xref: /illumos-gate/usr/src/uts/common/vm/seg_vn.c (revision 1b500975aaacf8b5d0e18c9a117bf5560069ffc3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2018 Joyent, Inc.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 /*
41  * VM - shared or copy-on-write from a vnode/anonymous memory.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/t_lock.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/debug.h>
51 #include <sys/cred.h>
52 #include <sys/vmsystm.h>
53 #include <sys/tuneable.h>
54 #include <sys/bitmap.h>
55 #include <sys/swap.h>
56 #include <sys/kmem.h>
57 #include <sys/sysmacros.h>
58 #include <sys/vtrace.h>
59 #include <sys/cmn_err.h>
60 #include <sys/callb.h>
61 #include <sys/vm.h>
62 #include <sys/dumphdr.h>
63 #include <sys/lgrp.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_vn.h>
69 #include <vm/pvn.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/vpage.h>
73 #include <sys/proc.h>
74 #include <sys/task.h>
75 #include <sys/project.h>
76 #include <sys/zone.h>
77 #include <sys/shm_impl.h>
78 
79 /*
80  * segvn_fault needs a temporary page list array.  To avoid calling kmem all
81  * the time, it creates a small (PVN_GETPAGE_NUM entry) array and uses it if
82  * it can.  In the rare case when this page list is not large enough, it
83  * goes and gets a large enough array from kmem.
84  *
85  * This small page list array covers either 8 pages or 64kB worth of pages -
86  * whichever is smaller.
87  */
88 #define	PVN_MAX_GETPAGE_SZ	0x10000
89 #define	PVN_MAX_GETPAGE_NUM	0x8
90 
91 #if PVN_MAX_GETPAGE_SZ > PVN_MAX_GETPAGE_NUM * PAGESIZE
92 #define	PVN_GETPAGE_SZ	ptob(PVN_MAX_GETPAGE_NUM)
93 #define	PVN_GETPAGE_NUM	PVN_MAX_GETPAGE_NUM
94 #else
95 #define	PVN_GETPAGE_SZ	PVN_MAX_GETPAGE_SZ
96 #define	PVN_GETPAGE_NUM	btop(PVN_MAX_GETPAGE_SZ)
97 #endif
98 
99 /*
100  * Private seg op routines.
101  */
102 static int	segvn_dup(struct seg *seg, struct seg *newseg);
103 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
104 static void	segvn_free(struct seg *seg);
105 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
106 		    caddr_t addr, size_t len, enum fault_type type,
107 		    enum seg_rw rw);
108 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
109 static int	segvn_setprot(struct seg *seg, caddr_t addr,
110 		    size_t len, uint_t prot);
111 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
112 		    size_t len, uint_t prot);
113 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
114 static size_t	segvn_swapout(struct seg *seg);
115 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
116 		    int attr, uint_t flags);
117 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
118 		    char *vec);
119 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
120 		    int attr, int op, ulong_t *lockmap, size_t pos);
121 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
122 		    uint_t *protv);
123 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
124 static int	segvn_gettype(struct seg *seg, caddr_t addr);
125 static int	segvn_getvp(struct seg *seg, caddr_t addr,
126 		    struct vnode **vpp);
127 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
128 		    uint_t behav);
129 static void	segvn_dump(struct seg *seg);
130 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
131 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
132 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
133 		    uint_t szc);
134 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
135 		    memid_t *memidp);
136 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
137 static int	segvn_capable(struct seg *seg, segcapability_t capable);
138 static int	segvn_inherit(struct seg *, caddr_t, size_t, uint_t);
139 
140 struct	seg_ops segvn_ops = {
141 	segvn_dup,
142 	segvn_unmap,
143 	segvn_free,
144 	segvn_fault,
145 	segvn_faulta,
146 	segvn_setprot,
147 	segvn_checkprot,
148 	segvn_kluster,
149 	segvn_swapout,
150 	segvn_sync,
151 	segvn_incore,
152 	segvn_lockop,
153 	segvn_getprot,
154 	segvn_getoffset,
155 	segvn_gettype,
156 	segvn_getvp,
157 	segvn_advise,
158 	segvn_dump,
159 	segvn_pagelock,
160 	segvn_setpagesize,
161 	segvn_getmemid,
162 	segvn_getpolicy,
163 	segvn_capable,
164 	segvn_inherit
165 };
166 
167 /*
168  * Common zfod structures, provided as a shorthand for others to use.
169  */
170 static segvn_crargs_t zfod_segvn_crargs =
171 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
172 static segvn_crargs_t kzfod_segvn_crargs =
173 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
174 	PROT_ALL & ~PROT_USER);
175 static segvn_crargs_t stack_noexec_crargs =
176 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
177 
178 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
179 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
180 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
181 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
182 
183 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
184 
185 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
186 
187 size_t	segvn_pglock_comb_thrshld = (1UL << 16);	/* 64K */
188 size_t	segvn_pglock_comb_balign = (1UL << 16);		/* 64K */
189 uint_t	segvn_pglock_comb_bshift;
190 size_t	segvn_pglock_comb_palign;
191 
192 static int	segvn_concat(struct seg *, struct seg *, int);
193 static int	segvn_extend_prev(struct seg *, struct seg *,
194 		    struct segvn_crargs *, size_t);
195 static int	segvn_extend_next(struct seg *, struct seg *,
196 		    struct segvn_crargs *, size_t);
197 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
198 static void	segvn_pagelist_rele(page_t **);
199 static void	segvn_setvnode_mpss(vnode_t *);
200 static void	segvn_relocate_pages(page_t **, page_t *);
201 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
202 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
203     uint_t, page_t **, page_t **, uint_t *, int *);
204 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
205     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
206 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
207     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
208 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
209     u_offset_t, struct vpage *, page_t **, uint_t,
210     enum fault_type, enum seg_rw, int);
211 static void	segvn_vpage(struct seg *);
212 static size_t	segvn_count_swap_by_vpages(struct seg *);
213 
214 static void segvn_purge(struct seg *seg);
215 static int segvn_reclaim(void *, caddr_t, size_t, struct page **,
216     enum seg_rw, int);
217 static int shamp_reclaim(void *, caddr_t, size_t, struct page **,
218     enum seg_rw, int);
219 
220 static int sameprot(struct seg *, caddr_t, size_t);
221 
222 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
223 static int segvn_clrszc(struct seg *);
224 static struct seg *segvn_split_seg(struct seg *, caddr_t);
225 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
226     ulong_t, uint_t);
227 
228 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
229     size_t, void *, u_offset_t);
230 
231 static struct kmem_cache *segvn_cache;
232 static struct kmem_cache **segvn_szc_cache;
233 
234 #ifdef VM_STATS
235 static struct segvnvmstats_str {
236 	ulong_t	fill_vp_pages[31];
237 	ulong_t fltvnpages[49];
238 	ulong_t	fullszcpages[10];
239 	ulong_t	relocatepages[3];
240 	ulong_t	fltanpages[17];
241 	ulong_t pagelock[2];
242 	ulong_t	demoterange[3];
243 } segvnvmstats;
244 #endif /* VM_STATS */
245 
246 #define	SDR_RANGE	1		/* demote entire range */
247 #define	SDR_END		2		/* demote non aligned ends only */
248 
249 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
250 		if ((len) != 0) { 		      	      		      \
251 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
252 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
253 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
254 			    (len)), pgsz);				      \
255 			ASSERT(lpgeaddr > lpgaddr);		      	      \
256 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
257 		} else {					      	      \
258 			lpgeaddr = lpgaddr = (addr);	      		      \
259 		}							      \
260 	}
261 
262 /*ARGSUSED*/
263 static int
264 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
265 {
266 	struct segvn_data *svd = buf;
267 
268 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
269 	mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
270 	svd->svn_trnext = svd->svn_trprev = NULL;
271 	return (0);
272 }
273 
274 /*ARGSUSED1*/
275 static void
276 segvn_cache_destructor(void *buf, void *cdrarg)
277 {
278 	struct segvn_data *svd = buf;
279 
280 	rw_destroy(&svd->lock);
281 	mutex_destroy(&svd->segfree_syncmtx);
282 }
283 
284 /*ARGSUSED*/
285 static int
286 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
287 {
288 	bzero(buf, sizeof (svntr_t));
289 	return (0);
290 }
291 
292 /*
293  * Patching this variable to non-zero allows the system to run with
294  * stacks marked as "not executable".  It's a bit of a kludge, but is
295  * provided as a tweakable for platforms that export those ABIs
296  * (e.g. sparc V8) that have executable stacks enabled by default.
297  * There are also some restrictions for platforms that don't actually
298  * implement 'noexec' protections.
299  *
300  * Once enabled, the system is (therefore) unable to provide a fully
301  * ABI-compliant execution environment, though practically speaking,
302  * most everything works.  The exceptions are generally some interpreters
303  * and debuggers that create executable code on the stack and jump
304  * into it (without explicitly mprotecting the address range to include
305  * PROT_EXEC).
306  *
307  * One important class of applications that are disabled are those
308  * that have been transformed into malicious agents using one of the
309  * numerous "buffer overflow" attacks.  See 4007890.
310  */
311 int noexec_user_stack = 0;
312 int noexec_user_stack_log = 1;
313 
314 int segvn_lpg_disable = 0;
315 uint_t segvn_maxpgszc = 0;
316 
317 ulong_t segvn_vmpss_clrszc_cnt;
318 ulong_t segvn_vmpss_clrszc_err;
319 ulong_t segvn_fltvnpages_clrszc_cnt;
320 ulong_t segvn_fltvnpages_clrszc_err;
321 ulong_t segvn_setpgsz_align_err;
322 ulong_t segvn_setpgsz_anon_align_err;
323 ulong_t segvn_setpgsz_getattr_err;
324 ulong_t segvn_setpgsz_eof_err;
325 ulong_t segvn_faultvnmpss_align_err1;
326 ulong_t segvn_faultvnmpss_align_err2;
327 ulong_t segvn_faultvnmpss_align_err3;
328 ulong_t segvn_faultvnmpss_align_err4;
329 ulong_t segvn_faultvnmpss_align_err5;
330 ulong_t	segvn_vmpss_pageio_deadlk_err;
331 
332 int segvn_use_regions = 1;
333 
334 /*
335  * Segvn supports text replication optimization for NUMA platforms. Text
336  * replica's are represented by anon maps (amp). There's one amp per text file
337  * region per lgroup. A process chooses the amp for each of its text mappings
338  * based on the lgroup assignment of its main thread (t_tid = 1). All
339  * processes that want a replica on a particular lgroup for the same text file
340  * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
341  * with vp,off,size,szc used as a key. Text replication segments are read only
342  * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
343  * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
344  * pages. Replication amp is assigned to a segment when it gets its first
345  * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
346  * rechecks periodically if the process still maps an amp local to the main
347  * thread. If not async thread forces process to remap to an amp in the new
348  * home lgroup of the main thread. Current text replication implementation
349  * only provides the benefit to workloads that do most of their work in the
350  * main thread of a process or all the threads of a process run in the same
351  * lgroup. To extend text replication benefit to different types of
352  * multithreaded workloads further work would be needed in the hat layer to
353  * allow the same virtual address in the same hat to simultaneously map
354  * different physical addresses (i.e. page table replication would be needed
355  * for x86).
356  *
357  * amp pages are used instead of vnode pages as long as segment has a very
358  * simple life cycle.  It's created via segvn_create(), handles S_EXEC
359  * (S_READ) pagefaults and is fully unmapped.  If anything more complicated
360  * happens such as protection is changed, real COW fault happens, pagesize is
361  * changed, MC_LOCK is requested or segment is partially unmapped we turn off
362  * text replication by converting the segment back to vnode only segment
363  * (unmap segment's address range and set svd->amp to NULL).
364  *
365  * The original file can be changed after amp is inserted into
366  * svntr_hashtab. Processes that are launched after the file is already
367  * changed can't use the replica's created prior to the file change. To
368  * implement this functionality hash entries are timestamped. Replica's can
369  * only be used if current file modification time is the same as the timestamp
370  * saved when hash entry was created. However just timestamps alone are not
371  * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
372  * deal with file changes via MAP_SHARED mappings differently. When writable
373  * MAP_SHARED mappings are created to vnodes marked as executable we mark all
374  * existing replica's for this vnode as not usable for future text
375  * mappings. And we don't create new replica's for files that currently have
376  * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
377  * true).
378  */
379 
380 #define	SEGVN_TEXTREPL_MAXBYTES_FACTOR	(20)
381 size_t	segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
382 
383 static ulong_t			svntr_hashtab_sz = 512;
384 static svntr_bucket_t		*svntr_hashtab = NULL;
385 static struct kmem_cache	*svntr_cache;
386 static svntr_stats_t		*segvn_textrepl_stats;
387 static ksema_t 			segvn_trasync_sem;
388 
389 int				segvn_disable_textrepl = 1;
390 size_t				textrepl_size_thresh = (size_t)-1;
391 size_t				segvn_textrepl_bytes = 0;
392 size_t				segvn_textrepl_max_bytes = 0;
393 clock_t				segvn_update_textrepl_interval = 0;
394 int				segvn_update_tr_time = 10;
395 int				segvn_disable_textrepl_update = 0;
396 
397 static void segvn_textrepl(struct seg *);
398 static void segvn_textunrepl(struct seg *, int);
399 static void segvn_inval_trcache(vnode_t *);
400 static void segvn_trasync_thread(void);
401 static void segvn_trupdate_wakeup(void *);
402 static void segvn_trupdate(void);
403 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
404     ulong_t);
405 
406 /*
407  * Initialize segvn data structures
408  */
409 void
410 segvn_init(void)
411 {
412 	uint_t maxszc;
413 	uint_t szc;
414 	size_t pgsz;
415 
416 	segvn_cache = kmem_cache_create("segvn_cache",
417 	    sizeof (struct segvn_data), 0,
418 	    segvn_cache_constructor, segvn_cache_destructor, NULL,
419 	    NULL, NULL, 0);
420 
421 	if (segvn_lpg_disable == 0) {
422 		szc = maxszc = page_num_pagesizes() - 1;
423 		if (szc == 0) {
424 			segvn_lpg_disable = 1;
425 		}
426 		if (page_get_pagesize(0) != PAGESIZE) {
427 			panic("segvn_init: bad szc 0");
428 			/*NOTREACHED*/
429 		}
430 		while (szc != 0) {
431 			pgsz = page_get_pagesize(szc);
432 			if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
433 				panic("segvn_init: bad szc %d", szc);
434 				/*NOTREACHED*/
435 			}
436 			szc--;
437 		}
438 		if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
439 			segvn_maxpgszc = maxszc;
440 	}
441 
442 	if (segvn_maxpgszc) {
443 		segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
444 		    (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
445 		    KM_SLEEP);
446 	}
447 
448 	for (szc = 1; szc <= segvn_maxpgszc; szc++) {
449 		char	str[32];
450 
451 		(void) sprintf(str, "segvn_szc_cache%d", szc);
452 		segvn_szc_cache[szc] = kmem_cache_create(str,
453 		    page_get_pagecnt(szc) * sizeof (page_t *), 0,
454 		    NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
455 	}
456 
457 
458 	if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
459 		segvn_use_regions = 0;
460 
461 	/*
462 	 * For now shared regions and text replication segvn support
463 	 * are mutually exclusive. This is acceptable because
464 	 * currently significant benefit from text replication was
465 	 * only observed on AMD64 NUMA platforms (due to relatively
466 	 * small L2$ size) and currently we don't support shared
467 	 * regions on x86.
468 	 */
469 	if (segvn_use_regions && !segvn_disable_textrepl) {
470 		segvn_disable_textrepl = 1;
471 	}
472 
473 #if defined(_LP64)
474 	if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
475 	    !segvn_disable_textrepl) {
476 		ulong_t i;
477 		size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
478 
479 		svntr_cache = kmem_cache_create("svntr_cache",
480 		    sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
481 		    NULL, NULL, NULL, 0);
482 		svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
483 		for (i = 0; i < svntr_hashtab_sz; i++) {
484 			mutex_init(&svntr_hashtab[i].tr_lock,  NULL,
485 			    MUTEX_DEFAULT, NULL);
486 		}
487 		segvn_textrepl_max_bytes = ptob(physmem) /
488 		    segvn_textrepl_max_bytes_factor;
489 		segvn_textrepl_stats = kmem_zalloc(NCPU *
490 		    sizeof (svntr_stats_t), KM_SLEEP);
491 		sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
492 		(void) thread_create(NULL, 0, segvn_trasync_thread,
493 		    NULL, 0, &p0, TS_RUN, minclsyspri);
494 	}
495 #endif
496 
497 	if (!ISP2(segvn_pglock_comb_balign) ||
498 	    segvn_pglock_comb_balign < PAGESIZE) {
499 		segvn_pglock_comb_balign = 1UL << 16; /* 64K */
500 	}
501 	segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1;
502 	segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign);
503 }
504 
505 #define	SEGVN_PAGEIO	((void *)0x1)
506 #define	SEGVN_NOPAGEIO	((void *)0x2)
507 
508 static void
509 segvn_setvnode_mpss(vnode_t *vp)
510 {
511 	int err;
512 
513 	ASSERT(vp->v_mpssdata == NULL ||
514 	    vp->v_mpssdata == SEGVN_PAGEIO ||
515 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
516 
517 	if (vp->v_mpssdata == NULL) {
518 		if (vn_vmpss_usepageio(vp)) {
519 			err = VOP_PAGEIO(vp, (page_t *)NULL,
520 			    (u_offset_t)0, 0, 0, CRED(), NULL);
521 		} else {
522 			err = ENOSYS;
523 		}
524 		/*
525 		 * set v_mpssdata just once per vnode life
526 		 * so that it never changes.
527 		 */
528 		mutex_enter(&vp->v_lock);
529 		if (vp->v_mpssdata == NULL) {
530 			if (err == EINVAL) {
531 				vp->v_mpssdata = SEGVN_PAGEIO;
532 			} else {
533 				vp->v_mpssdata = SEGVN_NOPAGEIO;
534 			}
535 		}
536 		mutex_exit(&vp->v_lock);
537 	}
538 }
539 
540 int
541 segvn_create(struct seg **segpp, void *argsp)
542 {
543 	struct seg *seg = *segpp;
544 	extern lgrp_mem_policy_t lgrp_mem_default_policy;
545 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
546 	struct segvn_data *svd;
547 	size_t swresv = 0;
548 	struct cred *cred;
549 	struct anon_map *amp;
550 	int error = 0;
551 	size_t pgsz;
552 	lgrp_mem_policy_t mpolicy = lgrp_mem_default_policy;
553 	int use_rgn = 0;
554 	int trok = 0;
555 
556 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
557 
558 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
559 		panic("segvn_create type");
560 		/*NOTREACHED*/
561 	}
562 
563 	/*
564 	 * Check arguments.  If a shared anon structure is given then
565 	 * it is illegal to also specify a vp.
566 	 */
567 	if (a->amp != NULL && a->vp != NULL) {
568 		panic("segvn_create anon_map");
569 		/*NOTREACHED*/
570 	}
571 
572 	if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
573 	    a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
574 	    segvn_use_regions) {
575 		use_rgn = 1;
576 	}
577 
578 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
579 	if (a->type == MAP_SHARED)
580 		a->flags &= ~MAP_NORESERVE;
581 
582 	if (a->szc != 0) {
583 		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
584 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
585 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
586 			a->szc = 0;
587 		} else {
588 			if (a->szc > segvn_maxpgszc)
589 				a->szc = segvn_maxpgszc;
590 			pgsz = page_get_pagesize(a->szc);
591 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
592 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
593 				a->szc = 0;
594 			} else if (a->vp != NULL) {
595 				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
596 					/*
597 					 * paranoid check.
598 					 * hat_page_demote() is not supported
599 					 * on swapfs pages.
600 					 */
601 					a->szc = 0;
602 				} else if (map_addr_vacalign_check(seg->s_base,
603 				    a->offset & PAGEMASK)) {
604 					a->szc = 0;
605 				}
606 			} else if (a->amp != NULL) {
607 				pgcnt_t anum = btopr(a->offset);
608 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
609 				if (!IS_P2ALIGNED(anum, pgcnt)) {
610 					a->szc = 0;
611 				}
612 			}
613 		}
614 	}
615 
616 	/*
617 	 * If segment may need private pages, reserve them now.
618 	 */
619 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
620 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
621 		if (anon_resv_zone(seg->s_size,
622 		    seg->s_as->a_proc->p_zone) == 0)
623 			return (EAGAIN);
624 		swresv = seg->s_size;
625 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
626 		    seg, swresv, 1);
627 	}
628 
629 	/*
630 	 * Reserve any mapping structures that may be required.
631 	 *
632 	 * Don't do it for segments that may use regions. It's currently a
633 	 * noop in the hat implementations anyway.
634 	 */
635 	if (!use_rgn) {
636 		hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
637 	}
638 
639 	if (a->cred) {
640 		cred = a->cred;
641 		crhold(cred);
642 	} else {
643 		crhold(cred = CRED());
644 	}
645 
646 	/* Inform the vnode of the new mapping */
647 	if (a->vp != NULL) {
648 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
649 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
650 		    a->maxprot, a->type, cred, NULL);
651 		if (error) {
652 			if (swresv != 0) {
653 				anon_unresv_zone(swresv,
654 				    seg->s_as->a_proc->p_zone);
655 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
656 				    "anon proc:%p %lu %u", seg, swresv, 0);
657 			}
658 			crfree(cred);
659 			if (!use_rgn) {
660 				hat_unload(seg->s_as->a_hat, seg->s_base,
661 				    seg->s_size, HAT_UNLOAD_UNMAP);
662 			}
663 			return (error);
664 		}
665 		/*
666 		 * svntr_hashtab will be NULL if we support shared regions.
667 		 */
668 		trok = ((a->flags & MAP_TEXT) &&
669 		    (seg->s_size > textrepl_size_thresh ||
670 		    (a->flags & _MAP_TEXTREPL)) &&
671 		    lgrp_optimizations() && svntr_hashtab != NULL &&
672 		    a->type == MAP_PRIVATE && swresv == 0 &&
673 		    !(a->flags & MAP_NORESERVE) &&
674 		    seg->s_as != &kas && a->vp->v_type == VREG);
675 
676 		ASSERT(!trok || !use_rgn);
677 	}
678 
679 	/*
680 	 * MAP_NORESERVE mappings don't count towards the VSZ of a process
681 	 * until we fault the pages in.
682 	 */
683 	if ((a->vp == NULL || a->vp->v_type != VREG) &&
684 	    a->flags & MAP_NORESERVE) {
685 		seg->s_as->a_resvsize -= seg->s_size;
686 	}
687 
688 	/*
689 	 * If more than one segment in the address space, and they're adjacent
690 	 * virtually, try to concatenate them.  Don't concatenate if an
691 	 * explicit anon_map structure was supplied (e.g., SystemV shared
692 	 * memory) or if we'll use text replication for this segment.
693 	 */
694 	if (a->amp == NULL && !use_rgn && !trok) {
695 		struct seg *pseg, *nseg;
696 		struct segvn_data *psvd, *nsvd;
697 		lgrp_mem_policy_t ppolicy, npolicy;
698 		uint_t	lgrp_mem_policy_flags = 0;
699 
700 		/*
701 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
702 		 * extending stack/heap segments.
703 		 */
704 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
705 		    !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
706 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
707 		} else {
708 			/*
709 			 * Get policy when not extending it from another segment
710 			 */
711 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
712 		}
713 
714 		/*
715 		 * First, try to concatenate the previous and new segments
716 		 */
717 		pseg = AS_SEGPREV(seg->s_as, seg);
718 		if (pseg != NULL &&
719 		    pseg->s_base + pseg->s_size == seg->s_base &&
720 		    pseg->s_ops == &segvn_ops) {
721 			/*
722 			 * Get memory allocation policy from previous segment.
723 			 * When extension is specified (e.g. for heap) apply
724 			 * this policy to the new segment regardless of the
725 			 * outcome of segment concatenation.  Extension occurs
726 			 * for non-default policy otherwise default policy is
727 			 * used and is based on extended segment size.
728 			 */
729 			psvd = (struct segvn_data *)pseg->s_data;
730 			ppolicy = psvd->policy_info.mem_policy;
731 			if (lgrp_mem_policy_flags ==
732 			    LGRP_MP_FLAG_EXTEND_UP) {
733 				if (ppolicy != lgrp_mem_default_policy) {
734 					mpolicy = ppolicy;
735 				} else {
736 					mpolicy = lgrp_mem_policy_default(
737 					    pseg->s_size + seg->s_size,
738 					    a->type);
739 				}
740 			}
741 
742 			if (mpolicy == ppolicy &&
743 			    (pseg->s_size + seg->s_size <=
744 			    segvn_comb_thrshld || psvd->amp == NULL) &&
745 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
746 				/*
747 				 * success! now try to concatenate
748 				 * with following seg
749 				 */
750 				crfree(cred);
751 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
752 				if (nseg != NULL &&
753 				    nseg != pseg &&
754 				    nseg->s_ops == &segvn_ops &&
755 				    pseg->s_base + pseg->s_size ==
756 				    nseg->s_base)
757 					(void) segvn_concat(pseg, nseg, 0);
758 				ASSERT(pseg->s_szc == 0 ||
759 				    (a->szc == pseg->s_szc &&
760 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
761 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
762 				/*
763 				 * Communicate out the newly concatenated
764 				 * segment as part of the result.
