1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2018 Joyent, Inc.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
34 *
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
38 */
39
40 /*
41 * VM - shared or copy-on-write from a vnode/anonymous memory.
42 */
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/t_lock.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/debug.h>
51 #include <sys/cred.h>
52 #include <sys/vmsystm.h>
53 #include <sys/tuneable.h>
54 #include <sys/bitmap.h>
55 #include <sys/swap.h>
56 #include <sys/kmem.h>
57 #include <sys/sysmacros.h>
58 #include <sys/vtrace.h>
59 #include <sys/cmn_err.h>
60 #include <sys/callb.h>
61 #include <sys/vm.h>
62 #include <sys/dumphdr.h>
63 #include <sys/lgrp.h>
64
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_vn.h>
69 #include <vm/pvn.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/vpage.h>
73 #include <sys/proc.h>
74 #include <sys/task.h>
75 #include <sys/project.h>
76 #include <sys/zone.h>
77 #include <sys/shm_impl.h>
78
79 /*
80 * segvn_fault needs a temporary page list array. To avoid calling kmem all
81 * the time, it creates a small (PVN_GETPAGE_NUM entry) array and uses it if
82 * it can. In the rare case when this page list is not large enough, it
83 * goes and gets a large enough array from kmem.
84 *
85 * This small page list array covers either 8 pages or 64kB worth of pages -
86 * whichever is smaller.
87 */
88 #define PVN_MAX_GETPAGE_SZ 0x10000
89 #define PVN_MAX_GETPAGE_NUM 0x8
90
91 #if PVN_MAX_GETPAGE_SZ > PVN_MAX_GETPAGE_NUM * PAGESIZE
92 #define PVN_GETPAGE_SZ ptob(PVN_MAX_GETPAGE_NUM)
93 #define PVN_GETPAGE_NUM PVN_MAX_GETPAGE_NUM
94 #else
95 #define PVN_GETPAGE_SZ PVN_MAX_GETPAGE_SZ
96 #define PVN_GETPAGE_NUM btop(PVN_MAX_GETPAGE_SZ)
97 #endif
98
99 /*
100 * Private seg op routines.
101 */
102 static int segvn_dup(struct seg *seg, struct seg *newseg);
103 static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
104 static void segvn_free(struct seg *seg);
105 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
106 caddr_t addr, size_t len, enum fault_type type,
107 enum seg_rw rw);
108 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
109 static int segvn_setprot(struct seg *seg, caddr_t addr,
110 size_t len, uint_t prot);
111 static int segvn_checkprot(struct seg *seg, caddr_t addr,
112 size_t len, uint_t prot);
113 static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
114 static size_t segvn_swapout(struct seg *seg);
115 static int segvn_sync(struct seg *seg, caddr_t addr, size_t len,
116 int attr, uint_t flags);
117 static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len,
118 char *vec);
119 static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
120 int attr, int op, ulong_t *lockmap, size_t pos);
121 static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
122 uint_t *protv);
123 static u_offset_t segvn_getoffset(struct seg *seg, caddr_t addr);
124 static int segvn_gettype(struct seg *seg, caddr_t addr);
125 static int segvn_getvp(struct seg *seg, caddr_t addr,
126 struct vnode **vpp);
127 static int segvn_advise(struct seg *seg, caddr_t addr, size_t len,
128 uint_t behav);
129 static void segvn_dump(struct seg *seg);
130 static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
131 struct page ***ppp, enum lock_type type, enum seg_rw rw);
132 static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
133 uint_t szc);
134 static int segvn_getmemid(struct seg *seg, caddr_t addr,
135 memid_t *memidp);
136 static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t);
137 static int segvn_capable(struct seg *seg, segcapability_t capable);
138 static int segvn_inherit(struct seg *, caddr_t, size_t, uint_t);
139
140 struct seg_ops segvn_ops = {
141 segvn_dup,
142 segvn_unmap,
143 segvn_free,
144 segvn_fault,
145 segvn_faulta,
146 segvn_setprot,
147 segvn_checkprot,
148 segvn_kluster,
149 segvn_swapout,
150 segvn_sync,
151 segvn_incore,
152 segvn_lockop,
153 segvn_getprot,
154 segvn_getoffset,
155 segvn_gettype,
156 segvn_getvp,
157 segvn_advise,
158 segvn_dump,
159 segvn_pagelock,
160 segvn_setpagesize,
161 segvn_getmemid,
162 segvn_getpolicy,
163 segvn_capable,
164 segvn_inherit
165 };
166
167 /*
168 * Common zfod structures, provided as a shorthand for others to use.
169 */
170 static segvn_crargs_t zfod_segvn_crargs =
171 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
172 static segvn_crargs_t kzfod_segvn_crargs =
173 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
174 PROT_ALL & ~PROT_USER);
175 static segvn_crargs_t stack_noexec_crargs =
176 SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
177
178 caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */
179 caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */
180 caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */
181 caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
182
183 #define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */
184
185 size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */
186
187 size_t segvn_pglock_comb_thrshld = (1UL << 16); /* 64K */
188 size_t segvn_pglock_comb_balign = (1UL << 16); /* 64K */
189 uint_t segvn_pglock_comb_bshift;
190 size_t segvn_pglock_comb_palign;
191
192 static int segvn_concat(struct seg *, struct seg *, int);
193 static int segvn_extend_prev(struct seg *, struct seg *,
194 struct segvn_crargs *, size_t);
195 static int segvn_extend_next(struct seg *, struct seg *,
196 struct segvn_crargs *, size_t);
197 static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
198 static void segvn_pagelist_rele(page_t **);
199 static void segvn_setvnode_mpss(vnode_t *);
200 static void segvn_relocate_pages(page_t **, page_t *);
201 static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
202 static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
203 uint_t, page_t **, page_t **, uint_t *, int *);
204 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
205 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
206 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
207 caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
208 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
209 u_offset_t, struct vpage *, page_t **, uint_t,
210 enum fault_type, enum seg_rw, int);
211 static void segvn_vpage(struct seg *);
212 static size_t segvn_count_swap_by_vpages(struct seg *);
213
214 static void segvn_purge(struct seg *seg);
215 static int segvn_reclaim(void *, caddr_t, size_t, struct page **,
216 enum seg_rw, int);
217 static int shamp_reclaim(void *, caddr_t, size_t, struct page **,
218 enum seg_rw, int);
219
220 static int sameprot(struct seg *, caddr_t, size_t);
221
222 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
223 static int segvn_clrszc(struct seg *);
224 static struct seg *segvn_split_seg(struct seg *, caddr_t);
225 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
226 ulong_t, uint_t);
227
228 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
229 size_t, void *, u_offset_t);
230
231 static struct kmem_cache *segvn_cache;
232 static struct kmem_cache **segvn_szc_cache;
233
234 #ifdef VM_STATS
235 static struct segvnvmstats_str {
236 ulong_t fill_vp_pages[31];
237 ulong_t fltvnpages[49];
238 ulong_t fullszcpages[10];
239 ulong_t relocatepages[3];
240 ulong_t fltanpages[17];
241 ulong_t pagelock[2];
242 ulong_t demoterange[3];
243 } segvnvmstats;
244 #endif /* VM_STATS */
245
246 #define SDR_RANGE 1 /* demote entire range */
247 #define SDR_END 2 /* demote non aligned ends only */
248
249 #define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \
250 if ((len) != 0) { \
251 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \
252 ASSERT(lpgaddr >= (seg)->s_base); \
253 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \
254 (len)), pgsz); \
255 ASSERT(lpgeaddr > lpgaddr); \
256 ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \
257 } else { \
258 lpgeaddr = lpgaddr = (addr); \
259 } \
260 }
261
262 /*ARGSUSED*/
263 static int
segvn_cache_constructor(void * buf,void * cdrarg,int kmflags)264 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
265 {
266 struct segvn_data *svd = buf;
267
268 rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
269 mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
270 svd->svn_trnext = svd->svn_trprev = NULL;
271 return (0);
272 }
273
274 /*ARGSUSED1*/
275 static void
segvn_cache_destructor(void * buf,void * cdrarg)276 segvn_cache_destructor(void *buf, void *cdrarg)
277 {
278 struct segvn_data *svd = buf;
279
280 rw_destroy(&svd->lock);
281 mutex_destroy(&svd->segfree_syncmtx);
282 }
283
284 /*ARGSUSED*/
285 static int
svntr_cache_constructor(void * buf,void * cdrarg,int kmflags)286 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
287 {
288 bzero(buf, sizeof (svntr_t));
289 return (0);
290 }
291
292 /*
293 * Patching this variable to non-zero allows the system to run with
294 * stacks marked as "not executable". It's a bit of a kludge, but is
295 * provided as a tweakable for platforms that export those ABIs
296 * (e.g. sparc V8) that have executable stacks enabled by default.
297 * There are also some restrictions for platforms that don't actually
298 * implement 'noexec' protections.
299 *
300 * Once enabled, the system is (therefore) unable to provide a fully
301 * ABI-compliant execution environment, though practically speaking,
302 * most everything works. The exceptions are generally some interpreters
303 * and debuggers that create executable code on the stack and jump
304 * into it (without explicitly mprotecting the address range to include
305 * PROT_EXEC).
306 *
307 * One important class of applications that are disabled are those
308 * that have been transformed into malicious agents using one of the
309 * numerous "buffer overflow" attacks. See 4007890.
310 */
311 int noexec_user_stack = 0;
312 int noexec_user_stack_log = 1;
313
314 int segvn_lpg_disable = 0;
315 uint_t segvn_maxpgszc = 0;
316
317 ulong_t segvn_vmpss_clrszc_cnt;
318 ulong_t segvn_vmpss_clrszc_err;
319 ulong_t segvn_fltvnpages_clrszc_cnt;
320 ulong_t segvn_fltvnpages_clrszc_err;
321 ulong_t segvn_setpgsz_align_err;
322 ulong_t segvn_setpgsz_anon_align_err;
323 ulong_t segvn_setpgsz_getattr_err;
324 ulong_t segvn_setpgsz_eof_err;
325 ulong_t segvn_faultvnmpss_align_err1;
326 ulong_t segvn_faultvnmpss_align_err2;
327 ulong_t segvn_faultvnmpss_align_err3;
328 ulong_t segvn_faultvnmpss_align_err4;
329 ulong_t segvn_faultvnmpss_align_err5;
330 ulong_t segvn_vmpss_pageio_deadlk_err;
331
332 int segvn_use_regions = 1;
333
334 /*
335 * Segvn supports text replication optimization for NUMA platforms. Text
336 * replica's are represented by anon maps (amp). There's one amp per text file
337 * region per lgroup. A process chooses the amp for each of its text mappings
338 * based on the lgroup assignment of its main thread (t_tid = 1). All
339 * processes that want a replica on a particular lgroup for the same text file
340 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
341 * with vp,off,size,szc used as a key. Text replication segments are read only
342 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
343 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
344 * pages. Replication amp is assigned to a segment when it gets its first
345 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
346 * rechecks periodically if the process still maps an amp local to the main
347 * thread. If not async thread forces process to remap to an amp in the new
348 * home lgroup of the main thread. Current text replication implementation
349 * only provides the benefit to workloads that do most of their work in the
350 * main thread of a process or all the threads of a process run in the same
351 * lgroup. To extend text replication benefit to different types of
352 * multithreaded workloads further work would be needed in the hat layer to
353 * allow the same virtual address in the same hat to simultaneously map
354 * different physical addresses (i.e. page table replication would be needed
355 * for x86).
356 *
357 * amp pages are used instead of vnode pages as long as segment has a very
358 * simple life cycle. It's created via segvn_create(), handles S_EXEC
359 * (S_READ) pagefaults and is fully unmapped. If anything more complicated
360 * happens such as protection is changed, real COW fault happens, pagesize is
361 * changed, MC_LOCK is requested or segment is partially unmapped we turn off
362 * text replication by converting the segment back to vnode only segment
363 * (unmap segment's address range and set svd->amp to NULL).
364 *
365 * The original file can be changed after amp is inserted into
366 * svntr_hashtab. Processes that are launched after the file is already
367 * changed can't use the replica's created prior to the file change. To
368 * implement this functionality hash entries are timestamped. Replica's can
369 * only be used if current file modification time is the same as the timestamp
370 * saved when hash entry was created. However just timestamps alone are not
371 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
372 * deal with file changes via MAP_SHARED mappings differently. When writable
373 * MAP_SHARED mappings are created to vnodes marked as executable we mark all
374 * existing replica's for this vnode as not usable for future text
375 * mappings. And we don't create new replica's for files that currently have
376 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
377 * true).
378 */
379
380 #define SEGVN_TEXTREPL_MAXBYTES_FACTOR (20)
381 size_t segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
382
383 static ulong_t svntr_hashtab_sz = 512;
384 static svntr_bucket_t *svntr_hashtab = NULL;
385 static struct kmem_cache *svntr_cache;
386 static svntr_stats_t *segvn_textrepl_stats;
387 static ksema_t segvn_trasync_sem;
388
389 int segvn_disable_textrepl = 1;
390 size_t textrepl_size_thresh = (size_t)-1;
391 size_t segvn_textrepl_bytes = 0;
392 size_t segvn_textrepl_max_bytes = 0;
393 clock_t segvn_update_textrepl_interval = 0;
394 int segvn_update_tr_time = 10;
395 int segvn_disable_textrepl_update = 0;
396
397 static void segvn_textrepl(struct seg *);
398 static void segvn_textunrepl(struct seg *, int);
399 static void segvn_inval_trcache(vnode_t *);
400 static void segvn_trasync_thread(void);
401 static void segvn_trupdate_wakeup(void *);
402 static void segvn_trupdate(void);
403 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
404 ulong_t);
405
406 /*
407 * Initialize segvn data structures
408 */
409 void
segvn_init(void)410 segvn_init(void)
411 {
412 uint_t maxszc;
413 uint_t szc;
414 size_t pgsz;
415
416 segvn_cache = kmem_cache_create("segvn_cache",
417 sizeof (struct segvn_data), 0,
418 segvn_cache_constructor, segvn_cache_destructor, NULL,
419 NULL, NULL, 0);
420
421 if (segvn_lpg_disable == 0) {
422 szc = maxszc = page_num_pagesizes() - 1;
423 if (szc == 0) {
424 segvn_lpg_disable = 1;
425 }
426 if (page_get_pagesize(0) != PAGESIZE) {
427 panic("segvn_init: bad szc 0");
428 /*NOTREACHED*/
429 }
430 while (szc != 0) {
431 pgsz = page_get_pagesize(szc);
432 if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
433 panic("segvn_init: bad szc %d", szc);
434 /*NOTREACHED*/
435 }
436 szc--;
437 }
438 if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
439 segvn_maxpgszc = maxszc;
440 }
441
442 if (segvn_maxpgszc) {
443 segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
444 (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
445 KM_SLEEP);
446 }
447
448 for (szc = 1; szc <= segvn_maxpgszc; szc++) {
449 char str[32];
450
451 (void) sprintf(str, "segvn_szc_cache%d", szc);
452 segvn_szc_cache[szc] = kmem_cache_create(str,
453 page_get_pagecnt(szc) * sizeof (page_t *), 0,
454 NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
455 }
456
457
458 if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
459 segvn_use_regions = 0;
460
461 /*
462 * For now shared regions and text replication segvn support
463 * are mutually exclusive. This is acceptable because
464 * currently significant benefit from text replication was
465 * only observed on AMD64 NUMA platforms (due to relatively
466 * small L2$ size) and currently we don't support shared
467 * regions on x86.
468 */
469 if (segvn_use_regions && !segvn_disable_textrepl) {
470 segvn_disable_textrepl = 1;
471 }
472
473 #if defined(_LP64)
474 if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
475 !segvn_disable_textrepl) {
476 ulong_t i;
477 size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
478
479 svntr_cache = kmem_cache_create("svntr_cache",
480 sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
481 NULL, NULL, NULL, 0);
482 svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
483 for (i = 0; i < svntr_hashtab_sz; i++) {
484 mutex_init(&svntr_hashtab[i].tr_lock, NULL,
485 MUTEX_DEFAULT, NULL);
486 }
487 segvn_textrepl_max_bytes = ptob(physmem) /
488 segvn_textrepl_max_bytes_factor;
489 segvn_textrepl_stats = kmem_zalloc(NCPU *
490 sizeof (svntr_stats_t), KM_SLEEP);
491 sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
492 (void) thread_create(NULL, 0, segvn_trasync_thread,
493 NULL, 0, &p0, TS_RUN, minclsyspri);
494 }
495 #endif
496
497 if (!ISP2(segvn_pglock_comb_balign) ||
498 segvn_pglock_comb_balign < PAGESIZE) {
499 segvn_pglock_comb_balign = 1UL << 16; /* 64K */
500 }
501 segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1;
502 segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign);
503 }
504
505 #define SEGVN_PAGEIO ((void *)0x1)
506 #define SEGVN_NOPAGEIO ((void *)0x2)
507
508 static void
segvn_setvnode_mpss(vnode_t * vp)509 segvn_setvnode_mpss(vnode_t *vp)
510 {
511 int err;
512
513 ASSERT(vp->v_mpssdata == NULL ||
514 vp->v_mpssdata == SEGVN_PAGEIO ||
515 vp->v_mpssdata == SEGVN_NOPAGEIO);
516
517 if (vp->v_mpssdata == NULL) {
518 if (vn_vmpss_usepageio(vp)) {
519 err = VOP_PAGEIO(vp, (page_t *)NULL,
520 (u_offset_t)0, 0, 0, CRED(), NULL);
521 } else {
522 err = ENOSYS;
523 }
524 /*
525 * set v_mpssdata just once per vnode life
526 * so that it never changes.
527 */
528 mutex_enter(&vp->v_lock);
529 if (vp->v_mpssdata == NULL) {
530 if (err == EINVAL) {
531 vp->v_mpssdata = SEGVN_PAGEIO;
532 } else {
533 vp->v_mpssdata = SEGVN_NOPAGEIO;
534 }
535 }
536 mutex_exit(&vp->v_lock);
537 }
538 }
539
540 int
segvn_create(struct seg ** segpp,void * argsp)541 segvn_create(struct seg **segpp, void *argsp)
542 {
543 struct seg *seg = *segpp;
544 extern lgrp_mem_policy_t lgrp_mem_default_policy;
545 struct segvn_crargs *a = (struct segvn_crargs *)argsp;
546 struct segvn_data *svd;
547 size_t swresv = 0;
548 struct cred *cred;
549 struct anon_map *amp;
550 int error = 0;
551 size_t pgsz;
552 lgrp_mem_policy_t mpolicy = lgrp_mem_default_policy;
553 int use_rgn = 0;
554 int trok = 0;
555
556 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
557
558 if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
559 panic("segvn_create type");
560 /*NOTREACHED*/
561 }
562
563 /*
564 * Check arguments. If a shared anon structure is given then
565 * it is illegal to also specify a vp.
566 */
567 if (a->amp != NULL && a->vp != NULL) {
568 panic("segvn_create anon_map");
569 /*NOTREACHED*/
570 }
571
572 if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
573 a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
574 segvn_use_regions) {
575 use_rgn = 1;
576 }
577
578 /* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
579 if (a->type == MAP_SHARED)
580 a->flags &= ~MAP_NORESERVE;
581
582 if (a->szc != 0) {
583 if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
584 (a->amp != NULL && a->type == MAP_PRIVATE) ||
585 (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
586 a->szc = 0;
587 } else {
588 if (a->szc > segvn_maxpgszc)
589 a->szc = segvn_maxpgszc;
590 pgsz = page_get_pagesize(a->szc);
591 if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
592 !IS_P2ALIGNED(seg->s_size, pgsz)) {
593 a->szc = 0;
594 } else if (a->vp != NULL) {
595 if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
596 /*
597 * paranoid check.
598 * hat_page_demote() is not supported
599 * on swapfs pages.
600 */
601 a->szc = 0;
602 } else if (map_addr_vacalign_check(seg->s_base,
603 a->offset & PAGEMASK)) {
604 a->szc = 0;
605 }
606 } else if (a->amp != NULL) {
607 pgcnt_t anum = btopr(a->offset);
608 pgcnt_t pgcnt = page_get_pagecnt(a->szc);
609 if (!IS_P2ALIGNED(anum, pgcnt)) {
610 a->szc = 0;
611 }
612 }
613 }
614 }
615
616 /*
617 * If segment may need private pages, reserve them now.
618 */
619 if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
620 (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
621 if (anon_resv_zone(seg->s_size,
622 seg->s_as->a_proc->p_zone) == 0)
623 return (EAGAIN);
624 swresv = seg->s_size;
625 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
626 seg, swresv, 1);
627 }
628
629 /*
630 * Reserve any mapping structures that may be required.
631 *
632 * Don't do it for segments that may use regions. It's currently a
633 * noop in the hat implementations anyway.
634 */
635 if (!use_rgn) {
636 hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
637 }
638
639 if (a->cred) {
640 cred = a->cred;
641 crhold(cred);
642 } else {
643 crhold(cred = CRED());
644 }
645
646 /* Inform the vnode of the new mapping */
647 if (a->vp != NULL) {
648 error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
649 seg->s_as, seg->s_base, seg->s_size, a->prot,
650 a->maxprot, a->type, cred, NULL);
651 if (error) {
652 if (swresv != 0) {
653 anon_unresv_zone(swresv,
654 seg->s_as->a_proc->p_zone);
655 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
656 "anon proc:%p %lu %u", seg, swresv, 0);
657 }
658 crfree(cred);
659 if (!use_rgn) {
660 hat_unload(seg->s_as->a_hat, seg->s_base,
661 seg->s_size, HAT_UNLOAD_UNMAP);
662 }
663 return (error);
664 }
665 /*
666 * svntr_hashtab will be NULL if we support shared regions.
667 */
668 trok = ((a->flags & MAP_TEXT) &&
669 (seg->s_size > textrepl_size_thresh ||
670 (a->flags & _MAP_TEXTREPL)) &&
671 lgrp_optimizations() && svntr_hashtab != NULL &&
672 a->type == MAP_PRIVATE && swresv == 0 &&
673 !(a->flags & MAP_NORESERVE) &&
674 seg->s_as != &kas && a->vp->v_type == VREG);
675
676 ASSERT(!trok || !use_rgn);
677 }
678
679 /*
680 * MAP_NORESERVE mappings don't count towards the VSZ of a process
681 * until we fault the pages in.
682 */
683 if ((a->vp == NULL || a->vp->v_type != VREG) &&
684 a->flags & MAP_NORESERVE) {
685 seg->s_as->a_resvsize -= seg->s_size;
686 }
687
688 /*
689 * If more than one segment in the address space, and they're adjacent
690 * virtually, try to concatenate them. Don't concatenate if an
691 * explicit anon_map structure was supplied (e.g., SystemV shared
692 * memory) or if we'll use text replication for this segment.
693 */
694 if (a->amp == NULL && !use_rgn && !trok) {
695 struct seg *pseg, *nseg;
696 struct segvn_data *psvd, *nsvd;
697 lgrp_mem_policy_t ppolicy, npolicy;
698 uint_t lgrp_mem_policy_flags = 0;
699
700 /*
701 * Memory policy flags (lgrp_mem_policy_flags) is valid when
702 * extending stack/heap segments.
703 */
704 if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
705 !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
706 lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
707 } else {
708 /*
709 * Get policy when not extending it from another segment
710 */
711 mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
712 }
713
714 /*
715 * First, try to concatenate the previous and new segments
716 */
717 pseg = AS_SEGPREV(seg->s_as, seg);
718 if (pseg != NULL &&
719 pseg->s_base + pseg->s_size == seg->s_base &&
720 pseg->s_ops == &segvn_ops) {
721 /*
722 * Get memory allocation policy from previous segment.
723 * When extension is specified (e.g. for heap) apply
724 * this policy to the new segment regardless of the
725 * outcome of segment concatenation. Extension occurs
726 * for non-default policy otherwise default policy is
727 * used and is based on extended segment size.
728 */
729 psvd = (struct segvn_data *)pseg->s_data;
730 ppolicy = psvd->policy_info.mem_policy;
731 if (lgrp_mem_policy_flags ==
732 LGRP_MP_FLAG_EXTEND_UP) {
733 if (ppolicy != lgrp_mem_default_policy) {
734 mpolicy = ppolicy;
735 } else {
736 mpolicy = lgrp_mem_policy_default(
737 pseg->s_size + seg->s_size,
738 a->type);
739 }
740 }
741
742 if (mpolicy == ppolicy &&
743 (pseg->s_size + seg->s_size <=
744 segvn_comb_thrshld || psvd->amp == NULL) &&
745 segvn_extend_prev(pseg, seg, a, swresv) == 0) {
746 /*
747 * success! now try to concatenate
748 * with following seg
749 */
750 crfree(cred);
751 nseg = AS_SEGNEXT(pseg->s_as, pseg);
752 if (nseg != NULL &&
753 nseg != pseg &&
754 nseg->s_ops == &segvn_ops &&
755 pseg->s_base + pseg->s_size ==
756 nseg->s_base)
757 (void) segvn_concat(pseg, nseg, 0);
758 ASSERT(pseg->s_szc == 0 ||
759 (a->szc == pseg->s_szc &&
760 IS_P2ALIGNED(pseg->s_base, pgsz) &&
761 IS_P2ALIGNED(pseg->s_size, pgsz)));
762 /*
763 * Communicate out the newly concatenated
764 * segment as part of the result.
765 */
766 *segpp = pseg;
767 return (0);
768 }
769 }
770
771 /*
772 * Failed, so try to concatenate with following seg
773 */
774 nseg = AS_SEGNEXT(seg->s_as, seg);
775 if (nseg != NULL &&
776 seg->s_base + seg->s_size == nseg->s_base &&
777 nseg->s_ops == &segvn_ops) {
778 /*
779 * Get memory allocation policy from next segment.
780 * When extension is specified (e.g. for stack) apply
781 * this policy to the new segment regardless of the
782 * outcome of segment concatenation. Extension occurs
783 * for non-default policy otherwise default policy is
784 * used and is based on extended segment size.
785 */
786 nsvd = (struct segvn_data *)nseg->s_data;
787 npolicy = nsvd->policy_info.mem_policy;
788 if (lgrp_mem_policy_flags ==
789 LGRP_MP_FLAG_EXTEND_DOWN) {
790 if (npolicy != lgrp_mem_default_policy) {
791 mpolicy = npolicy;
792 } else {
793 mpolicy = lgrp_mem_policy_default(
794 nseg->s_size + seg->s_size,
795 a->type);
796 }
797 }
798
799 if (mpolicy == npolicy &&
800 segvn_extend_next(seg, nseg, a, swresv) == 0) {
801 crfree(cred);
802 ASSERT(nseg->s_szc == 0 ||
803 (a->szc == nseg->s_szc &&
804 IS_P2ALIGNED(nseg->s_base, pgsz) &&
805 IS_P2ALIGNED(nseg->s_size, pgsz)));
806 /*
807 * Communicate out the newly concatenated
808 * segment as part of the result.
809 */
810 *segpp = nseg;
811 return (0);
812 }
813 }
814 }
815
816 if (a->vp != NULL) {
817 VN_HOLD(a->vp);
818 if (a->type == MAP_SHARED)
819 lgrp_shm_policy_init(NULL, a->vp);
820 }
821 svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
822
823 seg->s_ops = &segvn_ops;
824 seg->s_data = (void *)svd;
825 seg->s_szc = a->szc;
826
827 svd->seg = seg;
828 svd->vp = a->vp;
829 /*
830 * Anonymous mappings have no backing file so the offset is meaningless.
831 */
832 svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
833 svd->prot = a->prot;
834 svd->maxprot = a->maxprot;
835 svd->pageprot = 0;
836 svd->type = a->type;
837 svd->vpage = NULL;
838 svd->cred = cred;
839 svd->advice = MADV_NORMAL;
840 svd->pageadvice = 0;
841 svd->flags = (ushort_t)a->flags;
842 svd->softlockcnt = 0;
843 svd->softlockcnt_sbase = 0;
844 svd->softlockcnt_send = 0;
845 svd->svn_inz = 0;
846 svd->rcookie = HAT_INVALID_REGION_COOKIE;
847 svd->pageswap = 0;
848
849 if (a->szc != 0 && a->vp != NULL) {
850 segvn_setvnode_mpss(a->vp);
851 }
852 if (svd->type == MAP_SHARED && svd->vp != NULL &&
853 (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
854 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
855 segvn_inval_trcache(svd->vp);
856 }
857
858 amp = a->amp;
859 if ((svd->amp = amp) == NULL) {
860 svd->anon_index = 0;
861 if (svd->type == MAP_SHARED) {
862 svd->swresv = 0;
863 /*
864 * Shared mappings to a vp need no other setup.
865 * If we have a shared mapping to an anon_map object
866 * which hasn't been allocated yet, allocate the
867 * struct now so that it will be properly shared
868 * by remembering the swap reservation there.
869 */
870 if (a->vp == NULL) {
871 svd->amp = anonmap_alloc(seg->s_size, swresv,
872 ANON_SLEEP);
873 svd->amp->a_szc = seg->s_szc;
874 }
875 } else {
876 /*
877 * Private mapping (with or without a vp).
878 * Allocate anon_map when needed.
879 */
880 svd->swresv = swresv;
881 }
882 } else {
883 pgcnt_t anon_num;
884
885 /*
886 * Mapping to an existing anon_map structure without a vp.
887 * For now we will insure that the segment size isn't larger
888 * than the size - offset gives us. Later on we may wish to
889 * have the anon array dynamically allocated itself so that
890 * we don't always have to allocate all the anon pointer slots.
891 * This of course involves adding extra code to check that we
892 * aren't trying to use an anon pointer slot beyond the end
893 * of the currently allocated anon array.
894 */
895 if ((amp->size - a->offset) < seg->s_size) {
896 panic("segvn_create anon_map size");
897 /*NOTREACHED*/
898 }
899
900 anon_num = btopr(a->offset);
901
902 if (a->type == MAP_SHARED) {
903 /*
904 * SHARED mapping to a given anon_map.
905 */
906 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
907 amp->refcnt++;
908 if (a->szc > amp->a_szc) {
909 amp->a_szc = a->szc;
910 }
911 ANON_LOCK_EXIT(&->a_rwlock);
912 svd->anon_index = anon_num;
913 svd->swresv = 0;
914 } else {
915 /*
916 * PRIVATE mapping to a given anon_map.
917 * Make sure that all the needed anon
918 * structures are created (so that we will
919 * share the underlying pages if nothing
920 * is written by this mapping) and then
921 * duplicate the anon array as is done
922 * when a privately mapped segment is dup'ed.
923 */
924 struct anon *ap;
925 caddr_t addr;
926 caddr_t eaddr;
927 ulong_t anon_idx;
928 int hat_flag = HAT_LOAD;
929
930 if (svd->flags & MAP_TEXT) {
931 hat_flag |= HAT_LOAD_TEXT;
932 }
933
934 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
935 svd->amp->a_szc = seg->s_szc;
936 svd->anon_index = 0;
937 svd->swresv = swresv;
938
939 /*
940 * Prevent 2 threads from allocating anon
941 * slots simultaneously.
942 */
943 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
944 eaddr = seg->s_base + seg->s_size;
945
946 for (anon_idx = anon_num, addr = seg->s_base;
947 addr < eaddr; addr += PAGESIZE, anon_idx++) {
948 page_t *pp;
949
950 if ((ap = anon_get_ptr(amp->ahp,
951 anon_idx)) != NULL)
952 continue;
953
954 /*
955 * Allocate the anon struct now.
956 * Might as well load up translation
957 * to the page while we're at it...
958 */
959 pp = anon_zero(seg, addr, &ap, cred);
960 if (ap == NULL || pp == NULL) {
961 panic("segvn_create anon_zero");
962 /*NOTREACHED*/
963 }
964
965 /*
966 * Re-acquire the anon_map lock and
967 * initialize the anon array entry.
968 */
969 ASSERT(anon_get_ptr(amp->ahp,
970 anon_idx) == NULL);
971 (void) anon_set_ptr(amp->ahp, anon_idx, ap,
972 ANON_SLEEP);
973
974 ASSERT(seg->s_szc == 0);
975 ASSERT(!IS_VMODSORT(pp->p_vnode));
976
977 ASSERT(use_rgn == 0);
978 hat_memload(seg->s_as->a_hat, addr, pp,
979 svd->prot & ~PROT_WRITE, hat_flag);
980
981 page_unlock(pp);
982 }
983 ASSERT(seg->s_szc == 0);
984 anon_dup(amp->ahp, anon_num, svd->amp->ahp,
985 0, seg->s_size);
986 ANON_LOCK_EXIT(&->a_rwlock);
987 }
988 }
989
990 /*
991 * Set default memory allocation policy for segment
992 *
993 * Always set policy for private memory at least for initialization
994 * even if this is a shared memory segment
995 */
996 (void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
997
998 if (svd->type == MAP_SHARED)
999 (void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
1000 svd->vp, svd->offset, seg->s_size);
1001
1002 if (use_rgn) {
1003 ASSERT(!trok);
1004 ASSERT(svd->amp == NULL);
1005 svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
1006 seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
1007 (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
1008 HAT_REGION_TEXT);
1009 }
1010
1011 ASSERT(!trok || !(svd->prot & PROT_WRITE));
1012 svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
1013
1014 return (0);
1015 }
1016
1017 /*
1018 * Concatenate two existing segments, if possible.
1019 * Return 0 on success, -1 if two segments are not compatible
1020 * or -2 on memory allocation failure.
1021 * If amp_cat == 1 then try and concat segments with anon maps
1022 */
1023 static int
segvn_concat(struct seg * seg1,struct seg * seg2,int amp_cat)1024 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
1025 {
1026 struct segvn_data *svd1 = seg1->s_data;
1027 struct segvn_data *svd2 = seg2->s_data;
1028 struct anon_map *amp1 = svd1->amp;
1029 struct anon_map *amp2 = svd2->amp;
1030 struct vpage *vpage1 = svd1->vpage;
1031 struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
1032 size_t size, nvpsize;
1033 pgcnt_t npages1, npages2;
1034
1035 ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
1036 ASSERT(AS_WRITE_HELD(seg1->s_as));
1037 ASSERT(seg1->s_ops == seg2->s_ops);
1038
1039 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
1040 HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1041 return (-1);
1042 }
1043
1044 /* both segments exist, try to merge them */
1045 #define incompat(x) (svd1->x != svd2->x)
1046 if (incompat(vp) || incompat(maxprot) ||
1047 (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
1048 (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
1049 incompat(type) || incompat(cred) || incompat(flags) ||
1050 seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
1051 (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0)
1052 return (-1);
1053 #undef incompat
1054
1055 /*
1056 * vp == NULL implies zfod, offset doesn't matter
1057 */
1058 if (svd1->vp != NULL &&
1059 svd1->offset + seg1->s_size != svd2->offset) {
1060 return (-1);
1061 }
1062
1063 /*
1064 * Don't concatenate if either segment uses text replication.
1065 */
1066 if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1067 return (-1);
1068 }
1069
1070 /*
1071 * Fail early if we're not supposed to concatenate
1072 * segments with non NULL amp.
1073 */
1074 if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1075 return (-1);
1076 }
1077
1078 if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1079 if (amp1 != amp2) {
1080 return (-1);
1081 }
1082 if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1083 svd2->anon_index) {
1084 return (-1);
1085 }
1086 ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1087 }
1088
1089 /*
1090 * If either seg has vpages, create a new merged vpage array.
1091 */
1092 if (vpage1 != NULL || vpage2 != NULL) {
1093 struct vpage *vp, *evp;
1094
1095 npages1 = seg_pages(seg1);
1096 npages2 = seg_pages(seg2);
1097 nvpsize = vpgtob(npages1 + npages2);
1098
1099 if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1100 return (-2);
1101 }
1102
1103 if (vpage1 != NULL) {
1104 bcopy(vpage1, nvpage, vpgtob(npages1));
1105 } else {
1106 evp = nvpage + npages1;
1107 for (vp = nvpage; vp < evp; vp++) {
1108 VPP_SETPROT(vp, svd1->prot);
1109 VPP_SETADVICE(vp, svd1->advice);
1110 }
1111 }
1112
1113 if (vpage2 != NULL) {
1114 bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1115 } else {
1116 evp = nvpage + npages1 + npages2;
1117 for (vp = nvpage + npages1; vp < evp; vp++) {
1118 VPP_SETPROT(vp, svd2->prot);
1119 VPP_SETADVICE(vp, svd2->advice);
1120 }
1121 }
1122
1123 if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1124 ASSERT(svd1->swresv == seg1->s_size);
1125 ASSERT(!(svd1->flags & MAP_NORESERVE));
1126 ASSERT(!(svd2->flags & MAP_NORESERVE));
1127 evp = nvpage + npages1;
1128 for (vp = nvpage; vp < evp; vp++) {
1129 VPP_SETSWAPRES(vp);
1130 }
1131 }
1132
1133 if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1134 ASSERT(svd2->swresv == seg2->s_size);
1135 ASSERT(!(svd1->flags & MAP_NORESERVE));
1136 ASSERT(!(svd2->flags & MAP_NORESERVE));
1137 vp = nvpage + npages1;
1138 evp = vp + npages2;
1139 for (; vp < evp; vp++) {
1140 VPP_SETSWAPRES(vp);
1141 }
1142 }
1143 }
1144 ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1145 (svd1->pageswap == 0 && svd2->pageswap == 0));
1146
1147 /*
1148 * If either segment has private pages, create a new merged anon
1149 * array. If mergeing shared anon segments just decrement anon map's
1150 * refcnt.
1151 */
1152 if (amp1 != NULL && svd1->type == MAP_SHARED) {
1153 ASSERT(amp1 == amp2 && svd1->vp == NULL);
1154 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER);
1155 ASSERT(amp1->refcnt >= 2);
1156 amp1->refcnt--;
1157 ANON_LOCK_EXIT(&1->a_rwlock);
1158 svd2->amp = NULL;
1159 } else if (amp1 != NULL || amp2 != NULL) {
1160 struct anon_hdr *nahp;
1161 struct anon_map *namp = NULL;
1162 size_t asize;
1163
1164 ASSERT(svd1->type == MAP_PRIVATE);
1165
1166 asize = seg1->s_size + seg2->s_size;
1167 if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1168 if (nvpage != NULL) {
1169 kmem_free(nvpage, nvpsize);
1170 }
1171 return (-2);
1172 }
1173 if (amp1 != NULL) {
1174 /*
1175 * XXX anon rwlock is not really needed because
1176 * this is a private segment and we are writers.
1177 */
1178 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER);
1179 ASSERT(amp1->refcnt == 1);
1180 if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1181 nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1182 anon_release(nahp, btop(asize));
1183 ANON_LOCK_EXIT(&1->a_rwlock);
1184 if (nvpage != NULL) {
1185 kmem_free(nvpage, nvpsize);
1186 }
1187 return (-2);
1188 }
1189 }
1190 if (amp2 != NULL) {
1191 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER);
1192 ASSERT(amp2->refcnt == 1);
1193 if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1194 nahp, btop(seg1->s_size), btop(seg2->s_size),
1195 ANON_NOSLEEP)) {
1196 anon_release(nahp, btop(asize));
1197 ANON_LOCK_EXIT(&2->a_rwlock);
1198 if (amp1 != NULL) {
1199 ANON_LOCK_EXIT(&1->a_rwlock);
1200 }
1201 if (nvpage != NULL) {
1202 kmem_free(nvpage, nvpsize);
1203 }
1204 return (-2);
1205 }
1206 }
1207 if (amp1 != NULL) {
1208 namp = amp1;
1209 anon_release(amp1->ahp, btop(amp1->size));
1210 }
1211 if (amp2 != NULL) {
1212 if (namp == NULL) {
1213 ASSERT(amp1 == NULL);
1214 namp = amp2;
1215 anon_release(amp2->ahp, btop(amp2->size));
1216 } else {
1217 amp2->refcnt--;
1218 ANON_LOCK_EXIT(&2->a_rwlock);
1219 anonmap_free(amp2);
1220 }
1221 svd2->amp = NULL; /* needed for seg_free */
1222 }
1223 namp->ahp = nahp;
1224 namp->size = asize;
1225 svd1->amp = namp;
1226 svd1->anon_index = 0;
1227 ANON_LOCK_EXIT(&namp->a_rwlock);
1228 }
1229 /*
1230 * Now free the old vpage structures.
1231 */
1232 if (nvpage != NULL) {
1233 if (vpage1 != NULL) {
1234 kmem_free(vpage1, vpgtob(npages1));
1235 }
1236 if (vpage2 != NULL) {
1237 svd2->vpage = NULL;
1238 kmem_free(vpage2, vpgtob(npages2));
1239 }
1240 if (svd2->pageprot) {
1241 svd1->pageprot = 1;
1242 }
1243 if (svd2->pageadvice) {
1244 svd1->pageadvice = 1;
1245 }
1246 if (svd2->pageswap) {
1247 svd1->pageswap = 1;
1248 }
1249 svd1->vpage = nvpage;
1250 }
1251
1252 /* all looks ok, merge segments */
1253 svd1->swresv += svd2->swresv;
1254 svd2->swresv = 0; /* so seg_free doesn't release swap space */
1255 size = seg2->s_size;
1256 seg_free(seg2);
1257 seg1->s_size += size;
1258 return (0);
1259 }
1260
1261 /*
1262 * Extend the previous segment (seg1) to include the
1263 * new segment (seg2 + a), if possible.
1264 * Return 0 on success.
1265 */
1266 static int
segvn_extend_prev(struct seg * seg1,struct seg * seg2,struct segvn_crargs * a,size_t swresv)1267 segvn_extend_prev(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a,
1268 size_t swresv)
1269 {
1270 struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1271 size_t size;
1272 struct anon_map *amp1;
1273 struct vpage *new_vpage;
1274
1275 /*
1276 * We don't need any segment level locks for "segvn" data
1277 * since the address space is "write" locked.
1278 */
1279 ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as));
1280
1281 if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1282 return (-1);
1283 }
1284
1285 /* second segment is new, try to extend first */
1286 /* XXX - should also check cred */
1287 if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1288 (!svd1->pageprot && (svd1->prot != a->prot)) ||
1289 svd1->type != a->type || svd1->flags != a->flags ||
1290 seg1->s_szc != a->szc || svd1->softlockcnt_send > 0)
1291 return (-1);
1292
1293 /* vp == NULL implies zfod, offset doesn't matter */
1294 if (svd1->vp != NULL &&
1295 svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1296 return (-1);
1297
1298 if (svd1->tr_state != SEGVN_TR_OFF) {
1299 return (-1);
1300 }
1301
1302 amp1 = svd1->amp;
1303 if (amp1) {
1304 pgcnt_t newpgs;
1305
1306 /*
1307 * Segment has private pages, can data structures
1308 * be expanded?
1309 *
1310 * Acquire the anon_map lock to prevent it from changing,
1311 * if it is shared. This ensures that the anon_map
1312 * will not change while a thread which has a read/write
1313 * lock on an address space references it.
