANON_LOCK_EXIT(&amp2->a_rwlock);
881 				if (amp1 != NULL) {
882 					ANON_LOCK_EXIT(&amp1->a_rwlock);
883 				}
884 				if (nvpage != NULL) {
885 					kmem_free(nvpage, nvpsize);
886 				}
887 				return (-2);
888 			}
889 		}
890 		if (amp1 != NULL) {
891 			namp = amp1;
892 			anon_release(amp1->ahp, btop(amp1->size));
893 		}
894 		if (amp2 != NULL) {
895 			if (namp == NULL) {
896 				ASSERT(amp1 == NULL);
897 				namp = amp2;
898 				anon_release(amp2->ahp, btop(amp2->size));
899 			} else {
900 				amp2->refcnt--;
901 				ANON_LOCK_EXIT(&amp2->a_rwlock);
902 				anonmap_free(amp2);
903 			}
904 			svd2->amp = NULL; /* needed for seg_free */
905 		}
906 		namp->ahp = nahp;
907 		namp->size = asize;
908 		svd1->amp = namp;
909 		svd1->anon_index = 0;
910 		ANON_LOCK_EXIT(&namp->a_rwlock);
911 	}
912 	/*
913 	 * Now free the old vpage structures.
914 	 */
915 	if (nvpage != NULL) {
916 		if (vpage1 != NULL) {
917 			kmem_free(vpage1, vpgtob(npages1));
918 		}
919 		if (vpage2 != NULL) {
920 			svd2->vpage = NULL;
921 			kmem_free(vpage2, vpgtob(npages2));
922 		}
923 		if (svd2->pageprot) {
924 			svd1->pageprot = 1;
925 		}
926 		if (svd2->pageadvice) {
927 			svd1->pageadvice = 1;
928 		}
929 		svd1->vpage = nvpage;
930 	}
931 
932 	/* all looks ok, merge segments */
933 	svd1->swresv += svd2->swresv;
934 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
935 	size = seg2->s_size;
936 	seg_free(seg2);
937 	seg1->s_size += size;
938 	return (0);
939 }
940 
941 /*
942  * Extend the previous segment (seg1) to include the
943  * new segment (seg2 + a), if possible.
944  * Return 0 on success.
945  */
946 static int
947 segvn_extend_prev(seg1, seg2, a, swresv)
948 	struct seg *seg1, *seg2;
949 	struct segvn_crargs *a;
950 	size_t swresv;
951 {
952 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
953 	size_t size;
954 	struct anon_map *amp1;
955 	struct vpage *new_vpage;
956 
957 	/*
958 	 * We don't need any segment level locks for "segvn" data
959 	 * since the address space is "write" locked.
960 	 */
961 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
962 
963 	/* second segment is new, try to extend first */
964 	/* XXX - should also check cred */
965 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
966 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
967 	    svd1->type != a->type || svd1->flags != a->flags ||
968 	    seg1->s_szc != a->szc)
969 		return (-1);
970 
971 	/* vp == NULL implies zfod, offset doesn't matter */
972 	if (svd1->vp != NULL &&
973 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
974 		return (-1);
975 
976 	amp1 = svd1->amp;
977 	if (amp1) {
978 		pgcnt_t newpgs;
979 
980 		/*
981 		 * Segment has private pages, can data structures
982 		 * be expanded?
983 		 *
984 		 * Acquire the anon_map lock to prevent it from changing,
985 		 * if it is shared.  This ensures that the anon_map
986 		 * will not change while a thread which has a read/write
987 		 * lock on an address space references it.
988 		 * XXX - Don't need the anon_map lock at all if "refcnt"
989 		 * is 1.
990 		 *
991 		 * Can't grow a MAP_SHARED segment with an anonmap because
992 		 * there may be existing anon slots where we want to extend
993 		 * the segment and we wouldn't know what to do with them
994 		 * (e.g., for tmpfs right thing is to just leave them there,
995 		 * for /dev/zero they should be cleared out).
996 		 */
997 		if (svd1->type == MAP_SHARED)
998 			return (-1);
999 
1000 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1001 		if (amp1->refcnt > 1) {
1002 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1003 			return (-1);
1004 		}
1005 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1006 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1007 
1008 		if (newpgs == 0) {
1009 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1010 			return (-1);
1011 		}
1012 		amp1->size = ptob(newpgs);
1013 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1014 	}
1015 	if (svd1->vpage != NULL) {
1016 		new_vpage =
1017 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1018 			KM_NOSLEEP);
1019 		if (new_vpage == NULL)
1020 			return (-1);
1021 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1022 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1023 		svd1->vpage = new_vpage;
1024 		if (svd1->pageprot) {
1025 			struct vpage *vp, *evp;
1026 
1027 			vp = new_vpage + seg_pages(seg1);
1028 			evp = vp + seg_pages(seg2);
1029 			for (; vp < evp; vp++)
1030 				VPP_SETPROT(vp, a->prot);
1031 		}
1032 	}
1033 	size = seg2->s_size;
1034 	seg_free(seg2);
1035 	seg1->s_size += size;
1036 	svd1->swresv += swresv;
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Extend the next segment (seg2) to include the
1042  * new segment (seg1 + a), if possible.
1043  * Return 0 on success.
1044  */
1045 static int
1046 segvn_extend_next(
1047 	struct seg *seg1,
1048 	struct seg *seg2,
1049 	struct segvn_crargs *a,
1050 	size_t swresv)
1051 {
1052 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1053 	size_t size;
1054 	struct anon_map *amp2;
1055 	struct vpage *new_vpage;
1056 
1057 	/*
1058 	 * We don't need any segment level locks for "segvn" data
1059 	 * since the address space is "write" locked.
1060 	 */
1061 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1062 
1063 	/* first segment is new, try to extend second */
1064 	/* XXX - should also check cred */
1065 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1066 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1067 	    svd2->type != a->type || svd2->flags != a->flags ||
1068 	    seg2->s_szc != a->szc)
1069 		return (-1);
1070 	/* vp == NULL implies zfod, offset doesn't matter */
1071 	if (svd2->vp != NULL &&
1072 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1073 		return (-1);
1074 
1075 	amp2 = svd2->amp;
1076 	if (amp2) {
1077 		pgcnt_t newpgs;
1078 
1079 		/*
1080 		 * Segment has private pages, can data structures
1081 		 * be expanded?
1082 		 *
1083 		 * Acquire the anon_map lock to prevent it from changing,
1084 		 * if it is shared.  This ensures that the anon_map
1085 		 * will not change while a thread which has a read/write
1086 		 * lock on an address space references it.
1087 		 *
1088 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1089 		 * is 1.
1090 		 */
1091 		if (svd2->type == MAP_SHARED)
1092 			return (-1);
1093 
1094 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1095 		if (amp2->refcnt > 1) {
1096 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1097 			return (-1);
1098 		}
1099 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1100 		    btop(seg2->s_size), btop(seg1->s_size),
1101 		    ANON_NOSLEEP | ANON_GROWDOWN);
1102 
1103 		if (newpgs == 0) {
1104 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1105 			return (-1);
1106 		}
1107 		amp2->size = ptob(newpgs);
1108 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1109 	}
1110 	if (svd2->vpage != NULL) {
1111 		new_vpage =
1112 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1113 			KM_NOSLEEP);
1114 		if (new_vpage == NULL) {
1115 			/* Not merging segments so adjust anon_index back */
1116 			if (amp2)
1117 				svd2->anon_index += seg_pages(seg1);
1118 			return (-1);
1119 		}
1120 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1121 		    vpgtob(seg_pages(seg2)));
1122 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1123 		svd2->vpage = new_vpage;
1124 		if (svd2->pageprot) {
1125 			struct vpage *vp, *evp;
1126 
1127 			vp = new_vpage;
1128 			evp = vp + seg_pages(seg1);
1129 			for (; vp < evp; vp++)
1130 				VPP_SETPROT(vp, a->prot);
1131 		}
1132 	}
1133 	size = seg1->s_size;
1134 	seg_free(seg1);
1135 	seg2->s_size += size;
1136 	seg2->s_base -= size;
1137 	svd2->offset -= size;
1138 	svd2->swresv += swresv;
1139 	return (0);
1140 }
1141 
1142 static int
1143 segvn_dup(struct seg *seg, struct seg *newseg)
1144 {
1145 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1146 	struct segvn_data *newsvd;
1147 	pgcnt_t npages = seg_pages(seg);
1148 	int error = 0;
1149 	uint_t prot;
1150 	size_t len;
1151 
1152 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1153 
1154 	/*
1155 	 * If segment has anon reserved, reserve more for the new seg.
1156 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1157 	 * allocated anon slots; thus we reserve for the child as many slots
1158 	 * as the parent has allocated. This semantic prevents the child or
1159 	 * parent from dieing during a copy-on-write fault caused by trying
1160 	 * to write a shared pre-existing anon page.
1161 	 */
1162 	if ((len = svd->swresv) != 0) {
1163 		if (anon_resv(svd->swresv) == 0)
1164 			return (ENOMEM);
1165 
1166 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1167 			seg, len, 0);
1168 	}
1169 
1170 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1171 
1172 	newseg->s_ops = &segvn_ops;
1173 	newseg->s_data = (void *)newsvd;
1174 	newseg->s_szc = seg->s_szc;
1175 
1176 	if ((newsvd->vp = svd->vp) != NULL) {
1177 		VN_HOLD(svd->vp);
1178 		if (svd->type == MAP_SHARED)
1179 			lgrp_shm_policy_init(NULL, svd->vp);
1180 	}
1181 	newsvd->offset = svd->offset;
1182 	newsvd->prot = svd->prot;
1183 	newsvd->maxprot = svd->maxprot;
1184 	newsvd->pageprot = svd->pageprot;
1185 	newsvd->type = svd->type;
1186 	newsvd->cred = svd->cred;
1187 	crhold(newsvd->cred);
1188 	newsvd->advice = svd->advice;
1189 	newsvd->pageadvice = svd->pageadvice;
1190 	newsvd->swresv = svd->swresv;
1191 	newsvd->flags = svd->flags;
1192 	newsvd->softlockcnt = 0;
1193 	newsvd->policy_info = svd->policy_info;
1194 	if ((newsvd->amp = svd->amp) == NULL) {
1195 		/*
1196 		 * Not attaching to a shared anon object.
1197 		 */
1198 		newsvd->anon_index = 0;
1199 	} else {
1200 		struct anon_map *amp;
1201 
1202 		amp = svd->amp;
1203 		if (svd->type == MAP_SHARED) {
1204 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1205 			amp->refcnt++;
1206 			ANON_LOCK_EXIT(&amp->a_rwlock);
1207 			newsvd->anon_index = svd->anon_index;
1208 		} else {
1209 			int reclaim = 1;
1210 
1211 			/*
1212 			 * Allocate and initialize new anon_map structure.
1213 			 */
1214 			newsvd->amp = anonmap_alloc(newseg->s_size, 0);
1215 			newsvd->amp->a_szc = newseg->s_szc;
1216 			newsvd->anon_index = 0;
1217 
1218 			/*
1219 			 * We don't have to acquire the anon_map lock
1220 			 * for the new segment (since it belongs to an
1221 			 * address space that is still not associated
1222 			 * with any process), or the segment in the old
1223 			 * address space (since all threads in it
1224 			 * are stopped while duplicating the address space).
1225 			 */
1226 
1227 			/*
1228 			 * The goal of the following code is to make sure that
1229 			 * softlocked pages do not end up as copy on write
1230 			 * pages.  This would cause problems where one
1231 			 * thread writes to a page that is COW and a different
1232 			 * thread in the same process has softlocked it.  The
1233 			 * softlock lock would move away from this process
1234 			 * because the write would cause this process to get
1235 			 * a copy (without the softlock).
1236 			 *
1237 			 * The strategy here is to just break the
1238 			 * sharing on pages that could possibly be
1239 			 * softlocked.
1240 			 */
1241 retry:
1242 			if (svd->softlockcnt) {
1243 				struct anon *ap, *newap;
1244 				size_t i;
1245 				uint_t vpprot;
1246 				page_t *anon_pl[1+1], *pp;
1247 				caddr_t addr;
1248 				ulong_t anon_idx = 0;
1249 
1250 				/*
1251 				 * The softlock count might be non zero
1252 				 * because some pages are still stuck in the
1253 				 * cache for lazy reclaim. Flush the cache
1254 				 * now. This should drop the count to zero.
1255 				 * [or there is really I/O going on to these
1256 				 * pages]. Note, we have the writers lock so
1257 				 * nothing gets inserted during the flush.
1258 				 */
1259 				if (reclaim == 1) {
1260 					segvn_purge(seg);
1261 					reclaim = 0;
1262 					goto retry;
1263 				}
1264 				i = btopr(seg->s_size);
1265 				addr = seg->s_base;
1266 				/*
1267 				 * XXX break cow sharing using PAGESIZE
1268 				 * pages. They will be relocated into larger
1269 				 * pages at fault time.
1270 				 */
1271 				while (i-- > 0) {
1272 					if (ap = anon_get_ptr(amp->ahp,
1273 					    anon_idx)) {
1274 						error = anon_getpage(&ap,
1275 						    &vpprot, anon_pl, PAGESIZE,
1276 						    seg, addr, S_READ,
1277 						    svd->cred);
1278 						if (error) {
1279 							newsvd->vpage = NULL;
1280 							goto out;
1281 						}
1282 						/*
1283 						 * prot need not be computed
1284 						 * below 'cause anon_private is
1285 						 * going to ignore it anyway
1286 						 * as child doesn't inherit
1287 						 * pagelock from parent.
1288 						 */
1289 						prot = svd->pageprot ?
1290 						    VPP_PROT(
1291 						    &svd->vpage[
1292 						    seg_page(seg, addr)])
1293 						    : svd->prot;
1294 						pp = anon_private(&newap,
1295 						    newseg, addr, prot,
1296 						    anon_pl[0],	0,
1297 						    newsvd->cred);
1298 						if (pp == NULL) {
1299 							/* no mem abort */
1300 							newsvd->vpage = NULL;
1301 							error = ENOMEM;
1302 							goto out;
1303 						}
1304 						(void) anon_set_ptr(
1305 						    newsvd->amp->ahp, anon_idx,
1306 						    newap, ANON_SLEEP);
1307 						page_unlock(pp);
1308 					}
1309 					addr += PAGESIZE;
1310 					anon_idx++;
1311 				}
1312 			} else {	/* common case */
1313 				if (seg->s_szc != 0) {
1314 					/*
1315 					 * If at least one of anon slots of a
1316 					 * large page exists then make sure
1317 					 * all anon slots of a large page
1318 					 * exist to avoid partial cow sharing
1319 					 * of a large page in the future.
1320 					 */
1321 					anon_dup_fill_holes(amp->ahp,
1322 					    svd->anon_index, newsvd->amp->ahp,
1323 					    0, seg->s_size, seg->s_szc,
1324 					    svd->vp != NULL);
1325 				} else {
1326 					anon_dup(amp->ahp, svd->anon_index,
1327 					    newsvd->amp->ahp, 0, seg->s_size);
1328 				}
1329 
1330 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1331 				    seg->s_size, PROT_WRITE);
1332 			}
1333 		}
1334 	}
1335 	/*
1336 	 * If necessary, create a vpage structure for the new segment.
1337 	 * Do not copy any page lock indications.
1338 	 */
1339 	if (svd->vpage != NULL) {
1340 		uint_t i;
1341 		struct vpage *ovp = svd->vpage;
1342 		struct vpage *nvp;
1343 
1344 		nvp = newsvd->vpage =
1345 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1346 		for (i = 0; i < npages; i++) {
1347 			*nvp = *ovp++;
1348 			VPP_CLRPPLOCK(nvp++);
1349 		}
1350 	} else
1351 		newsvd->vpage = NULL;
1352 
1353 	/* Inform the vnode of the new mapping */
1354 	if (newsvd->vp != NULL) {
1355 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1356 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1357 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1358 	}
1359 out:
1360 	return (error);
1361 }
1362 
1363 
1364 /*
1365  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1366  * those pages actually processed by the HAT
1367  */
1368 extern int free_pages;
1369 
1370 static void
1371 segvn_hat_unload_callback(hat_callback_t *cb)
1372 {
1373 	struct seg		*seg = cb->hcb_data;
1374 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1375 	size_t			len;
1376 	u_offset_t		off;
1377 
1378 	ASSERT(svd->vp != NULL);
1379 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1380 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1381 
1382 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1383 	off = cb->hcb_start_addr - seg->s_base;
1384 	free_vp_pages(svd->vp, svd->offset + off, len);
1385 }
1386 
1387 
1388 static int
1389 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1390 {
1391 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1392 	struct segvn_data *nsvd;
1393 	struct seg *nseg;
1394 	struct anon_map *amp;
1395 	pgcnt_t	opages;		/* old segment size in pages */
1396 	pgcnt_t	npages;		/* new segment size in pages */
1397 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1398 	hat_callback_t callback;	/* used for free_vp_pages() */
1399 	hat_callback_t *cbp = NULL;
1400 	caddr_t nbase;
1401 	size_t nsize;
1402 	size_t oswresv;
1403 	int reclaim = 1;
1404 
1405 	/*
1406 	 * We don't need any segment level locks for "segvn" data
1407 	 * since the address space is "write" locked.
1408 	 */
1409 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1410 
1411 	/*
1412 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1413 	 * softlockcnt is protected from change by the as write lock.
1414 	 */
1415 retry:
1416 	if (svd->softlockcnt > 0) {
1417 		/*
1418 		 * since we do have the writers lock nobody can fill
1419 		 * the cache during the purge. The flush either succeeds
1420 		 * or we still have pending I/Os.
1421 		 */
1422 		if (reclaim == 1) {
1423 			segvn_purge(seg);
1424 			reclaim = 0;
1425 			goto retry;
1426 		}
1427 		return (EAGAIN);
1428 	}
1429 
1430 	/*
1431 	 * Check for bad sizes
1432 	 */
1433 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1434 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1435 		panic("segvn_unmap");
1436 		/*NOTREACHED*/
1437 	}
1438 
1439 	if (seg->s_szc != 0) {
1440 		size_t pgsz = page_get_pagesize(seg->s_szc);
1441 		int err;
1442 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1443 			ASSERT(seg->s_base != addr || seg->s_size != len);
1444 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1445 			err = segvn_demote_range(seg, addr, len, SDR_END);
1446 			if (err == 0) {
1447 				return (IE_RETRY);
1448 			}
1449 			return (err);
1450 		}
1451 	}
1452 
1453 	/* Inform the vnode of the unmapping. */
1454 	if (svd->vp) {
1455 		int error;
1456 
1457 		error = VOP_DELMAP(svd->vp,
1458 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1459 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1460 			svd->type, svd->cred);
1461 
1462 		if (error == EAGAIN)
1463 			return (error);
1464 	}
1465 	/*
1466 	 * Remove any page locks set through this mapping.
1467 	 */
1468 	(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1469 
1470 	/*
1471 	 * Unload any hardware translations in the range to be taken out.
1472 	 * Use a callback to invoke free_vp_pages() effectively.
1473 	 */
1474 	if (svd->vp != NULL && free_pages != 0) {
1475 		callback.hcb_data = seg;
1476 		callback.hcb_function = segvn_hat_unload_callback;
1477 		cbp = &callback;
1478 	}
1479 	hat_unload_callback(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP, cbp);
1480 
1481 	/*
1482 	 * Check for entire segment
1483 	 */
1484 	if (addr == seg->s_base && len == seg->s_size) {
1485 		seg_free(seg);
1486 		return (0);
1487 	}
1488 
1489 	opages = seg_pages(seg);
1490 	dpages = btop(len);
1491 	npages = opages - dpages;
1492 	amp = svd->amp;
1493 
1494 	/*
1495 	 * Check for beginning of segment
1496 	 */
1497 	if (addr == seg->s_base) {
1498 		if (svd->vpage != NULL) {
1499 			size_t nbytes;
1500 			struct vpage *ovpage;
1501 
1502 			ovpage = svd->vpage;	/* keep pointer to vpage */
1503 
1504 			nbytes = vpgtob(npages);
1505 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1506 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1507 
1508 			/* free up old vpage */
1509 			kmem_free(ovpage, vpgtob(opages));
1510 		}
1511 		if (amp != NULL) {
1512 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1513 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1514 				/*
1515 				 * Free up now unused parts of anon_map array.
1516 				 */
1517 				if (seg->s_szc != 0) {
1518 					anon_free_pages(amp->ahp,
1519 					    svd->anon_index, len, seg->s_szc);
1520 				} else {
1521 					anon_free(amp->ahp, svd->anon_index,
1522 					    len);
1523 				}
1524 
1525 				/*
1526 				 * Unreserve swap space for the unmapped chunk
1527 				 * of this segment in case it's MAP_SHARED
1528 				 */
1529 				if (svd->type == MAP_SHARED) {
1530 					anon_unresv(len);
1531 					amp->swresv -= len;
1532 				}
1533 			}
1534 			ANON_LOCK_EXIT(&amp->a_rwlock);
1535 			svd->anon_index += dpages;
1536 		}
1537 		if (svd->vp != NULL)
1538 			svd->offset += len;
1539 
1540 		if (svd->swresv) {
1541 			if (svd->flags & MAP_NORESERVE) {
1542 				ASSERT(amp);
1543 				oswresv = svd->swresv;
1544 
1545 				svd->swresv = ptob(anon_pages(amp->ahp,
1546 				    svd->anon_index, npages));
1547 				anon_unresv(oswresv - svd->swresv);
1548 			} else {
1549 				anon_unresv(len);
1550 				svd->swresv -= len;
1551 			}
1552 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1553 				seg, len, 0);
1554 		}
1555 
1556 		seg->s_base += len;
1557 		seg->s_size -= len;
1558 		return (0);
1559 	}
1560 
1561 	/*
1562 	 * Check for end of segment
1563 	 */
1564 	if (addr + len == seg->s_base + seg->s_size) {
1565 		if (svd->vpage != NULL) {
1566 			size_t nbytes;
1567 			struct vpage *ovpage;
1568 
1569 			ovpage = svd->vpage;	/* keep pointer to vpage */
1570 
1571 			nbytes = vpgtob(npages);
1572 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1573 			bcopy(ovpage, svd->vpage, nbytes);
1574 
1575 			/* free up old vpage */
1576 			kmem_free(ovpage, vpgtob(opages));
1577 
1578 		}
1579 		if (amp != NULL) {
1580 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1581 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1582 				/*
1583 				 * Free up now unused parts of anon_map array
1584 				 */
1585 				if (seg->s_szc != 0) {
1586 					ulong_t an_idx = svd->anon_index +
1587 					    npages;
1588 					anon_free_pages(amp->ahp, an_idx,
1589 					    len, seg->s_szc);
1590 				} else {
1591 					anon_free(amp->ahp,
1592 					    svd->anon_index + npages, len);
1593 				}
1594 				/*
1595 				 * Unreserve swap space for the unmapped chunk
1596 				 * of this segment in case it's MAP_SHARED
1597 				 */
1598 				if (svd->type == MAP_SHARED) {
1599 					anon_unresv(len);
1600 					amp->swresv -= len;
1601 				}
1602 			}
1603 			ANON_LOCK_EXIT(&amp->a_rwlock);
1604 		}
1605 
1606 		if (svd->swresv) {
1607 			if (svd->flags & MAP_NORESERVE) {
1608 				ASSERT(amp);
1609 				oswresv = svd->swresv;
1610 				svd->swresv = ptob(anon_pages(amp->ahp,
1611 					svd->anon_index, npages));
1612 				anon_unresv(oswresv - svd->swresv);
1613 			} else {
1614 				anon_unresv(len);
1615 				svd->swresv -= len;
1616 			}
1617 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1618 				"anon proc:%p %lu %u", seg, len, 0);
1619 		}
1620 
1621 		seg->s_size -= len;
1622 		return (0);
1623 	}
1624 
1625 	/*
1626 	 * The section to go is in the middle of the segment,
1627 	 * have to make it into two segments.  nseg is made for
1628 	 * the high end while seg is cut down at the low end.
1629 	 */
1630 	nbase = addr + len;				/* new seg base */
1631 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1632 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1633 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1634 	if (nseg == NULL) {
1635 		panic("segvn_unmap seg_alloc");
1636 		/*NOTREACHED*/
1637 	}
1638 	nseg->s_ops = seg->s_ops;
1639 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1640 	nseg->s_data = (void *)nsvd;
1641 	nseg->s_szc = seg->s_szc;
1642 	*nsvd = *svd;
1643 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
1644 	nsvd->swresv = 0;
1645 	nsvd->softlockcnt = 0;
1646 
1647 	if (svd->vp != NULL) {
1648 		VN_HOLD(nsvd->vp);
1649 		if (nsvd->type == MAP_SHARED)
1650 			lgrp_shm_policy_init(NULL, nsvd->vp);
1651 	}
1652 	crhold(svd->cred);
1653 
1654 	if (svd->vpage == NULL) {
1655 		nsvd->vpage = NULL;
1656 	} else {
1657 		/* need to split vpage into two arrays */
1658 		size_t nbytes;
1659 		struct vpage *ovpage;
1660 
1661 		ovpage = svd->vpage;		/* keep pointer to vpage */
1662 
1663 		npages = seg_pages(seg);	/* seg has shrunk */
1664 		nbytes = vpgtob(npages);
1665 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1666 
1667 		bcopy(ovpage, svd->vpage, nbytes);
1668 
1669 		npages = seg_pages(nseg);
1670 		nbytes = vpgtob(npages);
1671 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1672 
1673 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
1674 
1675 		/* free up old vpage */
1676 		kmem_free(ovpage, vpgtob(opages));
1677 	}
1678 
1679 	if (amp == NULL) {
1680 		nsvd->amp = NULL;
1681 		nsvd->anon_index = 0;
1682 	} else {
1683 		/*
1684 		 * Need to create a new anon map for the new segment.
1685 		 * We'll also allocate a new smaller array for the old
1686 		 * smaller segment to save space.
1687 		 */
1688 		opages = btop((uintptr_t)(addr - seg->s_base));
1689 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1690 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1691 			/*
1692 			 * Free up now unused parts of anon_map array
1693 			 */
1694 			if (seg->s_szc != 0) {
1695 				ulong_t an_idx = svd->anon_index + opages;
1696 				anon_free_pages(amp->ahp, an_idx, len,
1697 				    seg->s_szc);
1698 			} else {
1699 				anon_free(amp->ahp, svd->anon_index + opages,
1700 				    len);
1701 			}
1702 
1703 			/*
1704 			 * Unreserve swap space for the unmapped chunk
1705 			 * of this segment in case it's MAP_SHARED
1706 			 */
1707 			if (svd->type == MAP_SHARED) {
1708 				anon_unresv(len);
1709 				amp->swresv -= len;
1710 			}
1711 		}
1712 
1713 		nsvd->anon_index = svd->anon_index +
1714 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
1715 		if (svd->type == MAP_SHARED) {
1716 			ASSERT(seg->s_szc == 0);
1717 			amp->refcnt++;
1718 			nsvd->amp = amp;
1719 		} else {
1720 			struct anon_map *namp;
1721 			struct anon_hdr *nahp;
1722 
1723 			ASSERT(svd->type == MAP_PRIVATE);
1724 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
1725 			namp = anonmap_alloc(nseg->s_size, 0);
1726 			namp->a_szc = seg->s_szc;
1727 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
1728 			    0, btop(seg->s_size), ANON_SLEEP);
1729 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
1730 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
1731 			anon_release(amp->ahp, btop(amp->size));
1732 			svd->anon_index = 0;
1733 			nsvd->anon_index = 0;
1734 			amp->ahp = nahp;
1735 			amp->size = seg->s_size;
1736 			nsvd->amp = namp;
1737 		}
1738 		ANON_LOCK_EXIT(&amp->a_rwlock);
1739 	}
1740 	if (svd->swresv) {
1741 		if (svd->flags & MAP_NORESERVE) {
1742 			ASSERT(amp);
1743 			oswresv = svd->swresv;
1744 			svd->swresv = ptob(anon_pages(amp->ahp,
1745 				svd->anon_index, btop(seg->s_size)));
1746 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
1747 				nsvd->anon_index, btop(nseg->s_size)));
1748 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
1749 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
1750 		} else {
1751 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
1752 				panic("segvn_unmap: "
1753 				    "cannot split swap reservation");
1754 				/*NOTREACHED*/
1755 			}
1756 			anon_unresv(len);
1757 			svd->swresv = seg->s_size;
1758 			nsvd->swresv = nseg->s_size;
1759 		}
1760 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1761 			seg, len, 0);
1762 	}
1763 
1764 	return (0);			/* I'm glad that's all over with! */
1765 }
1766 
1767 static void
1768 segvn_free(struct seg *seg)
1769 {
1770 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1771 	pgcnt_t npages = seg_pages(seg);
1772 	struct anon_map *amp;
1773 	size_t len;
1774 
1775 	/*
1776 	 * We don't need any segment level locks for "segvn" data
1777 	 * since the address space is "write" locked.