765 				 */
766 				*segpp = pseg;
767 				return (0);
768 			}
769 		}
770 
771 		/*
772 		 * Failed, so try to concatenate with following seg
773 		 */
774 		nseg = AS_SEGNEXT(seg->s_as, seg);
775 		if (nseg != NULL &&
776 		    seg->s_base + seg->s_size == nseg->s_base &&
777 		    nseg->s_ops == &segvn_ops) {
778 			/*
779 			 * Get memory allocation policy from next segment.
780 			 * When extension is specified (e.g. for stack) apply
781 			 * this policy to the new segment regardless of the
782 			 * outcome of segment concatenation.  Extension occurs
783 			 * for non-default policy otherwise default policy is
784 			 * used and is based on extended segment size.
785 			 */
786 			nsvd = (struct segvn_data *)nseg->s_data;
787 			npolicy = nsvd->policy_info.mem_policy;
788 			if (lgrp_mem_policy_flags ==
789 			    LGRP_MP_FLAG_EXTEND_DOWN) {
790 				if (npolicy != lgrp_mem_default_policy) {
791 					mpolicy = npolicy;
792 				} else {
793 					mpolicy = lgrp_mem_policy_default(
794 					    nseg->s_size + seg->s_size,
795 					    a->type);
796 				}
797 			}
798 
799 			if (mpolicy == npolicy &&
800 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
801 				crfree(cred);
802 				ASSERT(nseg->s_szc == 0 ||
803 				    (a->szc == nseg->s_szc &&
804 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
805 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
806 				/*
807 				 * Communicate out the newly concatenated
808 				 * segment as part of the result.
809 				 */
810 				*segpp = nseg;
811 				return (0);
812 			}
813 		}
814 	}
815 
816 	if (a->vp != NULL) {
817 		VN_HOLD(a->vp);
818 		if (a->type == MAP_SHARED)
819 			lgrp_shm_policy_init(NULL, a->vp);
820 	}
821 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
822 
823 	seg->s_ops = &segvn_ops;
824 	seg->s_data = (void *)svd;
825 	seg->s_szc = a->szc;
826 
827 	svd->seg = seg;
828 	svd->vp = a->vp;
829 	/*
830 	 * Anonymous mappings have no backing file so the offset is meaningless.
831 	 */
832 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
833 	svd->prot = a->prot;
834 	svd->maxprot = a->maxprot;
835 	svd->pageprot = 0;
836 	svd->type = a->type;
837 	svd->vpage = NULL;
838 	svd->cred = cred;
839 	svd->advice = MADV_NORMAL;
840 	svd->pageadvice = 0;
841 	svd->flags = (ushort_t)a->flags;
842 	svd->softlockcnt = 0;
843 	svd->softlockcnt_sbase = 0;
844 	svd->softlockcnt_send = 0;
845 	svd->svn_inz = 0;
846 	svd->rcookie = HAT_INVALID_REGION_COOKIE;
847 	svd->pageswap = 0;
848 
849 	if (a->szc != 0 && a->vp != NULL) {
850 		segvn_setvnode_mpss(a->vp);
851 	}
852 	if (svd->type == MAP_SHARED && svd->vp != NULL &&
853 	    (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
854 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
855 		segvn_inval_trcache(svd->vp);
856 	}
857 
858 	amp = a->amp;
859 	if ((svd->amp = amp) == NULL) {
860 		svd->anon_index = 0;
861 		if (svd->type == MAP_SHARED) {
862 			svd->swresv = 0;
863 			/*
864 			 * Shared mappings to a vp need no other setup.
865 			 * If we have a shared mapping to an anon_map object
866 			 * which hasn't been allocated yet,  allocate the
867 			 * struct now so that it will be properly shared
868 			 * by remembering the swap reservation there.
869 			 */
870 			if (a->vp == NULL) {
871 				svd->amp = anonmap_alloc(seg->s_size, swresv,
872 				    ANON_SLEEP);
873 				svd->amp->a_szc = seg->s_szc;
874 			}
875 		} else {
876 			/*
877 			 * Private mapping (with or without a vp).
878 			 * Allocate anon_map when needed.
879 			 */
880 			svd->swresv = swresv;
881 		}
882 	} else {
883 		pgcnt_t anon_num;
884 
885 		/*
886 		 * Mapping to an existing anon_map structure without a vp.
887 		 * For now we will insure that the segment size isn't larger
888 		 * than the size - offset gives us.  Later on we may wish to
889 		 * have the anon array dynamically allocated itself so that
890 		 * we don't always have to allocate all the anon pointer slots.
891 		 * This of course involves adding extra code to check that we
892 		 * aren't trying to use an anon pointer slot beyond the end
893 		 * of the currently allocated anon array.
894 		 */
895 		if ((amp->size - a->offset) < seg->s_size) {
896 			panic("segvn_create anon_map size");
897 			/*NOTREACHED*/
898 		}
899 
900 		anon_num = btopr(a->offset);
901 
902 		if (a->type == MAP_SHARED) {
903 			/*
904 			 * SHARED mapping to a given anon_map.
905 			 */
906 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
907 			amp->refcnt++;
908 			if (a->szc > amp->a_szc) {
909 				amp->a_szc = a->szc;
910 			}
911 			ANON_LOCK_EXIT(&amp->a_rwlock);
912 			svd->anon_index = anon_num;
913 			svd->swresv = 0;
914 		} else {
915 			/*
916 			 * PRIVATE mapping to a given anon_map.
917 			 * Make sure that all the needed anon
918 			 * structures are created (so that we will
919 			 * share the underlying pages if nothing
920 			 * is written by this mapping) and then
921 			 * duplicate the anon array as is done
922 			 * when a privately mapped segment is dup'ed.
923 			 */
924 			struct anon *ap;
925 			caddr_t addr;
926 			caddr_t eaddr;
927 			ulong_t	anon_idx;
928 			int hat_flag = HAT_LOAD;
929 
930 			if (svd->flags & MAP_TEXT) {
931 				hat_flag |= HAT_LOAD_TEXT;
932 			}
933 
934 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
935 			svd->amp->a_szc = seg->s_szc;
936 			svd->anon_index = 0;
937 			svd->swresv = swresv;
938 
939 			/*
940 			 * Prevent 2 threads from allocating anon
941 			 * slots simultaneously.
942 			 */
943 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
944 			eaddr = seg->s_base + seg->s_size;
945 
946 			for (anon_idx = anon_num, addr = seg->s_base;
947 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
948 				page_t *pp;
949 
950 				if ((ap = anon_get_ptr(amp->ahp,
951 				    anon_idx)) != NULL)
952 					continue;
953 
954 				/*
955 				 * Allocate the anon struct now.
956 				 * Might as well load up translation
957 				 * to the page while we're at it...
958 				 */
959 				pp = anon_zero(seg, addr, &ap, cred);
960 				if (ap == NULL || pp == NULL) {
961 					panic("segvn_create anon_zero");
962 					/*NOTREACHED*/
963 				}
964 
965 				/*
966 				 * Re-acquire the anon_map lock and
967 				 * initialize the anon array entry.
968 				 */
969 				ASSERT(anon_get_ptr(amp->ahp,
970 				    anon_idx) == NULL);
971 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
972 				    ANON_SLEEP);
973 
974 				ASSERT(seg->s_szc == 0);
975 				ASSERT(!IS_VMODSORT(pp->p_vnode));
976 
977 				ASSERT(use_rgn == 0);
978 				hat_memload(seg->s_as->a_hat, addr, pp,
979 				    svd->prot & ~PROT_WRITE, hat_flag);
980 
981 				page_unlock(pp);
982 			}
983 			ASSERT(seg->s_szc == 0);
984 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
985 			    0, seg->s_size);
986 			ANON_LOCK_EXIT(&amp->a_rwlock);
987 		}
988 	}
989 
990 	/*
991 	 * Set default memory allocation policy for segment
992 	 *
993 	 * Always set policy for private memory at least for initialization
994 	 * even if this is a shared memory segment
995 	 */
996 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
997 
998 	if (svd->type == MAP_SHARED)
999 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
1000 		    svd->vp, svd->offset, seg->s_size);
1001 
1002 	if (use_rgn) {
1003 		ASSERT(!trok);
1004 		ASSERT(svd->amp == NULL);
1005 		svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
1006 		    seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
1007 		    (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
1008 		    HAT_REGION_TEXT);
1009 	}
1010 
1011 	ASSERT(!trok || !(svd->prot & PROT_WRITE));
1012 	svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
1013 
1014 	return (0);
1015 }
1016 
1017 /*
1018  * Concatenate two existing segments, if possible.
1019  * Return 0 on success, -1 if two segments are not compatible
1020  * or -2 on memory allocation failure.
1021  * If amp_cat == 1 then try and concat segments with anon maps
1022  */
1023 static int
1024 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
1025 {
1026 	struct segvn_data *svd1 = seg1->s_data;
1027 	struct segvn_data *svd2 = seg2->s_data;
1028 	struct anon_map *amp1 = svd1->amp;
1029 	struct anon_map *amp2 = svd2->amp;
1030 	struct vpage *vpage1 = svd1->vpage;
1031 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
1032 	size_t size, nvpsize;
1033 	pgcnt_t npages1, npages2;
1034 
1035 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
1036 	ASSERT(AS_WRITE_HELD(seg1->s_as));
1037 	ASSERT(seg1->s_ops == seg2->s_ops);
1038 
1039 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
1040 	    HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1041 		return (-1);
1042 	}
1043 
1044 	/* both segments exist, try to merge them */
1045 #define	incompat(x)	(svd1->x != svd2->x)
1046 	if (incompat(vp) || incompat(maxprot) ||
1047 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
1048 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
1049 	    incompat(type) || incompat(cred) || incompat(flags) ||
1050 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
1051 	    (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0)
1052 		return (-1);
1053 #undef incompat
1054 
1055 	/*
1056 	 * vp == NULL implies zfod, offset doesn't matter
1057 	 */
1058 	if (svd1->vp != NULL &&
1059 	    svd1->offset + seg1->s_size != svd2->offset) {
1060 		return (-1);
1061 	}
1062 
1063 	/*
1064 	 * Don't concatenate if either segment uses text replication.
1065 	 */
1066 	if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1067 		return (-1);
1068 	}
1069 
1070 	/*
1071 	 * Fail early if we're not supposed to concatenate
1072 	 * segments with non NULL amp.
1073 	 */
1074 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1075 		return (-1);
1076 	}
1077 
1078 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1079 		if (amp1 != amp2) {
1080 			return (-1);
1081 		}
1082 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1083 		    svd2->anon_index) {
1084 			return (-1);
1085 		}
1086 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1087 	}
1088 
1089 	/*
1090 	 * If either seg has vpages, create a new merged vpage array.
1091 	 */
1092 	if (vpage1 != NULL || vpage2 != NULL) {
1093 		struct vpage *vp, *evp;
1094 
1095 		npages1 = seg_pages(seg1);
1096 		npages2 = seg_pages(seg2);
1097 		nvpsize = vpgtob(npages1 + npages2);
1098 
1099 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1100 			return (-2);
1101 		}
1102 
1103 		if (vpage1 != NULL) {
1104 			bcopy(vpage1, nvpage, vpgtob(npages1));
1105 		} else {
1106 			evp = nvpage + npages1;
1107 			for (vp = nvpage; vp < evp; vp++) {
1108 				VPP_SETPROT(vp, svd1->prot);
1109 				VPP_SETADVICE(vp, svd1->advice);
1110 			}
1111 		}
1112 
1113 		if (vpage2 != NULL) {
1114 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1115 		} else {
1116 			evp = nvpage + npages1 + npages2;
1117 			for (vp = nvpage + npages1; vp < evp; vp++) {
1118 				VPP_SETPROT(vp, svd2->prot);
1119 				VPP_SETADVICE(vp, svd2->advice);
1120 			}
1121 		}
1122 
1123 		if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1124 			ASSERT(svd1->swresv == seg1->s_size);
1125 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1126 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1127 			evp = nvpage + npages1;
1128 			for (vp = nvpage; vp < evp; vp++) {
1129 				VPP_SETSWAPRES(vp);
1130 			}
1131 		}
1132 
1133 		if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1134 			ASSERT(svd2->swresv == seg2->s_size);
1135 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1136 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1137 			vp = nvpage + npages1;
1138 			evp = vp + npages2;
1139 			for (; vp < evp; vp++) {
1140 				VPP_SETSWAPRES(vp);
1141 			}
1142 		}
1143 	}
1144 	ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1145 	    (svd1->pageswap == 0 && svd2->pageswap == 0));
1146 
1147 	/*
1148 	 * If either segment has private pages, create a new merged anon
1149 	 * array. If mergeing shared anon segments just decrement anon map's
1150 	 * refcnt.
1151 	 */
1152 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
1153 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
1154 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1155 		ASSERT(amp1->refcnt >= 2);
1156 		amp1->refcnt--;
1157 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1158 		svd2->amp = NULL;
1159 	} else if (amp1 != NULL || amp2 != NULL) {
1160 		struct anon_hdr *nahp;
1161 		struct anon_map *namp = NULL;
1162 		size_t asize;
1163 
1164 		ASSERT(svd1->type == MAP_PRIVATE);
1165 
1166 		asize = seg1->s_size + seg2->s_size;
1167 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1168 			if (nvpage != NULL) {
1169 				kmem_free(nvpage, nvpsize);
1170 			}
1171 			return (-2);
1172 		}
1173 		if (amp1 != NULL) {
1174 			/*
1175 			 * XXX anon rwlock is not really needed because
1176 			 * this is a private segment and we are writers.
1177 			 */
1178 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1179 			ASSERT(amp1->refcnt == 1);
1180 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1181 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1182 				anon_release(nahp, btop(asize));
1183 				ANON_LOCK_EXIT(&amp1->a_rwlock);
1184 				if (nvpage != NULL) {
1185 					kmem_free(nvpage, nvpsize);
1186 				}
1187 				return (-2);
1188 			}
1189 		}
1190 		if (amp2 != NULL) {
1191 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1192 			ASSERT(amp2->refcnt == 1);
1193 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1194 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
1195 			    ANON_NOSLEEP)) {
1196 				anon_release(nahp, btop(asize));
1197 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1198 				if (amp1 != NULL) {
1199 					ANON_LOCK_EXIT(&amp1->a_rwlock);
1200 				}
1201 				if (nvpage != NULL) {
1202 					kmem_free(nvpage, nvpsize);
1203 				}
1204 				return (-2);
1205 			}
1206 		}
1207 		if (amp1 != NULL) {
1208 			namp = amp1;
1209 			anon_release(amp1->ahp, btop(amp1->size));
1210 		}
1211 		if (amp2 != NULL) {
1212 			if (namp == NULL) {
1213 				ASSERT(amp1 == NULL);
1214 				namp = amp2;
1215 				anon_release(amp2->ahp, btop(amp2->size));
1216 			} else {
1217 				amp2->refcnt--;
1218 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1219 				anonmap_free(amp2);
1220 			}
1221 			svd2->amp = NULL; /* needed for seg_free */
1222 		}
1223 		namp->ahp = nahp;
1224 		namp->size = asize;
1225 		svd1->amp = namp;
1226 		svd1->anon_index = 0;
1227 		ANON_LOCK_EXIT(&namp->a_rwlock);
1228 	}
1229 	/*
1230 	 * Now free the old vpage structures.
1231 	 */
1232 	if (nvpage != NULL) {
1233 		if (vpage1 != NULL) {
1234 			kmem_free(vpage1, vpgtob(npages1));
1235 		}
1236 		if (vpage2 != NULL) {
1237 			svd2->vpage = NULL;
1238 			kmem_free(vpage2, vpgtob(npages2));
1239 		}
1240 		if (svd2->pageprot) {
1241 			svd1->pageprot = 1;
1242 		}
1243 		if (svd2->pageadvice) {
1244 			svd1->pageadvice = 1;
1245 		}
1246 		if (svd2->pageswap) {
1247 			svd1->pageswap = 1;
1248 		}
1249 		svd1->vpage = nvpage;
1250 	}
1251 
1252 	/* all looks ok, merge segments */
1253 	svd1->swresv += svd2->swresv;
1254 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
1255 	size = seg2->s_size;
1256 	seg_free(seg2);
1257 	seg1->s_size += size;
1258 	return (0);
1259 }
1260 
1261 /*
1262  * Extend the previous segment (seg1) to include the
1263  * new segment (seg2 + a), if possible.
1264  * Return 0 on success.
1265  */
1266 static int
1267 segvn_extend_prev(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a,
1268     size_t swresv)
1269 {
1270 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1271 	size_t size;
1272 	struct anon_map *amp1;
1273 	struct vpage *new_vpage;
1274 
1275 	/*
1276 	 * We don't need any segment level locks for "segvn" data
1277 	 * since the address space is "write" locked.
1278 	 */
1279 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as));
1280 
1281 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1282 		return (-1);
1283 	}
1284 
1285 	/* second segment is new, try to extend first */
1286 	/* XXX - should also check cred */
1287 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1288 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1289 	    svd1->type != a->type || svd1->flags != a->flags ||
1290 	    seg1->s_szc != a->szc || svd1->softlockcnt_send > 0)
1291 		return (-1);
1292 
1293 	/* vp == NULL implies zfod, offset doesn't matter */
1294 	if (svd1->vp != NULL &&
1295 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1296 		return (-1);
1297 
1298 	if (svd1->tr_state != SEGVN_TR_OFF) {
1299 		return (-1);
1300 	}
1301 
1302 	amp1 = svd1->amp;
1303 	if (amp1) {
1304 		pgcnt_t newpgs;
1305 
1306 		/*
1307 		 * Segment has private pages, can data structures
1308 		 * be expanded?
1309 		 *
1310 		 * Acquire the anon_map lock to prevent it from changing,
1311 		 * if it is shared.  This ensures that the anon_map
1312 		 * will not change while a thread which has a read/write
1313 		 * lock on an address space references it.
1314 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1315 		 * is 1.
1316 		 *
1317 		 * Can't grow a MAP_SHARED segment with an anonmap because
1318 		 * there may be existing anon slots where we want to extend
1319 		 * the segment and we wouldn't know what to do with them
1320 		 * (e.g., for tmpfs right thing is to just leave them there,
1321 		 * for /dev/zero they should be cleared out).
1322 		 */
1323 		if (svd1->type == MAP_SHARED)
1324 			return (-1);
1325 
1326 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1327 		if (amp1->refcnt > 1) {
1328 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1329 			return (-1);
1330 		}
1331 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1332 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1333 
1334 		if (newpgs == 0) {
1335 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1336 			return (-1);
1337 		}
1338 		amp1->size = ptob(newpgs);
1339 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1340 	}
1341 	if (svd1->vpage != NULL) {
1342 		struct vpage *vp, *evp;
1343 		new_vpage =
1344 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1345 		    KM_NOSLEEP);
1346 		if (new_vpage == NULL)
1347 			return (-1);
1348 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1349 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1350 		svd1->vpage = new_vpage;
1351 
1352 		vp = new_vpage + seg_pages(seg1);
1353 		evp = vp + seg_pages(seg2);
1354 		for (; vp < evp; vp++)
1355 			VPP_SETPROT(vp, a->prot);
1356 		if (svd1->pageswap && swresv) {
1357 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1358 			ASSERT(swresv == seg2->s_size);
1359 			vp = new_vpage + seg_pages(seg1);
1360 			for (; vp < evp; vp++) {
1361 				VPP_SETSWAPRES(vp);
1362 			}
1363 		}
1364 	}
1365 	ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1366 	size = seg2->s_size;
1367 	seg_free(seg2);
1368 	seg1->s_size += size;
1369 	svd1->swresv += swresv;
1370 	if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1371 	    svd1->type == MAP_SHARED && svd1->vp != NULL &&
1372 	    (svd1->vp->v_flag & VVMEXEC)) {
1373 		ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1374 		segvn_inval_trcache(svd1->vp);
1375 	}
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Extend the next segment (seg2) to include the
1381  * new segment (seg1 + a), if possible.
1382  * Return 0 on success.
1383  */
1384 static int
1385 segvn_extend_next(struct seg *seg1, struct seg *seg2, struct segvn_crargs *a,
1386     size_t swresv)
1387 {
1388 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1389 	size_t size;
1390 	struct anon_map *amp2;
1391 	struct vpage *new_vpage;
1392 
1393 	/*
1394 	 * We don't need any segment level locks for "segvn" data
1395 	 * since the address space is "write" locked.
1396 	 */
1397 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as));
1398 
1399 	if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1400 		return (-1);
1401 	}
1402 
1403 	/* first segment is new, try to extend second */
1404 	/* XXX - should also check cred */
1405 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1406 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1407 	    svd2->type != a->type || svd2->flags != a->flags ||
1408 	    seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0)
1409 		return (-1);
1410 	/* vp == NULL implies zfod, offset doesn't matter */
1411 	if (svd2->vp != NULL &&
1412 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1413 		return (-1);
1414 
1415 	if (svd2->tr_state != SEGVN_TR_OFF) {
1416 		return (-1);
1417 	}
1418 
1419 	amp2 = svd2->amp;
1420 	if (amp2) {
1421 		pgcnt_t newpgs;
1422 
1423 		/*
1424 		 * Segment has private pages, can data structures
1425 		 * be expanded?
1426 		 *
1427 		 * Acquire the anon_map lock to prevent it from changing,
1428 		 * if it is shared.  This ensures that the anon_map
1429 		 * will not change while a thread which has a read/write
1430 		 * lock on an address space references it.
1431 		 *
1432 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1433 		 * is 1.
1434 		 */
1435 		if (svd2->type == MAP_SHARED)
1436 			return (-1);
1437 
1438 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1439 		if (amp2->refcnt > 1) {
1440 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1441 			return (-1);
1442 		}
1443 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1444 		    btop(seg2->s_size), btop(seg1->s_size),
1445 		    ANON_NOSLEEP | ANON_GROWDOWN);
1446 
1447 		if (newpgs == 0) {
1448 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1449 			return (-1);
1450 		}
1451 		amp2->size = ptob(newpgs);
1452 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1453 	}
1454 	if (svd2->vpage != NULL) {
1455 		struct vpage *vp, *evp;
1456 		new_vpage =
1457 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1458 		    KM_NOSLEEP);
1459 		if (new_vpage == NULL) {
1460 			/* Not merging segments so adjust anon_index back */
1461 			if (amp2)
1462 				svd2->anon_index += seg_pages(seg1);
1463 			return (-1);
1464 		}
1465 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1466 		    vpgtob(seg_pages(seg2)));
1467 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1468 		svd2->vpage = new_vpage;
1469 
1470 		vp = new_vpage;
1471 		evp = vp + seg_pages(seg1);
1472 		for (; vp < evp; vp++)
1473 			VPP_SETPROT(vp, a->prot);
1474 		if (svd2->pageswap && swresv) {
1475 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1476 			ASSERT(swresv == seg1->s_size);
1477 			vp = new_vpage;
1478 			for (; vp < evp; vp++) {
1479 				VPP_SETSWAPRES(vp);
1480 			}
1481 		}
1482 	}
1483 	ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1484 	size = seg1->s_size;
1485 	seg_free(seg1);
1486 	seg2->s_size += size;
1487 	seg2->s_base -= size;
1488 	svd2->offset -= size;
1489 	svd2->swresv += swresv;
1490 	if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1491 	    svd2->type == MAP_SHARED && svd2->vp != NULL &&
1492 	    (svd2->vp->v_flag & VVMEXEC)) {
1493 		ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1494 		segvn_inval_trcache(svd2->vp);
1495 	}
1496 	return (0);
1497 }
1498 
1499 /*
1500  * Duplicate all the pages in the segment. This may break COW sharing for a
1501  * given page. If the page is marked with inherit zero set, then instead of
1502  * duplicating the page, we zero the page.
1503  */
1504 static int
1505 segvn_dup_pages(struct seg *seg, struct seg *newseg)
1506 {
1507 	int error;
1508 	uint_t prot;
1509 	page_t *pp;
1510 	struct anon *ap, *newap;
1511 	size_t i;
1512 	caddr_t addr;
1513 
1514 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1515 	struct segvn_data *newsvd = (struct segvn_data *)newseg->s_data;
1516 	ulong_t old_idx = svd->anon_index;
1517 	ulong_t new_idx = 0;
1518 
1519 	i = btopr(seg->s_size);
1520 	addr = seg->s_base;
1521 
1522 	/*
1523 	 * XXX break cow sharing using PAGESIZE
1524 	 * pages. They will be relocated into larger
1525 	 * pages at fault time.