1314 * XXX - Don't need the anon_map lock at all if "refcnt"
1315 * is 1.
1316 *
1317 * Can't grow a MAP_SHARED segment with an anonmap because
1318 * there may be existing anon slots where we want to extend
1319 * the segment and we wouldn't know what to do with them
1320 * (e.g., for tmpfs right thing is to just leave them there,
1321 * for /dev/zero they should be cleared out).
1322 */
1323 if (svd1->type == MAP_SHARED)
1324 return (-1);
1325
1326 ANON_LOCK_ENTER(&1->a_rwlock, RW_WRITER);
1327 if (amp1->refcnt > 1) {
1328 ANON_LOCK_EXIT(&1->a_rwlock);
1329 return (-1);
1330 }
1331 newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1332 btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1333
1334 if (newpgs == 0) {
1335 ANON_LOCK_EXIT(&1->a_rwlock);
1336 return (-1);
1337 }
1338 amp1->size = ptob(newpgs);
1339 ANON_LOCK_EXIT(&1->a_rwlock);
1340 }
1341 if (svd1->vpage != NULL) {
1342 struct vpage *vp, *evp;
1343 new_vpage =
1344 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1345 KM_NOSLEEP);
1346 if (new_vpage == NULL)
1347 return (-1);
1348 bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1349 kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1350 svd1->vpage = new_vpage;
1351
1352 vp = new_vpage + seg_pages(seg1);
1353 evp = vp + seg_pages(seg2);
1354 for (; vp < evp; vp++)
1355 VPP_SETPROT(vp, a->prot);
1356 if (svd1->pageswap && swresv) {
1357 ASSERT(!(svd1->flags & MAP_NORESERVE));
1358 ASSERT(swresv == seg2->s_size);
1359 vp = new_vpage + seg_pages(seg1);
1360 for (; vp < evp; vp++) {
1361 VPP_SETSWAPRES(vp);
1362 }
1363 }
1364 }
1365 ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1366 size = seg2->s_size;
1367 seg_free(seg2);
1368 seg1->s_size += size;
1369 svd1->swresv += swresv;
1370 if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1371 svd1->type == MAP_SHARED && svd1->vp != NULL &&
1372 (svd1->vp->v_flag & VVMEXEC)) {
1373 ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1374 segvn_inval_trcache(svd1->vp);
1375 }
1376 return (0);
1377 }
1378
1379 /*
1380 * Extend the next segment (seg2) to include the
1381 * new segment (seg1 + a), if possible.
1382 * Return 0 on success.
1383 */
1384 static int
segvn_extend_next(struct seg * seg1,struct seg * seg2,struct segvn_crargs * a,size_t swresv)1385 segvn_extend_next(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a,
1386 size_t swresv)
1387 {
1388 struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1389 size_t size;
1390 struct anon_map *amp2;
1391 struct vpage *new_vpage;
1392
1393 /*
1394 * We don't need any segment level locks for "segvn" data
1395 * since the address space is "write" locked.
1396 */
1397 ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as));
1398
1399 if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1400 return (-1);
1401 }
1402
1403 /* first segment is new, try to extend second */
1404 /* XXX - should also check cred */
1405 if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1406 (!svd2->pageprot && (svd2->prot != a->prot)) ||
1407 svd2->type != a->type || svd2->flags != a->flags ||
1408 seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0)
1409 return (-1);
1410 /* vp == NULL implies zfod, offset doesn't matter */
1411 if (svd2->vp != NULL &&
1412 (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1413 return (-1);
1414
1415 if (svd2->tr_state != SEGVN_TR_OFF) {
1416 return (-1);
1417 }
1418
1419 amp2 = svd2->amp;
1420 if (amp2) {
1421 pgcnt_t newpgs;
1422
1423 /*
1424 * Segment has private pages, can data structures
1425 * be expanded?
1426 *
1427 * Acquire the anon_map lock to prevent it from changing,
1428 * if it is shared. This ensures that the anon_map
1429 * will not change while a thread which has a read/write
1430 * lock on an address space references it.
1431 *
1432 * XXX - Don't need the anon_map lock at all if "refcnt"
1433 * is 1.
1434 */
1435 if (svd2->type == MAP_SHARED)
1436 return (-1);
1437
1438 ANON_LOCK_ENTER(&2->a_rwlock, RW_WRITER);
1439 if (amp2->refcnt > 1) {
1440 ANON_LOCK_EXIT(&2->a_rwlock);
1441 return (-1);
1442 }
1443 newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1444 btop(seg2->s_size), btop(seg1->s_size),
1445 ANON_NOSLEEP | ANON_GROWDOWN);
1446
1447 if (newpgs == 0) {
1448 ANON_LOCK_EXIT(&2->a_rwlock);
1449 return (-1);
1450 }
1451 amp2->size = ptob(newpgs);
1452 ANON_LOCK_EXIT(&2->a_rwlock);
1453 }
1454 if (svd2->vpage != NULL) {
1455 struct vpage *vp, *evp;
1456 new_vpage =
1457 kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1458 KM_NOSLEEP);
1459 if (new_vpage == NULL) {
1460 /* Not merging segments so adjust anon_index back */
1461 if (amp2)
1462 svd2->anon_index += seg_pages(seg1);
1463 return (-1);
1464 }
1465 bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1466 vpgtob(seg_pages(seg2)));
1467 kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1468 svd2->vpage = new_vpage;
1469
1470 vp = new_vpage;
1471 evp = vp + seg_pages(seg1);
1472 for (; vp < evp; vp++)
1473 VPP_SETPROT(vp, a->prot);
1474 if (svd2->pageswap && swresv) {
1475 ASSERT(!(svd2->flags & MAP_NORESERVE));
1476 ASSERT(swresv == seg1->s_size);
1477 vp = new_vpage;
1478 for (; vp < evp; vp++) {
1479 VPP_SETSWAPRES(vp);
1480 }
1481 }
1482 }
1483 ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1484 size = seg1->s_size;
1485 seg_free(seg1);
1486 seg2->s_size += size;
1487 seg2->s_base -= size;
1488 svd2->offset -= size;
1489 svd2->swresv += swresv;
1490 if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1491 svd2->type == MAP_SHARED && svd2->vp != NULL &&
1492 (svd2->vp->v_flag & VVMEXEC)) {
1493 ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1494 segvn_inval_trcache(svd2->vp);
1495 }
1496 return (0);
1497 }
1498
1499 /*
1500 * Duplicate all the pages in the segment. This may break COW sharing for a
1501 * given page. If the page is marked with inherit zero set, then instead of
1502 * duplicating the page, we zero the page.
1503 */
1504 static int
segvn_dup_pages(struct seg * seg,struct seg * newseg)1505 segvn_dup_pages(struct seg *seg, struct seg *newseg)
1506 {
1507 int error;
1508 uint_t prot;
1509 page_t *pp;
1510 struct anon *ap, *newap;
1511 size_t i;
1512 caddr_t addr;
1513
1514 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1515 struct segvn_data *newsvd = (struct segvn_data *)newseg->s_data;
1516 ulong_t old_idx = svd->anon_index;
1517 ulong_t new_idx = 0;
1518
1519 i = btopr(seg->s_size);
1520 addr = seg->s_base;
1521
1522 /*
1523 * XXX break cow sharing using PAGESIZE
1524 * pages. They will be relocated into larger
1525 * pages at fault time.
1526 */
1527 while (i-- > 0) {
1528 if ((ap = anon_get_ptr(svd->amp->ahp, old_idx)) != NULL) {
1529 struct vpage *vpp;
1530
1531 vpp = &svd->vpage[seg_page(seg, addr)];
1532
1533 /*
1534 * prot need not be computed below 'cause anon_private
1535 * is going to ignore it anyway as child doesn't inherit
1536 * pagelock from parent.
1537 */
1538 prot = svd->pageprot ? VPP_PROT(vpp) : svd->prot;
1539
1540 /*
1541 * Check whether we should zero this or dup it.
1542 */
1543 if (svd->svn_inz == SEGVN_INZ_ALL ||
1544 (svd->svn_inz == SEGVN_INZ_VPP &&
1545 VPP_ISINHZERO(vpp))) {
1546 pp = anon_zero(newseg, addr, &newap,
1547 newsvd->cred);
1548 } else {
1549 page_t *anon_pl[1+1];
1550 uint_t vpprot;
1551 error = anon_getpage(&ap, &vpprot, anon_pl,
1552 PAGESIZE, seg, addr, S_READ, svd->cred);
1553 if (error != 0)
1554 return (error);
1555
1556 pp = anon_private(&newap, newseg, addr, prot,
1557 anon_pl[0], 0, newsvd->cred);
1558 }
1559 if (pp == NULL) {
1560 return (ENOMEM);
1561 }
1562 (void) anon_set_ptr(newsvd->amp->ahp, new_idx, newap,
1563 ANON_SLEEP);
1564 page_unlock(pp);
1565 }
1566 addr += PAGESIZE;
1567 old_idx++;
1568 new_idx++;
1569 }
1570
1571 return (0);
1572 }
1573
1574 static int
segvn_dup(struct seg * seg,struct seg * newseg)1575 segvn_dup(struct seg *seg, struct seg *newseg)
1576 {
1577 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1578 struct segvn_data *newsvd;
1579 pgcnt_t npages = seg_pages(seg);
1580 int error = 0;
1581 size_t len;
1582 struct anon_map *amp;
1583
1584 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1585 ASSERT(newseg->s_as->a_proc->p_parent == curproc);
1586
1587 /*
1588 * If segment has anon reserved, reserve more for the new seg.
1589 * For a MAP_NORESERVE segment swresv will be a count of all the
1590 * allocated anon slots; thus we reserve for the child as many slots
1591 * as the parent has allocated. This semantic prevents the child or
1592 * parent from dieing during a copy-on-write fault caused by trying
1593 * to write a shared pre-existing anon page.
1594 */
1595 if ((len = svd->swresv) != 0) {
1596 if (anon_resv(svd->swresv) == 0)
1597 return (ENOMEM);
1598
1599 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1600 seg, len, 0);
1601 }
1602
1603 newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1604
1605 newseg->s_ops = &segvn_ops;
1606 newseg->s_data = (void *)newsvd;
1607 newseg->s_szc = seg->s_szc;
1608
1609 newsvd->seg = newseg;
1610 if ((newsvd->vp = svd->vp) != NULL) {
1611 VN_HOLD(svd->vp);
1612 if (svd->type == MAP_SHARED)
1613 lgrp_shm_policy_init(NULL, svd->vp);
1614 }
1615 newsvd->offset = svd->offset;
1616 newsvd->prot = svd->prot;
1617 newsvd->maxprot = svd->maxprot;
1618 newsvd->pageprot = svd->pageprot;
1619 newsvd->type = svd->type;
1620 newsvd->cred = svd->cred;
1621 crhold(newsvd->cred);
1622 newsvd->advice = svd->advice;
1623 newsvd->pageadvice = svd->pageadvice;
1624 newsvd->svn_inz = svd->svn_inz;
1625 newsvd->swresv = svd->swresv;
1626 newsvd->pageswap = svd->pageswap;
1627 newsvd->flags = svd->flags;
1628 newsvd->softlockcnt = 0;
1629 newsvd->softlockcnt_sbase = 0;
1630 newsvd->softlockcnt_send = 0;
1631 newsvd->policy_info = svd->policy_info;
1632 newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1633
1634 if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1635 /*
1636 * Not attaching to a shared anon object.
1637 */
1638 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1639 svd->tr_state == SEGVN_TR_OFF);
1640 if (svd->tr_state == SEGVN_TR_ON) {
1641 ASSERT(newsvd->vp != NULL && amp != NULL);
1642 newsvd->tr_state = SEGVN_TR_INIT;
1643 } else {
1644 newsvd->tr_state = svd->tr_state;
1645 }
1646 newsvd->amp = NULL;
1647 newsvd->anon_index = 0;
1648 } else {
1649 /* regions for now are only used on pure vnode segments */
1650 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1651 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1652 newsvd->tr_state = SEGVN_TR_OFF;
1653 if (svd->type == MAP_SHARED) {
1654 ASSERT(svd->svn_inz == SEGVN_INZ_NONE);
1655 newsvd->amp = amp;
1656 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
1657 amp->refcnt++;
1658 ANON_LOCK_EXIT(&->a_rwlock);
1659 newsvd->anon_index = svd->anon_index;
1660 } else {
1661 int reclaim = 1;
1662
1663 /*
1664 * Allocate and initialize new anon_map structure.
1665 */
1666 newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1667 ANON_SLEEP);
1668 newsvd->amp->a_szc = newseg->s_szc;
1669 newsvd->anon_index = 0;
1670 ASSERT(svd->svn_inz == SEGVN_INZ_NONE ||
1671 svd->svn_inz == SEGVN_INZ_ALL ||
1672 svd->svn_inz == SEGVN_INZ_VPP);
1673
1674 /*
1675 * We don't have to acquire the anon_map lock
1676 * for the new segment (since it belongs to an
1677 * address space that is still not associated
1678 * with any process), or the segment in the old
1679 * address space (since all threads in it
1680 * are stopped while duplicating the address space).
1681 */
1682
1683 /*
1684 * The goal of the following code is to make sure that
1685 * softlocked pages do not end up as copy on write
1686 * pages. This would cause problems where one
1687 * thread writes to a page that is COW and a different
1688 * thread in the same process has softlocked it. The
1689 * softlock lock would move away from this process
1690 * because the write would cause this process to get
1691 * a copy (without the softlock).
1692 *
1693 * The strategy here is to just break the
1694 * sharing on pages that could possibly be
1695 * softlocked.
1696 *
1697 * In addition, if any pages have been marked that they
1698 * should be inherited as zero, then we immediately go
1699 * ahead and break COW and zero them. In the case of a
1700 * softlocked page that should be inherited zero, we
1701 * break COW and just get a zero page.
1702 */
1703 retry:
1704 if (svd->softlockcnt ||
1705 svd->svn_inz != SEGVN_INZ_NONE) {
1706 /*
1707 * The softlock count might be non zero
1708 * because some pages are still stuck in the
1709 * cache for lazy reclaim. Flush the cache
1710 * now. This should drop the count to zero.
1711 * [or there is really I/O going on to these
1712 * pages]. Note, we have the writers lock so
1713 * nothing gets inserted during the flush.
1714 */
1715 if (svd->softlockcnt && reclaim == 1) {
1716 segvn_purge(seg);
1717 reclaim = 0;
1718 goto retry;
1719 }
1720
1721 error = segvn_dup_pages(seg, newseg);
1722 if (error != 0) {
1723 newsvd->vpage = NULL;
1724 goto out;
1725 }
1726 } else { /* common case */
1727 if (seg->s_szc != 0) {
1728 /*
1729 * If at least one of anon slots of a
1730 * large page exists then make sure
1731 * all anon slots of a large page
1732 * exist to avoid partial cow sharing
1733 * of a large page in the future.
1734 */
1735 anon_dup_fill_holes(amp->ahp,
1736 svd->anon_index, newsvd->amp->ahp,
1737 0, seg->s_size, seg->s_szc,
1738 svd->vp != NULL);
1739 } else {
1740 anon_dup(amp->ahp, svd->anon_index,
1741 newsvd->amp->ahp, 0, seg->s_size);
1742 }
1743
1744 hat_clrattr(seg->s_as->a_hat, seg->s_base,
1745 seg->s_size, PROT_WRITE);
1746 }
1747 }
1748 }
1749 /*
1750 * If necessary, create a vpage structure for the new segment.
1751 * Do not copy any page lock indications.
1752 */
1753 if (svd->vpage != NULL) {
1754 uint_t i;
1755 struct vpage *ovp = svd->vpage;
1756 struct vpage *nvp;
1757
1758 nvp = newsvd->vpage =
1759 kmem_alloc(vpgtob(npages), KM_SLEEP);
1760 for (i = 0; i < npages; i++) {
1761 *nvp = *ovp++;
1762 VPP_CLRPPLOCK(nvp++);
1763 }
1764 } else
1765 newsvd->vpage = NULL;
1766
1767 /* Inform the vnode of the new mapping */
1768 if (newsvd->vp != NULL) {
1769 error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1770 newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1771 newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1772 }
1773 out:
1774 if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1775 ASSERT(newsvd->amp == NULL);
1776 ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1777 newsvd->rcookie = svd->rcookie;
1778 hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1779 }
1780 return (error);
1781 }
1782
1783
1784 /*
1785 * callback function to invoke free_vp_pages() for only those pages actually
1786 * processed by the HAT when a shared region is destroyed.
1787 */
1788 extern int free_pages;
1789
1790 static void
segvn_hat_rgn_unload_callback(caddr_t saddr,caddr_t eaddr,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff)1791 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1792 size_t r_size, void *r_obj, u_offset_t r_objoff)
1793 {
1794 u_offset_t off;
1795 size_t len;
1796 vnode_t *vp = (vnode_t *)r_obj;
1797
1798 ASSERT(eaddr > saddr);
1799 ASSERT(saddr >= r_saddr);
1800 ASSERT(saddr < r_saddr + r_size);
1801 ASSERT(eaddr > r_saddr);
1802 ASSERT(eaddr <= r_saddr + r_size);
1803 ASSERT(vp != NULL);
1804
1805 if (!free_pages) {
1806 return;
1807 }
1808
1809 len = eaddr - saddr;
1810 off = (saddr - r_saddr) + r_objoff;
1811 free_vp_pages(vp, off, len);
1812 }
1813
1814 /*
1815 * callback function used by segvn_unmap to invoke free_vp_pages() for only
1816 * those pages actually processed by the HAT
1817 */
1818 static void
segvn_hat_unload_callback(hat_callback_t * cb)1819 segvn_hat_unload_callback(hat_callback_t *cb)
1820 {
1821 struct seg *seg = cb->hcb_data;
1822 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1823 size_t len;
1824 u_offset_t off;
1825
1826 ASSERT(svd->vp != NULL);
1827 ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1828 ASSERT(cb->hcb_start_addr >= seg->s_base);
1829
1830 len = cb->hcb_end_addr - cb->hcb_start_addr;
1831 off = cb->hcb_start_addr - seg->s_base;
1832 free_vp_pages(svd->vp, svd->offset + off, len);
1833 }
1834
1835 /*
1836 * This function determines the number of bytes of swap reserved by
1837 * a segment for which per-page accounting is present. It is used to
1838 * calculate the correct value of a segvn_data's swresv.
1839 */
1840 static size_t
segvn_count_swap_by_vpages(struct seg * seg)1841 segvn_count_swap_by_vpages(struct seg *seg)
1842 {
1843 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1844 struct vpage *vp, *evp;
1845 size_t nswappages = 0;
1846
1847 ASSERT(svd->pageswap);
1848 ASSERT(svd->vpage != NULL);
1849
1850 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1851
1852 for (vp = svd->vpage; vp < evp; vp++) {
1853 if (VPP_ISSWAPRES(vp))
1854 nswappages++;
1855 }
1856
1857 return (nswappages << PAGESHIFT);
1858 }
1859
1860 static int
segvn_unmap(struct seg * seg,caddr_t addr,size_t len)1861 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1862 {
1863 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1864 struct segvn_data *nsvd;
1865 struct seg *nseg;
1866 struct anon_map *amp;
1867 pgcnt_t opages; /* old segment size in pages */
1868 pgcnt_t npages; /* new segment size in pages */
1869 pgcnt_t dpages; /* pages being deleted (unmapped) */
1870 hat_callback_t callback; /* used for free_vp_pages() */
1871 hat_callback_t *cbp = NULL;
1872 caddr_t nbase;
1873 size_t nsize;
1874 size_t oswresv;
1875 int reclaim = 1;
1876
1877 /*
1878 * We don't need any segment level locks for "segvn" data
1879 * since the address space is "write" locked.
1880 */
1881 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1882
1883 /*
1884 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1885 * softlockcnt is protected from change by the as write lock.
1886 */
1887 retry:
1888 if (svd->softlockcnt > 0) {
1889 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1890
1891 /*
1892 * If this is shared segment non 0 softlockcnt
1893 * means locked pages are still in use.
1894 */
1895 if (svd->type == MAP_SHARED) {
1896 return (EAGAIN);
1897 }
1898
1899 /*
1900 * since we do have the writers lock nobody can fill
1901 * the cache during the purge. The flush either succeeds
1902 * or we still have pending I/Os.
1903 */
1904 if (reclaim == 1) {
1905 segvn_purge(seg);
1906 reclaim = 0;
1907 goto retry;
1908 }
1909 return (EAGAIN);
1910 }
1911
1912 /*
1913 * Check for bad sizes
1914 */
1915 if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1916 (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1917 panic("segvn_unmap");
1918 /*NOTREACHED*/
1919 }
1920
1921 if (seg->s_szc != 0) {
1922 size_t pgsz = page_get_pagesize(seg->s_szc);
1923 int err;
1924 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1925 ASSERT(seg->s_base != addr || seg->s_size != len);
1926 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1927 ASSERT(svd->amp == NULL);
1928 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1929 hat_leave_region(seg->s_as->a_hat,
1930 svd->rcookie, HAT_REGION_TEXT);
1931 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1932 /*
1933 * could pass a flag to segvn_demote_range()
1934 * below to tell it not to do any unloads but
1935 * this case is rare enough to not bother for
1936 * now.
1937 */
1938 } else if (svd->tr_state == SEGVN_TR_INIT) {
1939 svd->tr_state = SEGVN_TR_OFF;
1940 } else if (svd->tr_state == SEGVN_TR_ON) {
1941 ASSERT(svd->amp != NULL);
1942 segvn_textunrepl(seg, 1);
1943 ASSERT(svd->amp == NULL);
1944 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1945 }
1946 VM_STAT_ADD(segvnvmstats.demoterange[0]);
1947 err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1948 if (err == 0) {
1949 return (IE_RETRY);
1950 }
1951 return (err);
1952 }
1953 }
1954
1955 /* Inform the vnode of the unmapping. */
1956 if (svd->vp) {
1957 int error;
1958
1959 error = VOP_DELMAP(svd->vp,
1960 (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1961 seg->s_as, addr, len, svd->prot, svd->maxprot,
1962 svd->type, svd->cred, NULL);
1963
1964 if (error == EAGAIN)
1965 return (error);
1966 }
1967
1968 /*
1969 * Remove any page locks set through this mapping.
1970 * If text replication is not off no page locks could have been
1971 * established via this mapping.
1972 */
1973 if (svd->tr_state == SEGVN_TR_OFF) {
1974 (void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1975 }
1976
1977 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1978 ASSERT(svd->amp == NULL);
1979 ASSERT(svd->tr_state == SEGVN_TR_OFF);
1980 ASSERT(svd->type == MAP_PRIVATE);
1981 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1982 HAT_REGION_TEXT);
1983 svd->rcookie = HAT_INVALID_REGION_COOKIE;
1984 } else if (svd->tr_state == SEGVN_TR_ON) {
1985 ASSERT(svd->amp != NULL);
1986 ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1987 segvn_textunrepl(seg, 1);
1988 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1989 } else {
1990 if (svd->tr_state != SEGVN_TR_OFF) {
1991 ASSERT(svd->tr_state == SEGVN_TR_INIT);
1992 svd->tr_state = SEGVN_TR_OFF;
1993 }
1994 /*
1995 * Unload any hardware translations in the range to be taken
1996 * out. Use a callback to invoke free_vp_pages() effectively.
1997 */
1998 if (svd->vp != NULL && free_pages != 0) {
1999 callback.hcb_data = seg;
2000 callback.hcb_function = segvn_hat_unload_callback;
2001 cbp = &callback;
2002 }
2003 hat_unload_callback(seg->s_as->a_hat, addr, len,
2004 HAT_UNLOAD_UNMAP, cbp);
2005
2006 if (svd->type == MAP_SHARED && svd->vp != NULL &&
2007 (svd->vp->v_flag & VVMEXEC) &&
2008 ((svd->prot & PROT_WRITE) || svd->pageprot)) {
2009 segvn_inval_trcache(svd->vp);
2010 }
2011 }
2012
2013 /*
2014 * Check for entire segment
2015 */
2016 if (addr == seg->s_base && len == seg->s_size) {
2017 seg_free(seg);
2018 return (0);
2019 }
2020
2021 opages = seg_pages(seg);
2022 dpages = btop(len);
2023 npages = opages - dpages;
2024 amp = svd->amp;
2025 ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
2026
2027 /*
2028 * Check for beginning of segment
2029 */
2030 if (addr == seg->s_base) {
2031 if (svd->vpage != NULL) {
2032 size_t nbytes;
2033 struct vpage *ovpage;
2034
2035 ovpage = svd->vpage; /* keep pointer to vpage */
2036
2037 nbytes = vpgtob(npages);
2038 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2039 bcopy(&ovpage[dpages], svd->vpage, nbytes);
2040
2041 /* free up old vpage */
2042 kmem_free(ovpage, vpgtob(opages));
2043 }
2044 if (amp != NULL) {
2045 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
2046 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2047 /*
2048 * Shared anon map is no longer in use. Before
2049 * freeing its pages purge all entries from
2050 * pcache that belong to this amp.
2051 */
2052 if (svd->type == MAP_SHARED) {
2053 ASSERT(amp->refcnt == 1);
2054 ASSERT(svd->softlockcnt == 0);
2055 anonmap_purge(amp);
2056 }
2057 /*
2058 * Free up now unused parts of anon_map array.
2059 */
2060 if (amp->a_szc == seg->s_szc) {
2061 if (seg->s_szc != 0) {
2062 anon_free_pages(amp->ahp,
2063 svd->anon_index, len,
2064 seg->s_szc);
2065 } else {
2066 anon_free(amp->ahp,
2067 svd->anon_index,
2068 len);
2069 }
2070 } else {
2071 ASSERT(svd->type == MAP_SHARED);
2072 ASSERT(amp->a_szc > seg->s_szc);
2073 anon_shmap_free_pages(amp,
2074 svd->anon_index, len);
2075 }
2076
2077 /*
2078 * Unreserve swap space for the
2079 * unmapped chunk of this segment in
2080 * case it's MAP_SHARED
2081 */
2082 if (svd->type == MAP_SHARED) {
2083 anon_unresv_zone(len,
2084 seg->s_as->a_proc->p_zone);
2085 amp->swresv -= len;
2086 }
2087 }
2088 ANON_LOCK_EXIT(&->a_rwlock);
2089 svd->anon_index += dpages;
2090 }
2091 if (svd->vp != NULL)
2092 svd->offset += len;
2093
2094 seg->s_base += len;
2095 seg->s_size -= len;
2096
2097 if (svd->swresv) {
2098 if (svd->flags & MAP_NORESERVE) {
2099 ASSERT(amp);
2100 oswresv = svd->swresv;
2101
2102 svd->swresv = ptob(anon_pages(amp->ahp,
2103 svd->anon_index, npages));
2104 anon_unresv_zone(oswresv - svd->swresv,
2105 seg->s_as->a_proc->p_zone);
2106 if (SEG_IS_PARTIAL_RESV(seg))
2107 seg->s_as->a_resvsize -= oswresv -
2108 svd->swresv;
2109 } else {
2110 size_t unlen;
2111
2112 if (svd->pageswap) {
2113 oswresv = svd->swresv;
2114 svd->swresv =
2115 segvn_count_swap_by_vpages(seg);
2116 ASSERT(oswresv >= svd->swresv);
2117 unlen = oswresv - svd->swresv;
2118 } else {
2119 svd->swresv -= len;
2120 ASSERT(svd->swresv == seg->s_size);
2121 unlen = len;
2122 }
2123 anon_unresv_zone(unlen,
2124 seg->s_as->a_proc->p_zone);
2125 }
2126 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2127 seg, len, 0);
2128 }
2129
2130 return (0);
2131 }
2132
2133 /*
2134 * Check for end of segment
2135 */
2136 if (addr + len == seg->s_base + seg->s_size) {
2137 if (svd->vpage != NULL) {
2138 size_t nbytes;
2139 struct vpage *ovpage;
2140
2141 ovpage = svd->vpage; /* keep pointer to vpage */
2142
2143 nbytes = vpgtob(npages);
2144 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2145 bcopy(ovpage, svd->vpage, nbytes);
2146
2147 /* free up old vpage */
2148 kmem_free(ovpage, vpgtob(opages));
2149
2150 }
2151 if (amp != NULL) {
2152 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
2153 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2154 /*
2155 * Free up now unused parts of anon_map array.
2156 */
2157 ulong_t an_idx = svd->anon_index + npages;
2158
2159 /*
2160 * Shared anon map is no longer in use. Before
2161 * freeing its pages purge all entries from
2162 * pcache that belong to this amp.
2163 */
2164 if (svd->type == MAP_SHARED) {
2165 ASSERT(amp->refcnt == 1);
2166 ASSERT(svd->softlockcnt == 0);
2167 anonmap_purge(amp);
2168 }
2169
2170 if (amp->a_szc == seg->s_szc) {
2171 if (seg->s_szc != 0) {
2172 anon_free_pages(amp->ahp,
2173 an_idx, len,
2174 seg->s_szc);
2175 } else {
2176 anon_free(amp->ahp, an_idx,
2177 len);
2178 }
2179 } else {
2180 ASSERT(svd->type == MAP_SHARED);
2181 ASSERT(amp->a_szc > seg->s_szc);
2182 anon_shmap_free_pages(amp,
2183 an_idx, len);
2184 }
2185
2186 /*
2187 * Unreserve swap space for the
2188 * unmapped chunk of this segment in
2189 * case it's MAP_SHARED
2190 */
2191 if (svd->type == MAP_SHARED) {
2192 anon_unresv_zone(len,
2193 seg->s_as->a_proc->p_zone);
2194 amp->swresv -= len;
2195 }
2196 }
2197 ANON_LOCK_EXIT(&->a_rwlock);
2198 }
2199
2200 seg->s_size -= len;
2201
2202 if (svd->swresv) {
2203 if (svd->flags & MAP_NORESERVE) {
2204 ASSERT(amp);
2205 oswresv = svd->swresv;
2206 svd->swresv = ptob(anon_pages(amp->ahp,
2207 svd->anon_index, npages));
2208 anon_unresv_zone(oswresv - svd->swresv,
2209 seg->s_as->a_proc->p_zone);
2210 if (SEG_IS_PARTIAL_RESV(seg))
2211 seg->s_as->a_resvsize -= oswresv -
2212 svd->swresv;
2213 } else {
2214 size_t unlen;
2215
2216 if (svd->pageswap) {
2217 oswresv = svd->swresv;
2218 svd->swresv =
2219 segvn_count_swap_by_vpages(seg);
2220 ASSERT(oswresv >= svd->swresv);
2221 unlen = oswresv - svd->swresv;
2222 } else {
2223 svd->swresv -= len;
2224 ASSERT(svd->swresv == seg->s_size);
2225 unlen = len;
2226 }
2227 anon_unresv_zone(unlen,
2228 seg->s_as->a_proc->p_zone);
2229 }
2230 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2231 "anon proc:%p %lu %u", seg, len, 0);
2232 }
2233
2234 return (0);
2235 }
2236
2237 /*
2238 * The section to go is in the middle of the segment,
2239 * have to make it into two segments. nseg is made for
2240 * the high end while seg is cut down at the low end.
2241 */
2242 nbase = addr + len; /* new seg base */
2243 nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */
2244 seg->s_size = addr - seg->s_base; /* shrink old seg */
2245 nseg = seg_alloc(seg->s_as, nbase, nsize);
2246 if (nseg == NULL) {
2247 panic("segvn_unmap seg_alloc");
2248 /*NOTREACHED*/
2249 }
2250 nseg->s_ops = seg->s_ops;
2251 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2252 nseg->s_data = (void *)nsvd;
2253 nseg->s_szc = seg->s_szc;
2254 *nsvd = *svd;
2255 nsvd->seg = nseg;
2256 nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2257 nsvd->swresv = 0;
2258 nsvd->softlockcnt = 0;
2259 nsvd->softlockcnt_sbase = 0;
2260 nsvd->softlockcnt_send = 0;
2261 nsvd->svn_inz = svd->svn_inz;
2262 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2263
2264 if (svd->vp != NULL) {
2265 VN_HOLD(nsvd->vp);
2266 if (nsvd->type == MAP_SHARED)
2267 lgrp_shm_policy_init(NULL, nsvd->vp);
2268 }
2269 crhold(svd->cred);
2270
2271 if (svd->vpage == NULL) {
2272 nsvd->vpage = NULL;
2273 } else {
2274 /* need to split vpage into two arrays */
2275 size_t nbytes;
2276 struct vpage *ovpage;
2277
2278 ovpage = svd->vpage; /* keep pointer to vpage */
2279
2280 npages = seg_pages(seg); /* seg has shrunk */
2281 nbytes = vpgtob(npages);
2282 svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2283
2284 bcopy(ovpage, svd->vpage, nbytes);
2285
2286 npages = seg_pages(nseg);
2287 nbytes = vpgtob(npages);
2288 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2289
2290 bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2291
2292 /* free up old vpage */
2293 kmem_free(ovpage, vpgtob(opages));
2294 }
2295
2296 if (amp == NULL) {
2297 nsvd->amp = NULL;
2298 nsvd->anon_index = 0;
2299 } else {
2300 /*
2301 * Need to create a new anon map for the new segment.
2302 * We'll also allocate a new smaller array for the old
2303 * smaller segment to save space.
2304 */
2305 opages = btop((uintptr_t)(addr - seg->s_base));
2306 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
2307 if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2308 /*
2309 * Free up now unused parts of anon_map array.
2310 */
2311 ulong_t an_idx = svd->anon_index + opages;
2312
2313 /*
2314 * Shared anon map is no longer in use. Before
2315 * freeing its pages purge all entries from
2316 * pcache that belong to this amp.
2317 */
2318 if (svd->type == MAP_SHARED) {
2319 ASSERT(amp->refcnt == 1);
2320 ASSERT(svd->softlockcnt == 0);
2321 anonmap_purge(amp);
2322 }
2323
2324 if (amp->a_szc == seg->s_szc) {
2325 if (seg->s_szc != 0) {
2326 anon_free_pages(amp->ahp, an_idx, len,
2327 seg->s_szc);
2328 } else {
2329 anon_free(amp->ahp, an_idx,
2330 len);
2331 }
2332 } else {
2333 ASSERT(svd->type == MAP_SHARED);
2334 ASSERT(amp->a_szc > seg->s_szc);
2335 anon_shmap_free_pages(amp, an_idx, len);
2336 }
2337
2338 /*
2339 * Unreserve swap space for the
2340 * unmapped chunk of this segment in
2341 * case it's MAP_SHARED
2342 */
2343 if (svd->type == MAP_SHARED) {
2344 anon_unresv_zone(len,
2345 seg->s_as->a_proc->p_zone);
2346 amp->swresv -= len;
2347 }
2348 }
2349 nsvd->anon_index = svd->anon_index +
2350 btop((uintptr_t)(nseg->s_base - seg->s_base));
2351 if (svd->type == MAP_SHARED) {
2352 amp->refcnt++;
2353 nsvd->amp = amp;
2354 } else {
2355 struct anon_map *namp;
2356 struct anon_hdr *nahp;
2357
2358 ASSERT(svd->type == MAP_PRIVATE);
2359 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2360 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2361 namp->a_szc = seg->s_szc;
2362 (void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2363 0, btop(seg->s_size), ANON_SLEEP);
2364 (void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2365 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2366 anon_release(amp->ahp, btop(amp->size));
2367 svd->anon_index = 0;
2368 nsvd->anon_index = 0;
2369 amp->ahp = nahp;
2370 amp->size = seg->s_size;
2371 nsvd->amp = namp;
2372 }
2373 ANON_LOCK_EXIT(&->a_rwlock);
2374 }
2375 if (svd->swresv) {
2376 if (svd->flags & MAP_NORESERVE) {
2377 ASSERT(amp);
2378 oswresv = svd->swresv;
2379 svd->swresv = ptob(anon_pages(amp->ahp,
2380 svd->anon_index, btop(seg->s_size)));
2381 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2382 nsvd->anon_index, btop(nseg->s_size)));
2383 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2384 anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv),
2385 seg->s_as->a_proc->p_zone);
2386 if (SEG_IS_PARTIAL_RESV(seg))
2387 seg->s_as->a_resvsize -= oswresv -
2388 (svd->swresv + nsvd->swresv);
2389 } else {
2390 size_t unlen;
2391
2392 if (svd->pageswap) {
2393 oswresv = svd->swresv;
2394 svd->swresv = segvn_count_swap_by_vpages(seg);
2395 nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2396 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2397 unlen = oswresv - (svd->swresv + nsvd->swresv);
2398 } else {
2399 if (seg->s_size + nseg->s_size + len !=
2400 svd->swresv) {
2401 panic("segvn_unmap: cannot split "
2402 "swap reservation");
2403 /*NOTREACHED*/
2404 }
2405 svd->swresv = seg->s_size;
2406 nsvd->swresv = nseg->s_size;
2407 unlen = len;
2408 }
2409 anon_unresv_zone(unlen,
2410 seg->s_as->a_proc->p_zone);
2411 }
2412 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2413 seg, len, 0);
2414 }
2415
2416 return (0); /* I'm glad that's all over with! */
2417 }
2418
2419 static void
segvn_free(struct seg * seg)2420 segvn_free(struct seg *seg)
2421 {
2422 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2423 pgcnt_t npages = seg_pages(seg);
2424 struct anon_map *amp;
2425 size_t len;
2426
2427 /*
2428 * We don't need any segment level locks for "segvn" data
2429 * since the address space is "write" locked.
2430 */
2431 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
2432 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2433
2434 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2435
2436 /*
2437 * Be sure to unlock pages. XXX Why do things get free'ed instead
2438 * of unmapped? XXX
2439 */
2440 (void) segvn_lockop(seg, seg->s_base, seg->s_size,
2441 0, MC_UNLOCK, NULL, 0);
2442
2443 /*
2444 * Deallocate the vpage and anon pointers if necessary and possible.
2445 */
2446 if (svd->vpage != NULL) {
2447 kmem_free(svd->vpage, vpgtob(npages));
2448 svd->vpage = NULL;
2449 }
2450 if ((amp = svd->amp) != NULL) {
2451 /*
2452 * If there are no more references to this anon_map
2453 * structure, then deallocate the structure after freeing
2454 * up all the anon slot pointers that we can.
2455 */
2456 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
2457 ASSERT(amp->a_szc >= seg->s_szc);
2458 if (--amp->refcnt == 0) {
2459 if (svd->type == MAP_PRIVATE) {
2460 /*
2461 * Private - we only need to anon_free
2462 * the part that this segment refers to.
2463 */
2464 if (seg->s_szc != 0) {
2465 anon_free_pages(amp->ahp,
2466 svd->anon_index, seg->s_size,
2467 seg->s_szc);
2468 } else {
2469 anon_free(amp->ahp, svd->anon_index,
2470 seg->s_size);
2471 }
2472 } else {
2473
2474 /*
2475 * Shared anon map is no longer in use. Before
2476 * freeing its pages purge all entries from
2477 * pcache that belong to this amp.
2478 */
2479 ASSERT(svd->softlockcnt == 0);
2480 anonmap_purge(amp);
2481
2482 /*
2483 * Shared - anon_free the entire
2484 * anon_map's worth of stuff and
2485 * release any swap reservation.
2486 */
2487 if (amp->a_szc != 0) {
2488 anon_shmap_free_pages(amp, 0,
2489 amp->size);
2490 } else {
2491 anon_free(amp->ahp, 0, amp->size);
2492 }
2493 if ((len = amp->swresv) != 0) {
2494 anon_unresv_zone(len,
2495 seg->s_as->a_proc->p_zone);
2496 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2497 "anon proc:%p %lu %u", seg, len, 0);
2498 }
2499 }
2500 svd->amp = NULL;
2501 ANON_LOCK_EXIT(&->a_rwlock);
2502 anonmap_free(amp);
2503 } else if (svd->type == MAP_PRIVATE) {
2504 /*
2505 * We had a private mapping which still has
2506 * a held anon_map so just free up all the
2507 * anon slot pointers that we were using.
2508 */
2509 if (seg->s_szc != 0) {
2510 anon_free_pages(amp->ahp, svd->anon_index,
2511 seg->s_size, seg->s_szc);
2512 } else {
2513 anon_free(amp->ahp, svd->anon_index,
2514 seg->s_size);
2515 }
2516 ANON_LOCK_EXIT(&->a_rwlock);
2517 } else {
2518 ANON_LOCK_EXIT(&->a_rwlock);
2519 }
2520 }
2521
2522 /*
2523 * Release swap reservation.
2524 */
2525 if ((len = svd->swresv) != 0) {
2526 anon_unresv_zone(svd->swresv,
2527 seg->s_as->a_proc->p_zone);
2528 TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2529 seg, len, 0);
2530 if (SEG_IS_PARTIAL_RESV(seg))
2531 seg->s_as->a_resvsize -= svd->swresv;
2532 svd->swresv = 0;
2533 }
2534 /*
2535 * Release claim on vnode, credentials, and finally free the
2536 * private data.
2537 */
2538 if (svd->vp != NULL) {
2539 if (svd->type == MAP_SHARED)
2540 lgrp_shm_policy_fini(NULL, svd->vp);
2541 VN_RELE(svd->vp);
2542 svd->vp = NULL;
2543 }
2544 crfree(svd->cred);
2545 svd->pageprot = 0;
2546 svd->pageadvice = 0;
2547 svd->pageswap = 0;
2548 svd->cred = NULL;
2549
2550 /*
2551 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's
2552 * still working with this segment without holding as lock (in case
2553 * it's called by pcache async thread).
2554 */
2555 ASSERT(svd->softlockcnt == 0);
2556 mutex_enter(&svd->segfree_syncmtx);
2557 mutex_exit(&svd->segfree_syncmtx);
2558
2559 seg->s_data = NULL;
2560 kmem_cache_free(segvn_cache, svd);
2561 }
2562
2563 /*
2564 * Do a F_SOFTUNLOCK call over the range requested. The range must have
2565 * already been F_SOFTLOCK'ed.
2566 * Caller must always match addr and len of a softunlock with a previous
2567 * softlock with exactly the same addr and len.
2568 */
2569 static void
segvn_softunlock(struct seg * seg,caddr_t addr,size_t len,enum seg_rw rw)2570 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2571 {
2572 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2573 page_t *pp;
2574 caddr_t adr;
2575 struct vnode *vp;
2576 u_offset_t offset;
2577 ulong_t anon_index = 0;
2578 struct anon_map *amp;
2579 struct anon *ap = NULL;
2580
2581 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
2582 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2583
2584 if ((amp = svd->amp) != NULL)
2585 anon_index = svd->anon_index + seg_page(seg, addr);
2586
2587 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2588 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2589 hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2590 } else {
2591 hat_unlock(seg->s_as->a_hat, addr, len);
2592 }
2593 for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2594 if (amp != NULL) {
2595 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
2596 if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2597 != NULL) {
2598 swap_xlate(ap, &vp, &offset);
2599 } else {
2600 vp = svd->vp;
2601 offset = svd->offset +
2602 (uintptr_t)(adr - seg->s_base);
2603 }
2604 ANON_LOCK_EXIT(&->a_rwlock);
2605 } else {
2606 vp = svd->vp;
2607 offset = svd->offset +
2608 (uintptr_t)(adr - seg->s_base);
2609 }
2610
2611 /*
2612 * Use page_find() instead of page_lookup() to
2613 * find the page since we know that it is locked.