1778 	 */
1779 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1780 
1781 	/*
1782 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
1783 	 * of unmapped? XXX
1784 	 */
1785 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
1786 	    0, MC_UNLOCK, NULL, 0);
1787 
1788 	/*
1789 	 * Deallocate the vpage and anon pointers if necessary and possible.
1790 	 */
1791 	if (svd->vpage != NULL) {
1792 		kmem_free(svd->vpage, vpgtob(npages));
1793 		svd->vpage = NULL;
1794 	}
1795 	if ((amp = svd->amp) != NULL) {
1796 		/*
1797 		 * If there are no more references to this anon_map
1798 		 * structure, then deallocate the structure after freeing
1799 		 * up all the anon slot pointers that we can.
1800 		 */
1801 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1802 		if (--amp->refcnt == 0) {
1803 			if (svd->type == MAP_PRIVATE) {
1804 				/*
1805 				 * Private - we only need to anon_free
1806 				 * the part that this segment refers to.
1807 				 */
1808 				if (seg->s_szc != 0) {
1809 					anon_free_pages(amp->ahp,
1810 					    svd->anon_index, seg->s_size,
1811 					    seg->s_szc);
1812 				} else {
1813 					anon_free(amp->ahp, svd->anon_index,
1814 					    seg->s_size);
1815 				}
1816 			} else {
1817 				/*
1818 				 * Shared - anon_free the entire
1819 				 * anon_map's worth of stuff and
1820 				 * release any swap reservation.
1821 				 */
1822 				ASSERT(seg->s_szc == 0);
1823 				anon_free(amp->ahp, 0, amp->size);
1824 				if ((len = amp->swresv) != 0) {
1825 					anon_unresv(len);
1826 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1827 						"anon proc:%p %lu %u",
1828 						seg, len, 0);
1829 				}
1830 			}
1831 			svd->amp = NULL;
1832 			ANON_LOCK_EXIT(&amp->a_rwlock);
1833 			anonmap_free(amp);
1834 		} else if (svd->type == MAP_PRIVATE) {
1835 			/*
1836 			 * We had a private mapping which still has
1837 			 * a held anon_map so just free up all the
1838 			 * anon slot pointers that we were using.
1839 			 */
1840 			if (seg->s_szc != 0) {
1841 				anon_free_pages(amp->ahp, svd->anon_index,
1842 				    seg->s_size, seg->s_szc);
1843 			} else {
1844 				anon_free(amp->ahp, svd->anon_index,
1845 				    seg->s_size);
1846 			}
1847 			ANON_LOCK_EXIT(&amp->a_rwlock);
1848 		} else {
1849 			ANON_LOCK_EXIT(&amp->a_rwlock);
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * Release swap reservation.
1855 	 */
1856 	if ((len = svd->swresv) != 0) {
1857 		anon_unresv(svd->swresv);
1858 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1859 			seg, len, 0);
1860 		svd->swresv = 0;
1861 	}
1862 	/*
1863 	 * Release claim on vnode, credentials, and finally free the
1864 	 * private data.
1865 	 */
1866 	if (svd->vp != NULL) {
1867 		if (svd->type == MAP_SHARED)
1868 			lgrp_shm_policy_fini(NULL, svd->vp);
1869 		VN_RELE(svd->vp);
1870 		svd->vp = NULL;
1871 	}
1872 	crfree(svd->cred);
1873 	svd->cred = NULL;
1874 
1875 	seg->s_data = NULL;
1876 	kmem_cache_free(segvn_cache, svd);
1877 }
1878 
1879 /*
1880  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
1881  * already been F_SOFTLOCK'ed.
1882  * Caller must always match addr and len of a softunlock with a previous
1883  * softlock with exactly the same addr and len.
1884  */
1885 static void
1886 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
1887 {
1888 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1889 	page_t *pp;
1890 	caddr_t adr;
1891 	struct vnode *vp;
1892 	u_offset_t offset;
1893 	ulong_t anon_index;
1894 	struct anon_map *amp;
1895 	struct anon *ap = NULL;
1896 
1897 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1898 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
1899 
1900 	if ((amp = svd->amp) != NULL)
1901 		anon_index = svd->anon_index + seg_page(seg, addr);
1902 
1903 	hat_unlock(seg->s_as->a_hat, addr, len);
1904 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
1905 		if (amp != NULL) {
1906 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
1907 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
1908 								!= NULL) {
1909 				swap_xlate(ap, &vp, &offset);
1910 			} else {
1911 				vp = svd->vp;
1912 				offset = svd->offset +
1913 				    (uintptr_t)(adr - seg->s_base);
1914 			}
1915 			ANON_LOCK_EXIT(&amp->a_rwlock);
1916 		} else {
1917 			vp = svd->vp;
1918 			offset = svd->offset +
1919 			    (uintptr_t)(adr - seg->s_base);
1920 		}
1921 
1922 		/*
1923 		 * Use page_find() instead of page_lookup() to
1924 		 * find the page since we know that it is locked.
1925 		 */
1926 		pp = page_find(vp, offset);
1927 		if (pp == NULL) {
1928 			panic(
1929 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
1930 			    (void *)adr, (void *)ap, (void *)vp, offset);
1931 			/*NOTREACHED*/
1932 		}
1933 
1934 		if (rw == S_WRITE) {
1935 			hat_setrefmod(pp);
1936 			if (seg->s_as->a_vbits)
1937 				hat_setstat(seg->s_as, adr, PAGESIZE,
1938 				    P_REF | P_MOD);
1939 		} else if (rw != S_OTHER) {
1940 			hat_setref(pp);
1941 			if (seg->s_as->a_vbits)
1942 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
1943 		}
1944 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
1945 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
1946 		page_unlock(pp);
1947 	}
1948 	mutex_enter(&freemem_lock); /* for availrmem */
1949 	availrmem += btop(len);
1950 	segvn_pages_locked -= btop(len);
1951 	svd->softlockcnt -= btop(len);
1952 	mutex_exit(&freemem_lock);
1953 	if (svd->softlockcnt == 0) {
1954 		/*
1955 		 * All SOFTLOCKS are gone. Wakeup any waiting
1956 		 * unmappers so they can try again to unmap.
1957 		 * Check for waiters first without the mutex
1958 		 * held so we don't always grab the mutex on
1959 		 * softunlocks.
1960 		 */
1961 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1962 			mutex_enter(&seg->s_as->a_contents);
1963 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1964 				AS_CLRUNMAPWAIT(seg->s_as);
1965 				cv_broadcast(&seg->s_as->a_cv);
1966 			}
1967 			mutex_exit(&seg->s_as->a_contents);
1968 		}
1969 	}
1970 }
1971 
1972 #define	PAGE_HANDLED	((page_t *)-1)
1973 
1974 /*
1975  * Release all the pages in the NULL terminated ppp list
1976  * which haven't already been converted to PAGE_HANDLED.
1977  */
1978 static void
1979 segvn_pagelist_rele(page_t **ppp)
1980 {
1981 	for (; *ppp != NULL; ppp++) {
1982 		if (*ppp != PAGE_HANDLED)
1983 			page_unlock(*ppp);
1984 	}
1985 }
1986 
1987 static int stealcow = 1;
1988 
1989 /*
1990  * Workaround for viking chip bug.  See bug id 1220902.
1991  * To fix this down in pagefault() would require importing so
1992  * much as and segvn code as to be unmaintainable.
1993  */
1994 int enable_mbit_wa = 0;
1995 
1996 /*
1997  * Handles all the dirty work of getting the right
1998  * anonymous pages and loading up the translations.
1999  * This routine is called only from segvn_fault()
2000  * when looping over the range of addresses requested.
2001  *
2002  * The basic algorithm here is:
2003  * 	If this is an anon_zero case
2004  *		Call anon_zero to allocate page
2005  *		Load up translation
2006  *		Return
2007  *	endif
2008  *	If this is an anon page
2009  *		Use anon_getpage to get the page
2010  *	else
2011  *		Find page in pl[] list passed in
2012  *	endif
2013  *	If not a cow
2014  *		Load up the translation to the page
2015  *		return
2016  *	endif
2017  *	Call anon_private to handle cow
2018  *	Load up (writable) translation to new page
2019  */
2020 static faultcode_t
2021 segvn_faultpage(
2022 	struct hat *hat,		/* the hat to use for mapping */
2023 	struct seg *seg,		/* seg_vn of interest */
2024 	caddr_t addr,			/* address in as */
2025 	u_offset_t off,			/* offset in vp */
2026 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2027 	page_t *pl[],			/* object source page pointer */
2028 	uint_t vpprot,			/* access allowed to object pages */
2029 	enum fault_type type,		/* type of fault */
2030 	enum seg_rw rw,			/* type of access at fault */
2031 	int brkcow)			/* we may need to break cow */
2032 {
2033 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2034 	page_t *pp, **ppp;
2035 	uint_t pageflags = 0;
2036 	page_t *anon_pl[1 + 1];
2037 	page_t *opp = NULL;		/* original page */
2038 	uint_t prot;
2039 	int err;
2040 	int cow;
2041 	int claim;
2042 	int steal = 0;
2043 	ulong_t anon_index;
2044 	struct anon *ap, *oldap;
2045 	struct anon_map *amp;
2046 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2047 	int anon_lock = 0;
2048 	anon_sync_obj_t cookie;
2049 
2050 	if (svd->flags & MAP_TEXT) {
2051 		hat_flag |= HAT_LOAD_TEXT;
2052 	}
2053 
2054 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2055 	ASSERT(seg->s_szc == 0);
2056 
2057 	/*
2058 	 * Initialize protection value for this page.
2059 	 * If we have per page protection values check it now.
2060 	 */
2061 	if (svd->pageprot) {
2062 		uint_t protchk;
2063 
2064 		switch (rw) {
2065 		case S_READ:
2066 			protchk = PROT_READ;
2067 			break;
2068 		case S_WRITE:
2069 			protchk = PROT_WRITE;
2070 			break;
2071 		case S_EXEC:
2072 			protchk = PROT_EXEC;
2073 			break;
2074 		case S_OTHER:
2075 		default:
2076 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2077 			break;
2078 		}
2079 
2080 		prot = VPP_PROT(vpage);
2081 		if ((prot & protchk) == 0)
2082 			return (FC_PROT);	/* illegal access type */
2083 	} else {
2084 		prot = svd->prot;
2085 	}
2086 
2087 	if (type == F_SOFTLOCK) {
2088 		mutex_enter(&freemem_lock);
2089 		if (availrmem <= tune.t_minarmem) {
2090 			mutex_exit(&freemem_lock);
2091 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2092 		} else {
2093 			svd->softlockcnt++;
2094 			availrmem--;
2095 			segvn_pages_locked++;
2096 		}
2097 		mutex_exit(&freemem_lock);
2098 	}
2099 
2100 	/*
2101 	 * Always acquire the anon array lock to prevent 2 threads from
2102 	 * allocating separate anon slots for the same "addr".
2103 	 */
2104 
2105 	if ((amp = svd->amp) != NULL) {
2106 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2107 		anon_index = svd->anon_index + seg_page(seg, addr);
2108 		anon_array_enter(amp, anon_index, &cookie);
2109 		anon_lock = 1;
2110 	}
2111 
2112 	if (svd->vp == NULL && amp != NULL) {
2113 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2114 			/*
2115 			 * Allocate a (normally) writable anonymous page of
2116 			 * zeroes. If no advance reservations, reserve now.
2117 			 */
2118 			if (svd->flags & MAP_NORESERVE) {
2119 				if (anon_resv(ptob(1))) {
2120 					svd->swresv += ptob(1);
2121 				} else {
2122 					err = ENOMEM;
2123 					goto out;
2124 				}
2125 			}
2126 			if ((pp = anon_zero(seg, addr, &ap,
2127 			    svd->cred)) == NULL) {
2128 				err = ENOMEM;
2129 				goto out;	/* out of swap space */
2130 			}
2131 			/*
2132 			 * Re-acquire the anon_map lock and
2133 			 * initialize the anon array entry.
2134 			 */
2135 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2136 				ANON_SLEEP);
2137 			if (enable_mbit_wa) {
2138 				if (rw == S_WRITE)
2139 					hat_setmod(pp);
2140 				else if (!hat_ismod(pp))
2141 					prot &= ~PROT_WRITE;
2142 			}
2143 			/*
2144 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2145 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2146 			 * MAP_NORESERVE segment, we may need to
2147 			 * permanently lock the page as it is being faulted
2148 			 * for the first time. The following text applies
2149 			 * only to MAP_NORESERVE segments:
2150 			 *
2151 			 * As per memcntl(2), if this segment was created
2152 			 * after MCL_FUTURE was applied (a "future"
2153 			 * segment), its pages must be locked.  If this
2154 			 * segment existed at MCL_FUTURE application (a
2155 			 * "past" segment), the interface is unclear.
2156 			 *
2157 			 * We decide to lock only if vpage is present:
2158 			 *
2159 			 * - "future" segments will have a vpage array (see
2160 			 *    as_map), and so will be locked as required
2161 			 *
2162 			 * - "past" segments may not have a vpage array,
2163 			 *    depending on whether events (such as
2164 			 *    mprotect) have occurred. Locking if vpage
2165 			 *    exists will preserve legacy behavior.  Not
2166 			 *    locking if vpage is absent, will not break
2167 			 *    the interface or legacy behavior.  Note that
2168 			 *    allocating vpage here if it's absent requires
2169 			 *    upgrading the segvn reader lock, the cost of
2170 			 *    which does not seem worthwhile.
2171 			 */
2172 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2173 			    (svd->flags & MAP_NORESERVE)) {
2174 				claim = VPP_PROT(vpage) & PROT_WRITE;
2175 				ASSERT(svd->type == MAP_PRIVATE);
2176 				if (page_pp_lock(pp, claim, 0))
2177 					VPP_SETPPLOCK(vpage);
2178 			}
2179 
2180 
2181 			/*
2182 			 * Handle pages that have been marked for migration
2183 			 */
2184 			if (lgrp_optimizations())
2185 				page_migrate(seg, addr, &pp, 1);
2186 			hat_memload(hat, addr, pp, prot, hat_flag);
2187 
2188 			if (!(hat_flag & HAT_LOAD_LOCK))
2189 				page_unlock(pp);
2190 
2191 			anon_array_exit(&cookie);
2192 			return (0);
2193 		}
2194 	}
2195 
2196 	/*
2197 	 * Obtain the page structure via anon_getpage() if it is
2198 	 * a private copy of an object (the result of a previous
2199 	 * copy-on-write).
2200 	 */
2201 	if (amp != NULL) {
2202 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2203 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2204 			    seg, addr, rw, svd->cred);
2205 			if (err)
2206 				goto out;
2207 
2208 			if (svd->type == MAP_SHARED) {
2209 				/*
2210 				 * If this is a shared mapping to an
2211 				 * anon_map, then ignore the write
2212 				 * permissions returned by anon_getpage().
2213 				 * They apply to the private mappings
2214 				 * of this anon_map.
2215 				 */
2216 				vpprot |= PROT_WRITE;
2217 			}
2218 			opp = anon_pl[0];
2219 		}
2220 	}
2221 
2222 	/*
2223 	 * Search the pl[] list passed in if it is from the
2224 	 * original object (i.e., not a private copy).
2225 	 */
2226 	if (opp == NULL) {
2227 		/*
2228 		 * Find original page.  We must be bringing it in
2229 		 * from the list in pl[].
2230 		 */
2231 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2232 			if (opp == PAGE_HANDLED)
2233 				continue;
2234 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2235 			if (opp->p_offset == off)
2236 				break;
2237 		}
2238 		if (opp == NULL) {
2239 			panic("segvn_faultpage not found");
2240 			/*NOTREACHED*/
2241 		}
2242 		*ppp = PAGE_HANDLED;
2243 
2244 	}
2245 
2246 	ASSERT(PAGE_LOCKED(opp));
2247 
2248 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2249 		"segvn_fault:pp %p vp %p offset %llx",
2250 		opp, NULL, 0);
2251 
2252 	/*
2253 	 * The fault is treated as a copy-on-write fault if a
2254 	 * write occurs on a private segment and the object
2255 	 * page (i.e., mapping) is write protected.  We assume
2256 	 * that fatal protection checks have already been made.
2257 	 */
2258 
2259 	cow = brkcow && ((vpprot & PROT_WRITE) == 0);
2260 
2261 	/*
2262 	 * If not a copy-on-write case load the translation
2263 	 * and return.
2264 	 */
2265 	if (cow == 0) {
2266 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2267 			if (rw == S_WRITE)
2268 				hat_setmod(opp);
2269 			else if (rw != S_OTHER && !hat_ismod(opp))
2270 				prot &= ~PROT_WRITE;
2271 		}
2272 
2273 		/*
2274 		 * Handle pages that have been marked for migration
2275 		 */
2276 		if (lgrp_optimizations())
2277 			page_migrate(seg, addr, &opp, 1);
2278 
2279 		hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
2280 
2281 		if (!(hat_flag & HAT_LOAD_LOCK))
2282 			page_unlock(opp);
2283 
2284 		if (anon_lock) {
2285 			anon_array_exit(&cookie);
2286 		}
2287 		return (0);
2288 	}
2289 
2290 	hat_setref(opp);
2291 
2292 	ASSERT(amp != NULL && anon_lock);
2293 
2294 	/*
2295 	 * Steal the page only if it isn't a private page
2296 	 * since stealing a private page is not worth the effort.
2297 	 */
2298 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2299 		steal = 1;
2300 
2301 	/*
2302 	 * Steal the original page if the following conditions are true:
2303 	 *
2304 	 * We are low on memory, the page is not private, page is not large,
2305 	 * not shared, not modified, not `locked' or if we have it `locked'
2306 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2307 	 * that the page is not shared) and if it doesn't have any
2308 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2309 	 * and p_lckcnt because we first get exclusive lock on page.
2310 	 */
2311 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2312 
2313 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2314 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2315 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2316 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2317 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2318 		/*
2319 		 * Check if this page has other translations
2320 		 * after unloading our translation.
2321 		 */
2322 		if (hat_page_is_mapped(opp)) {
2323 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2324 				HAT_UNLOAD);
2325 		}
2326 
2327 		/*
2328 		 * hat_unload() might sync back someone else's recent
2329 		 * modification, so check again.
2330 		 */
2331 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2332 			pageflags |= STEAL_PAGE;
2333 	}
2334 
2335 	/*
2336 	 * If we have a vpage pointer, see if it indicates that we have
2337 	 * ``locked'' the page we map -- if so, tell anon_private to
2338 	 * transfer the locking resource to the new page.
2339 	 *
2340 	 * See Statement at the beginning of segvn_lockop regarding
2341 	 * the way lockcnts/cowcnts are handled during COW.
2342 	 *
2343 	 */
2344 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2345 		pageflags |= LOCK_PAGE;
2346 
2347 	/*
2348 	 * Allocate a private page and perform the copy.
2349 	 * For MAP_NORESERVE reserve swap space now, unless this
2350 	 * is a cow fault on an existing anon page in which case
2351 	 * MAP_NORESERVE will have made advance reservations.
2352 	 */
2353 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2354 		if (anon_resv(ptob(1))) {
2355 			svd->swresv += ptob(1);
2356 		} else {
2357 			page_unlock(opp);
2358 			err = ENOMEM;
2359 			goto out;
2360 		}
2361 	}
2362 	oldap = ap;
2363 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2364 	if (pp == NULL) {
2365 		err = ENOMEM;	/* out of swap space */
2366 		goto out;
2367 	}
2368 
2369 	/*
2370 	 * If we copied away from an anonymous page, then
2371 	 * we are one step closer to freeing up an anon slot.
2372 	 *
2373 	 * NOTE:  The original anon slot must be released while
2374 	 * holding the "anon_map" lock.  This is necessary to prevent
2375 	 * other threads from obtaining a pointer to the anon slot
2376 	 * which may be freed if its "refcnt" is 1.
2377 	 */
2378 	if (oldap != NULL)
2379 		anon_decref(oldap);
2380 
2381 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2382 
2383 	ASSERT(!IS_VMODSORT(pp->p_vnode));
2384 	if (enable_mbit_wa) {
2385 		if (rw == S_WRITE)
2386 			hat_setmod(pp);
2387 		else if (!hat_ismod(pp))
2388 			prot &= ~PROT_WRITE;
2389 	}
2390 
2391 
2392 	/*
2393 	 * Handle pages that have been marked for migration
2394 	 */
2395 	if (lgrp_optimizations())
2396 		page_migrate(seg, addr, &pp, 1);
2397 	hat_memload(hat, addr, pp, prot, hat_flag);
2398 
2399 	if (!(hat_flag & HAT_LOAD_LOCK))
2400 		page_unlock(pp);
2401 
2402 	ASSERT(anon_lock);
2403 	anon_array_exit(&cookie);
2404 	return (0);
2405 out:
2406 	if (anon_lock)
2407 		anon_array_exit(&cookie);
2408 
2409 	if (type == F_SOFTLOCK) {
2410 		mutex_enter(&freemem_lock);
2411 		availrmem++;
2412 		segvn_pages_locked--;
2413 		svd->softlockcnt--;
2414 		mutex_exit(&freemem_lock);
2415 	}
2416 	return (FC_MAKE_ERR(err));
2417 }
2418 
2419 /*
2420  * relocate a bunch of smaller targ pages into one large repl page. all targ
2421  * pages must be complete pages smaller than replacement pages.
2422  * it's assumed that no page's szc can change since they are all PAGESIZE or
2423  * complete large pages locked SHARED.
2424  */
2425 static void
2426 segvn_relocate_pages(page_t **targ, page_t *replacement)
2427 {
2428 	page_t *pp;
2429 	pgcnt_t repl_npgs, curnpgs;
2430 	pgcnt_t i;
2431 	uint_t repl_szc = replacement->p_szc;
2432 	page_t *first_repl = replacement;
2433 	page_t *repl;
2434 	spgcnt_t npgs;
2435 
2436 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
2437 
2438 	ASSERT(repl_szc != 0);
2439 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
2440 
2441 	i = 0;
2442 	while (repl_npgs) {
2443 		spgcnt_t nreloc;
2444 		int err;
2445 		ASSERT(replacement != NULL);
2446 		pp = targ[i];
2447 		ASSERT(pp->p_szc < repl_szc);
2448 		ASSERT(PAGE_EXCL(pp));
2449 		ASSERT(!PP_ISFREE(pp));
2450 		curnpgs = page_get_pagecnt(pp->p_szc);
2451 		if (curnpgs == 1) {
2452 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
2453 			repl = replacement;
2454 			page_sub(&replacement, repl);
2455 			ASSERT(PAGE_EXCL(repl));
2456 			ASSERT(!PP_ISFREE(repl));
2457 			ASSERT(repl->p_szc == repl_szc);
2458 		} else {
2459 			page_t *repl_savepp;
2460 			int j;
2461 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
2462 			repl_savepp = replacement;
2463 			for (j = 0; j < curnpgs; j++) {
2464 				repl = replacement;
2465 				page_sub(&replacement, repl);
2466 				ASSERT(PAGE_EXCL(repl));
2467 				ASSERT(!PP_ISFREE(repl));
2468 				ASSERT(repl->p_szc == repl_szc);
2469 				ASSERT(page_pptonum(targ[i + j]) ==
2470 				    page_pptonum(targ[i]) + j);
2471 			}
2472 			repl = repl_savepp;
2473 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
2474 		}
2475 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
2476 		if (err || nreloc != curnpgs) {
2477 			panic("segvn_relocate_pages: "
2478 			    "page_relocate failed err=%d curnpgs=%ld "
2479 			    "nreloc=%ld", err, curnpgs, nreloc);
2480 		}
2481 		ASSERT(curnpgs <= repl_npgs);
2482 		repl_npgs -= curnpgs;
2483 		i += curnpgs;
2484 	}
2485 	ASSERT(replacement == NULL);
2486 
2487 	repl = first_repl;
2488 	repl_npgs = npgs;
2489 	for (i = 0; i < repl_npgs; i++) {
2490 		ASSERT(PAGE_EXCL(repl));
2491 		ASSERT(!PP_ISFREE(repl));
2492 		targ[i] = repl;
2493 		page_downgrade(targ[i]);
2494 		repl++;
2495 	}
2496 }
2497 
2498 /*
2499  * Check if all pages in ppa array are complete smaller than szc pages and
2500  * their roots will still be aligned relative to their current size if the
2501  * entire ppa array is relocated into one szc page. If these conditions are
2502  * not met return 0.
2503  *
2504  * If all pages are properly aligned attempt to upgrade their locks
2505  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
2506  * upgrdfail was set to 0 by caller.
2507  *
2508  * Return 1 if all pages are aligned and locked exclusively.
2509  *
2510  * If all pages in ppa array happen to be physically contiguous to make one
2511  * szc page and all exclusive locks are successfully obtained promote the page
2512  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
2513  */
2514 static int
2515 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
2516 {
2517 	page_t *pp;
2518 	pfn_t pfn;
2519 	pgcnt_t totnpgs = page_get_pagecnt(szc);
2520 	pfn_t first_pfn;
2521 	int contig = 1;
2522 	pgcnt_t i;
2523 	pgcnt_t j;
2524 	uint_t curszc;
2525 	pgcnt_t curnpgs;
2526 	int root = 0;
2527 
2528 	ASSERT(szc > 0);
2529 
2530 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
2531 
2532 	for (i = 0; i < totnpgs; i++) {
2533 		pp = ppa[i];
2534 		ASSERT(PAGE_SHARED(pp));
2535 		ASSERT(!PP_ISFREE(pp));
2536 		pfn = page_pptonum(pp);
2537 		if (i == 0) {
2538 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
2539 				contig = 0;
2540 			} else {
2541 				first_pfn = pfn;
2542 			}
2543 		} else if (contig && pfn != first_pfn + i) {
2544 			contig = 0;
2545 		}
2546 		if (pp->p_szc == 0) {
2547 			if (root) {
2548 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
2549 				return (0);
2550 			}
2551 		} else if (!root) {
2552 			if ((curszc = pp->p_szc) >= szc) {
2553 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
2554 				return (0);
2555 			}
2556 			if (curszc == 0) {
2557 				/*
2558 				 * p_szc changed means we don't have all pages
2559 				 * locked. return failure.
2560 				 */
2561 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
2562 				return (0);
2563 			}
2564 			curnpgs = page_get_pagecnt(curszc);
2565 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
2566 			    !IS_P2ALIGNED(i, curnpgs)) {
2567 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
2568 				return (0);
2569 			}
2570 			root = 1;
2571 		} else {
2572 			ASSERT(i > 0);
2573 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
2574 			if (pp->p_szc != curszc) {
2575 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
2576 				return (0);
2577 			}
2578 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
2579 				panic("segvn_full_szcpages: "
2580 				    "large page not physically contiguous");
2581 			}
2582 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
2583 				root = 0;
2584 			}
2585 		}
2586 	}
2587 
2588 	for (i = 0; i < totnpgs; i++) {
2589 		ASSERT(ppa[i]->p_szc < szc);
2590 		if (!page_tryupgrade(ppa[i])) {
2591 			for (j = 0; j < i; j++) {
2592 				page_downgrade(ppa[j]);
2593 			}
2594 			*pszc = ppa[i]->p_szc;
2595 			*upgrdfail = 1;
2596 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
2597 			return (0);
2598 		}
2599 	}
2600 
2601 	/*
2602 	 * When a page is put a free cachelist its szc is set to 0.  if file
2603 	 * system reclaimed pages from cachelist targ pages will be physically
2604 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
2605 	 * pages without any relocations.
2606 	 * To avoid any hat issues with previous small mappings
2607 	 * hat_pageunload() the target pages first.
2608 	 */
2609 	if (contig) {
2610 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
2611 		for (i = 0; i < totnpgs; i++) {
2612 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
2613 		}
2614 		for (i = 0; i < totnpgs; i++) {
2615 			ppa[i]->p_szc = szc;
2616 		}
2617 		for (i = 0; i < totnpgs; i++) {
2618 			ASSERT(PAGE_EXCL(ppa[i]));
2619 			page_downgrade(ppa[i]);
2620 		}
2621 		if (pszc != NULL) {
2622 			*pszc = szc;
2623 		}
2624 	}
2625 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
2626 	return (1);
2627 }
2628 
2629 /*
2630  * Create physically contiguous pages for [vp, off] - [vp, off +
2631  * page_size(szc)) range and for private segment return them in ppa array.
2632  * Pages are created either via IO or relocations.
2633  *
2634  * Return 1 on sucess and 0 on failure.