1526 	 */
1527 	while (i-- > 0) {
1528 		if ((ap = anon_get_ptr(svd->amp->ahp, old_idx)) != NULL) {
1529 			struct vpage *vpp;
1530 
1531 			vpp = &svd->vpage[seg_page(seg, addr)];
1532 
1533 			/*
1534 			 * prot need not be computed below 'cause anon_private
1535 			 * is going to ignore it anyway as child doesn't inherit
1536 			 * pagelock from parent.
1537 			 */
1538 			prot = svd->pageprot ? VPP_PROT(vpp) : svd->prot;
1539 
1540 			/*
1541 			 * Check whether we should zero this or dup it.
1542 			 */
1543 			if (svd->svn_inz == SEGVN_INZ_ALL ||
1544 			    (svd->svn_inz == SEGVN_INZ_VPP &&
1545 			    VPP_ISINHZERO(vpp))) {
1546 				pp = anon_zero(newseg, addr, &newap,
1547 				    newsvd->cred);
1548 			} else {
1549 				page_t *anon_pl[1+1];
1550 				uint_t vpprot;
1551 				error = anon_getpage(&ap, &vpprot, anon_pl,
1552 				    PAGESIZE, seg, addr, S_READ, svd->cred);
1553 				if (error != 0)
1554 					return (error);
1555 
1556 				pp = anon_private(&newap, newseg, addr, prot,
1557 				    anon_pl[0], 0, newsvd->cred);
1558 			}
1559 			if (pp == NULL) {
1560 				return (ENOMEM);
1561 			}
1562 			(void) anon_set_ptr(newsvd->amp->ahp, new_idx, newap,
1563 			    ANON_SLEEP);
1564 			page_unlock(pp);
1565 		}
1566 		addr += PAGESIZE;
1567 		old_idx++;
1568 		new_idx++;
1569 	}
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 segvn_dup(struct seg *seg, struct seg *newseg)
1576 {
1577 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1578 	struct segvn_data *newsvd;
1579 	pgcnt_t npages = seg_pages(seg);
1580 	int error = 0;
1581 	size_t len;
1582 	struct anon_map *amp;
1583 
1584 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1585 	ASSERT(newseg->s_as->a_proc->p_parent == curproc);
1586 
1587 	/*
1588 	 * If segment has anon reserved, reserve more for the new seg.
1589 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1590 	 * allocated anon slots; thus we reserve for the child as many slots
1591 	 * as the parent has allocated. This semantic prevents the child or
1592 	 * parent from dieing during a copy-on-write fault caused by trying
1593 	 * to write a shared pre-existing anon page.
1594 	 */
1595 	if ((len = svd->swresv) != 0) {
1596 		if (anon_resv(svd->swresv) == 0)
1597 			return (ENOMEM);
1598 
1599 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1600 		    seg, len, 0);
1601 	}
1602 
1603 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1604 
1605 	newseg->s_ops = &segvn_ops;
1606 	newseg->s_data = (void *)newsvd;
1607 	newseg->s_szc = seg->s_szc;
1608 
1609 	newsvd->seg = newseg;
1610 	if ((newsvd->vp = svd->vp) != NULL) {
1611 		VN_HOLD(svd->vp);
1612 		if (svd->type == MAP_SHARED)
1613 			lgrp_shm_policy_init(NULL, svd->vp);
1614 	}
1615 	newsvd->offset = svd->offset;
1616 	newsvd->prot = svd->prot;
1617 	newsvd->maxprot = svd->maxprot;
1618 	newsvd->pageprot = svd->pageprot;
1619 	newsvd->type = svd->type;
1620 	newsvd->cred = svd->cred;
1621 	crhold(newsvd->cred);
1622 	newsvd->advice = svd->advice;
1623 	newsvd->pageadvice = svd->pageadvice;
1624 	newsvd->svn_inz = svd->svn_inz;
1625 	newsvd->swresv = svd->swresv;
1626 	newsvd->pageswap = svd->pageswap;
1627 	newsvd->flags = svd->flags;
1628 	newsvd->softlockcnt = 0;
1629 	newsvd->softlockcnt_sbase = 0;
1630 	newsvd->softlockcnt_send = 0;
1631 	newsvd->policy_info = svd->policy_info;
1632 	newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1633 
1634 	if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1635 		/*
1636 		 * Not attaching to a shared anon object.
1637 		 */
1638 		ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1639 		    svd->tr_state == SEGVN_TR_OFF);
1640 		if (svd->tr_state == SEGVN_TR_ON) {
1641 			ASSERT(newsvd->vp != NULL && amp != NULL);
1642 			newsvd->tr_state = SEGVN_TR_INIT;
1643 		} else {
1644 			newsvd->tr_state = svd->tr_state;
1645 		}
1646 		newsvd->amp = NULL;
1647 		newsvd->anon_index = 0;
1648 	} else {
1649 		/* regions for now are only used on pure vnode segments */
1650 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1651 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1652 		newsvd->tr_state = SEGVN_TR_OFF;
1653 		if (svd->type == MAP_SHARED) {
1654 			ASSERT(svd->svn_inz == SEGVN_INZ_NONE);
1655 			newsvd->amp = amp;
1656 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1657 			amp->refcnt++;
1658 			ANON_LOCK_EXIT(&amp->a_rwlock);
1659 			newsvd->anon_index = svd->anon_index;
1660 		} else {
1661 			int reclaim = 1;
1662 
1663 			/*
1664 			 * Allocate and initialize new anon_map structure.
1665 			 */
1666 			newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1667 			    ANON_SLEEP);
1668 			newsvd->amp->a_szc = newseg->s_szc;
1669 			newsvd->anon_index = 0;
1670 			ASSERT(svd->svn_inz == SEGVN_INZ_NONE ||
1671 			    svd->svn_inz == SEGVN_INZ_ALL ||
1672 			    svd->svn_inz == SEGVN_INZ_VPP);
1673 
1674 			/*
1675 			 * We don't have to acquire the anon_map lock
1676 			 * for the new segment (since it belongs to an
1677 			 * address space that is still not associated
1678 			 * with any process), or the segment in the old
1679 			 * address space (since all threads in it
1680 			 * are stopped while duplicating the address space).
1681 			 */
1682 
1683 			/*
1684 			 * The goal of the following code is to make sure that
1685 			 * softlocked pages do not end up as copy on write
1686 			 * pages.  This would cause problems where one
1687 			 * thread writes to a page that is COW and a different
1688 			 * thread in the same process has softlocked it.  The
1689 			 * softlock lock would move away from this process
1690 			 * because the write would cause this process to get
1691 			 * a copy (without the softlock).
1692 			 *
1693 			 * The strategy here is to just break the
1694 			 * sharing on pages that could possibly be
1695 			 * softlocked.
1696 			 *
1697 			 * In addition, if any pages have been marked that they
1698 			 * should be inherited as zero, then we immediately go
1699 			 * ahead and break COW and zero them. In the case of a
1700 			 * softlocked page that should be inherited zero, we
1701 			 * break COW and just get a zero page.
1702 			 */
1703 retry:
1704 			if (svd->softlockcnt ||
1705 			    svd->svn_inz != SEGVN_INZ_NONE) {
1706 				/*
1707 				 * The softlock count might be non zero
1708 				 * because some pages are still stuck in the
1709 				 * cache for lazy reclaim. Flush the cache
1710 				 * now. This should drop the count to zero.
1711 				 * [or there is really I/O going on to these
1712 				 * pages]. Note, we have the writers lock so
1713 				 * nothing gets inserted during the flush.
1714 				 */
1715 				if (svd->softlockcnt && reclaim == 1) {
1716 					segvn_purge(seg);
1717 					reclaim = 0;
1718 					goto retry;
1719 				}
1720 
1721 				error = segvn_dup_pages(seg, newseg);
1722 				if (error != 0) {
1723 					newsvd->vpage = NULL;
1724 					goto out;
1725 				}
1726 			} else {	/* common case */
1727 				if (seg->s_szc != 0) {
1728 					/*
1729 					 * If at least one of anon slots of a
1730 					 * large page exists then make sure
1731 					 * all anon slots of a large page
1732 					 * exist to avoid partial cow sharing
1733 					 * of a large page in the future.
1734 					 */
1735 					anon_dup_fill_holes(amp->ahp,
1736 					    svd->anon_index, newsvd->amp->ahp,
1737 					    0, seg->s_size, seg->s_szc,
1738 					    svd->vp != NULL);
1739 				} else {
1740 					anon_dup(amp->ahp, svd->anon_index,
1741 					    newsvd->amp->ahp, 0, seg->s_size);
1742 				}
1743 
1744 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1745 				    seg->s_size, PROT_WRITE);
1746 			}
1747 		}
1748 	}
1749 	/*
1750 	 * If necessary, create a vpage structure for the new segment.
1751 	 * Do not copy any page lock indications.
1752 	 */
1753 	if (svd->vpage != NULL) {
1754 		uint_t i;
1755 		struct vpage *ovp = svd->vpage;
1756 		struct vpage *nvp;
1757 
1758 		nvp = newsvd->vpage =
1759 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1760 		for (i = 0; i < npages; i++) {
1761 			*nvp = *ovp++;
1762 			VPP_CLRPPLOCK(nvp++);
1763 		}
1764 	} else
1765 		newsvd->vpage = NULL;
1766 
1767 	/* Inform the vnode of the new mapping */
1768 	if (newsvd->vp != NULL) {
1769 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1770 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1771 		    newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1772 	}
1773 out:
1774 	if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1775 		ASSERT(newsvd->amp == NULL);
1776 		ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1777 		newsvd->rcookie = svd->rcookie;
1778 		hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1779 	}
1780 	return (error);
1781 }
1782 
1783 
1784 /*
1785  * callback function to invoke free_vp_pages() for only those pages actually
1786  * processed by the HAT when a shared region is destroyed.
1787  */
1788 extern int free_pages;
1789 
1790 static void
1791 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1792     size_t r_size, void *r_obj, u_offset_t r_objoff)
1793 {
1794 	u_offset_t off;
1795 	size_t len;
1796 	vnode_t *vp = (vnode_t *)r_obj;
1797 
1798 	ASSERT(eaddr > saddr);
1799 	ASSERT(saddr >= r_saddr);
1800 	ASSERT(saddr < r_saddr + r_size);
1801 	ASSERT(eaddr > r_saddr);
1802 	ASSERT(eaddr <= r_saddr + r_size);
1803 	ASSERT(vp != NULL);
1804 
1805 	if (!free_pages) {
1806 		return;
1807 	}
1808 
1809 	len = eaddr - saddr;
1810 	off = (saddr - r_saddr) + r_objoff;
1811 	free_vp_pages(vp, off, len);
1812 }
1813 
1814 /*
1815  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1816  * those pages actually processed by the HAT
1817  */
1818 static void
1819 segvn_hat_unload_callback(hat_callback_t *cb)
1820 {
1821 	struct seg		*seg = cb->hcb_data;
1822 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1823 	size_t			len;
1824 	u_offset_t		off;
1825 
1826 	ASSERT(svd->vp != NULL);
1827 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1828 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1829 
1830 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1831 	off = cb->hcb_start_addr - seg->s_base;
1832 	free_vp_pages(svd->vp, svd->offset + off, len);
1833 }
1834 
1835 /*
1836  * This function determines the number of bytes of swap reserved by
1837  * a segment for which per-page accounting is present. It is used to
1838  * calculate the correct value of a segvn_data's swresv.
1839  */
1840 static size_t
1841 segvn_count_swap_by_vpages(struct seg *seg)
1842 {
1843 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1844 	struct vpage *vp, *evp;
1845 	size_t nswappages = 0;
1846 
1847 	ASSERT(svd->pageswap);
1848 	ASSERT(svd->vpage != NULL);
1849 
1850 	evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1851 
1852 	for (vp = svd->vpage; vp < evp; vp++) {
1853 		if (VPP_ISSWAPRES(vp))
1854 			nswappages++;
1855 	}
1856 
1857 	return (nswappages << PAGESHIFT);
1858 }
1859 
1860 static int
1861 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1862 {
1863 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1864 	struct segvn_data *nsvd;
1865 	struct seg *nseg;
1866 	struct anon_map *amp;
1867 	pgcnt_t	opages;		/* old segment size in pages */
1868 	pgcnt_t	npages;		/* new segment size in pages */
1869 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1870 	hat_callback_t callback;	/* used for free_vp_pages() */
1871 	hat_callback_t *cbp = NULL;
1872 	caddr_t nbase;
1873 	size_t nsize;
1874 	size_t oswresv;
1875 	int reclaim = 1;
1876 
1877 	/*
1878 	 * We don't need any segment level locks for "segvn" data
1879 	 * since the address space is "write" locked.
1880 	 */
1881 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1882 
1883 	/*
1884 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1885 	 * softlockcnt is protected from change by the as write lock.
1886 	 */
1887 retry:
1888 	if (svd->softlockcnt > 0) {
1889 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1890 
1891 		/*
1892 		 * If this is shared segment non 0 softlockcnt
1893 		 * means locked pages are still in use.
1894 		 */
1895 		if (svd->type == MAP_SHARED) {
1896 			return (EAGAIN);
1897 		}
1898 
1899 		/*
1900 		 * since we do have the writers lock nobody can fill
1901 		 * the cache during the purge. The flush either succeeds
1902 		 * or we still have pending I/Os.
1903 		 */
1904 		if (reclaim == 1) {
1905 			segvn_purge(seg);
1906 			reclaim = 0;
1907 			goto retry;
1908 		}
1909 		return (EAGAIN);
1910 	}
1911 
1912 	/*
1913 	 * Check for bad sizes
1914 	 */
1915 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1916 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1917 		panic("segvn_unmap");
1918 		/*NOTREACHED*/
1919 	}
1920 
1921 	if (seg->s_szc != 0) {
1922 		size_t pgsz = page_get_pagesize(seg->s_szc);
1923 		int err;
1924 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1925 			ASSERT(seg->s_base != addr || seg->s_size != len);
1926 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1927 				ASSERT(svd->amp == NULL);
1928 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1929 				hat_leave_region(seg->s_as->a_hat,
1930 				    svd->rcookie, HAT_REGION_TEXT);
1931 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
1932 				/*
1933 				 * could pass a flag to segvn_demote_range()
1934 				 * below to tell it not to do any unloads but
1935 				 * this case is rare enough to not bother for
1936 				 * now.
1937 				 */
1938 			} else if (svd->tr_state == SEGVN_TR_INIT) {
1939 				svd->tr_state = SEGVN_TR_OFF;
1940 			} else if (svd->tr_state == SEGVN_TR_ON) {
1941 				ASSERT(svd->amp != NULL);
1942 				segvn_textunrepl(seg, 1);
1943 				ASSERT(svd->amp == NULL);
1944 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1945 			}
1946 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1947 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1948 			if (err == 0) {
1949 				return (IE_RETRY);
1950 			}
1951 			return (err);
1952 		}
1953 	}
1954 
1955 	/* Inform the vnode of the unmapping. */
1956 	if (svd->vp) {
1957 		int error;
1958 
1959 		error = VOP_DELMAP(svd->vp,
1960 		    (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1961 		    seg->s_as, addr, len, svd->prot, svd->maxprot,
1962 		    svd->type, svd->cred, NULL);
1963 
1964 		if (error == EAGAIN)
1965 			return (error);
1966 	}
1967 
1968 	/*
1969 	 * Remove any page locks set through this mapping.
1970 	 * If text replication is not off no page locks could have been
1971 	 * established via this mapping.
1972 	 */
1973 	if (svd->tr_state == SEGVN_TR_OFF) {
1974 		(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1975 	}
1976 
1977 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1978 		ASSERT(svd->amp == NULL);
1979 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1980 		ASSERT(svd->type == MAP_PRIVATE);
1981 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1982 		    HAT_REGION_TEXT);
1983 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
1984 	} else if (svd->tr_state == SEGVN_TR_ON) {
1985 		ASSERT(svd->amp != NULL);
1986 		ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1987 		segvn_textunrepl(seg, 1);
1988 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1989 	} else {
1990 		if (svd->tr_state != SEGVN_TR_OFF) {
1991 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
1992 			svd->tr_state = SEGVN_TR_OFF;
1993 		}
1994 		/*
1995 		 * Unload any hardware translations in the range to be taken
1996 		 * out. Use a callback to invoke free_vp_pages() effectively.
1997 		 */
1998 		if (svd->vp != NULL && free_pages != 0) {
1999 			callback.hcb_data = seg;
2000 			callback.hcb_function = segvn_hat_unload_callback;
2001 			cbp = &callback;
2002 		}
2003 		hat_unload_callback(seg->s_as->a_hat, addr, len,
2004 		    HAT_UNLOAD_UNMAP, cbp);
2005 
2006 		if (svd->type == MAP_SHARED && svd->vp != NULL &&
2007 		    (svd->vp->v_flag & VVMEXEC) &&
2008 		    ((svd->prot & PROT_WRITE) || svd->pageprot)) {
2009 			segvn_inval_trcache(svd->vp);
2010 		}
2011 	}
2012 
2013 	/*
2014 	 * Check for entire segment
2015 	 */
2016 	if (addr == seg->s_base && len == seg->s_size) {
2017 		seg_free(seg);
2018 		return (0);
2019 	}
2020 
2021 	opages = seg_pages(seg);
2022 	dpages = btop(len);
2023 	npages = opages - dpages;
2024 	amp = svd->amp;
2025 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
2026 
2027 	/*
2028 	 * Check for beginning of segment
2029 	 */
2030 	if (addr == seg->s_base) {
2031 		if (svd->vpage != NULL) {
2032 			size_t nbytes;
2033 			struct vpage *ovpage;
2034 
2035 			ovpage = svd->vpage;	/* keep pointer to vpage */
2036 
2037 			nbytes = vpgtob(npages);
2038 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2039 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
2040 
2041 			/* free up old vpage */
2042 			kmem_free(ovpage, vpgtob(opages));
2043 		}
2044 		if (amp != NULL) {
2045 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2046 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2047 				/*
2048 				 * Shared anon map is no longer in use. Before
2049 				 * freeing its pages purge all entries from
2050 				 * pcache that belong to this amp.
2051 				 */
2052 				if (svd->type == MAP_SHARED) {
2053 					ASSERT(amp->refcnt == 1);
2054 					ASSERT(svd->softlockcnt == 0);
2055 					anonmap_purge(amp);
2056 				}
2057 				/*
2058 				 * Free up now unused parts of anon_map array.
2059 				 */
2060 				if (amp->a_szc == seg->s_szc) {
2061 					if (seg->s_szc != 0) {
2062 						anon_free_pages(amp->ahp,
2063 						    svd->anon_index, len,
2064 						    seg->s_szc);
2065 					} else {
2066 						anon_free(amp->ahp,
2067 						    svd->anon_index,
2068 						    len);
2069 					}
2070 				} else {
2071 					ASSERT(svd->type == MAP_SHARED);
2072 					ASSERT(amp->a_szc > seg->s_szc);
2073 					anon_shmap_free_pages(amp,
2074 					    svd->anon_index, len);
2075 				}
2076 
2077 				/*
2078 				 * Unreserve swap space for the
2079 				 * unmapped chunk of this segment in
2080 				 * case it's MAP_SHARED
2081 				 */
2082 				if (svd->type == MAP_SHARED) {
2083 					anon_unresv_zone(len,
2084 					    seg->s_as->a_proc->p_zone);
2085 					amp->swresv -= len;
2086 				}
2087 			}
2088 			ANON_LOCK_EXIT(&amp->a_rwlock);
2089 			svd->anon_index += dpages;
2090 		}
2091 		if (svd->vp != NULL)
2092 			svd->offset += len;
2093 
2094 		seg->s_base += len;
2095 		seg->s_size -= len;
2096 
2097 		if (svd->swresv) {
2098 			if (svd->flags & MAP_NORESERVE) {
2099 				ASSERT(amp);
2100 				oswresv = svd->swresv;
2101 
2102 				svd->swresv = ptob(anon_pages(amp->ahp,
2103 				    svd->anon_index, npages));
2104 				anon_unresv_zone(oswresv - svd->swresv,
2105 				    seg->s_as->a_proc->p_zone);
2106 				if (SEG_IS_PARTIAL_RESV(seg))
2107 					seg->s_as->a_resvsize -= oswresv -
2108 					    svd->swresv;
2109 			} else {
2110 				size_t unlen;
2111 
2112 				if (svd->pageswap) {
2113 					oswresv = svd->swresv;
2114 					svd->swresv =
2115 					    segvn_count_swap_by_vpages(seg);
2116 					ASSERT(oswresv >= svd->swresv);
2117 					unlen = oswresv - svd->swresv;
2118 				} else {
2119 					svd->swresv -= len;
2120 					ASSERT(svd->swresv == seg->s_size);
2121 					unlen = len;
2122 				}
2123 				anon_unresv_zone(unlen,
2124 				    seg->s_as->a_proc->p_zone);
2125 			}
2126 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2127 			    seg, len, 0);
2128 		}
2129 
2130 		return (0);
2131 	}
2132 
2133 	/*
2134 	 * Check for end of segment
2135 	 */
2136 	if (addr + len == seg->s_base + seg->s_size) {
2137 		if (svd->vpage != NULL) {
2138 			size_t nbytes;
2139 			struct vpage *ovpage;
2140 
2141 			ovpage = svd->vpage;	/* keep pointer to vpage */
2142 
2143 			nbytes = vpgtob(npages);
2144 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2145 			bcopy(ovpage, svd->vpage, nbytes);
2146 
2147 			/* free up old vpage */
2148 			kmem_free(ovpage, vpgtob(opages));
2149 
2150 		}
2151 		if (amp != NULL) {
2152 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2153 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2154 				/*
2155 				 * Free up now unused parts of anon_map array.
2156 				 */
2157 				ulong_t an_idx = svd->anon_index + npages;
2158 
2159 				/*
2160 				 * Shared anon map is no longer in use. Before
2161 				 * freeing its pages purge all entries from
2162 				 * pcache that belong to this amp.
2163 				 */
2164 				if (svd->type == MAP_SHARED) {
2165 					ASSERT(amp->refcnt == 1);
2166 					ASSERT(svd->softlockcnt == 0);
2167 					anonmap_purge(amp);
2168 				}
2169 
2170 				if (amp->a_szc == seg->s_szc) {
2171 					if (seg->s_szc != 0) {
2172 						anon_free_pages(amp->ahp,
2173 						    an_idx, len,
2174 						    seg->s_szc);
2175 					} else {
2176 						anon_free(amp->ahp, an_idx,
2177 						    len);
2178 					}
2179 				} else {
2180 					ASSERT(svd->type == MAP_SHARED);
2181 					ASSERT(amp->a_szc > seg->s_szc);
2182 					anon_shmap_free_pages(amp,
2183 					    an_idx, len);
2184 				}
2185 
2186 				/*
2187 				 * Unreserve swap space for the
2188 				 * unmapped chunk of this segment in
2189 				 * case it's MAP_SHARED
2190 				 */
2191 				if (svd->type == MAP_SHARED) {
2192 					anon_unresv_zone(len,
2193 					    seg->s_as->a_proc->p_zone);
2194 					amp->swresv -= len;
2195 				}
2196 			}
2197 			ANON_LOCK_EXIT(&amp->a_rwlock);
2198 		}
2199 
2200 		seg->s_size -= len;
2201 
2202 		if (svd->swresv) {
2203 			if (svd->flags & MAP_NORESERVE) {
2204 				ASSERT(amp);
2205 				oswresv = svd->swresv;
2206 				svd->swresv = ptob(anon_pages(amp->ahp,
2207 				    svd->anon_index, npages));
2208 				anon_unresv_zone(oswresv - svd->swresv,
2209 				    seg->s_as->a_proc->p_zone);
2210 				if (SEG_IS_PARTIAL_RESV(seg))
2211 					seg->s_as->a_resvsize -= oswresv -
2212 					    svd->swresv;
2213 			} else {
2214 				size_t unlen;
2215 
2216 				if (svd->pageswap) {
2217 					oswresv = svd->swresv;
2218 					svd->swresv =
2219 					    segvn_count_swap_by_vpages(seg);
2220 					ASSERT(oswresv >= svd->swresv);
2221 					unlen = oswresv - svd->swresv;
2222 				} else {
2223 					svd->swresv -= len;
2224 					ASSERT(svd->swresv == seg->s_size);
2225 					unlen = len;
2226 				}
2227 				anon_unresv_zone(unlen,
2228 				    seg->s_as->a_proc->p_zone);
2229 			}
2230 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2231 			    "anon proc:%p %lu %u", seg, len, 0);
2232 		}
2233 
2234 		return (0);
2235 	}
2236 
2237 	/*
2238 	 * The section to go is in the middle of the segment,
2239 	 * have to make it into two segments.  nseg is made for
2240 	 * the high end while seg is cut down at the low end.