2614 */
2615 pp = page_find(vp, offset);
2616 if (pp == NULL) {
2617 panic(
2618 "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2619 (void *)adr, (void *)ap, (void *)vp, offset);
2620 /*NOTREACHED*/
2621 }
2622
2623 if (rw == S_WRITE) {
2624 hat_setrefmod(pp);
2625 if (seg->s_as->a_vbits)
2626 hat_setstat(seg->s_as, adr, PAGESIZE,
2627 P_REF | P_MOD);
2628 } else if (rw != S_OTHER) {
2629 hat_setref(pp);
2630 if (seg->s_as->a_vbits)
2631 hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2632 }
2633 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2634 "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2635 page_unlock(pp);
2636 }
2637 ASSERT(svd->softlockcnt >= btop(len));
2638 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) {
2639 /*
2640 * All SOFTLOCKS are gone. Wakeup any waiting
2641 * unmappers so they can try again to unmap.
2642 * Check for waiters first without the mutex
2643 * held so we don't always grab the mutex on
2644 * softunlocks.
2645 */
2646 if (AS_ISUNMAPWAIT(seg->s_as)) {
2647 mutex_enter(&seg->s_as->a_contents);
2648 if (AS_ISUNMAPWAIT(seg->s_as)) {
2649 AS_CLRUNMAPWAIT(seg->s_as);
2650 cv_broadcast(&seg->s_as->a_cv);
2651 }
2652 mutex_exit(&seg->s_as->a_contents);
2653 }
2654 }
2655 }
2656
2657 #define PAGE_HANDLED ((page_t *)-1)
2658
2659 /*
2660 * Release all the pages in the NULL terminated ppp list
2661 * which haven't already been converted to PAGE_HANDLED.
2662 */
2663 static void
segvn_pagelist_rele(page_t ** ppp)2664 segvn_pagelist_rele(page_t **ppp)
2665 {
2666 for (; *ppp != NULL; ppp++) {
2667 if (*ppp != PAGE_HANDLED)
2668 page_unlock(*ppp);
2669 }
2670 }
2671
2672 static int stealcow = 1;
2673
2674 /*
2675 * Workaround for viking chip bug. See bug id 1220902.
2676 * To fix this down in pagefault() would require importing so
2677 * much as and segvn code as to be unmaintainable.
2678 */
2679 int enable_mbit_wa = 0;
2680
2681 /*
2682 * Handles all the dirty work of getting the right
2683 * anonymous pages and loading up the translations.
2684 * This routine is called only from segvn_fault()
2685 * when looping over the range of addresses requested.
2686 *
2687 * The basic algorithm here is:
2688 * If this is an anon_zero case
2689 * Call anon_zero to allocate page
2690 * Load up translation
2691 * Return
2692 * endif
2693 * If this is an anon page
2694 * Use anon_getpage to get the page
2695 * else
2696 * Find page in pl[] list passed in
2697 * endif
2698 * If not a cow
2699 * Load up the translation to the page
2700 * return
2701 * endif
2702 * Call anon_private to handle cow
2703 * Load up (writable) translation to new page
2704 */
2705 static faultcode_t
segvn_faultpage(struct hat * hat,struct seg * seg,caddr_t addr,u_offset_t off,struct vpage * vpage,page_t * pl[],uint_t vpprot,enum fault_type type,enum seg_rw rw,int brkcow)2706 segvn_faultpage(
2707 struct hat *hat, /* the hat to use for mapping */
2708 struct seg *seg, /* seg_vn of interest */
2709 caddr_t addr, /* address in as */
2710 u_offset_t off, /* offset in vp */
2711 struct vpage *vpage, /* pointer to vpage for vp, off */
2712 page_t *pl[], /* object source page pointer */
2713 uint_t vpprot, /* access allowed to object pages */
2714 enum fault_type type, /* type of fault */
2715 enum seg_rw rw, /* type of access at fault */
2716 int brkcow) /* we may need to break cow */
2717 {
2718 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2719 page_t *pp, **ppp;
2720 uint_t pageflags = 0;
2721 page_t *anon_pl[1 + 1];
2722 page_t *opp = NULL; /* original page */
2723 uint_t prot;
2724 int err;
2725 int cow;
2726 int claim;
2727 int steal = 0;
2728 ulong_t anon_index = 0;
2729 struct anon *ap, *oldap;
2730 struct anon_map *amp;
2731 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2732 int anon_lock = 0;
2733 anon_sync_obj_t cookie;
2734
2735 if (svd->flags & MAP_TEXT) {
2736 hat_flag |= HAT_LOAD_TEXT;
2737 }
2738
2739 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2740 ASSERT(seg->s_szc == 0);
2741 ASSERT(svd->tr_state != SEGVN_TR_INIT);
2742
2743 /*
2744 * Initialize protection value for this page.
2745 * If we have per page protection values check it now.
2746 */
2747 if (svd->pageprot) {
2748 uint_t protchk;
2749
2750 switch (rw) {
2751 case S_READ:
2752 protchk = PROT_READ;
2753 break;
2754 case S_WRITE:
2755 protchk = PROT_WRITE;
2756 break;
2757 case S_EXEC:
2758 protchk = PROT_EXEC;
2759 break;
2760 case S_OTHER:
2761 default:
2762 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2763 break;
2764 }
2765
2766 prot = VPP_PROT(vpage);
2767 if ((prot & protchk) == 0)
2768 return (FC_PROT); /* illegal access type */
2769 } else {
2770 prot = svd->prot;
2771 }
2772
2773 if (type == F_SOFTLOCK) {
2774 atomic_inc_ulong((ulong_t *)&svd->softlockcnt);
2775 }
2776
2777 /*
2778 * Always acquire the anon array lock to prevent 2 threads from
2779 * allocating separate anon slots for the same "addr".
2780 */
2781
2782 if ((amp = svd->amp) != NULL) {
2783 ASSERT(RW_READ_HELD(&->a_rwlock));
2784 anon_index = svd->anon_index + seg_page(seg, addr);
2785 anon_array_enter(amp, anon_index, &cookie);
2786 anon_lock = 1;
2787 }
2788
2789 if (svd->vp == NULL && amp != NULL) {
2790 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2791 /*
2792 * Allocate a (normally) writable anonymous page of
2793 * zeroes. If no advance reservations, reserve now.
2794 */
2795 if (svd->flags & MAP_NORESERVE) {
2796 if (anon_resv_zone(ptob(1),
2797 seg->s_as->a_proc->p_zone)) {
2798 atomic_add_long(&svd->swresv, ptob(1));
2799 atomic_add_long(&seg->s_as->a_resvsize,
2800 ptob(1));
2801 } else {
2802 err = ENOMEM;
2803 goto out;
2804 }
2805 }
2806 if ((pp = anon_zero(seg, addr, &ap,
2807 svd->cred)) == NULL) {
2808 err = ENOMEM;
2809 goto out; /* out of swap space */
2810 }
2811 /*
2812 * Re-acquire the anon_map lock and
2813 * initialize the anon array entry.
2814 */
2815 (void) anon_set_ptr(amp->ahp, anon_index, ap,
2816 ANON_SLEEP);
2817
2818 ASSERT(pp->p_szc == 0);
2819
2820 /*
2821 * Handle pages that have been marked for migration
2822 */
2823 if (lgrp_optimizations())
2824 page_migrate(seg, addr, &pp, 1);
2825
2826 if (enable_mbit_wa) {
2827 if (rw == S_WRITE)
2828 hat_setmod(pp);
2829 else if (!hat_ismod(pp))
2830 prot &= ~PROT_WRITE;
2831 }
2832 /*
2833 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2834 * with MC_LOCKAS, MCL_FUTURE) and this is a
2835 * MAP_NORESERVE segment, we may need to
2836 * permanently lock the page as it is being faulted
2837 * for the first time. The following text applies
2838 * only to MAP_NORESERVE segments:
2839 *
2840 * As per memcntl(2), if this segment was created
2841 * after MCL_FUTURE was applied (a "future"
2842 * segment), its pages must be locked. If this
2843 * segment existed at MCL_FUTURE application (a
2844 * "past" segment), the interface is unclear.
2845 *
2846 * We decide to lock only if vpage is present:
2847 *
2848 * - "future" segments will have a vpage array (see
2849 * as_map), and so will be locked as required
2850 *
2851 * - "past" segments may not have a vpage array,
2852 * depending on whether events (such as
2853 * mprotect) have occurred. Locking if vpage
2854 * exists will preserve legacy behavior. Not
2855 * locking if vpage is absent, will not break
2856 * the interface or legacy behavior. Note that
2857 * allocating vpage here if it's absent requires
2858 * upgrading the segvn reader lock, the cost of
2859 * which does not seem worthwhile.
2860 *
2861 * Usually testing and setting VPP_ISPPLOCK and
2862 * VPP_SETPPLOCK requires holding the segvn lock as
2863 * writer, but in this case all readers are
2864 * serializing on the anon array lock.
2865 */
2866 if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2867 (svd->flags & MAP_NORESERVE) &&
2868 !VPP_ISPPLOCK(vpage)) {
2869 proc_t *p = seg->s_as->a_proc;
2870 ASSERT(svd->type == MAP_PRIVATE);
2871 mutex_enter(&p->p_lock);
2872 if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2873 1) == 0) {
2874 claim = VPP_PROT(vpage) & PROT_WRITE;
2875 if (page_pp_lock(pp, claim, 0)) {
2876 VPP_SETPPLOCK(vpage);
2877 } else {
2878 rctl_decr_locked_mem(p, NULL,
2879 PAGESIZE, 1);
2880 }
2881 }
2882 mutex_exit(&p->p_lock);
2883 }
2884
2885 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2886 hat_memload(hat, addr, pp, prot, hat_flag);
2887
2888 if (!(hat_flag & HAT_LOAD_LOCK))
2889 page_unlock(pp);
2890
2891 anon_array_exit(&cookie);
2892 return (0);
2893 }
2894 }
2895
2896 /*
2897 * Obtain the page structure via anon_getpage() if it is
2898 * a private copy of an object (the result of a previous
2899 * copy-on-write).
2900 */
2901 if (amp != NULL) {
2902 if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2903 err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2904 seg, addr, rw, svd->cred);
2905 if (err)
2906 goto out;
2907
2908 if (svd->type == MAP_SHARED) {
2909 /*
2910 * If this is a shared mapping to an
2911 * anon_map, then ignore the write
2912 * permissions returned by anon_getpage().
2913 * They apply to the private mappings
2914 * of this anon_map.
2915 */
2916 vpprot |= PROT_WRITE;
2917 }
2918 opp = anon_pl[0];
2919 }
2920 }
2921
2922 /*
2923 * Search the pl[] list passed in if it is from the
2924 * original object (i.e., not a private copy).
2925 */
2926 if (opp == NULL) {
2927 /*
2928 * Find original page. We must be bringing it in
2929 * from the list in pl[].
2930 */
2931 for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2932 if (opp == PAGE_HANDLED)
2933 continue;
2934 ASSERT(opp->p_vnode == svd->vp); /* XXX */
2935 if (opp->p_offset == off)
2936 break;
2937 }
2938 if (opp == NULL) {
2939 panic("segvn_faultpage not found");
2940 /*NOTREACHED*/
2941 }
2942 *ppp = PAGE_HANDLED;
2943
2944 }
2945
2946 ASSERT(PAGE_LOCKED(opp));
2947
2948 TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2949 "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0);
2950
2951 /*
2952 * The fault is treated as a copy-on-write fault if a
2953 * write occurs on a private segment and the object
2954 * page (i.e., mapping) is write protected. We assume
2955 * that fatal protection checks have already been made.
2956 */
2957
2958 if (brkcow) {
2959 ASSERT(svd->tr_state == SEGVN_TR_OFF);
2960 cow = !(vpprot & PROT_WRITE);
2961 } else if (svd->tr_state == SEGVN_TR_ON) {
2962 /*
2963 * If we are doing text replication COW on first touch.
2964 */
2965 ASSERT(amp != NULL);
2966 ASSERT(svd->vp != NULL);
2967 ASSERT(rw != S_WRITE);
2968 cow = (ap == NULL);
2969 } else {
2970 cow = 0;
2971 }
2972
2973 /*
2974 * If not a copy-on-write case load the translation
2975 * and return.
2976 */
2977 if (cow == 0) {
2978
2979 /*
2980 * Handle pages that have been marked for migration
2981 */
2982 if (lgrp_optimizations())
2983 page_migrate(seg, addr, &opp, 1);
2984
2985 if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2986 if (rw == S_WRITE)
2987 hat_setmod(opp);
2988 else if (rw != S_OTHER && !hat_ismod(opp))
2989 prot &= ~PROT_WRITE;
2990 }
2991
2992 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2993 (!svd->pageprot && svd->prot == (prot & vpprot)));
2994 ASSERT(amp == NULL ||
2995 svd->rcookie == HAT_INVALID_REGION_COOKIE);
2996 hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2997 svd->rcookie);
2998
2999 if (!(hat_flag & HAT_LOAD_LOCK))
3000 page_unlock(opp);
3001
3002 if (anon_lock) {
3003 anon_array_exit(&cookie);
3004 }
3005 return (0);
3006 }
3007
3008 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3009
3010 hat_setref(opp);
3011
3012 ASSERT(amp != NULL && anon_lock);
3013
3014 /*
3015 * Steal the page only if it isn't a private page
3016 * since stealing a private page is not worth the effort.
3017 */
3018 if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
3019 steal = 1;
3020
3021 /*
3022 * Steal the original page if the following conditions are true:
3023 *
3024 * We are low on memory, the page is not private, page is not large,
3025 * not shared, not modified, not `locked' or if we have it `locked'
3026 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
3027 * that the page is not shared) and if it doesn't have any
3028 * translations. page_struct_lock isn't needed to look at p_cowcnt
3029 * and p_lckcnt because we first get exclusive lock on page.
3030 */
3031 (void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
3032
3033 if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
3034 page_tryupgrade(opp) && !hat_ismod(opp) &&
3035 ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
3036 (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
3037 vpage != NULL && VPP_ISPPLOCK(vpage)))) {
3038 /*
3039 * Check if this page has other translations
3040 * after unloading our translation.
3041 */
3042 if (hat_page_is_mapped(opp)) {
3043 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3044 hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
3045 HAT_UNLOAD);
3046 }
3047
3048 /*
3049 * hat_unload() might sync back someone else's recent
3050 * modification, so check again.
3051 */
3052 if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
3053 pageflags |= STEAL_PAGE;
3054 }
3055
3056 /*
3057 * If we have a vpage pointer, see if it indicates that we have
3058 * ``locked'' the page we map -- if so, tell anon_private to
3059 * transfer the locking resource to the new page.
3060 *
3061 * See Statement at the beginning of segvn_lockop regarding
3062 * the way lockcnts/cowcnts are handled during COW.
3063 *
3064 */
3065 if (vpage != NULL && VPP_ISPPLOCK(vpage))
3066 pageflags |= LOCK_PAGE;
3067
3068 /*
3069 * Allocate a private page and perform the copy.
3070 * For MAP_NORESERVE reserve swap space now, unless this
3071 * is a cow fault on an existing anon page in which case
3072 * MAP_NORESERVE will have made advance reservations.
3073 */
3074 if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3075 if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3076 atomic_add_long(&svd->swresv, ptob(1));
3077 atomic_add_long(&seg->s_as->a_resvsize, ptob(1));
3078 } else {
3079 page_unlock(opp);
3080 err = ENOMEM;
3081 goto out;
3082 }
3083 }
3084 oldap = ap;
3085 pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3086 if (pp == NULL) {
3087 err = ENOMEM; /* out of swap space */
3088 goto out;
3089 }
3090
3091 /*
3092 * If we copied away from an anonymous page, then
3093 * we are one step closer to freeing up an anon slot.
3094 *
3095 * NOTE: The original anon slot must be released while
3096 * holding the "anon_map" lock. This is necessary to prevent
3097 * other threads from obtaining a pointer to the anon slot
3098 * which may be freed if its "refcnt" is 1.
3099 */
3100 if (oldap != NULL)
3101 anon_decref(oldap);
3102
3103 (void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3104
3105 /*
3106 * Handle pages that have been marked for migration
3107 */
3108 if (lgrp_optimizations())
3109 page_migrate(seg, addr, &pp, 1);
3110
3111 ASSERT(pp->p_szc == 0);
3112
3113 ASSERT(!IS_VMODSORT(pp->p_vnode));
3114 if (enable_mbit_wa) {
3115 if (rw == S_WRITE)
3116 hat_setmod(pp);
3117 else if (!hat_ismod(pp))
3118 prot &= ~PROT_WRITE;
3119 }
3120
3121 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3122 hat_memload(hat, addr, pp, prot, hat_flag);
3123
3124 if (!(hat_flag & HAT_LOAD_LOCK))
3125 page_unlock(pp);
3126
3127 ASSERT(anon_lock);
3128 anon_array_exit(&cookie);
3129 return (0);
3130 out:
3131 if (anon_lock)
3132 anon_array_exit(&cookie);
3133
3134 if (type == F_SOFTLOCK) {
3135 atomic_dec_ulong((ulong_t *)&svd->softlockcnt);
3136 }
3137 return (FC_MAKE_ERR(err));
3138 }
3139
3140 /*
3141 * relocate a bunch of smaller targ pages into one large repl page. all targ
3142 * pages must be complete pages smaller than replacement pages.
3143 * it's assumed that no page's szc can change since they are all PAGESIZE or
3144 * complete large pages locked SHARED.
3145 */
3146 static void
segvn_relocate_pages(page_t ** targ,page_t * replacement)3147 segvn_relocate_pages(page_t **targ, page_t *replacement)
3148 {
3149 page_t *pp;
3150 pgcnt_t repl_npgs, curnpgs;
3151 pgcnt_t i;
3152 uint_t repl_szc = replacement->p_szc;
3153 page_t *first_repl = replacement;
3154 page_t *repl;
3155 spgcnt_t npgs;
3156
3157 VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3158
3159 ASSERT(repl_szc != 0);
3160 npgs = repl_npgs = page_get_pagecnt(repl_szc);
3161
3162 i = 0;
3163 while (repl_npgs) {
3164 spgcnt_t nreloc;
3165 int err;
3166 ASSERT(replacement != NULL);
3167 pp = targ[i];
3168 ASSERT(pp->p_szc < repl_szc);
3169 ASSERT(PAGE_EXCL(pp));
3170 ASSERT(!PP_ISFREE(pp));
3171 curnpgs = page_get_pagecnt(pp->p_szc);
3172 if (curnpgs == 1) {
3173 VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3174 repl = replacement;
3175 page_sub(&replacement, repl);
3176 ASSERT(PAGE_EXCL(repl));
3177 ASSERT(!PP_ISFREE(repl));
3178 ASSERT(repl->p_szc == repl_szc);
3179 } else {
3180 page_t *repl_savepp;
3181 int j;
3182 VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3183 repl_savepp = replacement;
3184 for (j = 0; j < curnpgs; j++) {
3185 repl = replacement;
3186 page_sub(&replacement, repl);
3187 ASSERT(PAGE_EXCL(repl));
3188 ASSERT(!PP_ISFREE(repl));
3189 ASSERT(repl->p_szc == repl_szc);
3190 ASSERT(page_pptonum(targ[i + j]) ==
3191 page_pptonum(targ[i]) + j);
3192 }
3193 repl = repl_savepp;
3194 ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3195 }
3196 err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3197 if (err || nreloc != curnpgs) {
3198 panic("segvn_relocate_pages: "
3199 "page_relocate failed err=%d curnpgs=%ld "
3200 "nreloc=%ld", err, curnpgs, nreloc);
3201 }
3202 ASSERT(curnpgs <= repl_npgs);
3203 repl_npgs -= curnpgs;
3204 i += curnpgs;
3205 }
3206 ASSERT(replacement == NULL);
3207
3208 repl = first_repl;
3209 repl_npgs = npgs;
3210 for (i = 0; i < repl_npgs; i++) {
3211 ASSERT(PAGE_EXCL(repl));
3212 ASSERT(!PP_ISFREE(repl));
3213 targ[i] = repl;
3214 page_downgrade(targ[i]);
3215 repl++;
3216 }
3217 }
3218
3219 /*
3220 * Check if all pages in ppa array are complete smaller than szc pages and
3221 * their roots will still be aligned relative to their current size if the
3222 * entire ppa array is relocated into one szc page. If these conditions are
3223 * not met return 0.
3224 *
3225 * If all pages are properly aligned attempt to upgrade their locks
3226 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3227 * upgrdfail was set to 0 by caller.
3228 *
3229 * Return 1 if all pages are aligned and locked exclusively.
3230 *
3231 * If all pages in ppa array happen to be physically contiguous to make one
3232 * szc page and all exclusive locks are successfully obtained promote the page
3233 * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3234 */
3235 static int
segvn_full_szcpages(page_t ** ppa,uint_t szc,int * upgrdfail,uint_t * pszc)3236 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3237 {
3238 page_t *pp;
3239 pfn_t pfn;
3240 pgcnt_t totnpgs = page_get_pagecnt(szc);
3241 pfn_t first_pfn;
3242 int contig = 1;
3243 pgcnt_t i;
3244 pgcnt_t j;
3245 uint_t curszc;
3246 pgcnt_t curnpgs;
3247 int root = 0;
3248
3249 ASSERT(szc > 0);
3250
3251 VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3252
3253 for (i = 0; i < totnpgs; i++) {
3254 pp = ppa[i];
3255 ASSERT(PAGE_SHARED(pp));
3256 ASSERT(!PP_ISFREE(pp));
3257 pfn = page_pptonum(pp);
3258 if (i == 0) {
3259 if (!IS_P2ALIGNED(pfn, totnpgs)) {
3260 contig = 0;
3261 } else {
3262 first_pfn = pfn;
3263 }
3264 } else if (contig && pfn != first_pfn + i) {
3265 contig = 0;
3266 }
3267 if (pp->p_szc == 0) {
3268 if (root) {
3269 VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3270 return (0);
3271 }
3272 } else if (!root) {
3273 if ((curszc = pp->p_szc) >= szc) {
3274 VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3275 return (0);
3276 }
3277 if (curszc == 0) {
3278 /*
3279 * p_szc changed means we don't have all pages
3280 * locked. return failure.
3281 */
3282 VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3283 return (0);
3284 }
3285 curnpgs = page_get_pagecnt(curszc);
3286 if (!IS_P2ALIGNED(pfn, curnpgs) ||
3287 !IS_P2ALIGNED(i, curnpgs)) {
3288 VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3289 return (0);
3290 }
3291 root = 1;
3292 } else {
3293 ASSERT(i > 0);
3294 VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3295 if (pp->p_szc != curszc) {
3296 VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3297 return (0);
3298 }
3299 if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3300 panic("segvn_full_szcpages: "
3301 "large page not physically contiguous");
3302 }
3303 if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3304 root = 0;
3305 }
3306 }
3307 }
3308
3309 for (i = 0; i < totnpgs; i++) {
3310 ASSERT(ppa[i]->p_szc < szc);
3311 if (!page_tryupgrade(ppa[i])) {
3312 for (j = 0; j < i; j++) {
3313 page_downgrade(ppa[j]);
3314 }
3315 *pszc = ppa[i]->p_szc;
3316 *upgrdfail = 1;
3317 VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3318 return (0);
3319 }
3320 }
3321
3322 /*
3323 * When a page is put a free cachelist its szc is set to 0. if file
3324 * system reclaimed pages from cachelist targ pages will be physically
3325 * contiguous with 0 p_szc. in this case just upgrade szc of targ
3326 * pages without any relocations.
3327 * To avoid any hat issues with previous small mappings
3328 * hat_pageunload() the target pages first.
3329 */
3330 if (contig) {
3331 VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3332 for (i = 0; i < totnpgs; i++) {
3333 (void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3334 }
3335 for (i = 0; i < totnpgs; i++) {
3336 ppa[i]->p_szc = szc;
3337 }
3338 for (i = 0; i < totnpgs; i++) {
3339 ASSERT(PAGE_EXCL(ppa[i]));
3340 page_downgrade(ppa[i]);
3341 }
3342 if (pszc != NULL) {
3343 *pszc = szc;
3344 }
3345 }
3346 VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3347 return (1);
3348 }
3349
3350 /*
3351 * Create physically contiguous pages for [vp, off] - [vp, off +
3352 * page_size(szc)) range and for private segment return them in ppa array.
3353 * Pages are created either via IO or relocations.
3354 *
3355 * Return 1 on success and 0 on failure.
3356 *
3357 * If physically contiguous pages already exist for this range return 1 without
3358 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3359 * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3360 */
3361
3362 static int
segvn_fill_vp_pages(struct segvn_data * svd,vnode_t * vp,u_offset_t off,uint_t szc,page_t ** ppa,page_t ** ppplist,uint_t * ret_pszc,int * downsize)3363 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3364 uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3365 int *downsize)
3366 {
3367 page_t *pplist = *ppplist;
3368 size_t pgsz = page_get_pagesize(szc);
3369 pgcnt_t pages = btop(pgsz);
3370 ulong_t start_off = off;
3371 u_offset_t eoff = off + pgsz;
3372 spgcnt_t nreloc;
3373 u_offset_t io_off = off;
3374 size_t io_len;
3375 page_t *io_pplist = NULL;
3376 page_t *done_pplist = NULL;
3377 pgcnt_t pgidx = 0;
3378 page_t *pp;
3379 page_t *newpp;
3380 page_t *targpp;
3381 int io_err = 0;
3382 int i;
3383 pfn_t pfn;
3384 ulong_t ppages;
3385 page_t *targ_pplist = NULL;
3386 page_t *repl_pplist = NULL;
3387 page_t *tmp_pplist;
3388 int nios = 0;
3389 uint_t pszc;
3390 struct vattr va;
3391
3392 VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3393
3394 ASSERT(szc != 0);
3395 ASSERT(pplist->p_szc == szc);
3396
3397 /*
3398 * downsize will be set to 1 only if we fail to lock pages. this will
3399 * allow subsequent faults to try to relocate the page again. If we
3400 * fail due to misalignment don't downsize and let the caller map the
3401 * whole region with small mappings to avoid more faults into the area
3402 * where we can't get large pages anyway.
3403 */
3404 *downsize = 0;
3405
3406 while (off < eoff) {
3407 newpp = pplist;
3408 ASSERT(newpp != NULL);
3409 ASSERT(PAGE_EXCL(newpp));
3410 ASSERT(!PP_ISFREE(newpp));
3411 /*
3412 * we pass NULL for nrelocp to page_lookup_create()
3413 * so that it doesn't relocate. We relocate here
3414 * later only after we make sure we can lock all
3415 * pages in the range we handle and they are all
3416 * aligned.
3417 */
3418 pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3419 ASSERT(pp != NULL);
3420 ASSERT(!PP_ISFREE(pp));
3421 ASSERT(pp->p_vnode == vp);
3422 ASSERT(pp->p_offset == off);
3423 if (pp == newpp) {
3424 VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3425 page_sub(&pplist, pp);
3426 ASSERT(PAGE_EXCL(pp));
3427 ASSERT(page_iolock_assert(pp));
3428 page_list_concat(&io_pplist, &pp);
3429 off += PAGESIZE;
3430 continue;
3431 }
3432 VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3433 pfn = page_pptonum(pp);
3434 pszc = pp->p_szc;
3435 if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3436 IS_P2ALIGNED(pfn, pages)) {
3437 ASSERT(repl_pplist == NULL);
3438 ASSERT(done_pplist == NULL);
3439 ASSERT(pplist == *ppplist);
3440 page_unlock(pp);
3441 page_free_replacement_page(pplist);
3442 page_create_putback(pages);
3443 *ppplist = NULL;
3444 VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3445 return (1);
3446 }
3447 if (pszc >= szc) {
3448 page_unlock(pp);
3449 segvn_faultvnmpss_align_err1++;
3450 goto out;
3451 }
3452 ppages = page_get_pagecnt(pszc);
3453 if (!IS_P2ALIGNED(pfn, ppages)) {
3454 ASSERT(pszc > 0);
3455 /*
3456 * sizing down to pszc won't help.
3457 */
3458 page_unlock(pp);
3459 segvn_faultvnmpss_align_err2++;
3460 goto out;
3461 }
3462 pfn = page_pptonum(newpp);
3463 if (!IS_P2ALIGNED(pfn, ppages)) {
3464 ASSERT(pszc > 0);
3465 /*
3466 * sizing down to pszc won't help.
3467 */
3468 page_unlock(pp);
3469 segvn_faultvnmpss_align_err3++;
3470 goto out;
3471 }
3472 if (!PAGE_EXCL(pp)) {
3473 VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3474 page_unlock(pp);
3475 *downsize = 1;
3476 *ret_pszc = pp->p_szc;
3477 goto out;
3478 }
3479 targpp = pp;
3480 if (io_pplist != NULL) {
3481 VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3482 io_len = off - io_off;
3483 /*
3484 * Some file systems like NFS don't check EOF
3485 * conditions in VOP_PAGEIO(). Check it here
3486 * now that pages are locked SE_EXCL. Any file
3487 * truncation will wait until the pages are
3488 * unlocked so no need to worry that file will
3489 * be truncated after we check its size here.
3490 * XXX fix NFS to remove this check.
3491 */
3492 va.va_mask = AT_SIZE;
3493 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3494 VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3495 page_unlock(targpp);
3496 goto out;
3497 }
3498 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3499 VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3500 *downsize = 1;
3501 *ret_pszc = 0;
3502 page_unlock(targpp);
3503 goto out;
3504 }
3505 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3506 B_READ, svd->cred, NULL);
3507 if (io_err) {
3508 VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3509 page_unlock(targpp);
3510 if (io_err == EDEADLK) {
3511 segvn_vmpss_pageio_deadlk_err++;
3512 }
3513 goto out;
3514 }
3515 nios++;
3516 VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3517 while (io_pplist != NULL) {
3518 pp = io_pplist;
3519 page_sub(&io_pplist, pp);
3520 ASSERT(page_iolock_assert(pp));
3521 page_io_unlock(pp);
3522 pgidx = (pp->p_offset - start_off) >>
3523 PAGESHIFT;
3524 ASSERT(pgidx < pages);
3525 ppa[pgidx] = pp;
3526 page_list_concat(&done_pplist, &pp);
3527 }
3528 }
3529 pp = targpp;
3530 ASSERT(PAGE_EXCL(pp));
3531 ASSERT(pp->p_szc <= pszc);
3532 if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3533 VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3534 page_unlock(pp);
3535 *downsize = 1;
3536 *ret_pszc = pp->p_szc;
3537 goto out;
3538 }
3539 VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3540 /*
3541 * page szc chould have changed before the entire group was
3542 * locked. reread page szc.
3543 */
3544 pszc = pp->p_szc;
3545 ppages = page_get_pagecnt(pszc);
3546
3547 /* link just the roots */
3548 page_list_concat(&targ_pplist, &pp);
3549 page_sub(&pplist, newpp);
3550 page_list_concat(&repl_pplist, &newpp);
3551 off += PAGESIZE;
3552 while (--ppages != 0) {
3553 newpp = pplist;
3554 page_sub(&pplist, newpp);
3555 off += PAGESIZE;
3556 }
3557 io_off = off;
3558 }
3559 if (io_pplist != NULL) {
3560 VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3561 io_len = eoff - io_off;
3562 va.va_mask = AT_SIZE;
3563 if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3564 VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3565 goto out;
3566 }
3567 if (btopr(va.va_size) < btopr(io_off + io_len)) {
3568 VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3569 *downsize = 1;
3570 *ret_pszc = 0;
3571 goto out;
3572 }
3573 io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3574 B_READ, svd->cred, NULL);
3575 if (io_err) {
3576 VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3577 if (io_err == EDEADLK) {
3578 segvn_vmpss_pageio_deadlk_err++;
3579 }
3580 goto out;
3581 }
3582 nios++;
3583 while (io_pplist != NULL) {
3584 pp = io_pplist;
3585 page_sub(&io_pplist, pp);
3586 ASSERT(page_iolock_assert(pp));
3587 page_io_unlock(pp);
3588 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3589 ASSERT(pgidx < pages);
3590 ppa[pgidx] = pp;
3591 }
3592 }
3593 /*
3594 * we're now bound to succeed or panic.
3595 * remove pages from done_pplist. it's not needed anymore.
3596 */
3597 while (done_pplist != NULL) {
3598 pp = done_pplist;
3599 page_sub(&done_pplist, pp);
3600 }
3601 VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3602 ASSERT(pplist == NULL);
3603 *ppplist = NULL;
3604 while (targ_pplist != NULL) {
3605 int ret;
3606 VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3607 ASSERT(repl_pplist);
3608 pp = targ_pplist;
3609 page_sub(&targ_pplist, pp);
3610 pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3611 newpp = repl_pplist;
3612 page_sub(&repl_pplist, newpp);
3613 #ifdef DEBUG
3614 pfn = page_pptonum(pp);
3615 pszc = pp->p_szc;
3616 ppages = page_get_pagecnt(pszc);
3617 ASSERT(IS_P2ALIGNED(pfn, ppages));
3618 pfn = page_pptonum(newpp);
3619 ASSERT(IS_P2ALIGNED(pfn, ppages));
3620 ASSERT(P2PHASE(pfn, pages) == pgidx);
3621 #endif
3622 nreloc = 0;
3623 ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3624 if (ret != 0 || nreloc == 0) {
3625 panic("segvn_fill_vp_pages: "
3626 "page_relocate failed");
3627 }
3628 pp = newpp;
3629 while (nreloc-- != 0) {
3630 ASSERT(PAGE_EXCL(pp));
3631 ASSERT(pp->p_vnode == vp);
3632 ASSERT(pgidx ==
3633 ((pp->p_offset - start_off) >> PAGESHIFT));
3634 ppa[pgidx++] = pp;
3635 pp++;
3636 }
3637 }
3638
3639 if (svd->type == MAP_PRIVATE) {
3640 VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3641 for (i = 0; i < pages; i++) {
3642 ASSERT(ppa[i] != NULL);
3643 ASSERT(PAGE_EXCL(ppa[i]));
3644 ASSERT(ppa[i]->p_vnode == vp);
3645 ASSERT(ppa[i]->p_offset ==
3646 start_off + (i << PAGESHIFT));
3647 page_downgrade(ppa[i]);
3648 }
3649 ppa[pages] = NULL;
3650 } else {
3651 VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3652 /*
3653 * the caller will still call VOP_GETPAGE() for shared segments
3654 * to check FS write permissions. For private segments we map
3655 * file read only anyway. so no VOP_GETPAGE is needed.
3656 */
3657 for (i = 0; i < pages; i++) {
3658 ASSERT(ppa[i] != NULL);
3659 ASSERT(PAGE_EXCL(ppa[i]));
3660 ASSERT(ppa[i]->p_vnode == vp);
3661 ASSERT(ppa[i]->p_offset ==
3662 start_off + (i << PAGESHIFT));
3663 page_unlock(ppa[i]);
3664 }
3665 ppa[0] = NULL;
3666 }
3667
3668 return (1);
3669 out:
3670 /*
3671 * Do the cleanup. Unlock target pages we didn't relocate. They are
3672 * linked on targ_pplist by root pages. reassemble unused replacement
3673 * and io pages back to pplist.
3674 */
3675 if (io_pplist != NULL) {
3676 VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3677 pp = io_pplist;
3678 do {
3679 ASSERT(pp->p_vnode == vp);
3680 ASSERT(pp->p_offset == io_off);
3681 ASSERT(page_iolock_assert(pp));
3682 page_io_unlock(pp);
3683 page_hashout(pp, NULL);
3684 io_off += PAGESIZE;
3685 } while ((pp = pp->p_next) != io_pplist);
3686 page_list_concat(&io_pplist, &pplist);
3687 pplist = io_pplist;
3688 }
3689 tmp_pplist = NULL;
3690 while (targ_pplist != NULL) {
3691 VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3692 pp = targ_pplist;
3693 ASSERT(PAGE_EXCL(pp));
3694 page_sub(&targ_pplist, pp);
3695
3696 pszc = pp->p_szc;
3697 ppages = page_get_pagecnt(pszc);
3698 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3699
3700 if (pszc != 0) {
3701 group_page_unlock(pp);
3702 }
3703 page_unlock(pp);
3704
3705 pp = repl_pplist;
3706 ASSERT(pp != NULL);
3707 ASSERT(PAGE_EXCL(pp));
3708 ASSERT(pp->p_szc == szc);
3709 page_sub(&repl_pplist, pp);
3710
3711 ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3712
3713 /* relink replacement page */
3714 page_list_concat(&tmp_pplist, &pp);
3715 while (--ppages != 0) {
3716 VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3717 pp++;
3718 ASSERT(PAGE_EXCL(pp));
3719 ASSERT(pp->p_szc == szc);
3720 page_list_concat(&tmp_pplist, &pp);
3721 }
3722 }
3723 if (tmp_pplist != NULL) {
3724 VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3725 page_list_concat(&tmp_pplist, &pplist);
3726 pplist = tmp_pplist;
3727 }
3728 /*
3729 * at this point all pages are either on done_pplist or
3730 * pplist. They can't be all on done_pplist otherwise
3731 * we'd've been done.
3732 */
3733 ASSERT(pplist != NULL);
3734 if (nios != 0) {
3735 VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3736 pp = pplist;
3737 do {
3738 VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3739 ASSERT(pp->p_szc == szc);
3740 ASSERT(PAGE_EXCL(pp));
3741 ASSERT(pp->p_vnode != vp);
3742 pp->p_szc = 0;
3743 } while ((pp = pp->p_next) != pplist);
3744
3745 pp = done_pplist;
3746 do {
3747 VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3748 ASSERT(pp->p_szc == szc);
3749 ASSERT(PAGE_EXCL(pp));
3750 ASSERT(pp->p_vnode == vp);
3751 pp->p_szc = 0;
3752 } while ((pp = pp->p_next) != done_pplist);
3753
3754 while (pplist != NULL) {
3755 VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3756 pp = pplist;
3757 page_sub(&pplist, pp);
3758 page_free(pp, 0);
3759 }
3760
3761 while (done_pplist != NULL) {
3762 VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3763 pp = done_pplist;
3764 page_sub(&done_pplist, pp);
3765 page_unlock(pp);
3766 }
3767 *ppplist = NULL;
3768 return (0);
3769 }
3770 ASSERT(pplist == *ppplist);
3771 if (io_err) {
3772 VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3773 /*
3774 * don't downsize on io error.
3775 * see if vop_getpage succeeds.
3776 * pplist may still be used in this case
3777 * for relocations.
3778 */
3779 return (0);
3780 }
3781 VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3782 page_free_replacement_page(pplist);
3783 page_create_putback(pages);
3784 *ppplist = NULL;
3785 return (0);
3786 }
3787
3788 int segvn_anypgsz = 0;
3789
3790 #define SEGVN_RESTORE_SOFTLOCK_VP(type, pages) \
3791 if ((type) == F_SOFTLOCK) { \
3792 atomic_add_long((ulong_t *)&(svd)->softlockcnt, \
3793 -(pages)); \
3794 }
3795
3796 #define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \
3797 if (IS_VMODSORT((ppa)[0]->p_vnode)) { \
3798 if ((rw) == S_WRITE) { \
3799 for (i = 0; i < (pages); i++) { \
3800 ASSERT((ppa)[i]->p_vnode == \
3801 (ppa)[0]->p_vnode); \
3802 hat_setmod((ppa)[i]); \
3803 } \
3804 } else if ((rw) != S_OTHER && \
3805 ((prot) & (vpprot) & PROT_WRITE)) { \
3806 for (i = 0; i < (pages); i++) { \
3807 ASSERT((ppa)[i]->p_vnode == \
3808 (ppa)[0]->p_vnode); \
3809 if (!hat_ismod((ppa)[i])) { \
3810 prot &= ~PROT_WRITE; \
3811 break; \
3812 } \
3813 } \
3814 } \
3815 }
3816
3817 #ifdef VM_STATS
3818
3819 #define SEGVN_VMSTAT_FLTVNPAGES(idx) \
3820 VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3821
3822 #else /* VM_STATS */
3823
3824 #define SEGVN_VMSTAT_FLTVNPAGES(idx)
3825
3826 #endif
3827
3828 static faultcode_t
segvn_fault_vnodepages(struct hat * hat,struct seg * seg,caddr_t lpgaddr,caddr_t lpgeaddr,enum fault_type type,enum seg_rw rw,caddr_t addr,caddr_t eaddr,int brkcow)3829 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3830 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3831 caddr_t eaddr, int brkcow)
3832 {
3833 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3834 struct anon_map *amp = svd->amp;
3835 uchar_t segtype = svd->type;
3836 uint_t szc = seg->s_szc;
3837 size_t pgsz = page_get_pagesize(szc);
3838 size_t maxpgsz = pgsz;
3839 pgcnt_t pages = btop(pgsz);
3840 pgcnt_t maxpages = pages;
3841 size_t ppasize = (pages + 1) * sizeof (page_t *);
3842 caddr_t a = lpgaddr;
3843 caddr_t maxlpgeaddr = lpgeaddr;
3844 u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3845 ulong_t aindx = svd->anon_index + seg_page(seg, a);
3846 struct vpage *vpage = (svd->vpage != NULL) ?