2635  *
2636  * If physically contiguos pages already exist for this range return 1 without
2637  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
2638  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
2639  */
2640 
2641 static int
2642 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
2643     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
2644     int *downsize)
2645 
2646 {
2647 	page_t *pplist = *ppplist;
2648 	size_t pgsz = page_get_pagesize(szc);
2649 	pgcnt_t pages = btop(pgsz);
2650 	ulong_t start_off = off;
2651 	u_offset_t eoff = off + pgsz;
2652 	spgcnt_t nreloc;
2653 	u_offset_t io_off = off;
2654 	size_t io_len;
2655 	page_t *io_pplist = NULL;
2656 	page_t *done_pplist = NULL;
2657 	pgcnt_t pgidx = 0;
2658 	page_t *pp;
2659 	page_t *newpp;
2660 	page_t *targpp;
2661 	int io_err = 0;
2662 	int i;
2663 	pfn_t pfn;
2664 	ulong_t ppages;
2665 	page_t *targ_pplist = NULL;
2666 	page_t *repl_pplist = NULL;
2667 	page_t *tmp_pplist;
2668 	int nios = 0;
2669 	uint_t pszc;
2670 	struct vattr va;
2671 
2672 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
2673 
2674 	ASSERT(szc != 0);
2675 	ASSERT(pplist->p_szc == szc);
2676 
2677 	/*
2678 	 * downsize will be set to 1 only if we fail to lock pages. this will
2679 	 * allow subsequent faults to try to relocate the page again. If we
2680 	 * fail due to misalignment don't downsize and let the caller map the
2681 	 * whole region with small mappings to avoid more faults into the area
2682 	 * where we can't get large pages anyway.
2683 	 */
2684 	*downsize = 0;
2685 
2686 	while (off < eoff) {
2687 		newpp = pplist;
2688 		ASSERT(newpp != NULL);
2689 		ASSERT(PAGE_EXCL(newpp));
2690 		ASSERT(!PP_ISFREE(newpp));
2691 		/*
2692 		 * we pass NULL for nrelocp to page_lookup_create()
2693 		 * so that it doesn't relocate. We relocate here
2694 		 * later only after we make sure we can lock all
2695 		 * pages in the range we handle and they are all
2696 		 * aligned.
2697 		 */
2698 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
2699 		ASSERT(pp != NULL);
2700 		ASSERT(!PP_ISFREE(pp));
2701 		ASSERT(pp->p_vnode == vp);
2702 		ASSERT(pp->p_offset == off);
2703 		if (pp == newpp) {
2704 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
2705 			page_sub(&pplist, pp);
2706 			ASSERT(PAGE_EXCL(pp));
2707 			ASSERT(page_iolock_assert(pp));
2708 			page_list_concat(&io_pplist, &pp);
2709 			off += PAGESIZE;
2710 			continue;
2711 		}
2712 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
2713 		pfn = page_pptonum(pp);
2714 		pszc = pp->p_szc;
2715 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
2716 		    IS_P2ALIGNED(pfn, pages)) {
2717 			ASSERT(repl_pplist == NULL);
2718 			ASSERT(done_pplist == NULL);
2719 			ASSERT(pplist == *ppplist);
2720 			page_unlock(pp);
2721 			page_free_replacement_page(pplist);
2722 			page_create_putback(pages);
2723 			*ppplist = NULL;
2724 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
2725 			return (1);
2726 		}
2727 		if (pszc >= szc) {
2728 			page_unlock(pp);
2729 			segvn_faultvnmpss_align_err1++;
2730 			goto out;
2731 		}
2732 		ppages = page_get_pagecnt(pszc);
2733 		if (!IS_P2ALIGNED(pfn, ppages)) {
2734 			ASSERT(pszc > 0);
2735 			/*
2736 			 * sizing down to pszc won't help.
2737 			 */
2738 			page_unlock(pp);
2739 			segvn_faultvnmpss_align_err2++;
2740 			goto out;
2741 		}
2742 		pfn = page_pptonum(newpp);
2743 		if (!IS_P2ALIGNED(pfn, ppages)) {
2744 			ASSERT(pszc > 0);
2745 			/*
2746 			 * sizing down to pszc won't help.
2747 			 */
2748 			page_unlock(pp);
2749 			segvn_faultvnmpss_align_err3++;
2750 			goto out;
2751 		}
2752 		if (!PAGE_EXCL(pp)) {
2753 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
2754 			page_unlock(pp);
2755 			*downsize = 1;
2756 			*ret_pszc = pp->p_szc;
2757 			goto out;
2758 		}
2759 		targpp = pp;
2760 		if (io_pplist != NULL) {
2761 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
2762 			io_len = off - io_off;
2763 			/*
2764 			 * Some file systems like NFS don't check EOF
2765 			 * conditions in VOP_PAGEIO(). Check it here
2766 			 * now that pages are locked SE_EXCL. Any file
2767 			 * truncation will wait until the pages are
2768 			 * unlocked so no need to worry that file will
2769 			 * be truncated after we check its size here.
2770 			 * XXX fix NFS to remove this check.
2771 			 */
2772 			va.va_mask = AT_SIZE;
2773 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
2774 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
2775 				page_unlock(targpp);
2776 				goto out;
2777 			}
2778 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
2779 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
2780 				*downsize = 1;
2781 				*ret_pszc = 0;
2782 				page_unlock(targpp);
2783 				goto out;
2784 			}
2785 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
2786 				B_READ, svd->cred);
2787 			if (io_err) {
2788 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
2789 				page_unlock(targpp);
2790 				if (io_err == EDEADLK) {
2791 					segvn_vmpss_pageio_deadlk_err++;
2792 				}
2793 				goto out;
2794 			}
2795 			nios++;
2796 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
2797 			while (io_pplist != NULL) {
2798 				pp = io_pplist;
2799 				page_sub(&io_pplist, pp);
2800 				ASSERT(page_iolock_assert(pp));
2801 				page_io_unlock(pp);
2802 				pgidx = (pp->p_offset - start_off) >>
2803 				    PAGESHIFT;
2804 				ASSERT(pgidx < pages);
2805 				ppa[pgidx] = pp;
2806 				page_list_concat(&done_pplist, &pp);
2807 			}
2808 		}
2809 		pp = targpp;
2810 		ASSERT(PAGE_EXCL(pp));
2811 		ASSERT(pp->p_szc <= pszc);
2812 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
2813 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
2814 			page_unlock(pp);
2815 			*downsize = 1;
2816 			*ret_pszc = pp->p_szc;
2817 			goto out;
2818 		}
2819 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
2820 		/*
2821 		 * page szc chould have changed before the entire group was
2822 		 * locked. reread page szc.
2823 		 */
2824 		pszc = pp->p_szc;
2825 		ppages = page_get_pagecnt(pszc);
2826 
2827 		/* link just the roots */
2828 		page_list_concat(&targ_pplist, &pp);
2829 		page_sub(&pplist, newpp);
2830 		page_list_concat(&repl_pplist, &newpp);
2831 		off += PAGESIZE;
2832 		while (--ppages != 0) {
2833 			newpp = pplist;
2834 			page_sub(&pplist, newpp);
2835 			off += PAGESIZE;
2836 		}
2837 		io_off = off;
2838 	}
2839 	if (io_pplist != NULL) {
2840 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
2841 		io_len = eoff - io_off;
2842 		va.va_mask = AT_SIZE;
2843 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
2844 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
2845 			goto out;
2846 		}
2847 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
2848 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
2849 			*downsize = 1;
2850 			*ret_pszc = 0;
2851 			goto out;
2852 		}
2853 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
2854 		    B_READ, svd->cred);
2855 		if (io_err) {
2856 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
2857 			if (io_err == EDEADLK) {
2858 				segvn_vmpss_pageio_deadlk_err++;
2859 			}
2860 			goto out;
2861 		}
2862 		nios++;
2863 		while (io_pplist != NULL) {
2864 			pp = io_pplist;
2865 			page_sub(&io_pplist, pp);
2866 			ASSERT(page_iolock_assert(pp));
2867 			page_io_unlock(pp);
2868 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
2869 			ASSERT(pgidx < pages);
2870 			ppa[pgidx] = pp;
2871 		}
2872 	}
2873 	/*
2874 	 * we're now bound to succeed or panic.
2875 	 * remove pages from done_pplist. it's not needed anymore.
2876 	 */
2877 	while (done_pplist != NULL) {
2878 		pp = done_pplist;
2879 		page_sub(&done_pplist, pp);
2880 	}
2881 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
2882 	ASSERT(pplist == NULL);
2883 	*ppplist = NULL;
2884 	while (targ_pplist != NULL) {
2885 		int ret;
2886 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
2887 		ASSERT(repl_pplist);
2888 		pp = targ_pplist;
2889 		page_sub(&targ_pplist, pp);
2890 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
2891 		newpp = repl_pplist;
2892 		page_sub(&repl_pplist, newpp);
2893 #ifdef DEBUG
2894 		pfn = page_pptonum(pp);
2895 		pszc = pp->p_szc;
2896 		ppages = page_get_pagecnt(pszc);
2897 		ASSERT(IS_P2ALIGNED(pfn, ppages));
2898 		pfn = page_pptonum(newpp);
2899 		ASSERT(IS_P2ALIGNED(pfn, ppages));
2900 		ASSERT(P2PHASE(pfn, pages) == pgidx);
2901 #endif
2902 		nreloc = 0;
2903 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
2904 		if (ret != 0 || nreloc == 0) {
2905 			panic("segvn_fill_vp_pages: "
2906 			    "page_relocate failed");
2907 		}
2908 		pp = newpp;
2909 		while (nreloc-- != 0) {
2910 			ASSERT(PAGE_EXCL(pp));
2911 			ASSERT(pp->p_vnode == vp);
2912 			ASSERT(pgidx ==
2913 			    ((pp->p_offset - start_off) >> PAGESHIFT));
2914 			ppa[pgidx++] = pp;
2915 			pp++;
2916 		}
2917 	}
2918 
2919 	if (svd->type == MAP_PRIVATE) {
2920 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
2921 		for (i = 0; i < pages; i++) {
2922 			ASSERT(ppa[i] != NULL);
2923 			ASSERT(PAGE_EXCL(ppa[i]));
2924 			ASSERT(ppa[i]->p_vnode == vp);
2925 			ASSERT(ppa[i]->p_offset ==
2926 			    start_off + (i << PAGESHIFT));
2927 			page_downgrade(ppa[i]);
2928 		}
2929 		ppa[pages] = NULL;
2930 	} else {
2931 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
2932 		/*
2933 		 * the caller will still call VOP_GETPAGE() for shared segments
2934 		 * to check FS write permissions. For private segments we map
2935 		 * file read only anyway.  so no VOP_GETPAGE is needed.
2936 		 */
2937 		for (i = 0; i < pages; i++) {
2938 			ASSERT(ppa[i] != NULL);
2939 			ASSERT(PAGE_EXCL(ppa[i]));
2940 			ASSERT(ppa[i]->p_vnode == vp);
2941 			ASSERT(ppa[i]->p_offset ==
2942 			    start_off + (i << PAGESHIFT));
2943 			page_unlock(ppa[i]);
2944 		}
2945 		ppa[0] = NULL;
2946 	}
2947 
2948 	return (1);
2949 out:
2950 	/*
2951 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
2952 	 * linked on targ_pplist by root pages. reassemble unused replacement
2953 	 * and io pages back to pplist.
2954 	 */
2955 	if (io_pplist != NULL) {
2956 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
2957 		pp = io_pplist;
2958 		do {
2959 			ASSERT(pp->p_vnode == vp);
2960 			ASSERT(pp->p_offset == io_off);
2961 			ASSERT(page_iolock_assert(pp));
2962 			page_io_unlock(pp);
2963 			page_hashout(pp, NULL);
2964 			io_off += PAGESIZE;
2965 		} while ((pp = pp->p_next) != io_pplist);
2966 		page_list_concat(&io_pplist, &pplist);
2967 		pplist = io_pplist;
2968 	}
2969 	tmp_pplist = NULL;
2970 	while (targ_pplist != NULL) {
2971 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
2972 		pp = targ_pplist;
2973 		ASSERT(PAGE_EXCL(pp));
2974 		page_sub(&targ_pplist, pp);
2975 
2976 		pszc = pp->p_szc;
2977 		ppages = page_get_pagecnt(pszc);
2978 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
2979 
2980 		if (pszc != 0) {
2981 			group_page_unlock(pp);
2982 		}
2983 		page_unlock(pp);
2984 
2985 		pp = repl_pplist;
2986 		ASSERT(pp != NULL);
2987 		ASSERT(PAGE_EXCL(pp));
2988 		ASSERT(pp->p_szc == szc);
2989 		page_sub(&repl_pplist, pp);
2990 
2991 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
2992 
2993 		/* relink replacement page */
2994 		page_list_concat(&tmp_pplist, &pp);
2995 		while (--ppages != 0) {
2996 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
2997 			pp++;
2998 			ASSERT(PAGE_EXCL(pp));
2999 			ASSERT(pp->p_szc == szc);
3000 			page_list_concat(&tmp_pplist, &pp);
3001 		}
3002 	}
3003 	if (tmp_pplist != NULL) {
3004 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3005 		page_list_concat(&tmp_pplist, &pplist);
3006 		pplist = tmp_pplist;
3007 	}
3008 	/*
3009 	 * at this point all pages are either on done_pplist or
3010 	 * pplist. They can't be all on done_pplist otherwise
3011 	 * we'd've been done.
3012 	 */
3013 	ASSERT(pplist != NULL);
3014 	if (nios != 0) {
3015 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3016 		pp = pplist;
3017 		do {
3018 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3019 			ASSERT(pp->p_szc == szc);
3020 			ASSERT(PAGE_EXCL(pp));
3021 			ASSERT(pp->p_vnode != vp);
3022 			pp->p_szc = 0;
3023 		} while ((pp = pp->p_next) != pplist);
3024 
3025 		pp = done_pplist;
3026 		do {
3027 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3028 			ASSERT(pp->p_szc == szc);
3029 			ASSERT(PAGE_EXCL(pp));
3030 			ASSERT(pp->p_vnode == vp);
3031 			pp->p_szc = 0;
3032 		} while ((pp = pp->p_next) != done_pplist);
3033 
3034 		while (pplist != NULL) {
3035 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3036 			pp = pplist;
3037 			page_sub(&pplist, pp);
3038 			page_free(pp, 0);
3039 		}
3040 
3041 		while (done_pplist != NULL) {
3042 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3043 			pp = done_pplist;
3044 			page_sub(&done_pplist, pp);
3045 			page_unlock(pp);
3046 		}
3047 		*ppplist = NULL;
3048 		return (0);
3049 	}
3050 	ASSERT(pplist == *ppplist);
3051 	if (io_err) {
3052 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3053 		/*
3054 		 * don't downsize on io error.
3055 		 * see if vop_getpage succeeds.
3056 		 * pplist may still be used in this case
3057 		 * for relocations.
3058 		 */
3059 		return (0);
3060 	}
3061 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3062 	page_free_replacement_page(pplist);
3063 	page_create_putback(pages);
3064 	*ppplist = NULL;
3065 	return (0);
3066 }
3067 
3068 int segvn_anypgsz = 0;
3069 
3070 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3071 		if ((type) == F_SOFTLOCK) {		\
3072 			mutex_enter(&freemem_lock);	\
3073 			availrmem += (pages);		\
3074 			segvn_pages_locked -= (pages);	\
3075 			svd->softlockcnt -= (pages);	\
3076 			mutex_exit(&freemem_lock);	\
3077 		}
3078 
3079 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3080 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3081 			if ((rw) == S_WRITE) {				\
3082 				for (i = 0; i < (pages); i++) {		\
3083 					ASSERT((ppa)[i]->p_vnode ==	\
3084 					    (ppa)[0]->p_vnode);		\
3085 					hat_setmod((ppa)[i]);		\
3086 				}					\
3087 			} else if ((rw) != S_OTHER &&			\
3088 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3089 				for (i = 0; i < (pages); i++) {		\
3090 					ASSERT((ppa)[i]->p_vnode ==	\
3091 					    (ppa)[0]->p_vnode);		\
3092 					if (!hat_ismod((ppa)[i])) {	\
3093 						prot &= ~PROT_WRITE;	\
3094 						break;			\
3095 					}				\
3096 				}					\
3097 			}						\
3098 		}
3099 
3100 #ifdef  VM_STATS
3101 
3102 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3103 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3104 
3105 #else /* VM_STATS */
3106 
3107 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3108 
3109 #endif
3110 
3111 static faultcode_t
3112 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3113     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3114     caddr_t eaddr, int brkcow)
3115 {
3116 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3117 	struct anon_map *amp = svd->amp;
3118 	uchar_t segtype = svd->type;
3119 	uint_t szc = seg->s_szc;
3120 	size_t pgsz = page_get_pagesize(szc);
3121 	size_t maxpgsz = pgsz;
3122 	pgcnt_t pages = btop(pgsz);
3123 	pgcnt_t maxpages = pages;
3124 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3125 	caddr_t a = lpgaddr;
3126 	caddr_t	maxlpgeaddr = lpgeaddr;
3127 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3128 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3129 	struct vpage *vpage = (svd->vpage != NULL) ?
3130 	    &svd->vpage[seg_page(seg, a)] : NULL;
3131 	vnode_t *vp = svd->vp;
3132 	page_t **ppa;
3133 	uint_t	pszc;
3134 	size_t	ppgsz;
3135 	pgcnt_t	ppages;
3136 	faultcode_t err = 0;
3137 	int ierr;
3138 	int vop_size_err = 0;
3139 	uint_t protchk, prot, vpprot;
3140 	ulong_t i;
3141 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3142 	anon_sync_obj_t an_cookie;
3143 	enum seg_rw arw;
3144 	int alloc_failed = 0;
3145 	int adjszc_chk;
3146 	struct vattr va;
3147 	int xhat = 0;
3148 	page_t *pplist;
3149 	pfn_t pfn;
3150 	int physcontig;
3151 	int upgrdfail;
3152 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3153 
3154 	ASSERT(szc != 0);
3155 	ASSERT(vp != NULL);
3156 	ASSERT(brkcow == 0 || amp != NULL);
3157 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3158 	ASSERT(!(svd->flags & MAP_NORESERVE));
3159 	ASSERT(type != F_SOFTUNLOCK);
3160 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3161 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3162 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3163 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3164 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3165 
3166 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3167 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3168 
3169 	if (svd->flags & MAP_TEXT) {
3170 		hat_flag |= HAT_LOAD_TEXT;
3171 	}
3172 
3173 	if (svd->pageprot) {
3174 		switch (rw) {
3175 		case S_READ:
3176 			protchk = PROT_READ;
3177 			break;
3178 		case S_WRITE:
3179 			protchk = PROT_WRITE;
3180 			break;
3181 		case S_EXEC:
3182 			protchk = PROT_EXEC;
3183 			break;
3184 		case S_OTHER:
3185 		default:
3186 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3187 			break;
3188 		}
3189 	} else {
3190 		prot = svd->prot;
3191 		/* caller has already done segment level protection check. */
3192 	}
3193 
3194 	if (seg->s_as->a_hat != hat) {
3195 		xhat = 1;
3196 	}
3197 
3198 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3199 		SEGVN_VMSTAT_FLTVNPAGES(2);
3200 		arw = S_READ;
3201 	} else {
3202 		arw = rw;
3203 	}
3204 
3205 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3206 
3207 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3208 
3209 	for (;;) {
3210 		adjszc_chk = 0;
3211 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3212 			if (adjszc_chk) {
3213 				while (szc < seg->s_szc) {
3214 					uintptr_t e;
3215 					uint_t tszc;
3216 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3217 					    seg->s_szc;
3218 					ppgsz = page_get_pagesize(tszc);
3219 					if (!IS_P2ALIGNED(a, ppgsz) ||
3220 					    ((alloc_failed >> tszc) &
3221 						0x1)) {
3222 						break;
3223 					}
3224 					SEGVN_VMSTAT_FLTVNPAGES(4);
3225 					szc = tszc;
3226 					pgsz = ppgsz;
3227 					pages = btop(pgsz);
3228 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3229 					lpgeaddr = (caddr_t)e;
3230 				}
3231 			}
3232 
3233 		again:
3234 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3235 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3236 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3237 				anon_array_enter(amp, aindx, &an_cookie);
3238 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3239 					SEGVN_VMSTAT_FLTVNPAGES(5);
3240 					if (anon_pages(amp->ahp, aindx,
3241 					    maxpages) != maxpages) {
3242 						panic("segvn_fault_vnodepages:"
3243 						    " empty anon slots\n");
3244 					}
3245 					anon_array_exit(&an_cookie);
3246 					ANON_LOCK_EXIT(&amp->a_rwlock);
3247 					err = segvn_fault_anonpages(hat, seg,
3248 					    a, a + maxpgsz, type, rw,
3249 					    MAX(a, addr),
3250 					    MIN(a + maxpgsz, eaddr), brkcow);
3251 					if (err != 0) {
3252 						SEGVN_VMSTAT_FLTVNPAGES(6);
3253 						goto out;
3254 					}
3255 					if (szc < seg->s_szc) {
3256 						szc = seg->s_szc;
3257 						pgsz = maxpgsz;
3258 						pages = maxpages;
3259 						lpgeaddr = maxlpgeaddr;
3260 					}
3261 					goto next;
3262 				} else if (anon_pages(amp->ahp, aindx,
3263 				    maxpages)) {
3264 					panic("segvn_fault_vnodepages:"
3265 						" non empty anon slots\n");
3266 				} else {
3267 					SEGVN_VMSTAT_FLTVNPAGES(7);
3268 					anon_array_exit(&an_cookie);
3269 					ANON_LOCK_EXIT(&amp->a_rwlock);
3270 				}
3271 			}
3272 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3273 
3274 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3275 				ASSERT(vpage != NULL);
3276 				prot = VPP_PROT(vpage);
3277 				ASSERT(sameprot(seg, a, maxpgsz));
3278 				if ((prot & protchk) == 0) {
3279 					SEGVN_VMSTAT_FLTVNPAGES(8);
3280 					err = FC_PROT;
3281 					goto out;
3282 				}
3283 			}
3284 			if (type == F_SOFTLOCK) {
3285 				mutex_enter(&freemem_lock);
3286 				if (availrmem < tune.t_minarmem + pages) {
3287 					mutex_exit(&freemem_lock);
3288 					err = FC_MAKE_ERR(ENOMEM);
3289 					goto out;
3290 				} else {
3291 					availrmem -= pages;
3292 					segvn_pages_locked += pages;
3293 					svd->softlockcnt += pages;
3294 				}
3295 				mutex_exit(&freemem_lock);
3296 			}
3297 
3298 			pplist = NULL;
3299 			physcontig = 0;
3300 			ppa[0] = NULL;
3301 			if (!brkcow && szc &&
3302 			    !page_exists_physcontig(vp, off, szc,
3303 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3304 				SEGVN_VMSTAT_FLTVNPAGES(9);
3305 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3306 				    szc, 0) && type != F_SOFTLOCK) {
3307 					SEGVN_VMSTAT_FLTVNPAGES(10);
3308 					pszc = 0;
3309 					ierr = -1;
3310 					alloc_failed |= (1 << szc);
3311 					break;
3312 				}
3313 				if (pplist != NULL &&
3314 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3315 					int downsize;
3316 					SEGVN_VMSTAT_FLTVNPAGES(11);
3317 					physcontig = segvn_fill_vp_pages(svd,
3318 					    vp, off, szc, ppa, &pplist,
3319 					    &pszc, &downsize);
3320 					ASSERT(!physcontig || pplist == NULL);
3321 					if (!physcontig && downsize &&
3322 					    type != F_SOFTLOCK) {
3323 						ASSERT(pplist == NULL);
3324 						SEGVN_VMSTAT_FLTVNPAGES(12);
3325 						ierr = -1;
3326 						break;
3327 					}
3328 					ASSERT(!physcontig ||
3329 					    segtype == MAP_PRIVATE ||
3330 					    ppa[0] == NULL);
3331 					if (physcontig && ppa[0] == NULL) {
3332 						physcontig = 0;
3333 					}
3334 				}
3335 			} else if (!brkcow && szc && ppa[0] != NULL) {
3336 				SEGVN_VMSTAT_FLTVNPAGES(13);
3337 				ASSERT(segtype == MAP_PRIVATE);
3338 				physcontig = 1;
3339 			}
3340 
3341 			if (!physcontig) {
3342 				SEGVN_VMSTAT_FLTVNPAGES(14);
3343 				ppa[0] = NULL;
3344 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3345 				    &vpprot, ppa, pgsz, seg, a, arw,
3346 				    svd->cred);
3347 				if (segtype == MAP_PRIVATE) {
3348 					SEGVN_VMSTAT_FLTVNPAGES(15);
3349 					vpprot &= ~PROT_WRITE;
3350 				}
3351 			} else {
3352 				ASSERT(segtype == MAP_PRIVATE);
3353 				SEGVN_VMSTAT_FLTVNPAGES(16);
3354 				vpprot = PROT_ALL & ~PROT_WRITE;
3355 				ierr = 0;
3356 			}
3357 
3358 			if (ierr != 0) {
3359 				SEGVN_VMSTAT_FLTVNPAGES(17);
3360 				if (pplist != NULL) {
3361 					SEGVN_VMSTAT_FLTVNPAGES(18);
3362 					page_free_replacement_page(pplist);
3363 					page_create_putback(pages);
3364 				}
3365 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3366 				if (a + pgsz <= eaddr) {
3367 					SEGVN_VMSTAT_FLTVNPAGES(19);
3368 					err = FC_MAKE_ERR(ierr);
3369 					goto out;
3370 				}
3371 				va.va_mask = AT_SIZE;
3372 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
3373 					SEGVN_VMSTAT_FLTVNPAGES(20);
3374 					err = FC_MAKE_ERR(EIO);
3375 					goto out;
3376 				}
3377 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
3378 					SEGVN_VMSTAT_FLTVNPAGES(21);
3379 					err = FC_MAKE_ERR(ierr);
3380 					goto out;
3381 				}
3382 				if (btopr(va.va_size) <
3383 				    btopr(off + (eaddr - a))) {
3384 					SEGVN_VMSTAT_FLTVNPAGES(22);
3385 					err = FC_MAKE_ERR(ierr);
3386 					goto out;
3387 				}
3388 				if (brkcow || type == F_SOFTLOCK) {
3389 					/* can't reduce map area */
3390 					SEGVN_VMSTAT_FLTVNPAGES(23);
3391 					vop_size_err = 1;
3392 					goto out;
3393 				}
3394 				SEGVN_VMSTAT_FLTVNPAGES(24);
3395 				ASSERT(szc != 0);
3396 				pszc = 0;
3397 				ierr = -1;
3398 				break;
3399 			}
3400 
3401 			if (amp != NULL) {
3402 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3403 				anon_array_enter(amp, aindx, &an_cookie);
3404 			}
3405 			if (amp != NULL &&
3406 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
3407 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3408 
3409 				SEGVN_VMSTAT_FLTVNPAGES(25);
3410 				if (anon_pages(amp->ahp, taindx, maxpages) !=
3411 				    maxpages) {
3412 					panic("segvn_fault_vnodepages:"
3413 					    " empty anon slots\n");
3414 				}
3415 				for (i = 0; i < pages; i++) {
3416 					page_unlock(ppa[i]);
3417 				}
3418 				anon_array_exit(&an_cookie);
3419 				ANON_LOCK_EXIT(&amp->a_rwlock);
3420 				if (pplist != NULL) {
3421 					page_free_replacement_page(pplist);
3422 					page_create_putback(pages);
3423 				}
3424 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3425 				if (szc < seg->s_szc) {
3426 					SEGVN_VMSTAT_FLTVNPAGES(26);
3427 					/*
3428 					 * For private segments SOFTLOCK
3429 					 * either always breaks cow (any rw
3430 					 * type except S_READ_NOCOW) or
3431 					 * address space is locked as writer
3432 					 * (S_READ_NOCOW case) and anon slots
3433 					 * can't show up on second check.
3434 					 * Therefore if we are here for
3435 					 * SOFTLOCK case it must be a cow
3436 					 * break but cow break never reduces
3437 					 * szc. Thus the assert below.
3438 					 */
3439 					ASSERT(!brkcow && type != F_SOFTLOCK);
3440 					pszc = seg->s_szc;
3441 					ierr = -2;
3442 					break;
3443 				}
3444 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3445 				goto again;
3446 			}
3447 #ifdef DEBUG
3448 			if (amp != NULL) {
3449 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3450 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
3451 			}
3452 #endif /* DEBUG */
3453 
3454 			if (brkcow) {
3455 				ASSERT(amp != NULL);
3456 				ASSERT(pplist == NULL);
3457 				ASSERT(szc == seg->s_szc);
3458 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3459 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3460 				SEGVN_VMSTAT_FLTVNPAGES(27);
3461 				ierr = anon_map_privatepages(amp, aindx, szc,
3462 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
3463 				    svd->cred);
3464 				if (ierr != 0) {
3465 					SEGVN_VMSTAT_FLTVNPAGES(28);
3466 					anon_array_exit(&an_cookie);
3467 					ANON_LOCK_EXIT(&amp->a_rwlock);
3468 					SEGVN_RESTORE_SOFTLOCK(type, pages);
3469 					err = FC_MAKE_ERR(ierr);
3470 					goto out;
3471 				}
3472 
3473 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
3474 				/*
3475 				 * p_szc can't be changed for locked
3476 				 * swapfs pages.