2241 	 */
2242 	nbase = addr + len;				/* new seg base */
2243 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
2244 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
2245 	nseg = seg_alloc(seg->s_as, nbase, nsize);
2246 	if (nseg == NULL) {
2247 		panic("segvn_unmap seg_alloc");
2248 		/*NOTREACHED*/
2249 	}
2250 	nseg->s_ops = seg->s_ops;
2251 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2252 	nseg->s_data = (void *)nsvd;
2253 	nseg->s_szc = seg->s_szc;
2254 	*nsvd = *svd;
2255 	nsvd->seg = nseg;
2256 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2257 	nsvd->swresv = 0;
2258 	nsvd->softlockcnt = 0;
2259 	nsvd->softlockcnt_sbase = 0;
2260 	nsvd->softlockcnt_send = 0;
2261 	nsvd->svn_inz = svd->svn_inz;
2262 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2263 
2264 	if (svd->vp != NULL) {
2265 		VN_HOLD(nsvd->vp);
2266 		if (nsvd->type == MAP_SHARED)
2267 			lgrp_shm_policy_init(NULL, nsvd->vp);
2268 	}
2269 	crhold(svd->cred);
2270 
2271 	if (svd->vpage == NULL) {
2272 		nsvd->vpage = NULL;
2273 	} else {
2274 		/* need to split vpage into two arrays */
2275 		size_t nbytes;
2276 		struct vpage *ovpage;
2277 
2278 		ovpage = svd->vpage;		/* keep pointer to vpage */
2279 
2280 		npages = seg_pages(seg);	/* seg has shrunk */
2281 		nbytes = vpgtob(npages);
2282 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2283 
2284 		bcopy(ovpage, svd->vpage, nbytes);
2285 
2286 		npages = seg_pages(nseg);
2287 		nbytes = vpgtob(npages);
2288 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2289 
2290 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2291 
2292 		/* free up old vpage */
2293 		kmem_free(ovpage, vpgtob(opages));
2294 	}
2295 
2296 	if (amp == NULL) {
2297 		nsvd->amp = NULL;
2298 		nsvd->anon_index = 0;
2299 	} else {
2300 		/*
2301 		 * Need to create a new anon map for the new segment.
2302 		 * We'll also allocate a new smaller array for the old
2303 		 * smaller segment to save space.
2304 		 */
2305 		opages = btop((uintptr_t)(addr - seg->s_base));
2306 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2307 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2308 			/*
2309 			 * Free up now unused parts of anon_map array.
2310 			 */
2311 			ulong_t an_idx = svd->anon_index + opages;
2312 
2313 			/*
2314 			 * Shared anon map is no longer in use. Before
2315 			 * freeing its pages purge all entries from
2316 			 * pcache that belong to this amp.
2317 			 */
2318 			if (svd->type == MAP_SHARED) {
2319 				ASSERT(amp->refcnt == 1);
2320 				ASSERT(svd->softlockcnt == 0);
2321 				anonmap_purge(amp);
2322 			}
2323 
2324 			if (amp->a_szc == seg->s_szc) {
2325 				if (seg->s_szc != 0) {
2326 					anon_free_pages(amp->ahp, an_idx, len,
2327 					    seg->s_szc);
2328 				} else {
2329 					anon_free(amp->ahp, an_idx,
2330 					    len);
2331 				}
2332 			} else {
2333 				ASSERT(svd->type == MAP_SHARED);
2334 				ASSERT(amp->a_szc > seg->s_szc);
2335 				anon_shmap_free_pages(amp, an_idx, len);
2336 			}
2337 
2338 			/*
2339 			 * Unreserve swap space for the
2340 			 * unmapped chunk of this segment in
2341 			 * case it's MAP_SHARED
2342 			 */
2343 			if (svd->type == MAP_SHARED) {
2344 				anon_unresv_zone(len,
2345 				    seg->s_as->a_proc->p_zone);
2346 				amp->swresv -= len;
2347 			}
2348 		}
2349 		nsvd->anon_index = svd->anon_index +
2350 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
2351 		if (svd->type == MAP_SHARED) {
2352 			amp->refcnt++;
2353 			nsvd->amp = amp;
2354 		} else {
2355 			struct anon_map *namp;
2356 			struct anon_hdr *nahp;
2357 
2358 			ASSERT(svd->type == MAP_PRIVATE);
2359 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2360 			namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2361 			namp->a_szc = seg->s_szc;
2362 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2363 			    0, btop(seg->s_size), ANON_SLEEP);
2364 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2365 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2366 			anon_release(amp->ahp, btop(amp->size));
2367 			svd->anon_index = 0;
2368 			nsvd->anon_index = 0;
2369 			amp->ahp = nahp;
2370 			amp->size = seg->s_size;
2371 			nsvd->amp = namp;
2372 		}
2373 		ANON_LOCK_EXIT(&amp->a_rwlock);
2374 	}
2375 	if (svd->swresv) {
2376 		if (svd->flags & MAP_NORESERVE) {
2377 			ASSERT(amp);
2378 			oswresv = svd->swresv;
2379 			svd->swresv = ptob(anon_pages(amp->ahp,
2380 			    svd->anon_index, btop(seg->s_size)));
2381 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2382 			    nsvd->anon_index, btop(nseg->s_size)));
2383 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2384 			anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv),
2385 			    seg->s_as->a_proc->p_zone);
2386 			if (SEG_IS_PARTIAL_RESV(seg))
2387 				seg->s_as->a_resvsize -= oswresv -
2388 				    (svd->swresv + nsvd->swresv);
2389 		} else {
2390 			size_t unlen;
2391 
2392 			if (svd->pageswap) {
2393 				oswresv = svd->swresv;
2394 				svd->swresv = segvn_count_swap_by_vpages(seg);
2395 				nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2396 				ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2397 				unlen = oswresv - (svd->swresv + nsvd->swresv);
2398 			} else {
2399 				if (seg->s_size + nseg->s_size + len !=
2400 				    svd->swresv) {
2401 					panic("segvn_unmap: cannot split "
2402 					    "swap reservation");
2403 					/*NOTREACHED*/
2404 				}
2405 				svd->swresv = seg->s_size;
2406 				nsvd->swresv = nseg->s_size;
2407 				unlen = len;
2408 			}
2409 			anon_unresv_zone(unlen,
2410 			    seg->s_as->a_proc->p_zone);
2411 		}
2412 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2413 		    seg, len, 0);
2414 	}
2415 
2416 	return (0);			/* I'm glad that's all over with! */
2417 }
2418 
2419 static void
2420 segvn_free(struct seg *seg)
2421 {
2422 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2423 	pgcnt_t npages = seg_pages(seg);
2424 	struct anon_map *amp;
2425 	size_t len;
2426 
2427 	/*
2428 	 * We don't need any segment level locks for "segvn" data
2429 	 * since the address space is "write" locked.
2430 	 */
2431 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
2432 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
2433 
2434 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2435 
2436 	/*
2437 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
2438 	 * of unmapped? XXX
2439 	 */
2440 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
2441 	    0, MC_UNLOCK, NULL, 0);
2442 
2443 	/*
2444 	 * Deallocate the vpage and anon pointers if necessary and possible.
2445 	 */
2446 	if (svd->vpage != NULL) {
2447 		kmem_free(svd->vpage, vpgtob(npages));
2448 		svd->vpage = NULL;
2449 	}
2450 	if ((amp = svd->amp) != NULL) {
2451 		/*
2452 		 * If there are no more references to this anon_map
2453 		 * structure, then deallocate the structure after freeing
2454 		 * up all the anon slot pointers that we can.
2455 		 */
2456 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2457 		ASSERT(amp->a_szc >= seg->s_szc);
2458 		if (--amp->refcnt == 0) {
2459 			if (svd->type == MAP_PRIVATE) {
2460 				/*
2461 				 * Private - we only need to anon_free
2462 				 * the part that this segment refers to.
2463 				 */
2464 				if (seg->s_szc != 0) {
2465 					anon_free_pages(amp->ahp,
2466 					    svd->anon_index, seg->s_size,
2467 					    seg->s_szc);
2468 				} else {
2469 					anon_free(amp->ahp, svd->anon_index,
2470 					    seg->s_size);
2471 				}
2472 			} else {
2473 
2474 				/*
2475 				 * Shared anon map is no longer in use. Before
2476 				 * freeing its pages purge all entries from
2477 				 * pcache that belong to this amp.
2478 				 */
2479 				ASSERT(svd->softlockcnt == 0);
2480 				anonmap_purge(amp);
2481 
2482 				/*
2483 				 * Shared - anon_free the entire
2484 				 * anon_map's worth of stuff and
2485 				 * release any swap reservation.
2486 				 */
2487 				if (amp->a_szc != 0) {
2488 					anon_shmap_free_pages(amp, 0,
2489 					    amp->size);
2490 				} else {
2491 					anon_free(amp->ahp, 0, amp->size);
2492 				}
2493 				if ((len = amp->swresv) != 0) {
2494 					anon_unresv_zone(len,
2495 					    seg->s_as->a_proc->p_zone);
2496 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2497 					    "anon proc:%p %lu %u", seg, len, 0);
2498 				}
2499 			}
2500 			svd->amp = NULL;
2501 			ANON_LOCK_EXIT(&amp->a_rwlock);
2502 			anonmap_free(amp);
2503 		} else if (svd->type == MAP_PRIVATE) {
2504 			/*
2505 			 * We had a private mapping which still has
2506 			 * a held anon_map so just free up all the
2507 			 * anon slot pointers that we were using.
2508 			 */
2509 			if (seg->s_szc != 0) {
2510 				anon_free_pages(amp->ahp, svd->anon_index,
2511 				    seg->s_size, seg->s_szc);
2512 			} else {
2513 				anon_free(amp->ahp, svd->anon_index,
2514 				    seg->s_size);
2515 			}
2516 			ANON_LOCK_EXIT(&amp->a_rwlock);
2517 		} else {
2518 			ANON_LOCK_EXIT(&amp->a_rwlock);
2519 		}
2520 	}
2521 
2522 	/*
2523 	 * Release swap reservation.
2524 	 */
2525 	if ((len = svd->swresv) != 0) {
2526 		anon_unresv_zone(svd->swresv,
2527 		    seg->s_as->a_proc->p_zone);
2528 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2529 		    seg, len, 0);
2530 		if (SEG_IS_PARTIAL_RESV(seg))
2531 			seg->s_as->a_resvsize -= svd->swresv;
2532 		svd->swresv = 0;
2533 	}
2534 	/*
2535 	 * Release claim on vnode, credentials, and finally free the
2536 	 * private data.
2537 	 */
2538 	if (svd->vp != NULL) {
2539 		if (svd->type == MAP_SHARED)
2540 			lgrp_shm_policy_fini(NULL, svd->vp);
2541 		VN_RELE(svd->vp);
2542 		svd->vp = NULL;
2543 	}
2544 	crfree(svd->cred);
2545 	svd->pageprot = 0;
2546 	svd->pageadvice = 0;
2547 	svd->pageswap = 0;
2548 	svd->cred = NULL;
2549 
2550 	/*
2551 	 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's
2552 	 * still working with this segment without holding as lock (in case
2553 	 * it's called by pcache async thread).
2554 	 */
2555 	ASSERT(svd->softlockcnt == 0);
2556 	mutex_enter(&svd->segfree_syncmtx);
2557 	mutex_exit(&svd->segfree_syncmtx);
2558 
2559 	seg->s_data = NULL;
2560 	kmem_cache_free(segvn_cache, svd);
2561 }
2562 
2563 /*
2564  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2565  * already been F_SOFTLOCK'ed.
2566  * Caller must always match addr and len of a softunlock with a previous
2567  * softlock with exactly the same addr and len.
2568  */
2569 static void
2570 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2571 {
2572 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2573 	page_t *pp;
2574 	caddr_t adr;
2575 	struct vnode *vp;
2576 	u_offset_t offset;
2577 	ulong_t anon_index = 0;
2578 	struct anon_map *amp;
2579 	struct anon *ap = NULL;
2580 
2581 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
2582 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2583 
2584 	if ((amp = svd->amp) != NULL)
2585 		anon_index = svd->anon_index + seg_page(seg, addr);
2586 
2587 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2588 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2589 		hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2590 	} else {
2591 		hat_unlock(seg->s_as->a_hat, addr, len);
2592 	}
2593 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2594 		if (amp != NULL) {
2595 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2596 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2597 			    != NULL) {
2598 				swap_xlate(ap, &vp, &offset);
2599 			} else {
2600 				vp = svd->vp;
2601 				offset = svd->offset +
2602 				    (uintptr_t)(adr - seg->s_base);
2603 			}
2604 			ANON_LOCK_EXIT(&amp->a_rwlock);
2605 		} else {
2606 			vp = svd->vp;
2607 			offset = svd->offset +
2608 			    (uintptr_t)(adr - seg->s_base);
2609 		}
2610 
2611 		/*
2612 		 * Use page_find() instead of page_lookup() to
2613 		 * find the page since we know that it is locked.
2614 		 */
2615 		pp = page_find(vp, offset);
2616 		if (pp == NULL) {
2617 			panic(
2618 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2619 			    (void *)adr, (void *)ap, (void *)vp, offset);
2620 			/*NOTREACHED*/
2621 		}
2622 
2623 		if (rw == S_WRITE) {
2624 			hat_setrefmod(pp);
2625 			if (seg->s_as->a_vbits)
2626 				hat_setstat(seg->s_as, adr, PAGESIZE,
2627 				    P_REF | P_MOD);
2628 		} else if (rw != S_OTHER) {
2629 			hat_setref(pp);
2630 			if (seg->s_as->a_vbits)
2631 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2632 		}
2633 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2634 		    "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2635 		page_unlock(pp);
2636 	}
2637 	ASSERT(svd->softlockcnt >= btop(len));
2638 	if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) {
2639 		/*
2640 		 * All SOFTLOCKS are gone. Wakeup any waiting
2641 		 * unmappers so they can try again to unmap.
2642 		 * Check for waiters first without the mutex
2643 		 * held so we don't always grab the mutex on
2644 		 * softunlocks.
2645 		 */
2646 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2647 			mutex_enter(&seg->s_as->a_contents);
2648 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2649 				AS_CLRUNMAPWAIT(seg->s_as);
2650 				cv_broadcast(&seg->s_as->a_cv);
2651 			}
2652 			mutex_exit(&seg->s_as->a_contents);
2653 		}
2654 	}
2655 }
2656 
2657 #define	PAGE_HANDLED	((page_t *)-1)
2658 
2659 /*
2660  * Release all the pages in the NULL terminated ppp list
2661  * which haven't already been converted to PAGE_HANDLED.
2662  */
2663 static void
2664 segvn_pagelist_rele(page_t **ppp)
2665 {
2666 	for (; *ppp != NULL; ppp++) {
2667 		if (*ppp != PAGE_HANDLED)
2668 			page_unlock(*ppp);
2669 	}
2670 }
2671 
2672 static int stealcow = 1;
2673 
2674 /*
2675  * Workaround for viking chip bug.  See bug id 1220902.
2676  * To fix this down in pagefault() would require importing so
2677  * much as and segvn code as to be unmaintainable.
2678  */
2679 int enable_mbit_wa = 0;
2680 
2681 /*
2682  * Handles all the dirty work of getting the right
2683  * anonymous pages and loading up the translations.
2684  * This routine is called only from segvn_fault()
2685  * when looping over the range of addresses requested.
2686  *
2687  * The basic algorithm here is:
2688  * 	If this is an anon_zero case
2689  *		Call anon_zero to allocate page
2690  *		Load up translation
2691  *		Return
2692  *	endif
2693  *	If this is an anon page
2694  *		Use anon_getpage to get the page
2695  *	else
2696  *		Find page in pl[] list passed in
2697  *	endif
2698  *	If not a cow
2699  *		Load up the translation to the page
2700  *		return
2701  *	endif
2702  *	Call anon_private to handle cow
2703  *	Load up (writable) translation to new page
2704  */
2705 static faultcode_t
2706 segvn_faultpage(
2707 	struct hat *hat,		/* the hat to use for mapping */
2708 	struct seg *seg,		/* seg_vn of interest */
2709 	caddr_t addr,			/* address in as */
2710 	u_offset_t off,			/* offset in vp */
2711 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2712 	page_t *pl[],			/* object source page pointer */
2713 	uint_t vpprot,			/* access allowed to object pages */
2714 	enum fault_type type,		/* type of fault */
2715 	enum seg_rw rw,			/* type of access at fault */
2716 	int brkcow)			/* we may need to break cow */
2717 {
2718 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2719 	page_t *pp, **ppp;
2720 	uint_t pageflags = 0;
2721 	page_t *anon_pl[1 + 1];
2722 	page_t *opp = NULL;		/* original page */
2723 	uint_t prot;
2724 	int err;
2725 	int cow;
2726 	int claim;
2727 	int steal = 0;
2728 	ulong_t anon_index = 0;
2729 	struct anon *ap, *oldap;
2730 	struct anon_map *amp;
2731 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2732 	int anon_lock = 0;
2733 	anon_sync_obj_t cookie;
2734 
2735 	if (svd->flags & MAP_TEXT) {
2736 		hat_flag |= HAT_LOAD_TEXT;
2737 	}
2738 
2739 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2740 	ASSERT(seg->s_szc == 0);
2741 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
2742 
2743 	/*
2744 	 * Initialize protection value for this page.
2745 	 * If we have per page protection values check it now.
2746 	 */
2747 	if (svd->pageprot) {
2748 		uint_t protchk;
2749 
2750 		switch (rw) {
2751 		case S_READ:
2752 			protchk = PROT_READ;
2753 			break;
2754 		case S_WRITE:
2755 			protchk = PROT_WRITE;
2756 			break;
2757 		case S_EXEC:
2758 			protchk = PROT_EXEC;
2759 			break;
2760 		case S_OTHER:
2761 		default:
2762 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2763 			break;
2764 		}
2765 
2766 		prot = VPP_PROT(vpage);
2767 		if ((prot & protchk) == 0)
2768 			return (FC_PROT);	/* illegal access type */
2769 	} else {
2770 		prot = svd->prot;
2771 	}
2772 
2773 	if (type == F_SOFTLOCK) {
2774 		atomic_inc_ulong((ulong_t *)&svd->softlockcnt);
2775 	}
2776 
2777 	/*
2778 	 * Always acquire the anon array lock to prevent 2 threads from
2779 	 * allocating separate anon slots for the same "addr".
2780 	 */
2781 
2782 	if ((amp = svd->amp) != NULL) {
2783 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2784 		anon_index = svd->anon_index + seg_page(seg, addr);
2785 		anon_array_enter(amp, anon_index, &cookie);
2786 		anon_lock = 1;
2787 	}
2788 
2789 	if (svd->vp == NULL && amp != NULL) {
2790 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2791 			/*
2792 			 * Allocate a (normally) writable anonymous page of
2793 			 * zeroes. If no advance reservations, reserve now.
2794 			 */
2795 			if (svd->flags & MAP_NORESERVE) {
2796 				if (anon_resv_zone(ptob(1),
2797 				    seg->s_as->a_proc->p_zone)) {
2798 					atomic_add_long(&svd->swresv, ptob(1));
2799 					atomic_add_long(&seg->s_as->a_resvsize,
2800 					    ptob(1));
2801 				} else {
2802 					err = ENOMEM;
2803 					goto out;
2804 				}
2805 			}
2806 			if ((pp = anon_zero(seg, addr, &ap,
2807 			    svd->cred)) == NULL) {
2808 				err = ENOMEM;
2809 				goto out;	/* out of swap space */
2810 			}
2811 			/*
2812 			 * Re-acquire the anon_map lock and
2813 			 * initialize the anon array entry.
2814 			 */
2815 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2816 			    ANON_SLEEP);
2817 
2818 			ASSERT(pp->p_szc == 0);
2819 
2820 			/*
2821 			 * Handle pages that have been marked for migration
2822 			 */
2823 			if (lgrp_optimizations())
2824 				page_migrate(seg, addr, &pp, 1);
2825 
2826 			if (enable_mbit_wa) {
2827 				if (rw == S_WRITE)
2828 					hat_setmod(pp);
2829 				else if (!hat_ismod(pp))
2830 					prot &= ~PROT_WRITE;
2831 			}
2832 			/*
2833 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2834 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2835 			 * MAP_NORESERVE segment, we may need to
2836 			 * permanently lock the page as it is being faulted
2837 			 * for the first time. The following text applies
2838 			 * only to MAP_NORESERVE segments:
2839 			 *
2840 			 * As per memcntl(2), if this segment was created
2841 			 * after MCL_FUTURE was applied (a "future"
2842 			 * segment), its pages must be locked.  If this
2843 			 * segment existed at MCL_FUTURE application (a
2844 			 * "past" segment), the interface is unclear.
2845 			 *
2846 			 * We decide to lock only if vpage is present:
2847 			 *
2848 			 * - "future" segments will have a vpage array (see
2849 			 *    as_map), and so will be locked as required
2850 			 *
2851 			 * - "past" segments may not have a vpage array,
2852 			 *    depending on whether events (such as
2853 			 *    mprotect) have occurred. Locking if vpage
2854 			 *    exists will preserve legacy behavior.  Not
2855 			 *    locking if vpage is absent, will not break
2856 			 *    the interface or legacy behavior.  Note that
2857 			 *    allocating vpage here if it's absent requires
2858 			 *    upgrading the segvn reader lock, the cost of
2859 			 *    which does not seem worthwhile.
2860 			 *
2861 			 * Usually testing and setting VPP_ISPPLOCK and
2862 			 * VPP_SETPPLOCK requires holding the segvn lock as
2863 			 * writer, but in this case all readers are
2864 			 * serializing on the anon array lock.
2865 			 */
2866 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2867 			    (svd->flags & MAP_NORESERVE) &&
2868 			    !VPP_ISPPLOCK(vpage)) {
2869 				proc_t *p = seg->s_as->a_proc;
2870 				ASSERT(svd->type == MAP_PRIVATE);
2871 				mutex_enter(&p->p_lock);
2872 				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2873 				    1) == 0) {
2874 					claim = VPP_PROT(vpage) & PROT_WRITE;
2875 					if (page_pp_lock(pp, claim, 0)) {
2876 						VPP_SETPPLOCK(vpage);
2877 					} else {
2878 						rctl_decr_locked_mem(p, NULL,
2879 						    PAGESIZE, 1);
2880 					}
2881 				}
2882 				mutex_exit(&p->p_lock);
2883 			}
2884 
2885 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2886 			hat_memload(hat, addr, pp, prot, hat_flag);
2887 
2888 			if (!(hat_flag & HAT_LOAD_LOCK))
2889 				page_unlock(pp);
2890 
2891 			anon_array_exit(&cookie);
2892 			return (0);
2893 		}
2894 	}
2895 
2896 	/*
2897 	 * Obtain the page structure via anon_getpage() if it is
2898 	 * a private copy of an object (the result of a previous
2899 	 * copy-on-write).
2900 	 */
2901 	if (amp != NULL) {
2902 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2903 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2904 			    seg, addr, rw, svd->cred);
2905 			if (err)
2906 				goto out;
2907 
2908 			if (svd->type == MAP_SHARED) {
2909 				/*
2910 				 * If this is a shared mapping to an
2911 				 * anon_map, then ignore the write
2912 				 * permissions returned by anon_getpage().
2913 				 * They apply to the private mappings
2914 				 * of this anon_map.
2915 				 */
2916 				vpprot |= PROT_WRITE;
2917 			}
2918 			opp = anon_pl[0];
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * Search the pl[] list passed in if it is from the
2924 	 * original object (i.e., not a private copy).
2925 	 */
2926 	if (opp == NULL) {
2927 		/*
2928 		 * Find original page.  We must be bringing it in
2929 		 * from the list in pl[].
2930 		 */
2931 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2932 			if (opp == PAGE_HANDLED)
2933 				continue;
2934 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2935 			if (opp->p_offset == off)
2936 				break;
2937 		}
2938 		if (opp == NULL) {
2939 			panic("segvn_faultpage not found");
2940 			/*NOTREACHED*/
2941 		}
2942 		*ppp = PAGE_HANDLED;
2943 
2944 	}
2945 
2946 	ASSERT(PAGE_LOCKED(opp));
2947 
2948 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2949 	    "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0);
2950 
2951 	/*
2952 	 * The fault is treated as a copy-on-write fault if a
2953 	 * write occurs on a private segment and the object
2954 	 * page (i.e., mapping) is write protected.  We assume
2955 	 * that fatal protection checks have already been made.
2956 	 */
2957 
2958 	if (brkcow) {
2959 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2960 		cow = !(vpprot & PROT_WRITE);
2961 	} else if (svd->tr_state == SEGVN_TR_ON) {
2962 		/*
2963 		 * If we are doing text replication COW on first touch.