3847 &svd->vpage[seg_page(seg, a)] : NULL;
3848 vnode_t *vp = svd->vp;
3849 page_t **ppa;
3850 uint_t pszc;
3851 size_t ppgsz;
3852 pgcnt_t ppages;
3853 faultcode_t err = 0;
3854 int ierr;
3855 int vop_size_err = 0;
3856 uint_t protchk, prot, vpprot;
3857 ulong_t i;
3858 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3859 anon_sync_obj_t an_cookie;
3860 enum seg_rw arw;
3861 int alloc_failed = 0;
3862 int adjszc_chk;
3863 struct vattr va;
3864 page_t *pplist;
3865 pfn_t pfn;
3866 int physcontig;
3867 int upgrdfail;
3868 int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3869 int tron = (svd->tr_state == SEGVN_TR_ON);
3870
3871 ASSERT(szc != 0);
3872 ASSERT(vp != NULL);
3873 ASSERT(brkcow == 0 || amp != NULL);
3874 ASSERT(tron == 0 || amp != NULL);
3875 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3876 ASSERT(!(svd->flags & MAP_NORESERVE));
3877 ASSERT(type != F_SOFTUNLOCK);
3878 ASSERT(IS_P2ALIGNED(a, maxpgsz));
3879 ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3880 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3881 ASSERT(seg->s_szc < NBBY * sizeof (int));
3882 ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3883 ASSERT(svd->tr_state != SEGVN_TR_INIT);
3884
3885 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3886 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3887
3888 if (svd->flags & MAP_TEXT) {
3889 hat_flag |= HAT_LOAD_TEXT;
3890 }
3891
3892 if (svd->pageprot) {
3893 prot = PROT_NONE;
3894 switch (rw) {
3895 case S_READ:
3896 protchk = PROT_READ;
3897 break;
3898 case S_WRITE:
3899 protchk = PROT_WRITE;
3900 break;
3901 case S_EXEC:
3902 protchk = PROT_EXEC;
3903 break;
3904 case S_OTHER:
3905 default:
3906 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3907 break;
3908 }
3909 } else {
3910 protchk = PROT_NONE;
3911 prot = svd->prot;
3912 /* caller has already done segment level protection check. */
3913 }
3914
3915 if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3916 SEGVN_VMSTAT_FLTVNPAGES(2);
3917 arw = S_READ;
3918 } else {
3919 arw = rw;
3920 }
3921
3922 ppa = kmem_alloc(ppasize, KM_SLEEP);
3923
3924 VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3925
3926 ierr = 0;
3927 for (;;) {
3928 adjszc_chk = 0;
3929 for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3930 if (adjszc_chk) {
3931 while (szc < seg->s_szc) {
3932 uintptr_t e;
3933 uint_t tszc;
3934 tszc = segvn_anypgsz_vnode ? szc + 1 :
3935 seg->s_szc;
3936 ppgsz = page_get_pagesize(tszc);
3937 if (!IS_P2ALIGNED(a, ppgsz) ||
3938 ((alloc_failed >> tszc) & 0x1)) {
3939 break;
3940 }
3941 SEGVN_VMSTAT_FLTVNPAGES(4);
3942 szc = tszc;
3943 pgsz = ppgsz;
3944 pages = btop(pgsz);
3945 e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3946 lpgeaddr = (caddr_t)e;
3947 }
3948 }
3949
3950 again:
3951 if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3952 ASSERT(IS_P2ALIGNED(aindx, maxpages));
3953 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
3954 anon_array_enter(amp, aindx, &an_cookie);
3955 if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3956 SEGVN_VMSTAT_FLTVNPAGES(5);
3957 ASSERT(anon_pages(amp->ahp, aindx,
3958 maxpages) == maxpages);
3959 anon_array_exit(&an_cookie);
3960 ANON_LOCK_EXIT(&->a_rwlock);
3961 err = segvn_fault_anonpages(hat, seg,
3962 a, a + maxpgsz, type, rw,
3963 MAX(a, addr),
3964 MIN(a + maxpgsz, eaddr), brkcow);
3965 if (err != 0) {
3966 SEGVN_VMSTAT_FLTVNPAGES(6);
3967 goto out;
3968 }
3969 if (szc < seg->s_szc) {
3970 szc = seg->s_szc;
3971 pgsz = maxpgsz;
3972 pages = maxpages;
3973 lpgeaddr = maxlpgeaddr;
3974 }
3975 goto next;
3976 } else {
3977 ASSERT(anon_pages(amp->ahp, aindx,
3978 maxpages) == 0);
3979 SEGVN_VMSTAT_FLTVNPAGES(7);
3980 anon_array_exit(&an_cookie);
3981 ANON_LOCK_EXIT(&->a_rwlock);
3982 }
3983 }
3984 ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3985 ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3986
3987 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3988 ASSERT(vpage != NULL);
3989 prot = VPP_PROT(vpage);
3990 ASSERT(sameprot(seg, a, maxpgsz));
3991 if ((prot & protchk) == 0) {
3992 SEGVN_VMSTAT_FLTVNPAGES(8);
3993 err = FC_PROT;
3994 goto out;
3995 }
3996 }
3997 if (type == F_SOFTLOCK) {
3998 atomic_add_long((ulong_t *)&svd->softlockcnt,
3999 pages);
4000 }
4001
4002 pplist = NULL;
4003 physcontig = 0;
4004 ppa[0] = NULL;
4005 if (!brkcow && !tron && szc &&
4006 !page_exists_physcontig(vp, off, szc,
4007 segtype == MAP_PRIVATE ? ppa : NULL)) {
4008 SEGVN_VMSTAT_FLTVNPAGES(9);
4009 if (page_alloc_pages(vp, seg, a, &pplist, NULL,
4010 szc, 0, 0) && type != F_SOFTLOCK) {
4011 SEGVN_VMSTAT_FLTVNPAGES(10);
4012 pszc = 0;
4013 ierr = -1;
4014 alloc_failed |= (1 << szc);
4015 break;
4016 }
4017 if (pplist != NULL &&
4018 vp->v_mpssdata == SEGVN_PAGEIO) {
4019 int downsize;
4020 SEGVN_VMSTAT_FLTVNPAGES(11);
4021 physcontig = segvn_fill_vp_pages(svd,
4022 vp, off, szc, ppa, &pplist,
4023 &pszc, &downsize);
4024 ASSERT(!physcontig || pplist == NULL);
4025 if (!physcontig && downsize &&
4026 type != F_SOFTLOCK) {
4027 ASSERT(pplist == NULL);
4028 SEGVN_VMSTAT_FLTVNPAGES(12);
4029 ierr = -1;
4030 break;
4031 }
4032 ASSERT(!physcontig ||
4033 segtype == MAP_PRIVATE ||
4034 ppa[0] == NULL);
4035 if (physcontig && ppa[0] == NULL) {
4036 physcontig = 0;
4037 }
4038 }
4039 } else if (!brkcow && !tron && szc && ppa[0] != NULL) {
4040 SEGVN_VMSTAT_FLTVNPAGES(13);
4041 ASSERT(segtype == MAP_PRIVATE);
4042 physcontig = 1;
4043 }
4044
4045 if (!physcontig) {
4046 SEGVN_VMSTAT_FLTVNPAGES(14);
4047 ppa[0] = NULL;
4048 ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
4049 &vpprot, ppa, pgsz, seg, a, arw,
4050 svd->cred, NULL);
4051 #ifdef DEBUG
4052 if (ierr == 0) {
4053 for (i = 0; i < pages; i++) {
4054 ASSERT(PAGE_LOCKED(ppa[i]));
4055 ASSERT(!PP_ISFREE(ppa[i]));
4056 ASSERT(ppa[i]->p_vnode == vp);
4057 ASSERT(ppa[i]->p_offset ==
4058 off + (i << PAGESHIFT));
4059 }
4060 }
4061 #endif /* DEBUG */
4062 if (segtype == MAP_PRIVATE) {
4063 SEGVN_VMSTAT_FLTVNPAGES(15);
4064 vpprot &= ~PROT_WRITE;
4065 }
4066 } else {
4067 ASSERT(segtype == MAP_PRIVATE);
4068 SEGVN_VMSTAT_FLTVNPAGES(16);
4069 vpprot = PROT_ALL & ~PROT_WRITE;
4070 ierr = 0;
4071 }
4072
4073 if (ierr != 0) {
4074 SEGVN_VMSTAT_FLTVNPAGES(17);
4075 if (pplist != NULL) {
4076 SEGVN_VMSTAT_FLTVNPAGES(18);
4077 page_free_replacement_page(pplist);
4078 page_create_putback(pages);
4079 }
4080 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4081 if (a + pgsz <= eaddr) {
4082 SEGVN_VMSTAT_FLTVNPAGES(19);
4083 err = FC_MAKE_ERR(ierr);
4084 goto out;
4085 }
4086 va.va_mask = AT_SIZE;
4087 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) {
4088 SEGVN_VMSTAT_FLTVNPAGES(20);
4089 err = FC_MAKE_ERR(EIO);
4090 goto out;
4091 }
4092 if (btopr(va.va_size) >= btopr(off + pgsz)) {
4093 SEGVN_VMSTAT_FLTVNPAGES(21);
4094 err = FC_MAKE_ERR(ierr);
4095 goto out;
4096 }
4097 if (btopr(va.va_size) <
4098 btopr(off + (eaddr - a))) {
4099 SEGVN_VMSTAT_FLTVNPAGES(22);
4100 err = FC_MAKE_ERR(ierr);
4101 goto out;
4102 }
4103 if (brkcow || tron || type == F_SOFTLOCK) {
4104 /* can't reduce map area */
4105 SEGVN_VMSTAT_FLTVNPAGES(23);
4106 vop_size_err = 1;
4107 goto out;
4108 }
4109 SEGVN_VMSTAT_FLTVNPAGES(24);
4110 ASSERT(szc != 0);
4111 pszc = 0;
4112 ierr = -1;
4113 break;
4114 }
4115
4116 if (amp != NULL) {
4117 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
4118 anon_array_enter(amp, aindx, &an_cookie);
4119 }
4120 if (amp != NULL &&
4121 anon_get_ptr(amp->ahp, aindx) != NULL) {
4122 ulong_t taindx = P2ALIGN(aindx, maxpages);
4123
4124 SEGVN_VMSTAT_FLTVNPAGES(25);
4125 ASSERT(anon_pages(amp->ahp, taindx,
4126 maxpages) == maxpages);
4127 for (i = 0; i < pages; i++) {
4128 page_unlock(ppa[i]);
4129 }
4130 anon_array_exit(&an_cookie);
4131 ANON_LOCK_EXIT(&->a_rwlock);
4132 if (pplist != NULL) {
4133 page_free_replacement_page(pplist);
4134 page_create_putback(pages);
4135 }
4136 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4137 if (szc < seg->s_szc) {
4138 SEGVN_VMSTAT_FLTVNPAGES(26);
4139 /*
4140 * For private segments SOFTLOCK
4141 * either always breaks cow (any rw
4142 * type except S_READ_NOCOW) or
4143 * address space is locked as writer
4144 * (S_READ_NOCOW case) and anon slots
4145 * can't show up on second check.
4146 * Therefore if we are here for
4147 * SOFTLOCK case it must be a cow
4148 * break but cow break never reduces
4149 * szc. text replication (tron) in
4150 * this case works as cow break.
4151 * Thus the assert below.
4152 */
4153 ASSERT(!brkcow && !tron &&
4154 type != F_SOFTLOCK);
4155 pszc = seg->s_szc;
4156 ierr = -2;
4157 break;
4158 }
4159 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4160 goto again;
4161 }
4162 #ifdef DEBUG
4163 if (amp != NULL) {
4164 ulong_t taindx = P2ALIGN(aindx, maxpages);
4165 ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4166 }
4167 #endif /* DEBUG */
4168
4169 if (brkcow || tron) {
4170 ASSERT(amp != NULL);
4171 ASSERT(pplist == NULL);
4172 ASSERT(szc == seg->s_szc);
4173 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4174 ASSERT(IS_P2ALIGNED(aindx, maxpages));
4175 SEGVN_VMSTAT_FLTVNPAGES(27);
4176 ierr = anon_map_privatepages(amp, aindx, szc,
4177 seg, a, prot, ppa, vpage, segvn_anypgsz,
4178 tron ? PG_LOCAL : 0, svd->cred);
4179 if (ierr != 0) {
4180 SEGVN_VMSTAT_FLTVNPAGES(28);
4181 anon_array_exit(&an_cookie);
4182 ANON_LOCK_EXIT(&->a_rwlock);
4183 SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4184 err = FC_MAKE_ERR(ierr);
4185 goto out;
4186 }
4187
4188 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4189 /*
4190 * p_szc can't be changed for locked
4191 * swapfs pages.
4192 */
4193 ASSERT(svd->rcookie ==
4194 HAT_INVALID_REGION_COOKIE);
4195 hat_memload_array(hat, a, pgsz, ppa, prot,
4196 hat_flag);
4197
4198 if (!(hat_flag & HAT_LOAD_LOCK)) {
4199 SEGVN_VMSTAT_FLTVNPAGES(29);
4200 for (i = 0; i < pages; i++) {
4201 page_unlock(ppa[i]);
4202 }
4203 }
4204 anon_array_exit(&an_cookie);
4205 ANON_LOCK_EXIT(&->a_rwlock);
4206 goto next;
4207 }
4208
4209 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4210 (!svd->pageprot && svd->prot == (prot & vpprot)));
4211
4212 pfn = page_pptonum(ppa[0]);
4213 /*
4214 * hat_page_demote() needs an SE_EXCL lock on one of
4215 * constituent page_t's and it decreases root's p_szc
4216 * last. This means if root's p_szc is equal szc and
4217 * all its constituent pages are locked
4218 * hat_page_demote() that could have changed p_szc to
4219 * szc is already done and no new have page_demote()
4220 * can start for this large page.
4221 */
4222
4223 /*
4224 * we need to make sure same mapping size is used for
4225 * the same address range if there's a possibility the
4226 * adddress is already mapped because hat layer panics
4227 * when translation is loaded for the range already
4228 * mapped with a different page size. We achieve it
4229 * by always using largest page size possible subject
4230 * to the constraints of page size, segment page size
4231 * and page alignment. Since mappings are invalidated
4232 * when those constraints change and make it
4233 * impossible to use previously used mapping size no
4234 * mapping size conflicts should happen.
4235 */
4236
4237 chkszc:
4238 if ((pszc = ppa[0]->p_szc) == szc &&
4239 IS_P2ALIGNED(pfn, pages)) {
4240
4241 SEGVN_VMSTAT_FLTVNPAGES(30);
4242 #ifdef DEBUG
4243 for (i = 0; i < pages; i++) {
4244 ASSERT(PAGE_LOCKED(ppa[i]));
4245 ASSERT(!PP_ISFREE(ppa[i]));
4246 ASSERT(page_pptonum(ppa[i]) ==
4247 pfn + i);
4248 ASSERT(ppa[i]->p_szc == szc);
4249 ASSERT(ppa[i]->p_vnode == vp);
4250 ASSERT(ppa[i]->p_offset ==
4251 off + (i << PAGESHIFT));
4252 }
4253 #endif /* DEBUG */
4254 /*
4255 * All pages are of szc we need and they are
4256 * all locked so they can't change szc. load
4257 * translations.
4258 *
4259 * if page got promoted since last check
4260 * we don't need pplist.
4261 */
4262 if (pplist != NULL) {
4263 page_free_replacement_page(pplist);
4264 page_create_putback(pages);
4265 }
4266 if (PP_ISMIGRATE(ppa[0])) {
4267 page_migrate(seg, a, ppa, pages);
4268 }
4269 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4270 prot, vpprot);
4271 hat_memload_array_region(hat, a, pgsz,
4272 ppa, prot & vpprot, hat_flag,
4273 svd->rcookie);
4274
4275 if (!(hat_flag & HAT_LOAD_LOCK)) {
4276 for (i = 0; i < pages; i++) {
4277 page_unlock(ppa[i]);
4278 }
4279 }
4280 if (amp != NULL) {
4281 anon_array_exit(&an_cookie);
4282 ANON_LOCK_EXIT(&->a_rwlock);
4283 }
4284 goto next;
4285 }
4286
4287 /*
4288 * See if upsize is possible.
4289 */
4290 if (pszc > szc && szc < seg->s_szc &&
4291 (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4292 pgcnt_t aphase;
4293 uint_t pszc1 = MIN(pszc, seg->s_szc);
4294 ppgsz = page_get_pagesize(pszc1);
4295 ppages = btop(ppgsz);
4296 aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4297
4298 ASSERT(type != F_SOFTLOCK);
4299
4300 SEGVN_VMSTAT_FLTVNPAGES(31);
4301 if (aphase != P2PHASE(pfn, ppages)) {
4302 segvn_faultvnmpss_align_err4++;
4303 } else {
4304 SEGVN_VMSTAT_FLTVNPAGES(32);
4305 if (pplist != NULL) {
4306 page_t *pl = pplist;
4307 page_free_replacement_page(pl);
4308 page_create_putback(pages);
4309 }
4310 for (i = 0; i < pages; i++) {
4311 page_unlock(ppa[i]);
4312 }
4313 if (amp != NULL) {
4314 anon_array_exit(&an_cookie);
4315 ANON_LOCK_EXIT(&->a_rwlock);
4316 }
4317 pszc = pszc1;
4318 ierr = -2;
4319 break;
4320 }
4321 }
4322
4323 /*
4324 * check if we should use smallest mapping size.
4325 */
4326 upgrdfail = 0;
4327 if (szc == 0 ||
4328 (pszc >= szc &&
4329 !IS_P2ALIGNED(pfn, pages)) ||
4330 (pszc < szc &&
4331 !segvn_full_szcpages(ppa, szc, &upgrdfail,
4332 &pszc))) {
4333
4334 if (upgrdfail && type != F_SOFTLOCK) {
4335 /*
4336 * segvn_full_szcpages failed to lock
4337 * all pages EXCL. Size down.
4338 */
4339 ASSERT(pszc < szc);
4340
4341 SEGVN_VMSTAT_FLTVNPAGES(33);
4342
4343 if (pplist != NULL) {
4344 page_t *pl = pplist;
4345 page_free_replacement_page(pl);
4346 page_create_putback(pages);
4347 }
4348
4349 for (i = 0; i < pages; i++) {
4350 page_unlock(ppa[i]);
4351 }
4352 if (amp != NULL) {
4353 anon_array_exit(&an_cookie);
4354 ANON_LOCK_EXIT(&->a_rwlock);
4355 }
4356 ierr = -1;
4357 break;
4358 }
4359 if (szc != 0 && !upgrdfail) {
4360 segvn_faultvnmpss_align_err5++;
4361 }
4362 SEGVN_VMSTAT_FLTVNPAGES(34);
4363 if (pplist != NULL) {
4364 page_free_replacement_page(pplist);
4365 page_create_putback(pages);
4366 }
4367 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4368 prot, vpprot);
4369 if (upgrdfail && segvn_anypgsz_vnode) {
4370 /* SOFTLOCK case */
4371 hat_memload_array_region(hat, a, pgsz,
4372 ppa, prot & vpprot, hat_flag,
4373 svd->rcookie);
4374 } else {
4375 for (i = 0; i < pages; i++) {
4376 hat_memload_region(hat,
4377 a + (i << PAGESHIFT),
4378 ppa[i], prot & vpprot,
4379 hat_flag, svd->rcookie);
4380 }
4381 }
4382 if (!(hat_flag & HAT_LOAD_LOCK)) {
4383 for (i = 0; i < pages; i++) {
4384 page_unlock(ppa[i]);
4385 }
4386 }
4387 if (amp != NULL) {
4388 anon_array_exit(&an_cookie);
4389 ANON_LOCK_EXIT(&->a_rwlock);
4390 }
4391 goto next;
4392 }
4393
4394 if (pszc == szc) {
4395 /*
4396 * segvn_full_szcpages() upgraded pages szc.
4397 */
4398 ASSERT(pszc == ppa[0]->p_szc);
4399 ASSERT(IS_P2ALIGNED(pfn, pages));
4400 goto chkszc;
4401 }
4402
4403 if (pszc > szc) {
4404 kmutex_t *szcmtx;
4405 SEGVN_VMSTAT_FLTVNPAGES(35);
4406 /*
4407 * p_szc of ppa[0] can change since we haven't
4408 * locked all constituent pages. Call
4409 * page_lock_szc() to prevent szc changes.
4410 * This should be a rare case that happens when
4411 * multiple segments use a different page size
4412 * to map the same file offsets.
4413 */
4414 szcmtx = page_szc_lock(ppa[0]);
4415 pszc = ppa[0]->p_szc;
4416 ASSERT(szcmtx != NULL || pszc == 0);
4417 ASSERT(ppa[0]->p_szc <= pszc);
4418 if (pszc <= szc) {
4419 SEGVN_VMSTAT_FLTVNPAGES(36);
4420 if (szcmtx != NULL) {
4421 mutex_exit(szcmtx);
4422 }
4423 goto chkszc;
4424 }
4425 if (pplist != NULL) {
4426 /*
4427 * page got promoted since last check.
4428 * we don't need preaalocated large
4429 * page.
4430 */
4431 SEGVN_VMSTAT_FLTVNPAGES(37);
4432 page_free_replacement_page(pplist);
4433 page_create_putback(pages);
4434 }
4435 SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4436 prot, vpprot);
4437 hat_memload_array_region(hat, a, pgsz, ppa,
4438 prot & vpprot, hat_flag, svd->rcookie);
4439 mutex_exit(szcmtx);
4440 if (!(hat_flag & HAT_LOAD_LOCK)) {
4441 for (i = 0; i < pages; i++) {
4442 page_unlock(ppa[i]);
4443 }
4444 }
4445 if (amp != NULL) {
4446 anon_array_exit(&an_cookie);
4447 ANON_LOCK_EXIT(&->a_rwlock);
4448 }
4449 goto next;
4450 }
4451
4452 /*
4453 * if page got demoted since last check
4454 * we could have not allocated larger page.
4455 * allocate now.
4456 */
4457 if (pplist == NULL &&
4458 page_alloc_pages(vp, seg, a, &pplist, NULL,
4459 szc, 0, 0) && type != F_SOFTLOCK) {
4460 SEGVN_VMSTAT_FLTVNPAGES(38);
4461 for (i = 0; i < pages; i++) {
4462 page_unlock(ppa[i]);
4463 }
4464 if (amp != NULL) {
4465 anon_array_exit(&an_cookie);
4466 ANON_LOCK_EXIT(&->a_rwlock);
4467 }
4468 ierr = -1;
4469 alloc_failed |= (1 << szc);
4470 break;
4471 }
4472
4473 SEGVN_VMSTAT_FLTVNPAGES(39);
4474
4475 if (pplist != NULL) {
4476 segvn_relocate_pages(ppa, pplist);
4477 #ifdef DEBUG
4478 } else {
4479 ASSERT(type == F_SOFTLOCK);
4480 SEGVN_VMSTAT_FLTVNPAGES(40);
4481 #endif /* DEBUG */
4482 }
4483
4484 SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4485
4486 if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4487 ASSERT(type == F_SOFTLOCK);
4488 for (i = 0; i < pages; i++) {
4489 ASSERT(ppa[i]->p_szc < szc);
4490 hat_memload_region(hat,
4491 a + (i << PAGESHIFT),
4492 ppa[i], prot & vpprot, hat_flag,
4493 svd->rcookie);
4494 }
4495 } else {
4496 ASSERT(pplist != NULL || type == F_SOFTLOCK);
4497 hat_memload_array_region(hat, a, pgsz, ppa,
4498 prot & vpprot, hat_flag, svd->rcookie);
4499 }
4500 if (!(hat_flag & HAT_LOAD_LOCK)) {
4501 for (i = 0; i < pages; i++) {
4502 ASSERT(PAGE_SHARED(ppa[i]));
4503 page_unlock(ppa[i]);
4504 }
4505 }
4506 if (amp != NULL) {
4507 anon_array_exit(&an_cookie);
4508 ANON_LOCK_EXIT(&->a_rwlock);
4509 }
4510
4511 next:
4512 if (vpage != NULL) {
4513 vpage += pages;
4514 }
4515 adjszc_chk = 1;
4516 }
4517 if (a == lpgeaddr)
4518 break;
4519 ASSERT(a < lpgeaddr);
4520
4521 ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4522
4523 /*
4524 * ierr == -1 means we failed to map with a large page.
4525 * (either due to allocation/relocation failures or
4526 * misalignment with other mappings to this file.
4527 *
4528 * ierr == -2 means some other thread allocated a large page
4529 * after we gave up tp map with a large page. retry with
4530 * larger mapping.
4531 */
4532 ASSERT(ierr == -1 || ierr == -2);
4533 ASSERT(ierr == -2 || szc != 0);
4534 ASSERT(ierr == -1 || szc < seg->s_szc);
4535 if (ierr == -2) {
4536 SEGVN_VMSTAT_FLTVNPAGES(41);
4537 ASSERT(pszc > szc && pszc <= seg->s_szc);
4538 szc = pszc;
4539 } else if (segvn_anypgsz_vnode) {
4540 SEGVN_VMSTAT_FLTVNPAGES(42);
4541 szc--;
4542 } else {
4543 SEGVN_VMSTAT_FLTVNPAGES(43);
4544 ASSERT(pszc < szc);
4545 /*
4546 * other process created pszc large page.
4547 * but we still have to drop to 0 szc.
4548 */
4549 szc = 0;
4550 }
4551
4552 pgsz = page_get_pagesize(szc);
4553 pages = btop(pgsz);
4554 if (ierr == -2) {
4555 /*
4556 * Size up case. Note lpgaddr may only be needed for
4557 * softlock case so we don't adjust it here.
4558 */
4559 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4560 ASSERT(a >= lpgaddr);
4561 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4562 off = svd->offset + (uintptr_t)(a - seg->s_base);
4563 aindx = svd->anon_index + seg_page(seg, a);
4564 vpage = (svd->vpage != NULL) ?
4565 &svd->vpage[seg_page(seg, a)] : NULL;
4566 } else {
4567 /*
4568 * Size down case. Note lpgaddr may only be needed for
4569 * softlock case so we don't adjust it here.
4570 */
4571 ASSERT(IS_P2ALIGNED(a, pgsz));
4572 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4573 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4574 ASSERT(a < lpgeaddr);
4575 if (a < addr) {
4576 SEGVN_VMSTAT_FLTVNPAGES(44);
4577 /*
4578 * The beginning of the large page region can
4579 * be pulled to the right to make a smaller
4580 * region. We haven't yet faulted a single
4581 * page.
4582 */
4583 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4584 ASSERT(a >= lpgaddr);
4585 off = svd->offset +
4586 (uintptr_t)(a - seg->s_base);
4587 aindx = svd->anon_index + seg_page(seg, a);
4588 vpage = (svd->vpage != NULL) ?
4589 &svd->vpage[seg_page(seg, a)] : NULL;
4590 }
4591 }
4592 }
4593 out:
4594 kmem_free(ppa, ppasize);
4595 if (!err && !vop_size_err) {
4596 SEGVN_VMSTAT_FLTVNPAGES(45);
4597 return (0);
4598 }
4599 if (type == F_SOFTLOCK && a > lpgaddr) {
4600 SEGVN_VMSTAT_FLTVNPAGES(46);
4601 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4602 }
4603 if (!vop_size_err) {
4604 SEGVN_VMSTAT_FLTVNPAGES(47);
4605 return (err);
4606 }
4607 ASSERT(brkcow || tron || type == F_SOFTLOCK);
4608 /*
4609 * Large page end is mapped beyond the end of file and it's a cow
4610 * fault (can be a text replication induced cow) or softlock so we can't
4611 * reduce the map area. For now just demote the segment. This should
4612 * really only happen if the end of the file changed after the mapping
4613 * was established since when large page segments are created we make
4614 * sure they don't extend beyond the end of the file.
4615 */
4616 SEGVN_VMSTAT_FLTVNPAGES(48);
4617
4618 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4619 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4620 err = 0;
4621 if (seg->s_szc != 0) {
4622 segvn_fltvnpages_clrszc_cnt++;
4623 ASSERT(svd->softlockcnt == 0);
4624 err = segvn_clrszc(seg);
4625 if (err != 0) {
4626 segvn_fltvnpages_clrszc_err++;
4627 }
4628 }
4629 ASSERT(err || seg->s_szc == 0);
4630 SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4631 /* segvn_fault will do its job as if szc had been zero to begin with */
4632 return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4633 }
4634
4635 /*
4636 * This routine will attempt to fault in one large page.
4637 * it will use smaller pages if that fails.
4638 * It should only be called for pure anonymous segments.
4639 */
4640 static faultcode_t
segvn_fault_anonpages(struct hat * hat,struct seg * seg,caddr_t lpgaddr,caddr_t lpgeaddr,enum fault_type type,enum seg_rw rw,caddr_t addr,caddr_t eaddr,int brkcow)4641 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4642 caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4643 caddr_t eaddr, int brkcow)
4644 {
4645 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4646 struct anon_map *amp = svd->amp;
4647 uchar_t segtype = svd->type;
4648 uint_t szc = seg->s_szc;
4649 size_t pgsz = page_get_pagesize(szc);
4650 size_t maxpgsz = pgsz;
4651 pgcnt_t pages = btop(pgsz);
4652 uint_t ppaszc = szc;
4653 caddr_t a = lpgaddr;
4654 ulong_t aindx = svd->anon_index + seg_page(seg, a);
4655 struct vpage *vpage = (svd->vpage != NULL) ?
4656 &svd->vpage[seg_page(seg, a)] : NULL;
4657 page_t **ppa;
4658 uint_t ppa_szc;
4659 faultcode_t err;
4660 int ierr;
4661 uint_t protchk, prot, vpprot;
4662 ulong_t i;
4663 int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4664 anon_sync_obj_t cookie;
4665 int adjszc_chk;
4666 int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4667
4668 ASSERT(szc != 0);
4669 ASSERT(amp != NULL);
4670 ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4671 ASSERT(!(svd->flags & MAP_NORESERVE));
4672 ASSERT(type != F_SOFTUNLOCK);
4673 ASSERT(IS_P2ALIGNED(a, maxpgsz));
4674 ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4675 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4676
4677 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4678
4679 VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4680 VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4681
4682 if (svd->flags & MAP_TEXT) {
4683 hat_flag |= HAT_LOAD_TEXT;
4684 }
4685
4686 if (svd->pageprot) {
4687 prot = PROT_NONE;
4688 switch (rw) {
4689 case S_READ:
4690 protchk = PROT_READ;
4691 break;
4692 case S_WRITE:
4693 protchk = PROT_WRITE;
4694 break;
4695 case S_EXEC:
4696 protchk = PROT_EXEC;
4697 break;
4698 case S_OTHER:
4699 default:
4700 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4701 break;
4702 }
4703 VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4704 } else {
4705 protchk = PROT_NONE;
4706 prot = svd->prot;
4707 /* caller has already done segment level protection check. */
4708 }
4709
4710 ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4711 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
4712 ierr = 0;
4713 for (;;) {
4714 adjszc_chk = 0;
4715 for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4716 if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4717 VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4718 ASSERT(vpage != NULL);
4719 prot = VPP_PROT(vpage);
4720 ASSERT(sameprot(seg, a, maxpgsz));
4721 if ((prot & protchk) == 0) {
4722 err = FC_PROT;
4723 goto error;
4724 }
4725 }
4726 if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4727 pgsz < maxpgsz) {
4728 ASSERT(a > lpgaddr);
4729 szc = seg->s_szc;
4730 pgsz = maxpgsz;
4731 pages = btop(pgsz);
4732 ASSERT(IS_P2ALIGNED(aindx, pages));
4733 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4734 pgsz);
4735 }
4736 if (type == F_SOFTLOCK) {
4737 atomic_add_long((ulong_t *)&svd->softlockcnt,
4738 pages);
4739 }
4740 anon_array_enter(amp, aindx, &cookie);
4741 ppa_szc = (uint_t)-1;
4742 ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4743 prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4744 segvn_anypgsz, pgflags, svd->cred);
4745 if (ierr != 0) {
4746 anon_array_exit(&cookie);
4747 VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4748 if (type == F_SOFTLOCK) {
4749 atomic_add_long(
4750 (ulong_t *)&svd->softlockcnt,
4751 -pages);
4752 }
4753 if (ierr > 0) {
4754 VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4755 err = FC_MAKE_ERR(ierr);
4756 goto error;
4757 }
4758 break;
4759 }
4760
4761 ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4762
4763 ASSERT(segtype == MAP_SHARED ||
4764 ppa[0]->p_szc <= szc);
4765 ASSERT(segtype == MAP_PRIVATE ||
4766 ppa[0]->p_szc >= szc);
4767
4768 /*
4769 * Handle pages that have been marked for migration
4770 */
4771 if (lgrp_optimizations())
4772 page_migrate(seg, a, ppa, pages);
4773
4774 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4775
4776 if (segtype == MAP_SHARED) {
4777 vpprot |= PROT_WRITE;
4778 }
4779
4780 hat_memload_array(hat, a, pgsz, ppa,
4781 prot & vpprot, hat_flag);
4782
4783 if (hat_flag & HAT_LOAD_LOCK) {
4784 VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4785 } else {
4786 VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4787 for (i = 0; i < pages; i++)
4788 page_unlock(ppa[i]);
4789 }
4790 if (vpage != NULL)
4791 vpage += pages;
4792
4793 anon_array_exit(&cookie);
4794 adjszc_chk = 1;
4795 }
4796 if (a == lpgeaddr)
4797 break;
4798 ASSERT(a < lpgeaddr);
4799 /*
4800 * ierr == -1 means we failed to allocate a large page.
4801 * so do a size down operation.
4802 *
4803 * ierr == -2 means some other process that privately shares
4804 * pages with this process has allocated a larger page and we
4805 * need to retry with larger pages. So do a size up
4806 * operation. This relies on the fact that large pages are
4807 * never partially shared i.e. if we share any constituent
4808 * page of a large page with another process we must share the
4809 * entire large page. Note this cannot happen for SOFTLOCK
4810 * case, unless current address (a) is at the beginning of the
4811 * next page size boundary because the other process couldn't
4812 * have relocated locked pages.
4813 */
4814 ASSERT(ierr == -1 || ierr == -2);
4815
4816 if (segvn_anypgsz) {
4817 ASSERT(ierr == -2 || szc != 0);
4818 ASSERT(ierr == -1 || szc < seg->s_szc);
4819 szc = (ierr == -1) ? szc - 1 : szc + 1;
4820 } else {
4821 /*
4822 * For non COW faults and segvn_anypgsz == 0
4823 * we need to be careful not to loop forever
4824 * if existing page is found with szc other
4825 * than 0 or seg->s_szc. This could be due
4826 * to page relocations on behalf of DR or
4827 * more likely large page creation. For this
4828 * case simply re-size to existing page's szc
4829 * if returned by anon_map_getpages().
4830 */
4831 if (ppa_szc == (uint_t)-1) {
4832 szc = (ierr == -1) ? 0 : seg->s_szc;
4833 } else {
4834 ASSERT(ppa_szc <= seg->s_szc);
4835 ASSERT(ierr == -2 || ppa_szc < szc);
4836 ASSERT(ierr == -1 || ppa_szc > szc);
4837 szc = ppa_szc;
4838 }
4839 }
4840
4841 pgsz = page_get_pagesize(szc);
4842 pages = btop(pgsz);
4843 ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4844 (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4845 if (type == F_SOFTLOCK) {
4846 /*
4847 * For softlocks we cannot reduce the fault area
4848 * (calculated based on the largest page size for this
4849 * segment) for size down and a is already next
4850 * page size aligned as assertted above for size
4851 * ups. Therefore just continue in case of softlock.
4852 */
4853 VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4854 continue; /* keep lint happy */
4855 } else if (ierr == -2) {
4856
4857 /*
4858 * Size up case. Note lpgaddr may only be needed for
4859 * softlock case so we don't adjust it here.
4860 */
4861 VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4862 a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4863 ASSERT(a >= lpgaddr);
4864 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4865 aindx = svd->anon_index + seg_page(seg, a);
4866 vpage = (svd->vpage != NULL) ?
4867 &svd->vpage[seg_page(seg, a)] : NULL;
4868 } else {
4869 /*
4870 * Size down case. Note lpgaddr may only be needed for
4871 * softlock case so we don't adjust it here.
4872 */
4873 VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4874 ASSERT(IS_P2ALIGNED(a, pgsz));
4875 ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4876 lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4877 ASSERT(a < lpgeaddr);
4878 if (a < addr) {
4879 /*
4880 * The beginning of the large page region can
4881 * be pulled to the right to make a smaller
4882 * region. We haven't yet faulted a single
4883 * page.
4884 */
4885 VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4886 a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4887 ASSERT(a >= lpgaddr);
4888 aindx = svd->anon_index + seg_page(seg, a);
4889 vpage = (svd->vpage != NULL) ?
4890 &svd->vpage[seg_page(seg, a)] : NULL;
4891 }
4892 }
4893 }
4894 VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4895 ANON_LOCK_EXIT(&->a_rwlock);
4896 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4897 return (0);
4898 error:
4899 VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4900 ANON_LOCK_EXIT(&->a_rwlock);
4901 kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4902 if (type == F_SOFTLOCK && a > lpgaddr) {
4903 VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4904 segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4905 }
4906 return (err);
4907 }
4908
4909 int fltadvice = 1; /* set to free behind pages for sequential access */
4910
4911 /*
4912 * This routine is called via a machine specific fault handling routine.
4913 * It is also called by software routines wishing to lock or unlock
4914 * a range of addresses.
4915 *
4916 * Here is the basic algorithm:
4917 * If unlocking
4918 * Call segvn_softunlock
4919 * Return
4920 * endif
4921 * Checking and set up work
4922 * If we will need some non-anonymous pages
4923 * Call VOP_GETPAGE over the range of non-anonymous pages
4924 * endif
4925 * Loop over all addresses requested
4926 * Call segvn_faultpage passing in page list
4927 * to load up translations and handle anonymous pages
4928 * endloop
4929 * Load up translation to any additional pages in page list not
4930 * already handled that fit into this segment
4931 */
4932 static faultcode_t
segvn_fault(struct hat * hat,struct seg * seg,caddr_t addr,size_t len,enum fault_type type,enum seg_rw rw)4933 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4934 enum fault_type type, enum seg_rw rw)
4935 {
4936 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4937 page_t **plp, **ppp, *pp;
4938 u_offset_t off;
4939 caddr_t a;
4940 struct vpage *vpage;
4941 uint_t vpprot, prot = 0;
4942 int err;
4943 page_t *pl[PVN_GETPAGE_NUM + 1];
4944 size_t plsz, pl_alloc_sz;
4945 size_t page;
4946 ulong_t anon_index = 0;
4947 struct anon_map *amp;
4948 int dogetpage = 0;
4949 caddr_t lpgaddr, lpgeaddr;
4950 size_t pgsz;
4951 anon_sync_obj_t cookie;
4952 int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4953
4954 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
4955 ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4956
4957 /*
4958 * First handle the easy stuff
4959 */
4960 if (type == F_SOFTUNLOCK) {
4961 if (rw == S_READ_NOCOW) {
4962 rw = S_READ;
4963 ASSERT(AS_WRITE_HELD(seg->s_as));
4964 }
4965 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4966 pgsz = (seg->s_szc == 0) ? PAGESIZE :
4967 page_get_pagesize(seg->s_szc);
4968 VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4969 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4970 segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4971 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4972 return (0);
4973 }
4974
4975 ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4976 !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4977 if (brkcow == 0) {
4978 if (svd->tr_state == SEGVN_TR_INIT) {
4979 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4980 if (svd->tr_state == SEGVN_TR_INIT) {
4981 ASSERT(svd->vp != NULL && svd->amp == NULL);
4982 ASSERT(svd->flags & MAP_TEXT);
4983 ASSERT(svd->type == MAP_PRIVATE);
4984 segvn_textrepl(seg);
4985 ASSERT(svd->tr_state != SEGVN_TR_INIT);
4986 ASSERT(svd->tr_state != SEGVN_TR_ON ||
4987 svd->amp != NULL);
4988 }
4989 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4990 }
4991 } else if (svd->tr_state != SEGVN_TR_OFF) {
4992 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4993
4994 if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4995 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4996 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4997 return (FC_PROT);
4998 }
4999
5000 if (svd->tr_state == SEGVN_TR_ON) {
5001 ASSERT(svd->vp != NULL && svd->amp != NULL);
5002 segvn_textunrepl(seg, 0);
5003 ASSERT(svd->amp == NULL &&
5004 svd->tr_state == SEGVN_TR_OFF);
5005 } else if (svd->tr_state != SEGVN_TR_OFF) {
5006 svd->tr_state = SEGVN_TR_OFF;
5007 }
5008 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5009 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5010 }
5011
5012 top:
5013 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5014
5015 /*
5016 * If we have the same protections for the entire segment,
5017 * insure that the access being attempted is legitimate.
5018 */
5019
5020 if (svd->pageprot == 0) {
5021 uint_t protchk;
5022
5023 switch (rw) {
5024 case S_READ:
5025 case S_READ_NOCOW:
5026 protchk = PROT_READ;
5027 break;
5028 case S_WRITE:
5029 protchk = PROT_WRITE;
5030 break;
5031 case S_EXEC:
5032 protchk = PROT_EXEC;
5033 break;
5034 case S_OTHER:
5035 default:
5036 protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
5037 break;
5038 }
5039
5040 if ((svd->prot & protchk) == 0) {
5041 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5042 return (FC_PROT); /* illegal access type */
5043 }
5044 }
5045
5046 if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5047 /* this must be SOFTLOCK S_READ fault */
5048 ASSERT(svd->amp == NULL);
5049 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5050 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5051 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5052 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5053 /*
5054 * this must be the first ever non S_READ_NOCOW
5055 * softlock for this segment.
5056 */
5057 ASSERT(svd->softlockcnt == 0);
5058 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5059 HAT_REGION_TEXT);
5060 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5061 }
5062 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5063 goto top;
5064 }
5065
5066 /*
5067 * We can't allow the long term use of softlocks for vmpss segments,
5068 * because in some file truncation cases we should be able to demote
5069 * the segment, which requires that there are no softlocks. The
5070 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5071 * segment is S_READ_NOCOW, where the caller holds the address space
5072 * locked as writer and calls softunlock before dropping the as lock.
5073 * S_READ_NOCOW is used by /proc to read memory from another user.
5074 *
5075 * Another deadlock between SOFTLOCK and file truncation can happen
5076 * because segvn_fault_vnodepages() calls the FS one pagesize at
5077 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5078 * can cause a deadlock because the first set of page_t's remain
5079 * locked SE_SHARED. To avoid this, we demote segments on a first
5080 * SOFTLOCK if they have a length greater than the segment's
5081 * page size.
5082 *
5083 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5084 * the access type is S_READ_NOCOW and the fault length is less than
5085 * or equal to the segment's page size. While this is quite restrictive,
5086 * it should be the most common case of SOFTLOCK against a vmpss
5087 * segment.
5088 *
5089 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5090 * caller makes sure no COW will be caused by another thread for a
5091 * softlocked page.
5092 */
5093 if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5094 int demote = 0;
5095
5096 if (rw != S_READ_NOCOW) {
5097 demote = 1;
5098 }
5099 if (!demote && len > PAGESIZE) {
5100 pgsz = page_get_pagesize(seg->s_szc);
5101 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5102 lpgeaddr);
5103 if (lpgeaddr - lpgaddr > pgsz) {
5104 demote = 1;
5105 }
5106 }
5107
5108 ASSERT(demote || AS_WRITE_HELD(seg->s_as));
5109
5110 if (demote) {
5111 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5112 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5113 if (seg->s_szc != 0) {
5114 segvn_vmpss_clrszc_cnt++;
5115 ASSERT(svd->softlockcnt == 0);
5116 err = segvn_clrszc(seg);
5117 if (err) {
5118 segvn_vmpss_clrszc_err++;
5119 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5120 return (FC_MAKE_ERR(err));
5121 }
5122 }
5123 ASSERT(seg->s_szc == 0);
5124 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5125 goto top;
5126 }
5127 }
5128
5129 /*
5130 * Check to see if we need to allocate an anon_map structure.
5131 */
5132 if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5133 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5134 /*
5135 * Drop the "read" lock on the segment and acquire
5136 * the "write" version since we have to allocate the
5137 * anon_map.