3477 				 */
3478 				hat_memload_array(hat, a, pgsz, ppa, prot,
3479 				    hat_flag);
3480 
3481 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3482 					SEGVN_VMSTAT_FLTVNPAGES(29);
3483 					for (i = 0; i < pages; i++) {
3484 						page_unlock(ppa[i]);
3485 					}
3486 				}
3487 				anon_array_exit(&an_cookie);
3488 				ANON_LOCK_EXIT(&amp->a_rwlock);
3489 				goto next;
3490 			}
3491 
3492 			pfn = page_pptonum(ppa[0]);
3493 			/*
3494 			 * hat_page_demote() needs an EXCl lock on one of
3495 			 * constituent page_t's and it decreases root's p_szc
3496 			 * last. This means if root's p_szc is equal szc and
3497 			 * all its constituent pages are locked
3498 			 * hat_page_demote() that could have changed p_szc to
3499 			 * szc is already done and no new have page_demote()
3500 			 * can start for this large page.
3501 			 */
3502 
3503 			/*
3504 			 * we need to make sure same mapping size is used for
3505 			 * the same address range if there's a possibility the
3506 			 * adddress is already mapped because hat layer panics
3507 			 * when translation is loaded for the range already
3508 			 * mapped with a different page size.  We achieve it
3509 			 * by always using largest page size possible subject
3510 			 * to the constraints of page size, segment page size
3511 			 * and page alignment.  Since mappings are invalidated
3512 			 * when those constraints change and make it
3513 			 * impossible to use previously used mapping size no
3514 			 * mapping size conflicts should happen.
3515 			 */
3516 
3517 		chkszc:
3518 			if ((pszc = ppa[0]->p_szc) == szc &&
3519 			    IS_P2ALIGNED(pfn, pages)) {
3520 
3521 				SEGVN_VMSTAT_FLTVNPAGES(30);
3522 #ifdef DEBUG
3523 				for (i = 0; i < pages; i++) {
3524 					ASSERT(PAGE_LOCKED(ppa[i]));
3525 					ASSERT(!PP_ISFREE(ppa[i]));
3526 					ASSERT(page_pptonum(ppa[i]) ==
3527 					    pfn + i);
3528 					ASSERT(ppa[i]->p_szc == szc);
3529 					ASSERT(ppa[i]->p_vnode == vp);
3530 					ASSERT(ppa[i]->p_offset ==
3531 					    off + (i << PAGESHIFT));
3532 				}
3533 #endif /* DEBUG */
3534 				/*
3535 				 * All pages are of szc we need and they are
3536 				 * all locked so they can't change szc. load
3537 				 * translations.
3538 				 *
3539 				 * if page got promoted since last check
3540 				 * we don't need pplist.
3541 				 */
3542 				if (pplist != NULL) {
3543 					page_free_replacement_page(pplist);
3544 					page_create_putback(pages);
3545 				}
3546 				if (PP_ISMIGRATE(ppa[0])) {
3547 					page_migrate(seg, a, ppa, pages);
3548 				}
3549 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3550 				    prot, vpprot);
3551 				if (!xhat) {
3552 					hat_memload_array(hat, a, pgsz, ppa,
3553 					    prot & vpprot, hat_flag);
3554 				} else {
3555 					/*
3556 					 * avoid large xhat mappings to FS
3557 					 * pages so that hat_page_demote()
3558 					 * doesn't need to check for xhat
3559 					 * large mappings.
3560 					 */
3561 					for (i = 0; i < pages; i++) {
3562 						hat_memload(hat,
3563 						    a + (i << PAGESHIFT),
3564 						    ppa[i], prot & vpprot,
3565 						    hat_flag);
3566 					}
3567 				}
3568 
3569 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3570 					for (i = 0; i < pages; i++) {
3571 						page_unlock(ppa[i]);
3572 					}
3573 				}
3574 				if (amp != NULL) {
3575 					anon_array_exit(&an_cookie);
3576 					ANON_LOCK_EXIT(&amp->a_rwlock);
3577 				}
3578 				goto next;
3579 			}
3580 
3581 			/*
3582 			 * See if upsize is possible.
3583 			 */
3584 			if (pszc > szc && szc < seg->s_szc &&
3585 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
3586 				pgcnt_t aphase;
3587 				uint_t pszc1 = MIN(pszc, seg->s_szc);
3588 				ppgsz = page_get_pagesize(pszc1);
3589 				ppages = btop(ppgsz);
3590 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
3591 
3592 				ASSERT(type != F_SOFTLOCK);
3593 
3594 				SEGVN_VMSTAT_FLTVNPAGES(31);
3595 				if (aphase != P2PHASE(pfn, ppages)) {
3596 					segvn_faultvnmpss_align_err4++;
3597 				} else {
3598 					SEGVN_VMSTAT_FLTVNPAGES(32);
3599 					if (pplist != NULL) {
3600 						page_t *pl = pplist;
3601 						page_free_replacement_page(pl);
3602 						page_create_putback(pages);
3603 					}
3604 					for (i = 0; i < pages; i++) {
3605 						page_unlock(ppa[i]);
3606 					}
3607 					if (amp != NULL) {
3608 						anon_array_exit(&an_cookie);
3609 						ANON_LOCK_EXIT(&amp->a_rwlock);
3610 					}
3611 					pszc = pszc1;
3612 					ierr = -2;
3613 					break;
3614 				}
3615 			}
3616 
3617 			/*
3618 			 * check if we should use smallest mapping size.
3619 			 */
3620 			upgrdfail = 0;
3621 			if (szc == 0 || xhat ||
3622 			    (pszc >= szc &&
3623 			    !IS_P2ALIGNED(pfn, pages)) ||
3624 			    (pszc < szc &&
3625 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
3626 				&pszc))) {
3627 
3628 				if (upgrdfail && type != F_SOFTLOCK) {
3629 					/*
3630 					 * segvn_full_szcpages failed to lock
3631 					 * all pages EXCL. Size down.
3632 					 */
3633 					ASSERT(pszc < szc);
3634 
3635 					SEGVN_VMSTAT_FLTVNPAGES(33);
3636 
3637 					if (pplist != NULL) {
3638 						page_t *pl = pplist;
3639 						page_free_replacement_page(pl);
3640 						page_create_putback(pages);
3641 					}
3642 
3643 					for (i = 0; i < pages; i++) {
3644 						page_unlock(ppa[i]);
3645 					}
3646 					if (amp != NULL) {
3647 						anon_array_exit(&an_cookie);
3648 						ANON_LOCK_EXIT(&amp->a_rwlock);
3649 					}
3650 					ierr = -1;
3651 					break;
3652 				}
3653 				if (szc != 0 && !xhat) {
3654 					segvn_faultvnmpss_align_err5++;
3655 				}
3656 				SEGVN_VMSTAT_FLTVNPAGES(34);
3657 				if (pplist != NULL) {
3658 					page_free_replacement_page(pplist);
3659 					page_create_putback(pages);
3660 				}
3661 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3662 				    prot, vpprot);
3663 				for (i = 0; i < pages; i++) {
3664 					hat_memload(hat, a + (i << PAGESHIFT),
3665 					    ppa[i], prot & vpprot, hat_flag);
3666 				}
3667 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3668 					for (i = 0; i < pages; i++) {
3669 						page_unlock(ppa[i]);
3670 					}
3671 				}
3672 				if (amp != NULL) {
3673 					anon_array_exit(&an_cookie);
3674 					ANON_LOCK_EXIT(&amp->a_rwlock);
3675 				}
3676 				goto next;
3677 			}
3678 
3679 			if (pszc == szc) {
3680 				/*
3681 				 * segvn_full_szcpages() upgraded pages szc.
3682 				 */
3683 				ASSERT(pszc == ppa[0]->p_szc);
3684 				ASSERT(IS_P2ALIGNED(pfn, pages));
3685 				goto chkszc;
3686 			}
3687 
3688 			if (pszc > szc) {
3689 				kmutex_t *szcmtx;
3690 				SEGVN_VMSTAT_FLTVNPAGES(35);
3691 				/*
3692 				 * p_szc of ppa[0] can change since we haven't
3693 				 * locked all constituent pages. Call
3694 				 * page_lock_szc() to prevent szc changes.
3695 				 * This should be a rare case that happens when
3696 				 * multiple segments use a different page size
3697 				 * to map the same file offsets.
3698 				 */
3699 				szcmtx = page_szc_lock(ppa[0]);
3700 				pszc = ppa[0]->p_szc;
3701 				ASSERT(szcmtx != NULL || pszc == 0);
3702 				ASSERT(ppa[0]->p_szc <= pszc);
3703 				if (pszc <= szc) {
3704 					SEGVN_VMSTAT_FLTVNPAGES(36);
3705 					if (szcmtx != NULL) {
3706 						mutex_exit(szcmtx);
3707 					}
3708 					goto chkszc;
3709 				}
3710 				if (pplist != NULL) {
3711 					/*
3712 					 * page got promoted since last check.
3713 					 * we don't need preaalocated large
3714 					 * page.
3715 					 */
3716 					SEGVN_VMSTAT_FLTVNPAGES(37);
3717 					page_free_replacement_page(pplist);
3718 					page_create_putback(pages);
3719 				}
3720 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3721 				    prot, vpprot);
3722 				hat_memload_array(hat, a, pgsz, ppa,
3723 				    prot & vpprot, hat_flag);
3724 				mutex_exit(szcmtx);
3725 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3726 					for (i = 0; i < pages; i++) {
3727 						page_unlock(ppa[i]);
3728 					}
3729 				}
3730 				if (amp != NULL) {
3731 					anon_array_exit(&an_cookie);
3732 					ANON_LOCK_EXIT(&amp->a_rwlock);
3733 				}
3734 				goto next;
3735 			}
3736 
3737 			/*
3738 			 * if page got demoted since last check
3739 			 * we could have not allocated larger page.
3740 			 * allocate now.
3741 			 */
3742 			if (pplist == NULL &&
3743 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
3744 				szc, 0) && type != F_SOFTLOCK) {
3745 				SEGVN_VMSTAT_FLTVNPAGES(38);
3746 				for (i = 0; i < pages; i++) {
3747 					page_unlock(ppa[i]);
3748 				}
3749 				if (amp != NULL) {
3750 					anon_array_exit(&an_cookie);
3751 					ANON_LOCK_EXIT(&amp->a_rwlock);
3752 				}
3753 				ierr = -1;
3754 				alloc_failed |= (1 << szc);
3755 				break;
3756 			}
3757 
3758 			SEGVN_VMSTAT_FLTVNPAGES(39);
3759 
3760 			if (pplist != NULL) {
3761 				segvn_relocate_pages(ppa, pplist);
3762 #ifdef DEBUG
3763 			} else {
3764 				ASSERT(type == F_SOFTLOCK);
3765 				SEGVN_VMSTAT_FLTVNPAGES(40);
3766 #endif /* DEBUG */
3767 			}
3768 
3769 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
3770 
3771 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
3772 				ASSERT(type == F_SOFTLOCK);
3773 				for (i = 0; i < pages; i++) {
3774 					ASSERT(ppa[i]->p_szc < szc);
3775 					hat_memload(hat, a + (i << PAGESHIFT),
3776 					    ppa[i], prot & vpprot, hat_flag);
3777 				}
3778 			} else {
3779 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
3780 				hat_memload_array(hat, a, pgsz, ppa,
3781 				    prot & vpprot, hat_flag);
3782 			}
3783 			if (!(hat_flag & HAT_LOAD_LOCK)) {
3784 				for (i = 0; i < pages; i++) {
3785 					ASSERT(PAGE_SHARED(ppa[i]));
3786 					page_unlock(ppa[i]);
3787 				}
3788 			}
3789 			if (amp != NULL) {
3790 				anon_array_exit(&an_cookie);
3791 				ANON_LOCK_EXIT(&amp->a_rwlock);
3792 			}
3793 
3794 		next:
3795 			if (vpage != NULL) {
3796 				vpage += pages;
3797 			}
3798 			adjszc_chk = 1;
3799 		}
3800 		if (a == lpgeaddr)
3801 			break;
3802 		ASSERT(a < lpgeaddr);
3803 
3804 		ASSERT(!brkcow && type != F_SOFTLOCK);
3805 
3806 		/*
3807 		 * ierr == -1 means we failed to map with a large page.
3808 		 * (either due to allocation/relocation failures or
3809 		 * misalignment with other mappings to this file.
3810 		 *
3811 		 * ierr == -2 means some other thread allocated a large page
3812 		 * after we gave up tp map with a large page.  retry with
3813 		 * larger mapping.
3814 		 */
3815 		ASSERT(ierr == -1 || ierr == -2);
3816 		ASSERT(ierr == -2 || szc != 0);
3817 		ASSERT(ierr == -1 || szc < seg->s_szc);
3818 		if (ierr == -2) {
3819 			SEGVN_VMSTAT_FLTVNPAGES(41);
3820 			ASSERT(pszc > szc && pszc <= seg->s_szc);
3821 			szc = pszc;
3822 		} else if (segvn_anypgsz_vnode) {
3823 			SEGVN_VMSTAT_FLTVNPAGES(42);
3824 			szc--;
3825 		} else {
3826 			SEGVN_VMSTAT_FLTVNPAGES(43);
3827 			ASSERT(pszc < szc);
3828 			/*
3829 			 * other process created pszc large page.
3830 			 * but we still have to drop to 0 szc.
3831 			 */
3832 			szc = 0;
3833 		}
3834 
3835 		pgsz = page_get_pagesize(szc);
3836 		pages = btop(pgsz);
3837 		if (ierr == -2) {
3838 			/*
3839 			 * Size up case. Note lpgaddr may only be needed for
3840 			 * softlock case so we don't adjust it here.
3841 			 */
3842 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
3843 			ASSERT(a >= lpgaddr);
3844 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
3845 			off = svd->offset + (uintptr_t)(a - seg->s_base);
3846 			aindx = svd->anon_index + seg_page(seg, a);
3847 			vpage = (svd->vpage != NULL) ?
3848 			    &svd->vpage[seg_page(seg, a)] : NULL;
3849 		} else {
3850 			/*
3851 			 * Size down case. Note lpgaddr may only be needed for
3852 			 * softlock case so we don't adjust it here.
3853 			 */
3854 			ASSERT(IS_P2ALIGNED(a, pgsz));
3855 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
3856 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
3857 			ASSERT(a < lpgeaddr);
3858 			if (a < addr) {
3859 				SEGVN_VMSTAT_FLTVNPAGES(44);
3860 				/*
3861 				 * The beginning of the large page region can
3862 				 * be pulled to the right to make a smaller
3863 				 * region. We haven't yet faulted a single
3864 				 * page.
3865 				 */
3866 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
3867 				ASSERT(a >= lpgaddr);
3868 				off = svd->offset +
3869 				    (uintptr_t)(a - seg->s_base);
3870 				aindx = svd->anon_index + seg_page(seg, a);
3871 				vpage = (svd->vpage != NULL) ?
3872 				    &svd->vpage[seg_page(seg, a)] : NULL;
3873 			}
3874 		}
3875 	}
3876 out:
3877 	kmem_free(ppa, ppasize);
3878 	if (!err && !vop_size_err) {
3879 		SEGVN_VMSTAT_FLTVNPAGES(45);
3880 		return (0);
3881 	}
3882 	if (type == F_SOFTLOCK && a > lpgaddr) {
3883 		SEGVN_VMSTAT_FLTVNPAGES(46);
3884 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
3885 	}
3886 	if (!vop_size_err) {
3887 		SEGVN_VMSTAT_FLTVNPAGES(47);
3888 		return (err);
3889 	}
3890 	ASSERT(brkcow || type == F_SOFTLOCK);
3891 	/*
3892 	 * Large page end is mapped beyond the end of file and it's a cow
3893 	 * fault or softlock so we can't reduce the map area.  For now just
3894 	 * demote the segment. This should really only happen if the end of
3895 	 * the file changed after the mapping was established since when large
3896 	 * page segments are created we make sure they don't extend beyond the
3897 	 * end of the file.
3898 	 */
3899 	SEGVN_VMSTAT_FLTVNPAGES(48);
3900 
3901 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
3902 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
3903 	err = 0;
3904 	if (seg->s_szc != 0) {
3905 		segvn_fltvnpages_clrszc_cnt++;
3906 		ASSERT(svd->softlockcnt == 0);
3907 		err = segvn_clrszc(seg);
3908 		if (err != 0) {
3909 			segvn_fltvnpages_clrszc_err++;
3910 		}
3911 	}
3912 	ASSERT(err || seg->s_szc == 0);
3913 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
3914 	/* segvn_fault will do its job as if szc had been zero to begin with */
3915 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
3916 }
3917 
3918 /*
3919  * This routine will attempt to fault in one large page.
3920  * it will use smaller pages if that fails.
3921  * It should only be called for pure anonymous segments.
3922  */
3923 static faultcode_t
3924 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3925     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3926     caddr_t eaddr, int brkcow)
3927 {
3928 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3929 	struct anon_map *amp = svd->amp;
3930 	uchar_t segtype = svd->type;
3931 	uint_t szc = seg->s_szc;
3932 	size_t pgsz = page_get_pagesize(szc);
3933 	size_t maxpgsz = pgsz;
3934 	pgcnt_t pages = btop(pgsz);
3935 	size_t ppasize = pages * sizeof (page_t *);
3936 	caddr_t a = lpgaddr;
3937 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3938 	struct vpage *vpage = (svd->vpage != NULL) ?
3939 	    &svd->vpage[seg_page(seg, a)] : NULL;
3940 	page_t **ppa;
3941 	uint_t	ppa_szc;
3942 	faultcode_t err;
3943 	int ierr;
3944 	uint_t protchk, prot, vpprot;
3945 	int i;
3946 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3947 	anon_sync_obj_t cookie;
3948 
3949 	ASSERT(szc != 0);
3950 	ASSERT(amp != NULL);
3951 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3952 	ASSERT(!(svd->flags & MAP_NORESERVE));
3953 	ASSERT(type != F_SOFTUNLOCK);
3954 	ASSERT(segtype == MAP_PRIVATE);
3955 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3956 
3957 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3958 
3959 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
3960 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
3961 
3962 	if (svd->flags & MAP_TEXT) {
3963 		hat_flag |= HAT_LOAD_TEXT;
3964 	}
3965 
3966 	if (svd->pageprot) {
3967 		switch (rw) {
3968 		case S_READ:
3969 			protchk = PROT_READ;
3970 			break;
3971 		case S_WRITE:
3972 			protchk = PROT_WRITE;
3973 			break;
3974 		case S_EXEC:
3975 			protchk = PROT_EXEC;
3976 			break;
3977 		case S_OTHER:
3978 		default:
3979 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3980 			break;
3981 		}
3982 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
3983 	} else {
3984 		prot = svd->prot;
3985 		/* caller has already done segment level protection check. */
3986 	}
3987 
3988 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3989 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3990 	for (;;) {
3991 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
3992 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3993 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
3994 				ASSERT(vpage != NULL);
3995 				prot = VPP_PROT(vpage);
3996 				ASSERT(sameprot(seg, a, maxpgsz));
3997 				if ((prot & protchk) == 0) {
3998 					err = FC_PROT;
3999 					goto error;
4000 				}
4001 			}
4002 			if (type == F_SOFTLOCK) {
4003 				mutex_enter(&freemem_lock);
4004 				if (availrmem < tune.t_minarmem + pages) {
4005 					mutex_exit(&freemem_lock);
4006 					err = FC_MAKE_ERR(ENOMEM);
4007 					goto error;
4008 				} else {
4009 					availrmem -= pages;
4010 					segvn_pages_locked += pages;
4011 					svd->softlockcnt += pages;
4012 				}
4013 				mutex_exit(&freemem_lock);
4014 			}
4015 			anon_array_enter(amp, aindx, &cookie);
4016 			ppa_szc = (uint_t)-1;
4017 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4018 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4019 				segvn_anypgsz, svd->cred);
4020 			if (ierr != 0) {
4021 				anon_array_exit(&cookie);
4022 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4023 				if (type == F_SOFTLOCK) {
4024 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4025 					mutex_enter(&freemem_lock);
4026 					availrmem += pages;
4027 					segvn_pages_locked -= pages;
4028 					svd->softlockcnt -= pages;
4029 					mutex_exit(&freemem_lock);
4030 				}
4031 				if (ierr > 0) {
4032 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4033 					err = FC_MAKE_ERR(ierr);
4034 					goto error;
4035 				}
4036 				break;
4037 			}
4038 
4039 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4040 
4041 			/*
4042 			 * Handle pages that have been marked for migration
4043 			 */
4044 			if (lgrp_optimizations())
4045 				page_migrate(seg, a, ppa, pages);
4046 
4047 			hat_memload_array(hat, a, pgsz, ppa,
4048 			    prot & vpprot, hat_flag);
4049 
4050 			if (hat_flag & HAT_LOAD_LOCK) {
4051 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4052 			} else {
4053 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4054 				for (i = 0; i < pages; i++)
4055 					page_unlock(ppa[i]);
4056 			}
4057 			if (vpage != NULL)
4058 				vpage += pages;
4059 
4060 			anon_array_exit(&cookie);
4061 		}
4062 		if (a == lpgeaddr)
4063 			break;
4064 		ASSERT(a < lpgeaddr);
4065 		/*
4066 		 * ierr == -1 means we failed to allocate a large page.
4067 		 * so do a size down operation.
4068 		 *
4069 		 * ierr == -2 means some other process that privately shares
4070 		 * pages with this process has allocated a larger page and we
4071 		 * need to retry with larger pages. So do a size up
4072 		 * operation. This relies on the fact that large pages are
4073 		 * never partially shared i.e. if we share any constituent
4074 		 * page of a large page with another process we must share the
4075 		 * entire large page. Note this cannot happen for SOFTLOCK
4076 		 * case, unless current address (a) is at the beginning of the
4077 		 * next page size boundary because the other process couldn't
4078 		 * have relocated locked pages.
4079 		 */
4080 		ASSERT(ierr == -1 || ierr == -2);
4081 		if (segvn_anypgsz) {
4082 			ASSERT(ierr == -2 || szc != 0);
4083 			ASSERT(ierr == -1 || szc < seg->s_szc);
4084 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4085 		} else {
4086 			/*
4087 			 * For non COW faults and segvn_anypgsz == 0
4088 			 * we need to be careful not to loop forever
4089 			 * if existing page is found with szc other
4090 			 * than 0 or seg->s_szc. This could be due
4091 			 * to page relocations on behalf of DR or
4092 			 * more likely large page creation. For this
4093 			 * case simply re-size to existing page's szc
4094 			 * if returned by anon_map_getpages().
4095 			 */
4096 			if (ppa_szc == (uint_t)-1) {
4097 				szc = (ierr == -1) ? 0 : seg->s_szc;
4098 			} else {
4099 				ASSERT(ppa_szc <= seg->s_szc);
4100 				ASSERT(ierr == -2 || ppa_szc < szc);
4101 				ASSERT(ierr == -1 || ppa_szc > szc);
4102 				szc = ppa_szc;
4103 			}
4104 		}
4105 
4106 		pgsz = page_get_pagesize(szc);
4107 		pages = btop(pgsz);
4108 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4109 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4110 		if (type == F_SOFTLOCK) {
4111 			/*
4112 			 * For softlocks we cannot reduce the fault area
4113 			 * (calculated based on the largest page size for this
4114 			 * segment) for size down and a is already next
4115 			 * page size aligned as assertted above for size
4116 			 * ups. Therefore just continue in case of softlock.
4117 			 */
4118 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4119 			continue; /* keep lint happy */
4120 		} else if (ierr == -2) {
4121 
4122 			/*
4123 			 * Size up case. Note lpgaddr may only be needed for
4124 			 * softlock case so we don't adjust it here.
4125 			 */
4126 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4127 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4128 			ASSERT(a >= lpgaddr);
4129 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4130 			aindx = svd->anon_index + seg_page(seg, a);
4131 			vpage = (svd->vpage != NULL) ?
4132 			    &svd->vpage[seg_page(seg, a)] : NULL;
4133 		} else {
4134 			/*
4135 			 * Size down case. Note lpgaddr may only be needed for
4136 			 * softlock case so we don't adjust it here.
4137 			 */
4138 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4139 			ASSERT(IS_P2ALIGNED(a, pgsz));
4140 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4141 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4142 			ASSERT(a < lpgeaddr);
4143 			if (a < addr) {
4144 				/*
4145 				 * The beginning of the large page region can
4146 				 * be pulled to the right to make a smaller
4147 				 * region. We haven't yet faulted a single
4148 				 * page.
4149 				 */
4150 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4151 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4152 				ASSERT(a >= lpgaddr);
4153 				aindx = svd->anon_index + seg_page(seg, a);
4154 				vpage = (svd->vpage != NULL) ?
4155 				    &svd->vpage[seg_page(seg, a)] : NULL;
4156 			}
4157 		}
4158 	}
4159 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4160 	ANON_LOCK_EXIT(&amp->a_rwlock);
4161 	kmem_free(ppa, ppasize);
4162 	return (0);
4163 error:
4164 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4165 	ANON_LOCK_EXIT(&amp->a_rwlock);
4166 	kmem_free(ppa, ppasize);
4167 	if (type == F_SOFTLOCK && a > lpgaddr) {
4168 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4169 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4170 	}
4171 	return (err);
4172 }
4173 
4174 int fltadvice = 1;	/* set to free behind pages for sequential access */
4175 
4176 /*
4177  * This routine is called via a machine specific fault handling routine.
4178  * It is also called by software routines wishing to lock or unlock
4179  * a range of addresses.
4180  *
4181  * Here is the basic algorithm:
4182  *	If unlocking
4183  *		Call segvn_softunlock
4184  *		Return
4185  *	endif
4186  *	Checking and set up work
4187  *	If we will need some non-anonymous pages
4188  *		Call VOP_GETPAGE over the range of non-anonymous pages
4189  *	endif
4190  *	Loop over all addresses requested
4191  *		Call segvn_faultpage passing in page list
4192  *		    to load up translations and handle anonymous pages
4193  *	endloop
4194  *	Load up translation to any additional pages in page list not
4195  *	    already handled that fit into this segment
4196  */
4197 static faultcode_t
4198 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4199     enum fault_type type, enum seg_rw rw)
4200 {
4201 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4202 	page_t **plp, **ppp, *pp;
4203 	u_offset_t off;
4204 	caddr_t a;
4205 	struct vpage *vpage;
4206 	uint_t vpprot, prot;
4207 	int err;
4208 	page_t *pl[PVN_GETPAGE_NUM + 1];
4209 	size_t plsz, pl_alloc_sz;
4210 	size_t page;
4211 	ulong_t anon_index;
4212 	struct anon_map *amp;
4213 	int dogetpage = 0;
4214 	caddr_t	lpgaddr, lpgeaddr;
4215 	size_t pgsz;
4216 	anon_sync_obj_t cookie;
4217 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4218 
4219 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4220 
4221 	/*
4222 	 * First handle the easy stuff
4223 	 */
4224 	if (type == F_SOFTUNLOCK) {
4225 		if (rw == S_READ_NOCOW) {
4226 			rw = S_READ;
4227 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4228 		}
4229 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4230 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4231 		    page_get_pagesize(seg->s_szc);
4232 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4233 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4234 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4235 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4236 		return (0);
4237 	}
4238 
4239 top:
4240 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4241 
4242 	/*
4243 	 * If we have the same protections for the entire segment,
4244 	 * insure that the access being attempted is legitimate.
4245 	 */
4246 
4247 	if (svd->pageprot == 0) {
4248 		uint_t protchk;
4249 
4250 		switch (rw) {
4251 		case S_READ:
4252 		case S_READ_NOCOW:
4253 			protchk = PROT_READ;
4254 			break;
4255 		case S_WRITE:
4256 			protchk = PROT_WRITE;
4257 			break;
4258 		case S_EXEC:
4259 			protchk = PROT_EXEC;
4260 			break;
4261 		case S_OTHER:
4262 		default:
4263 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4264 			break;
4265 		}
4266 
4267 		if ((svd->prot & protchk) == 0) {
4268 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4269 			return (FC_PROT);	/* illegal access type */
4270 		}
4271 	}
4272 
4273 	/*
4274 	 * We can't allow the long term use of softlocks for vmpss segments,
4275 	 * because in some file truncation cases we should be able to demote
4276 	 * the segment, which requires that there are no softlocks.  The
4277 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
4278 	 * segment is S_READ_NOCOW, where the caller holds the address space
4279 	 * locked as writer and calls softunlock before dropping the as lock.