2964 		 */
2965 		ASSERT(amp != NULL);
2966 		ASSERT(svd->vp != NULL);
2967 		ASSERT(rw != S_WRITE);
2968 		cow = (ap == NULL);
2969 	} else {
2970 		cow = 0;
2971 	}
2972 
2973 	/*
2974 	 * If not a copy-on-write case load the translation
2975 	 * and return.
2976 	 */
2977 	if (cow == 0) {
2978 
2979 		/*
2980 		 * Handle pages that have been marked for migration
2981 		 */
2982 		if (lgrp_optimizations())
2983 			page_migrate(seg, addr, &opp, 1);
2984 
2985 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2986 			if (rw == S_WRITE)
2987 				hat_setmod(opp);
2988 			else if (rw != S_OTHER && !hat_ismod(opp))
2989 				prot &= ~PROT_WRITE;
2990 		}
2991 
2992 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2993 		    (!svd->pageprot && svd->prot == (prot & vpprot)));
2994 		ASSERT(amp == NULL ||
2995 		    svd->rcookie == HAT_INVALID_REGION_COOKIE);
2996 		hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2997 		    svd->rcookie);
2998 
2999 		if (!(hat_flag & HAT_LOAD_LOCK))
3000 			page_unlock(opp);
3001 
3002 		if (anon_lock) {
3003 			anon_array_exit(&cookie);
3004 		}
3005 		return (0);
3006 	}
3007 
3008 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3009 
3010 	hat_setref(opp);
3011 
3012 	ASSERT(amp != NULL && anon_lock);
3013 
3014 	/*
3015 	 * Steal the page only if it isn't a private page
3016 	 * since stealing a private page is not worth the effort.
3017 	 */
3018 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
3019 		steal = 1;
3020 
3021 	/*
3022 	 * Steal the original page if the following conditions are true:
3023 	 *
3024 	 * We are low on memory, the page is not private, page is not large,
3025 	 * not shared, not modified, not `locked' or if we have it `locked'
3026 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
3027 	 * that the page is not shared) and if it doesn't have any
3028 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
3029 	 * and p_lckcnt because we first get exclusive lock on page.
3030 	 */
3031 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
3032 
3033 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
3034 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
3035 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
3036 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
3037 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
3038 		/*
3039 		 * Check if this page has other translations
3040 		 * after unloading our translation.
3041 		 */
3042 		if (hat_page_is_mapped(opp)) {
3043 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3044 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
3045 			    HAT_UNLOAD);
3046 		}
3047 
3048 		/*
3049 		 * hat_unload() might sync back someone else's recent
3050 		 * modification, so check again.
3051 		 */
3052 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
3053 			pageflags |= STEAL_PAGE;
3054 	}
3055 
3056 	/*
3057 	 * If we have a vpage pointer, see if it indicates that we have
3058 	 * ``locked'' the page we map -- if so, tell anon_private to
3059 	 * transfer the locking resource to the new page.
3060 	 *
3061 	 * See Statement at the beginning of segvn_lockop regarding
3062 	 * the way lockcnts/cowcnts are handled during COW.
3063 	 *
3064 	 */
3065 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
3066 		pageflags |= LOCK_PAGE;
3067 
3068 	/*
3069 	 * Allocate a private page and perform the copy.
3070 	 * For MAP_NORESERVE reserve swap space now, unless this
3071 	 * is a cow fault on an existing anon page in which case
3072 	 * MAP_NORESERVE will have made advance reservations.
3073 	 */
3074 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3075 		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3076 			atomic_add_long(&svd->swresv, ptob(1));
3077 			atomic_add_long(&seg->s_as->a_resvsize, ptob(1));
3078 		} else {
3079 			page_unlock(opp);
3080 			err = ENOMEM;
3081 			goto out;
3082 		}
3083 	}
3084 	oldap = ap;
3085 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3086 	if (pp == NULL) {
3087 		err = ENOMEM;	/* out of swap space */
3088 		goto out;
3089 	}
3090 
3091 	/*
3092 	 * If we copied away from an anonymous page, then
3093 	 * we are one step closer to freeing up an anon slot.
3094 	 *
3095 	 * NOTE:  The original anon slot must be released while
3096 	 * holding the "anon_map" lock.  This is necessary to prevent
3097 	 * other threads from obtaining a pointer to the anon slot
3098 	 * which may be freed if its "refcnt" is 1.
3099 	 */
3100 	if (oldap != NULL)
3101 		anon_decref(oldap);
3102 
3103 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3104 
3105 	/*
3106 	 * Handle pages that have been marked for migration
3107 	 */
3108 	if (lgrp_optimizations())
3109 		page_migrate(seg, addr, &pp, 1);
3110 
3111 	ASSERT(pp->p_szc == 0);
3112 
3113 	ASSERT(!IS_VMODSORT(pp->p_vnode));
3114 	if (enable_mbit_wa) {
3115 		if (rw == S_WRITE)
3116 			hat_setmod(pp);
3117 		else if (!hat_ismod(pp))
3118 			prot &= ~PROT_WRITE;
3119 	}
3120 
3121 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3122 	hat_memload(hat, addr, pp, prot, hat_flag);
3123 
3124 	if (!(hat_flag & HAT_LOAD_LOCK))
3125 		page_unlock(pp);
3126 
3127 	ASSERT(anon_lock);
3128 	anon_array_exit(&cookie);
3129 	return (0);
3130 out:
3131 	if (anon_lock)
3132 		anon_array_exit(&cookie);
3133 
3134 	if (type == F_SOFTLOCK) {
3135 		atomic_dec_ulong((ulong_t *)&svd->softlockcnt);
3136 	}
3137 	return (FC_MAKE_ERR(err));
3138 }
3139 
3140 /*
3141  * relocate a bunch of smaller targ pages into one large repl page. all targ
3142  * pages must be complete pages smaller than replacement pages.
3143  * it's assumed that no page's szc can change since they are all PAGESIZE or
3144  * complete large pages locked SHARED.
3145  */
3146 static void
3147 segvn_relocate_pages(page_t **targ, page_t *replacement)
3148 {
3149 	page_t *pp;
3150 	pgcnt_t repl_npgs, curnpgs;
3151 	pgcnt_t i;
3152 	uint_t repl_szc = replacement->p_szc;
3153 	page_t *first_repl = replacement;
3154 	page_t *repl;
3155 	spgcnt_t npgs;
3156 
3157 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3158 
3159 	ASSERT(repl_szc != 0);
3160 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
3161 
3162 	i = 0;
3163 	while (repl_npgs) {
3164 		spgcnt_t nreloc;
3165 		int err;
3166 		ASSERT(replacement != NULL);
3167 		pp = targ[i];
3168 		ASSERT(pp->p_szc < repl_szc);
3169 		ASSERT(PAGE_EXCL(pp));
3170 		ASSERT(!PP_ISFREE(pp));
3171 		curnpgs = page_get_pagecnt(pp->p_szc);
3172 		if (curnpgs == 1) {
3173 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3174 			repl = replacement;
3175 			page_sub(&replacement, repl);
3176 			ASSERT(PAGE_EXCL(repl));
3177 			ASSERT(!PP_ISFREE(repl));
3178 			ASSERT(repl->p_szc == repl_szc);
3179 		} else {
3180 			page_t *repl_savepp;
3181 			int j;
3182 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3183 			repl_savepp = replacement;
3184 			for (j = 0; j < curnpgs; j++) {
3185 				repl = replacement;
3186 				page_sub(&replacement, repl);
3187 				ASSERT(PAGE_EXCL(repl));
3188 				ASSERT(!PP_ISFREE(repl));
3189 				ASSERT(repl->p_szc == repl_szc);
3190 				ASSERT(page_pptonum(targ[i + j]) ==
3191 				    page_pptonum(targ[i]) + j);
3192 			}
3193 			repl = repl_savepp;
3194 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3195 		}
3196 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3197 		if (err || nreloc != curnpgs) {
3198 			panic("segvn_relocate_pages: "
3199 			    "page_relocate failed err=%d curnpgs=%ld "
3200 			    "nreloc=%ld", err, curnpgs, nreloc);
3201 		}
3202 		ASSERT(curnpgs <= repl_npgs);
3203 		repl_npgs -= curnpgs;
3204 		i += curnpgs;
3205 	}
3206 	ASSERT(replacement == NULL);
3207 
3208 	repl = first_repl;
3209 	repl_npgs = npgs;
3210 	for (i = 0; i < repl_npgs; i++) {
3211 		ASSERT(PAGE_EXCL(repl));
3212 		ASSERT(!PP_ISFREE(repl));
3213 		targ[i] = repl;
3214 		page_downgrade(targ[i]);
3215 		repl++;
3216 	}
3217 }
3218 
3219 /*
3220  * Check if all pages in ppa array are complete smaller than szc pages and
3221  * their roots will still be aligned relative to their current size if the
3222  * entire ppa array is relocated into one szc page. If these conditions are
3223  * not met return 0.
3224  *
3225  * If all pages are properly aligned attempt to upgrade their locks
3226  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3227  * upgrdfail was set to 0 by caller.
3228  *
3229  * Return 1 if all pages are aligned and locked exclusively.
3230  *
3231  * If all pages in ppa array happen to be physically contiguous to make one
3232  * szc page and all exclusive locks are successfully obtained promote the page
3233  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3234  */
3235 static int
3236 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3237 {
3238 	page_t *pp;
3239 	pfn_t pfn;
3240 	pgcnt_t totnpgs = page_get_pagecnt(szc);
3241 	pfn_t first_pfn;
3242 	int contig = 1;
3243 	pgcnt_t i;
3244 	pgcnt_t j;
3245 	uint_t curszc;
3246 	pgcnt_t curnpgs;
3247 	int root = 0;
3248 
3249 	ASSERT(szc > 0);
3250 
3251 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3252 
3253 	for (i = 0; i < totnpgs; i++) {
3254 		pp = ppa[i];
3255 		ASSERT(PAGE_SHARED(pp));
3256 		ASSERT(!PP_ISFREE(pp));
3257 		pfn = page_pptonum(pp);
3258 		if (i == 0) {
3259 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
3260 				contig = 0;
3261 			} else {
3262 				first_pfn = pfn;
3263 			}
3264 		} else if (contig && pfn != first_pfn + i) {
3265 			contig = 0;
3266 		}
3267 		if (pp->p_szc == 0) {
3268 			if (root) {
3269 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3270 				return (0);
3271 			}
3272 		} else if (!root) {
3273 			if ((curszc = pp->p_szc) >= szc) {
3274 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3275 				return (0);
3276 			}
3277 			if (curszc == 0) {
3278 				/*
3279 				 * p_szc changed means we don't have all pages
3280 				 * locked. return failure.
3281 				 */
3282 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3283 				return (0);
3284 			}
3285 			curnpgs = page_get_pagecnt(curszc);
3286 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
3287 			    !IS_P2ALIGNED(i, curnpgs)) {
3288 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3289 				return (0);
3290 			}
3291 			root = 1;
3292 		} else {
3293 			ASSERT(i > 0);
3294 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3295 			if (pp->p_szc != curszc) {
3296 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3297 				return (0);
3298 			}
3299 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3300 				panic("segvn_full_szcpages: "
3301 				    "large page not physically contiguous");
3302 			}
3303 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3304 				root = 0;
3305 			}
3306 		}
3307 	}
3308 
3309 	for (i = 0; i < totnpgs; i++) {
3310 		ASSERT(ppa[i]->p_szc < szc);
3311 		if (!page_tryupgrade(ppa[i])) {
3312 			for (j = 0; j < i; j++) {
3313 				page_downgrade(ppa[j]);
3314 			}
3315 			*pszc = ppa[i]->p_szc;
3316 			*upgrdfail = 1;
3317 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3318 			return (0);
3319 		}
3320 	}
3321 
3322 	/*
3323 	 * When a page is put a free cachelist its szc is set to 0.  if file
3324 	 * system reclaimed pages from cachelist targ pages will be physically
3325 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
3326 	 * pages without any relocations.
3327 	 * To avoid any hat issues with previous small mappings
3328 	 * hat_pageunload() the target pages first.
3329 	 */
3330 	if (contig) {
3331 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3332 		for (i = 0; i < totnpgs; i++) {
3333 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3334 		}
3335 		for (i = 0; i < totnpgs; i++) {
3336 			ppa[i]->p_szc = szc;
3337 		}
3338 		for (i = 0; i < totnpgs; i++) {
3339 			ASSERT(PAGE_EXCL(ppa[i]));
3340 			page_downgrade(ppa[i]);
3341 		}
3342 		if (pszc != NULL) {
3343 			*pszc = szc;
3344 		}
3345 	}
3346 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3347 	return (1);
3348 }
3349 
3350 /*
3351  * Create physically contiguous pages for [vp, off] - [vp, off +
3352  * page_size(szc)) range and for private segment return them in ppa array.
3353  * Pages are created either via IO or relocations.
3354  *
3355  * Return 1 on success and 0 on failure.
3356  *
3357  * If physically contiguous pages already exist for this range return 1 without
3358  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3359  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3360  */
3361 
3362 static int
3363 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3364     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3365     int *downsize)
3366 {
3367 	page_t *pplist = *ppplist;
3368 	size_t pgsz = page_get_pagesize(szc);
3369 	pgcnt_t pages = btop(pgsz);
3370 	ulong_t start_off = off;
3371 	u_offset_t eoff = off + pgsz;
3372 	spgcnt_t nreloc;
3373 	u_offset_t io_off = off;
3374 	size_t io_len;
3375 	page_t *io_pplist = NULL;
3376 	page_t *done_pplist = NULL;
3377 	pgcnt_t pgidx = 0;
3378 	page_t *pp;
3379 	page_t *newpp;
3380 	page_t *targpp;
3381 	int io_err = 0;
3382 	int i;
3383 	pfn_t pfn;
3384 	ulong_t ppages;
3385 	page_t *targ_pplist = NULL;
3386 	page_t *repl_pplist = NULL;
3387 	page_t *tmp_pplist;
3388 	int nios = 0;
3389 	uint_t pszc;
3390 	struct vattr va;
3391 
3392 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3393 
3394 	ASSERT(szc != 0);
3395 	ASSERT(pplist->p_szc == szc);
3396 
3397 	/*
3398 	 * downsize will be set to 1 only if we fail to lock pages. this will
3399 	 * allow subsequent faults to try to relocate the page again. If we
3400 	 * fail due to misalignment don't downsize and let the caller map the
3401 	 * whole region with small mappings to avoid more faults into the area
3402 	 * where we can't get large pages anyway.
3403 	 */
3404 	*downsize = 0;
3405 
3406 	while (off < eoff) {
3407 		newpp = pplist;
3408 		ASSERT(newpp != NULL);
3409 		ASSERT(PAGE_EXCL(newpp));
3410 		ASSERT(!PP_ISFREE(newpp));
3411 		/*
3412 		 * we pass NULL for nrelocp to page_lookup_create()
3413 		 * so that it doesn't relocate. We relocate here
3414 		 * later only after we make sure we can lock all
3415 		 * pages in the range we handle and they are all
3416 		 * aligned.
3417 		 */
3418 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3419 		ASSERT(pp != NULL);
3420 		ASSERT(!PP_ISFREE(pp));
3421 		ASSERT(pp->p_vnode == vp);
3422 		ASSERT(pp->p_offset == off);
3423 		if (pp == newpp) {
3424 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3425 			page_sub(&pplist, pp);
3426 			ASSERT(PAGE_EXCL(pp));
3427 			ASSERT(page_iolock_assert(pp));
3428 			page_list_concat(&io_pplist, &pp);
3429 			off += PAGESIZE;
3430 			continue;
3431 		}
3432 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3433 		pfn = page_pptonum(pp);
3434 		pszc = pp->p_szc;
3435 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3436 		    IS_P2ALIGNED(pfn, pages)) {
3437 			ASSERT(repl_pplist == NULL);
3438 			ASSERT(done_pplist == NULL);
3439 			ASSERT(pplist == *ppplist);
3440 			page_unlock(pp);
3441 			page_free_replacement_page(pplist);
3442 			page_create_putback(pages);
3443 			*ppplist = NULL;
3444 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3445 			return (1);
3446 		}
3447 		if (pszc >= szc) {
3448 			page_unlock(pp);
3449 			segvn_faultvnmpss_align_err1++;
3450 			goto out;
3451 		}
3452 		ppages = page_get_pagecnt(pszc);
3453 		if (!IS_P2ALIGNED(pfn, ppages)) {
3454 			ASSERT(pszc > 0);
3455 			/*
3456 			 * sizing down to pszc won't help.
3457 			 */
3458 			page_unlock(pp);
3459 			segvn_faultvnmpss_align_err2++;
3460 			goto out;
3461 		}
3462 		pfn = page_pptonum(newpp);
3463 		if (!IS_P2ALIGNED(pfn, ppages)) {
3464 			ASSERT(pszc > 0);
3465 			/*
3466 			 * sizing down to pszc won't help.
3467 			 */
3468 			page_unlock(pp);
3469 			segvn_faultvnmpss_align_err3++;
3470 			goto out;
3471 		}
3472 		if (!PAGE_EXCL(pp)) {
3473 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3474 			page_unlock(pp);
3475 			*downsize = 1;
3476 			*ret_pszc = pp->p_szc;
3477 			goto out;
3478 		}
3479 		targpp = pp;
3480 		if (io_pplist != NULL) {
3481 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3482 			io_len = off - io_off;
3483 			/*
3484 			 * Some file systems like NFS don't check EOF
3485 			 * conditions in VOP_PAGEIO(). Check it here
3486 			 * now that pages are locked SE_EXCL. Any file
3487 			 * truncation will wait until the pages are
3488 			 * unlocked so no need to worry that file will
3489 			 * be truncated after we check its size here.
3490 			 * XXX fix NFS to remove this check.
3491 			 */
3492 			va.va_mask = AT_SIZE;
3493 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3494 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3495 				page_unlock(targpp);
3496 				goto out;
3497 			}
3498 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3499 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3500 				*downsize = 1;
3501 				*ret_pszc = 0;
3502 				page_unlock(targpp);
3503 				goto out;
3504 			}
3505 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3506 			    B_READ, svd->cred, NULL);
3507 			if (io_err) {
3508 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3509 				page_unlock(targpp);
3510 				if (io_err == EDEADLK) {
3511 					segvn_vmpss_pageio_deadlk_err++;
3512 				}
3513 				goto out;
3514 			}
3515 			nios++;
3516 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3517 			while (io_pplist != NULL) {
3518 				pp = io_pplist;
3519 				page_sub(&io_pplist, pp);
3520 				ASSERT(page_iolock_assert(pp));
3521 				page_io_unlock(pp);
3522 				pgidx = (pp->p_offset - start_off) >>
3523 				    PAGESHIFT;
3524 				ASSERT(pgidx < pages);
3525 				ppa[pgidx] = pp;
3526 				page_list_concat(&done_pplist, &pp);
3527 			}
3528 		}
3529 		pp = targpp;
3530 		ASSERT(PAGE_EXCL(pp));
3531 		ASSERT(pp->p_szc <= pszc);
3532 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3533 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3534 			page_unlock(pp);
3535 			*downsize = 1;
3536 			*ret_pszc = pp->p_szc;
3537 			goto out;
3538 		}
3539 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3540 		/*
3541 		 * page szc chould have changed before the entire group was
3542 		 * locked. reread page szc.
3543 		 */
3544 		pszc = pp->p_szc;
3545 		ppages = page_get_pagecnt(pszc);
3546 
3547 		/* link just the roots */
3548 		page_list_concat(&targ_pplist, &pp);
3549 		page_sub(&pplist, newpp);
3550 		page_list_concat(&repl_pplist, &newpp);
3551 		off += PAGESIZE;
3552 		while (--ppages != 0) {
3553 			newpp = pplist;
3554 			page_sub(&pplist, newpp);
3555 			off += PAGESIZE;
3556 		}
3557 		io_off = off;
3558 	}
3559 	if (io_pplist != NULL) {
3560 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3561 		io_len = eoff - io_off;
3562 		va.va_mask = AT_SIZE;
3563 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3564 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3565 			goto out;
3566 		}
3567 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3568 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3569 			*downsize = 1;
3570 			*ret_pszc = 0;
3571 			goto out;
3572 		}
3573 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3574 		    B_READ, svd->cred, NULL);
3575 		if (io_err) {
3576 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3577 			if (io_err == EDEADLK) {
3578 				segvn_vmpss_pageio_deadlk_err++;
3579 			}
3580 			goto out;
3581 		}
3582 		nios++;
3583 		while (io_pplist != NULL) {
3584 			pp = io_pplist;
3585 			page_sub(&io_pplist, pp);
3586 			ASSERT(page_iolock_assert(pp));
3587 			page_io_unlock(pp);
3588 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3589 			ASSERT(pgidx < pages);
3590 			ppa[pgidx] = pp;
3591 		}
3592 	}
3593 	/*
3594 	 * we're now bound to succeed or panic.
3595 	 * remove pages from done_pplist. it's not needed anymore.
3596 	 */
3597 	while (done_pplist != NULL) {
3598 		pp = done_pplist;
3599 		page_sub(&done_pplist, pp);
3600 	}
3601 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3602 	ASSERT(pplist == NULL);
3603 	*ppplist = NULL;
3604 	while (targ_pplist != NULL) {
3605 		int ret;
3606 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3607 		ASSERT(repl_pplist);
3608 		pp = targ_pplist;
3609 		page_sub(&targ_pplist, pp);
3610 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3611 		newpp = repl_pplist;
3612 		page_sub(&repl_pplist, newpp);
3613 #ifdef DEBUG
3614 		pfn = page_pptonum(pp);
3615 		pszc = pp->p_szc;
3616 		ppages = page_get_pagecnt(pszc);
3617 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3618 		pfn = page_pptonum(newpp);
3619 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3620 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3621 #endif
3622 		nreloc = 0;
3623 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3624 		if (ret != 0 || nreloc == 0) {
3625 			panic("segvn_fill_vp_pages: "
3626 			    "page_relocate failed");
3627 		}
3628 		pp = newpp;
3629 		while (nreloc-- != 0) {
3630 			ASSERT(PAGE_EXCL(pp));
3631 			ASSERT(pp->p_vnode == vp);
3632 			ASSERT(pgidx ==
3633 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3634 			ppa[pgidx++] = pp;
3635 			pp++;
3636 		}
3637 	}
3638 
3639 	if (svd->type == MAP_PRIVATE) {
3640 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3641 		for (i = 0; i < pages; i++) {
3642 			ASSERT(ppa[i] != NULL);
3643 			ASSERT(PAGE_EXCL(ppa[i]));
3644 			ASSERT(ppa[i]->p_vnode == vp);
3645 			ASSERT(ppa[i]->p_offset ==
3646 			    start_off + (i << PAGESHIFT));
3647 			page_downgrade(ppa[i]);
3648 		}
3649 		ppa[pages] = NULL;
3650 	} else {
3651 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3652 		/*
3653 		 * the caller will still call VOP_GETPAGE() for shared segments
3654 		 * to check FS write permissions. For private segments we map
3655 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3656 		 */
3657 		for (i = 0; i < pages; i++) {
3658 			ASSERT(ppa[i] != NULL);
3659 			ASSERT(PAGE_EXCL(ppa[i]));
3660 			ASSERT(ppa[i]->p_vnode == vp);
3661 			ASSERT(ppa[i]->p_offset ==
3662 			    start_off + (i << PAGESHIFT));
3663 			page_unlock(ppa[i]);
3664 		}
3665 		ppa[0] = NULL;
3666 	}
3667 
3668 	return (1);
3669 out:
3670 	/*
3671 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3672 	 * linked on targ_pplist by root pages. reassemble unused replacement
3673 	 * and io pages back to pplist.
3674 	 */
3675 	if (io_pplist != NULL) {
3676 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3677 		pp = io_pplist;
3678 		do {
3679 			ASSERT(pp->p_vnode == vp);
3680 			ASSERT(pp->p_offset == io_off);
3681 			ASSERT(page_iolock_assert(pp));
3682 			page_io_unlock(pp);
3683 			page_hashout(pp, NULL);
3684 			io_off += PAGESIZE;
3685 		} while ((pp = pp->p_next) != io_pplist);
3686 		page_list_concat(&io_pplist, &pplist);
3687 		pplist = io_pplist;
3688 	}
3689 	tmp_pplist = NULL;
3690 	while (targ_pplist != NULL) {
3691 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3692 		pp = targ_pplist;
3693 		ASSERT(PAGE_EXCL(pp));
3694 		page_sub(&targ_pplist, pp);
3695 
3696 		pszc = pp->p_szc;
3697 		ppages = page_get_pagecnt(pszc);
3698 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3699 
3700 		if (pszc != 0) {
3701 			group_page_unlock(pp);
3702 		}
3703 		page_unlock(pp);
3704 
3705 		pp = repl_pplist;
3706 		ASSERT(pp != NULL);
3707 		ASSERT(PAGE_EXCL(pp));
3708 		ASSERT(pp->p_szc == szc);
3709 		page_sub(&repl_pplist, pp);
3710 
3711 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3712 
3713 		/* relink replacement page */
3714 		page_list_concat(&tmp_pplist, &pp);
3715 		while (--ppages != 0) {
3716 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3717 			pp++;
3718 			ASSERT(PAGE_EXCL(pp));
3719 			ASSERT(pp->p_szc == szc);
3720 			page_list_concat(&tmp_pplist, &pp);
3721 		}
3722 	}
3723 	if (tmp_pplist != NULL) {
3724 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3725 		page_list_concat(&tmp_pplist, &pplist);
3726 		pplist = tmp_pplist;
3727 	}
3728 	/*
3729 	 * at this point all pages are either on done_pplist or
3730 	 * pplist. They can't be all on done_pplist otherwise
3731 	 * we'd've been done.