5138 */
5139 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5140 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5141
5142 if (svd->amp == NULL) {
5143 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5144 svd->amp->a_szc = seg->s_szc;
5145 }
5146 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5147
5148 /*
5149 * Start all over again since segment protections
5150 * may have changed after we dropped the "read" lock.
5151 */
5152 goto top;
5153 }
5154
5155 /*
5156 * S_READ_NOCOW vs S_READ distinction was
5157 * only needed for the code above. After
5158 * that we treat it as S_READ.
5159 */
5160 if (rw == S_READ_NOCOW) {
5161 ASSERT(type == F_SOFTLOCK);
5162 ASSERT(AS_WRITE_HELD(seg->s_as));
5163 rw = S_READ;
5164 }
5165
5166 amp = svd->amp;
5167
5168 /*
5169 * MADV_SEQUENTIAL work is ignored for large page segments.
5170 */
5171 if (seg->s_szc != 0) {
5172 pgsz = page_get_pagesize(seg->s_szc);
5173 ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5174 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5175 if (svd->vp == NULL) {
5176 err = segvn_fault_anonpages(hat, seg, lpgaddr,
5177 lpgeaddr, type, rw, addr, addr + len, brkcow);
5178 } else {
5179 err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5180 lpgeaddr, type, rw, addr, addr + len, brkcow);
5181 if (err == IE_RETRY) {
5182 ASSERT(seg->s_szc == 0);
5183 ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5184 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5185 goto top;
5186 }
5187 }
5188 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5189 return (err);
5190 }
5191
5192 page = seg_page(seg, addr);
5193 if (amp != NULL) {
5194 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5195 anon_index = svd->anon_index + page;
5196
5197 if (type == F_PROT && rw == S_READ &&
5198 svd->tr_state == SEGVN_TR_OFF &&
5199 svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5200 size_t index = anon_index;
5201 struct anon *ap;
5202
5203 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5204 /*
5205 * The fast path could apply to S_WRITE also, except
5206 * that the protection fault could be caused by lazy
5207 * tlb flush when ro->rw. In this case, the pte is
5208 * RW already. But RO in the other cpu's tlb causes
5209 * the fault. Since hat_chgprot won't do anything if
5210 * pte doesn't change, we may end up faulting
5211 * indefinitely until the RO tlb entry gets replaced.
5212 */
5213 for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5214 anon_array_enter(amp, index, &cookie);
5215 ap = anon_get_ptr(amp->ahp, index);
5216 anon_array_exit(&cookie);
5217 if ((ap == NULL) || (ap->an_refcnt != 1)) {
5218 ANON_LOCK_EXIT(&->a_rwlock);
5219 goto slow;
5220 }
5221 }
5222 hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5223 ANON_LOCK_EXIT(&->a_rwlock);
5224 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5225 return (0);
5226 }
5227 }
5228 slow:
5229
5230 if (svd->vpage == NULL)
5231 vpage = NULL;
5232 else
5233 vpage = &svd->vpage[page];
5234
5235 off = svd->offset + (uintptr_t)(addr - seg->s_base);
5236
5237 /*
5238 * If MADV_SEQUENTIAL has been set for the particular page we
5239 * are faulting on, free behind all pages in the segment and put
5240 * them on the free list.
5241 */
5242
5243 if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5244 struct vpage *vpp = NULL;
5245 ulong_t fanon_index = 0;
5246 size_t fpage;
5247 u_offset_t pgoff, fpgoff;
5248 struct vnode *fvp;
5249 struct anon *fap = NULL;
5250
5251 if (svd->advice == MADV_SEQUENTIAL ||
5252 (svd->pageadvice &&
5253 VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5254 pgoff = off - PAGESIZE;
5255 fpage = page - 1;
5256 if (vpage != NULL)
5257 vpp = &svd->vpage[fpage];
5258 if (amp != NULL)
5259 fanon_index = svd->anon_index + fpage;
5260
5261 while (pgoff > svd->offset) {
5262 if (svd->advice != MADV_SEQUENTIAL &&
5263 (!svd->pageadvice || (vpage &&
5264 VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5265 break;
5266
5267 /*
5268 * If this is an anon page, we must find the
5269 * correct <vp, offset> for it
5270 */
5271 fap = NULL;
5272 if (amp != NULL) {
5273 ANON_LOCK_ENTER(&->a_rwlock,
5274 RW_READER);
5275 anon_array_enter(amp, fanon_index,
5276 &cookie);
5277 fap = anon_get_ptr(amp->ahp,
5278 fanon_index);
5279 if (fap != NULL) {
5280 swap_xlate(fap, &fvp, &fpgoff);
5281 } else {
5282 fpgoff = pgoff;
5283 fvp = svd->vp;
5284 }
5285 anon_array_exit(&cookie);
5286 ANON_LOCK_EXIT(&->a_rwlock);
5287 } else {
5288 fpgoff = pgoff;
5289 fvp = svd->vp;
5290 }
5291 if (fvp == NULL)
5292 break; /* XXX */
5293 /*
5294 * Skip pages that are free or have an
5295 * "exclusive" lock.
5296 */
5297 pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5298 if (pp == NULL)
5299 break;
5300 /*
5301 * We don't need the page_struct_lock to test
5302 * as this is only advisory; even if we
5303 * acquire it someone might race in and lock
5304 * the page after we unlock and before the
5305 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5306 */
5307 if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5308 /*
5309 * Hold the vnode before releasing
5310 * the page lock to prevent it from
5311 * being freed and re-used by some
5312 * other thread.
5313 */
5314 VN_HOLD(fvp);
5315 page_unlock(pp);
5316 /*
5317 * We should build a page list
5318 * to kluster putpages XXX
5319 */
5320 (void) VOP_PUTPAGE(fvp,
5321 (offset_t)fpgoff, PAGESIZE,
5322 (B_DONTNEED|B_FREE|B_ASYNC),
5323 svd->cred, NULL);
5324 VN_RELE(fvp);
5325 } else {
5326 /*
5327 * XXX - Should the loop terminate if
5328 * the page is `locked'?
5329 */
5330 page_unlock(pp);
5331 }
5332 --vpp;
5333 --fanon_index;
5334 pgoff -= PAGESIZE;
5335 }
5336 }
5337 }
5338
5339 plp = pl;
5340 *plp = NULL;
5341 pl_alloc_sz = 0;
5342
5343 /*
5344 * See if we need to call VOP_GETPAGE for
5345 * *any* of the range being faulted on.
5346 * We can skip all of this work if there
5347 * was no original vnode.
5348 */
5349 if (svd->vp != NULL) {
5350 u_offset_t vp_off;
5351 size_t vp_len;
5352 struct anon *ap;
5353 vnode_t *vp;
5354
5355 vp_off = off;
5356 vp_len = len;
5357
5358 if (amp == NULL)
5359 dogetpage = 1;
5360 else {
5361 /*
5362 * Only acquire reader lock to prevent amp->ahp
5363 * from being changed. It's ok to miss pages,
5364 * hence we don't do anon_array_enter
5365 */
5366 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5367 ap = anon_get_ptr(amp->ahp, anon_index);
5368
5369 if (len <= PAGESIZE)
5370 /* inline non_anon() */
5371 dogetpage = (ap == NULL);
5372 else
5373 dogetpage = non_anon(amp->ahp, anon_index,
5374 &vp_off, &vp_len);
5375 ANON_LOCK_EXIT(&->a_rwlock);
5376 }
5377
5378 if (dogetpage) {
5379 enum seg_rw arw;
5380 struct as *as = seg->s_as;
5381
5382 if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5383 /*
5384 * Page list won't fit in local array,
5385 * allocate one of the needed size.
5386 */
5387 pl_alloc_sz =
5388 (btop(len) + 1) * sizeof (page_t *);
5389 plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5390 plp[0] = NULL;
5391 plsz = len;
5392 } else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5393 svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5394 (((size_t)(addr + PAGESIZE) <
5395 (size_t)(seg->s_base + seg->s_size)) &&
5396 hat_probe(as->a_hat, addr + PAGESIZE))) {
5397 /*
5398 * Ask VOP_GETPAGE to return the exact number
5399 * of pages if
5400 * (a) this is a COW fault, or
5401 * (b) this is a software fault, or
5402 * (c) next page is already mapped.
5403 */
5404 plsz = len;
5405 } else {
5406 /*
5407 * Ask VOP_GETPAGE to return adjacent pages
5408 * within the segment.
5409 */
5410 plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5411 ((seg->s_base + seg->s_size) - addr));
5412 ASSERT((addr + plsz) <=
5413 (seg->s_base + seg->s_size));
5414 }
5415
5416 /*
5417 * Need to get some non-anonymous pages.
5418 * We need to make only one call to GETPAGE to do
5419 * this to prevent certain deadlocking conditions
5420 * when we are doing locking. In this case
5421 * non_anon() should have picked up the smallest
5422 * range which includes all the non-anonymous
5423 * pages in the requested range. We have to
5424 * be careful regarding which rw flag to pass in
5425 * because on a private mapping, the underlying
5426 * object is never allowed to be written.
5427 */
5428 if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5429 arw = S_READ;
5430 } else {
5431 arw = rw;
5432 }
5433 vp = svd->vp;
5434 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5435 "segvn_getpage:seg %p addr %p vp %p",
5436 seg, addr, vp);
5437 err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5438 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5439 svd->cred, NULL);
5440 if (err) {
5441 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5442 segvn_pagelist_rele(plp);
5443 if (pl_alloc_sz)
5444 kmem_free(plp, pl_alloc_sz);
5445 return (FC_MAKE_ERR(err));
5446 }
5447 if (svd->type == MAP_PRIVATE)
5448 vpprot &= ~PROT_WRITE;
5449 }
5450 }
5451
5452 /*
5453 * N.B. at this time the plp array has all the needed non-anon
5454 * pages in addition to (possibly) having some adjacent pages.
5455 */
5456
5457 /*
5458 * Always acquire the anon_array_lock to prevent
5459 * 2 threads from allocating separate anon slots for
5460 * the same "addr".
5461 *
5462 * If this is a copy-on-write fault and we don't already
5463 * have the anon_array_lock, acquire it to prevent the
5464 * fault routine from handling multiple copy-on-write faults
5465 * on the same "addr" in the same address space.
5466 *
5467 * Only one thread should deal with the fault since after
5468 * it is handled, the other threads can acquire a translation
5469 * to the newly created private page. This prevents two or
5470 * more threads from creating different private pages for the
5471 * same fault.
5472 *
5473 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5474 * to prevent deadlock between this thread and another thread
5475 * which has soft-locked this page and wants to acquire serial_lock.
5476 * ( bug 4026339 )
5477 *
5478 * The fix for bug 4026339 becomes unnecessary when using the
5479 * locking scheme with per amp rwlock and a global set of hash
5480 * lock, anon_array_lock. If we steal a vnode page when low
5481 * on memory and upgrad the page lock through page_rename,
5482 * then the page is PAGE_HANDLED, nothing needs to be done
5483 * for this page after returning from segvn_faultpage.
5484 *
5485 * But really, the page lock should be downgraded after
5486 * the stolen page is page_rename'd.
5487 */
5488
5489 if (amp != NULL)
5490 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5491
5492 /*
5493 * Ok, now loop over the address range and handle faults
5494 */
5495 for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5496 err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5497 type, rw, brkcow);
5498 if (err) {
5499 if (amp != NULL)
5500 ANON_LOCK_EXIT(&->a_rwlock);
5501 if (type == F_SOFTLOCK && a > addr) {
5502 segvn_softunlock(seg, addr, (a - addr),
5503 S_OTHER);
5504 }
5505 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5506 segvn_pagelist_rele(plp);
5507 if (pl_alloc_sz)
5508 kmem_free(plp, pl_alloc_sz);
5509 return (err);
5510 }
5511 if (vpage) {
5512 vpage++;
5513 } else if (svd->vpage) {
5514 page = seg_page(seg, addr);
5515 vpage = &svd->vpage[++page];
5516 }
5517 }
5518
5519 /* Didn't get pages from the underlying fs so we're done */
5520 if (!dogetpage)
5521 goto done;
5522
5523 /*
5524 * Now handle any other pages in the list returned.
5525 * If the page can be used, load up the translations now.
5526 * Note that the for loop will only be entered if "plp"
5527 * is pointing to a non-NULL page pointer which means that
5528 * VOP_GETPAGE() was called and vpprot has been initialized.
5529 */
5530 if (svd->pageprot == 0)
5531 prot = svd->prot & vpprot;
5532
5533
5534 /*
5535 * Large Files: diff should be unsigned value because we started
5536 * supporting > 2GB segment sizes from 2.5.1 and when a
5537 * large file of size > 2GB gets mapped to address space
5538 * the diff value can be > 2GB.
5539 */
5540
5541 for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5542 size_t diff;
5543 struct anon *ap;
5544 int anon_index;
5545 anon_sync_obj_t cookie;
5546 int hat_flag = HAT_LOAD_ADV;
5547
5548 if (svd->flags & MAP_TEXT) {
5549 hat_flag |= HAT_LOAD_TEXT;
5550 }
5551
5552 if (pp == PAGE_HANDLED)
5553 continue;
5554
5555 if (svd->tr_state != SEGVN_TR_ON &&
5556 pp->p_offset >= svd->offset &&
5557 pp->p_offset < svd->offset + seg->s_size) {
5558
5559 diff = pp->p_offset - svd->offset;
5560
5561 /*
5562 * Large Files: Following is the assertion
5563 * validating the above cast.
5564 */
5565 ASSERT(svd->vp == pp->p_vnode);
5566
5567 page = btop(diff);
5568 if (svd->pageprot)
5569 prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5570
5571 /*
5572 * Prevent other threads in the address space from
5573 * creating private pages (i.e., allocating anon slots)
5574 * while we are in the process of loading translations
5575 * to additional pages returned by the underlying
5576 * object.
5577 */
5578 if (amp != NULL) {
5579 anon_index = svd->anon_index + page;
5580 anon_array_enter(amp, anon_index, &cookie);
5581 ap = anon_get_ptr(amp->ahp, anon_index);
5582 }
5583 if ((amp == NULL) || (ap == NULL)) {
5584 if (IS_VMODSORT(pp->p_vnode) ||
5585 enable_mbit_wa) {
5586 if (rw == S_WRITE)
5587 hat_setmod(pp);
5588 else if (rw != S_OTHER &&
5589 !hat_ismod(pp))
5590 prot &= ~PROT_WRITE;
5591 }
5592 /*
5593 * Skip mapping read ahead pages marked
5594 * for migration, so they will get migrated
5595 * properly on fault
5596 */
5597 ASSERT(amp == NULL ||
5598 svd->rcookie == HAT_INVALID_REGION_COOKIE);
5599 if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5600 hat_memload_region(hat,
5601 seg->s_base + diff,
5602 pp, prot, hat_flag,
5603 svd->rcookie);
5604 }
5605 }
5606 if (amp != NULL)
5607 anon_array_exit(&cookie);
5608 }
5609 page_unlock(pp);
5610 }
5611 done:
5612 if (amp != NULL)
5613 ANON_LOCK_EXIT(&->a_rwlock);
5614 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5615 if (pl_alloc_sz)
5616 kmem_free(plp, pl_alloc_sz);
5617 return (0);
5618 }
5619
5620 /*
5621 * This routine is used to start I/O on pages asynchronously. XXX it will
5622 * only create PAGESIZE pages. At fault time they will be relocated into
5623 * larger pages.
5624 */
5625 static faultcode_t
segvn_faulta(struct seg * seg,caddr_t addr)5626 segvn_faulta(struct seg *seg, caddr_t addr)
5627 {
5628 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5629 int err;
5630 struct anon_map *amp;
5631 vnode_t *vp;
5632
5633 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5634
5635 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5636 if ((amp = svd->amp) != NULL) {
5637 struct anon *ap;
5638
5639 /*
5640 * Reader lock to prevent amp->ahp from being changed.
5641 * This is advisory, it's ok to miss a page, so
5642 * we don't do anon_array_enter lock.
5643 */
5644 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5645 if ((ap = anon_get_ptr(amp->ahp,
5646 svd->anon_index + seg_page(seg, addr))) != NULL) {
5647
5648 err = anon_getpage(&ap, NULL, NULL,
5649 0, seg, addr, S_READ, svd->cred);
5650
5651 ANON_LOCK_EXIT(&->a_rwlock);
5652 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5653 if (err)
5654 return (FC_MAKE_ERR(err));
5655 return (0);
5656 }
5657 ANON_LOCK_EXIT(&->a_rwlock);
5658 }
5659
5660 if (svd->vp == NULL) {
5661 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5662 return (0); /* zfod page - do nothing now */
5663 }
5664
5665 vp = svd->vp;
5666 TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5667 "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5668 err = VOP_GETPAGE(vp,
5669 (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5670 PAGESIZE, NULL, NULL, 0, seg, addr,
5671 S_OTHER, svd->cred, NULL);
5672
5673 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5674 if (err)
5675 return (FC_MAKE_ERR(err));
5676 return (0);
5677 }
5678
5679 static int
segvn_setprot(struct seg * seg,caddr_t addr,size_t len,uint_t prot)5680 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5681 {
5682 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5683 struct vpage *cvp, *svp = NULL, *evp = NULL;
5684 struct vnode *vp;
5685 size_t pgsz;
5686 pgcnt_t pgcnt = 0;
5687 anon_sync_obj_t cookie;
5688 int unload_done = 0;
5689
5690 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5691
5692 if ((svd->maxprot & prot) != prot)
5693 return (EACCES); /* violated maxprot */
5694
5695 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5696
5697 /* return if prot is the same */
5698 if (!svd->pageprot && svd->prot == prot) {
5699 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5700 return (0);
5701 }
5702
5703 /*
5704 * Since we change protections we first have to flush the cache.
5705 * This makes sure all the pagelock calls have to recheck
5706 * protections.
5707 */
5708 if (svd->softlockcnt > 0) {
5709 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5710
5711 /*
5712 * If this is shared segment non 0 softlockcnt
5713 * means locked pages are still in use.
5714 */
5715 if (svd->type == MAP_SHARED) {
5716 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5717 return (EAGAIN);
5718 }
5719
5720 /*
5721 * Since we do have the segvn writers lock nobody can fill
5722 * the cache with entries belonging to this seg during
5723 * the purge. The flush either succeeds or we still have
5724 * pending I/Os.
5725 */
5726 segvn_purge(seg);
5727 if (svd->softlockcnt > 0) {
5728 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5729 return (EAGAIN);
5730 }
5731 }
5732
5733 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5734 ASSERT(svd->amp == NULL);
5735 ASSERT(svd->tr_state == SEGVN_TR_OFF);
5736 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5737 HAT_REGION_TEXT);
5738 svd->rcookie = HAT_INVALID_REGION_COOKIE;
5739 unload_done = 1;
5740 } else if (svd->tr_state == SEGVN_TR_INIT) {
5741 svd->tr_state = SEGVN_TR_OFF;
5742 } else if (svd->tr_state == SEGVN_TR_ON) {
5743 ASSERT(svd->amp != NULL);
5744 segvn_textunrepl(seg, 0);
5745 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5746 unload_done = 1;
5747 }
5748
5749 if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5750 svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5751 ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5752 segvn_inval_trcache(svd->vp);
5753 }
5754 if (seg->s_szc != 0) {
5755 int err;
5756 pgsz = page_get_pagesize(seg->s_szc);
5757 pgcnt = pgsz >> PAGESHIFT;
5758 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5759 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5760 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5761 ASSERT(seg->s_base != addr || seg->s_size != len);
5762 /*
5763 * If we are holding the as lock as a reader then
5764 * we need to return IE_RETRY and let the as
5765 * layer drop and re-acquire the lock as a writer.
5766 */
5767 if (AS_READ_HELD(seg->s_as))
5768 return (IE_RETRY);
5769 VM_STAT_ADD(segvnvmstats.demoterange[1]);
5770 if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5771 err = segvn_demote_range(seg, addr, len,
5772 SDR_END, 0);
5773 } else {
5774 uint_t szcvec = map_pgszcvec(seg->s_base,
5775 pgsz, (uintptr_t)seg->s_base,
5776 (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5777 err = segvn_demote_range(seg, addr, len,
5778 SDR_END, szcvec);
5779 }
5780 if (err == 0)
5781 return (IE_RETRY);
5782 if (err == ENOMEM)
5783 return (IE_NOMEM);
5784 return (err);
5785 }
5786 }
5787
5788
5789 /*
5790 * If it's a private mapping and we're making it writable then we
5791 * may have to reserve the additional swap space now. If we are
5792 * making writable only a part of the segment then we use its vpage
5793 * array to keep a record of the pages for which we have reserved
5794 * swap. In this case we set the pageswap field in the segment's
5795 * segvn structure to record this.
5796 *
5797 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5798 * removing write permission on the entire segment and we haven't
5799 * modified any pages, we can release the swap space.
5800 */
5801 if (svd->type == MAP_PRIVATE) {
5802 if (prot & PROT_WRITE) {
5803 if (!(svd->flags & MAP_NORESERVE) &&
5804 !(svd->swresv && svd->pageswap == 0)) {
5805 size_t sz = 0;
5806
5807 /*
5808 * Start by determining how much swap
5809 * space is required.
5810 */
5811 if (addr == seg->s_base &&
5812 len == seg->s_size &&
5813 svd->pageswap == 0) {
5814 /* The whole segment */
5815 sz = seg->s_size;
5816 } else {
5817 /*
5818 * Make sure that the vpage array
5819 * exists, and make a note of the
5820 * range of elements corresponding
5821 * to len.
5822 */
5823 segvn_vpage(seg);
5824 if (svd->vpage == NULL) {
5825 SEGVN_LOCK_EXIT(seg->s_as,
5826 &svd->lock);
5827 return (ENOMEM);
5828 }
5829 svp = &svd->vpage[seg_page(seg, addr)];
5830 evp = &svd->vpage[seg_page(seg,
5831 addr + len)];
5832
5833 if (svd->pageswap == 0) {
5834 /*
5835 * This is the first time we've
5836 * asked for a part of this
5837 * segment, so we need to
5838 * reserve everything we've
5839 * been asked for.
5840 */
5841 sz = len;
5842 } else {
5843 /*
5844 * We have to count the number
5845 * of pages required.
5846 */
5847 for (cvp = svp; cvp < evp;
5848 cvp++) {
5849 if (!VPP_ISSWAPRES(cvp))
5850 sz++;
5851 }
5852 sz <<= PAGESHIFT;
5853 }
5854 }
5855
5856 /* Try to reserve the necessary swap. */
5857 if (anon_resv_zone(sz,
5858 seg->s_as->a_proc->p_zone) == 0) {
5859 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5860 return (IE_NOMEM);
5861 }
5862
5863 /*
5864 * Make a note of how much swap space
5865 * we've reserved.
5866 */
5867 if (svd->pageswap == 0 && sz == seg->s_size) {
5868 svd->swresv = sz;
5869 } else {
5870 ASSERT(svd->vpage != NULL);
5871 svd->swresv += sz;
5872 svd->pageswap = 1;
5873 for (cvp = svp; cvp < evp; cvp++) {
5874 if (!VPP_ISSWAPRES(cvp))
5875 VPP_SETSWAPRES(cvp);
5876 }
5877 }
5878 }
5879 } else {
5880 /*
5881 * Swap space is released only if this segment
5882 * does not map anonymous memory, since read faults
5883 * on such segments still need an anon slot to read
5884 * in the data.
5885 */
5886 if (svd->swresv != 0 && svd->vp != NULL &&
5887 svd->amp == NULL && addr == seg->s_base &&
5888 len == seg->s_size && svd->pageprot == 0) {
5889 ASSERT(svd->pageswap == 0);
5890 anon_unresv_zone(svd->swresv,
5891 seg->s_as->a_proc->p_zone);
5892 svd->swresv = 0;
5893 TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5894 "anon proc:%p %lu %u", seg, 0, 0);
5895 }
5896 }
5897 }
5898
5899 if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5900 if (svd->prot == prot) {
5901 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5902 return (0); /* all done */
5903 }
5904 svd->prot = (uchar_t)prot;
5905 } else if (svd->type == MAP_PRIVATE) {
5906 struct anon *ap = NULL;
5907 page_t *pp;
5908 u_offset_t offset, off;
5909 struct anon_map *amp;
5910 ulong_t anon_idx = 0;
5911
5912 /*
5913 * A vpage structure exists or else the change does not
5914 * involve the entire segment. Establish a vpage structure
5915 * if none is there. Then, for each page in the range,
5916 * adjust its individual permissions. Note that write-
5917 * enabling a MAP_PRIVATE page can affect the claims for
5918 * locked down memory. Overcommitting memory terminates
5919 * the operation.
5920 */
5921 segvn_vpage(seg);
5922 if (svd->vpage == NULL) {
5923 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5924 return (ENOMEM);
5925 }
5926 svd->pageprot = 1;
5927 if ((amp = svd->amp) != NULL) {
5928 anon_idx = svd->anon_index + seg_page(seg, addr);
5929 ASSERT(seg->s_szc == 0 ||
5930 IS_P2ALIGNED(anon_idx, pgcnt));
5931 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5932 }
5933
5934 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5935 evp = &svd->vpage[seg_page(seg, addr + len)];
5936
5937 /*
5938 * See Statement at the beginning of segvn_lockop regarding
5939 * the way cowcnts and lckcnts are handled.
5940 */
5941 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5942
5943 if (seg->s_szc != 0) {
5944 if (amp != NULL) {
5945 anon_array_enter(amp, anon_idx,
5946 &cookie);
5947 }
5948 if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5949 !segvn_claim_pages(seg, svp, offset,
5950 anon_idx, prot)) {
5951 if (amp != NULL) {
5952 anon_array_exit(&cookie);
5953 }
5954 break;
5955 }
5956 if (amp != NULL) {
5957 anon_array_exit(&cookie);
5958 }
5959 anon_idx++;
5960 } else {
5961 if (amp != NULL) {
5962 anon_array_enter(amp, anon_idx,
5963 &cookie);
5964 ap = anon_get_ptr(amp->ahp, anon_idx++);
5965 }
5966
5967 if (VPP_ISPPLOCK(svp) &&
5968 VPP_PROT(svp) != prot) {
5969
5970 if (amp == NULL || ap == NULL) {
5971 vp = svd->vp;
5972 off = offset;
5973 } else
5974 swap_xlate(ap, &vp, &off);
5975 if (amp != NULL)
5976 anon_array_exit(&cookie);
5977
5978 if ((pp = page_lookup(vp, off,
5979 SE_SHARED)) == NULL) {
5980 panic("segvn_setprot: no page");
5981 /*NOTREACHED*/
5982 }
5983 ASSERT(seg->s_szc == 0);
5984 if ((VPP_PROT(svp) ^ prot) &
5985 PROT_WRITE) {
5986 if (prot & PROT_WRITE) {
5987 if (!page_addclaim(
5988 pp)) {
5989 page_unlock(pp);
5990 break;
5991 }
5992 } else {
5993 if (!page_subclaim(
5994 pp)) {
5995 page_unlock(pp);
5996 break;
5997 }
5998 }
5999 }
6000 page_unlock(pp);
6001 } else if (amp != NULL)
6002 anon_array_exit(&cookie);
6003 }
6004 VPP_SETPROT(svp, prot);
6005 offset += PAGESIZE;
6006 }
6007 if (amp != NULL)
6008 ANON_LOCK_EXIT(&->a_rwlock);
6009
6010 /*
6011 * Did we terminate prematurely? If so, simply unload
6012 * the translations to the things we've updated so far.
6013 */
6014 if (svp != evp) {
6015 if (unload_done) {
6016 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6017 return (IE_NOMEM);
6018 }
6019 len = (svp - &svd->vpage[seg_page(seg, addr)]) *
6020 PAGESIZE;
6021 ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
6022 if (len != 0)
6023 hat_unload(seg->s_as->a_hat, addr,
6024 len, HAT_UNLOAD);
6025 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6026 return (IE_NOMEM);
6027 }
6028 } else {
6029 segvn_vpage(seg);
6030 if (svd->vpage == NULL) {
6031 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6032 return (ENOMEM);
6033 }
6034 svd->pageprot = 1;
6035 evp = &svd->vpage[seg_page(seg, addr + len)];
6036 for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
6037 VPP_SETPROT(svp, prot);
6038 }
6039 }
6040
6041 if (unload_done) {
6042 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6043 return (0);
6044 }
6045
6046 if (((prot & PROT_WRITE) != 0 &&
6047 (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
6048 (prot & ~PROT_USER) == PROT_NONE) {
6049 /*
6050 * Either private or shared data with write access (in
6051 * which case we need to throw out all former translations
6052 * so that we get the right translations set up on fault
6053 * and we don't allow write access to any copy-on-write pages
6054 * that might be around or to prevent write access to pages
6055 * representing holes in a file), or we don't have permission
6056 * to access the memory at all (in which case we have to
6057 * unload any current translations that might exist).
6058 */
6059 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
6060 } else {
6061 /*
6062 * A shared mapping or a private mapping in which write
6063 * protection is going to be denied - just change all the
6064 * protections over the range of addresses in question.
6065 * segvn does not support any other attributes other
6066 * than prot so we can use hat_chgattr.
6067 */
6068 hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6069 }
6070
6071 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6072
6073 return (0);
6074 }
6075
6076 /*
6077 * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
6078 * to determine if the seg is capable of mapping the requested szc.
6079 */
6080 static int
segvn_setpagesize(struct seg * seg,caddr_t addr,size_t len,uint_t szc)6081 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6082 {
6083 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6084 struct segvn_data *nsvd;
6085 struct anon_map *amp = svd->amp;
6086 struct seg *nseg;
6087 caddr_t eaddr = addr + len, a;
6088 size_t pgsz = page_get_pagesize(szc);
6089 pgcnt_t pgcnt = page_get_pagecnt(szc);
6090 int err;
6091 u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6092
6093 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
6094 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6095
6096 if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6097 return (0);
6098 }
6099
6100 /*
6101 * addr should always be pgsz aligned but eaddr may be misaligned if
6102 * it's at the end of the segment.
6103 *
6104 * XXX we should assert this condition since as_setpagesize() logic
6105 * guarantees it.
6106 */
6107 if (!IS_P2ALIGNED(addr, pgsz) ||
6108 (!IS_P2ALIGNED(eaddr, pgsz) &&
6109 eaddr != seg->s_base + seg->s_size)) {
6110
6111 segvn_setpgsz_align_err++;
6112 return (EINVAL);
6113 }
6114
6115 if (amp != NULL && svd->type == MAP_SHARED) {
6116 ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6117 if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6118
6119 segvn_setpgsz_anon_align_err++;
6120 return (EINVAL);
6121 }
6122 }
6123
6124 if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6125 szc > segvn_maxpgszc) {
6126 return (EINVAL);
6127 }
6128
6129 /* paranoid check */
6130 if (svd->vp != NULL &&
6131 (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6132 return (EINVAL);
6133 }
6134
6135 if (seg->s_szc == 0 && svd->vp != NULL &&
6136 map_addr_vacalign_check(addr, off)) {
6137 return (EINVAL);
6138 }
6139
6140 /*
6141 * Check that protections are the same within new page
6142 * size boundaries.
6143 */
6144 if (svd->pageprot) {
6145 for (a = addr; a < eaddr; a += pgsz) {
6146 if ((a + pgsz) > eaddr) {
6147 if (!sameprot(seg, a, eaddr - a)) {
6148 return (EINVAL);
6149 }
6150 } else {
6151 if (!sameprot(seg, a, pgsz)) {
6152 return (EINVAL);
6153 }
6154 }
6155 }
6156 }
6157
6158 /*
6159 * Since we are changing page size we first have to flush
6160 * the cache. This makes sure all the pagelock calls have
6161 * to recheck protections.
6162 */
6163 if (svd->softlockcnt > 0) {
6164 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6165
6166 /*
6167 * If this is shared segment non 0 softlockcnt
6168 * means locked pages are still in use.
6169 */
6170 if (svd->type == MAP_SHARED) {
6171 return (EAGAIN);
6172 }
6173
6174 /*
6175 * Since we do have the segvn writers lock nobody can fill
6176 * the cache with entries belonging to this seg during
6177 * the purge. The flush either succeeds or we still have
6178 * pending I/Os.
6179 */
6180 segvn_purge(seg);
6181 if (svd->softlockcnt > 0) {
6182 return (EAGAIN);
6183 }
6184 }
6185
6186 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6187 ASSERT(svd->amp == NULL);
6188 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6189 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6190 HAT_REGION_TEXT);
6191 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6192 } else if (svd->tr_state == SEGVN_TR_INIT) {
6193 svd->tr_state = SEGVN_TR_OFF;
6194 } else if (svd->tr_state == SEGVN_TR_ON) {
6195 ASSERT(svd->amp != NULL);
6196 segvn_textunrepl(seg, 1);
6197 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6198 amp = NULL;
6199 }
6200
6201 /*
6202 * Operation for sub range of existing segment.
6203 */
6204 if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6205 if (szc < seg->s_szc) {
6206 VM_STAT_ADD(segvnvmstats.demoterange[2]);
6207 err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6208 if (err == 0) {
6209 return (IE_RETRY);
6210 }
6211 if (err == ENOMEM) {
6212 return (IE_NOMEM);
6213 }
6214 return (err);
6215 }
6216 if (addr != seg->s_base) {
6217 nseg = segvn_split_seg(seg, addr);
6218 if (eaddr != (nseg->s_base + nseg->s_size)) {
6219 /* eaddr is szc aligned */
6220 (void) segvn_split_seg(nseg, eaddr);
6221 }
6222 return (IE_RETRY);
6223 }
6224 if (eaddr != (seg->s_base + seg->s_size)) {
6225 /* eaddr is szc aligned */
6226 (void) segvn_split_seg(seg, eaddr);
6227 }
6228 return (IE_RETRY);
6229 }
6230
6231 /*
6232 * Break any low level sharing and reset seg->s_szc to 0.
6233 */
6234 if ((err = segvn_clrszc(seg)) != 0) {
6235 if (err == ENOMEM) {
6236 err = IE_NOMEM;
6237 }
6238 return (err);
6239 }
6240 ASSERT(seg->s_szc == 0);
6241
6242 /*
6243 * If the end of the current segment is not pgsz aligned
6244 * then attempt to concatenate with the next segment.
6245 */
6246 if (!IS_P2ALIGNED(eaddr, pgsz)) {
6247 nseg = AS_SEGNEXT(seg->s_as, seg);
6248 if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6249 return (ENOMEM);
6250 }
6251 if (nseg->s_ops != &segvn_ops) {
6252 return (EINVAL);
6253 }
6254 nsvd = (struct segvn_data *)nseg->s_data;
6255 if (nsvd->softlockcnt > 0) {
6256 /*
6257 * If this is shared segment non 0 softlockcnt
6258 * means locked pages are still in use.
6259 */
6260 if (nsvd->type == MAP_SHARED) {
6261 return (EAGAIN);
6262 }
6263 segvn_purge(nseg);
6264 if (nsvd->softlockcnt > 0) {
6265 return (EAGAIN);
6266 }
6267 }
6268 err = segvn_clrszc(nseg);
6269 if (err == ENOMEM) {
6270 err = IE_NOMEM;
6271 }
6272 if (err != 0) {
6273 return (err);
6274 }
6275 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6276 err = segvn_concat(seg, nseg, 1);
6277 if (err == -1) {
6278 return (EINVAL);
6279 }
6280 if (err == -2) {
6281 return (IE_NOMEM);
6282 }
6283 return (IE_RETRY);
6284 }
6285
6286 /*
6287 * May need to re-align anon array to
6288 * new szc.
6289 */
6290 if (amp != NULL) {
6291 if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6292 struct anon_hdr *nahp;
6293
6294 ASSERT(svd->type == MAP_PRIVATE);
6295
6296 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
6297 ASSERT(amp->refcnt == 1);
6298 nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6299 if (nahp == NULL) {
6300 ANON_LOCK_EXIT(&->a_rwlock);
6301 return (IE_NOMEM);
6302 }
6303 if (anon_copy_ptr(amp->ahp, svd->anon_index,
6304 nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6305 anon_release(nahp, btop(amp->size));
6306 ANON_LOCK_EXIT(&->a_rwlock);
6307 return (IE_NOMEM);
6308 }
6309 anon_release(amp->ahp, btop(amp->size));
6310 amp->ahp = nahp;
6311 svd->anon_index = 0;
6312 ANON_LOCK_EXIT(&->a_rwlock);
6313 }
6314 }
6315 if (svd->vp != NULL && szc != 0) {
6316 struct vattr va;
6317 u_offset_t eoffpage = svd->offset;
6318 va.va_mask = AT_SIZE;
6319 eoffpage += seg->s_size;
6320 eoffpage = btopr(eoffpage);
6321 if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6322 segvn_setpgsz_getattr_err++;
6323 return (EINVAL);
6324 }
6325 if (btopr(va.va_size) < eoffpage) {
6326 segvn_setpgsz_eof_err++;
6327 return (EINVAL);
6328 }
6329 if (amp != NULL) {
6330 /*
6331 * anon_fill_cow_holes() may call VOP_GETPAGE().
6332 * don't take anon map lock here to avoid holding it
6333 * across VOP_GETPAGE() calls that may call back into
6334 * segvn for klsutering checks. We don't really need
6335 * anon map lock here since it's a private segment and
6336 * we hold as level lock as writers.
6337 */
6338 if ((err = anon_fill_cow_holes(seg, seg->s_base,
6339 amp->ahp, svd->anon_index, svd->vp, svd->offset,
6340 seg->s_size, szc, svd->prot, svd->vpage,
6341 svd->cred)) != 0) {
6342 return (EINVAL);
6343 }
6344 }
6345 segvn_setvnode_mpss(svd->vp);
6346 }
6347
6348 if (amp != NULL) {
6349 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
6350 if (svd->type == MAP_PRIVATE) {
6351 amp->a_szc = szc;
6352 } else if (szc > amp->a_szc) {
6353 amp->a_szc = szc;
6354 }
6355 ANON_LOCK_EXIT(&->a_rwlock);
6356 }
6357
6358 seg->s_szc = szc;
6359
6360 return (0);
6361 }
6362
6363 static int
segvn_clrszc(struct seg * seg)6364 segvn_clrszc(struct seg *seg)
6365 {
6366 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6367 struct anon_map *amp = svd->amp;
6368 size_t pgsz;
6369 pgcnt_t pages;
6370 int err = 0;
6371 caddr_t a = seg->s_base;
6372 caddr_t ea = a + seg->s_size;
6373 ulong_t an_idx = svd->anon_index;
6374 vnode_t *vp = svd->vp;
6375 struct vpage *vpage = svd->vpage;
6376 page_t *anon_pl[1 + 1], *pp;
6377 struct anon *ap, *oldap;
6378 uint_t prot = svd->prot, vpprot;
6379 int pageflag = 0;
6380
6381 ASSERT(AS_WRITE_HELD(seg->s_as) ||
6382 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6383 ASSERT(svd->softlockcnt == 0);
6384
6385 if (vp == NULL && amp == NULL) {
6386 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6387 seg->s_szc = 0;
6388 return (0);
6389 }
6390
6391 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6392 ASSERT(svd->amp == NULL);
6393 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6394 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6395 HAT_REGION_TEXT);
6396 svd->rcookie = HAT_INVALID_REGION_COOKIE;
6397 } else if (svd->tr_state == SEGVN_TR_ON) {
6398 ASSERT(svd->amp != NULL);
6399 segvn_textunrepl(seg, 1);
6400 ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6401 amp = NULL;
6402 } else {
6403 if (svd->tr_state != SEGVN_TR_OFF) {
6404 ASSERT(svd->tr_state == SEGVN_TR_INIT);
6405 svd->tr_state = SEGVN_TR_OFF;
6406 }
6407
6408 /*
6409 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6410 * unload argument is 0 when we are freeing the segment
6411 * and unload was already done.
6412 */
6413 hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6414 HAT_UNLOAD_UNMAP);
6415 }
6416
6417 if (amp == NULL || svd->type == MAP_SHARED) {
6418 seg->s_szc = 0;
6419 return (0);
6420 }
6421
6422 pgsz = page_get_pagesize(seg->s_szc);
6423 pages = btop(pgsz);
6424
6425 /*
6426 * XXX anon rwlock is not really needed because this is a
6427 * private segment and we are writers.
6428 */
6429 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
6430
6431 for (; a < ea; a += pgsz, an_idx += pages) {
6432 if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6433 ASSERT(vpage != NULL || svd->pageprot == 0);
6434 if (vpage != NULL) {
6435 ASSERT(sameprot(seg, a, pgsz));
6436 prot = VPP_PROT(vpage);
6437 pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6438 }
6439 if (seg->s_szc != 0) {
6440 ASSERT(vp == NULL || anon_pages(amp->ahp,
6441 an_idx, pages) == pages);
6442 if ((err = anon_map_demotepages(amp, an_idx,
6443 seg, a, prot, vpage, svd->cred)) != 0) {
6444 goto out;
6445 }
6446 } else {
6447 if (oldap->an_refcnt == 1) {
6448 continue;
6449 }
6450 if ((err = anon_getpage(&oldap, &vpprot,
6451 anon_pl, PAGESIZE, seg, a, S_READ,
6452 svd->cred))) {
6453 goto out;
6454 }
6455 if ((pp = anon_private(&ap, seg, a, prot,
6456 anon_pl[0], pageflag, svd->cred)) == NULL) {
6457 err = ENOMEM;
6458 goto out;
6459 }
6460 anon_decref(oldap);
6461 (void) anon_set_ptr(amp->ahp, an_idx, ap,
6462 ANON_SLEEP);
6463 page_unlock(pp);
6464 }
6465 }
6466 vpage = (vpage == NULL) ? NULL : vpage + pages;
6467 }
6468
6469 amp->a_szc = 0;
6470 seg->s_szc = 0;
6471 out:
6472 ANON_LOCK_EXIT(&->a_rwlock);
6473 return (err);
6474 }
6475
6476 static int
segvn_claim_pages(struct seg * seg,struct vpage * svp,u_offset_t off,ulong_t anon_idx,uint_t prot)6477 segvn_claim_pages(
6478 struct seg *seg,
6479 struct vpage *svp,
6480 u_offset_t off,
6481 ulong_t anon_idx,
6482 uint_t prot)
6483 {
6484 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6485 size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6486 page_t **ppa;
6487 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6488 struct anon_map *amp = svd->amp;
6489 struct vpage *evp = svp + pgcnt;
6490 caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6491 + seg->s_base;
6492 struct anon *ap;
6493 struct vnode *vp = svd->vp;
6494 page_t *pp;
6495 pgcnt_t pg_idx, i;
6496 int err = 0;
6497 anoff_t aoff;
6498 int anon = (amp != NULL) ? 1 : 0;
6499
6500 ASSERT(svd->type == MAP_PRIVATE);
6501 ASSERT(svd->vpage != NULL);
6502 ASSERT(seg->s_szc != 0);
6503 ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6504 ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6505 ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6506
6507 if (VPP_PROT(svp) == prot)
6508 return (1);
6509 if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6510 return (1);
6511
6512 ppa = kmem_alloc(ppasize, KM_SLEEP);
6513 if (anon && vp != NULL) {
6514 if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6515 anon = 0;
6516 ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6517 }
6518 ASSERT(!anon ||
6519 anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6520 }
6521
6522 for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6523 if (!VPP_ISPPLOCK(svp))
6524 continue;
6525 if (anon) {
6526 ap = anon_get_ptr(amp->ahp, anon_idx);
6527 if (ap == NULL) {
6528 panic("segvn_claim_pages: no anon slot");
6529 }
6530 swap_xlate(ap, &vp, &aoff);
6531 off = (u_offset_t)aoff;
6532 }
6533 ASSERT(vp != NULL);
6534 if ((pp = page_lookup(vp,
6535 (u_offset_t)off, SE_SHARED)) == NULL) {
6536 panic("segvn_claim_pages: no page");
6537 }
6538 ppa[pg_idx++] = pp;
6539 off += PAGESIZE;
6540 }
6541
6542 if (ppa[0] == NULL) {
6543 kmem_free(ppa, ppasize);
6544 return (1);
6545 }
6546
6547 ASSERT(pg_idx <= pgcnt);
6548 ppa[pg_idx] = NULL;
6549
6550
6551 /* Find each large page within ppa, and adjust its claim */
6552
6553 /* Does ppa cover a single large page? */
6554 if (ppa[0]->p_szc == seg->s_szc) {
6555 if (prot & PROT_WRITE)
6556 err = page_addclaim_pages(ppa);
6557 else
6558 err = page_subclaim_pages(ppa);
6559 } else {
6560 for (i = 0; ppa[i]; i += pgcnt) {
6561 ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt));
6562 if (prot & PROT_WRITE)
6563 err = page_addclaim_pages(&ppa[i]);
6564 else
6565 err = page_subclaim_pages(&ppa[i]);
6566 if (err == 0)
6567 break;
6568 }
6569 }
6570
6571 for (i = 0; i < pg_idx; i++) {
6572 ASSERT(ppa[i] != NULL);
6573 page_unlock(ppa[i]);
6574 }
6575
6576 kmem_free(ppa, ppasize);
6577 return (err);
6578 }
6579
6580 /*
6581 * Returns right (upper address) segment if split occurred.