4280 	 * S_READ_NOCOW is used by /proc to read memory from another user.
4281 	 *
4282 	 * Another deadlock between SOFTLOCK and file truncation can happen
4283 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
4284 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
4285 	 * can cause a deadlock because the first set of page_t's remain
4286 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
4287 	 * SOFTLOCK if they have a length greater than the segment's
4288 	 * page size.
4289 	 *
4290 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
4291 	 * the access type is S_READ_NOCOW and the fault length is less than
4292 	 * or equal to the segment's page size. While this is quite restrictive,
4293 	 * it should be the most common case of SOFTLOCK against a vmpss
4294 	 * segment.
4295 	 *
4296 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
4297 	 * caller makes sure no COW will be caused by another thread for a
4298 	 * softlocked page.
4299 	 */
4300 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
4301 		int demote = 0;
4302 
4303 		if (rw != S_READ_NOCOW) {
4304 			demote = 1;
4305 		}
4306 		if (!demote && len > PAGESIZE) {
4307 			pgsz = page_get_pagesize(seg->s_szc);
4308 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
4309 			    lpgeaddr);
4310 			if (lpgeaddr - lpgaddr > pgsz) {
4311 				demote = 1;
4312 			}
4313 		}
4314 
4315 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4316 
4317 		if (demote) {
4318 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4319 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4320 			if (seg->s_szc != 0) {
4321 				segvn_vmpss_clrszc_cnt++;
4322 				ASSERT(svd->softlockcnt == 0);
4323 				err = segvn_clrszc(seg);
4324 				if (err) {
4325 					segvn_vmpss_clrszc_err++;
4326 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4327 					return (FC_MAKE_ERR(err));
4328 				}
4329 			}
4330 			ASSERT(seg->s_szc == 0);
4331 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4332 			goto top;
4333 		}
4334 	}
4335 
4336 	/*
4337 	 * Check to see if we need to allocate an anon_map structure.
4338 	 */
4339 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
4340 		/*
4341 		 * Drop the "read" lock on the segment and acquire
4342 		 * the "write" version since we have to allocate the
4343 		 * anon_map.
4344 		 */
4345 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4346 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4347 
4348 		if (svd->amp == NULL) {
4349 			svd->amp = anonmap_alloc(seg->s_size, 0);
4350 			svd->amp->a_szc = seg->s_szc;
4351 		}
4352 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4353 
4354 		/*
4355 		 * Start all over again since segment protections
4356 		 * may have changed after we dropped the "read" lock.
4357 		 */
4358 		goto top;
4359 	}
4360 
4361 	/*
4362 	 * S_READ_NOCOW vs S_READ distinction was
4363 	 * only needed for the code above. After
4364 	 * that we treat it as S_READ.
4365 	 */
4366 	if (rw == S_READ_NOCOW) {
4367 		ASSERT(type == F_SOFTLOCK);
4368 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4369 		rw = S_READ;
4370 	}
4371 
4372 	amp = svd->amp;
4373 
4374 	/*
4375 	 * MADV_SEQUENTIAL work is ignored for large page segments.
4376 	 */
4377 	if (seg->s_szc != 0) {
4378 		pgsz = page_get_pagesize(seg->s_szc);
4379 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4380 		/*
4381 		 * We may need to do relocations so purge seg_pcache to allow
4382 		 * pages to be locked exclusively.
4383 		 */
4384 		if (svd->softlockcnt != 0)
4385 			segvn_purge(seg);
4386 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4387 		if (svd->vp == NULL) {
4388 			ASSERT(svd->type == MAP_PRIVATE);
4389 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
4390 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
4391 		} else {
4392 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
4393 				lpgeaddr, type, rw, addr, addr + len, brkcow);
4394 			if (err == IE_RETRY) {
4395 				ASSERT(seg->s_szc == 0);
4396 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
4397 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4398 				goto top;
4399 			}
4400 		}
4401 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4402 		return (err);
4403 	}
4404 
4405 	page = seg_page(seg, addr);
4406 	if (amp != NULL) {
4407 		anon_index = svd->anon_index + page;
4408 
4409 		if ((type == F_PROT) && (rw == S_READ) &&
4410 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
4411 			size_t index = anon_index;
4412 			struct anon *ap;
4413 
4414 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4415 			/*
4416 			 * The fast path could apply to S_WRITE also, except
4417 			 * that the protection fault could be caused by lazy
4418 			 * tlb flush when ro->rw. In this case, the pte is
4419 			 * RW already. But RO in the other cpu's tlb causes
4420 			 * the fault. Since hat_chgprot won't do anything if
4421 			 * pte doesn't change, we may end up faulting
4422 			 * indefinitely until the RO tlb entry gets replaced.
4423 			 */
4424 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
4425 				anon_array_enter(amp, index, &cookie);
4426 				ap = anon_get_ptr(amp->ahp, index);
4427 				anon_array_exit(&cookie);
4428 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
4429 					ANON_LOCK_EXIT(&amp->a_rwlock);
4430 					goto slow;
4431 				}
4432 			}
4433 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
4434 			ANON_LOCK_EXIT(&amp->a_rwlock);
4435 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4436 			return (0);
4437 		}
4438 	}
4439 slow:
4440 
4441 	if (svd->vpage == NULL)
4442 		vpage = NULL;
4443 	else
4444 		vpage = &svd->vpage[page];
4445 
4446 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
4447 
4448 	/*
4449 	 * If MADV_SEQUENTIAL has been set for the particular page we
4450 	 * are faulting on, free behind all pages in the segment and put
4451 	 * them on the free list.
4452 	 */
4453 	if ((page != 0) && fltadvice) {	/* not if first page in segment */
4454 		struct vpage *vpp;
4455 		ulong_t fanon_index;
4456 		size_t fpage;
4457 		u_offset_t pgoff, fpgoff;
4458 		struct vnode *fvp;
4459 		struct anon *fap = NULL;
4460 
4461 		if (svd->advice == MADV_SEQUENTIAL ||
4462 		    (svd->pageadvice &&
4463 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
4464 			pgoff = off - PAGESIZE;
4465 			fpage = page - 1;
4466 			if (vpage != NULL)
4467 				vpp = &svd->vpage[fpage];
4468 			if (amp != NULL)
4469 				fanon_index = svd->anon_index + fpage;
4470 
4471 			while (pgoff > svd->offset) {
4472 				if (svd->advice != MADV_SEQUENTIAL &&
4473 				    (!svd->pageadvice || (vpage &&
4474 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
4475 					break;
4476 
4477 				/*
4478 				 * If this is an anon page, we must find the
4479 				 * correct <vp, offset> for it
4480 				 */
4481 				fap = NULL;
4482 				if (amp != NULL) {
4483 					ANON_LOCK_ENTER(&amp->a_rwlock,
4484 						RW_READER);
4485 					anon_array_enter(amp, fanon_index,
4486 						&cookie);
4487 					fap = anon_get_ptr(amp->ahp,
4488 					    fanon_index);
4489 					if (fap != NULL) {
4490 						swap_xlate(fap, &fvp, &fpgoff);
4491 					} else {
4492 						fpgoff = pgoff;
4493 						fvp = svd->vp;
4494 					}
4495 					anon_array_exit(&cookie);
4496 					ANON_LOCK_EXIT(&amp->a_rwlock);
4497 				} else {
4498 					fpgoff = pgoff;
4499 					fvp = svd->vp;
4500 				}
4501 				if (fvp == NULL)
4502 					break;	/* XXX */
4503 				/*
4504 				 * Skip pages that are free or have an
4505 				 * "exclusive" lock.
4506 				 */
4507 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
4508 				if (pp == NULL)
4509 					break;
4510 				/*
4511 				 * We don't need the page_struct_lock to test
4512 				 * as this is only advisory; even if we
4513 				 * acquire it someone might race in and lock
4514 				 * the page after we unlock and before the
4515 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
4516 				 */
4517 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
4518 					/*
4519 					 * Hold the vnode before releasing
4520 					 * the page lock to prevent it from
4521 					 * being freed and re-used by some
4522 					 * other thread.
4523 					 */
4524 					VN_HOLD(fvp);
4525 					page_unlock(pp);
4526 					/*
4527 					 * We should build a page list
4528 					 * to kluster putpages XXX
4529 					 */
4530 					(void) VOP_PUTPAGE(fvp,
4531 					    (offset_t)fpgoff, PAGESIZE,
4532 					    (B_DONTNEED|B_FREE|B_ASYNC),
4533 					    svd->cred);
4534 					VN_RELE(fvp);
4535 				} else {
4536 					/*
4537 					 * XXX - Should the loop terminate if
4538 					 * the page is `locked'?
4539 					 */
4540 					page_unlock(pp);
4541 				}
4542 				--vpp;
4543 				--fanon_index;
4544 				pgoff -= PAGESIZE;
4545 			}
4546 		}
4547 	}
4548 
4549 	plp = pl;
4550 	*plp = NULL;
4551 	pl_alloc_sz = 0;
4552 
4553 	/*
4554 	 * See if we need to call VOP_GETPAGE for
4555 	 * *any* of the range being faulted on.
4556 	 * We can skip all of this work if there
4557 	 * was no original vnode.
4558 	 */
4559 	if (svd->vp != NULL) {
4560 		u_offset_t vp_off;
4561 		size_t vp_len;
4562 		struct anon *ap;
4563 		vnode_t *vp;
4564 
4565 		vp_off = off;
4566 		vp_len = len;
4567 
4568 		if (amp == NULL)
4569 			dogetpage = 1;
4570 		else {
4571 			/*
4572 			 * Only acquire reader lock to prevent amp->ahp
4573 			 * from being changed.  It's ok to miss pages,
4574 			 * hence we don't do anon_array_enter
4575 			 */
4576 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4577 			ap = anon_get_ptr(amp->ahp, anon_index);
4578 
4579 			if (len <= PAGESIZE)
4580 				/* inline non_anon() */
4581 				dogetpage = (ap == NULL);
4582 			else
4583 				dogetpage = non_anon(amp->ahp, anon_index,
4584 				    &vp_off, &vp_len);
4585 			ANON_LOCK_EXIT(&amp->a_rwlock);
4586 		}
4587 
4588 		if (dogetpage) {
4589 			enum seg_rw arw;
4590 			struct as *as = seg->s_as;
4591 
4592 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
4593 				/*
4594 				 * Page list won't fit in local array,
4595 				 * allocate one of the needed size.
4596 				 */
4597 				pl_alloc_sz =
4598 				    (btop(len) + 1) * sizeof (page_t *);
4599 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
4600 				plp[0] = NULL;
4601 				plsz = len;
4602 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
4603 			    rw == S_OTHER ||
4604 			    (((size_t)(addr + PAGESIZE) <
4605 			    (size_t)(seg->s_base + seg->s_size)) &&
4606 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
4607 				/*
4608 				 * Ask VOP_GETPAGE to return the exact number
4609 				 * of pages if
4610 				 * (a) this is a COW fault, or
4611 				 * (b) this is a software fault, or
4612 				 * (c) next page is already mapped.
4613 				 */
4614 				plsz = len;
4615 			} else {
4616 				/*
4617 				 * Ask VOP_GETPAGE to return adjacent pages
4618 				 * within the segment.
4619 				 */
4620 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
4621 					((seg->s_base + seg->s_size) - addr));
4622 				ASSERT((addr + plsz) <=
4623 				    (seg->s_base + seg->s_size));
4624 			}
4625 
4626 			/*
4627 			 * Need to get some non-anonymous pages.
4628 			 * We need to make only one call to GETPAGE to do
4629 			 * this to prevent certain deadlocking conditions
4630 			 * when we are doing locking.  In this case
4631 			 * non_anon() should have picked up the smallest
4632 			 * range which includes all the non-anonymous
4633 			 * pages in the requested range.  We have to
4634 			 * be careful regarding which rw flag to pass in
4635 			 * because on a private mapping, the underlying
4636 			 * object is never allowed to be written.
4637 			 */
4638 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
4639 				arw = S_READ;
4640 			} else {
4641 				arw = rw;
4642 			}
4643 			vp = svd->vp;
4644 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4645 				"segvn_getpage:seg %p addr %p vp %p",
4646 				seg, addr, vp);
4647 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
4648 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
4649 			    svd->cred);
4650 			if (err) {
4651 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4652 				segvn_pagelist_rele(plp);
4653 				if (pl_alloc_sz)
4654 					kmem_free(plp, pl_alloc_sz);
4655 				return (FC_MAKE_ERR(err));
4656 			}
4657 			if (svd->type == MAP_PRIVATE)
4658 				vpprot &= ~PROT_WRITE;
4659 		}
4660 	}
4661 
4662 	/*
4663 	 * N.B. at this time the plp array has all the needed non-anon
4664 	 * pages in addition to (possibly) having some adjacent pages.
4665 	 */
4666 
4667 	/*
4668 	 * Always acquire the anon_array_lock to prevent
4669 	 * 2 threads from allocating separate anon slots for
4670 	 * the same "addr".
4671 	 *
4672 	 * If this is a copy-on-write fault and we don't already
4673 	 * have the anon_array_lock, acquire it to prevent the
4674 	 * fault routine from handling multiple copy-on-write faults
4675 	 * on the same "addr" in the same address space.
4676 	 *
4677 	 * Only one thread should deal with the fault since after
4678 	 * it is handled, the other threads can acquire a translation
4679 	 * to the newly created private page.  This prevents two or
4680 	 * more threads from creating different private pages for the
4681 	 * same fault.
4682 	 *
4683 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
4684 	 * to prevent deadlock between this thread and another thread
4685 	 * which has soft-locked this page and wants to acquire serial_lock.
4686 	 * ( bug 4026339 )
4687 	 *
4688 	 * The fix for bug 4026339 becomes unnecessary when using the
4689 	 * locking scheme with per amp rwlock and a global set of hash
4690 	 * lock, anon_array_lock.  If we steal a vnode page when low
4691 	 * on memory and upgrad the page lock through page_rename,
4692 	 * then the page is PAGE_HANDLED, nothing needs to be done
4693 	 * for this page after returning from segvn_faultpage.
4694 	 *
4695 	 * But really, the page lock should be downgraded after
4696 	 * the stolen page is page_rename'd.
4697 	 */
4698 
4699 	if (amp != NULL)
4700 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4701 
4702 	/*
4703 	 * Ok, now loop over the address range and handle faults
4704 	 */
4705 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
4706 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
4707 		    type, rw, brkcow);
4708 		if (err) {
4709 			if (amp != NULL)
4710 				ANON_LOCK_EXIT(&amp->a_rwlock);
4711 			if (type == F_SOFTLOCK && a > addr)
4712 				segvn_softunlock(seg, addr, (a - addr),
4713 				    S_OTHER);
4714 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4715 			segvn_pagelist_rele(plp);
4716 			if (pl_alloc_sz)
4717 				kmem_free(plp, pl_alloc_sz);
4718 			return (err);
4719 		}
4720 		if (vpage) {
4721 			vpage++;
4722 		} else if (svd->vpage) {
4723 			page = seg_page(seg, addr);
4724 			vpage = &svd->vpage[++page];
4725 		}
4726 	}
4727 
4728 	/* Didn't get pages from the underlying fs so we're done */
4729 	if (!dogetpage)
4730 		goto done;
4731 
4732 	/*
4733 	 * Now handle any other pages in the list returned.
4734 	 * If the page can be used, load up the translations now.
4735 	 * Note that the for loop will only be entered if "plp"
4736 	 * is pointing to a non-NULL page pointer which means that
4737 	 * VOP_GETPAGE() was called and vpprot has been initialized.
4738 	 */
4739 	if (svd->pageprot == 0)
4740 		prot = svd->prot & vpprot;
4741 
4742 
4743 	/*
4744 	 * Large Files: diff should be unsigned value because we started
4745 	 * supporting > 2GB segment sizes from 2.5.1 and when a
4746 	 * large file of size > 2GB gets mapped to address space
4747 	 * the diff value can be > 2GB.
4748 	 */
4749 
4750 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
4751 		size_t diff;
4752 		struct anon *ap;
4753 		int anon_index;
4754 		anon_sync_obj_t cookie;
4755 		int hat_flag = HAT_LOAD_ADV;
4756 
4757 		if (svd->flags & MAP_TEXT) {
4758 			hat_flag |= HAT_LOAD_TEXT;
4759 		}
4760 
4761 		if (pp == PAGE_HANDLED)
4762 			continue;
4763 
4764 		if (pp->p_offset >=  svd->offset &&
4765 			(pp->p_offset < svd->offset + seg->s_size)) {
4766 
4767 			diff = pp->p_offset - svd->offset;
4768 
4769 			/*
4770 			 * Large Files: Following is the assertion
4771 			 * validating the above cast.
4772 			 */
4773 			ASSERT(svd->vp == pp->p_vnode);
4774 
4775 			page = btop(diff);
4776 			if (svd->pageprot)
4777 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
4778 
4779 			/*
4780 			 * Prevent other threads in the address space from
4781 			 * creating private pages (i.e., allocating anon slots)
4782 			 * while we are in the process of loading translations
4783 			 * to additional pages returned by the underlying
4784 			 * object.
4785 			 */
4786 			if (amp != NULL) {
4787 				anon_index = svd->anon_index + page;
4788 				anon_array_enter(amp, anon_index, &cookie);
4789 				ap = anon_get_ptr(amp->ahp, anon_index);
4790 			}
4791 			if ((amp == NULL) || (ap == NULL)) {
4792 				if (IS_VMODSORT(pp->p_vnode) ||
4793 				    enable_mbit_wa) {
4794 					if (rw == S_WRITE)
4795 						hat_setmod(pp);
4796 					else if (rw != S_OTHER &&
4797 					    !hat_ismod(pp))
4798 						prot &= ~PROT_WRITE;
4799 				}
4800 				/*
4801 				 * Skip mapping read ahead pages marked
4802 				 * for migration, so they will get migrated
4803 				 * properly on fault
4804 				 */
4805 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
4806 					hat_memload(hat, seg->s_base + diff,
4807 						pp, prot, hat_flag);
4808 				}
4809 			}
4810 			if (amp != NULL)
4811 				anon_array_exit(&cookie);
4812 		}
4813 		page_unlock(pp);
4814 	}
4815 done:
4816 	if (amp != NULL)
4817 		ANON_LOCK_EXIT(&amp->a_rwlock);
4818 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4819 	if (pl_alloc_sz)
4820 		kmem_free(plp, pl_alloc_sz);
4821 	return (0);
4822 }
4823 
4824 /*
4825  * This routine is used to start I/O on pages asynchronously.  XXX it will
4826  * only create PAGESIZE pages. At fault time they will be relocated into
4827  * larger pages.
4828  */
4829 static faultcode_t
4830 segvn_faulta(struct seg *seg, caddr_t addr)
4831 {
4832 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4833 	int err;
4834 	struct anon_map *amp;
4835 	vnode_t *vp;
4836 
4837 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4838 
4839 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4840 	if ((amp = svd->amp) != NULL) {
4841 		struct anon *ap;
4842 
4843 		/*
4844 		 * Reader lock to prevent amp->ahp from being changed.
4845 		 * This is advisory, it's ok to miss a page, so
4846 		 * we don't do anon_array_enter lock.
4847 		 */
4848 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4849 		if ((ap = anon_get_ptr(amp->ahp,
4850 			svd->anon_index + seg_page(seg, addr))) != NULL) {
4851 
4852 			err = anon_getpage(&ap, NULL, NULL,
4853 			    0, seg, addr, S_READ, svd->cred);
4854 
4855 			ANON_LOCK_EXIT(&amp->a_rwlock);
4856 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4857 			if (err)
4858 				return (FC_MAKE_ERR(err));
4859 			return (0);
4860 		}
4861 		ANON_LOCK_EXIT(&amp->a_rwlock);
4862 	}
4863 
4864 	if (svd->vp == NULL) {
4865 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4866 		return (0);			/* zfod page - do nothing now */
4867 	}
4868 
4869 	vp = svd->vp;
4870 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4871 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
4872 	err = VOP_GETPAGE(vp,
4873 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
4874 	    PAGESIZE, NULL, NULL, 0, seg, addr,
4875 	    S_OTHER, svd->cred);
4876 
4877 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4878 	if (err)
4879 		return (FC_MAKE_ERR(err));
4880 	return (0);
4881 }
4882 
4883 static int
4884 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
4885 {
4886 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4887 	struct vpage *svp, *evp;
4888 	struct vnode *vp;
4889 	size_t pgsz;
4890 	pgcnt_t pgcnt;
4891 	anon_sync_obj_t cookie;
4892 
4893 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4894 
4895 	if ((svd->maxprot & prot) != prot)
4896 		return (EACCES);			/* violated maxprot */
4897 
4898 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4899 
4900 	/* return if prot is the same */
4901 	if (!svd->pageprot && svd->prot == prot) {
4902 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4903 		return (0);
4904 	}
4905 
4906 	/*
4907 	 * Since we change protections we first have to flush the cache.
4908 	 * This makes sure all the pagelock calls have to recheck
4909 	 * protections.
4910 	 */
4911 	if (svd->softlockcnt > 0) {
4912 		/*
4913 		 * Since we do have the segvn writers lock nobody can fill
4914 		 * the cache with entries belonging to this seg during
4915 		 * the purge. The flush either succeeds or we still have
4916 		 * pending I/Os.
4917 		 */
4918 		segvn_purge(seg);
4919 		if (svd->softlockcnt > 0) {
4920 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4921 			return (EAGAIN);
4922 		}
4923 	}
4924 
4925 	if (seg->s_szc != 0) {
4926 		int err;
4927 		pgsz = page_get_pagesize(seg->s_szc);
4928 		pgcnt = pgsz >> PAGESHIFT;
4929 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
4930 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
4931 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4932 			ASSERT(seg->s_base != addr || seg->s_size != len);
4933 			/*
4934 			 * If we are holding the as lock as a reader then
4935 			 * we need to return IE_RETRY and let the as
4936 			 * layer drop and re-aquire the lock as a writer.
4937 			 */
4938 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
4939 				return (IE_RETRY);
4940 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
4941 			err = segvn_demote_range(seg, addr, len, SDR_END);
4942 			if (err == 0)
4943 				return (IE_RETRY);
4944 			if (err == ENOMEM)
4945 				return (IE_NOMEM);
4946 			return (err);
4947 		}
4948 	}
4949 
4950 
4951 	/*
4952 	 * If it's a private mapping and we're making it writable
4953 	 * and no swap space has been reserved, have to reserve
4954 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
4955 	 * and we're removing write permission on the entire segment and
4956 	 * we haven't modified any pages, we can release the swap space.
4957 	 */
4958 	if (svd->type == MAP_PRIVATE) {
4959 		if (prot & PROT_WRITE) {
4960 			size_t sz;
4961 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
4962 				if (anon_resv(seg->s_size) == 0) {
4963 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4964 					return (IE_NOMEM);
4965 				}
4966 				sz = svd->swresv = seg->s_size;
4967 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
4968 					"anon proc:%p %lu %u",
4969 					seg, sz, 1);
4970 			}
4971 		} else {
4972 			/*
4973 			 * Swap space is released only if this segment
4974 			 * does not map anonymous memory, since read faults
4975 			 * on such segments still need an anon slot to read
4976 			 * in the data.
4977 			 */
4978 			if (svd->swresv != 0 && svd->vp != NULL &&
4979 			    svd->amp == NULL && addr == seg->s_base &&
4980 			    len == seg->s_size && svd->pageprot == 0) {
4981 				anon_unresv(svd->swresv);
4982 				svd->swresv = 0;
4983 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
4984 					"anon proc:%p %lu %u",
4985 					seg, 0, 0);
4986 			}
4987 		}
4988 	}
4989 
4990 	if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
4991 		if (svd->prot == prot) {
4992 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4993 			return (0);			/* all done */
4994 		}
4995 		svd->prot = (uchar_t)prot;
4996 	} else {
4997 		struct anon *ap = NULL;
4998 		page_t *pp;
4999 		u_offset_t offset, off;
5000 		struct anon_map *amp;
5001 		ulong_t anon_idx = 0;
5002 
5003 		/*
5004 		 * A vpage structure exists or else the change does not
5005 		 * involve the entire segment.  Establish a vpage structure
5006 		 * if none is there.  Then, for each page in the range,
5007 		 * adjust its individual permissions.  Note that write-
5008 		 * enabling a MAP_PRIVATE page can affect the claims for
5009 		 * locked down memory.  Overcommitting memory terminates
5010 		 * the operation.
5011 		 */
5012 		segvn_vpage(seg);
5013 		if ((amp = svd->amp) != NULL) {
5014 			anon_idx = svd->anon_index + seg_page(seg, addr);
5015 			ASSERT(seg->s_szc == 0 ||
5016 			    IS_P2ALIGNED(anon_idx, pgcnt));
5017 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5018 		}
5019 
5020 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5021 		evp = &svd->vpage[seg_page(seg, addr + len)];
5022 
5023 		/*
5024 		 * See Statement at the beginning of segvn_lockop regarding
5025 		 * the way cowcnts and lckcnts are handled.
5026 		 */
5027 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5028 
5029 			ASSERT(seg->s_szc == 0 ||
5030 			    (svd->vp != NULL || svd->type == MAP_PRIVATE));
5031 
5032 			if (seg->s_szc != 0 && svd->type == MAP_PRIVATE) {
5033 				if (amp != NULL) {
5034 					anon_array_enter(amp, anon_idx,
5035 					    &cookie);
5036 				}
5037 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5038 				    !segvn_claim_pages(seg, svp, offset,
5039 					anon_idx, prot)) {
5040 					if (amp != NULL) {
5041 						anon_array_exit(&cookie);
5042 					}
5043 					break;
5044 				}
5045 				if (amp != NULL) {
5046 					anon_array_exit(&cookie);
5047 				}
5048 				anon_idx++;
5049 			} else {
5050 				if (amp != NULL) {
5051 					anon_array_enter(amp, anon_idx,
5052 						&cookie);
5053 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5054 				}
5055 
5056 				if (VPP_ISPPLOCK(svp) &&
5057 				    (VPP_PROT(svp) != prot) &&
5058 				    (svd->type == MAP_PRIVATE)) {
5059 
5060 					if (amp == NULL || ap == NULL) {
5061 						vp = svd->vp;
5062 						off = offset;
5063 					} else
5064 						swap_xlate(ap, &vp, &off);
5065 					if (amp != NULL)
5066 						anon_array_exit(&cookie);
5067 
5068 					if ((pp = page_lookup(vp, off,
5069 					    SE_SHARED)) == NULL) {
5070 						panic("segvn_setprot: no page");
5071 						/*NOTREACHED*/
5072 					}
5073 					ASSERT(seg->s_szc == 0);
5074 					if ((VPP_PROT(svp) ^ prot) &
5075 					    PROT_WRITE) {
5076 						if (prot & PROT_WRITE) {
5077 						    if (!page_addclaim(pp)) {
5078 							page_unlock(pp);
5079 							break;
5080 						    }
5081 						} else {
5082 						    if (!page_subclaim(pp)) {
5083 							page_unlock(pp);
5084 							break;
5085 						    }
5086 						}
5087 					}
5088 					page_unlock(pp);
5089 				} else if (amp != NULL)
5090 					anon_array_exit(&cookie);
5091 			}
5092 			VPP_SETPROT(svp, prot);
5093 			offset += PAGESIZE;
5094 		}
5095 		if (amp != NULL)
5096 			ANON_LOCK_EXIT(&amp->a_rwlock);
5097 
5098 		/*
5099 		 * Did we terminate prematurely?  If so, simply unload
5100 		 * the translations to the things we've updated so far.
5101 		 */
5102 		if (svp != evp) {
5103 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5104 			    PAGESIZE;
5105 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5106 			if (len != 0)
5107 				hat_unload(seg->s_as->a_hat, addr,
5108 				    len, HAT_UNLOAD);
5109 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5110 			return (IE_NOMEM);
5111 		}
5112 	}
5113 
5114 	if ((prot & PROT_WRITE) != 0 || (prot & ~PROT_USER) == PROT_NONE) {
5115 		/*
5116 		 * Either private or shared data with write access (in
5117 		 * which case we need to throw out all former translations
5118 		 * so that we get the right translations set up on fault
5119 		 * and we don't allow write access to any copy-on-write pages
5120 		 * that might be around or to prevent write access to pages
5121 		 * representing holes in a file), or we don't have permission
5122 		 * to access the memory at all (in which case we have to
5123 		 * unload any current translations that might exist).
5124 		 */
5125 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5126 	} else {
5127 		/*
5128 		 * A shared mapping or a private mapping in which write
5129 		 * protection is going to be denied - just change all the
5130 		 * protections over the range of addresses in question.
5131 		 * segvn does not support any other attributes other
5132 		 * than prot so we can use hat_chgattr.
5133 		 */
5134 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5135 	}
5136 
5137 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5138 
5139 	return (0);
5140 }
5141 
5142 /*
5143  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5144  * to determine if the seg is capable of mapping the requested szc.