3732 	 */
3733 	ASSERT(pplist != NULL);
3734 	if (nios != 0) {
3735 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3736 		pp = pplist;
3737 		do {
3738 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3739 			ASSERT(pp->p_szc == szc);
3740 			ASSERT(PAGE_EXCL(pp));
3741 			ASSERT(pp->p_vnode != vp);
3742 			pp->p_szc = 0;
3743 		} while ((pp = pp->p_next) != pplist);
3744 
3745 		pp = done_pplist;
3746 		do {
3747 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3748 			ASSERT(pp->p_szc == szc);
3749 			ASSERT(PAGE_EXCL(pp));
3750 			ASSERT(pp->p_vnode == vp);
3751 			pp->p_szc = 0;
3752 		} while ((pp = pp->p_next) != done_pplist);
3753 
3754 		while (pplist != NULL) {
3755 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3756 			pp = pplist;
3757 			page_sub(&pplist, pp);
3758 			page_free(pp, 0);
3759 		}
3760 
3761 		while (done_pplist != NULL) {
3762 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3763 			pp = done_pplist;
3764 			page_sub(&done_pplist, pp);
3765 			page_unlock(pp);
3766 		}
3767 		*ppplist = NULL;
3768 		return (0);
3769 	}
3770 	ASSERT(pplist == *ppplist);
3771 	if (io_err) {
3772 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3773 		/*
3774 		 * don't downsize on io error.
3775 		 * see if vop_getpage succeeds.
3776 		 * pplist may still be used in this case
3777 		 * for relocations.
3778 		 */
3779 		return (0);
3780 	}
3781 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3782 	page_free_replacement_page(pplist);
3783 	page_create_putback(pages);
3784 	*ppplist = NULL;
3785 	return (0);
3786 }
3787 
3788 int segvn_anypgsz = 0;
3789 
3790 #define	SEGVN_RESTORE_SOFTLOCK_VP(type, pages) 				\
3791 		if ((type) == F_SOFTLOCK) {				\
3792 			atomic_add_long((ulong_t *)&(svd)->softlockcnt, \
3793 			    -(pages));					\
3794 		}
3795 
3796 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3797 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3798 			if ((rw) == S_WRITE) {				\
3799 				for (i = 0; i < (pages); i++) {		\
3800 					ASSERT((ppa)[i]->p_vnode ==	\
3801 					    (ppa)[0]->p_vnode);		\
3802 					hat_setmod((ppa)[i]);		\
3803 				}					\
3804 			} else if ((rw) != S_OTHER &&			\
3805 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3806 				for (i = 0; i < (pages); i++) {		\
3807 					ASSERT((ppa)[i]->p_vnode ==	\
3808 					    (ppa)[0]->p_vnode);		\
3809 					if (!hat_ismod((ppa)[i])) {	\
3810 						prot &= ~PROT_WRITE;	\
3811 						break;			\
3812 					}				\
3813 				}					\
3814 			}						\
3815 		}
3816 
3817 #ifdef  VM_STATS
3818 
3819 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3820 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3821 
3822 #else /* VM_STATS */
3823 
3824 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3825 
3826 #endif
3827 
3828 static faultcode_t
3829 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3830     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3831     caddr_t eaddr, int brkcow)
3832 {
3833 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3834 	struct anon_map *amp = svd->amp;
3835 	uchar_t segtype = svd->type;
3836 	uint_t szc = seg->s_szc;
3837 	size_t pgsz = page_get_pagesize(szc);
3838 	size_t maxpgsz = pgsz;
3839 	pgcnt_t pages = btop(pgsz);
3840 	pgcnt_t maxpages = pages;
3841 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3842 	caddr_t a = lpgaddr;
3843 	caddr_t	maxlpgeaddr = lpgeaddr;
3844 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3845 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3846 	struct vpage *vpage = (svd->vpage != NULL) ?
3847 	    &svd->vpage[seg_page(seg, a)] : NULL;
3848 	vnode_t *vp = svd->vp;
3849 	page_t **ppa;
3850 	uint_t	pszc;
3851 	size_t	ppgsz;
3852 	pgcnt_t	ppages;
3853 	faultcode_t err = 0;
3854 	int ierr;
3855 	int vop_size_err = 0;
3856 	uint_t protchk, prot, vpprot;
3857 	ulong_t i;
3858 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3859 	anon_sync_obj_t an_cookie;
3860 	enum seg_rw arw;
3861 	int alloc_failed = 0;
3862 	int adjszc_chk;
3863 	struct vattr va;
3864 	page_t *pplist;
3865 	pfn_t pfn;
3866 	int physcontig;
3867 	int upgrdfail;
3868 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3869 	int tron = (svd->tr_state == SEGVN_TR_ON);
3870 
3871 	ASSERT(szc != 0);
3872 	ASSERT(vp != NULL);
3873 	ASSERT(brkcow == 0 || amp != NULL);
3874 	ASSERT(tron == 0 || amp != NULL);
3875 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3876 	ASSERT(!(svd->flags & MAP_NORESERVE));
3877 	ASSERT(type != F_SOFTUNLOCK);
3878 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3879 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3880 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3881 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3882 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3883 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
3884 
3885 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3886 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3887 
3888 	if (svd->flags & MAP_TEXT) {
3889 		hat_flag |= HAT_LOAD_TEXT;
3890 	}
3891 
3892 	if (svd->pageprot) {
3893 		prot = PROT_NONE;
3894 		switch (rw) {
3895 		case S_READ:
3896 			protchk = PROT_READ;
3897 			break;
3898 		case S_WRITE:
3899 			protchk = PROT_WRITE;
3900 			break;
3901 		case S_EXEC:
3902 			protchk = PROT_EXEC;
3903 			break;
3904 		case S_OTHER:
3905 		default:
3906 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3907 			break;
3908 		}
3909 	} else {
3910 		protchk = PROT_NONE;
3911 		prot = svd->prot;
3912 		/* caller has already done segment level protection check. */
3913 	}
3914 
3915 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3916 		SEGVN_VMSTAT_FLTVNPAGES(2);
3917 		arw = S_READ;
3918 	} else {
3919 		arw = rw;
3920 	}
3921 
3922 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3923 
3924 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3925 
3926 	ierr = 0;
3927 	for (;;) {
3928 		adjszc_chk = 0;
3929 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3930 			if (adjszc_chk) {
3931 				while (szc < seg->s_szc) {
3932 					uintptr_t e;
3933 					uint_t tszc;
3934 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3935 					    seg->s_szc;
3936 					ppgsz = page_get_pagesize(tszc);
3937 					if (!IS_P2ALIGNED(a, ppgsz) ||
3938 					    ((alloc_failed >> tszc) & 0x1)) {
3939 						break;
3940 					}
3941 					SEGVN_VMSTAT_FLTVNPAGES(4);
3942 					szc = tszc;
3943 					pgsz = ppgsz;
3944 					pages = btop(pgsz);
3945 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3946 					lpgeaddr = (caddr_t)e;
3947 				}
3948 			}
3949 
3950 		again:
3951 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3952 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3953 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3954 				anon_array_enter(amp, aindx, &an_cookie);
3955 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3956 					SEGVN_VMSTAT_FLTVNPAGES(5);
3957 					ASSERT(anon_pages(amp->ahp, aindx,
3958 					    maxpages) == maxpages);
3959 					anon_array_exit(&an_cookie);
3960 					ANON_LOCK_EXIT(&amp->a_rwlock);
3961 					err = segvn_fault_anonpages(hat, seg,
3962 					    a, a + maxpgsz, type, rw,
3963 					    MAX(a, addr),
3964 					    MIN(a + maxpgsz, eaddr), brkcow);
3965 					if (err != 0) {
3966 						SEGVN_VMSTAT_FLTVNPAGES(6);
3967 						goto out;
3968 					}
3969 					if (szc < seg->s_szc) {
3970 						szc = seg->s_szc;
3971 						pgsz = maxpgsz;
3972 						pages = maxpages;
3973 						lpgeaddr = maxlpgeaddr;
3974 					}
3975 					goto next;
3976 				} else {
3977 					ASSERT(anon_pages(amp->ahp, aindx,
3978 					    maxpages) == 0);
3979 					SEGVN_VMSTAT_FLTVNPAGES(7);
3980 					anon_array_exit(&an_cookie);
3981 					ANON_LOCK_EXIT(&amp->a_rwlock);
3982 				}
3983 			}
3984 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3985 			ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3986 
3987 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3988 				ASSERT(vpage != NULL);
3989 				prot = VPP_PROT(vpage);
3990 				ASSERT(sameprot(seg, a, maxpgsz));
3991 				if ((prot & protchk) == 0) {
3992 					SEGVN_VMSTAT_FLTVNPAGES(8);
3993 					err = FC_PROT;
3994 					goto out;
3995 				}
3996 			}
3997 			if (type == F_SOFTLOCK) {
3998 				atomic_add_long((ulong_t *)&svd->softlockcnt,
3999 				    pages);
4000 			}
4001 
4002 			pplist = NULL;
4003 			physcontig = 0;
4004 			ppa[0] = NULL;
4005 			if (!brkcow && !tron && szc &&
4006 			    !page_exists_physcontig(vp, off, szc,
4007 			    segtype == MAP_PRIVATE ? ppa : NULL)) {
4008 				SEGVN_VMSTAT_FLTVNPAGES(9);
4009 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
4010 				    szc, 0, 0) && type != F_SOFTLOCK) {
4011 					SEGVN_VMSTAT_FLTVNPAGES(10);
4012 					pszc = 0;
4013 					ierr = -1;
4014 					alloc_failed |= (1 << szc);
4015 					break;
4016 				}
4017 				if (pplist != NULL &&
4018 				    vp->v_mpssdata == SEGVN_PAGEIO) {
4019 					int downsize;
4020 					SEGVN_VMSTAT_FLTVNPAGES(11);
4021 					physcontig = segvn_fill_vp_pages(svd,
4022 					    vp, off, szc, ppa, &pplist,
4023 					    &pszc, &downsize);
4024 					ASSERT(!physcontig || pplist == NULL);
4025 					if (!physcontig && downsize &&
4026 					    type != F_SOFTLOCK) {
4027 						ASSERT(pplist == NULL);
4028 						SEGVN_VMSTAT_FLTVNPAGES(12);
4029 						ierr = -1;
4030 						break;
4031 					}
4032 					ASSERT(!physcontig ||
4033 					    segtype == MAP_PRIVATE ||
4034 					    ppa[0] == NULL);
4035 					if (physcontig && ppa[0] == NULL) {
4036 						physcontig = 0;
4037 					}
4038 				}
4039 			} else if (!brkcow && !tron && szc && ppa[0] != NULL) {
4040 				SEGVN_VMSTAT_FLTVNPAGES(13);
4041 				ASSERT(segtype == MAP_PRIVATE);
4042 				physcontig = 1;
4043 			}
4044 
4045 			if (!physcontig) {
4046 				SEGVN_VMSTAT_FLTVNPAGES(14);
4047 				ppa[0] = NULL;
4048 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
4049 				    &vpprot, ppa, pgsz, seg, a, arw,
4050 				    svd->cred, NULL);
4051 #ifdef DEBUG
4052 				if (ierr == 0) {
4053 					for (i = 0; i < pages; i++) {
4054 						ASSERT(PAGE_LOCKED(ppa[i]));
4055 						ASSERT(!PP_ISFREE(ppa[i]));
4056 						ASSERT(ppa[i]->p_vnode == vp);
4057 						ASSERT(ppa[i]->p_offset ==
4058 						    off + (i << PAGESHIFT));
4059 					}
4060 				}
4061 #endif /* DEBUG */
4062 				if (segtype == MAP_PRIVATE) {
4063 					SEGVN_VMSTAT_FLTVNPAGES(15);
4064 					vpprot &= ~PROT_WRITE;
4065 				}
4066 			} else {
4067 				ASSERT(segtype == MAP_PRIVATE);
4068 				SEGVN_VMSTAT_FLTVNPAGES(16);
4069 				vpprot = PROT_ALL & ~PROT_WRITE;
4070 				ierr = 0;
4071 			}
4072 
4073 			if (ierr != 0) {
4074 				SEGVN_VMSTAT_FLTVNPAGES(17);
4075 				if (pplist != NULL) {
4076 					SEGVN_VMSTAT_FLTVNPAGES(18);
4077 					page_free_replacement_page(pplist);
4078 					page_create_putback(pages);
4079 				}
4080 				SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4081 				if (a + pgsz <= eaddr) {
4082 					SEGVN_VMSTAT_FLTVNPAGES(19);
4083 					err = FC_MAKE_ERR(ierr);
4084 					goto out;
4085 				}
4086 				va.va_mask = AT_SIZE;
4087 				if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) {
4088 					SEGVN_VMSTAT_FLTVNPAGES(20);
4089 					err = FC_MAKE_ERR(EIO);
4090 					goto out;
4091 				}
4092 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
4093 					SEGVN_VMSTAT_FLTVNPAGES(21);
4094 					err = FC_MAKE_ERR(ierr);
4095 					goto out;
4096 				}
4097 				if (btopr(va.va_size) <
4098 				    btopr(off + (eaddr - a))) {
4099 					SEGVN_VMSTAT_FLTVNPAGES(22);
4100 					err = FC_MAKE_ERR(ierr);
4101 					goto out;
4102 				}
4103 				if (brkcow || tron || type == F_SOFTLOCK) {
4104 					/* can't reduce map area */
4105 					SEGVN_VMSTAT_FLTVNPAGES(23);
4106 					vop_size_err = 1;
4107 					goto out;
4108 				}
4109 				SEGVN_VMSTAT_FLTVNPAGES(24);
4110 				ASSERT(szc != 0);
4111 				pszc = 0;
4112 				ierr = -1;
4113 				break;
4114 			}
4115 
4116 			if (amp != NULL) {
4117 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4118 				anon_array_enter(amp, aindx, &an_cookie);
4119 			}
4120 			if (amp != NULL &&
4121 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
4122 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4123 
4124 				SEGVN_VMSTAT_FLTVNPAGES(25);
4125 				ASSERT(anon_pages(amp->ahp, taindx,
4126 				    maxpages) == maxpages);
4127 				for (i = 0; i < pages; i++) {
4128 					page_unlock(ppa[i]);
4129 				}
4130 				anon_array_exit(&an_cookie);
4131 				ANON_LOCK_EXIT(&amp->a_rwlock);
4132 				if (pplist != NULL) {
4133 					page_free_replacement_page(pplist);
4134 					page_create_putback(pages);
4135 				}
4136 				SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4137 				if (szc < seg->s_szc) {
4138 					SEGVN_VMSTAT_FLTVNPAGES(26);
4139 					/*
4140 					 * For private segments SOFTLOCK
4141 					 * either always breaks cow (any rw
4142 					 * type except S_READ_NOCOW) or
4143 					 * address space is locked as writer
4144 					 * (S_READ_NOCOW case) and anon slots
4145 					 * can't show up on second check.
4146 					 * Therefore if we are here for
4147 					 * SOFTLOCK case it must be a cow
4148 					 * break but cow break never reduces
4149 					 * szc. text replication (tron) in
4150 					 * this case works as cow break.
4151 					 * Thus the assert below.
4152 					 */
4153 					ASSERT(!brkcow && !tron &&
4154 					    type != F_SOFTLOCK);
4155 					pszc = seg->s_szc;
4156 					ierr = -2;
4157 					break;
4158 				}
4159 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4160 				goto again;
4161 			}
4162 #ifdef DEBUG
4163 			if (amp != NULL) {
4164 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4165 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4166 			}
4167 #endif /* DEBUG */
4168 
4169 			if (brkcow || tron) {
4170 				ASSERT(amp != NULL);
4171 				ASSERT(pplist == NULL);
4172 				ASSERT(szc == seg->s_szc);
4173 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4174 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
4175 				SEGVN_VMSTAT_FLTVNPAGES(27);
4176 				ierr = anon_map_privatepages(amp, aindx, szc,
4177 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
4178 				    tron ? PG_LOCAL : 0, svd->cred);
4179 				if (ierr != 0) {
4180 					SEGVN_VMSTAT_FLTVNPAGES(28);
4181 					anon_array_exit(&an_cookie);
4182 					ANON_LOCK_EXIT(&amp->a_rwlock);
4183 					SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4184 					err = FC_MAKE_ERR(ierr);
4185 					goto out;
4186 				}
4187 
4188 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4189 				/*
4190 				 * p_szc can't be changed for locked
4191 				 * swapfs pages.
4192 				 */
4193 				ASSERT(svd->rcookie ==
4194 				    HAT_INVALID_REGION_COOKIE);
4195 				hat_memload_array(hat, a, pgsz, ppa, prot,
4196 				    hat_flag);
4197 
4198 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4199 					SEGVN_VMSTAT_FLTVNPAGES(29);
4200 					for (i = 0; i < pages; i++) {
4201 						page_unlock(ppa[i]);
4202 					}
4203 				}
4204 				anon_array_exit(&an_cookie);
4205 				ANON_LOCK_EXIT(&amp->a_rwlock);
4206 				goto next;
4207 			}
4208 
4209 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4210 			    (!svd->pageprot && svd->prot == (prot & vpprot)));
4211 
4212 			pfn = page_pptonum(ppa[0]);
4213 			/*
4214 			 * hat_page_demote() needs an SE_EXCL lock on one of
4215 			 * constituent page_t's and it decreases root's p_szc
4216 			 * last. This means if root's p_szc is equal szc and
4217 			 * all its constituent pages are locked
4218 			 * hat_page_demote() that could have changed p_szc to
4219 			 * szc is already done and no new have page_demote()
4220 			 * can start for this large page.
4221 			 */
4222 
4223 			/*
4224 			 * we need to make sure same mapping size is used for
4225 			 * the same address range if there's a possibility the
4226 			 * adddress is already mapped because hat layer panics
4227 			 * when translation is loaded for the range already
4228 			 * mapped with a different page size.  We achieve it
4229 			 * by always using largest page size possible subject
4230 			 * to the constraints of page size, segment page size
4231 			 * and page alignment.  Since mappings are invalidated
4232 			 * when those constraints change and make it
4233 			 * impossible to use previously used mapping size no
4234 			 * mapping size conflicts should happen.
4235 			 */
4236 
4237 		chkszc:
4238 			if ((pszc = ppa[0]->p_szc) == szc &&
4239 			    IS_P2ALIGNED(pfn, pages)) {
4240 
4241 				SEGVN_VMSTAT_FLTVNPAGES(30);
4242 #ifdef DEBUG
4243 				for (i = 0; i < pages; i++) {
4244 					ASSERT(PAGE_LOCKED(ppa[i]));
4245 					ASSERT(!PP_ISFREE(ppa[i]));
4246 					ASSERT(page_pptonum(ppa[i]) ==
4247 					    pfn + i);
4248 					ASSERT(ppa[i]->p_szc == szc);
4249 					ASSERT(ppa[i]->p_vnode == vp);
4250 					ASSERT(ppa[i]->p_offset ==
4251 					    off + (i << PAGESHIFT));
4252 				}
4253 #endif /* DEBUG */
4254 				/*
4255 				 * All pages are of szc we need and they are
4256 				 * all locked so they can't change szc. load
4257 				 * translations.
4258 				 *
4259 				 * if page got promoted since last check
4260 				 * we don't need pplist.
4261 				 */
4262 				if (pplist != NULL) {
4263 					page_free_replacement_page(pplist);
4264 					page_create_putback(pages);
4265 				}
4266 				if (PP_ISMIGRATE(ppa[0])) {
4267 					page_migrate(seg, a, ppa, pages);
4268 				}
4269 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4270 				    prot, vpprot);
4271 				hat_memload_array_region(hat, a, pgsz,
4272 				    ppa, prot & vpprot, hat_flag,
4273 				    svd->rcookie);
4274 
4275 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4276 					for (i = 0; i < pages; i++) {
4277 						page_unlock(ppa[i]);
4278 					}
4279 				}
4280 				if (amp != NULL) {
4281 					anon_array_exit(&an_cookie);
4282 					ANON_LOCK_EXIT(&amp->a_rwlock);
4283 				}
4284 				goto next;
4285 			}
4286 
4287 			/*
4288 			 * See if upsize is possible.
4289 			 */
4290 			if (pszc > szc && szc < seg->s_szc &&
4291 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4292 				pgcnt_t aphase;
4293 				uint_t pszc1 = MIN(pszc, seg->s_szc);
4294 				ppgsz = page_get_pagesize(pszc1);
4295 				ppages = btop(ppgsz);
4296 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4297 
4298 				ASSERT(type != F_SOFTLOCK);
4299 
4300 				SEGVN_VMSTAT_FLTVNPAGES(31);
4301 				if (aphase != P2PHASE(pfn, ppages)) {
4302 					segvn_faultvnmpss_align_err4++;
4303 				} else {
4304 					SEGVN_VMSTAT_FLTVNPAGES(32);
4305 					if (pplist != NULL) {
4306 						page_t *pl = pplist;
4307 						page_free_replacement_page(pl);
4308 						page_create_putback(pages);
4309 					}
4310 					for (i = 0; i < pages; i++) {
4311 						page_unlock(ppa[i]);
4312 					}
4313 					if (amp != NULL) {
4314 						anon_array_exit(&an_cookie);
4315 						ANON_LOCK_EXIT(&amp->a_rwlock);
4316 					}
4317 					pszc = pszc1;
4318 					ierr = -2;
4319 					break;
4320 				}
4321 			}
4322 
4323 			/*
4324 			 * check if we should use smallest mapping size.
4325 			 */
4326 			upgrdfail = 0;
4327 			if (szc == 0 ||
4328 			    (pszc >= szc &&
4329 			    !IS_P2ALIGNED(pfn, pages)) ||
4330 			    (pszc < szc &&
4331 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
4332 			    &pszc))) {
4333 
4334 				if (upgrdfail && type != F_SOFTLOCK) {
4335 					/*
4336 					 * segvn_full_szcpages failed to lock
4337 					 * all pages EXCL. Size down.
4338 					 */
4339 					ASSERT(pszc < szc);
4340 
4341 					SEGVN_VMSTAT_FLTVNPAGES(33);
4342 
4343 					if (pplist != NULL) {
4344 						page_t *pl = pplist;
4345 						page_free_replacement_page(pl);
4346 						page_create_putback(pages);
4347 					}
4348 
4349 					for (i = 0; i < pages; i++) {
4350 						page_unlock(ppa[i]);
4351 					}
4352 					if (amp != NULL) {
4353 						anon_array_exit(&an_cookie);
4354 						ANON_LOCK_EXIT(&amp->a_rwlock);
4355 					}
4356 					ierr = -1;
4357 					break;
4358 				}
4359 				if (szc != 0 && !upgrdfail) {
4360 					segvn_faultvnmpss_align_err5++;
4361 				}
4362 				SEGVN_VMSTAT_FLTVNPAGES(34);
4363 				if (pplist != NULL) {
4364 					page_free_replacement_page(pplist);
4365 					page_create_putback(pages);
4366 				}
4367 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4368 				    prot, vpprot);
4369 				if (upgrdfail && segvn_anypgsz_vnode) {
4370 					/* SOFTLOCK case */
4371 					hat_memload_array_region(hat, a, pgsz,
4372 					    ppa, prot & vpprot, hat_flag,
4373 					    svd->rcookie);
4374 				} else {
4375 					for (i = 0; i < pages; i++) {
4376 						hat_memload_region(hat,
4377 						    a + (i << PAGESHIFT),
4378 						    ppa[i], prot & vpprot,
4379 						    hat_flag, svd->rcookie);
4380 					}
4381 				}
4382 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4383 					for (i = 0; i < pages; i++) {
4384 						page_unlock(ppa[i]);
4385 					}
4386 				}
4387 				if (amp != NULL) {
4388 					anon_array_exit(&an_cookie);
4389 					ANON_LOCK_EXIT(&amp->a_rwlock);
4390 				}
4391 				goto next;
4392 			}
4393 
4394 			if (pszc == szc) {
4395 				/*
4396 				 * segvn_full_szcpages() upgraded pages szc.