6582 * If the address is equal to the beginning or end of its segment it returns
6583 * the current segment.
6584 */
6585 static struct seg *
segvn_split_seg(struct seg * seg,caddr_t addr)6586 segvn_split_seg(struct seg *seg, caddr_t addr)
6587 {
6588 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6589 struct seg *nseg;
6590 size_t nsize;
6591 struct segvn_data *nsvd;
6592
6593 ASSERT(AS_WRITE_HELD(seg->s_as));
6594 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6595
6596 ASSERT(addr >= seg->s_base);
6597 ASSERT(addr <= seg->s_base + seg->s_size);
6598 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6599
6600 if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6601 return (seg);
6602
6603 nsize = seg->s_base + seg->s_size - addr;
6604 seg->s_size = addr - seg->s_base;
6605 nseg = seg_alloc(seg->s_as, addr, nsize);
6606 ASSERT(nseg != NULL);
6607 nseg->s_ops = seg->s_ops;
6608 nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6609 nseg->s_data = (void *)nsvd;
6610 nseg->s_szc = seg->s_szc;
6611 *nsvd = *svd;
6612 ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6613 nsvd->seg = nseg;
6614 rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6615
6616 if (nsvd->vp != NULL) {
6617 VN_HOLD(nsvd->vp);
6618 nsvd->offset = svd->offset +
6619 (uintptr_t)(nseg->s_base - seg->s_base);
6620 if (nsvd->type == MAP_SHARED)
6621 lgrp_shm_policy_init(NULL, nsvd->vp);
6622 } else {
6623 /*
6624 * The offset for an anonymous segment has no signifigance in
6625 * terms of an offset into a file. If we were to use the above
6626 * calculation instead, the structures read out of
6627 * /proc/<pid>/xmap would be more difficult to decipher since
6628 * it would be unclear whether two seemingly contiguous
6629 * prxmap_t structures represented different segments or a
6630 * single segment that had been split up into multiple prxmap_t
6631 * structures (e.g. if some part of the segment had not yet
6632 * been faulted in).
6633 */
6634 nsvd->offset = 0;
6635 }
6636
6637 ASSERT(svd->softlockcnt == 0);
6638 ASSERT(svd->softlockcnt_sbase == 0);
6639 ASSERT(svd->softlockcnt_send == 0);
6640 crhold(svd->cred);
6641
6642 if (svd->vpage != NULL) {
6643 size_t bytes = vpgtob(seg_pages(seg));
6644 size_t nbytes = vpgtob(seg_pages(nseg));
6645 struct vpage *ovpage = svd->vpage;
6646
6647 svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6648 bcopy(ovpage, svd->vpage, bytes);
6649 nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6650 bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6651 kmem_free(ovpage, bytes + nbytes);
6652 }
6653 if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6654 struct anon_map *oamp = svd->amp, *namp;
6655 struct anon_hdr *nahp;
6656
6657 ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6658 ASSERT(oamp->refcnt == 1);
6659 nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6660 (void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6661 nahp, 0, btop(seg->s_size), ANON_SLEEP);
6662
6663 namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6664 namp->a_szc = nseg->s_szc;
6665 (void) anon_copy_ptr(oamp->ahp,
6666 svd->anon_index + btop(seg->s_size),
6667 namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6668 anon_release(oamp->ahp, btop(oamp->size));
6669 oamp->ahp = nahp;
6670 oamp->size = seg->s_size;
6671 svd->anon_index = 0;
6672 nsvd->amp = namp;
6673 nsvd->anon_index = 0;
6674 ANON_LOCK_EXIT(&oamp->a_rwlock);
6675 } else if (svd->amp != NULL) {
6676 pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6677 ASSERT(svd->amp == nsvd->amp);
6678 ASSERT(seg->s_szc <= svd->amp->a_szc);
6679 nsvd->anon_index = svd->anon_index + seg_pages(seg);
6680 ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6681 ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6682 svd->amp->refcnt++;
6683 ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6684 }
6685
6686 /*
6687 * Split the amount of swap reserved.
6688 */
6689 if (svd->swresv) {
6690 /*
6691 * For MAP_NORESERVE, only allocate swap reserve for pages
6692 * being used. Other segments get enough to cover whole
6693 * segment.
6694 */
6695 if (svd->flags & MAP_NORESERVE) {
6696 size_t oswresv;
6697
6698 ASSERT(svd->amp);
6699 oswresv = svd->swresv;
6700 svd->swresv = ptob(anon_pages(svd->amp->ahp,
6701 svd->anon_index, btop(seg->s_size)));
6702 nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6703 nsvd->anon_index, btop(nseg->s_size)));
6704 ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6705 } else {
6706 if (svd->pageswap) {
6707 svd->swresv = segvn_count_swap_by_vpages(seg);
6708 ASSERT(nsvd->swresv >= svd->swresv);
6709 nsvd->swresv -= svd->swresv;
6710 } else {
6711 ASSERT(svd->swresv == seg->s_size +
6712 nseg->s_size);
6713 svd->swresv = seg->s_size;
6714 nsvd->swresv = nseg->s_size;
6715 }
6716 }
6717 }
6718
6719 return (nseg);
6720 }
6721
6722 /*
6723 * called on memory operations (unmap, setprot, setpagesize) for a subset
6724 * of a large page segment to either demote the memory range (SDR_RANGE)
6725 * or the ends (SDR_END) by addr/len.
6726 *
6727 * returns 0 on success. returns errno, including ENOMEM, on failure.
6728 */
6729 static int
segvn_demote_range(struct seg * seg,caddr_t addr,size_t len,int flag,uint_t szcvec)6730 segvn_demote_range(
6731 struct seg *seg,
6732 caddr_t addr,
6733 size_t len,
6734 int flag,
6735 uint_t szcvec)
6736 {
6737 caddr_t eaddr = addr + len;
6738 caddr_t lpgaddr, lpgeaddr;
6739 struct seg *nseg;
6740 struct seg *badseg1 = NULL;
6741 struct seg *badseg2 = NULL;
6742 size_t pgsz;
6743 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6744 int err;
6745 uint_t szc = seg->s_szc;
6746 uint_t tszcvec;
6747
6748 ASSERT(AS_WRITE_HELD(seg->s_as));
6749 ASSERT(svd->tr_state == SEGVN_TR_OFF);
6750 ASSERT(szc != 0);
6751 pgsz = page_get_pagesize(szc);
6752 ASSERT(seg->s_base != addr || seg->s_size != len);
6753 ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6754 ASSERT(svd->softlockcnt == 0);
6755 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6756 ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6757
6758 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6759 ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6760 if (flag == SDR_RANGE) {
6761 /* demote entire range */
6762 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6763 (void) segvn_split_seg(nseg, lpgeaddr);
6764 ASSERT(badseg1->s_base == lpgaddr);
6765 ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6766 } else if (addr != lpgaddr) {
6767 ASSERT(flag == SDR_END);
6768 badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6769 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6770 eaddr < lpgaddr + 2 * pgsz) {
6771 (void) segvn_split_seg(nseg, lpgeaddr);
6772 ASSERT(badseg1->s_base == lpgaddr);
6773 ASSERT(badseg1->s_size == 2 * pgsz);
6774 } else {
6775 nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6776 ASSERT(badseg1->s_base == lpgaddr);
6777 ASSERT(badseg1->s_size == pgsz);
6778 if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6779 ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6780 nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6781 badseg2 = nseg;
6782 (void) segvn_split_seg(nseg, lpgeaddr);
6783 ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6784 ASSERT(badseg2->s_size == pgsz);
6785 }
6786 }
6787 } else {
6788 ASSERT(flag == SDR_END);
6789 ASSERT(eaddr < lpgeaddr);
6790 badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6791 (void) segvn_split_seg(nseg, lpgeaddr);
6792 ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6793 ASSERT(badseg1->s_size == pgsz);
6794 }
6795
6796 ASSERT(badseg1 != NULL);
6797 ASSERT(badseg1->s_szc == szc);
6798 ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6799 badseg1->s_size == 2 * pgsz);
6800 ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6801 ASSERT(badseg1->s_size == pgsz ||
6802 sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6803 if (err = segvn_clrszc(badseg1)) {
6804 return (err);
6805 }
6806 ASSERT(badseg1->s_szc == 0);
6807
6808 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6809 uint_t tszc = highbit(tszcvec) - 1;
6810 caddr_t ta = MAX(addr, badseg1->s_base);
6811 caddr_t te;
6812 size_t tpgsz = page_get_pagesize(tszc);
6813
6814 ASSERT(svd->type == MAP_SHARED);
6815 ASSERT(flag == SDR_END);
6816 ASSERT(tszc < szc && tszc > 0);
6817
6818 if (eaddr > badseg1->s_base + badseg1->s_size) {
6819 te = badseg1->s_base + badseg1->s_size;
6820 } else {
6821 te = eaddr;
6822 }
6823
6824 ASSERT(ta <= te);
6825 badseg1->s_szc = tszc;
6826 if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6827 if (badseg2 != NULL) {
6828 err = segvn_demote_range(badseg1, ta, te - ta,
6829 SDR_END, tszcvec);
6830 if (err != 0) {
6831 return (err);
6832 }
6833 } else {
6834 return (segvn_demote_range(badseg1, ta,
6835 te - ta, SDR_END, tszcvec));
6836 }
6837 }
6838 }
6839
6840 if (badseg2 == NULL)
6841 return (0);
6842 ASSERT(badseg2->s_szc == szc);
6843 ASSERT(badseg2->s_size == pgsz);
6844 ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6845 if (err = segvn_clrszc(badseg2)) {
6846 return (err);
6847 }
6848 ASSERT(badseg2->s_szc == 0);
6849
6850 if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6851 uint_t tszc = highbit(tszcvec) - 1;
6852 size_t tpgsz = page_get_pagesize(tszc);
6853
6854 ASSERT(svd->type == MAP_SHARED);
6855 ASSERT(flag == SDR_END);
6856 ASSERT(tszc < szc && tszc > 0);
6857 ASSERT(badseg2->s_base > addr);
6858 ASSERT(eaddr > badseg2->s_base);
6859 ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6860
6861 badseg2->s_szc = tszc;
6862 if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6863 return (segvn_demote_range(badseg2, badseg2->s_base,
6864 eaddr - badseg2->s_base, SDR_END, tszcvec));
6865 }
6866 }
6867
6868 return (0);
6869 }
6870
6871 static int
segvn_checkprot(struct seg * seg,caddr_t addr,size_t len,uint_t prot)6872 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6873 {
6874 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6875 struct vpage *vp, *evp;
6876
6877 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6878
6879 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6880 /*
6881 * If segment protection can be used, simply check against them.
6882 */
6883 if (svd->pageprot == 0) {
6884 int err;
6885
6886 err = ((svd->prot & prot) != prot) ? EACCES : 0;
6887 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6888 return (err);
6889 }
6890
6891 /*
6892 * Have to check down to the vpage level.
6893 */
6894 evp = &svd->vpage[seg_page(seg, addr + len)];
6895 for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6896 if ((VPP_PROT(vp) & prot) != prot) {
6897 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6898 return (EACCES);
6899 }
6900 }
6901 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6902 return (0);
6903 }
6904
6905 static int
segvn_getprot(struct seg * seg,caddr_t addr,size_t len,uint_t * protv)6906 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6907 {
6908 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6909 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6910
6911 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6912
6913 if (pgno != 0) {
6914 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6915 if (svd->pageprot == 0) {
6916 do {
6917 protv[--pgno] = svd->prot;
6918 } while (pgno != 0);
6919 } else {
6920 size_t pgoff = seg_page(seg, addr);
6921
6922 do {
6923 pgno--;
6924 protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6925 } while (pgno != 0);
6926 }
6927 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6928 }
6929 return (0);
6930 }
6931
6932 static u_offset_t
segvn_getoffset(struct seg * seg,caddr_t addr)6933 segvn_getoffset(struct seg *seg, caddr_t addr)
6934 {
6935 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6936
6937 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6938
6939 return (svd->offset + (uintptr_t)(addr - seg->s_base));
6940 }
6941
6942 /*ARGSUSED*/
6943 static int
segvn_gettype(struct seg * seg,caddr_t addr)6944 segvn_gettype(struct seg *seg, caddr_t addr)
6945 {
6946 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6947
6948 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6949
6950 return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6951 MAP_INITDATA)));
6952 }
6953
6954 /*ARGSUSED*/
6955 static int
segvn_getvp(struct seg * seg,caddr_t addr,struct vnode ** vpp)6956 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6957 {
6958 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6959
6960 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6961
6962 *vpp = svd->vp;
6963 return (0);
6964 }
6965
6966 /*
6967 * Check to see if it makes sense to do kluster/read ahead to
6968 * addr + delta relative to the mapping at addr. We assume here
6969 * that delta is a signed PAGESIZE'd multiple (which can be negative).
6970 *
6971 * For segvn, we currently "approve" of the action if we are
6972 * still in the segment and it maps from the same vp/off,
6973 * or if the advice stored in segvn_data or vpages allows it.
6974 * Currently, klustering is not allowed only if MADV_RANDOM is set.
6975 */
6976 static int
segvn_kluster(struct seg * seg,caddr_t addr,ssize_t delta)6977 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6978 {
6979 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6980 struct anon *oap, *ap;
6981 ssize_t pd;
6982 size_t page;
6983 struct vnode *vp1, *vp2;
6984 u_offset_t off1, off2;
6985 struct anon_map *amp;
6986
6987 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6988 ASSERT(AS_WRITE_HELD(seg->s_as) ||
6989 SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6990
6991 if (addr + delta < seg->s_base ||
6992 addr + delta >= (seg->s_base + seg->s_size))
6993 return (-1); /* exceeded segment bounds */
6994
6995 pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */
6996 page = seg_page(seg, addr);
6997
6998 /*
6999 * Check to see if either of the pages addr or addr + delta
7000 * have advice set that prevents klustering (if MADV_RANDOM advice
7001 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
7002 * is negative).
7003 */
7004 if (svd->advice == MADV_RANDOM ||
7005 svd->advice == MADV_SEQUENTIAL && delta < 0)
7006 return (-1);
7007 else if (svd->pageadvice && svd->vpage) {
7008 struct vpage *bvpp, *evpp;
7009
7010 bvpp = &svd->vpage[page];
7011 evpp = &svd->vpage[page + pd];
7012 if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
7013 VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
7014 return (-1);
7015 if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
7016 VPP_ADVICE(evpp) == MADV_RANDOM)
7017 return (-1);
7018 }
7019
7020 if (svd->type == MAP_SHARED)
7021 return (0); /* shared mapping - all ok */
7022
7023 if ((amp = svd->amp) == NULL)
7024 return (0); /* off original vnode */
7025
7026 page += svd->anon_index;
7027
7028 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7029
7030 oap = anon_get_ptr(amp->ahp, page);
7031 ap = anon_get_ptr(amp->ahp, page + pd);
7032
7033 ANON_LOCK_EXIT(&->a_rwlock);
7034
7035 if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
7036 return (-1); /* one with and one without an anon */
7037 }
7038
7039 if (oap == NULL) { /* implies that ap == NULL */
7040 return (0); /* off original vnode */
7041 }
7042
7043 /*
7044 * Now we know we have two anon pointers - check to
7045 * see if they happen to be properly allocated.
7046 */
7047
7048 /*
7049 * XXX We cheat here and don't lock the anon slots. We can't because
7050 * we may have been called from the anon layer which might already
7051 * have locked them. We are holding a refcnt on the slots so they
7052 * can't disappear. The worst that will happen is we'll get the wrong
7053 * names (vp, off) for the slots and make a poor klustering decision.
7054 */
7055 swap_xlate(ap, &vp1, &off1);
7056 swap_xlate(oap, &vp2, &off2);
7057
7058
7059 if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta)
7060 return (-1);
7061 return (0);
7062 }
7063
7064 /*
7065 * Swap the pages of seg out to secondary storage, returning the
7066 * number of bytes of storage freed.
7067 *
7068 * The basic idea is first to unload all translations and then to call
7069 * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
7070 * swap device. Pages to which other segments have mappings will remain
7071 * mapped and won't be swapped. Our caller (as_swapout) has already
7072 * performed the unloading step.
7073 *
7074 * The value returned is intended to correlate well with the process's
7075 * memory requirements. However, there are some caveats:
7076 * 1) When given a shared segment as argument, this routine will
7077 * only succeed in swapping out pages for the last sharer of the
7078 * segment. (Previous callers will only have decremented mapping
7079 * reference counts.)
7080 * 2) We assume that the hat layer maintains a large enough translation
7081 * cache to capture process reference patterns.
7082 */
7083 static size_t
segvn_swapout(struct seg * seg)7084 segvn_swapout(struct seg *seg)
7085 {
7086 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7087 struct anon_map *amp;
7088 pgcnt_t pgcnt = 0;
7089 pgcnt_t npages;
7090 pgcnt_t page;
7091 ulong_t anon_index;
7092
7093 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7094
7095 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7096 /*
7097 * Find pages unmapped by our caller and force them
7098 * out to the virtual swap device.
7099 */
7100 if ((amp = svd->amp) != NULL)
7101 anon_index = svd->anon_index;
7102 npages = seg->s_size >> PAGESHIFT;
7103 for (page = 0; page < npages; page++) {
7104 page_t *pp;
7105 struct anon *ap;
7106 struct vnode *vp;
7107 u_offset_t off;
7108 anon_sync_obj_t cookie;
7109
7110 /*
7111 * Obtain <vp, off> pair for the page, then look it up.
7112 *
7113 * Note that this code is willing to consider regular
7114 * pages as well as anon pages. Is this appropriate here?
7115 */
7116 ap = NULL;
7117 if (amp != NULL) {
7118 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7119 if (anon_array_try_enter(amp, anon_index + page,
7120 &cookie)) {
7121 ANON_LOCK_EXIT(&->a_rwlock);
7122 continue;
7123 }
7124 ap = anon_get_ptr(amp->ahp, anon_index + page);
7125 if (ap != NULL) {
7126 swap_xlate(ap, &vp, &off);
7127 } else {
7128 vp = svd->vp;
7129 off = svd->offset + ptob(page);
7130 }
7131 anon_array_exit(&cookie);
7132 ANON_LOCK_EXIT(&->a_rwlock);
7133 } else {
7134 vp = svd->vp;
7135 off = svd->offset + ptob(page);
7136 }
7137 if (vp == NULL) { /* untouched zfod page */
7138 ASSERT(ap == NULL);
7139 continue;
7140 }
7141
7142 pp = page_lookup_nowait(vp, off, SE_SHARED);
7143 if (pp == NULL)
7144 continue;
7145
7146
7147 /*
7148 * Examine the page to see whether it can be tossed out,
7149 * keeping track of how many we've found.
7150 */
7151 if (!page_tryupgrade(pp)) {
7152 /*
7153 * If the page has an i/o lock and no mappings,
7154 * it's very likely that the page is being
7155 * written out as a result of klustering.
7156 * Assume this is so and take credit for it here.
7157 */
7158 if (!page_io_trylock(pp)) {
7159 if (!hat_page_is_mapped(pp))
7160 pgcnt++;
7161 } else {
7162 page_io_unlock(pp);
7163 }
7164 page_unlock(pp);
7165 continue;
7166 }
7167 ASSERT(!page_iolock_assert(pp));
7168
7169
7170 /*
7171 * Skip if page is locked or has mappings.
7172 * We don't need the page_struct_lock to look at lckcnt
7173 * and cowcnt because the page is exclusive locked.
7174 */
7175 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7176 hat_page_is_mapped(pp)) {
7177 page_unlock(pp);
7178 continue;
7179 }
7180
7181 /*
7182 * dispose skips large pages so try to demote first.
7183 */
7184 if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7185 page_unlock(pp);
7186 /*
7187 * XXX should skip the remaining page_t's of this
7188 * large page.
7189 */
7190 continue;
7191 }
7192
7193 ASSERT(pp->p_szc == 0);
7194
7195 /*
7196 * No longer mapped -- we can toss it out. How
7197 * we do so depends on whether or not it's dirty.
7198 */
7199 if (hat_ismod(pp) && pp->p_vnode) {
7200 /*
7201 * We must clean the page before it can be
7202 * freed. Setting B_FREE will cause pvn_done
7203 * to free the page when the i/o completes.
7204 * XXX: This also causes it to be accounted
7205 * as a pageout instead of a swap: need
7206 * B_SWAPOUT bit to use instead of B_FREE.
7207 *
7208 * Hold the vnode before releasing the page lock
7209 * to prevent it from being freed and re-used by
7210 * some other thread.
7211 */
7212 VN_HOLD(vp);
7213 page_unlock(pp);
7214
7215 /*
7216 * Queue all i/o requests for the pageout thread
7217 * to avoid saturating the pageout devices.
7218 */
7219 if (!queue_io_request(vp, off))
7220 VN_RELE(vp);
7221 } else {
7222 /*
7223 * The page was clean, free it.
7224 *
7225 * XXX: Can we ever encounter modified pages
7226 * with no associated vnode here?
7227 */
7228 ASSERT(pp->p_vnode != NULL);
7229 /*LINTED: constant in conditional context*/
7230 VN_DISPOSE(pp, B_FREE, 0, kcred);
7231 }
7232
7233 /*
7234 * Credit now even if i/o is in progress.
7235 */
7236 pgcnt++;
7237 }
7238 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7239
7240 /*
7241 * Wakeup pageout to initiate i/o on all queued requests.
7242 */
7243 cv_signal_pageout();
7244 return (ptob(pgcnt));
7245 }
7246
7247 /*
7248 * Synchronize primary storage cache with real object in virtual memory.
7249 *
7250 * XXX - Anonymous pages should not be sync'ed out at all.
7251 */
7252 static int
segvn_sync(struct seg * seg,caddr_t addr,size_t len,int attr,uint_t flags)7253 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7254 {
7255 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7256 struct vpage *vpp;
7257 page_t *pp;
7258 u_offset_t offset;
7259 struct vnode *vp;
7260 u_offset_t off;
7261 caddr_t eaddr;
7262 int bflags;
7263 int err = 0;
7264 int segtype;
7265 int pageprot = 0;
7266 int prot;
7267 ulong_t anon_index = 0;
7268 struct anon_map *amp;
7269 struct anon *ap;
7270 anon_sync_obj_t cookie;
7271
7272 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7273
7274 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7275
7276 if (svd->softlockcnt > 0) {
7277 /*
7278 * If this is shared segment non 0 softlockcnt
7279 * means locked pages are still in use.
7280 */
7281 if (svd->type == MAP_SHARED) {
7282 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7283 return (EAGAIN);
7284 }
7285
7286 /*
7287 * flush all pages from seg cache
7288 * otherwise we may deadlock in swap_putpage
7289 * for B_INVAL page (4175402).
7290 *
7291 * Even if we grab segvn WRITER's lock
7292 * here, there might be another thread which could've
7293 * successfully performed lookup/insert just before
7294 * we acquired the lock here. So, grabbing either
7295 * lock here is of not much use. Until we devise
7296 * a strategy at upper layers to solve the
7297 * synchronization issues completely, we expect
7298 * applications to handle this appropriately.
7299 */
7300 segvn_purge(seg);
7301 if (svd->softlockcnt > 0) {
7302 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7303 return (EAGAIN);
7304 }
7305 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7306 svd->amp->a_softlockcnt > 0) {
7307 /*
7308 * Try to purge this amp's entries from pcache. It will
7309 * succeed only if other segments that share the amp have no
7310 * outstanding softlock's.
7311 */
7312 segvn_purge(seg);
7313 if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) {
7314 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7315 return (EAGAIN);
7316 }
7317 }
7318
7319 vpp = svd->vpage;
7320 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7321 bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7322 ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7323
7324 if (attr) {
7325 pageprot = attr & ~(SHARED|PRIVATE);
7326 segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7327
7328 /*
7329 * We are done if the segment types don't match
7330 * or if we have segment level protections and
7331 * they don't match.
7332 */
7333 if (svd->type != segtype) {
7334 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7335 return (0);
7336 }
7337 if (vpp == NULL) {
7338 if (svd->prot != pageprot) {
7339 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7340 return (0);
7341 }
7342 prot = svd->prot;
7343 } else
7344 vpp = &svd->vpage[seg_page(seg, addr)];
7345
7346 } else if (svd->vp && svd->amp == NULL &&
7347 (flags & MS_INVALIDATE) == 0) {
7348
7349 /*
7350 * No attributes, no anonymous pages and MS_INVALIDATE flag
7351 * is not on, just use one big request.
7352 */
7353 err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7354 bflags, svd->cred, NULL);
7355 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7356 return (err);
7357 }
7358
7359 if ((amp = svd->amp) != NULL)
7360 anon_index = svd->anon_index + seg_page(seg, addr);
7361
7362 for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7363 ap = NULL;
7364 if (amp != NULL) {
7365 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7366 anon_array_enter(amp, anon_index, &cookie);
7367 ap = anon_get_ptr(amp->ahp, anon_index++);
7368 if (ap != NULL) {
7369 swap_xlate(ap, &vp, &off);
7370 } else {
7371 vp = svd->vp;
7372 off = offset;
7373 }
7374 anon_array_exit(&cookie);
7375 ANON_LOCK_EXIT(&->a_rwlock);
7376 } else {
7377 vp = svd->vp;
7378 off = offset;
7379 }
7380 offset += PAGESIZE;
7381
7382 if (vp == NULL) /* untouched zfod page */
7383 continue;
7384
7385 if (attr) {
7386 if (vpp) {
7387 prot = VPP_PROT(vpp);
7388 vpp++;
7389 }
7390 if (prot != pageprot) {
7391 continue;
7392 }
7393 }
7394
7395 /*
7396 * See if any of these pages are locked -- if so, then we
7397 * will have to truncate an invalidate request at the first
7398 * locked one. We don't need the page_struct_lock to test
7399 * as this is only advisory; even if we acquire it someone
7400 * might race in and lock the page after we unlock and before
7401 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7402 */
7403 if (flags & MS_INVALIDATE) {
7404 if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7405 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7406 page_unlock(pp);
7407 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7408 return (EBUSY);
7409 }
7410 if (ap != NULL && pp->p_szc != 0 &&
7411 page_tryupgrade(pp)) {
7412 if (pp->p_lckcnt == 0 &&
7413 pp->p_cowcnt == 0) {
7414 /*
7415 * swapfs VN_DISPOSE() won't
7416 * invalidate large pages.
7417 * Attempt to demote.
7418 * XXX can't help it if it
7419 * fails. But for swapfs
7420 * pages it is no big deal.
7421 */
7422 (void) page_try_demote_pages(
7423 pp);
7424 }
7425 }
7426 page_unlock(pp);
7427 }
7428 } else if (svd->type == MAP_SHARED && amp != NULL) {
7429 /*
7430 * Avoid writing out to disk ISM's large pages
7431 * because segspt_free_pages() relies on NULL an_pvp
7432 * of anon slots of such pages.
7433 */
7434
7435 ASSERT(svd->vp == NULL);
7436 /*
7437 * swapfs uses page_lookup_nowait if not freeing or
7438 * invalidating and skips a page if
7439 * page_lookup_nowait returns NULL.
7440 */
7441 pp = page_lookup_nowait(vp, off, SE_SHARED);
7442 if (pp == NULL) {
7443 continue;
7444 }
7445 if (pp->p_szc != 0) {
7446 page_unlock(pp);
7447 continue;
7448 }
7449
7450 /*
7451 * Note ISM pages are created large so (vp, off)'s
7452 * page cannot suddenly become large after we unlock
7453 * pp.
7454 */
7455 page_unlock(pp);
7456 }
7457 /*
7458 * XXX - Should ultimately try to kluster
7459 * calls to VOP_PUTPAGE() for performance.
7460 */
7461 VN_HOLD(vp);
7462 err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7463 (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)),
7464 svd->cred, NULL);
7465
7466 VN_RELE(vp);
7467 if (err)
7468 break;
7469 }
7470 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7471 return (err);
7472 }
7473
7474 /*
7475 * Determine if we have data corresponding to pages in the
7476 * primary storage virtual memory cache (i.e., "in core").
7477 */
7478 static size_t
segvn_incore(struct seg * seg,caddr_t addr,size_t len,char * vec)7479 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7480 {
7481 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7482 struct vnode *vp, *avp;
7483 u_offset_t offset, aoffset;
7484 size_t p, ep;
7485 int ret;
7486 struct vpage *vpp;
7487 page_t *pp;
7488 uint_t start;
7489 struct anon_map *amp; /* XXX - for locknest */
7490 struct anon *ap;
7491 uint_t attr;
7492 anon_sync_obj_t cookie;
7493
7494 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7495
7496 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7497 if (svd->amp == NULL && svd->vp == NULL) {
7498 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7499 bzero(vec, btopr(len));
7500 return (len); /* no anonymous pages created yet */
7501 }
7502
7503 p = seg_page(seg, addr);
7504 ep = seg_page(seg, addr + len);
7505 start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7506
7507 amp = svd->amp;
7508 for (; p < ep; p++, addr += PAGESIZE) {
7509 vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7510 ret = start;
7511 ap = NULL;
7512 avp = NULL;
7513 /* Grab the vnode/offset for the anon slot */
7514 if (amp != NULL) {
7515 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7516 anon_array_enter(amp, svd->anon_index + p, &cookie);
7517 ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7518 if (ap != NULL) {
7519 swap_xlate(ap, &avp, &aoffset);
7520 }
7521 anon_array_exit(&cookie);
7522 ANON_LOCK_EXIT(&->a_rwlock);
7523 }
7524 if ((avp != NULL) && page_exists(avp, aoffset)) {
7525 /* A page exists for the anon slot */
7526 ret |= SEG_PAGE_INCORE;
7527
7528 /*
7529 * If page is mapped and writable
7530 */
7531 attr = (uint_t)0;
7532 if ((hat_getattr(seg->s_as->a_hat, addr,
7533 &attr) != -1) && (attr & PROT_WRITE)) {
7534 ret |= SEG_PAGE_ANON;
7535 }
7536 /*
7537 * Don't get page_struct lock for lckcnt and cowcnt,
7538 * since this is purely advisory.
7539 */
7540 if ((pp = page_lookup_nowait(avp, aoffset,
7541 SE_SHARED)) != NULL) {
7542 if (pp->p_lckcnt)
7543 ret |= SEG_PAGE_SOFTLOCK;
7544 if (pp->p_cowcnt)
7545 ret |= SEG_PAGE_HASCOW;
7546 page_unlock(pp);
7547 }
7548 }
7549
7550 /* Gather vnode statistics */
7551 vp = svd->vp;
7552 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7553
7554 if (vp != NULL) {
7555 /*
7556 * Try to obtain a "shared" lock on the page
7557 * without blocking. If this fails, determine
7558 * if the page is in memory.
7559 */
7560 pp = page_lookup_nowait(vp, offset, SE_SHARED);
7561 if ((pp == NULL) && (page_exists(vp, offset))) {
7562 /* Page is incore, and is named */
7563 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7564 }
7565 /*
7566 * Don't get page_struct lock for lckcnt and cowcnt,
7567 * since this is purely advisory.
7568 */
7569 if (pp != NULL) {
7570 ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7571 if (pp->p_lckcnt)
7572 ret |= SEG_PAGE_SOFTLOCK;
7573 if (pp->p_cowcnt)
7574 ret |= SEG_PAGE_HASCOW;
7575 page_unlock(pp);
7576 }
7577 }
7578
7579 /* Gather virtual page information */
7580 if (vpp) {
7581 if (VPP_ISPPLOCK(vpp))
7582 ret |= SEG_PAGE_LOCKED;
7583 vpp++;
7584 }
7585
7586 *vec++ = (char)ret;
7587 }
7588 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7589 return (len);
7590 }
7591
7592 /*
7593 * Statement for p_cowcnts/p_lckcnts.
7594 *
7595 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7596 * irrespective of the following factors or anything else:
7597 *
7598 * (1) anon slots are populated or not
7599 * (2) cow is broken or not
7600 * (3) refcnt on ap is 1 or greater than 1
7601 *
7602 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7603 * and munlock.
7604 *
7605 *
7606 * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7607 *
7608 * if vpage has PROT_WRITE
7609 * transfer cowcnt on the oldpage -> cowcnt on the newpage
7610 * else
7611 * transfer lckcnt on the oldpage -> lckcnt on the newpage
7612 *
7613 * During copy-on-write, decrement p_cowcnt on the oldpage and increment
7614 * p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7615 *
7616 * We may also break COW if softlocking on read access in the physio case.
7617 * In this case, vpage may not have PROT_WRITE. So, we need to decrement
7618 * p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7619 * vpage doesn't have PROT_WRITE.
7620 *
7621 *
7622 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7623 *
7624 * If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7625 * increment p_lckcnt by calling page_subclaim() which takes care of
7626 * availrmem accounting and p_lckcnt overflow.
7627 *
7628 * If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7629 * increment p_cowcnt by calling page_addclaim() which takes care of
7630 * availrmem availability and p_cowcnt overflow.
7631 */
7632
7633 /*
7634 * Lock down (or unlock) pages mapped by this segment.
7635 *
7636 * XXX only creates PAGESIZE pages if anon slots are not initialized.
7637 * At fault time they will be relocated into larger pages.
7638 */
7639 static int
segvn_lockop(struct seg * seg,caddr_t addr,size_t len,int attr,int op,ulong_t * lockmap,size_t pos)7640 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7641 int attr, int op, ulong_t *lockmap, size_t pos)
7642 {
7643 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7644 struct vpage *vpp;
7645 struct vpage *evp;
7646 page_t *pp;
7647 u_offset_t offset;
7648 u_offset_t off;
7649 int segtype;
7650 int pageprot = 0;
7651 int claim;
7652 struct vnode *vp;
7653 ulong_t anon_index = 0;
7654 struct anon_map *amp;
7655 struct anon *ap;
7656 struct vattr va;
7657 anon_sync_obj_t cookie;
7658 struct kshmid *sp = NULL;
7659 struct proc *p = curproc;
7660 kproject_t *proj = NULL;
7661 int chargeproc = 1;
7662 size_t locked_bytes = 0;
7663 size_t unlocked_bytes = 0;
7664 int err = 0;
7665
7666 /*
7667 * Hold write lock on address space because may split or concatenate
7668 * segments
7669 */
7670 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7671
7672 /*
7673 * If this is a shm, use shm's project and zone, else use
7674 * project and zone of calling process
7675 */
7676
7677 /* Determine if this segment backs a sysV shm */
7678 if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7679 ASSERT(svd->type == MAP_SHARED);
7680 ASSERT(svd->tr_state == SEGVN_TR_OFF);
7681 sp = svd->amp->a_sp;
7682 proj = sp->shm_perm.ipc_proj;
7683 chargeproc = 0;
7684 }
7685
7686 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7687 if (attr) {
7688 pageprot = attr & ~(SHARED|PRIVATE);
7689 segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7690
7691 /*
7692 * We are done if the segment types don't match
7693 * or if we have segment level protections and
7694 * they don't match.
7695 */
7696 if (svd->type != segtype) {
7697 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7698 return (0);
7699 }
7700 if (svd->pageprot == 0 && svd->prot != pageprot) {
7701 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7702 return (0);
7703 }
7704 }
7705
7706 if (op == MC_LOCK) {
7707 if (svd->tr_state == SEGVN_TR_INIT) {
7708 svd->tr_state = SEGVN_TR_OFF;
7709 } else if (svd->tr_state == SEGVN_TR_ON) {
7710 ASSERT(svd->amp != NULL);
7711 segvn_textunrepl(seg, 0);
7712 ASSERT(svd->amp == NULL &&
7713 svd->tr_state == SEGVN_TR_OFF);
7714 }
7715 }
7716
7717 /*
7718 * If we're locking, then we must create a vpage structure if
7719 * none exists. If we're unlocking, then check to see if there
7720 * is a vpage -- if not, then we could not have locked anything.
7721 */
7722
7723 if ((vpp = svd->vpage) == NULL) {
7724 if (op == MC_LOCK) {
7725 segvn_vpage(seg);
7726 if (svd->vpage == NULL) {
7727 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7728 return (ENOMEM);
7729 }
7730 } else {
7731 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7732 return (0);
7733 }
7734 }
7735
7736 /*
7737 * The anonymous data vector (i.e., previously
7738 * unreferenced mapping to swap space) can be allocated
7739 * by lazily testing for its existence.
7740 */
7741 if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7742 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7743 svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7744 svd->amp->a_szc = seg->s_szc;
7745 }
7746
7747 if ((amp = svd->amp) != NULL) {
7748 anon_index = svd->anon_index + seg_page(seg, addr);
7749 }
7750
7751 offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7752 evp = &svd->vpage[seg_page(seg, addr + len)];
7753
7754 if (sp != NULL)
7755 mutex_enter(&sp->shm_mlock);
7756
7757 /* determine number of unlocked bytes in range for lock operation */
7758 if (op == MC_LOCK) {
7759
7760 if (sp == NULL) {
7761 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7762 vpp++) {
7763 if (!VPP_ISPPLOCK(vpp))
7764 unlocked_bytes += PAGESIZE;
7765 }
7766 } else {
7767 ulong_t i_idx, i_edx;
7768 anon_sync_obj_t i_cookie;
7769 struct anon *i_ap;
7770 struct vnode *i_vp;
7771 u_offset_t i_off;
7772
7773 /* Only count sysV pages once for locked memory */
7774 i_edx = svd->anon_index + seg_page(seg, addr + len);
7775 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7776 for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7777 anon_array_enter(amp, i_idx, &i_cookie);
7778 i_ap = anon_get_ptr(amp->ahp, i_idx);
7779 if (i_ap == NULL) {
7780 unlocked_bytes += PAGESIZE;
7781 anon_array_exit(&i_cookie);
7782 continue;
7783 }
7784 swap_xlate(i_ap, &i_vp, &i_off);
7785 anon_array_exit(&i_cookie);
7786 pp = page_lookup(i_vp, i_off, SE_SHARED);
7787 if (pp == NULL) {
7788 unlocked_bytes += PAGESIZE;
7789 continue;
7790 } else if (pp->p_lckcnt == 0)
7791 unlocked_bytes += PAGESIZE;
7792 page_unlock(pp);
7793 }
7794 ANON_LOCK_EXIT(&->a_rwlock);
7795 }
7796
7797 mutex_enter(&p->p_lock);
7798 err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7799 chargeproc);
7800 mutex_exit(&p->p_lock);
7801
7802 if (err) {
7803 if (sp != NULL)
7804 mutex_exit(&sp->shm_mlock);
7805 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7806 return (err);
7807 }
7808 }
7809 /*
7810 * Loop over all pages in the range. Process if we're locking and
7811 * page has not already been locked in this mapping; or if we're
7812 * unlocking and the page has been locked.
7813 */
7814 for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7815 vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7816 if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7817 ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7818 (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7819
7820 if (amp != NULL)
7821 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
7822 /*
7823 * If this isn't a MAP_NORESERVE segment and
7824 * we're locking, allocate anon slots if they
7825 * don't exist. The page is brought in later on.
7826 */
7827 if (op == MC_LOCK && svd->vp == NULL &&
7828 ((svd->flags & MAP_NORESERVE) == 0) &&
7829 amp != NULL &&
7830 ((ap = anon_get_ptr(amp->ahp, anon_index))
7831 == NULL)) {
7832 anon_array_enter(amp, anon_index, &cookie);
7833
7834 if ((ap = anon_get_ptr(amp->ahp,
7835 anon_index)) == NULL) {
7836 pp = anon_zero(seg, addr, &ap,
7837 svd->cred);
7838 if (pp == NULL) {
7839 anon_array_exit(&cookie);
7840 ANON_LOCK_EXIT(&->a_rwlock);
7841 err = ENOMEM;
7842 goto out;
7843 }
7844 ASSERT(anon_get_ptr(amp->ahp,
7845 anon_index) == NULL);
7846 (void) anon_set_ptr(amp->ahp,
7847 anon_index, ap, ANON_SLEEP);
7848 page_unlock(pp);
7849 }
7850 anon_array_exit(&cookie);
7851 }
7852
7853 /*
7854 * Get name for page, accounting for
7855 * existence of private copy.
7856 */
7857 ap = NULL;
7858 if (amp != NULL) {
7859 anon_array_enter(amp, anon_index, &cookie);
7860 ap = anon_get_ptr(amp->ahp, anon_index);
7861 if (ap != NULL) {
7862 swap_xlate(ap, &vp, &off);
7863 } else {
7864 if (svd->vp == NULL &&
7865 (svd->flags & MAP_NORESERVE)) {
7866 anon_array_exit(&cookie);
7867 ANON_LOCK_EXIT(&->a_rwlock);
7868 continue;
7869 }
7870 vp = svd->vp;
7871 off = offset;
7872 }
7873 if (op != MC_LOCK || ap == NULL) {
7874 anon_array_exit(&cookie);
7875 ANON_LOCK_EXIT(&->a_rwlock);
7876 }
7877 } else {
7878 vp = svd->vp;
7879 off = offset;
7880 }
7881
7882 /*
7883 * Get page frame. It's ok if the page is
7884 * not available when we're unlocking, as this
7885 * may simply mean that a page we locked got
7886 * truncated out of existence after we locked it.