5145  */
5146 static int
5147 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5148 {
5149 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5150 	struct segvn_data *nsvd;
5151 	struct anon_map *amp = svd->amp;
5152 	struct seg *nseg;
5153 	caddr_t eaddr = addr + len, a;
5154 	size_t pgsz = page_get_pagesize(szc);
5155 	int err;
5156 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5157 	extern struct vnode kvp;
5158 
5159 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5160 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5161 
5162 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5163 		return (0);
5164 	}
5165 
5166 	/*
5167 	 * addr should always be pgsz aligned but eaddr may be misaligned if
5168 	 * it's at the end of the segment.
5169 	 *
5170 	 * XXX we should assert this condition since as_setpagesize() logic
5171 	 * guarantees it.
5172 	 */
5173 	if (!IS_P2ALIGNED(addr, pgsz) ||
5174 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
5175 		eaddr != seg->s_base + seg->s_size)) {
5176 
5177 		segvn_setpgsz_align_err++;
5178 		return (EINVAL);
5179 	}
5180 
5181 	if ((svd->vp == NULL && svd->type == MAP_SHARED) ||
5182 	    (svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
5183 	    szc > segvn_maxpgszc) {
5184 		return (EINVAL);
5185 	}
5186 
5187 	/* paranoid check */
5188 	if (svd->vp != NULL &&
5189 	    (IS_SWAPFSVP(svd->vp) || svd->vp == &kvp)) {
5190 		    return (EINVAL);
5191 	}
5192 
5193 	if (seg->s_szc == 0 && svd->vp != NULL &&
5194 	    map_addr_vacalign_check(addr, off)) {
5195 		return (EINVAL);
5196 	}
5197 
5198 	/*
5199 	 * Check that protections are the same within new page
5200 	 * size boundaries.
5201 	 */
5202 	if (svd->pageprot) {
5203 		for (a = addr; a < eaddr; a += pgsz) {
5204 			if ((a + pgsz) > eaddr) {
5205 				if (!sameprot(seg, a, eaddr - a)) {
5206 					return (EINVAL);
5207 				}
5208 			} else {
5209 				if (!sameprot(seg, a, pgsz)) {
5210 					return (EINVAL);
5211 				}
5212 			}
5213 		}
5214 	}
5215 
5216 	/*
5217 	 * Since we are changing page size we first have to flush
5218 	 * the cache. This makes sure all the pagelock calls have
5219 	 * to recheck protections.
5220 	 */
5221 	if (svd->softlockcnt > 0) {
5222 		/*
5223 		 * Since we do have the segvn writers lock nobody can fill
5224 		 * the cache with entries belonging to this seg during
5225 		 * the purge. The flush either succeeds or we still have
5226 		 * pending I/Os.
5227 		 */
5228 		segvn_purge(seg);
5229 		if (svd->softlockcnt > 0) {
5230 			return (EAGAIN);
5231 		}
5232 	}
5233 
5234 	/*
5235 	 * Operation for sub range of existing segment.
5236 	 */
5237 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
5238 		if (szc < seg->s_szc) {
5239 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
5240 			err = segvn_demote_range(seg, addr, len, SDR_RANGE);
5241 			if (err == 0) {
5242 				return (IE_RETRY);
5243 			}
5244 			if (err == ENOMEM) {
5245 				return (IE_NOMEM);
5246 			}
5247 			return (err);
5248 		}
5249 		if (addr != seg->s_base) {
5250 			nseg = segvn_split_seg(seg, addr);
5251 			if (eaddr != (nseg->s_base + nseg->s_size)) {
5252 				/* eaddr is szc aligned */
5253 				(void) segvn_split_seg(nseg, eaddr);
5254 			}
5255 			return (IE_RETRY);
5256 		}
5257 		if (eaddr != (seg->s_base + seg->s_size)) {
5258 			/* eaddr is szc aligned */
5259 			(void) segvn_split_seg(seg, eaddr);
5260 		}
5261 		return (IE_RETRY);
5262 	}
5263 
5264 	/*
5265 	 * Break any low level sharing and reset seg->s_szc to 0.
5266 	 */
5267 	if ((err = segvn_clrszc(seg)) != 0) {
5268 		if (err == ENOMEM) {
5269 			err = IE_NOMEM;
5270 		}
5271 		return (err);
5272 	}
5273 	ASSERT(seg->s_szc == 0);
5274 
5275 	/*
5276 	 * If the end of the current segment is not pgsz aligned
5277 	 * then attempt to concatenate with the next segment.
5278 	 */
5279 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
5280 		nseg = AS_SEGNEXT(seg->s_as, seg);
5281 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
5282 			return (ENOMEM);
5283 		}
5284 		if (nseg->s_ops != &segvn_ops) {
5285 			return (EINVAL);
5286 		}
5287 		nsvd = (struct segvn_data *)nseg->s_data;
5288 		if (nsvd->softlockcnt > 0) {
5289 			segvn_purge(nseg);
5290 			if (nsvd->softlockcnt > 0) {
5291 				return (EAGAIN);
5292 			}
5293 		}
5294 		err = segvn_clrszc(nseg);
5295 		if (err == ENOMEM) {
5296 			err = IE_NOMEM;
5297 		}
5298 		if (err != 0) {
5299 			return (err);
5300 		}
5301 		err = segvn_concat(seg, nseg, 1);
5302 		if (err == -1) {
5303 			return (EINVAL);
5304 		}
5305 		if (err == -2) {
5306 			return (IE_NOMEM);
5307 		}
5308 		return (IE_RETRY);
5309 	}
5310 
5311 	/*
5312 	 * May need to re-align anon array to
5313 	 * new szc.
5314 	 */
5315 	if (amp != NULL) {
5316 		pgcnt_t pgcnt = pgsz >> PAGESHIFT;
5317 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
5318 			struct anon_hdr *nahp;
5319 
5320 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5321 			ASSERT(amp->refcnt == 1);
5322 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
5323 			if (nahp == NULL) {
5324 				ANON_LOCK_EXIT(&amp->a_rwlock);
5325 				return (IE_NOMEM);
5326 			}
5327 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
5328 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
5329 				anon_release(nahp, btop(amp->size));
5330 				ANON_LOCK_EXIT(&amp->a_rwlock);
5331 				return (IE_NOMEM);
5332 			}
5333 			anon_release(amp->ahp, btop(amp->size));
5334 			amp->ahp = nahp;
5335 			svd->anon_index = 0;
5336 			ANON_LOCK_EXIT(&amp->a_rwlock);
5337 		}
5338 	}
5339 	if (svd->vp != NULL && szc != 0) {
5340 		struct vattr va;
5341 		u_offset_t eoffpage = svd->offset;
5342 		va.va_mask = AT_SIZE;
5343 		eoffpage += seg->s_size;
5344 		eoffpage = btopr(eoffpage);
5345 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
5346 			segvn_setpgsz_getattr_err++;
5347 			return (EINVAL);
5348 		}
5349 		if (btopr(va.va_size) < eoffpage) {
5350 			segvn_setpgsz_eof_err++;
5351 			return (EINVAL);
5352 		}
5353 		if (amp != NULL) {
5354 			/*
5355 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
5356 			 * don't take anon map lock here to avoid holding it
5357 			 * across VOP_GETPAGE() calls that may call back into
5358 			 * segvn for klsutering checks. We don't really need
5359 			 * anon map lock here since it's a private segment and
5360 			 * we hold as level lock as writers.
5361 			 */
5362 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
5363 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
5364 			    seg->s_size, szc, svd->prot, svd->vpage,
5365 			    svd->cred)) != 0) {
5366 				return (EINVAL);
5367 			}
5368 		}
5369 		segvn_setvnode_mpss(svd->vp);
5370 	}
5371 
5372 	if (amp != NULL) {
5373 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5374 		amp->a_szc = szc;
5375 		ANON_LOCK_EXIT(&amp->a_rwlock);
5376 	}
5377 
5378 	seg->s_szc = szc;
5379 
5380 	return (0);
5381 }
5382 
5383 static int
5384 segvn_clrszc(struct seg *seg)
5385 {
5386 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5387 	struct anon_map *amp = svd->amp;
5388 	size_t pgsz;
5389 	pgcnt_t pages;
5390 	int err = 0;
5391 	caddr_t a = seg->s_base;
5392 	caddr_t ea = a + seg->s_size;
5393 	ulong_t an_idx = svd->anon_index;
5394 	vnode_t *vp = svd->vp;
5395 	struct vpage *vpage = svd->vpage;
5396 	page_t *anon_pl[1 + 1], *pp;
5397 	struct anon *ap, *oldap;
5398 	uint_t prot = svd->prot, vpprot;
5399 
5400 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5401 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
5402 	ASSERT(svd->type == MAP_PRIVATE ||
5403 	    (vp != NULL && svd->amp == NULL));
5404 
5405 	if (vp == NULL && amp == NULL) {
5406 		seg->s_szc = 0;
5407 		return (0);
5408 	}
5409 
5410 	/*
5411 	 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
5412 	 * unload argument is 0 when we are freeing the segment
5413 	 * and unload was already done.
5414 	 */
5415 	hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
5416 	    HAT_UNLOAD_UNMAP);
5417 
5418 	if (amp == NULL) {
5419 		seg->s_szc = 0;
5420 		return (0);
5421 	}
5422 
5423 	pgsz = page_get_pagesize(seg->s_szc);
5424 	pages = btop(pgsz);
5425 
5426 	/*
5427 	 * XXX anon rwlock is not really needed because this is a
5428 	 * private segment and we are writers.
5429 	 */
5430 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5431 
5432 	for (; a < ea; a += pgsz, an_idx += pages) {
5433 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
5434 			if (svd->pageprot != 0) {
5435 				ASSERT(vpage != NULL);
5436 				prot = VPP_PROT(vpage);
5437 				ASSERT(sameprot(seg, a, pgsz));
5438 			}
5439 			if (seg->s_szc != 0) {
5440 				ASSERT(vp == NULL || anon_pages(amp->ahp,
5441 				    an_idx, pages) == pages);
5442 				if ((err = anon_map_demotepages(amp, an_idx,
5443 				    seg, a, prot, vpage, svd->cred)) != 0) {
5444 					goto out;
5445 				}
5446 			} else {
5447 				if (oldap->an_refcnt == 1) {
5448 					continue;
5449 				}
5450 				if ((err = anon_getpage(&oldap, &vpprot,
5451 				    anon_pl, PAGESIZE, seg, a, S_READ,
5452 				    svd->cred))) {
5453 					goto out;
5454 				}
5455 				if ((pp = anon_private(&ap, seg, a, prot,
5456 				    anon_pl[0], 0, svd->cred)) == NULL) {
5457 					err = ENOMEM;
5458 					goto out;
5459 				}
5460 				anon_decref(oldap);
5461 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
5462 				    ANON_SLEEP);
5463 				page_unlock(pp);
5464 			}
5465 		}
5466 		vpage = (vpage == NULL) ? NULL : vpage + pages;
5467 	}
5468 
5469 	amp->a_szc = 0;
5470 	seg->s_szc = 0;
5471 out:
5472 	ANON_LOCK_EXIT(&amp->a_rwlock);
5473 	return (err);
5474 }
5475 
5476 static int
5477 segvn_claim_pages(
5478 	struct seg *seg,
5479 	struct vpage *svp,
5480 	u_offset_t off,
5481 	ulong_t anon_idx,
5482 	uint_t prot)
5483 {
5484 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
5485 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
5486 	page_t	**ppa;
5487 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5488 	struct anon_map *amp = svd->amp;
5489 	struct vpage *evp = svp + pgcnt;
5490 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
5491 	    + seg->s_base;
5492 	struct anon *ap;
5493 	struct vnode *vp = svd->vp;
5494 	page_t *pp;
5495 	pgcnt_t pg_idx, i;
5496 	int err = 0;
5497 	anoff_t	aoff;
5498 	int anon = (amp != NULL) ? 1 : 0;
5499 
5500 	ASSERT(svd->type == MAP_PRIVATE);
5501 	ASSERT(svd->vpage != NULL);
5502 	ASSERT(seg->s_szc != 0);
5503 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5504 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
5505 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
5506 
5507 	if (VPP_PROT(svp) == prot)
5508 		return (1);
5509 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
5510 		return (1);
5511 
5512 	ppa = kmem_alloc(ppasize, KM_SLEEP);
5513 	if (anon && vp != NULL) {
5514 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
5515 			anon = 0;
5516 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
5517 		}
5518 		ASSERT(!anon ||
5519 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
5520 	}
5521 
5522 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
5523 		if (!VPP_ISPPLOCK(svp))
5524 			continue;
5525 		if (anon) {
5526 			ap = anon_get_ptr(amp->ahp, anon_idx);
5527 			if (ap == NULL) {
5528 				panic("segvn_claim_pages: no anon slot");
5529 			}
5530 			swap_xlate(ap, &vp, &aoff);
5531 			off = (u_offset_t)aoff;
5532 		}
5533 		ASSERT(vp != NULL);
5534 		if ((pp = page_lookup(vp,
5535 		    (u_offset_t)off, SE_SHARED)) == NULL) {
5536 			panic("segvn_claim_pages: no page");
5537 		}
5538 		ppa[pg_idx++] = pp;
5539 		off += PAGESIZE;
5540 	}
5541 
5542 	if (ppa[0] == NULL) {
5543 		kmem_free(ppa, ppasize);
5544 		return (1);
5545 	}
5546 
5547 	ASSERT(pg_idx <= pgcnt);
5548 	ppa[pg_idx] = NULL;
5549 
5550 	if (prot & PROT_WRITE)
5551 		err = page_addclaim_pages(ppa);
5552 	else
5553 		err = page_subclaim_pages(ppa);
5554 
5555 	for (i = 0; i < pg_idx; i++) {
5556 		ASSERT(ppa[i] != NULL);
5557 		page_unlock(ppa[i]);
5558 	}
5559 
5560 	kmem_free(ppa, ppasize);
5561 	return (err);
5562 }
5563 
5564 /*
5565  * Returns right (upper address) segment if split occured.
5566  * If the address is equal to the beginning or end of its segment it returns
5567  * the current segment.
5568  */
5569 static struct seg *
5570 segvn_split_seg(struct seg *seg, caddr_t addr)
5571 {
5572 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5573 	struct seg *nseg;
5574 	size_t nsize;
5575 	struct segvn_data *nsvd;
5576 
5577 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5578 	ASSERT(svd->type == MAP_PRIVATE || svd->amp == NULL);
5579 	ASSERT(addr >= seg->s_base);
5580 	ASSERT(addr <= seg->s_base + seg->s_size);
5581 
5582 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
5583 		return (seg);
5584 
5585 	nsize = seg->s_base + seg->s_size - addr;
5586 	seg->s_size = addr - seg->s_base;
5587 	nseg = seg_alloc(seg->s_as, addr, nsize);
5588 	ASSERT(nseg != NULL);
5589 	nseg->s_ops = seg->s_ops;
5590 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
5591 	nseg->s_data = (void *)nsvd;
5592 	nseg->s_szc = seg->s_szc;
5593 	*nsvd = *svd;
5594 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
5595 
5596 	if (nsvd->vp != NULL) {
5597 		VN_HOLD(nsvd->vp);
5598 		nsvd->offset = svd->offset +
5599 		    (uintptr_t)(nseg->s_base - seg->s_base);
5600 		if (nsvd->type == MAP_SHARED)
5601 			lgrp_shm_policy_init(NULL, nsvd->vp);
5602 	} else {
5603 		/*
5604 		 * The offset for an anonymous segment has no signifigance in
5605 		 * terms of an offset into a file. If we were to use the above
5606 		 * calculation instead, the structures read out of
5607 		 * /proc/<pid>/xmap would be more difficult to decipher since
5608 		 * it would be unclear whether two seemingly contiguous
5609 		 * prxmap_t structures represented different segments or a
5610 		 * single segment that had been split up into multiple prxmap_t
5611 		 * structures (e.g. if some part of the segment had not yet
5612 		 * been faulted in).
5613 		 */
5614 		nsvd->offset = 0;
5615 	}
5616 
5617 	ASSERT(svd->softlockcnt == 0);
5618 	crhold(svd->cred);
5619 
5620 	if (svd->vpage != NULL) {
5621 		size_t bytes = vpgtob(seg_pages(seg));
5622 		size_t nbytes = vpgtob(seg_pages(nseg));
5623 		struct vpage *ovpage = svd->vpage;
5624 
5625 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
5626 		bcopy(ovpage, svd->vpage, bytes);
5627 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
5628 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
5629 		kmem_free(ovpage, bytes + nbytes);
5630 	}
5631 	if (svd->amp != NULL) {
5632 		struct anon_map *oamp = svd->amp, *namp;
5633 		struct anon_hdr *nahp;
5634 
5635 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
5636 		ASSERT(oamp->refcnt == 1);
5637 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
5638 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
5639 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
5640 
5641 		namp = anonmap_alloc(nseg->s_size, 0);
5642 		namp->a_szc = nseg->s_szc;
5643 		(void) anon_copy_ptr(oamp->ahp,
5644 		    svd->anon_index + btop(seg->s_size),
5645 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
5646 		anon_release(oamp->ahp, btop(oamp->size));
5647 		oamp->ahp = nahp;
5648 		oamp->size = seg->s_size;
5649 		svd->anon_index = 0;
5650 		nsvd->amp = namp;
5651 		nsvd->anon_index = 0;
5652 		ANON_LOCK_EXIT(&oamp->a_rwlock);
5653 	}
5654 
5655 	/*
5656 	 * Split amount of swap reserve
5657 	 */
5658 	if (svd->swresv) {
5659 		/*
5660 		 * For MAP_NORESERVE, only allocate swap reserve for pages
5661 		 * being used.  Other segments get enough to cover whole
5662 		 * segment.
5663 		 */
5664 		if (svd->flags & MAP_NORESERVE) {
5665 			size_t	oswresv;
5666 
5667 			ASSERT(svd->amp);
5668 			oswresv = svd->swresv;
5669 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
5670 				svd->anon_index, btop(seg->s_size)));
5671 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
5672 				nsvd->anon_index, btop(nseg->s_size)));
5673 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
5674 		} else {
5675 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
5676 			svd->swresv = seg->s_size;
5677 			nsvd->swresv = nseg->s_size;
5678 		}
5679 	}
5680 
5681 	return (nseg);
5682 }
5683 
5684 
5685 /*
5686  * called on memory operations (unmap, setprot, setpagesize) for a subset
5687  * of a large page segment to either demote the memory range (SDR_RANGE)
5688  * or the ends (SDR_END) by addr/len.
5689  *
5690  * returns 0 on success. returns errno, including ENOMEM, on failure.
5691  */
5692 static int
5693 segvn_demote_range(struct seg *seg, caddr_t addr, size_t len, int flag)
5694 {
5695 	caddr_t eaddr = addr + len;
5696 	caddr_t lpgaddr, lpgeaddr;
5697 	struct seg *nseg;
5698 	struct seg *badseg1 = NULL;
5699 	struct seg *badseg2 = NULL;
5700 	size_t pgsz;
5701 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5702 	int err;
5703 
5704 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5705 	ASSERT(seg->s_szc != 0);
5706 	pgsz = page_get_pagesize(seg->s_szc);
5707 	ASSERT(seg->s_base != addr || seg->s_size != len);
5708 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5709 	ASSERT(svd->softlockcnt == 0);
5710 	ASSERT(svd->type == MAP_PRIVATE ||
5711 	    (svd->vp != NULL && svd->amp == NULL));
5712 
5713 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5714 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
5715 	if (flag == SDR_RANGE) {
5716 		/* demote entire range */
5717 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
5718 		(void) segvn_split_seg(nseg, lpgeaddr);
5719 		ASSERT(badseg1->s_base == lpgaddr);
5720 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
5721 	} else if (addr != lpgaddr) {
5722 		ASSERT(flag == SDR_END);
5723 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
5724 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
5725 		    eaddr < lpgaddr + 2 * pgsz) {
5726 			(void) segvn_split_seg(nseg, lpgeaddr);
5727 			ASSERT(badseg1->s_base == lpgaddr);
5728 			ASSERT(badseg1->s_size == 2 * pgsz);
5729 		} else {
5730 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
5731 			ASSERT(badseg1->s_base == lpgaddr);
5732 			ASSERT(badseg1->s_size == pgsz);
5733 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
5734 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
5735 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
5736 				badseg2 = nseg;
5737 				(void) segvn_split_seg(nseg, lpgeaddr);
5738 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
5739 				ASSERT(badseg2->s_size == pgsz);
5740 			}
5741 		}
5742 	} else {
5743 		ASSERT(flag == SDR_END);
5744 		ASSERT(eaddr < lpgeaddr);
5745 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
5746 		(void) segvn_split_seg(nseg, lpgeaddr);
5747 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
5748 		ASSERT(badseg1->s_size == pgsz);
5749 	}
5750 
5751 	ASSERT(badseg1 != NULL);
5752 	ASSERT(badseg1->s_szc != 0);
5753 	ASSERT(page_get_pagesize(badseg1->s_szc) == pgsz);
5754 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
5755 	    badseg1->s_size == 2 * pgsz);
5756 	if (err = segvn_clrszc(badseg1)) {
5757 		return (err);
5758 	}
5759 	ASSERT(badseg1->s_szc == 0);
5760 
5761 	if (badseg2 == NULL)
5762 		return (0);
5763 	ASSERT(badseg2->s_szc != 0);
5764 	ASSERT(page_get_pagesize(badseg2->s_szc) == pgsz);
5765 	ASSERT(badseg2->s_size == pgsz);
5766 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
5767 	if (err = segvn_clrszc(badseg2)) {
5768 		return (err);
5769 	}
5770 	ASSERT(badseg2->s_szc == 0);
5771 	return (0);
5772 }
5773 
5774 static int
5775 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5776 {
5777 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5778 	struct vpage *vp, *evp;
5779 
5780 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5781 
5782 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5783 	/*
5784 	 * If segment protection can be used, simply check against them.
5785 	 */
5786 	if (svd->pageprot == 0) {
5787 		int err;
5788 
5789 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
5790 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5791 		return (err);
5792 	}
5793 
5794 	/*
5795 	 * Have to check down to the vpage level.
5796 	 */
5797 	evp = &svd->vpage[seg_page(seg, addr + len)];
5798 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
5799 		if ((VPP_PROT(vp) & prot) != prot) {
5800 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5801 			return (EACCES);
5802 		}
5803 	}
5804 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5805 	return (0);
5806 }
5807 
5808 static int
5809 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
5810 {
5811 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5812 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
5813 
5814 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5815 
5816 	if (pgno != 0) {
5817 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5818 		if (svd->pageprot == 0) {
5819 			do
5820 				protv[--pgno] = svd->prot;
5821 			while (pgno != 0);
5822 		} else {
5823 			size_t pgoff = seg_page(seg, addr);
5824 
5825 			do {
5826 				pgno--;
5827 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
5828 			} while (pgno != 0);
5829 		}
5830 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5831 	}
5832 	return (0);
5833 }
5834 
5835 static u_offset_t
5836 segvn_getoffset(struct seg *seg, caddr_t addr)
5837 {
5838 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5839 
5840 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5841 
5842 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
5843 }
5844 
5845 /*ARGSUSED*/
5846 static int
5847 segvn_gettype(struct seg *seg, caddr_t addr)
5848 {
5849 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5850 
5851 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5852 
5853 	return (svd->type | (svd->flags & MAP_NORESERVE));
5854 }
5855 
5856 /*ARGSUSED*/
5857 static int
5858 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
5859 {
5860 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5861 
5862 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5863 
5864 	*vpp = svd->vp;
5865 	return (0);
5866 }
5867 
5868 /*
5869  * Check to see if it makes sense to do kluster/read ahead to
5870  * addr + delta relative to the mapping at addr.  We assume here
5871  * that delta is a signed PAGESIZE'd multiple (which can be negative).
5872  *
5873  * For segvn, we currently "approve" of the action if we are
5874  * still in the segment and it maps from the same vp/off,
5875  * or if the advice stored in segvn_data or vpages allows it.
5876  * Currently, klustering is not allowed only if MADV_RANDOM is set.
5877  */
5878 static int
5879 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
5880 {
5881 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5882 	struct anon *oap, *ap;
5883 	ssize_t pd;
5884 	size_t page;
5885 	struct vnode *vp1, *vp2;
5886 	u_offset_t off1, off2;
5887 	struct anon_map *amp;
5888 
5889 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5890 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5891 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5892 
5893 	if (addr + delta < seg->s_base ||
5894 	    addr + delta >= (seg->s_base + seg->s_size))
5895 		return (-1);		/* exceeded segment bounds */
5896 
5897 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
5898 	page = seg_page(seg, addr);
5899 
5900 	/*
5901 	 * Check to see if either of the pages addr or addr + delta
5902 	 * have advice set that prevents klustering (if MADV_RANDOM advice
5903 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
5904 	 * is negative).
5905 	 */
5906 	if (svd->advice == MADV_RANDOM ||
5907 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
5908 		return (-1);
5909 	else if (svd->pageadvice && svd->vpage) {
5910 		struct vpage *bvpp, *evpp;
5911 
5912 		bvpp = &svd->vpage[page];
5913 		evpp = &svd->vpage[page + pd];
5914 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
5915 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
5916 			return (-1);
5917 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
5918 		    VPP_ADVICE(evpp) == MADV_RANDOM)
5919 			return (-1);
5920 	}
5921 
5922 	if (svd->type == MAP_SHARED)
5923 		return (0);		/* shared mapping - all ok */
5924 
5925 	if ((amp = svd->amp) == NULL)
5926 		return (0);		/* off original vnode */
5927 
5928 	page += svd->anon_index;
5929 
5930 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5931 
5932 	oap = anon_get_ptr(amp->ahp, page);
5933 	ap = anon_get_ptr(amp->ahp, page + pd);
5934 
5935 	ANON_LOCK_EXIT(&amp->a_rwlock);
5936 
5937 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
5938 		return (-1);		/* one with and one without an anon */
5939 	}
5940 
5941 	if (oap == NULL) {		/* implies that ap == NULL */
5942 		return (0);		/* off original vnode */
5943 	}
5944 
5945 	/*
5946 	 * Now we know we have two anon pointers - check to
5947 	 * see if they happen to be properly allocated.
5948 	 */
5949 
5950 	/*
5951 	 * XXX We cheat here and don't lock the anon slots. We can't because
5952 	 * we may have been called from the anon layer which might already
5953 	 * have locked them. We are holding a refcnt on the slots so they
5954 	 * can't disappear. The worst that will happen is we'll get the wrong
5955 	 * names (vp, off) for the slots and make a poor klustering decision.
5956 	 */
5957 	swap_xlate(ap, &vp1, &off1);
5958 	swap_xlate(oap, &vp2, &off2);
5959 
5960 
5961 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
5962 		return (-1);
5963 	return (0);
5964 }
5965 
5966 /*
5967  * Swap the pages of seg out to secondary storage, returning the
5968  * number of bytes of storage freed.
5969  *
5970  * The basic idea is first to unload all translations and then to call
5971  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
5972  * swap device.  Pages to which other segments have mappings will remain
5973  * mapped and won't be swapped.  Our caller (as_swapout) has already
5974  * performed the unloading step.
5975  *
5976  * The value returned is intended to correlate well with the process's
5977  * memory requirements.  However, there are some caveats:
5978  * 1)	When given a shared segment as argument, this routine will
5979  *	only succeed in swapping out pages for the last sharer of the
5980  *	segment.  (Previous callers will only have decremented mapping
5981  *	reference counts.)
5982  * 2)	We assume that the hat layer maintains a large enough translation
5983  *	cache to capture process reference patterns.
5984  */
5985 static size_t
5986 segvn_swapout(struct seg *seg)
5987 {
5988 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5989 	struct anon_map *amp;
5990 	pgcnt_t pgcnt = 0;
5991 	pgcnt_t npages;
5992 	pgcnt_t page;
5993 	ulong_t anon_index;
5994 
5995 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5996 
5997 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5998 	/*
5999 	 * Find pages unmapped by our caller and force them
6000 	 * out to the virtual swap device.
6001 	 */
6002 	if ((amp = svd->amp) != NULL)
6003 		anon_index = svd->anon_index;
6004 	npages = seg->s_size >> PAGESHIFT;
6005 	for (page = 0; page < npages; page++) {
6006 		page_t *pp;
6007 		struct anon *ap;
6008 		struct vnode *vp;
6009 		u_offset_t off;
6010 		anon_sync_obj_t cookie;
6011 
6012 		/*
6013 		 * Obtain <vp, off> pair for the page, then look it up.
6014 		 *
6015 		 * Note that this code is willing to consider regular
6016 		 * pages as well as anon pages.  Is this appropriate here?