4397 				 */
4398 				ASSERT(pszc == ppa[0]->p_szc);
4399 				ASSERT(IS_P2ALIGNED(pfn, pages));
4400 				goto chkszc;
4401 			}
4402 
4403 			if (pszc > szc) {
4404 				kmutex_t *szcmtx;
4405 				SEGVN_VMSTAT_FLTVNPAGES(35);
4406 				/*
4407 				 * p_szc of ppa[0] can change since we haven't
4408 				 * locked all constituent pages. Call
4409 				 * page_lock_szc() to prevent szc changes.
4410 				 * This should be a rare case that happens when
4411 				 * multiple segments use a different page size
4412 				 * to map the same file offsets.
4413 				 */
4414 				szcmtx = page_szc_lock(ppa[0]);
4415 				pszc = ppa[0]->p_szc;
4416 				ASSERT(szcmtx != NULL || pszc == 0);
4417 				ASSERT(ppa[0]->p_szc <= pszc);
4418 				if (pszc <= szc) {
4419 					SEGVN_VMSTAT_FLTVNPAGES(36);
4420 					if (szcmtx != NULL) {
4421 						mutex_exit(szcmtx);
4422 					}
4423 					goto chkszc;
4424 				}
4425 				if (pplist != NULL) {
4426 					/*
4427 					 * page got promoted since last check.
4428 					 * we don't need preaalocated large
4429 					 * page.
4430 					 */
4431 					SEGVN_VMSTAT_FLTVNPAGES(37);
4432 					page_free_replacement_page(pplist);
4433 					page_create_putback(pages);
4434 				}
4435 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4436 				    prot, vpprot);
4437 				hat_memload_array_region(hat, a, pgsz, ppa,
4438 				    prot & vpprot, hat_flag, svd->rcookie);
4439 				mutex_exit(szcmtx);
4440 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4441 					for (i = 0; i < pages; i++) {
4442 						page_unlock(ppa[i]);
4443 					}
4444 				}
4445 				if (amp != NULL) {
4446 					anon_array_exit(&an_cookie);
4447 					ANON_LOCK_EXIT(&amp->a_rwlock);
4448 				}
4449 				goto next;
4450 			}
4451 
4452 			/*
4453 			 * if page got demoted since last check
4454 			 * we could have not allocated larger page.
4455 			 * allocate now.
4456 			 */
4457 			if (pplist == NULL &&
4458 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4459 			    szc, 0, 0) && type != F_SOFTLOCK) {
4460 				SEGVN_VMSTAT_FLTVNPAGES(38);
4461 				for (i = 0; i < pages; i++) {
4462 					page_unlock(ppa[i]);
4463 				}
4464 				if (amp != NULL) {
4465 					anon_array_exit(&an_cookie);
4466 					ANON_LOCK_EXIT(&amp->a_rwlock);
4467 				}
4468 				ierr = -1;
4469 				alloc_failed |= (1 << szc);
4470 				break;
4471 			}
4472 
4473 			SEGVN_VMSTAT_FLTVNPAGES(39);
4474 
4475 			if (pplist != NULL) {
4476 				segvn_relocate_pages(ppa, pplist);
4477 #ifdef DEBUG
4478 			} else {
4479 				ASSERT(type == F_SOFTLOCK);
4480 				SEGVN_VMSTAT_FLTVNPAGES(40);
4481 #endif /* DEBUG */
4482 			}
4483 
4484 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4485 
4486 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4487 				ASSERT(type == F_SOFTLOCK);
4488 				for (i = 0; i < pages; i++) {
4489 					ASSERT(ppa[i]->p_szc < szc);
4490 					hat_memload_region(hat,
4491 					    a + (i << PAGESHIFT),
4492 					    ppa[i], prot & vpprot, hat_flag,
4493 					    svd->rcookie);
4494 				}
4495 			} else {
4496 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4497 				hat_memload_array_region(hat, a, pgsz, ppa,
4498 				    prot & vpprot, hat_flag, svd->rcookie);
4499 			}
4500 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4501 				for (i = 0; i < pages; i++) {
4502 					ASSERT(PAGE_SHARED(ppa[i]));
4503 					page_unlock(ppa[i]);
4504 				}
4505 			}
4506 			if (amp != NULL) {
4507 				anon_array_exit(&an_cookie);
4508 				ANON_LOCK_EXIT(&amp->a_rwlock);
4509 			}
4510 
4511 		next:
4512 			if (vpage != NULL) {
4513 				vpage += pages;
4514 			}
4515 			adjszc_chk = 1;
4516 		}
4517 		if (a == lpgeaddr)
4518 			break;
4519 		ASSERT(a < lpgeaddr);
4520 
4521 		ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4522 
4523 		/*
4524 		 * ierr == -1 means we failed to map with a large page.
4525 		 * (either due to allocation/relocation failures or
4526 		 * misalignment with other mappings to this file.
4527 		 *
4528 		 * ierr == -2 means some other thread allocated a large page
4529 		 * after we gave up tp map with a large page.  retry with
4530 		 * larger mapping.
4531 		 */
4532 		ASSERT(ierr == -1 || ierr == -2);
4533 		ASSERT(ierr == -2 || szc != 0);
4534 		ASSERT(ierr == -1 || szc < seg->s_szc);
4535 		if (ierr == -2) {
4536 			SEGVN_VMSTAT_FLTVNPAGES(41);
4537 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4538 			szc = pszc;
4539 		} else if (segvn_anypgsz_vnode) {
4540 			SEGVN_VMSTAT_FLTVNPAGES(42);
4541 			szc--;
4542 		} else {
4543 			SEGVN_VMSTAT_FLTVNPAGES(43);
4544 			ASSERT(pszc < szc);
4545 			/*
4546 			 * other process created pszc large page.
4547 			 * but we still have to drop to 0 szc.
4548 			 */
4549 			szc = 0;
4550 		}
4551 
4552 		pgsz = page_get_pagesize(szc);
4553 		pages = btop(pgsz);
4554 		if (ierr == -2) {
4555 			/*
4556 			 * Size up case. Note lpgaddr may only be needed for
4557 			 * softlock case so we don't adjust it here.
4558 			 */
4559 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4560 			ASSERT(a >= lpgaddr);
4561 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4562 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4563 			aindx = svd->anon_index + seg_page(seg, a);
4564 			vpage = (svd->vpage != NULL) ?
4565 			    &svd->vpage[seg_page(seg, a)] : NULL;
4566 		} else {
4567 			/*
4568 			 * Size down case. Note lpgaddr may only be needed for
4569 			 * softlock case so we don't adjust it here.
4570 			 */
4571 			ASSERT(IS_P2ALIGNED(a, pgsz));
4572 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4573 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4574 			ASSERT(a < lpgeaddr);
4575 			if (a < addr) {
4576 				SEGVN_VMSTAT_FLTVNPAGES(44);
4577 				/*
4578 				 * The beginning of the large page region can
4579 				 * be pulled to the right to make a smaller
4580 				 * region. We haven't yet faulted a single
4581 				 * page.
4582 				 */
4583 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4584 				ASSERT(a >= lpgaddr);
4585 				off = svd->offset +
4586 				    (uintptr_t)(a - seg->s_base);
4587 				aindx = svd->anon_index + seg_page(seg, a);
4588 				vpage = (svd->vpage != NULL) ?
4589 				    &svd->vpage[seg_page(seg, a)] : NULL;
4590 			}
4591 		}
4592 	}
4593 out:
4594 	kmem_free(ppa, ppasize);
4595 	if (!err && !vop_size_err) {
4596 		SEGVN_VMSTAT_FLTVNPAGES(45);
4597 		return (0);
4598 	}
4599 	if (type == F_SOFTLOCK && a > lpgaddr) {
4600 		SEGVN_VMSTAT_FLTVNPAGES(46);
4601 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4602 	}
4603 	if (!vop_size_err) {
4604 		SEGVN_VMSTAT_FLTVNPAGES(47);
4605 		return (err);
4606 	}
4607 	ASSERT(brkcow || tron || type == F_SOFTLOCK);
4608 	/*
4609 	 * Large page end is mapped beyond the end of file and it's a cow
4610 	 * fault (can be a text replication induced cow) or softlock so we can't
4611 	 * reduce the map area.  For now just demote the segment. This should
4612 	 * really only happen if the end of the file changed after the mapping
4613 	 * was established since when large page segments are created we make
4614 	 * sure they don't extend beyond the end of the file.
4615 	 */
4616 	SEGVN_VMSTAT_FLTVNPAGES(48);
4617 
4618 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4619 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4620 	err = 0;
4621 	if (seg->s_szc != 0) {
4622 		segvn_fltvnpages_clrszc_cnt++;
4623 		ASSERT(svd->softlockcnt == 0);
4624 		err = segvn_clrszc(seg);
4625 		if (err != 0) {
4626 			segvn_fltvnpages_clrszc_err++;
4627 		}
4628 	}
4629 	ASSERT(err || seg->s_szc == 0);
4630 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4631 	/* segvn_fault will do its job as if szc had been zero to begin with */
4632 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4633 }
4634 
4635 /*
4636  * This routine will attempt to fault in one large page.
4637  * it will use smaller pages if that fails.
4638  * It should only be called for pure anonymous segments.
4639  */
4640 static faultcode_t
4641 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4642     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4643     caddr_t eaddr, int brkcow)
4644 {
4645 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4646 	struct anon_map *amp = svd->amp;
4647 	uchar_t segtype = svd->type;
4648 	uint_t szc = seg->s_szc;
4649 	size_t pgsz = page_get_pagesize(szc);
4650 	size_t maxpgsz = pgsz;
4651 	pgcnt_t pages = btop(pgsz);
4652 	uint_t ppaszc = szc;
4653 	caddr_t a = lpgaddr;
4654 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4655 	struct vpage *vpage = (svd->vpage != NULL) ?
4656 	    &svd->vpage[seg_page(seg, a)] : NULL;
4657 	page_t **ppa;
4658 	uint_t	ppa_szc;
4659 	faultcode_t err;
4660 	int ierr;
4661 	uint_t protchk, prot, vpprot;
4662 	ulong_t i;
4663 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4664 	anon_sync_obj_t cookie;
4665 	int adjszc_chk;
4666 	int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4667 
4668 	ASSERT(szc != 0);
4669 	ASSERT(amp != NULL);
4670 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4671 	ASSERT(!(svd->flags & MAP_NORESERVE));
4672 	ASSERT(type != F_SOFTUNLOCK);
4673 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4674 	ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4675 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
4676 
4677 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4678 
4679 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4680 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4681 
4682 	if (svd->flags & MAP_TEXT) {
4683 		hat_flag |= HAT_LOAD_TEXT;
4684 	}
4685 
4686 	if (svd->pageprot) {
4687 		prot = PROT_NONE;
4688 		switch (rw) {
4689 		case S_READ:
4690 			protchk = PROT_READ;
4691 			break;
4692 		case S_WRITE:
4693 			protchk = PROT_WRITE;
4694 			break;
4695 		case S_EXEC:
4696 			protchk = PROT_EXEC;
4697 			break;
4698 		case S_OTHER:
4699 		default:
4700 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4701 			break;
4702 		}
4703 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4704 	} else {
4705 		protchk = PROT_NONE;
4706 		prot = svd->prot;
4707 		/* caller has already done segment level protection check. */
4708 	}
4709 
4710 	ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4711 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4712 	ierr = 0;
4713 	for (;;) {
4714 		adjszc_chk = 0;
4715 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4716 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4717 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4718 				ASSERT(vpage != NULL);
4719 				prot = VPP_PROT(vpage);
4720 				ASSERT(sameprot(seg, a, maxpgsz));
4721 				if ((prot & protchk) == 0) {
4722 					err = FC_PROT;
4723 					goto error;
4724 				}
4725 			}
4726 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4727 			    pgsz < maxpgsz) {
4728 				ASSERT(a > lpgaddr);
4729 				szc = seg->s_szc;
4730 				pgsz = maxpgsz;
4731 				pages = btop(pgsz);
4732 				ASSERT(IS_P2ALIGNED(aindx, pages));
4733 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4734 				    pgsz);
4735 			}
4736 			if (type == F_SOFTLOCK) {
4737 				atomic_add_long((ulong_t *)&svd->softlockcnt,
4738 				    pages);
4739 			}
4740 			anon_array_enter(amp, aindx, &cookie);
4741 			ppa_szc = (uint_t)-1;
4742 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4743 			    prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4744 			    segvn_anypgsz, pgflags, svd->cred);
4745 			if (ierr != 0) {
4746 				anon_array_exit(&cookie);
4747 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4748 				if (type == F_SOFTLOCK) {
4749 					atomic_add_long(
4750 					    (ulong_t *)&svd->softlockcnt,
4751 					    -pages);
4752 				}
4753 				if (ierr > 0) {
4754 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4755 					err = FC_MAKE_ERR(ierr);
4756 					goto error;
4757 				}
4758 				break;
4759 			}
4760 
4761 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4762 
4763 			ASSERT(segtype == MAP_SHARED ||
4764 			    ppa[0]->p_szc <= szc);
4765 			ASSERT(segtype == MAP_PRIVATE ||
4766 			    ppa[0]->p_szc >= szc);
4767 
4768 			/*
4769 			 * Handle pages that have been marked for migration
4770 			 */
4771 			if (lgrp_optimizations())
4772 				page_migrate(seg, a, ppa, pages);
4773 
4774 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4775 
4776 			if (segtype == MAP_SHARED) {
4777 				vpprot |= PROT_WRITE;
4778 			}
4779 
4780 			hat_memload_array(hat, a, pgsz, ppa,
4781 			    prot & vpprot, hat_flag);
4782 
4783 			if (hat_flag & HAT_LOAD_LOCK) {
4784 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4785 			} else {
4786 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4787 				for (i = 0; i < pages; i++)
4788 					page_unlock(ppa[i]);
4789 			}
4790 			if (vpage != NULL)
4791 				vpage += pages;
4792 
4793 			anon_array_exit(&cookie);
4794 			adjszc_chk = 1;
4795 		}
4796 		if (a == lpgeaddr)
4797 			break;
4798 		ASSERT(a < lpgeaddr);
4799 		/*
4800 		 * ierr == -1 means we failed to allocate a large page.
4801 		 * so do a size down operation.
4802 		 *
4803 		 * ierr == -2 means some other process that privately shares
4804 		 * pages with this process has allocated a larger page and we
4805 		 * need to retry with larger pages. So do a size up
4806 		 * operation. This relies on the fact that large pages are
4807 		 * never partially shared i.e. if we share any constituent
4808 		 * page of a large page with another process we must share the
4809 		 * entire large page. Note this cannot happen for SOFTLOCK
4810 		 * case, unless current address (a) is at the beginning of the
4811 		 * next page size boundary because the other process couldn't
4812 		 * have relocated locked pages.
4813 		 */
4814 		ASSERT(ierr == -1 || ierr == -2);
4815 
4816 		if (segvn_anypgsz) {
4817 			ASSERT(ierr == -2 || szc != 0);
4818 			ASSERT(ierr == -1 || szc < seg->s_szc);
4819 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4820 		} else {
4821 			/*
4822 			 * For non COW faults and segvn_anypgsz == 0
4823 			 * we need to be careful not to loop forever
4824 			 * if existing page is found with szc other
4825 			 * than 0 or seg->s_szc. This could be due
4826 			 * to page relocations on behalf of DR or
4827 			 * more likely large page creation. For this
4828 			 * case simply re-size to existing page's szc
4829 			 * if returned by anon_map_getpages().
4830 			 */
4831 			if (ppa_szc == (uint_t)-1) {
4832 				szc = (ierr == -1) ? 0 : seg->s_szc;
4833 			} else {
4834 				ASSERT(ppa_szc <= seg->s_szc);
4835 				ASSERT(ierr == -2 || ppa_szc < szc);
4836 				ASSERT(ierr == -1 || ppa_szc > szc);
4837 				szc = ppa_szc;
4838 			}
4839 		}
4840 
4841 		pgsz = page_get_pagesize(szc);
4842 		pages = btop(pgsz);
4843 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4844 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4845 		if (type == F_SOFTLOCK) {
4846 			/*
4847 			 * For softlocks we cannot reduce the fault area
4848 			 * (calculated based on the largest page size for this
4849 			 * segment) for size down and a is already next
4850 			 * page size aligned as assertted above for size
4851 			 * ups. Therefore just continue in case of softlock.
4852 			 */
4853 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4854 			continue; /* keep lint happy */
4855 		} else if (ierr == -2) {
4856 
4857 			/*
4858 			 * Size up case. Note lpgaddr may only be needed for
4859 			 * softlock case so we don't adjust it here.
4860 			 */
4861 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4862 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4863 			ASSERT(a >= lpgaddr);
4864 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4865 			aindx = svd->anon_index + seg_page(seg, a);
4866 			vpage = (svd->vpage != NULL) ?
4867 			    &svd->vpage[seg_page(seg, a)] : NULL;
4868 		} else {
4869 			/*
4870 			 * Size down case. Note lpgaddr may only be needed for
4871 			 * softlock case so we don't adjust it here.
4872 			 */
4873 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4874 			ASSERT(IS_P2ALIGNED(a, pgsz));
4875 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4876 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4877 			ASSERT(a < lpgeaddr);
4878 			if (a < addr) {
4879 				/*
4880 				 * The beginning of the large page region can
4881 				 * be pulled to the right to make a smaller
4882 				 * region. We haven't yet faulted a single
4883 				 * page.
4884 				 */
4885 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4886 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4887 				ASSERT(a >= lpgaddr);
4888 				aindx = svd->anon_index + seg_page(seg, a);
4889 				vpage = (svd->vpage != NULL) ?
4890 				    &svd->vpage[seg_page(seg, a)] : NULL;
4891 			}
4892 		}
4893 	}
4894 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4895 	ANON_LOCK_EXIT(&amp->a_rwlock);
4896 	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4897 	return (0);
4898 error:
4899 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4900 	ANON_LOCK_EXIT(&amp->a_rwlock);
4901 	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4902 	if (type == F_SOFTLOCK && a > lpgaddr) {
4903 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4904 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4905 	}
4906 	return (err);
4907 }
4908 
4909 int fltadvice = 1;	/* set to free behind pages for sequential access */
4910 
4911 /*
4912  * This routine is called via a machine specific fault handling routine.
4913  * It is also called by software routines wishing to lock or unlock
4914  * a range of addresses.
4915  *
4916  * Here is the basic algorithm:
4917  *	If unlocking
4918  *		Call segvn_softunlock
4919  *		Return
4920  *	endif
4921  *	Checking and set up work
4922  *	If we will need some non-anonymous pages
4923  *		Call VOP_GETPAGE over the range of non-anonymous pages
4924  *	endif
4925  *	Loop over all addresses requested
4926  *		Call segvn_faultpage passing in page list
4927  *		    to load up translations and handle anonymous pages
4928  *	endloop
4929  *	Load up translation to any additional pages in page list not
4930  *	    already handled that fit into this segment
4931  */
4932 static faultcode_t
4933 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4934     enum fault_type type, enum seg_rw rw)
4935 {
4936 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4937 	page_t **plp, **ppp, *pp;
4938 	u_offset_t off;
4939 	caddr_t a;
4940 	struct vpage *vpage;
4941 	uint_t vpprot, prot = 0;
4942 	int err;
4943 	page_t *pl[PVN_GETPAGE_NUM + 1];
4944 	size_t plsz, pl_alloc_sz;
4945 	size_t page;
4946 	ulong_t anon_index = 0;
4947 	struct anon_map *amp;
4948 	int dogetpage = 0;
4949 	caddr_t	lpgaddr, lpgeaddr;
4950 	size_t pgsz;
4951 	anon_sync_obj_t cookie;
4952 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4953 
4954 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
4955 	ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4956 
4957 	/*
4958 	 * First handle the easy stuff
4959 	 */
4960 	if (type == F_SOFTUNLOCK) {
4961 		if (rw == S_READ_NOCOW) {
4962 			rw = S_READ;
4963 			ASSERT(AS_WRITE_HELD(seg->s_as));
4964 		}
4965 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4966 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4967 		    page_get_pagesize(seg->s_szc);
4968 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4969 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4970 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4971 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4972 		return (0);
4973 	}
4974 
4975 	ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4976 	    !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4977 	if (brkcow == 0) {
4978 		if (svd->tr_state == SEGVN_TR_INIT) {
4979 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4980 			if (svd->tr_state == SEGVN_TR_INIT) {
4981 				ASSERT(svd->vp != NULL && svd->amp == NULL);
4982 				ASSERT(svd->flags & MAP_TEXT);
4983 				ASSERT(svd->type == MAP_PRIVATE);
4984 				segvn_textrepl(seg);
4985 				ASSERT(svd->tr_state != SEGVN_TR_INIT);
4986 				ASSERT(svd->tr_state != SEGVN_TR_ON ||
4987 				    svd->amp != NULL);
4988 			}
4989 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4990 		}
4991 	} else if (svd->tr_state != SEGVN_TR_OFF) {
4992 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4993 
4994 		if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4995 			ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4996 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4997 			return (FC_PROT);
4998 		}
4999 
5000 		if (svd->tr_state == SEGVN_TR_ON) {
5001 			ASSERT(svd->vp != NULL && svd->amp != NULL);
5002 			segvn_textunrepl(seg, 0);
5003 			ASSERT(svd->amp == NULL &&
5004 			    svd->tr_state == SEGVN_TR_OFF);
5005 		} else if (svd->tr_state != SEGVN_TR_OFF) {
5006 			svd->tr_state = SEGVN_TR_OFF;
5007 		}
5008 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5009 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5010 	}
5011 
5012 top:
5013 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5014 
5015 	/*
5016 	 * If we have the same protections for the entire segment,
5017 	 * insure that the access being attempted is legitimate.
5018 	 */
5019 
5020 	if (svd->pageprot == 0) {
5021 		uint_t protchk;
5022 
5023 		switch (rw) {
5024 		case S_READ:
5025 		case S_READ_NOCOW:
5026 			protchk = PROT_READ;
5027 			break;
5028 		case S_WRITE:
5029 			protchk = PROT_WRITE;
5030 			break;
5031 		case S_EXEC:
5032 			protchk = PROT_EXEC;
5033 			break;
5034 		case S_OTHER:
5035 		default:
5036 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
5037 			break;
5038 		}
5039 
5040 		if ((svd->prot & protchk) == 0) {
5041 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5042 			return (FC_PROT);	/* illegal access type */
5043 		}
5044 	}
5045 
5046 	if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5047 		/* this must be SOFTLOCK S_READ fault */
5048 		ASSERT(svd->amp == NULL);
5049 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5050 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5051 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5052 		if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5053 			/*
5054 			 * this must be the first ever non S_READ_NOCOW
5055 			 * softlock for this segment.
5056 			 */
5057 			ASSERT(svd->softlockcnt == 0);
5058 			hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5059 			    HAT_REGION_TEXT);
5060 			svd->rcookie = HAT_INVALID_REGION_COOKIE;
5061 		}
5062 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5063 		goto top;
5064 	}
5065 
5066 	/*
5067 	 * We can't allow the long term use of softlocks for vmpss segments,
5068 	 * because in some file truncation cases we should be able to demote
5069 	 * the segment, which requires that there are no softlocks.  The
5070 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5071 	 * segment is S_READ_NOCOW, where the caller holds the address space
5072 	 * locked as writer and calls softunlock before dropping the as lock.
5073 	 * S_READ_NOCOW is used by /proc to read memory from another user.
5074 	 *
5075 	 * Another deadlock between SOFTLOCK and file truncation can happen
5076 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
5077 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5078 	 * can cause a deadlock because the first set of page_t's remain
5079 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
5080 	 * SOFTLOCK if they have a length greater than the segment's
5081 	 * page size.
5082 	 *
5083 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5084 	 * the access type is S_READ_NOCOW and the fault length is less than
5085 	 * or equal to the segment's page size. While this is quite restrictive,
5086 	 * it should be the most common case of SOFTLOCK against a vmpss
5087 	 * segment.
5088 	 *
5089 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5090 	 * caller makes sure no COW will be caused by another thread for a
5091 	 * softlocked page.
5092 	 */
5093 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5094 		int demote = 0;
5095 
5096 		if (rw != S_READ_NOCOW) {
5097 			demote = 1;
5098 		}
5099 		if (!demote && len > PAGESIZE) {
5100 			pgsz = page_get_pagesize(seg->s_szc);
5101 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5102 			    lpgeaddr);
5103 			if (lpgeaddr - lpgaddr > pgsz) {
5104 				demote = 1;
5105 			}
5106 		}
5107 
5108 		ASSERT(demote || AS_WRITE_HELD(seg->s_as));
5109 
5110 		if (demote) {
5111 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5112 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5113 			if (seg->s_szc != 0) {
5114 				segvn_vmpss_clrszc_cnt++;
5115 				ASSERT(svd->softlockcnt == 0);
5116 				err = segvn_clrszc(seg);
5117 				if (err) {
5118 					segvn_vmpss_clrszc_err++;
5119 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5120 					return (FC_MAKE_ERR(err));
5121 				}
5122 			}
5123 			ASSERT(seg->s_szc == 0);
5124 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5125 			goto top;
5126 		}
5127 	}
5128 
5129 	/*
5130 	 * Check to see if we need to allocate an anon_map structure.