7887 *
7888 * Invoke VOP_GETPAGE() to obtain the page struct
7889 * since we may need to read it from disk if its
7890 * been paged out.
7891 */
7892 if (op != MC_LOCK)
7893 pp = page_lookup(vp, off, SE_SHARED);
7894 else {
7895 page_t *pl[1 + 1];
7896 int error;
7897
7898 ASSERT(vp != NULL);
7899
7900 error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7901 (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7902 S_OTHER, svd->cred, NULL);
7903
7904 if (error && ap != NULL) {
7905 anon_array_exit(&cookie);
7906 ANON_LOCK_EXIT(&->a_rwlock);
7907 }
7908
7909 /*
7910 * If the error is EDEADLK then we must bounce
7911 * up and drop all vm subsystem locks and then
7912 * retry the operation later
7913 * This behavior is a temporary measure because
7914 * ufs/sds logging is badly designed and will
7915 * deadlock if we don't allow this bounce to
7916 * happen. The real solution is to re-design
7917 * the logging code to work properly. See bug
7918 * 4125102 for details of the problem.
7919 */
7920 if (error == EDEADLK) {
7921 err = error;
7922 goto out;
7923 }
7924 /*
7925 * Quit if we fail to fault in the page. Treat
7926 * the failure as an error, unless the addr
7927 * is mapped beyond the end of a file.
7928 */
7929 if (error && svd->vp) {
7930 va.va_mask = AT_SIZE;
7931 if (VOP_GETATTR(svd->vp, &va, 0,
7932 svd->cred, NULL) != 0) {
7933 err = EIO;
7934 goto out;
7935 }
7936 if (btopr(va.va_size) >=
7937 btopr(off + 1)) {
7938 err = EIO;
7939 goto out;
7940 }
7941 goto out;
7942
7943 } else if (error) {
7944 err = EIO;
7945 goto out;
7946 }
7947 pp = pl[0];
7948 ASSERT(pp != NULL);
7949 }
7950
7951 /*
7952 * See Statement at the beginning of this routine.
7953 *
7954 * claim is always set if MAP_PRIVATE and PROT_WRITE
7955 * irrespective of following factors:
7956 *
7957 * (1) anon slots are populated or not
7958 * (2) cow is broken or not
7959 * (3) refcnt on ap is 1 or greater than 1
7960 *
7961 * See 4140683 for details
7962 */
7963 claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7964 (svd->type == MAP_PRIVATE));
7965
7966 /*
7967 * Perform page-level operation appropriate to
7968 * operation. If locking, undo the SOFTLOCK
7969 * performed to bring the page into memory
7970 * after setting the lock. If unlocking,
7971 * and no page was found, account for the claim
7972 * separately.
7973 */
7974 if (op == MC_LOCK) {
7975 int ret = 1; /* Assume success */
7976
7977 ASSERT(!VPP_ISPPLOCK(vpp));
7978
7979 ret = page_pp_lock(pp, claim, 0);
7980 if (ap != NULL) {
7981 if (ap->an_pvp != NULL) {
7982 anon_swap_free(ap, pp);
7983 }
7984 anon_array_exit(&cookie);
7985 ANON_LOCK_EXIT(&->a_rwlock);
7986 }
7987 if (ret == 0) {
7988 /* locking page failed */
7989 page_unlock(pp);
7990 err = EAGAIN;
7991 goto out;
7992 }
7993 VPP_SETPPLOCK(vpp);
7994 if (sp != NULL) {
7995 if (pp->p_lckcnt == 1)
7996 locked_bytes += PAGESIZE;
7997 } else
7998 locked_bytes += PAGESIZE;
7999
8000 if (lockmap != (ulong_t *)NULL)
8001 BT_SET(lockmap, pos);
8002
8003 page_unlock(pp);
8004 } else {
8005 ASSERT(VPP_ISPPLOCK(vpp));
8006 if (pp != NULL) {
8007 /* sysV pages should be locked */
8008 ASSERT(sp == NULL || pp->p_lckcnt > 0);
8009 page_pp_unlock(pp, claim, 0);
8010 if (sp != NULL) {
8011 if (pp->p_lckcnt == 0)
8012 unlocked_bytes
8013 += PAGESIZE;
8014 } else
8015 unlocked_bytes += PAGESIZE;
8016 page_unlock(pp);
8017 } else {
8018 ASSERT(sp == NULL);
8019 unlocked_bytes += PAGESIZE;
8020 }
8021 VPP_CLRPPLOCK(vpp);
8022 }
8023 }
8024 }
8025 out:
8026 if (op == MC_LOCK) {
8027 /* Credit back bytes that did not get locked */
8028 if ((unlocked_bytes - locked_bytes) > 0) {
8029 if (proj == NULL)
8030 mutex_enter(&p->p_lock);
8031 rctl_decr_locked_mem(p, proj,
8032 (unlocked_bytes - locked_bytes), chargeproc);
8033 if (proj == NULL)
8034 mutex_exit(&p->p_lock);
8035 }
8036
8037 } else {
8038 /* Account bytes that were unlocked */
8039 if (unlocked_bytes > 0) {
8040 if (proj == NULL)
8041 mutex_enter(&p->p_lock);
8042 rctl_decr_locked_mem(p, proj, unlocked_bytes,
8043 chargeproc);
8044 if (proj == NULL)
8045 mutex_exit(&p->p_lock);
8046 }
8047 }
8048 if (sp != NULL)
8049 mutex_exit(&sp->shm_mlock);
8050 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8051
8052 return (err);
8053 }
8054
8055 /*
8056 * Set advice from user for specified pages
8057 * There are 10 types of advice:
8058 * MADV_NORMAL - Normal (default) behavior (whatever that is)
8059 * MADV_RANDOM - Random page references
8060 * do not allow readahead or 'klustering'
8061 * MADV_SEQUENTIAL - Sequential page references
8062 * Pages previous to the one currently being
8063 * accessed (determined by fault) are 'not needed'
8064 * and are freed immediately
8065 * MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl)
8066 * MADV_DONTNEED - Pages are not needed (synced out in mctl)
8067 * MADV_FREE - Contents can be discarded
8068 * MADV_ACCESS_DEFAULT- Default access
8069 * MADV_ACCESS_LWP - Next LWP will access heavily
8070 * MADV_ACCESS_MANY- Many LWPs or processes will access heavily
8071 * MADV_PURGE - Contents will be immediately discarded
8072 */
8073 static int
segvn_advise(struct seg * seg,caddr_t addr,size_t len,uint_t behav)8074 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8075 {
8076 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8077 size_t page;
8078 int err = 0;
8079 int already_set;
8080 struct anon_map *amp;
8081 ulong_t anon_index;
8082 struct seg *next;
8083 lgrp_mem_policy_t policy;
8084 struct seg *prev;
8085 struct vnode *vp;
8086
8087 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8088
8089 /*
8090 * In case of MADV_FREE/MADV_PURGE, we won't be modifying any segment
8091 * private data structures; so, we only need to grab READER's lock
8092 */
8093 if (behav != MADV_FREE && behav != MADV_PURGE) {
8094 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8095 if (svd->tr_state != SEGVN_TR_OFF) {
8096 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8097 return (0);
8098 }
8099 } else {
8100 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8101 }
8102
8103 /*
8104 * Large pages are assumed to be only turned on when accesses to the
8105 * segment's address range have spatial and temporal locality. That
8106 * justifies ignoring MADV_SEQUENTIAL for large page segments.
8107 * Also, ignore advice affecting lgroup memory allocation
8108 * if don't need to do lgroup optimizations on this system
8109 */
8110
8111 if ((behav == MADV_SEQUENTIAL &&
8112 (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
8113 (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
8114 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
8115 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8116 return (0);
8117 }
8118
8119 if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
8120 behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
8121 /*
8122 * Since we are going to unload hat mappings
8123 * we first have to flush the cache. Otherwise
8124 * this might lead to system panic if another
8125 * thread is doing physio on the range whose
8126 * mappings are unloaded by madvise(3C).
8127 */
8128 if (svd->softlockcnt > 0) {
8129 /*
8130 * If this is shared segment non 0 softlockcnt
8131 * means locked pages are still in use.
8132 */
8133 if (svd->type == MAP_SHARED) {
8134 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8135 return (EAGAIN);
8136 }
8137 /*
8138 * Since we do have the segvn writers lock
8139 * nobody can fill the cache with entries
8140 * belonging to this seg during the purge.
8141 * The flush either succeeds or we still
8142 * have pending I/Os. In the later case,
8143 * madvise(3C) fails.
8144 */
8145 segvn_purge(seg);
8146 if (svd->softlockcnt > 0) {
8147 /*
8148 * Since madvise(3C) is advisory and
8149 * it's not part of UNIX98, madvise(3C)
8150 * failure here doesn't cause any hardship.
8151 * Note that we don't block in "as" layer.
8152 */
8153 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8154 return (EAGAIN);
8155 }
8156 } else if (svd->type == MAP_SHARED && svd->amp != NULL &&
8157 svd->amp->a_softlockcnt > 0) {
8158 /*
8159 * Try to purge this amp's entries from pcache. It
8160 * will succeed only if other segments that share the
8161 * amp have no outstanding softlock's.
8162 */
8163 segvn_purge(seg);
8164 }
8165 }
8166
8167 amp = svd->amp;
8168 vp = svd->vp;
8169 if (behav == MADV_FREE || behav == MADV_PURGE) {
8170 pgcnt_t purged;
8171
8172 if (behav == MADV_FREE && (vp != NULL || amp == NULL)) {
8173 /*
8174 * MADV_FREE is not supported for segments with an
8175 * underlying object; if anonmap is NULL, anon slots
8176 * are not yet populated and there is nothing for us
8177 * to do. As MADV_FREE is advisory, we don't return an
8178 * error in either case.
8179 */
8180 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8181 return (0);
8182 }
8183
8184 if (amp == NULL) {
8185 /*
8186 * If we're here with a NULL anonmap, it's because we
8187 * are doing a MADV_PURGE. We have nothing to do, but
8188 * because MADV_PURGE isn't merely advisory, we return
8189 * an error in this case.
8190 */
8191 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8192 return (EBUSY);
8193 }
8194
8195 segvn_purge(seg);
8196
8197 page = seg_page(seg, addr);
8198 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
8199 err = anon_disclaim(amp,
8200 svd->anon_index + page, len, behav, &purged);
8201
8202 if (purged != 0 && (svd->flags & MAP_NORESERVE)) {
8203 /*
8204 * If we purged pages on a MAP_NORESERVE mapping, we
8205 * need to be sure to now unreserve our reserved swap.
8206 * (We use the atomic operations to manipulate our
8207 * segment and address space counters because we only
8208 * have the corresponding locks held as reader, not
8209 * writer.)
8210 */
8211 ssize_t bytes = ptob(purged);
8212
8213 anon_unresv_zone(bytes, seg->s_as->a_proc->p_zone);
8214 atomic_add_long(&svd->swresv, -bytes);
8215 atomic_add_long(&seg->s_as->a_resvsize, -bytes);
8216 }
8217
8218 ANON_LOCK_EXIT(&->a_rwlock);
8219 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8220
8221 /*
8222 * MADV_PURGE and MADV_FREE differ in their return semantics:
8223 * because MADV_PURGE is designed to be bug-for-bug compatible
8224 * with its clumsy Linux forebear, it will fail where MADV_FREE
8225 * does not.
8226 */
8227 return (behav == MADV_PURGE ? err : 0);
8228 }
8229
8230 /*
8231 * If advice is to be applied to entire segment,
8232 * use advice field in seg_data structure
8233 * otherwise use appropriate vpage entry.
8234 */
8235 if ((addr == seg->s_base) && (len == seg->s_size)) {
8236 switch (behav) {
8237 case MADV_ACCESS_LWP:
8238 case MADV_ACCESS_MANY:
8239 case MADV_ACCESS_DEFAULT:
8240 /*
8241 * Set memory allocation policy for this segment
8242 */
8243 policy = lgrp_madv_to_policy(behav, len, svd->type);
8244 if (svd->type == MAP_SHARED)
8245 already_set = lgrp_shm_policy_set(policy, amp,
8246 svd->anon_index, vp, svd->offset, len);
8247 else {
8248 /*
8249 * For private memory, need writers lock on
8250 * address space because the segment may be
8251 * split or concatenated when changing policy
8252 */
8253 if (AS_READ_HELD(seg->s_as)) {
8254 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8255 return (IE_RETRY);
8256 }
8257
8258 already_set = lgrp_privm_policy_set(policy,
8259 &svd->policy_info, len);
8260 }
8261
8262 /*
8263 * If policy set already and it shouldn't be reapplied,
8264 * don't do anything.
8265 */
8266 if (already_set &&
8267 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8268 break;
8269
8270 /*
8271 * Mark any existing pages in given range for
8272 * migration
8273 */
8274 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8275 vp, svd->offset, 1);
8276
8277 /*
8278 * If same policy set already or this is a shared
8279 * memory segment, don't need to try to concatenate
8280 * segment with adjacent ones.
8281 */
8282 if (already_set || svd->type == MAP_SHARED)
8283 break;
8284
8285 /*
8286 * Try to concatenate this segment with previous
8287 * one and next one, since we changed policy for
8288 * this one and it may be compatible with adjacent
8289 * ones now.
8290 */
8291 prev = AS_SEGPREV(seg->s_as, seg);
8292 next = AS_SEGNEXT(seg->s_as, seg);
8293
8294 if (next && next->s_ops == &segvn_ops &&
8295 addr + len == next->s_base)
8296 (void) segvn_concat(seg, next, 1);
8297
8298 if (prev && prev->s_ops == &segvn_ops &&
8299 addr == prev->s_base + prev->s_size) {
8300 /*
8301 * Drop lock for private data of current
8302 * segment before concatenating (deleting) it
8303 * and return IE_REATTACH to tell as_ctl() that
8304 * current segment has changed
8305 */
8306 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8307 if (!segvn_concat(prev, seg, 1))
8308 err = IE_REATTACH;
8309
8310 return (err);
8311 }
8312 break;
8313
8314 case MADV_SEQUENTIAL:
8315 /*
8316 * unloading mapping guarantees
8317 * detection in segvn_fault
8318 */
8319 ASSERT(seg->s_szc == 0);
8320 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8321 hat_unload(seg->s_as->a_hat, addr, len,
8322 HAT_UNLOAD);
8323 /* FALLTHROUGH */
8324 case MADV_NORMAL:
8325 case MADV_RANDOM:
8326 svd->advice = (uchar_t)behav;
8327 svd->pageadvice = 0;
8328 break;
8329 case MADV_WILLNEED: /* handled in memcntl */
8330 case MADV_DONTNEED: /* handled in memcntl */
8331 case MADV_FREE: /* handled above */
8332 case MADV_PURGE: /* handled above */
8333 break;
8334 default:
8335 err = EINVAL;
8336 }
8337 } else {
8338 caddr_t eaddr;
8339 struct seg *new_seg;
8340 struct segvn_data *new_svd = NULL;
8341 u_offset_t off;
8342 caddr_t oldeaddr;
8343
8344 page = seg_page(seg, addr);
8345
8346 segvn_vpage(seg);
8347 if (svd->vpage == NULL) {
8348 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8349 return (ENOMEM);
8350 }
8351
8352 switch (behav) {
8353 struct vpage *bvpp, *evpp;
8354
8355 case MADV_ACCESS_LWP:
8356 case MADV_ACCESS_MANY:
8357 case MADV_ACCESS_DEFAULT:
8358 /*
8359 * Set memory allocation policy for portion of this
8360 * segment
8361 */
8362
8363 /*
8364 * Align address and length of advice to page
8365 * boundaries for large pages
8366 */
8367 if (seg->s_szc != 0) {
8368 size_t pgsz;
8369
8370 pgsz = page_get_pagesize(seg->s_szc);
8371 addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8372 len = P2ROUNDUP(len, pgsz);
8373 }
8374
8375 /*
8376 * Check to see whether policy is set already
8377 */
8378 policy = lgrp_madv_to_policy(behav, len, svd->type);
8379
8380 anon_index = svd->anon_index + page;
8381 off = svd->offset + (uintptr_t)(addr - seg->s_base);
8382
8383 if (svd->type == MAP_SHARED)
8384 already_set = lgrp_shm_policy_set(policy, amp,
8385 anon_index, vp, off, len);
8386 else
8387 already_set =
8388 (policy == svd->policy_info.mem_policy);
8389
8390 /*
8391 * If policy set already and it shouldn't be reapplied,
8392 * don't do anything.
8393 */
8394 if (already_set &&
8395 !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8396 break;
8397
8398 /*
8399 * For private memory, need writers lock on
8400 * address space because the segment may be
8401 * split or concatenated when changing policy
8402 */
8403 if (svd->type == MAP_PRIVATE &&
8404 AS_READ_HELD(seg->s_as)) {
8405 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8406 return (IE_RETRY);
8407 }
8408
8409 /*
8410 * Mark any existing pages in given range for
8411 * migration
8412 */
8413 page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8414 vp, svd->offset, 1);
8415
8416 /*
8417 * Don't need to try to split or concatenate
8418 * segments, since policy is same or this is a shared
8419 * memory segment
8420 */
8421 if (already_set || svd->type == MAP_SHARED)
8422 break;
8423
8424 if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8425 ASSERT(svd->amp == NULL);
8426 ASSERT(svd->tr_state == SEGVN_TR_OFF);
8427 ASSERT(svd->softlockcnt == 0);
8428 hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8429 HAT_REGION_TEXT);
8430 svd->rcookie = HAT_INVALID_REGION_COOKIE;
8431 }
8432
8433 /*
8434 * Split off new segment if advice only applies to a
8435 * portion of existing segment starting in middle
8436 */
8437 new_seg = NULL;
8438 eaddr = addr + len;
8439 oldeaddr = seg->s_base + seg->s_size;
8440 if (addr > seg->s_base) {
8441 /*
8442 * Must flush I/O page cache
8443 * before splitting segment
8444 */
8445 if (svd->softlockcnt > 0)
8446 segvn_purge(seg);
8447
8448 /*
8449 * Split segment and return IE_REATTACH to tell
8450 * as_ctl() that current segment changed
8451 */
8452 new_seg = segvn_split_seg(seg, addr);
8453 new_svd = (struct segvn_data *)new_seg->s_data;
8454 err = IE_REATTACH;
8455
8456 /*
8457 * If new segment ends where old one
8458 * did, try to concatenate the new
8459 * segment with next one.
8460 */
8461 if (eaddr == oldeaddr) {
8462 /*
8463 * Set policy for new segment
8464 */
8465 (void) lgrp_privm_policy_set(policy,
8466 &new_svd->policy_info,
8467 new_seg->s_size);
8468
8469 next = AS_SEGNEXT(new_seg->s_as,
8470 new_seg);
8471
8472 if (next &&
8473 next->s_ops == &segvn_ops &&
8474 eaddr == next->s_base)
8475 (void) segvn_concat(new_seg,
8476 next, 1);
8477 }
8478 }
8479
8480 /*
8481 * Split off end of existing segment if advice only
8482 * applies to a portion of segment ending before
8483 * end of the existing segment
8484 */
8485 if (eaddr < oldeaddr) {
8486 /*
8487 * Must flush I/O page cache
8488 * before splitting segment
8489 */
8490 if (svd->softlockcnt > 0)
8491 segvn_purge(seg);
8492
8493 /*
8494 * If beginning of old segment was already
8495 * split off, use new segment to split end off
8496 * from.
8497 */
8498 if (new_seg != NULL && new_seg != seg) {
8499 /*
8500 * Split segment
8501 */
8502 (void) segvn_split_seg(new_seg, eaddr);
8503
8504 /*
8505 * Set policy for new segment
8506 */
8507 (void) lgrp_privm_policy_set(policy,
8508 &new_svd->policy_info,
8509 new_seg->s_size);
8510 } else {
8511 /*
8512 * Split segment and return IE_REATTACH
8513 * to tell as_ctl() that current
8514 * segment changed
8515 */
8516 (void) segvn_split_seg(seg, eaddr);
8517 err = IE_REATTACH;
8518
8519 (void) lgrp_privm_policy_set(policy,
8520 &svd->policy_info, seg->s_size);
8521
8522 /*
8523 * If new segment starts where old one
8524 * did, try to concatenate it with
8525 * previous segment.
8526 */
8527 if (addr == seg->s_base) {
8528 prev = AS_SEGPREV(seg->s_as,
8529 seg);
8530
8531 /*
8532 * Drop lock for private data
8533 * of current segment before
8534 * concatenating (deleting) it
8535 */
8536 if (prev &&
8537 prev->s_ops ==
8538 &segvn_ops &&
8539 addr == prev->s_base +
8540 prev->s_size) {
8541 SEGVN_LOCK_EXIT(
8542 seg->s_as,
8543 &svd->lock);
8544 (void) segvn_concat(
8545 prev, seg, 1);
8546 return (err);
8547 }
8548 }
8549 }
8550 }
8551 break;
8552 case MADV_SEQUENTIAL:
8553 ASSERT(seg->s_szc == 0);
8554 ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8555 hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8556 /* FALLTHROUGH */
8557 case MADV_NORMAL:
8558 case MADV_RANDOM:
8559 bvpp = &svd->vpage[page];
8560 evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8561 for (; bvpp < evpp; bvpp++)
8562 VPP_SETADVICE(bvpp, behav);
8563 svd->advice = MADV_NORMAL;
8564 break;
8565 case MADV_WILLNEED: /* handled in memcntl */
8566 case MADV_DONTNEED: /* handled in memcntl */
8567 case MADV_FREE: /* handled above */
8568 case MADV_PURGE: /* handled above */
8569 break;
8570 default:
8571 err = EINVAL;
8572 }
8573 }
8574 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8575 return (err);
8576 }
8577
8578 /*
8579 * There is one kind of inheritance that can be specified for pages:
8580 *
8581 * SEGP_INH_ZERO - Pages should be zeroed in the child
8582 */
8583 static int
segvn_inherit(struct seg * seg,caddr_t addr,size_t len,uint_t behav)8584 segvn_inherit(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8585 {
8586 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8587 struct vpage *bvpp, *evpp;
8588 size_t page;
8589 int ret = 0;
8590
8591 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8592
8593 /* Can't support something we don't know about */
8594 if (behav != SEGP_INH_ZERO)
8595 return (ENOTSUP);
8596
8597 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8598
8599 /*
8600 * This must be a straightforward anonymous segment that is mapped
8601 * privately and is not backed by a vnode.
8602 */
8603 if (svd->tr_state != SEGVN_TR_OFF ||
8604 svd->type != MAP_PRIVATE ||
8605 svd->vp != NULL) {
8606 ret = EINVAL;
8607 goto out;
8608 }
8609
8610 /*
8611 * If the entire segment has been marked as inherit zero, then no reason
8612 * to do anything else.
8613 */
8614 if (svd->svn_inz == SEGVN_INZ_ALL) {
8615 ret = 0;
8616 goto out;
8617 }
8618
8619 /*
8620 * If this applies to the entire segment, simply mark it and we're done.
8621 */
8622 if ((addr == seg->s_base) && (len == seg->s_size)) {
8623 svd->svn_inz = SEGVN_INZ_ALL;
8624 ret = 0;
8625 goto out;
8626 }
8627
8628 /*
8629 * We've been asked to mark a subset of this segment as inherit zero,
8630 * therefore we need to mainpulate its vpages.
8631 */
8632 if (svd->vpage == NULL) {
8633 segvn_vpage(seg);
8634 if (svd->vpage == NULL) {
8635 ret = ENOMEM;
8636 goto out;
8637 }
8638 }
8639
8640 svd->svn_inz = SEGVN_INZ_VPP;
8641 page = seg_page(seg, addr);
8642 bvpp = &svd->vpage[page];
8643 evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8644 for (; bvpp < evpp; bvpp++)
8645 VPP_SETINHZERO(bvpp);
8646 ret = 0;
8647
8648 out:
8649 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8650 return (ret);
8651 }
8652
8653 /*
8654 * Create a vpage structure for this seg.
8655 */
8656 static void
segvn_vpage(struct seg * seg)8657 segvn_vpage(struct seg *seg)
8658 {
8659 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8660 struct vpage *vp, *evp;
8661 static pgcnt_t page_limit = 0;
8662
8663 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8664
8665 /*
8666 * If no vpage structure exists, allocate one. Copy the protections
8667 * and the advice from the segment itself to the individual pages.
8668 */
8669 if (svd->vpage == NULL) {
8670 /*
8671 * Start by calculating the number of pages we must allocate to
8672 * track the per-page vpage structs needs for this entire
8673 * segment. If we know now that it will require more than our
8674 * heuristic for the maximum amount of kmem we can consume then
8675 * fail. We do this here, instead of trying to detect this deep
8676 * in page_resv and propagating the error up, since the entire
8677 * memory allocation stack is not amenable to passing this
8678 * back. Instead, it wants to keep trying.
8679 *
8680 * As a heuristic we set a page limit of 5/8s of total_pages
8681 * for this allocation. We use shifts so that no floating
8682 * point conversion takes place and only need to do the
8683 * calculation once.
8684 */
8685 ulong_t mem_needed = seg_pages(seg) * sizeof (struct vpage);
8686 pgcnt_t npages = mem_needed >> PAGESHIFT;
8687
8688 if (page_limit == 0)
8689 page_limit = (total_pages >> 1) + (total_pages >> 3);
8690
8691 if (npages > page_limit)
8692 return;
8693
8694 svd->pageadvice = 1;
8695 svd->vpage = kmem_zalloc(mem_needed, KM_SLEEP);
8696 evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8697 for (vp = svd->vpage; vp < evp; vp++) {
8698 VPP_SETPROT(vp, svd->prot);
8699 VPP_SETADVICE(vp, svd->advice);
8700 }
8701 }
8702 }
8703
8704 /*
8705 * Dump the pages belonging to this segvn segment.
8706 */
8707 static void
segvn_dump(struct seg * seg)8708 segvn_dump(struct seg *seg)
8709 {
8710 struct segvn_data *svd;
8711 page_t *pp;
8712 struct anon_map *amp;
8713 ulong_t anon_index = 0;
8714 struct vnode *vp;
8715 u_offset_t off, offset;
8716 pfn_t pfn;
8717 pgcnt_t page, npages;
8718 caddr_t addr;
8719
8720 npages = seg_pages(seg);
8721 svd = (struct segvn_data *)seg->s_data;
8722 vp = svd->vp;
8723 off = offset = svd->offset;
8724 addr = seg->s_base;
8725
8726 if ((amp = svd->amp) != NULL) {
8727 anon_index = svd->anon_index;
8728 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
8729 }
8730
8731 for (page = 0; page < npages; page++, offset += PAGESIZE) {
8732 struct anon *ap;
8733 int we_own_it = 0;
8734
8735 if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8736 swap_xlate_nopanic(ap, &vp, &off);
8737 } else {
8738 vp = svd->vp;
8739 off = offset;
8740 }
8741
8742 /*
8743 * If pp == NULL, the page either does not exist
8744 * or is exclusively locked. So determine if it
8745 * exists before searching for it.
8746 */
8747
8748 if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8749 we_own_it = 1;
8750 else
8751 pp = page_exists(vp, off);
8752
8753 if (pp) {
8754 pfn = page_pptonum(pp);
8755 dump_addpage(seg->s_as, addr, pfn);
8756 if (we_own_it)
8757 page_unlock(pp);
8758 }
8759 addr += PAGESIZE;
8760 dump_timeleft = dump_timeout;
8761 }
8762
8763 if (amp != NULL)
8764 ANON_LOCK_EXIT(&->a_rwlock);
8765 }
8766
8767 #ifdef DEBUG
8768 static uint32_t segvn_pglock_mtbf = 0;
8769 #endif
8770
8771 #define PCACHE_SHWLIST ((page_t *)-2)
8772 #define NOPCACHE_SHWLIST ((page_t *)-1)
8773
8774 /*
8775 * Lock/Unlock anon pages over a given range. Return shadow list. This routine
8776 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages
8777 * to avoid the overhead of per page locking, unlocking for subsequent IOs to
8778 * the same parts of the segment. Currently shadow list creation is only
8779 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are
8780 * tagged with segment pointer, starting virtual address and length. This
8781 * approach for MAP_SHARED segments may add many pcache entries for the same
8782 * set of pages and lead to long hash chains that decrease pcache lookup
8783 * performance. To avoid this issue for shared segments shared anon map and
8784 * starting anon index are used for pcache entry tagging. This allows all
8785 * segments to share pcache entries for the same anon range and reduces pcache
8786 * chain's length as well as memory overhead from duplicate shadow lists and
8787 * pcache entries.
8788 *
8789 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd
8790 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock
8791 * part of softlockcnt accounting is done differently for private and shared
8792 * segments. In private segment case softlock is only incremented when a new
8793 * shadow list is created but not when an existing one is found via
8794 * seg_plookup(). pcache entries have reference count incremented/decremented
8795 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0
8796 * reference count can be purged (and purging is needed before segment can be
8797 * freed). When a private segment pcache entry is purged segvn_reclaim() will
8798 * decrement softlockcnt. Since in private segment case each of its pcache
8799 * entries only belongs to this segment we can expect that when
8800 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8801 * segment purge will succeed and softlockcnt will drop to 0. In shared
8802 * segment case reference count in pcache entry counts active locks from many
8803 * different segments so we can't expect segment purging to succeed even when
8804 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8805 * segment. To be able to determine when there're no pending pagelocks in
8806 * shared segment case we don't rely on purging to make softlockcnt drop to 0
8807 * but instead softlockcnt is incremented and decremented for every
8808 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow
8809 * list was created or an existing one was found. When softlockcnt drops to 0
8810 * this segment no longer has any claims for pcached shadow lists and the
8811 * segment can be freed even if there're still active pcache entries
8812 * shared by this segment anon map. Shared segment pcache entries belong to
8813 * anon map and are typically removed when anon map is freed after all
8814 * processes destroy the segments that use this anon map.
8815 */
8816 static int
segvn_pagelock(struct seg * seg,caddr_t addr,size_t len,struct page *** ppp,enum lock_type type,enum seg_rw rw)8817 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8818 enum lock_type type, enum seg_rw rw)
8819 {
8820 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8821 size_t np;
8822 pgcnt_t adjustpages;
8823 pgcnt_t npages;
8824 ulong_t anon_index;
8825 uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE;
8826 uint_t error;
8827 struct anon_map *amp;
8828 pgcnt_t anpgcnt;
8829 struct page **pplist, **pl, *pp;
8830 caddr_t a;
8831 size_t page;
8832 caddr_t lpgaddr, lpgeaddr;
8833 anon_sync_obj_t cookie;
8834 int anlock;
8835 struct anon_map *pamp;
8836 caddr_t paddr;
8837 seg_preclaim_cbfunc_t preclaim_callback;
8838 size_t pgsz;
8839 int use_pcache;
8840 size_t wlen = 0;
8841 uint_t pflags = 0;
8842 int sftlck_sbase = 0;
8843 int sftlck_send = 0;
8844
8845 #ifdef DEBUG
8846 if (type == L_PAGELOCK && segvn_pglock_mtbf) {
8847 hrtime_t ts = gethrtime();
8848 if ((ts % segvn_pglock_mtbf) == 0) {
8849 return (ENOTSUP);
8850 }
8851 if ((ts % segvn_pglock_mtbf) == 1) {
8852 return (EFAULT);
8853 }
8854 }
8855 #endif
8856
8857 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8858 "segvn_pagelock: start seg %p addr %p", seg, addr);
8859
8860 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8861 ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
8862
8863 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8864
8865 /*
8866 * for now we only support pagelock to anon memory. We would have to
8867 * check protections for vnode objects and call into the vnode driver.
8868 * That's too much for a fast path. Let the fault entry point handle
8869 * it.
8870 */
8871 if (svd->vp != NULL) {
8872 if (type == L_PAGELOCK) {
8873 error = ENOTSUP;
8874 goto out;
8875 }
8876 panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL");
8877 }
8878 if ((amp = svd->amp) == NULL) {
8879 if (type == L_PAGELOCK) {
8880 error = EFAULT;
8881 goto out;
8882 }
8883 panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL");
8884 }
8885 if (rw != S_READ && rw != S_WRITE) {
8886 if (type == L_PAGELOCK) {
8887 error = ENOTSUP;
8888 goto out;
8889 }
8890 panic("segvn_pagelock(L_PAGEUNLOCK): bad rw");
8891 }
8892
8893 if (seg->s_szc != 0) {
8894 /*
8895 * We are adjusting the pagelock region to the large page size
8896 * boundary because the unlocked part of a large page cannot
8897 * be freed anyway unless all constituent pages of a large
8898 * page are locked. Bigger regions reduce pcache chain length
8899 * and improve lookup performance. The tradeoff is that the
8900 * very first segvn_pagelock() call for a given page is more
8901 * expensive if only 1 page_t is needed for IO. This is only
8902 * an issue if pcache entry doesn't get reused by several
8903 * subsequent calls. We optimize here for the case when pcache
8904 * is heavily used by repeated IOs to the same address range.
8905 *
8906 * Note segment's page size cannot change while we are holding
8907 * as lock. And then it cannot change while softlockcnt is
8908 * not 0. This will allow us to correctly recalculate large
8909 * page size region for the matching pageunlock/reclaim call
8910 * since as_pageunlock() caller must always match
8911 * as_pagelock() call's addr and len.
8912 *
8913 * For pageunlock *ppp points to the pointer of page_t that
8914 * corresponds to the real unadjusted start address. Similar
8915 * for pagelock *ppp must point to the pointer of page_t that
8916 * corresponds to the real unadjusted start address.
8917 */
8918 pgsz = page_get_pagesize(seg->s_szc);
8919 CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8920 adjustpages = btop((uintptr_t)(addr - lpgaddr));
8921 } else if (len < segvn_pglock_comb_thrshld) {
8922 lpgaddr = addr;
8923 lpgeaddr = addr + len;
8924 adjustpages = 0;
8925 pgsz = PAGESIZE;
8926 } else {
8927 /*
8928 * Align the address range of large enough requests to allow
8929 * combining of different shadow lists into 1 to reduce memory
8930 * overhead from potentially overlapping large shadow lists
8931 * (worst case is we have a 1MB IO into buffers with start
8932 * addresses separated by 4K). Alignment is only possible if
8933 * padded chunks have sufficient access permissions. Note
8934 * permissions won't change between L_PAGELOCK and
8935 * L_PAGEUNLOCK calls since non 0 softlockcnt will force
8936 * segvn_setprot() to wait until softlockcnt drops to 0. This
8937 * allows us to determine in L_PAGEUNLOCK the same range we
8938 * computed in L_PAGELOCK.
8939 *
8940 * If alignment is limited by segment ends set
8941 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when
8942 * these flags are set bump softlockcnt_sbase/softlockcnt_send
8943 * per segment counters. In L_PAGEUNLOCK case decrease
8944 * softlockcnt_sbase/softlockcnt_send counters if
8945 * sftlck_sbase/sftlck_send flags are set. When
8946 * softlockcnt_sbase/softlockcnt_send are non 0
8947 * segvn_concat()/segvn_extend_prev()/segvn_extend_next()
8948 * won't merge the segments. This restriction combined with
8949 * restriction on segment unmapping and splitting for segments
8950 * that have non 0 softlockcnt allows L_PAGEUNLOCK to
8951 * correctly determine the same range that was previously
8952 * locked by matching L_PAGELOCK.
8953 */
8954 pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16);
8955 pgsz = PAGESIZE;
8956 if (svd->type == MAP_PRIVATE) {
8957 lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr,
8958 segvn_pglock_comb_balign);
8959 if (lpgaddr < seg->s_base) {
8960 lpgaddr = seg->s_base;
8961 sftlck_sbase = 1;
8962 }
8963 } else {
8964 ulong_t aix = svd->anon_index + seg_page(seg, addr);
8965 ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign);
8966 if (aaix < svd->anon_index) {
8967 lpgaddr = seg->s_base;
8968 sftlck_sbase = 1;
8969 } else {
8970 lpgaddr = addr - ptob(aix - aaix);
8971 ASSERT(lpgaddr >= seg->s_base);
8972 }
8973 }
8974 if (svd->pageprot && lpgaddr != addr) {
8975 struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)];
8976 struct vpage *evp = &svd->vpage[seg_page(seg, addr)];
8977 while (vp < evp) {
8978 if ((VPP_PROT(vp) & protchk) == 0) {
8979 break;
8980 }
8981 vp++;
8982 }
8983 if (vp < evp) {
8984 lpgaddr = addr;
8985 pflags = 0;
8986 }
8987 }
8988 lpgeaddr = addr + len;
8989 if (pflags) {
8990 if (svd->type == MAP_PRIVATE) {
8991 lpgeaddr = (caddr_t)P2ROUNDUP(
8992 (uintptr_t)lpgeaddr,
8993 segvn_pglock_comb_balign);
8994 } else {
8995 ulong_t aix = svd->anon_index +
8996 seg_page(seg, lpgeaddr);
8997 ulong_t aaix = P2ROUNDUP(aix,
8998 segvn_pglock_comb_palign);
8999 if (aaix < aix) {
9000 lpgeaddr = 0;
9001 } else {
9002 lpgeaddr += ptob(aaix - aix);
9003 }
9004 }
9005 if (lpgeaddr == 0 ||
9006 lpgeaddr > seg->s_base + seg->s_size) {
9007 lpgeaddr = seg->s_base + seg->s_size;
9008 sftlck_send = 1;
9009 }
9010 }
9011 if (svd->pageprot && lpgeaddr != addr + len) {
9012 struct vpage *vp;
9013 struct vpage *evp;
9014
9015 vp = &svd->vpage[seg_page(seg, addr + len)];
9016 evp = &svd->vpage[seg_page(seg, lpgeaddr)];
9017
9018 while (vp < evp) {
9019 if ((VPP_PROT(vp) & protchk) == 0) {
9020 break;
9021 }
9022 vp++;
9023 }
9024 if (vp < evp) {
9025 lpgeaddr = addr + len;
9026 }
9027 }
9028 adjustpages = btop((uintptr_t)(addr - lpgaddr));
9029 }
9030
9031 /*
9032 * For MAP_SHARED segments we create pcache entries tagged by amp and
9033 * anon index so that we can share pcache entries with other segments
9034 * that map this amp. For private segments pcache entries are tagged
9035 * with segment and virtual address.
9036 */
9037 if (svd->type == MAP_SHARED) {
9038 pamp = amp;
9039 paddr = (caddr_t)((lpgaddr - seg->s_base) +
9040 ptob(svd->anon_index));
9041 preclaim_callback = shamp_reclaim;
9042 } else {
9043 pamp = NULL;
9044 paddr = lpgaddr;
9045 preclaim_callback = segvn_reclaim;
9046 }
9047
9048 if (type == L_PAGEUNLOCK) {
9049 VM_STAT_ADD(segvnvmstats.pagelock[0]);
9050
9051 /*
9052 * update hat ref bits for /proc. We need to make sure
9053 * that threads tracing the ref and mod bits of the
9054 * address space get the right data.
9055 * Note: page ref and mod bits are updated at reclaim time
9056 */
9057 if (seg->s_as->a_vbits) {
9058 for (a = addr; a < addr + len; a += PAGESIZE) {
9059 if (rw == S_WRITE) {
9060 hat_setstat(seg->s_as, a,
9061 PAGESIZE, P_REF | P_MOD);
9062 } else {
9063 hat_setstat(seg->s_as, a,
9064 PAGESIZE, P_REF);
9065 }
9066 }
9067 }
9068
9069 /*
9070 * Check the shadow list entry after the last page used in
9071 * this IO request. If it's NOPCACHE_SHWLIST the shadow list
9072 * was not inserted into pcache and is not large page
9073 * adjusted. In this case call reclaim callback directly and
9074 * don't adjust the shadow list start and size for large
9075 * pages.
9076 */
9077 npages = btop(len);
9078 if ((*ppp)[npages] == NOPCACHE_SHWLIST) {
9079 void *ptag;
9080 if (pamp != NULL) {
9081 ASSERT(svd->type == MAP_SHARED);
9082 ptag = (void *)pamp;
9083 paddr = (caddr_t)((addr - seg->s_base) +
9084 ptob(svd->anon_index));
9085 } else {
9086 ptag = (void *)seg;
9087 paddr = addr;
9088 }
9089 (void) preclaim_callback(ptag, paddr, len, *ppp, rw, 0);
9090 } else {
9091 ASSERT((*ppp)[npages] == PCACHE_SHWLIST ||
9092 IS_SWAPFSVP((*ppp)[npages]->p_vnode));
9093 len = lpgeaddr - lpgaddr;
9094 npages = btop(len);
9095 seg_pinactive(seg, pamp, paddr, len,
9096 *ppp - adjustpages, rw, pflags, preclaim_callback);
9097 }
9098
9099 if (pamp != NULL) {
9100 ASSERT(svd->type == MAP_SHARED);
9101 ASSERT(svd->softlockcnt >= npages);
9102 atomic_add_long((ulong_t *)&svd->softlockcnt, -npages);
9103 }
9104
9105 if (sftlck_sbase) {
9106 ASSERT(svd->softlockcnt_sbase > 0);
9107 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_sbase);
9108 }
9109 if (sftlck_send) {
9110 ASSERT(svd->softlockcnt_send > 0);
9111 atomic_dec_ulong((ulong_t *)&svd->softlockcnt_send);
9112 }
9113
9114 /*
9115 * If someone is blocked while unmapping, we purge
9116 * segment page cache and thus reclaim pplist synchronously
9117 * without waiting for seg_pasync_thread. This speeds up
9118 * unmapping in cases where munmap(2) is called, while
9119 * raw async i/o is still in progress or where a thread
9120 * exits on data fault in a multithreaded application.
9121 */
9122 if (AS_ISUNMAPWAIT(seg->s_as)) {
9123 if (svd->softlockcnt == 0) {
9124 mutex_enter(&seg->s_as->a_contents);
9125 if (AS_ISUNMAPWAIT(seg->s_as)) {
9126 AS_CLRUNMAPWAIT(seg->s_as);
9127 cv_broadcast(&seg->s_as->a_cv);
9128 }
9129 mutex_exit(&seg->s_as->a_contents);
9130 } else if (pamp == NULL) {
9131 /*
9132 * softlockcnt is not 0 and this is a
9133 * MAP_PRIVATE segment. Try to purge its
9134 * pcache entries to reduce softlockcnt.
9135 * If it drops to 0 segvn_reclaim()
9136 * will wake up a thread waiting on
9137 * unmapwait flag.