6017 		 */
6018 		ap = NULL;
6019 		if (amp != NULL) {
6020 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6021 			if (anon_array_try_enter(amp, anon_index + page,
6022 						&cookie)) {
6023 				ANON_LOCK_EXIT(&amp->a_rwlock);
6024 				continue;
6025 			}
6026 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6027 			if (ap != NULL) {
6028 				swap_xlate(ap, &vp, &off);
6029 			} else {
6030 				vp = svd->vp;
6031 				off = svd->offset + ptob(page);
6032 			}
6033 			anon_array_exit(&cookie);
6034 			ANON_LOCK_EXIT(&amp->a_rwlock);
6035 		} else {
6036 			vp = svd->vp;
6037 			off = svd->offset + ptob(page);
6038 		}
6039 		if (vp == NULL) {		/* untouched zfod page */
6040 			ASSERT(ap == NULL);
6041 			continue;
6042 		}
6043 
6044 		pp = page_lookup_nowait(vp, off, SE_SHARED);
6045 		if (pp == NULL)
6046 			continue;
6047 
6048 
6049 		/*
6050 		 * Examine the page to see whether it can be tossed out,
6051 		 * keeping track of how many we've found.
6052 		 */
6053 		if (!page_tryupgrade(pp)) {
6054 			/*
6055 			 * If the page has an i/o lock and no mappings,
6056 			 * it's very likely that the page is being
6057 			 * written out as a result of klustering.
6058 			 * Assume this is so and take credit for it here.
6059 			 */
6060 			if (!page_io_trylock(pp)) {
6061 				if (!hat_page_is_mapped(pp))
6062 					pgcnt++;
6063 			} else {
6064 				page_io_unlock(pp);
6065 			}
6066 			page_unlock(pp);
6067 			continue;
6068 		}
6069 		ASSERT(!page_iolock_assert(pp));
6070 
6071 
6072 		/*
6073 		 * Skip if page is locked or has mappings.
6074 		 * We don't need the page_struct_lock to look at lckcnt
6075 		 * and cowcnt because the page is exclusive locked.
6076 		 */
6077 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
6078 		    hat_page_is_mapped(pp)) {
6079 			page_unlock(pp);
6080 			continue;
6081 		}
6082 
6083 		/*
6084 		 * dispose skips large pages so try to demote first.
6085 		 */
6086 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
6087 			page_unlock(pp);
6088 			/*
6089 			 * XXX should skip the remaining page_t's of this
6090 			 * large page.
6091 			 */
6092 			continue;
6093 		}
6094 
6095 		ASSERT(pp->p_szc == 0);
6096 
6097 		/*
6098 		 * No longer mapped -- we can toss it out.  How
6099 		 * we do so depends on whether or not it's dirty.
6100 		 */
6101 		if (hat_ismod(pp) && pp->p_vnode) {
6102 			/*
6103 			 * We must clean the page before it can be
6104 			 * freed.  Setting B_FREE will cause pvn_done
6105 			 * to free the page when the i/o completes.
6106 			 * XXX:	This also causes it to be accounted
6107 			 *	as a pageout instead of a swap: need
6108 			 *	B_SWAPOUT bit to use instead of B_FREE.
6109 			 *
6110 			 * Hold the vnode before releasing the page lock
6111 			 * to prevent it from being freed and re-used by
6112 			 * some other thread.
6113 			 */
6114 			VN_HOLD(vp);
6115 			page_unlock(pp);
6116 
6117 			/*
6118 			 * Queue all i/o requests for the pageout thread
6119 			 * to avoid saturating the pageout devices.
6120 			 */
6121 			if (!queue_io_request(vp, off))
6122 				VN_RELE(vp);
6123 		} else {
6124 			/*
6125 			 * The page was clean, free it.
6126 			 *
6127 			 * XXX:	Can we ever encounter modified pages
6128 			 *	with no associated vnode here?
6129 			 */
6130 			ASSERT(pp->p_vnode != NULL);
6131 			/*LINTED: constant in conditional context*/
6132 			VN_DISPOSE(pp, B_FREE, 0, kcred);
6133 		}
6134 
6135 		/*
6136 		 * Credit now even if i/o is in progress.
6137 		 */
6138 		pgcnt++;
6139 	}
6140 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6141 
6142 	/*
6143 	 * Wakeup pageout to initiate i/o on all queued requests.
6144 	 */
6145 	cv_signal_pageout();
6146 	return (ptob(pgcnt));
6147 }
6148 
6149 /*
6150  * Synchronize primary storage cache with real object in virtual memory.
6151  *
6152  * XXX - Anonymous pages should not be sync'ed out at all.
6153  */
6154 static int
6155 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
6156 {
6157 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6158 	struct vpage *vpp;
6159 	page_t *pp;
6160 	u_offset_t offset;
6161 	struct vnode *vp;
6162 	u_offset_t off;
6163 	caddr_t eaddr;
6164 	int bflags;
6165 	int err = 0;
6166 	int segtype;
6167 	int pageprot;
6168 	int prot;
6169 	ulong_t anon_index;
6170 	struct anon_map *amp;
6171 	struct anon *ap;
6172 	anon_sync_obj_t cookie;
6173 
6174 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6175 
6176 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6177 
6178 	if (svd->softlockcnt > 0) {
6179 		/*
6180 		 * flush all pages from seg cache
6181 		 * otherwise we may deadlock in swap_putpage
6182 		 * for B_INVAL page (4175402).
6183 		 *
6184 		 * Even if we grab segvn WRITER's lock or segp_slock
6185 		 * here, there might be another thread which could've
6186 		 * successfully performed lookup/insert just before
6187 		 * we acquired the lock here.  So, grabbing either
6188 		 * lock here is of not much use.  Until we devise
6189 		 * a strategy at upper layers to solve the
6190 		 * synchronization issues completely, we expect
6191 		 * applications to handle this appropriately.
6192 		 */
6193 		segvn_purge(seg);
6194 		if (svd->softlockcnt > 0) {
6195 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6196 			return (EAGAIN);
6197 		}
6198 	}
6199 
6200 	vpp = svd->vpage;
6201 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6202 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
6203 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
6204 
6205 	if (attr) {
6206 		pageprot = attr & ~(SHARED|PRIVATE);
6207 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
6208 
6209 		/*
6210 		 * We are done if the segment types don't match
6211 		 * or if we have segment level protections and
6212 		 * they don't match.
6213 		 */
6214 		if (svd->type != segtype) {
6215 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6216 			return (0);
6217 		}
6218 		if (vpp == NULL) {
6219 			if (svd->prot != pageprot) {
6220 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6221 				return (0);
6222 			}
6223 			prot = svd->prot;
6224 		} else
6225 			vpp = &svd->vpage[seg_page(seg, addr)];
6226 
6227 	} else if (svd->vp && svd->amp == NULL &&
6228 	    (flags & MS_INVALIDATE) == 0) {
6229 
6230 		/*
6231 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
6232 		 * is not on, just use one big request.
6233 		 */
6234 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
6235 		    bflags, svd->cred);
6236 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6237 		return (err);
6238 	}
6239 
6240 	if ((amp = svd->amp) != NULL)
6241 		anon_index = svd->anon_index + seg_page(seg, addr);
6242 
6243 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
6244 		ap = NULL;
6245 		if (amp != NULL) {
6246 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6247 			anon_array_enter(amp, anon_index, &cookie);
6248 			ap = anon_get_ptr(amp->ahp, anon_index++);
6249 			if (ap != NULL) {
6250 				swap_xlate(ap, &vp, &off);
6251 			} else {
6252 				vp = svd->vp;
6253 				off = offset;
6254 			}
6255 			anon_array_exit(&cookie);
6256 			ANON_LOCK_EXIT(&amp->a_rwlock);
6257 		} else {
6258 			vp = svd->vp;
6259 			off = offset;
6260 		}
6261 		offset += PAGESIZE;
6262 
6263 		if (vp == NULL)		/* untouched zfod page */
6264 			continue;
6265 
6266 		if (attr) {
6267 			if (vpp) {
6268 				prot = VPP_PROT(vpp);
6269 				vpp++;
6270 			}
6271 			if (prot != pageprot) {
6272 				continue;
6273 			}
6274 		}
6275 
6276 		/*
6277 		 * See if any of these pages are locked --  if so, then we
6278 		 * will have to truncate an invalidate request at the first
6279 		 * locked one. We don't need the page_struct_lock to test
6280 		 * as this is only advisory; even if we acquire it someone
6281 		 * might race in and lock the page after we unlock and before
6282 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
6283 		 */
6284 		if (flags & MS_INVALIDATE) {
6285 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
6286 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
6287 					page_unlock(pp);
6288 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6289 					return (EBUSY);
6290 				}
6291 				if (ap != NULL && pp->p_szc != 0 &&
6292 				    page_tryupgrade(pp)) {
6293 					if (pp->p_lckcnt == 0 &&
6294 					    pp->p_cowcnt == 0) {
6295 						/*
6296 						 * swapfs VN_DISPOSE() won't
6297 						 * invalidate large pages.
6298 						 * Attempt to demote.
6299 						 * XXX can't help it if it
6300 						 * fails. But for swapfs
6301 						 * pages it is no big deal.
6302 						 */
6303 						(void) page_try_demote_pages(
6304 						    pp);
6305 				    }
6306 				}
6307 				page_unlock(pp);
6308 			}
6309 		} else if (svd->type == MAP_SHARED && amp != NULL) {
6310 			/*
6311 			 * Avoid writting out to disk ISM's large pages
6312 			 * because segspt_free_pages() relies on NULL an_pvp
6313 			 * of anon slots of such pages.
6314 			 */
6315 
6316 			ASSERT(svd->vp == NULL);
6317 			/*
6318 			 * swapfs uses page_lookup_nowait if not freeing or
6319 			 * invalidating and skips a page if
6320 			 * page_lookup_nowait returns NULL.
6321 			 */
6322 			pp = page_lookup_nowait(vp, off, SE_SHARED);
6323 			if (pp == NULL) {
6324 				continue;
6325 			}
6326 			if (pp->p_szc != 0) {
6327 				page_unlock(pp);
6328 				continue;
6329 			}
6330 
6331 			/*
6332 			 * Note ISM pages are created large so (vp, off)'s
6333 			 * page cannot suddenly become large after we unlock
6334 			 * pp.
6335 			 */
6336 			page_unlock(pp);
6337 		}
6338 		/*
6339 		 * XXX - Should ultimately try to kluster
6340 		 * calls to VOP_PUTPAGE() for performance.
6341 		 */
6342 		VN_HOLD(vp);
6343 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
6344 		    bflags, svd->cred);
6345 		VN_RELE(vp);
6346 		if (err)
6347 			break;
6348 	}
6349 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6350 	return (err);
6351 }
6352 
6353 /*
6354  * Determine if we have data corresponding to pages in the
6355  * primary storage virtual memory cache (i.e., "in core").
6356  */
6357 static size_t
6358 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
6359 {
6360 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6361 	struct vnode *vp, *avp;
6362 	u_offset_t offset, aoffset;
6363 	size_t p, ep;
6364 	int ret;
6365 	struct vpage *vpp;
6366 	page_t *pp;
6367 	uint_t start;
6368 	struct anon_map *amp;		/* XXX - for locknest */
6369 	struct anon *ap;
6370 	uint_t attr;
6371 	anon_sync_obj_t cookie;
6372 
6373 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6374 
6375 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6376 	if (svd->amp == NULL && svd->vp == NULL) {
6377 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6378 		bzero(vec, btopr(len));
6379 		return (len);	/* no anonymous pages created yet */
6380 	}
6381 
6382 	p = seg_page(seg, addr);
6383 	ep = seg_page(seg, addr + len);
6384 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
6385 
6386 	amp = svd->amp;
6387 	for (; p < ep; p++, addr += PAGESIZE) {
6388 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
6389 		ret = start;
6390 		ap = NULL;
6391 		avp = NULL;
6392 		/* Grab the vnode/offset for the anon slot */
6393 		if (amp != NULL) {
6394 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6395 			anon_array_enter(amp, svd->anon_index + p, &cookie);
6396 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
6397 			if (ap != NULL) {
6398 				swap_xlate(ap, &avp, &aoffset);
6399 			}
6400 			anon_array_exit(&cookie);
6401 			ANON_LOCK_EXIT(&amp->a_rwlock);
6402 		}
6403 		if ((avp != NULL) && page_exists(avp, aoffset)) {
6404 			/* A page exists for the anon slot */
6405 			ret |= SEG_PAGE_INCORE;
6406 
6407 			/*
6408 			 * If page is mapped and writable
6409 			 */
6410 			attr = (uint_t)0;
6411 			if ((hat_getattr(seg->s_as->a_hat, addr,
6412 			    &attr) != -1) && (attr & PROT_WRITE)) {
6413 				ret |= SEG_PAGE_ANON;
6414 			}
6415 			/*
6416 			 * Don't get page_struct lock for lckcnt and cowcnt,
6417 			 * since this is purely advisory.
6418 			 */
6419 			if ((pp = page_lookup_nowait(avp, aoffset,
6420 			    SE_SHARED)) != NULL) {
6421 				if (pp->p_lckcnt)
6422 					ret |= SEG_PAGE_SOFTLOCK;
6423 				if (pp->p_cowcnt)
6424 					ret |= SEG_PAGE_HASCOW;
6425 				page_unlock(pp);
6426 			}
6427 		}
6428 
6429 		/* Gather vnode statistics */
6430 		vp = svd->vp;
6431 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6432 
6433 		if (vp != NULL) {
6434 			/*
6435 			 * Try to obtain a "shared" lock on the page
6436 			 * without blocking.  If this fails, determine
6437 			 * if the page is in memory.
6438 			 */
6439 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
6440 			if ((pp == NULL) && (page_exists(vp, offset))) {
6441 				/* Page is incore, and is named */
6442 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6443 			}
6444 			/*
6445 			 * Don't get page_struct lock for lckcnt and cowcnt,
6446 			 * since this is purely advisory.
6447 			 */
6448 			if (pp != NULL) {
6449 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6450 				if (pp->p_lckcnt)
6451 					ret |= SEG_PAGE_SOFTLOCK;
6452 				if (pp->p_cowcnt)
6453 					ret |= SEG_PAGE_HASCOW;
6454 				page_unlock(pp);
6455 			}
6456 		}
6457 
6458 		/* Gather virtual page information */
6459 		if (vpp) {
6460 			if (VPP_ISPPLOCK(vpp))
6461 				ret |= SEG_PAGE_LOCKED;
6462 			vpp++;
6463 		}
6464 
6465 		*vec++ = (char)ret;
6466 	}
6467 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6468 	return (len);
6469 }
6470 
6471 /*
6472  * Statement for p_cowcnts/p_lckcnts.
6473  *
6474  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
6475  * irrespective of the following factors or anything else:
6476  *
6477  *	(1) anon slots are populated or not
6478  *	(2) cow is broken or not
6479  *	(3) refcnt on ap is 1 or greater than 1
6480  *
6481  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
6482  * and munlock.
6483  *
6484  *
6485  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
6486  *
6487  *	if vpage has PROT_WRITE
6488  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
6489  *	else
6490  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
6491  *
6492  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
6493  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
6494  *
6495  *	We may also break COW if softlocking on read access in the physio case.
6496  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
6497  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
6498  *	vpage doesn't have PROT_WRITE.
6499  *
6500  *
6501  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
6502  *
6503  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
6504  *	increment p_lckcnt by calling page_subclaim() which takes care of
6505  * 	availrmem accounting and p_lckcnt overflow.
6506  *
6507  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
6508  *	increment p_cowcnt by calling page_addclaim() which takes care of
6509  *	availrmem availability and p_cowcnt overflow.
6510  */
6511 
6512 /*
6513  * Lock down (or unlock) pages mapped by this segment.
6514  *
6515  * XXX only creates PAGESIZE pages if anon slots are not initialized.
6516  * At fault time they will be relocated into larger pages.
6517  */
6518 static int
6519 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
6520     int attr, int op, ulong_t *lockmap, size_t pos)
6521 {
6522 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6523 	struct vpage *vpp;
6524 	struct vpage *evp;
6525 	page_t *pp;
6526 	u_offset_t offset;
6527 	u_offset_t off;
6528 	int segtype;
6529 	int pageprot;
6530 	int claim;
6531 	struct vnode *vp;
6532 	ulong_t anon_index;
6533 	struct anon_map *amp;
6534 	struct anon *ap;
6535 	struct vattr va;
6536 	anon_sync_obj_t cookie;
6537 
6538 	/*
6539 	 * Hold write lock on address space because may split or concatenate
6540 	 * segments
6541 	 */
6542 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6543 
6544 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6545 	if (attr) {
6546 		pageprot = attr & ~(SHARED|PRIVATE);
6547 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
6548 
6549 		/*
6550 		 * We are done if the segment types don't match
6551 		 * or if we have segment level protections and
6552 		 * they don't match.
6553 		 */
6554 		if (svd->type != segtype) {
6555 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6556 			return (0);
6557 		}
6558 		if (svd->pageprot == 0 && svd->prot != pageprot) {
6559 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6560 			return (0);
6561 		}
6562 	}
6563 
6564 	/*
6565 	 * If we're locking, then we must create a vpage structure if
6566 	 * none exists.  If we're unlocking, then check to see if there
6567 	 * is a vpage --  if not, then we could not have locked anything.
6568 	 */
6569 
6570 	if ((vpp = svd->vpage) == NULL) {
6571 		if (op == MC_LOCK)
6572 			segvn_vpage(seg);
6573 		else {
6574 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6575 			return (0);
6576 		}
6577 	}
6578 
6579 	/*
6580 	 * The anonymous data vector (i.e., previously
6581 	 * unreferenced mapping to swap space) can be allocated
6582 	 * by lazily testing for its existence.
6583 	 */
6584 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
6585 		svd->amp = anonmap_alloc(seg->s_size, 0);
6586 		svd->amp->a_szc = seg->s_szc;
6587 	}
6588 
6589 	if ((amp = svd->amp) != NULL) {
6590 		anon_index = svd->anon_index + seg_page(seg, addr);
6591 	}
6592 
6593 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6594 	evp = &svd->vpage[seg_page(seg, addr + len)];
6595 
6596 	/*
6597 	 * Loop over all pages in the range.  Process if we're locking and
6598 	 * page has not already been locked in this mapping; or if we're
6599 	 * unlocking and the page has been locked.
6600 	 */
6601 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
6602 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
6603 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
6604 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
6605 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
6606 
6607 			if (amp != NULL)
6608 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6609 			/*
6610 			 * If this isn't a MAP_NORESERVE segment and
6611 			 * we're locking, allocate anon slots if they
6612 			 * don't exist.  The page is brought in later on.
6613 			 */
6614 			if (op == MC_LOCK && svd->vp == NULL &&
6615 			    ((svd->flags & MAP_NORESERVE) == 0) &&
6616 			    amp != NULL &&
6617 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
6618 								== NULL)) {
6619 				anon_array_enter(amp, anon_index, &cookie);
6620 
6621 				if ((ap = anon_get_ptr(amp->ahp,
6622 						anon_index)) == NULL) {
6623 					pp = anon_zero(seg, addr, &ap,
6624 					    svd->cred);
6625 					if (pp == NULL) {
6626 						anon_array_exit(&cookie);
6627 						ANON_LOCK_EXIT(&amp->a_rwlock);
6628 						SEGVN_LOCK_EXIT(seg->s_as,
6629 						    &svd->lock);
6630 						return (ENOMEM);
6631 					}
6632 					ASSERT(anon_get_ptr(amp->ahp,
6633 						anon_index) == NULL);
6634 					(void) anon_set_ptr(amp->ahp,
6635 						anon_index, ap, ANON_SLEEP);
6636 					page_unlock(pp);
6637 				}
6638 				anon_array_exit(&cookie);
6639 			}
6640 
6641 			/*
6642 			 * Get name for page, accounting for
6643 			 * existence of private copy.
6644 			 */
6645 			ap = NULL;
6646 			if (amp != NULL) {
6647 				anon_array_enter(amp, anon_index, &cookie);
6648 				ap = anon_get_ptr(amp->ahp, anon_index);
6649 				if (ap != NULL) {
6650 					swap_xlate(ap, &vp, &off);
6651 				} else {
6652 					if (svd->vp == NULL &&
6653 					    (svd->flags & MAP_NORESERVE)) {
6654 						anon_array_exit(&cookie);
6655 						ANON_LOCK_EXIT(&amp->a_rwlock);
6656 						continue;
6657 					}
6658 					vp = svd->vp;
6659 					off = offset;
6660 				}
6661 				anon_array_exit(&cookie);
6662 				ANON_LOCK_EXIT(&amp->a_rwlock);
6663 			} else {
6664 				vp = svd->vp;
6665 				off = offset;
6666 			}
6667 
6668 			/*
6669 			 * Get page frame.  It's ok if the page is
6670 			 * not available when we're unlocking, as this
6671 			 * may simply mean that a page we locked got
6672 			 * truncated out of existence after we locked it.
6673 			 *
6674 			 * Invoke VOP_GETPAGE() to obtain the page struct
6675 			 * since we may need to read it from disk if its
6676 			 * been paged out.
6677 			 */
6678 			if (op != MC_LOCK)
6679 				pp = page_lookup(vp, off, SE_SHARED);
6680 			else {
6681 				page_t *pl[1 + 1];
6682 				int error;
6683 
6684 				ASSERT(vp != NULL);
6685 
6686 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
6687 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
6688 				    S_OTHER, svd->cred);
6689 
6690 				/*
6691 				 * If the error is EDEADLK then we must bounce
6692 				 * up and drop all vm subsystem locks and then
6693 				 * retry the operation later
6694 				 * This behavior is a temporary measure because
6695 				 * ufs/sds logging is badly designed and will
6696 				 * deadlock if we don't allow this bounce to
6697 				 * happen.  The real solution is to re-design
6698 				 * the logging code to work properly.  See bug
6699 				 * 4125102 for details of the problem.
6700 				 */
6701 				if (error == EDEADLK) {
6702 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6703 					return (error);
6704 				}
6705 				/*
6706 				 * Quit if we fail to fault in the page.  Treat
6707 				 * the failure as an error, unless the addr
6708 				 * is mapped beyond the end of a file.
6709 				 */
6710 				if (error && svd->vp) {
6711 					va.va_mask = AT_SIZE;
6712 					if (VOP_GETATTR(svd->vp, &va, 0,
6713 					    svd->cred) != 0) {
6714 						SEGVN_LOCK_EXIT(seg->s_as,
6715 						    &svd->lock);
6716 						return (EIO);
6717 					}
6718 					if (btopr(va.va_size) >=
6719 					    btopr(off + 1)) {
6720 						SEGVN_LOCK_EXIT(seg->s_as,
6721 						    &svd->lock);
6722 						return (EIO);
6723 					}
6724 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6725 					return (0);
6726 				} else if (error) {
6727 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6728 					return (EIO);
6729 				}
6730 				pp = pl[0];
6731 				ASSERT(pp != NULL);
6732 			}
6733 
6734 			/*
6735 			 * See Statement at the beginning of this routine.
6736 			 *
6737 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
6738 			 * irrespective of following factors:
6739 			 *
6740 			 * (1) anon slots are populated or not
6741 			 * (2) cow is broken or not
6742 			 * (3) refcnt on ap is 1 or greater than 1
6743 			 *
6744 			 * See 4140683 for details
6745 			 */
6746 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
6747 				(svd->type == MAP_PRIVATE));
6748 
6749 			/*
6750 			 * Perform page-level operation appropriate to
6751 			 * operation.  If locking, undo the SOFTLOCK
6752 			 * performed to bring the page into memory
6753 			 * after setting the lock.  If unlocking,
6754 			 * and no page was found, account for the claim
6755 			 * separately.
6756 			 */
6757 			if (op == MC_LOCK) {
6758 				int ret = 1;	/* Assume success */
6759 
6760 				/*
6761 				 * Make sure another thread didn't lock
6762 				 * the page after we released the segment
6763 				 * lock.
6764 				 */
6765 				if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
6766 				    !VPP_ISPPLOCK(vpp)) {
6767 					ret = page_pp_lock(pp, claim, 0);
6768 					if (ret != 0) {
6769 						VPP_SETPPLOCK(vpp);
6770 						if (lockmap != (ulong_t *)NULL)
6771 							BT_SET(lockmap, pos);
6772 					}
6773 				}
6774 				page_unlock(pp);
6775 				if (ret == 0) {
6776 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6777 					return (EAGAIN);
6778 				}
6779 			} else {
6780 				if (pp != NULL) {
6781 					if ((attr == 0 ||
6782 					    VPP_PROT(vpp) == pageprot) &&
6783 					    VPP_ISPPLOCK(vpp))
6784 						page_pp_unlock(pp, claim, 0);
6785 					page_unlock(pp);
6786 				}
6787 				VPP_CLRPPLOCK(vpp);
6788 			}
6789 		}
6790 	}
6791 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6792 	return (0);
6793 }
6794 
6795 /*
6796  * Set advice from user for specified pages
6797  * There are 5 types of advice:
6798  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
6799  *	MADV_RANDOM	- Random page references
6800  *				do not allow readahead or 'klustering'
6801  *	MADV_SEQUENTIAL	- Sequential page references
6802  *				Pages previous to the one currently being
6803  *				accessed (determined by fault) are 'not needed'
6804  *				and are freed immediately
6805  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
6806  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
6807  *	MADV_FREE	- Contents can be discarded
6808  *	MADV_ACCESS_DEFAULT- Default access
6809  *	MADV_ACCESS_LWP	- Next LWP will access heavily
6810  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
6811  */
6812 static int
6813 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
6814 {
6815 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6816 	size_t page;
6817 	int err = 0;
6818 	int already_set;
6819 	struct anon_map *amp;
6820 	ulong_t anon_index;
6821 	struct seg *next;
6822 	lgrp_mem_policy_t policy;
6823 	struct seg *prev;
6824 	struct vnode *vp;
6825 
6826 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6827 
6828 	/*
6829 	 * In case of MADV_FREE, we won't be modifying any segment private
6830 	 * data structures; so, we only need to grab READER's lock
6831 	 */
6832 	if (behav != MADV_FREE)
6833 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6834 	else
6835 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6836 
6837 	/*
6838 	 * Large pages are assumed to be only turned on when accesses to the
6839 	 * segment's address range have spatial and temporal locality. That
6840 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
6841 	 * Also, ignore advice affecting lgroup memory allocation
6842 	 * if don't need to do lgroup optimizations on this system
6843 	 */
6844 
6845 	if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
6846 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
6847 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
6848 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6849 		return (0);
6850 	}
6851 
6852 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
6853 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
6854 		/*
6855 		 * Since we are going to unload hat mappings
6856 		 * we first have to flush the cache. Otherwise
6857 		 * this might lead to system panic if another
6858 		 * thread is doing physio on the range whose
6859 		 * mappings are unloaded by madvise(3C).
6860 		 */
6861 		if (svd->softlockcnt > 0) {
6862 			/*
6863 			 * Since we do have the segvn writers lock
6864 			 * nobody can fill the cache with entries
6865 			 * belonging to this seg during the purge.
6866 			 * The flush either succeeds or we still
6867 			 * have pending I/Os. In the later case,
6868 			 * madvise(3C) fails.
6869 			 */
6870 			segvn_purge(seg);
6871 			if (svd->softlockcnt > 0) {
6872 				/*
6873 				 * Since madvise(3C) is advisory and
6874 				 * it's not part of UNIX98, madvise(3C)
6875 				 * failure here doesn't cause any hardship.
6876 				 * Note that we don't block in "as" layer.
6877 				 */
6878 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6879 				return (EAGAIN);
6880 			}
6881 		}
6882 	}
6883 
6884 	amp = svd->amp;
6885 	vp = svd->vp;
6886 	if (behav == MADV_FREE) {
6887 		/*
6888 		 * MADV_FREE is not supported for segments with
6889 		 * underlying object; if anonmap is NULL, anon slots
6890 		 * are not yet populated and there is nothing for
6891 		 * us to do. As MADV_FREE is advisory, we don't
6892 		 * return error in either case.
6893 		 */
6894 		if (vp || amp == NULL) {
6895 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6896 			return (0);
6897 		}
6898 
6899 		page = seg_page(seg, addr);
6900 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6901 		anon_disclaim(amp, svd->anon_index + page, len, 0);
6902 		ANON_LOCK_EXIT(&amp->a_rwlock);
6903 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6904 		return (0);
6905 	}
6906 
6907 	/*
6908 	 * If advice is to be applied to entire segment,
6909 	 * use advice field in seg_data structure
6910 	 * otherwise use appropriate vpage entry.