9138 *
9139 * We don't purge MAP_SHARED segments with non
9140 * 0 softlockcnt since IO is still in progress
9141 * for such segments.
9142 */
9143 ASSERT(svd->type == MAP_PRIVATE);
9144 segvn_purge(seg);
9145 }
9146 }
9147 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9148 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
9149 "segvn_pagelock: unlock seg %p addr %p", seg, addr);
9150 return (0);
9151 }
9152
9153 /* The L_PAGELOCK case ... */
9154
9155 VM_STAT_ADD(segvnvmstats.pagelock[1]);
9156
9157 /*
9158 * For MAP_SHARED segments we have to check protections before
9159 * seg_plookup() since pcache entries may be shared by many segments
9160 * with potentially different page protections.
9161 */
9162 if (pamp != NULL) {
9163 ASSERT(svd->type == MAP_SHARED);
9164 if (svd->pageprot == 0) {
9165 if ((svd->prot & protchk) == 0) {
9166 error = EACCES;
9167 goto out;
9168 }
9169 } else {
9170 /*
9171 * check page protections
9172 */
9173 caddr_t ea;
9174
9175 if (seg->s_szc) {
9176 a = lpgaddr;
9177 ea = lpgeaddr;
9178 } else {
9179 a = addr;
9180 ea = addr + len;
9181 }
9182 for (; a < ea; a += pgsz) {
9183 struct vpage *vp;
9184
9185 ASSERT(seg->s_szc == 0 ||
9186 sameprot(seg, a, pgsz));
9187 vp = &svd->vpage[seg_page(seg, a)];
9188 if ((VPP_PROT(vp) & protchk) == 0) {
9189 error = EACCES;
9190 goto out;
9191 }
9192 }
9193 }
9194 }
9195
9196 /*
9197 * try to find pages in segment page cache
9198 */
9199 pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags);
9200 if (pplist != NULL) {
9201 if (pamp != NULL) {
9202 npages = btop((uintptr_t)(lpgeaddr - lpgaddr));
9203 ASSERT(svd->type == MAP_SHARED);
9204 atomic_add_long((ulong_t *)&svd->softlockcnt,
9205 npages);
9206 }
9207 if (sftlck_sbase) {
9208 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
9209 }
9210 if (sftlck_send) {
9211 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
9212 }
9213 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9214 *ppp = pplist + adjustpages;
9215 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
9216 "segvn_pagelock: cache hit seg %p addr %p", seg, addr);
9217 return (0);
9218 }
9219
9220 /*
9221 * For MAP_SHARED segments we already verified above that segment
9222 * protections allow this pagelock operation.
9223 */
9224 if (pamp == NULL) {
9225 ASSERT(svd->type == MAP_PRIVATE);
9226 if (svd->pageprot == 0) {
9227 if ((svd->prot & protchk) == 0) {
9228 error = EACCES;
9229 goto out;
9230 }
9231 if (svd->prot & PROT_WRITE) {
9232 wlen = lpgeaddr - lpgaddr;
9233 } else {
9234 wlen = 0;
9235 ASSERT(rw == S_READ);
9236 }
9237 } else {
9238 int wcont = 1;
9239 /*
9240 * check page protections
9241 */
9242 for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) {
9243 struct vpage *vp;
9244
9245 ASSERT(seg->s_szc == 0 ||
9246 sameprot(seg, a, pgsz));
9247 vp = &svd->vpage[seg_page(seg, a)];
9248 if ((VPP_PROT(vp) & protchk) == 0) {
9249 error = EACCES;
9250 goto out;
9251 }
9252 if (wcont && (VPP_PROT(vp) & PROT_WRITE)) {
9253 wlen += pgsz;
9254 } else {
9255 wcont = 0;
9256 ASSERT(rw == S_READ);
9257 }
9258 }
9259 }
9260 ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr);
9261 ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr);
9262 }
9263
9264 /*
9265 * Only build large page adjusted shadow list if we expect to insert
9266 * it into pcache. For large enough pages it's a big overhead to
9267 * create a shadow list of the entire large page. But this overhead
9268 * should be amortized over repeated pcache hits on subsequent reuse
9269 * of this shadow list (IO into any range within this shadow list will
9270 * find it in pcache since we large page align the request for pcache
9271 * lookups). pcache performance is improved with bigger shadow lists
9272 * as it reduces the time to pcache the entire big segment and reduces
9273 * pcache chain length.
9274 */
9275 if (seg_pinsert_check(seg, pamp, paddr,
9276 lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) {
9277 addr = lpgaddr;
9278 len = lpgeaddr - lpgaddr;
9279 use_pcache = 1;
9280 } else {
9281 use_pcache = 0;
9282 /*
9283 * Since this entry will not be inserted into the pcache, we
9284 * will not do any adjustments to the starting address or
9285 * size of the memory to be locked.
9286 */
9287 adjustpages = 0;
9288 }
9289 npages = btop(len);
9290
9291 pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP);
9292 pl = pplist;
9293 *ppp = pplist + adjustpages;
9294 /*
9295 * If use_pcache is 0 this shadow list is not large page adjusted.
9296 * Record this info in the last entry of shadow array so that
9297 * L_PAGEUNLOCK can determine if it should large page adjust the
9298 * address range to find the real range that was locked.
9299 */
9300 pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST;
9301
9302 page = seg_page(seg, addr);
9303 anon_index = svd->anon_index + page;
9304
9305 anlock = 0;
9306 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
9307 ASSERT(amp->a_szc >= seg->s_szc);
9308 anpgcnt = page_get_pagecnt(amp->a_szc);
9309 for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
9310 struct anon *ap;
9311 struct vnode *vp;
9312 u_offset_t off;
9313
9314 /*
9315 * Lock and unlock anon array only once per large page.
9316 * anon_array_enter() locks the root anon slot according to
9317 * a_szc which can't change while anon map is locked. We lock
9318 * anon the first time through this loop and each time we
9319 * reach anon index that corresponds to a root of a large
9320 * page.
9321 */
9322 if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) {
9323 ASSERT(anlock == 0);
9324 anon_array_enter(amp, anon_index, &cookie);
9325 anlock = 1;
9326 }
9327 ap = anon_get_ptr(amp->ahp, anon_index);
9328
9329 /*
9330 * We must never use seg_pcache for COW pages
9331 * because we might end up with original page still
9332 * lying in seg_pcache even after private page is
9333 * created. This leads to data corruption as
9334 * aio_write refers to the page still in cache
9335 * while all other accesses refer to the private
9336 * page.
9337 */
9338 if (ap == NULL || ap->an_refcnt != 1) {
9339 struct vpage *vpage;
9340
9341 if (seg->s_szc) {
9342 error = EFAULT;
9343 break;
9344 }
9345 if (svd->vpage != NULL) {
9346 vpage = &svd->vpage[seg_page(seg, a)];
9347 } else {
9348 vpage = NULL;
9349 }
9350 ASSERT(anlock);
9351 anon_array_exit(&cookie);
9352 anlock = 0;
9353 pp = NULL;
9354 error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0,
9355 vpage, &pp, 0, F_INVAL, rw, 1);
9356 if (error) {
9357 error = fc_decode(error);
9358 break;
9359 }
9360 anon_array_enter(amp, anon_index, &cookie);
9361 anlock = 1;
9362 ap = anon_get_ptr(amp->ahp, anon_index);
9363 if (ap == NULL || ap->an_refcnt != 1) {
9364 error = EFAULT;
9365 break;
9366 }
9367 }
9368 swap_xlate(ap, &vp, &off);
9369 pp = page_lookup_nowait(vp, off, SE_SHARED);
9370 if (pp == NULL) {
9371 error = EFAULT;
9372 break;
9373 }
9374 if (ap->an_pvp != NULL) {
9375 anon_swap_free(ap, pp);
9376 }
9377 /*
9378 * Unlock anon if this is the last slot in a large page.
9379 */
9380 if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) {
9381 ASSERT(anlock);
9382 anon_array_exit(&cookie);
9383 anlock = 0;
9384 }
9385 *pplist++ = pp;
9386 }
9387 if (anlock) { /* Ensure the lock is dropped */
9388 anon_array_exit(&cookie);
9389 }
9390 ANON_LOCK_EXIT(&->a_rwlock);
9391
9392 if (a >= addr + len) {
9393 atomic_add_long((ulong_t *)&svd->softlockcnt, npages);
9394 if (pamp != NULL) {
9395 ASSERT(svd->type == MAP_SHARED);
9396 atomic_add_long((ulong_t *)&pamp->a_softlockcnt,
9397 npages);
9398 wlen = len;
9399 }
9400 if (sftlck_sbase) {
9401 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
9402 }
9403 if (sftlck_send) {
9404 atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
9405 }
9406 if (use_pcache) {
9407 (void) seg_pinsert(seg, pamp, paddr, len, wlen, pl,
9408 rw, pflags, preclaim_callback);
9409 }
9410 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9411 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
9412 "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
9413 return (0);
9414 }
9415
9416 pplist = pl;
9417 np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
9418 while (np > (uint_t)0) {
9419 ASSERT(PAGE_LOCKED(*pplist));
9420 page_unlock(*pplist);
9421 np--;
9422 pplist++;
9423 }
9424 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9425 out:
9426 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9427 *ppp = NULL;
9428 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
9429 "segvn_pagelock: cache miss seg %p addr %p", seg, addr);
9430 return (error);
9431 }
9432
9433 /*
9434 * purge any cached pages in the I/O page cache
9435 */
9436 static void
segvn_purge(struct seg * seg)9437 segvn_purge(struct seg *seg)
9438 {
9439 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9440
9441 /*
9442 * pcache is only used by pure anon segments.
9443 */
9444 if (svd->amp == NULL || svd->vp != NULL) {
9445 return;
9446 }
9447
9448 /*
9449 * For MAP_SHARED segments non 0 segment's softlockcnt means
9450 * active IO is still in progress via this segment. So we only
9451 * purge MAP_SHARED segments when their softlockcnt is 0.
9452 */
9453 if (svd->type == MAP_PRIVATE) {
9454 if (svd->softlockcnt) {
9455 seg_ppurge(seg, NULL, 0);
9456 }
9457 } else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) {
9458 seg_ppurge(seg, svd->amp, 0);
9459 }
9460 }
9461
9462 /*
9463 * If async argument is not 0 we are called from pcache async thread and don't
9464 * hold AS lock.
9465 */
9466
9467 /*ARGSUSED*/
9468 static int
segvn_reclaim(void * ptag,caddr_t addr,size_t len,struct page ** pplist,enum seg_rw rw,int async)9469 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9470 enum seg_rw rw, int async)
9471 {
9472 struct seg *seg = (struct seg *)ptag;
9473 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9474 pgcnt_t np, npages;
9475 struct page **pl;
9476
9477 npages = np = btop(len);
9478 ASSERT(npages);
9479
9480 ASSERT(svd->vp == NULL && svd->amp != NULL);
9481 ASSERT(svd->softlockcnt >= npages);
9482 ASSERT(async || AS_LOCK_HELD(seg->s_as));
9483
9484 pl = pplist;
9485
9486 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9487 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9488
9489 while (np > (uint_t)0) {
9490 if (rw == S_WRITE) {
9491 hat_setrefmod(*pplist);
9492 } else {
9493 hat_setref(*pplist);
9494 }
9495 page_unlock(*pplist);
9496 np--;
9497 pplist++;
9498 }
9499
9500 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9501
9502 /*
9503 * If we are pcache async thread we don't hold AS lock. This means if
9504 * softlockcnt drops to 0 after the decrement below address space may
9505 * get freed. We can't allow it since after softlock derement to 0 we
9506 * still need to access as structure for possible wakeup of unmap
9507 * waiters. To prevent the disappearance of as we take this segment
9508 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to
9509 * make sure this routine completes before segment is freed.
9510 *
9511 * The second complication we have to deal with in async case is a
9512 * possibility of missed wake up of unmap wait thread. When we don't
9513 * hold as lock here we may take a_contents lock before unmap wait
9514 * thread that was first to see softlockcnt was still not 0. As a
9515 * result we'll fail to wake up an unmap wait thread. To avoid this
9516 * race we set nounmapwait flag in as structure if we drop softlockcnt
9517 * to 0 when we were called by pcache async thread. unmapwait thread
9518 * will not block if this flag is set.
9519 */
9520 if (async) {
9521 mutex_enter(&svd->segfree_syncmtx);
9522 }
9523
9524 if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) {
9525 if (async || AS_ISUNMAPWAIT(seg->s_as)) {
9526 mutex_enter(&seg->s_as->a_contents);
9527 if (async) {
9528 AS_SETNOUNMAPWAIT(seg->s_as);
9529 }
9530 if (AS_ISUNMAPWAIT(seg->s_as)) {
9531 AS_CLRUNMAPWAIT(seg->s_as);
9532 cv_broadcast(&seg->s_as->a_cv);
9533 }
9534 mutex_exit(&seg->s_as->a_contents);
9535 }
9536 }
9537
9538 if (async) {
9539 mutex_exit(&svd->segfree_syncmtx);
9540 }
9541 return (0);
9542 }
9543
9544 /*ARGSUSED*/
9545 static int
shamp_reclaim(void * ptag,caddr_t addr,size_t len,struct page ** pplist,enum seg_rw rw,int async)9546 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9547 enum seg_rw rw, int async)
9548 {
9549 amp_t *amp = (amp_t *)ptag;
9550 pgcnt_t np, npages;
9551 struct page **pl;
9552
9553 npages = np = btop(len);
9554 ASSERT(npages);
9555 ASSERT(amp->a_softlockcnt >= npages);
9556
9557 pl = pplist;
9558
9559 ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9560 ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9561
9562 while (np > (uint_t)0) {
9563 if (rw == S_WRITE) {
9564 hat_setrefmod(*pplist);
9565 } else {
9566 hat_setref(*pplist);
9567 }
9568 page_unlock(*pplist);
9569 np--;
9570 pplist++;
9571 }
9572
9573 kmem_free(pl, sizeof (page_t *) * (npages + 1));
9574
9575 /*
9576 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt
9577 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0
9578 * and anonmap_purge() acquires a_purgemtx.
9579 */
9580 mutex_enter(&->a_purgemtx);
9581 if (!atomic_add_long_nv((ulong_t *)&->a_softlockcnt, -npages) &&
9582 amp->a_purgewait) {
9583 amp->a_purgewait = 0;
9584 cv_broadcast(&->a_purgecv);
9585 }
9586 mutex_exit(&->a_purgemtx);
9587 return (0);
9588 }
9589
9590 /*
9591 * get a memory ID for an addr in a given segment
9592 *
9593 * XXX only creates PAGESIZE pages if anon slots are not initialized.
9594 * At fault time they will be relocated into larger pages.
9595 */
9596 static int
segvn_getmemid(struct seg * seg,caddr_t addr,memid_t * memidp)9597 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9598 {
9599 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9600 struct anon *ap = NULL;
9601 ulong_t anon_index = 0;
9602 struct anon_map *amp;
9603 anon_sync_obj_t cookie;
9604
9605 if (svd->type == MAP_PRIVATE) {
9606 memidp->val[0] = (uintptr_t)seg->s_as;
9607 memidp->val[1] = (uintptr_t)addr;
9608 return (0);
9609 }
9610
9611 if (svd->type == MAP_SHARED) {
9612 if (svd->vp) {
9613 memidp->val[0] = (uintptr_t)svd->vp;
9614 memidp->val[1] = (u_longlong_t)svd->offset +
9615 (uintptr_t)(addr - seg->s_base);
9616 return (0);
9617 } else {
9618
9619 SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9620 if ((amp = svd->amp) != NULL) {
9621 anon_index = svd->anon_index +
9622 seg_page(seg, addr);
9623 }
9624 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9625
9626 ASSERT(amp != NULL);
9627
9628 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
9629 anon_array_enter(amp, anon_index, &cookie);
9630 ap = anon_get_ptr(amp->ahp, anon_index);
9631 if (ap == NULL) {
9632 page_t *pp;
9633
9634 pp = anon_zero(seg, addr, &ap, svd->cred);
9635 if (pp == NULL) {
9636 anon_array_exit(&cookie);
9637 ANON_LOCK_EXIT(&->a_rwlock);
9638 return (ENOMEM);
9639 }
9640 ASSERT(anon_get_ptr(amp->ahp, anon_index)
9641 == NULL);
9642 (void) anon_set_ptr(amp->ahp, anon_index,
9643 ap, ANON_SLEEP);
9644 page_unlock(pp);
9645 }
9646
9647 anon_array_exit(&cookie);
9648 ANON_LOCK_EXIT(&->a_rwlock);
9649
9650 memidp->val[0] = (uintptr_t)ap;
9651 memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9652 return (0);
9653 }
9654 }
9655 return (EINVAL);
9656 }
9657
9658 static int
sameprot(struct seg * seg,caddr_t a,size_t len)9659 sameprot(struct seg *seg, caddr_t a, size_t len)
9660 {
9661 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9662 struct vpage *vpage;
9663 spgcnt_t pages = btop(len);
9664 uint_t prot;
9665
9666 if (svd->pageprot == 0)
9667 return (1);
9668
9669 ASSERT(svd->vpage != NULL);
9670
9671 vpage = &svd->vpage[seg_page(seg, a)];
9672 prot = VPP_PROT(vpage);
9673 vpage++;
9674 pages--;
9675 while (pages-- > 0) {
9676 if (prot != VPP_PROT(vpage))
9677 return (0);
9678 vpage++;
9679 }
9680 return (1);
9681 }
9682
9683 /*
9684 * Get memory allocation policy info for specified address in given segment
9685 */
9686 static lgrp_mem_policy_info_t *
segvn_getpolicy(struct seg * seg,caddr_t addr)9687 segvn_getpolicy(struct seg *seg, caddr_t addr)
9688 {
9689 struct anon_map *amp;
9690 ulong_t anon_index;
9691 lgrp_mem_policy_info_t *policy_info;
9692 struct segvn_data *svn_data;
9693 u_offset_t vn_off;
9694 vnode_t *vp;
9695
9696 ASSERT(seg != NULL);
9697
9698 svn_data = (struct segvn_data *)seg->s_data;
9699 if (svn_data == NULL)
9700 return (NULL);
9701
9702 /*
9703 * Get policy info for private or shared memory
9704 */
9705 if (svn_data->type != MAP_SHARED) {
9706 if (svn_data->tr_state != SEGVN_TR_ON) {
9707 policy_info = &svn_data->policy_info;
9708 } else {
9709 policy_info = &svn_data->tr_policy_info;
9710 ASSERT(policy_info->mem_policy ==
9711 LGRP_MEM_POLICY_NEXT_SEG);
9712 }
9713 } else {
9714 amp = svn_data->amp;
9715 anon_index = svn_data->anon_index + seg_page(seg, addr);
9716 vp = svn_data->vp;
9717 vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9718 policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9719 }
9720
9721 return (policy_info);
9722 }
9723
9724 /*ARGSUSED*/
9725 static int
segvn_capable(struct seg * seg,segcapability_t capability)9726 segvn_capable(struct seg *seg, segcapability_t capability)
9727 {
9728 return (0);
9729 }
9730
9731 /*
9732 * Bind text vnode segment to an amp. If we bind successfully mappings will be
9733 * established to per vnode mapping per lgroup amp pages instead of to vnode
9734 * pages. There's one amp per vnode text mapping per lgroup. Many processes
9735 * may share the same text replication amp. If a suitable amp doesn't already
9736 * exist in svntr hash table create a new one. We may fail to bind to amp if
9737 * segment is not eligible for text replication. Code below first checks for
9738 * these conditions. If binding is successful segment tr_state is set to on
9739 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9740 * svd->amp remains as NULL.
9741 */
9742 static void
segvn_textrepl(struct seg * seg)9743 segvn_textrepl(struct seg *seg)
9744 {
9745 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9746 vnode_t *vp = svd->vp;
9747 u_offset_t off = svd->offset;
9748 size_t size = seg->s_size;
9749 u_offset_t eoff = off + size;
9750 uint_t szc = seg->s_szc;
9751 ulong_t hash = SVNTR_HASH_FUNC(vp);
9752 svntr_t *svntrp;
9753 struct vattr va;
9754 proc_t *p = seg->s_as->a_proc;
9755 lgrp_id_t lgrp_id;
9756 lgrp_id_t olid;
9757 int first;
9758 struct anon_map *amp;
9759
9760 ASSERT(AS_LOCK_HELD(seg->s_as));
9761 ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9762 ASSERT(p != NULL);
9763 ASSERT(svd->tr_state == SEGVN_TR_INIT);
9764 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9765 ASSERT(svd->flags & MAP_TEXT);
9766 ASSERT(svd->type == MAP_PRIVATE);
9767 ASSERT(vp != NULL && svd->amp == NULL);
9768 ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9769 ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9770 ASSERT(seg->s_as != &kas);
9771 ASSERT(off < eoff);
9772 ASSERT(svntr_hashtab != NULL);
9773
9774 /*
9775 * If numa optimizations are no longer desired bail out.
9776 */
9777 if (!lgrp_optimizations()) {
9778 svd->tr_state = SEGVN_TR_OFF;
9779 return;
9780 }
9781
9782 /*
9783 * Avoid creating anon maps with size bigger than the file size.
9784 * If VOP_GETATTR() call fails bail out.
9785 */
9786 va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9787 if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) {
9788 svd->tr_state = SEGVN_TR_OFF;
9789 SEGVN_TR_ADDSTAT(gaerr);
9790 return;
9791 }
9792 if (btopr(va.va_size) < btopr(eoff)) {
9793 svd->tr_state = SEGVN_TR_OFF;
9794 SEGVN_TR_ADDSTAT(overmap);
9795 return;
9796 }
9797
9798 /*
9799 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9800 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9801 * mapping that checks if trcache for this vnode needs to be
9802 * invalidated can't miss us.
9803 */
9804 if (!(vp->v_flag & VVMEXEC)) {
9805 mutex_enter(&vp->v_lock);
9806 vp->v_flag |= VVMEXEC;
9807 mutex_exit(&vp->v_lock);
9808 }
9809 mutex_enter(&svntr_hashtab[hash].tr_lock);
9810 /*
9811 * Bail out if potentially MAP_SHARED writable mappings exist to this
9812 * vnode. We don't want to use old file contents from existing
9813 * replicas if this mapping was established after the original file
9814 * was changed.
9815 */
9816 if (vn_is_mapped(vp, V_WRITE)) {
9817 mutex_exit(&svntr_hashtab[hash].tr_lock);
9818 svd->tr_state = SEGVN_TR_OFF;
9819 SEGVN_TR_ADDSTAT(wrcnt);
9820 return;
9821 }
9822 svntrp = svntr_hashtab[hash].tr_head;
9823 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9824 ASSERT(svntrp->tr_refcnt != 0);
9825 if (svntrp->tr_vp != vp) {
9826 continue;
9827 }
9828
9829 /*
9830 * Bail out if the file or its attributes were changed after
9831 * this replication entry was created since we need to use the
9832 * latest file contents. Note that mtime test alone is not
9833 * sufficient because a user can explicitly change mtime via
9834 * utimes(2) interfaces back to the old value after modifiying
9835 * the file contents. To detect this case we also have to test
9836 * ctime which among other things records the time of the last
9837 * mtime change by utimes(2). ctime is not changed when the file
9838 * is only read or executed so we expect that typically existing
9839 * replication amp's can be used most of the time.
9840 */
9841 if (!svntrp->tr_valid ||
9842 svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9843 svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9844 svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9845 svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9846 mutex_exit(&svntr_hashtab[hash].tr_lock);
9847 svd->tr_state = SEGVN_TR_OFF;
9848 SEGVN_TR_ADDSTAT(stale);
9849 return;
9850 }
9851 /*
9852 * if off, eoff and szc match current segment we found the
9853 * existing entry we can use.
9854 */
9855 if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9856 svntrp->tr_szc == szc) {
9857 break;
9858 }
9859 /*
9860 * Don't create different but overlapping in file offsets
9861 * entries to avoid replication of the same file pages more
9862 * than once per lgroup.
9863 */
9864 if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9865 (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9866 mutex_exit(&svntr_hashtab[hash].tr_lock);
9867 svd->tr_state = SEGVN_TR_OFF;
9868 SEGVN_TR_ADDSTAT(overlap);
9869 return;
9870 }
9871 }
9872 /*
9873 * If we didn't find existing entry create a new one.
9874 */
9875 if (svntrp == NULL) {
9876 svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9877 if (svntrp == NULL) {
9878 mutex_exit(&svntr_hashtab[hash].tr_lock);
9879 svd->tr_state = SEGVN_TR_OFF;
9880 SEGVN_TR_ADDSTAT(nokmem);
9881 return;
9882 }
9883 #ifdef DEBUG
9884 {
9885 lgrp_id_t i;
9886 for (i = 0; i < NLGRPS_MAX; i++) {
9887 ASSERT(svntrp->tr_amp[i] == NULL);
9888 }
9889 }
9890 #endif /* DEBUG */
9891 svntrp->tr_vp = vp;
9892 svntrp->tr_off = off;
9893 svntrp->tr_eoff = eoff;
9894 svntrp->tr_szc = szc;
9895 svntrp->tr_valid = 1;
9896 svntrp->tr_mtime = va.va_mtime;
9897 svntrp->tr_ctime = va.va_ctime;
9898 svntrp->tr_refcnt = 0;
9899 svntrp->tr_next = svntr_hashtab[hash].tr_head;
9900 svntr_hashtab[hash].tr_head = svntrp;
9901 }
9902 first = 1;
9903 again:
9904 /*
9905 * We want to pick a replica with pages on main thread's (t_tid = 1,
9906 * aka T1) lgrp. Currently text replication is only optimized for
9907 * workloads that either have all threads of a process on the same
9908 * lgrp or execute their large text primarily on main thread.
9909 */
9910 lgrp_id = p->p_t1_lgrpid;
9911 if (lgrp_id == LGRP_NONE) {
9912 /*
9913 * In case exec() prefaults text on non main thread use
9914 * current thread lgrpid. It will become main thread anyway
9915 * soon.
9916 */
9917 lgrp_id = lgrp_home_id(curthread);
9918 }
9919 /*
9920 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet. Otherwise
9921 * just set it to NLGRPS_MAX if it's different from current process T1
9922 * home lgrp. p_tr_lgrpid is used to detect if process uses text
9923 * replication and T1 new home is different from lgrp used for text
9924 * replication. When this happens asyncronous segvn thread rechecks if
9925 * segments should change lgrps used for text replication. If we fail
9926 * to set p_tr_lgrpid with atomic_cas_32 then set it to NLGRPS_MAX
9927 * without cas if it's not already NLGRPS_MAX and not equal lgrp_id
9928 * we want to use. We don't need to use cas in this case because
9929 * another thread that races in between our non atomic check and set
9930 * may only change p_tr_lgrpid to NLGRPS_MAX at this point.
9931 */
9932 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9933 olid = p->p_tr_lgrpid;
9934 if (lgrp_id != olid && olid != NLGRPS_MAX) {
9935 lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9936 if (atomic_cas_32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) !=
9937 olid) {
9938 olid = p->p_tr_lgrpid;
9939 ASSERT(olid != LGRP_NONE);
9940 if (olid != lgrp_id && olid != NLGRPS_MAX) {
9941 p->p_tr_lgrpid = NLGRPS_MAX;
9942 }
9943 }
9944 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9945 membar_producer();
9946 /*
9947 * lgrp_move_thread() won't schedule async recheck after
9948 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9949 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9950 * is not LGRP_NONE.
9951 */
9952 if (first && p->p_t1_lgrpid != LGRP_NONE &&
9953 p->p_t1_lgrpid != lgrp_id) {
9954 first = 0;
9955 goto again;
9956 }
9957 }
9958 /*
9959 * If no amp was created yet for lgrp_id create a new one as long as
9960 * we have enough memory to afford it.
9961 */
9962 if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9963 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9964 if (trmem > segvn_textrepl_max_bytes) {
9965 SEGVN_TR_ADDSTAT(normem);
9966 goto fail;
9967 }
9968 if (anon_try_resv_zone(size, NULL) == 0) {
9969 SEGVN_TR_ADDSTAT(noanon);
9970 goto fail;
9971 }
9972 amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9973 if (amp == NULL) {
9974 anon_unresv_zone(size, NULL);
9975 SEGVN_TR_ADDSTAT(nokmem);
9976 goto fail;
9977 }
9978 ASSERT(amp->refcnt == 1);
9979 amp->a_szc = szc;
9980 svntrp->tr_amp[lgrp_id] = amp;
9981 SEGVN_TR_ADDSTAT(newamp);
9982 }
9983 svntrp->tr_refcnt++;
9984 ASSERT(svd->svn_trnext == NULL);
9985 ASSERT(svd->svn_trprev == NULL);
9986 svd->svn_trnext = svntrp->tr_svnhead;
9987 svd->svn_trprev = NULL;
9988 if (svntrp->tr_svnhead != NULL) {
9989 svntrp->tr_svnhead->svn_trprev = svd;
9990 }
9991 svntrp->tr_svnhead = svd;
9992 ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9993 ASSERT(amp->refcnt >= 1);
9994 svd->amp = amp;
9995 svd->anon_index = 0;
9996 svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9997 svd->tr_policy_info.mem_lgrpid = lgrp_id;
9998 svd->tr_state = SEGVN_TR_ON;
9999 mutex_exit(&svntr_hashtab[hash].tr_lock);
10000 SEGVN_TR_ADDSTAT(repl);
10001 return;
10002 fail:
10003 ASSERT(segvn_textrepl_bytes >= size);
10004 atomic_add_long(&segvn_textrepl_bytes, -size);
10005 ASSERT(svntrp != NULL);
10006 ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
10007 if (svntrp->tr_refcnt == 0) {
10008 ASSERT(svntrp == svntr_hashtab[hash].tr_head);
10009 svntr_hashtab[hash].tr_head = svntrp->tr_next;
10010 mutex_exit(&svntr_hashtab[hash].tr_lock);
10011 kmem_cache_free(svntr_cache, svntrp);
10012 } else {
10013 mutex_exit(&svntr_hashtab[hash].tr_lock);
10014 }
10015 svd->tr_state = SEGVN_TR_OFF;
10016 }
10017
10018 /*
10019 * Convert seg back to regular vnode mapping seg by unbinding it from its text
10020 * replication amp. This routine is most typically called when segment is
10021 * unmapped but can also be called when segment no longer qualifies for text
10022 * replication (e.g. due to protection changes). If unload_unmap is set use
10023 * HAT_UNLOAD_UNMAP flag in hat_unload_callback(). If we are the last user of
10024 * svntr free all its anon maps and remove it from the hash table.
10025 */
10026 static void
segvn_textunrepl(struct seg * seg,int unload_unmap)10027 segvn_textunrepl(struct seg *seg, int unload_unmap)
10028 {
10029 struct segvn_data *svd = (struct segvn_data *)seg->s_data;
10030 vnode_t *vp = svd->vp;
10031 u_offset_t off = svd->offset;
10032 size_t size = seg->s_size;
10033 u_offset_t eoff = off + size;
10034 uint_t szc = seg->s_szc;
10035 ulong_t hash = SVNTR_HASH_FUNC(vp);
10036 svntr_t *svntrp;
10037 svntr_t **prv_svntrp;
10038 lgrp_id_t lgrp_id = svd->tr_policy_info.mem_lgrpid;
10039 lgrp_id_t i;
10040
10041 ASSERT(AS_LOCK_HELD(seg->s_as));
10042 ASSERT(AS_WRITE_HELD(seg->s_as) ||
10043 SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
10044 ASSERT(svd->tr_state == SEGVN_TR_ON);
10045 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10046 ASSERT(svd->amp != NULL);
10047 ASSERT(svd->amp->refcnt >= 1);
10048 ASSERT(svd->anon_index == 0);
10049 ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
10050 ASSERT(svntr_hashtab != NULL);
10051
10052 mutex_enter(&svntr_hashtab[hash].tr_lock);
10053 prv_svntrp = &svntr_hashtab[hash].tr_head;
10054 for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
10055 ASSERT(svntrp->tr_refcnt != 0);
10056 if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
10057 svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
10058 break;
10059 }
10060 }
10061 if (svntrp == NULL) {
10062 panic("segvn_textunrepl: svntr record not found");
10063 }
10064 if (svntrp->tr_amp[lgrp_id] != svd->amp) {
10065 panic("segvn_textunrepl: amp mismatch");
10066 }
10067 svd->tr_state = SEGVN_TR_OFF;
10068 svd->amp = NULL;
10069 if (svd->svn_trprev == NULL) {
10070 ASSERT(svntrp->tr_svnhead == svd);
10071 svntrp->tr_svnhead = svd->svn_trnext;
10072 if (svntrp->tr_svnhead != NULL) {
10073 svntrp->tr_svnhead->svn_trprev = NULL;
10074 }
10075 svd->svn_trnext = NULL;
10076 } else {
10077 svd->svn_trprev->svn_trnext = svd->svn_trnext;
10078 if (svd->svn_trnext != NULL) {
10079 svd->svn_trnext->svn_trprev = svd->svn_trprev;
10080 svd->svn_trnext = NULL;
10081 }
10082 svd->svn_trprev = NULL;
10083 }
10084 if (--svntrp->tr_refcnt) {
10085 mutex_exit(&svntr_hashtab[hash].tr_lock);
10086 goto done;
10087 }
10088 *prv_svntrp = svntrp->tr_next;
10089 mutex_exit(&svntr_hashtab[hash].tr_lock);
10090 for (i = 0; i < NLGRPS_MAX; i++) {
10091 struct anon_map *amp = svntrp->tr_amp[i];
10092 if (amp == NULL) {
10093 continue;
10094 }
10095 ASSERT(amp->refcnt == 1);
10096 ASSERT(amp->swresv == size);
10097 ASSERT(amp->size == size);
10098 ASSERT(amp->a_szc == szc);
10099 if (amp->a_szc != 0) {
10100 anon_free_pages(amp->ahp, 0, size, szc);
10101 } else {
10102 anon_free(amp->ahp, 0, size);
10103 }
10104 svntrp->tr_amp[i] = NULL;
10105 ASSERT(segvn_textrepl_bytes >= size);
10106 atomic_add_long(&segvn_textrepl_bytes, -size);
10107 anon_unresv_zone(amp->swresv, NULL);
10108 amp->refcnt = 0;
10109 anonmap_free(amp);
10110 }
10111 kmem_cache_free(svntr_cache, svntrp);
10112 done:
10113 hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
10114 unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
10115 }
10116
10117 /*
10118 * This is called when a MAP_SHARED writable mapping is created to a vnode
10119 * that is currently used for execution (VVMEXEC flag is set). In this case we
10120 * need to prevent further use of existing replicas.
10121 */
10122 static void
segvn_inval_trcache(vnode_t * vp)10123 segvn_inval_trcache(vnode_t *vp)
10124 {
10125 ulong_t hash = SVNTR_HASH_FUNC(vp);
10126 svntr_t *svntrp;
10127
10128 ASSERT(vp->v_flag & VVMEXEC);
10129
10130 if (svntr_hashtab == NULL) {
10131 return;
10132 }
10133
10134 mutex_enter(&svntr_hashtab[hash].tr_lock);
10135 svntrp = svntr_hashtab[hash].tr_head;
10136 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
10137 ASSERT(svntrp->tr_refcnt != 0);
10138 if (svntrp->tr_vp == vp && svntrp->tr_valid) {
10139 svntrp->tr_valid = 0;
10140 }
10141 }
10142 mutex_exit(&svntr_hashtab[hash].tr_lock);
10143 }
10144
10145 static void
segvn_trasync_thread(void)10146 segvn_trasync_thread(void)
10147 {
10148 callb_cpr_t cpr_info;
10149 kmutex_t cpr_lock; /* just for CPR stuff */
10150
10151 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
10152
10153 CALLB_CPR_INIT(&cpr_info, &cpr_lock,
10154 callb_generic_cpr, "segvn_async");
10155
10156 if (segvn_update_textrepl_interval == 0) {
10157 segvn_update_textrepl_interval = segvn_update_tr_time * hz;
10158 } else {
10159 segvn_update_textrepl_interval *= hz;
10160 }
10161 (void) timeout(segvn_trupdate_wakeup, NULL,
10162 segvn_update_textrepl_interval);
10163
10164 for (;;) {
10165 mutex_enter(&cpr_lock);
10166 CALLB_CPR_SAFE_BEGIN(&cpr_info);
10167 mutex_exit(&cpr_lock);
10168 sema_p(&segvn_trasync_sem);
10169 mutex_enter(&cpr_lock);
10170 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
10171 mutex_exit(&cpr_lock);
10172 segvn_trupdate();
10173 }
10174 }
10175
10176 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
10177
10178 static void
segvn_trupdate_wakeup(void * dummy)10179 segvn_trupdate_wakeup(void *dummy)
10180 {
10181 uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
10182
10183 if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
10184 segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
10185 sema_v(&segvn_trasync_sem);
10186 }
10187
10188 if (!segvn_disable_textrepl_update &&
10189 segvn_update_textrepl_interval != 0) {
10190 (void) timeout(segvn_trupdate_wakeup, dummy,
10191 segvn_update_textrepl_interval);
10192 }
10193 }
10194
10195 static void
segvn_trupdate(void)10196 segvn_trupdate(void)
10197 {
10198 ulong_t hash;
10199 svntr_t *svntrp;
10200 segvn_data_t *svd;
10201
10202 ASSERT(svntr_hashtab != NULL);
10203
10204 for (hash = 0; hash < svntr_hashtab_sz; hash++) {
10205 mutex_enter(&svntr_hashtab[hash].tr_lock);
10206 svntrp = svntr_hashtab[hash].tr_head;
10207 for (; svntrp != NULL; svntrp = svntrp->tr_next) {
10208 ASSERT(svntrp->tr_refcnt != 0);
10209 svd = svntrp->tr_svnhead;
10210 for (; svd != NULL; svd = svd->svn_trnext) {
10211 segvn_trupdate_seg(svd->seg, svd, svntrp,
10212 hash);
10213 }
10214 }
10215 mutex_exit(&svntr_hashtab[hash].tr_lock);
10216 }
10217 }
10218
10219 static void
segvn_trupdate_seg(struct seg * seg,segvn_data_t * svd,svntr_t * svntrp,ulong_t hash)10220 segvn_trupdate_seg(struct seg *seg, segvn_data_t *svd, svntr_t *svntrp,
10221 ulong_t hash)
10222 {
10223 proc_t *p;
10224 lgrp_id_t lgrp_id;
10225 struct as *as;
10226 size_t size;
10227 struct anon_map *amp;
10228
10229 ASSERT(svd->vp != NULL);
10230 ASSERT(svd->vp == svntrp->tr_vp);
10231 ASSERT(svd->offset == svntrp->tr_off);
10232 ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
10233 ASSERT(seg != NULL);
10234 ASSERT(svd->seg == seg);
10235 ASSERT(seg->s_data == (void *)svd);
10236 ASSERT(seg->s_szc == svntrp->tr_szc);
10237 ASSERT(svd->tr_state == SEGVN_TR_ON);
10238 ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10239 ASSERT(svd->amp != NULL);
10240 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10241 ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
10242 ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
10243 ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
10244 ASSERT(svntrp->tr_refcnt != 0);
10245 ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
10246
10247 as = seg->s_as;
10248 ASSERT(as != NULL && as != &kas);
10249 p = as->a_proc;
10250 ASSERT(p != NULL);
10251 ASSERT(p->p_tr_lgrpid != LGRP_NONE);
10252 lgrp_id = p->p_t1_lgrpid;
10253 if (lgrp_id == LGRP_NONE) {
10254 return;
10255 }
10256 ASSERT(lgrp_id < NLGRPS_MAX);
10257 if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
10258 return;
10259 }
10260
10261 /*
10262 * Use tryenter locking since we are locking as/seg and svntr hash
10263 * lock in reverse from syncrounous thread order.
10264 */
10265 if (!AS_LOCK_TRYENTER(as, RW_READER)) {
10266 SEGVN_TR_ADDSTAT(nolock);
10267 if (segvn_lgrp_trthr_migrs_snpsht) {
10268 segvn_lgrp_trthr_migrs_snpsht = 0;
10269 }
10270 return;
10271 }
10272 if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
10273 AS_LOCK_EXIT(as);
10274 SEGVN_TR_ADDSTAT(nolock);
10275 if (segvn_lgrp_trthr_migrs_snpsht) {
10276 segvn_lgrp_trthr_migrs_snpsht = 0;
10277 }
10278 return;
10279 }
10280 size = seg->s_size;
10281 if (svntrp->tr_amp[lgrp_id] == NULL) {
10282 size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
10283 if (trmem > segvn_textrepl_max_bytes) {
10284 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10285 AS_LOCK_EXIT(as);
10286 atomic_add_long(&segvn_textrepl_bytes, -size);
10287 SEGVN_TR_ADDSTAT(normem);
10288 return;
10289 }
10290 if (anon_try_resv_zone(size, NULL) == 0) {
10291 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10292 AS_LOCK_EXIT(as);
10293 atomic_add_long(&segvn_textrepl_bytes, -size);
10294 SEGVN_TR_ADDSTAT(noanon);
10295 return;
10296 }
10297 amp = anonmap_alloc(size, size, KM_NOSLEEP);
10298 if (amp == NULL) {
10299 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10300 AS_LOCK_EXIT(as);
10301 atomic_add_long(&segvn_textrepl_bytes, -size);
10302 anon_unresv_zone(size, NULL);
10303 SEGVN_TR_ADDSTAT(nokmem);
10304 return;
10305 }
10306 ASSERT(amp->refcnt == 1);
10307 amp->a_szc = seg->s_szc;
10308 svntrp->tr_amp[lgrp_id] = amp;
10309 }
10310 /*
10311 * We don't need to drop the bucket lock but here we give other
10312 * threads a chance. svntr and svd can't be unlinked as long as
10313 * segment lock is held as a writer and AS held as well. After we
10314 * retake bucket lock we'll continue from where we left. We'll be able
10315 * to reach the end of either list since new entries are always added
10316 * to the beginning of the lists.
10317 */
10318 mutex_exit(&svntr_hashtab[hash].tr_lock);
10319 hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
10320 mutex_enter(&svntr_hashtab[hash].tr_lock);
10321
10322 ASSERT(svd->tr_state == SEGVN_TR_ON);
10323 ASSERT(svd->amp != NULL);
10324 ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10325 ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
10326 ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
10327
10328 svd->tr_policy_info.mem_lgrpid = lgrp_id;
10329 svd->amp = svntrp->tr_amp[lgrp_id];
10330 p->p_tr_lgrpid = NLGRPS_MAX;
10331 SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10332 AS_LOCK_EXIT(as);
10333
10334 ASSERT(svntrp->tr_refcnt != 0);
10335 ASSERT(svd->vp == svntrp->tr_vp);
10336 ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
10337 ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
10338 ASSERT(svd->seg == seg);
10339 ASSERT(svd->tr_state == SEGVN_TR_ON);
10340
10341 SEGVN_TR_ADDSTAT(asyncrepl);
10342 }
10343