6911 	 */
6912 	if ((addr == seg->s_base) && (len == seg->s_size)) {
6913 		switch (behav) {
6914 		case MADV_ACCESS_LWP:
6915 		case MADV_ACCESS_MANY:
6916 		case MADV_ACCESS_DEFAULT:
6917 			/*
6918 			 * Set memory allocation policy for this segment
6919 			 */
6920 			policy = lgrp_madv_to_policy(behav, len, svd->type);
6921 			if (svd->type == MAP_SHARED)
6922 				already_set = lgrp_shm_policy_set(policy, amp,
6923 				    svd->anon_index, vp, svd->offset, len);
6924 			else {
6925 				/*
6926 				 * For private memory, need writers lock on
6927 				 * address space because the segment may be
6928 				 * split or concatenated when changing policy
6929 				 */
6930 				if (AS_READ_HELD(seg->s_as,
6931 				    &seg->s_as->a_lock)) {
6932 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6933 					return (IE_RETRY);
6934 				}
6935 
6936 				already_set = lgrp_privm_policy_set(policy,
6937 				    &svd->policy_info, len);
6938 			}
6939 
6940 			/*
6941 			 * If policy set already and it shouldn't be reapplied,
6942 			 * don't do anything.
6943 			 */
6944 			if (already_set &&
6945 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
6946 				break;
6947 
6948 			/*
6949 			 * Mark any existing pages in given range for
6950 			 * migration
6951 			 */
6952 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
6953 			    vp, svd->offset, 1);
6954 
6955 			/*
6956 			 * If same policy set already or this is a shared
6957 			 * memory segment, don't need to try to concatenate
6958 			 * segment with adjacent ones.
6959 			 */
6960 			if (already_set || svd->type == MAP_SHARED)
6961 				break;
6962 
6963 			/*
6964 			 * Try to concatenate this segment with previous
6965 			 * one and next one, since we changed policy for
6966 			 * this one and it may be compatible with adjacent
6967 			 * ones now.
6968 			 */
6969 			prev = AS_SEGPREV(seg->s_as, seg);
6970 			next = AS_SEGNEXT(seg->s_as, seg);
6971 
6972 			if (next && next->s_ops == &segvn_ops &&
6973 			    addr + len == next->s_base)
6974 				(void) segvn_concat(seg, next, 1);
6975 
6976 			if (prev && prev->s_ops == &segvn_ops &&
6977 			    addr == prev->s_base + prev->s_size) {
6978 				/*
6979 				 * Drop lock for private data of current
6980 				 * segment before concatenating (deleting) it
6981 				 * and return IE_REATTACH to tell as_ctl() that
6982 				 * current segment has changed
6983 				 */
6984 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6985 				if (!segvn_concat(prev, seg, 1))
6986 					err = IE_REATTACH;
6987 
6988 				return (err);
6989 			}
6990 			break;
6991 
6992 		case MADV_SEQUENTIAL:
6993 			/*
6994 			 * unloading mapping guarantees
6995 			 * detection in segvn_fault
6996 			 */
6997 			ASSERT(seg->s_szc == 0);
6998 			hat_unload(seg->s_as->a_hat, addr, len,
6999 				HAT_UNLOAD);
7000 			/* FALLTHROUGH */
7001 		case MADV_NORMAL:
7002 		case MADV_RANDOM:
7003 			svd->advice = (uchar_t)behav;
7004 			svd->pageadvice = 0;
7005 			break;
7006 		case MADV_WILLNEED:	/* handled in memcntl */
7007 		case MADV_DONTNEED:	/* handled in memcntl */
7008 		case MADV_FREE:		/* handled above */
7009 			break;
7010 		default:
7011 			err = EINVAL;
7012 		}
7013 	} else {
7014 		caddr_t			eaddr;
7015 		struct seg		*new_seg;
7016 		struct segvn_data	*new_svd;
7017 		u_offset_t		off;
7018 		caddr_t			oldeaddr;
7019 
7020 		page = seg_page(seg, addr);
7021 
7022 		segvn_vpage(seg);
7023 
7024 		switch (behav) {
7025 			struct vpage *bvpp, *evpp;
7026 
7027 		case MADV_ACCESS_LWP:
7028 		case MADV_ACCESS_MANY:
7029 		case MADV_ACCESS_DEFAULT:
7030 			/*
7031 			 * Set memory allocation policy for portion of this
7032 			 * segment
7033 			 */
7034 
7035 			/*
7036 			 * Align address and length of advice to page
7037 			 * boundaries for large pages
7038 			 */
7039 			if (seg->s_szc != 0) {
7040 				size_t	pgsz;
7041 
7042 				pgsz = page_get_pagesize(seg->s_szc);
7043 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
7044 				len = P2ROUNDUP(len, pgsz);
7045 			}
7046 
7047 			/*
7048 			 * Check to see whether policy is set already
7049 			 */
7050 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7051 
7052 			anon_index = svd->anon_index + page;
7053 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
7054 
7055 			if (svd->type == MAP_SHARED)
7056 				already_set = lgrp_shm_policy_set(policy, amp,
7057 				    anon_index, vp, off, len);
7058 			else
7059 				already_set =
7060 				    (policy == svd->policy_info.mem_policy);
7061 
7062 			/*
7063 			 * If policy set already and it shouldn't be reapplied,
7064 			 * don't do anything.
7065 			 */
7066 			if (already_set &&
7067 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7068 				break;
7069 
7070 			/*
7071 			 * For private memory, need writers lock on
7072 			 * address space because the segment may be
7073 			 * split or concatenated when changing policy
7074 			 */
7075 			if (svd->type == MAP_PRIVATE &&
7076 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
7077 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7078 				return (IE_RETRY);
7079 			}
7080 
7081 			/*
7082 			 * Mark any existing pages in given range for
7083 			 * migration
7084 			 */
7085 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7086 			    vp, svd->offset, 1);
7087 
7088 			/*
7089 			 * Don't need to try to split or concatenate
7090 			 * segments, since policy is same or this is a shared
7091 			 * memory segment
7092 			 */
7093 			if (already_set || svd->type == MAP_SHARED)
7094 				break;
7095 
7096 			/*
7097 			 * Split off new segment if advice only applies to a
7098 			 * portion of existing segment starting in middle
7099 			 */
7100 			new_seg = NULL;
7101 			eaddr = addr + len;
7102 			oldeaddr = seg->s_base + seg->s_size;
7103 			if (addr > seg->s_base) {
7104 				/*
7105 				 * Must flush I/O page cache
7106 				 * before splitting segment
7107 				 */
7108 				if (svd->softlockcnt > 0)
7109 					segvn_purge(seg);
7110 
7111 				/*
7112 				 * Split segment and return IE_REATTACH to tell
7113 				 * as_ctl() that current segment changed
7114 				 */
7115 				new_seg = segvn_split_seg(seg, addr);
7116 				new_svd = (struct segvn_data *)new_seg->s_data;
7117 				err = IE_REATTACH;
7118 
7119 				/*
7120 				 * If new segment ends where old one
7121 				 * did, try to concatenate the new
7122 				 * segment with next one.
7123 				 */
7124 				if (eaddr == oldeaddr) {
7125 					/*
7126 					 * Set policy for new segment
7127 					 */
7128 					(void) lgrp_privm_policy_set(policy,
7129 					    &new_svd->policy_info,
7130 					    new_seg->s_size);
7131 
7132 					next = AS_SEGNEXT(new_seg->s_as,
7133 					    new_seg);
7134 
7135 					if (next &&
7136 					    next->s_ops == &segvn_ops &&
7137 					    eaddr == next->s_base)
7138 						(void) segvn_concat(new_seg,
7139 						    next, 1);
7140 				}
7141 			}
7142 
7143 			/*
7144 			 * Split off end of existing segment if advice only
7145 			 * applies to a portion of segment ending before
7146 			 * end of the existing segment
7147 			 */
7148 			if (eaddr < oldeaddr) {
7149 				/*
7150 				 * Must flush I/O page cache
7151 				 * before splitting segment
7152 				 */
7153 				if (svd->softlockcnt > 0)
7154 					segvn_purge(seg);
7155 
7156 				/*
7157 				 * If beginning of old segment was already
7158 				 * split off, use new segment to split end off
7159 				 * from.
7160 				 */
7161 				if (new_seg != NULL && new_seg != seg) {
7162 					/*
7163 					 * Split segment
7164 					 */
7165 					(void) segvn_split_seg(new_seg, eaddr);
7166 
7167 					/*
7168 					 * Set policy for new segment
7169 					 */
7170 					(void) lgrp_privm_policy_set(policy,
7171 					    &new_svd->policy_info,
7172 					    new_seg->s_size);
7173 				} else {
7174 					/*
7175 					 * Split segment and return IE_REATTACH
7176 					 * to tell as_ctl() that current
7177 					 * segment changed
7178 					 */
7179 					(void) segvn_split_seg(seg, eaddr);
7180 					err = IE_REATTACH;
7181 
7182 					(void) lgrp_privm_policy_set(policy,
7183 					    &svd->policy_info, seg->s_size);
7184 
7185 					/*
7186 					 * If new segment starts where old one
7187 					 * did, try to concatenate it with
7188 					 * previous segment.
7189 					 */
7190 					if (addr == seg->s_base) {
7191 						prev = AS_SEGPREV(seg->s_as,
7192 						    seg);
7193 
7194 						/*
7195 						 * Drop lock for private data
7196 						 * of current segment before
7197 						 * concatenating (deleting) it
7198 						 */
7199 						if (prev &&
7200 						    prev->s_ops ==
7201 						    &segvn_ops &&
7202 						    addr == prev->s_base +
7203 						    prev->s_size) {
7204 							SEGVN_LOCK_EXIT(
7205 							    seg->s_as,
7206 							    &svd->lock);
7207 							(void) segvn_concat(
7208 							    prev, seg, 1);
7209 							return (err);
7210 						}
7211 					}
7212 				}
7213 			}
7214 			break;
7215 		case MADV_SEQUENTIAL:
7216 			ASSERT(seg->s_szc == 0);
7217 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
7218 			/* FALLTHROUGH */
7219 		case MADV_NORMAL:
7220 		case MADV_RANDOM:
7221 			bvpp = &svd->vpage[page];
7222 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
7223 			for (; bvpp < evpp; bvpp++)
7224 				VPP_SETADVICE(bvpp, behav);
7225 			svd->advice = MADV_NORMAL;
7226 			break;
7227 		case MADV_WILLNEED:	/* handled in memcntl */
7228 		case MADV_DONTNEED:	/* handled in memcntl */
7229 		case MADV_FREE:		/* handled above */
7230 			break;
7231 		default:
7232 			err = EINVAL;
7233 		}
7234 	}
7235 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7236 	return (err);
7237 }
7238 
7239 /*
7240  * Create a vpage structure for this seg.
7241  */
7242 static void
7243 segvn_vpage(struct seg *seg)
7244 {
7245 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7246 	struct vpage *vp, *evp;
7247 
7248 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
7249 
7250 	/*
7251 	 * If no vpage structure exists, allocate one.  Copy the protections
7252 	 * and the advice from the segment itself to the individual pages.
7253 	 */
7254 	if (svd->vpage == NULL) {
7255 		svd->pageprot = 1;
7256 		svd->pageadvice = 1;
7257 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
7258 		    KM_SLEEP);
7259 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
7260 		for (vp = svd->vpage; vp < evp; vp++) {
7261 			VPP_SETPROT(vp, svd->prot);
7262 			VPP_SETADVICE(vp, svd->advice);
7263 		}
7264 	}
7265 }
7266 
7267 /*
7268  * Dump the pages belonging to this segvn segment.
7269  */
7270 static void
7271 segvn_dump(struct seg *seg)
7272 {
7273 	struct segvn_data *svd;
7274 	page_t *pp;
7275 	struct anon_map *amp;
7276 	ulong_t	anon_index;
7277 	struct vnode *vp;
7278 	u_offset_t off, offset;
7279 	pfn_t pfn;
7280 	pgcnt_t page, npages;
7281 	caddr_t addr;
7282 
7283 	npages = seg_pages(seg);
7284 	svd = (struct segvn_data *)seg->s_data;
7285 	vp = svd->vp;
7286 	off = offset = svd->offset;
7287 	addr = seg->s_base;
7288 
7289 	if ((amp = svd->amp) != NULL) {
7290 		anon_index = svd->anon_index;
7291 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7292 	}
7293 
7294 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
7295 		struct anon *ap;
7296 		int we_own_it = 0;
7297 
7298 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
7299 			swap_xlate_nopanic(ap, &vp, &off);
7300 		} else {
7301 			vp = svd->vp;
7302 			off = offset;
7303 		}
7304 
7305 		/*
7306 		 * If pp == NULL, the page either does not exist
7307 		 * or is exclusively locked.  So determine if it
7308 		 * exists before searching for it.
7309 		 */
7310 
7311 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
7312 			we_own_it = 1;
7313 		else
7314 			pp = page_exists(vp, off);
7315 
7316 		if (pp) {
7317 			pfn = page_pptonum(pp);
7318 			dump_addpage(seg->s_as, addr, pfn);
7319 			if (we_own_it)
7320 				page_unlock(pp);
7321 		}
7322 		addr += PAGESIZE;
7323 		dump_timeleft = dump_timeout;
7324 	}
7325 
7326 	if (amp != NULL)
7327 		ANON_LOCK_EXIT(&amp->a_rwlock);
7328 }
7329 
7330 /*
7331  * lock/unlock anon pages over a given range. Return shadow list
7332  */
7333 static int
7334 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
7335     enum lock_type type, enum seg_rw rw)
7336 {
7337 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7338 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
7339 	ulong_t anon_index;
7340 	uint_t protchk;
7341 	uint_t error;
7342 	struct anon_map *amp;
7343 	struct page **pplist, **pl, *pp;
7344 	caddr_t a;
7345 	size_t page;
7346 	caddr_t lpgaddr, lpgeaddr;
7347 
7348 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
7349 		"segvn_pagelock: start seg %p addr %p", seg, addr);
7350 
7351 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7352 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
7353 		/*
7354 		 * We are adjusting the pagelock region to the large page size
7355 		 * boundary because the unlocked part of a large page cannot
7356 		 * be freed anyway unless all constituent pages of a large
7357 		 * page are locked. Therefore this adjustment allows us to
7358 		 * decrement availrmem by the right value (note we don't want
7359 		 * to just decrement availrem by the large page size without
7360 		 * adjusting addr and len because then we may end up
7361 		 * decrementing availrmem by large page size for every
7362 		 * constituent page locked by a new as_pagelock call).
7363 		 * as_pageunlock caller must always match as_pagelock call's
7364 		 * addr and len.
7365 		 *
7366 		 * Note segment's page size cannot change while we are holding
7367 		 * as lock.  And then it cannot change while softlockcnt is
7368 		 * not 0. This will allow us to correctly recalculate large
7369 		 * page size region for the matching pageunlock/reclaim call.
7370 		 *
7371 		 * for pageunlock *ppp points to the pointer of page_t that
7372 		 * corresponds to the real unadjusted start address. Similar
7373 		 * for pagelock *ppp must point to the pointer of page_t that
7374 		 * corresponds to the real unadjusted start address.
7375 		 */
7376 		size_t pgsz = page_get_pagesize(seg->s_szc);
7377 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
7378 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
7379 	}
7380 
7381 	if (type == L_PAGEUNLOCK) {
7382 
7383 		/*
7384 		 * update hat ref bits for /proc. We need to make sure
7385 		 * that threads tracing the ref and mod bits of the
7386 		 * address space get the right data.
7387 		 * Note: page ref and mod bits are updated at reclaim time
7388 		 */
7389 		if (seg->s_as->a_vbits) {
7390 			for (a = addr; a < addr + len; a += PAGESIZE) {
7391 				if (rw == S_WRITE) {
7392 					hat_setstat(seg->s_as, a,
7393 					    PAGESIZE, P_REF | P_MOD);
7394 				} else {
7395 					hat_setstat(seg->s_as, a,
7396 					    PAGESIZE, P_REF);
7397 				}
7398 			}
7399 		}
7400 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7401 		if (seg->s_szc != 0) {
7402 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
7403 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
7404 			    *ppp - adjustpages, rw, segvn_reclaim);
7405 		} else {
7406 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
7407 		}
7408 
7409 		/*
7410 		 * If someone is blocked while unmapping, we purge
7411 		 * segment page cache and thus reclaim pplist synchronously
7412 		 * without waiting for seg_pasync_thread. This speeds up
7413 		 * unmapping in cases where munmap(2) is called, while
7414 		 * raw async i/o is still in progress or where a thread
7415 		 * exits on data fault in a multithreaded application.
7416 		 */
7417 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
7418 			/*
7419 			 * Even if we grab segvn WRITER's lock or segp_slock
7420 			 * here, there might be another thread which could've
7421 			 * successfully performed lookup/insert just before
7422 			 * we acquired the lock here.  So, grabbing either
7423 			 * lock here is of not much use.  Until we devise
7424 			 * a strategy at upper layers to solve the
7425 			 * synchronization issues completely, we expect
7426 			 * applications to handle this appropriately.
7427 			 */
7428 			segvn_purge(seg);
7429 		}
7430 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7431 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7432 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
7433 		return (0);
7434 	} else if (type == L_PAGERECLAIM) {
7435 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
7436 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7437 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
7438 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7439 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7440 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
7441 		return (0);
7442 	}
7443 
7444 	if (seg->s_szc != 0) {
7445 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
7446 		addr = lpgaddr;
7447 		len = lpgeaddr - lpgaddr;
7448 		npages = (len >> PAGESHIFT);
7449 	}
7450 
7451 	/*
7452 	 * for now we only support pagelock to anon memory. We've to check
7453 	 * protections for vnode objects and call into the vnode driver.
7454 	 * That's too much for a fast path. Let the fault entry point handle it.
7455 	 */
7456 	if (svd->vp != NULL) {
7457 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7458 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
7459 		*ppp = NULL;
7460 		return (ENOTSUP);
7461 	}
7462 
7463 	/*
7464 	 * if anonmap is not yet created, let the fault entry point populate it
7465 	 * with anon ptrs.
7466 	 */
7467 	if ((amp = svd->amp) == NULL) {
7468 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7469 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
7470 		*ppp = NULL;
7471 		return (EFAULT);
7472 	}
7473 
7474 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7475 
7476 	/*
7477 	 * we acquire segp_slock to prevent duplicate entries
7478 	 * in seg_pcache
7479 	 */
7480 	mutex_enter(&svd->segp_slock);
7481 
7482 	/*
7483 	 * try to find pages in segment page cache
7484 	 */
7485 	pplist = seg_plookup(seg, addr, len, rw);
7486 	if (pplist != NULL) {
7487 		mutex_exit(&svd->segp_slock);
7488 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7489 		*ppp = pplist + adjustpages;
7490 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
7491 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
7492 		return (0);
7493 	}
7494 
7495 	if (rw == S_READ) {
7496 		protchk = PROT_READ;
7497 	} else {
7498 		protchk = PROT_WRITE;
7499 	}
7500 
7501 	if (svd->pageprot == 0) {
7502 		if ((svd->prot & protchk) == 0) {
7503 			mutex_exit(&svd->segp_slock);
7504 			error = EFAULT;
7505 			goto out;
7506 		}
7507 	} else {
7508 		/*
7509 		 * check page protections
7510 		 */
7511 		for (a = addr; a < addr + len; a += PAGESIZE) {
7512 			struct vpage *vp;
7513 
7514 			vp = &svd->vpage[seg_page(seg, a)];
7515 			if ((VPP_PROT(vp) & protchk) == 0) {
7516 				mutex_exit(&svd->segp_slock);
7517 				error = EFAULT;
7518 				goto out;
7519 			}
7520 		}
7521 	}
7522 
7523 	mutex_enter(&freemem_lock);
7524 	if (availrmem < tune.t_minarmem + npages) {
7525 		mutex_exit(&freemem_lock);
7526 		mutex_exit(&svd->segp_slock);
7527 		error = ENOMEM;
7528 		goto out;
7529 	} else {
7530 		svd->softlockcnt += npages;
7531 		availrmem -= npages;
7532 		segvn_pages_locked += npages;
7533 	}
7534 	mutex_exit(&freemem_lock);
7535 
7536 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
7537 	pl = pplist;
7538 	*ppp = pplist + adjustpages;
7539 
7540 	page = seg_page(seg, addr);
7541 	anon_index = svd->anon_index + page;
7542 
7543 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7544 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
7545 		struct anon *ap;
7546 		struct vnode *vp;
7547 		u_offset_t off;
7548 		anon_sync_obj_t cookie;
7549 
7550 		anon_array_enter(amp, anon_index, &cookie);
7551 		ap = anon_get_ptr(amp->ahp, anon_index);
7552 		if (ap == NULL) {
7553 			anon_array_exit(&cookie);
7554 			break;
7555 		} else {
7556 			/*
7557 			 * We must never use seg_pcache for COW pages
7558 			 * because we might end up with original page still
7559 			 * lying in seg_pcache even after private page is
7560 			 * created. This leads to data corruption as
7561 			 * aio_write refers to the page still in cache
7562 			 * while all other accesses refer to the private
7563 			 * page.
7564 			 */
7565 			if (ap->an_refcnt != 1) {
7566 				anon_array_exit(&cookie);
7567 				break;
7568 			}
7569 		}
7570 		swap_xlate(ap, &vp, &off);
7571 		anon_array_exit(&cookie);
7572 
7573 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7574 		if (pp == NULL) {
7575 			break;
7576 		}
7577 		*pplist++ = pp;
7578 	}
7579 	ANON_LOCK_EXIT(&amp->a_rwlock);
7580 
7581 	if (a >= addr + len) {
7582 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
7583 			segvn_reclaim);
7584 		mutex_exit(&svd->segp_slock);
7585 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7586 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
7587 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
7588 		return (0);
7589 	}
7590 
7591 	mutex_exit(&svd->segp_slock);
7592 	error = EFAULT;
7593 	pplist = pl;
7594 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
7595 	while (np > (uint_t)0) {
7596 		page_unlock(*pplist);
7597 		np--;
7598 		pplist++;
7599 	}
7600 	kmem_free(pl, sizeof (page_t *) * npages);
7601 	mutex_enter(&freemem_lock);
7602 	svd->softlockcnt -= npages;
7603 	availrmem += npages;
7604 	segvn_pages_locked -= npages;
7605 	mutex_exit(&freemem_lock);
7606 	if (svd->softlockcnt <= 0) {
7607 		if (AS_ISUNMAPWAIT(seg->s_as)) {
7608 			mutex_enter(&seg->s_as->a_contents);
7609 			if (AS_ISUNMAPWAIT(seg->s_as)) {
7610 				AS_CLRUNMAPWAIT(seg->s_as);
7611 				cv_broadcast(&seg->s_as->a_cv);
7612 			}
7613 			mutex_exit(&seg->s_as->a_contents);
7614 		}
7615 	}
7616 
7617 out:
7618 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7619 	*ppp = NULL;
7620 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7621 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
7622 	return (error);
7623 }
7624 
7625 /*
7626  * purge any cached pages in the I/O page cache
7627  */
7628 static void
7629 segvn_purge(struct seg *seg)
7630 {
7631 	seg_ppurge(seg);
7632 }
7633 
7634 static int
7635 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
7636 	enum seg_rw rw)
7637 {
7638 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7639 	pgcnt_t np, npages;
7640 	struct page **pl;
7641 
7642 #ifdef lint
7643 	addr = addr;
7644 #endif
7645 
7646 	npages = np = (len >> PAGESHIFT);
7647 	ASSERT(npages);
7648 	pl = pplist;
7649 	if (seg->s_szc != 0) {
7650 		size_t pgsz = page_get_pagesize(seg->s_szc);
7651 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
7652 			panic("segvn_reclaim: unaligned addr or len");
7653 			/*NOTREACHED*/
7654 		}
7655 	}
7656 
7657 	while (np > (uint_t)0) {
7658 		if (rw == S_WRITE) {
7659 			hat_setrefmod(*pplist);
7660 		} else {
7661 			hat_setref(*pplist);
7662 		}
7663 		page_unlock(*pplist);
7664 		np--;
7665 		pplist++;
7666 	}
7667 	kmem_free(pl, sizeof (page_t *) * npages);
7668 
7669 	mutex_enter(&freemem_lock);
7670 	availrmem += npages;
7671 	segvn_pages_locked -= npages;
7672 	svd->softlockcnt -= npages;
7673 	mutex_exit(&freemem_lock);
7674 	if (svd->softlockcnt <= 0) {
7675 		if (AS_ISUNMAPWAIT(seg->s_as)) {
7676 			mutex_enter(&seg->s_as->a_contents);
7677 			if (AS_ISUNMAPWAIT(seg->s_as)) {
7678 				AS_CLRUNMAPWAIT(seg->s_as);
7679 				cv_broadcast(&seg->s_as->a_cv);
7680 			}
7681 			mutex_exit(&seg->s_as->a_contents);
7682 		}
7683 	}
7684 	return (0);
7685 }
7686 /*
7687  * get a memory ID for an addr in a given segment
7688  *
7689  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7690  * At fault time they will be relocated into larger pages.
7691  */
7692 static int
7693 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
7694 {
7695 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7696 	struct anon 	*ap = NULL;
7697 	ulong_t		anon_index;
7698 	struct anon_map	*amp;
7699 	anon_sync_obj_t cookie;
7700 
7701 	if (svd->type == MAP_PRIVATE) {
7702 		memidp->val[0] = (uintptr_t)seg->s_as;
7703 		memidp->val[1] = (uintptr_t)addr;
7704 		return (0);
7705 	}
7706 
7707 	if (svd->type == MAP_SHARED) {
7708 		if (svd->vp) {
7709 			memidp->val[0] = (uintptr_t)svd->vp;
7710 			memidp->val[1] = (u_longlong_t)svd->offset +
7711 			    (uintptr_t)(addr - seg->s_base);
7712 			return (0);
7713 		} else {
7714 
7715 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7716 			if ((amp = svd->amp) != NULL) {
7717 				anon_index = svd->anon_index +
7718 				    seg_page(seg, addr);
7719 			}
7720 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7721 
7722 			ASSERT(amp != NULL);
7723 
7724 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7725 			anon_array_enter(amp, anon_index, &cookie);
7726 			ap = anon_get_ptr(amp->ahp, anon_index);
7727 			if (ap == NULL) {
7728 				page_t		*pp;
7729 
7730 				pp = anon_zero(seg, addr, &ap, svd->cred);
7731 				if (pp == NULL) {
7732 					anon_array_exit(&cookie);
7733 					ANON_LOCK_EXIT(&amp->a_rwlock);
7734 					return (ENOMEM);
7735 				}
7736 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
7737 								== NULL);
7738 				(void) anon_set_ptr(amp->ahp, anon_index,
7739 				    ap, ANON_SLEEP);
7740 				page_unlock(pp);
7741 			}
7742 
7743 			anon_array_exit(&cookie);
7744 			ANON_LOCK_EXIT(&amp->a_rwlock);
7745 
7746 			memidp->val[0] = (uintptr_t)ap;
7747 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
7748 			return (0);
7749 		}
7750 	}
7751 	return (EINVAL);
7752 }
7753 
7754 static int
7755 sameprot(struct seg *seg, caddr_t a, size_t len)
7756 {
7757 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7758 	struct vpage *vpage;
7759 	spgcnt_t pages = btop(len);
7760 	uint_t prot;
7761 
7762 	if (svd->pageprot == 0)
7763 		return (1);
7764 
7765 	ASSERT(svd->vpage != NULL);
7766 
7767 	vpage = &svd->vpage[seg_page(seg, a)];
7768 	prot = VPP_PROT(vpage);
7769 	vpage++;
7770 	pages--;
7771 	while (pages-- > 0) {
7772 		if (prot != VPP_PROT(vpage))
7773 			return (0);
7774 		vpage++;
7775 	}
7776 	return (1);
7777 }
7778 
7779 /*
7780  * Get memory allocation policy info for specified address in given segment
7781  */
7782 static lgrp_mem_policy_info_t *
7783 segvn_getpolicy(struct seg *seg, caddr_t addr)
7784 {
7785 	struct anon_map		*amp;
7786 	ulong_t			anon_index;
7787 	lgrp_mem_policy_info_t	*policy_info;
7788 	struct segvn_data	*svn_data;
7789 	u_offset_t		vn_off;
7790 	vnode_t			*vp;
7791 
7792 	ASSERT(seg != NULL);
7793 
7794 	svn_data = (struct segvn_data *)seg->s_data;
7795 	if (svn_data == NULL)
7796 		return (NULL);
7797 
7798 	/*
7799 	 * Get policy info for private or shared memory
7800 	 */
7801 	if (svn_data->type != MAP_SHARED)
7802 		policy_info = &svn_data->policy_info;
7803 	else {
7804 		amp = svn_data->amp;
7805 		anon_index = svn_data->anon_index + seg_page(seg, addr);
7806 		vp = svn_data->vp;
7807 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
7808 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
7809 	}
7810 
7811 	return (policy_info);
7812 }
7813 
7814 /*ARGSUSED*/
7815 static int
7816 segvn_capable(struct seg *seg, segcapability_t capability)
7817 {
7818 	return (0);
7819 }
7820