5131 	 */
5132 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5133 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5134 		/*
5135 		 * Drop the "read" lock on the segment and acquire
5136 		 * the "write" version since we have to allocate the
5137 		 * anon_map.
5138 		 */
5139 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5140 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5141 
5142 		if (svd->amp == NULL) {
5143 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5144 			svd->amp->a_szc = seg->s_szc;
5145 		}
5146 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5147 
5148 		/*
5149 		 * Start all over again since segment protections
5150 		 * may have changed after we dropped the "read" lock.
5151 		 */
5152 		goto top;
5153 	}
5154 
5155 	/*
5156 	 * S_READ_NOCOW vs S_READ distinction was
5157 	 * only needed for the code above. After
5158 	 * that we treat it as S_READ.
5159 	 */
5160 	if (rw == S_READ_NOCOW) {
5161 		ASSERT(type == F_SOFTLOCK);
5162 		ASSERT(AS_WRITE_HELD(seg->s_as));
5163 		rw = S_READ;
5164 	}
5165 
5166 	amp = svd->amp;
5167 
5168 	/*
5169 	 * MADV_SEQUENTIAL work is ignored for large page segments.
5170 	 */
5171 	if (seg->s_szc != 0) {
5172 		pgsz = page_get_pagesize(seg->s_szc);
5173 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5174 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5175 		if (svd->vp == NULL) {
5176 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
5177 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5178 		} else {
5179 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5180 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5181 			if (err == IE_RETRY) {
5182 				ASSERT(seg->s_szc == 0);
5183 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5184 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5185 				goto top;
5186 			}
5187 		}
5188 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5189 		return (err);
5190 	}
5191 
5192 	page = seg_page(seg, addr);
5193 	if (amp != NULL) {
5194 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5195 		anon_index = svd->anon_index + page;
5196 
5197 		if (type == F_PROT && rw == S_READ &&
5198 		    svd->tr_state == SEGVN_TR_OFF &&
5199 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5200 			size_t index = anon_index;
5201 			struct anon *ap;
5202 
5203 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5204 			/*
5205 			 * The fast path could apply to S_WRITE also, except
5206 			 * that the protection fault could be caused by lazy
5207 			 * tlb flush when ro->rw. In this case, the pte is
5208 			 * RW already. But RO in the other cpu's tlb causes
5209 			 * the fault. Since hat_chgprot won't do anything if
5210 			 * pte doesn't change, we may end up faulting
5211 			 * indefinitely until the RO tlb entry gets replaced.
5212 			 */
5213 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5214 				anon_array_enter(amp, index, &cookie);
5215 				ap = anon_get_ptr(amp->ahp, index);
5216 				anon_array_exit(&cookie);
5217 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
5218 					ANON_LOCK_EXIT(&amp->a_rwlock);
5219 					goto slow;
5220 				}
5221 			}
5222 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5223 			ANON_LOCK_EXIT(&amp->a_rwlock);
5224 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5225 			return (0);
5226 		}
5227 	}
5228 slow:
5229 
5230 	if (svd->vpage == NULL)
5231 		vpage = NULL;
5232 	else
5233 		vpage = &svd->vpage[page];
5234 
5235 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
5236 
5237 	/*
5238 	 * If MADV_SEQUENTIAL has been set for the particular page we
5239 	 * are faulting on, free behind all pages in the segment and put
5240 	 * them on the free list.
5241 	 */
5242 
5243 	if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5244 		struct vpage *vpp = NULL;
5245 		ulong_t fanon_index = 0;
5246 		size_t fpage;
5247 		u_offset_t pgoff, fpgoff;
5248 		struct vnode *fvp;
5249 		struct anon *fap = NULL;
5250 
5251 		if (svd->advice == MADV_SEQUENTIAL ||
5252 		    (svd->pageadvice &&
5253 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5254 			pgoff = off - PAGESIZE;
5255 			fpage = page - 1;
5256 			if (vpage != NULL)
5257 				vpp = &svd->vpage[fpage];
5258 			if (amp != NULL)
5259 				fanon_index = svd->anon_index + fpage;
5260 
5261 			while (pgoff > svd->offset) {
5262 				if (svd->advice != MADV_SEQUENTIAL &&
5263 				    (!svd->pageadvice || (vpage &&
5264 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5265 					break;
5266 
5267 				/*
5268 				 * If this is an anon page, we must find the
5269 				 * correct <vp, offset> for it
5270 				 */
5271 				fap = NULL;
5272 				if (amp != NULL) {
5273 					ANON_LOCK_ENTER(&amp->a_rwlock,
5274 					    RW_READER);
5275 					anon_array_enter(amp, fanon_index,
5276 					    &cookie);
5277 					fap = anon_get_ptr(amp->ahp,
5278 					    fanon_index);
5279 					if (fap != NULL) {
5280 						swap_xlate(fap, &fvp, &fpgoff);
5281 					} else {
5282 						fpgoff = pgoff;
5283 						fvp = svd->vp;
5284 					}
5285 					anon_array_exit(&cookie);
5286 					ANON_LOCK_EXIT(&amp->a_rwlock);
5287 				} else {
5288 					fpgoff = pgoff;
5289 					fvp = svd->vp;
5290 				}
5291 				if (fvp == NULL)
5292 					break;	/* XXX */
5293 				/*
5294 				 * Skip pages that are free or have an
5295 				 * "exclusive" lock.
5296 				 */
5297 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5298 				if (pp == NULL)
5299 					break;
5300 				/*
5301 				 * We don't need the page_struct_lock to test
5302 				 * as this is only advisory; even if we
5303 				 * acquire it someone might race in and lock
5304 				 * the page after we unlock and before the
5305 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5306 				 */
5307 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5308 					/*
5309 					 * Hold the vnode before releasing
5310 					 * the page lock to prevent it from
5311 					 * being freed and re-used by some
5312 					 * other thread.
5313 					 */
5314 					VN_HOLD(fvp);
5315 					page_unlock(pp);
5316 					/*
5317 					 * We should build a page list
5318 					 * to kluster putpages XXX
5319 					 */
5320 					(void) VOP_PUTPAGE(fvp,
5321 					    (offset_t)fpgoff, PAGESIZE,
5322 					    (B_DONTNEED|B_FREE|B_ASYNC),
5323 					    svd->cred, NULL);
5324 					VN_RELE(fvp);
5325 				} else {
5326 					/*
5327 					 * XXX - Should the loop terminate if
5328 					 * the page is `locked'?
5329 					 */
5330 					page_unlock(pp);
5331 				}
5332 				--vpp;
5333 				--fanon_index;
5334 				pgoff -= PAGESIZE;
5335 			}
5336 		}
5337 	}
5338 
5339 	plp = pl;
5340 	*plp = NULL;
5341 	pl_alloc_sz = 0;
5342 
5343 	/*
5344 	 * See if we need to call VOP_GETPAGE for
5345 	 * *any* of the range being faulted on.
5346 	 * We can skip all of this work if there
5347 	 * was no original vnode.
5348 	 */
5349 	if (svd->vp != NULL) {
5350 		u_offset_t vp_off;
5351 		size_t vp_len;
5352 		struct anon *ap;
5353 		vnode_t *vp;
5354 
5355 		vp_off = off;
5356 		vp_len = len;
5357 
5358 		if (amp == NULL)
5359 			dogetpage = 1;
5360 		else {
5361 			/*
5362 			 * Only acquire reader lock to prevent amp->ahp
5363 			 * from being changed.  It's ok to miss pages,
5364 			 * hence we don't do anon_array_enter
5365 			 */
5366 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5367 			ap = anon_get_ptr(amp->ahp, anon_index);
5368 
5369 			if (len <= PAGESIZE)
5370 				/* inline non_anon() */
5371 				dogetpage = (ap == NULL);
5372 			else
5373 				dogetpage = non_anon(amp->ahp, anon_index,
5374 				    &vp_off, &vp_len);
5375 			ANON_LOCK_EXIT(&amp->a_rwlock);
5376 		}
5377 
5378 		if (dogetpage) {
5379 			enum seg_rw arw;
5380 			struct as *as = seg->s_as;
5381 
5382 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5383 				/*
5384 				 * Page list won't fit in local array,
5385 				 * allocate one of the needed size.
5386 				 */
5387 				pl_alloc_sz =
5388 				    (btop(len) + 1) * sizeof (page_t *);
5389 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5390 				plp[0] = NULL;
5391 				plsz = len;
5392 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5393 			    svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5394 			    (((size_t)(addr + PAGESIZE) <
5395 			    (size_t)(seg->s_base + seg->s_size)) &&
5396 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
5397 				/*
5398 				 * Ask VOP_GETPAGE to return the exact number
5399 				 * of pages if
5400 				 * (a) this is a COW fault, or
5401 				 * (b) this is a software fault, or
5402 				 * (c) next page is already mapped.
5403 				 */
5404 				plsz = len;
5405 			} else {
5406 				/*
5407 				 * Ask VOP_GETPAGE to return adjacent pages
5408 				 * within the segment.
5409 				 */
5410 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5411 				    ((seg->s_base + seg->s_size) - addr));
5412 				ASSERT((addr + plsz) <=
5413 				    (seg->s_base + seg->s_size));
5414 			}
5415 
5416 			/*
5417 			 * Need to get some non-anonymous pages.
5418 			 * We need to make only one call to GETPAGE to do
5419 			 * this to prevent certain deadlocking conditions
5420 			 * when we are doing locking.  In this case
5421 			 * non_anon() should have picked up the smallest
5422 			 * range which includes all the non-anonymous
5423 			 * pages in the requested range.  We have to
5424 			 * be careful regarding which rw flag to pass in
5425 			 * because on a private mapping, the underlying
5426 			 * object is never allowed to be written.
5427 			 */
5428 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5429 				arw = S_READ;
5430 			} else {
5431 				arw = rw;
5432 			}
5433 			vp = svd->vp;
5434 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5435 			    "segvn_getpage:seg %p addr %p vp %p",
5436 			    seg, addr, vp);
5437 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5438 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5439 			    svd->cred, NULL);
5440 			if (err) {
5441 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5442 				segvn_pagelist_rele(plp);
5443 				if (pl_alloc_sz)
5444 					kmem_free(plp, pl_alloc_sz);
5445 				return (FC_MAKE_ERR(err));
5446 			}
5447 			if (svd->type == MAP_PRIVATE)
5448 				vpprot &= ~PROT_WRITE;
5449 		}
5450 	}
5451 
5452 	/*
5453 	 * N.B. at this time the plp array has all the needed non-anon
5454 	 * pages in addition to (possibly) having some adjacent pages.
5455 	 */
5456 
5457 	/*
5458 	 * Always acquire the anon_array_lock to prevent
5459 	 * 2 threads from allocating separate anon slots for
5460 	 * the same "addr".
5461 	 *
5462 	 * If this is a copy-on-write fault and we don't already
5463 	 * have the anon_array_lock, acquire it to prevent the
5464 	 * fault routine from handling multiple copy-on-write faults
5465 	 * on the same "addr" in the same address space.
5466 	 *
5467 	 * Only one thread should deal with the fault since after
5468 	 * it is handled, the other threads can acquire a translation
5469 	 * to the newly created private page.  This prevents two or
5470 	 * more threads from creating different private pages for the
5471 	 * same fault.
5472 	 *
5473 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5474 	 * to prevent deadlock between this thread and another thread
5475 	 * which has soft-locked this page and wants to acquire serial_lock.
5476 	 * ( bug 4026339 )
5477 	 *
5478 	 * The fix for bug 4026339 becomes unnecessary when using the
5479 	 * locking scheme with per amp rwlock and a global set of hash
5480 	 * lock, anon_array_lock.  If we steal a vnode page when low
5481 	 * on memory and upgrad the page lock through page_rename,
5482 	 * then the page is PAGE_HANDLED, nothing needs to be done
5483 	 * for this page after returning from segvn_faultpage.
5484 	 *
5485 	 * But really, the page lock should be downgraded after
5486 	 * the stolen page is page_rename'd.
5487 	 */
5488 
5489 	if (amp != NULL)
5490 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5491 
5492 	/*
5493 	 * Ok, now loop over the address range and handle faults
5494 	 */
5495 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5496 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5497 		    type, rw, brkcow);
5498 		if (err) {
5499 			if (amp != NULL)
5500 				ANON_LOCK_EXIT(&amp->a_rwlock);
5501 			if (type == F_SOFTLOCK && a > addr) {
5502 				segvn_softunlock(seg, addr, (a - addr),
5503 				    S_OTHER);
5504 			}
5505 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5506 			segvn_pagelist_rele(plp);
5507 			if (pl_alloc_sz)
5508 				kmem_free(plp, pl_alloc_sz);
5509 			return (err);
5510 		}
5511 		if (vpage) {
5512 			vpage++;
5513 		} else if (svd->vpage) {
5514 			page = seg_page(seg, addr);
5515 			vpage = &svd->vpage[++page];
5516 		}
5517 	}
5518 
5519 	/* Didn't get pages from the underlying fs so we're done */
5520 	if (!dogetpage)
5521 		goto done;
5522 
5523 	/*
5524 	 * Now handle any other pages in the list returned.
5525 	 * If the page can be used, load up the translations now.
5526 	 * Note that the for loop will only be entered if "plp"
5527 	 * is pointing to a non-NULL page pointer which means that
5528 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5529 	 */
5530 	if (svd->pageprot == 0)
5531 		prot = svd->prot & vpprot;
5532 
5533 
5534 	/*
5535 	 * Large Files: diff should be unsigned value because we started
5536 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5537 	 * large file of size > 2GB gets mapped to address space
5538 	 * the diff value can be > 2GB.
5539 	 */
5540 
5541 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5542 		size_t diff;
5543 		struct anon *ap;
5544 		int anon_index;
5545 		anon_sync_obj_t cookie;
5546 		int hat_flag = HAT_LOAD_ADV;
5547 
5548 		if (svd->flags & MAP_TEXT) {
5549 			hat_flag |= HAT_LOAD_TEXT;
5550 		}
5551 
5552 		if (pp == PAGE_HANDLED)
5553 			continue;
5554 
5555 		if (svd->tr_state != SEGVN_TR_ON &&
5556 		    pp->p_offset >=  svd->offset &&
5557 		    pp->p_offset < svd->offset + seg->s_size) {
5558 
5559 			diff = pp->p_offset - svd->offset;
5560 
5561 			/*
5562 			 * Large Files: Following is the assertion
5563 			 * validating the above cast.
5564 			 */
5565 			ASSERT(svd->vp == pp->p_vnode);
5566 
5567 			page = btop(diff);
5568 			if (svd->pageprot)
5569 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5570 
5571 			/*
5572 			 * Prevent other threads in the address space from
5573 			 * creating private pages (i.e., allocating anon slots)
5574 			 * while we are in the process of loading translations
5575 			 * to additional pages returned by the underlying
5576 			 * object.
5577 			 */
5578 			if (amp != NULL) {
5579 				anon_index = svd->anon_index + page;
5580 				anon_array_enter(amp, anon_index, &cookie);
5581 				ap = anon_get_ptr(amp->ahp, anon_index);
5582 			}
5583 			if ((amp == NULL) || (ap == NULL)) {
5584 				if (IS_VMODSORT(pp->p_vnode) ||
5585 				    enable_mbit_wa) {
5586 					if (rw == S_WRITE)
5587 						hat_setmod(pp);
5588 					else if (rw != S_OTHER &&
5589 					    !hat_ismod(pp))
5590 						prot &= ~PROT_WRITE;
5591 				}
5592 				/*
5593 				 * Skip mapping read ahead pages marked
5594 				 * for migration, so they will get migrated
5595 				 * properly on fault
5596 				 */
5597 				ASSERT(amp == NULL ||
5598 				    svd->rcookie == HAT_INVALID_REGION_COOKIE);
5599 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5600 					hat_memload_region(hat,
5601 					    seg->s_base + diff,
5602 					    pp, prot, hat_flag,
5603 					    svd->rcookie);
5604 				}
5605 			}
5606 			if (amp != NULL)
5607 				anon_array_exit(&cookie);
5608 		}
5609 		page_unlock(pp);
5610 	}
5611 done:
5612 	if (amp != NULL)
5613 		ANON_LOCK_EXIT(&amp->a_rwlock);
5614 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5615 	if (pl_alloc_sz)
5616 		kmem_free(plp, pl_alloc_sz);
5617 	return (0);
5618 }
5619 
5620 /*
5621  * This routine is used to start I/O on pages asynchronously.  XXX it will
5622  * only create PAGESIZE pages. At fault time they will be relocated into
5623  * larger pages.
5624  */
5625 static faultcode_t
5626 segvn_faulta(struct seg *seg, caddr_t addr)
5627 {
5628 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5629 	int err;
5630 	struct anon_map *amp;
5631 	vnode_t *vp;
5632 
5633 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5634 
5635 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5636 	if ((amp = svd->amp) != NULL) {
5637 		struct anon *ap;
5638 
5639 		/*
5640 		 * Reader lock to prevent amp->ahp from being changed.
5641 		 * This is advisory, it's ok to miss a page, so
5642 		 * we don't do anon_array_enter lock.
5643 		 */
5644 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5645 		if ((ap = anon_get_ptr(amp->ahp,
5646 		    svd->anon_index + seg_page(seg, addr))) != NULL) {
5647 
5648 			err = anon_getpage(&ap, NULL, NULL,
5649 			    0, seg, addr, S_READ, svd->cred);
5650 
5651 			ANON_LOCK_EXIT(&amp->a_rwlock);
5652 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5653 			if (err)
5654 				return (FC_MAKE_ERR(err));
5655 			return (0);
5656 		}
5657 		ANON_LOCK_EXIT(&amp->a_rwlock);
5658 	}
5659 
5660 	if (svd->vp == NULL) {
5661 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5662 		return (0);			/* zfod page - do nothing now */
5663 	}
5664 
5665 	vp = svd->vp;
5666 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5667 	    "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5668 	err = VOP_GETPAGE(vp,
5669 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5670 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5671 	    S_OTHER, svd->cred, NULL);
5672 
5673 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5674 	if (err)
5675 		return (FC_MAKE_ERR(err));
5676 	return (0);
5677 }
5678 
5679 static int
5680 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5681 {
5682 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5683 	struct vpage *cvp, *svp = NULL, *evp = NULL;
5684 	struct vnode *vp;
5685 	size_t pgsz;
5686 	pgcnt_t pgcnt = 0;
5687 	anon_sync_obj_t cookie;
5688 	int unload_done = 0;
5689 
5690 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5691 
5692 	if ((svd->maxprot & prot) != prot)
5693 		return (EACCES);			/* violated maxprot */
5694 
5695 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5696 
5697 	/* return if prot is the same */
5698 	if (!svd->pageprot && svd->prot == prot) {
5699 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5700 		return (0);
5701 	}
5702 
5703 	/*
5704 	 * Since we change protections we first have to flush the cache.
5705 	 * This makes sure all the pagelock calls have to recheck
5706 	 * protections.
5707 	 */
5708 	if (svd->softlockcnt > 0) {
5709 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5710 
5711 		/*
5712 		 * If this is shared segment non 0 softlockcnt
5713 		 * means locked pages are still in use.
5714 		 */
5715 		if (svd->type == MAP_SHARED) {
5716 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5717 			return (EAGAIN);
5718 		}
5719 
5720 		/*
5721 		 * Since we do have the segvn writers lock nobody can fill
5722 		 * the cache with entries belonging to this seg during
5723 		 * the purge. The flush either succeeds or we still have
5724 		 * pending I/Os.
5725 		 */
5726 		segvn_purge(seg);
5727 		if (svd->softlockcnt > 0) {
5728 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5729 			return (EAGAIN);
5730 		}
5731 	}
5732 
5733 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5734 		ASSERT(svd->amp == NULL);
5735 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5736 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5737 		    HAT_REGION_TEXT);
5738 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
5739 		unload_done = 1;
5740 	} else if (svd->tr_state == SEGVN_TR_INIT) {
5741 		svd->tr_state = SEGVN_TR_OFF;
5742 	} else if (svd->tr_state == SEGVN_TR_ON) {
5743 		ASSERT(svd->amp != NULL);
5744 		segvn_textunrepl(seg, 0);
5745 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5746 		unload_done = 1;
5747 	}
5748 
5749 	if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5750 	    svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5751 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5752 		segvn_inval_trcache(svd->vp);
5753 	}
5754 	if (seg->s_szc != 0) {
5755 		int err;
5756 		pgsz = page_get_pagesize(seg->s_szc);
5757 		pgcnt = pgsz >> PAGESHIFT;
5758 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5759 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5760 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5761 			ASSERT(seg->s_base != addr || seg->s_size != len);
5762 			/*
5763 			 * If we are holding the as lock as a reader then
5764 			 * we need to return IE_RETRY and let the as
5765 			 * layer drop and re-acquire the lock as a writer.
5766 			 */
5767 			if (AS_READ_HELD(seg->s_as))
5768 				return (IE_RETRY);
5769 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5770 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5771 				err = segvn_demote_range(seg, addr, len,
5772 				    SDR_END, 0);
5773 			} else {
5774 				uint_t szcvec = map_pgszcvec(seg->s_base,
5775 				    pgsz, (uintptr_t)seg->s_base,
5776 				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5777 				err = segvn_demote_range(seg, addr, len,
5778 				    SDR_END, szcvec);
5779 			}
5780 			if (err == 0)
5781 				return (IE_RETRY);
5782 			if (err == ENOMEM)
5783 				return (IE_NOMEM);
5784 			return (err);
5785 		}
5786 	}
5787 
5788 
5789 	/*
5790 	 * If it's a private mapping and we're making it writable then we
5791 	 * may have to reserve the additional swap space now. If we are
5792 	 * making writable only a part of the segment then we use its vpage
5793 	 * array to keep a record of the pages for which we have reserved
5794 	 * swap. In this case we set the pageswap field in the segment's
5795 	 * segvn structure to record this.
5796 	 *
5797 	 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5798 	 * removing write permission on the entire segment and we haven't
5799 	 * modified any pages, we can release the swap space.
5800 	 */
5801 	if (svd->type == MAP_PRIVATE) {
5802 		if (prot & PROT_WRITE) {
5803 			if (!(svd->flags & MAP_NORESERVE) &&
5804 			    !(svd->swresv && svd->pageswap == 0)) {
5805 				size_t sz = 0;
5806 
5807 				/*
5808 				 * Start by determining how much swap
5809 				 * space is required.
5810 				 */
5811 				if (addr == seg->s_base &&
5812 				    len == seg->s_size &&
5813 				    svd->pageswap == 0) {
5814 					/* The whole segment */
5815 					sz = seg->s_size;
5816 				} else {
5817 					/*
5818 					 * Make sure that the vpage array
5819 					 * exists, and make a note of the
5820 					 * range of elements corresponding
5821 					 * to len.
5822 					 */
5823 					segvn_vpage(seg);
5824 					if (svd->vpage == NULL) {
5825 						SEGVN_LOCK_EXIT(seg->s_as,
5826 						    &svd->lock);
5827 						return (ENOMEM);
5828 					}
5829 					svp = &svd->vpage[seg_page(seg, addr)];
5830 					evp = &svd->vpage[seg_page(seg,
5831 					    addr + len)];
5832 
5833 					if (svd->pageswap == 0) {
5834 						/*
5835 						 * This is the first time we've
5836 						 * asked for a part of this
5837 						 * segment, so we need to
5838 						 * reserve everything we've
5839 						 * been asked for.
5840 						 */
5841 						sz = len;
5842 					} else {
5843 						/*
5844 						 * We have to count the number
5845 						 * of pages required.
5846 						 */
5847 						for (cvp = svp;  cvp < evp;
5848 						    cvp++) {
5849 							if (!VPP_ISSWAPRES(cvp))
5850 								sz++;
5851 						}
5852 						sz <<= PAGESHIFT;
5853 					}
5854 				}
5855 
5856 				/* Try to reserve the necessary swap. */
5857 				if (anon_resv_zone(sz,
5858 				    seg->s_as->a_proc->p_zone) == 0) {
5859 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5860 					return (IE_NOMEM);
5861 				}
5862 
5863 				/*
5864 				 * Make a note of how much swap space
5865 				 * we've reserved.
5866 				 */
5867 				if (svd->pageswap == 0 && sz == seg->s_size) {
5868 					svd->swresv = sz;
5869 				} else {
5870 					ASSERT(svd->vpage != NULL);
5871 					svd->swresv += sz;
5872 					svd->pageswap = 1;
5873 					for (cvp = svp; cvp < evp; cvp++) {
5874 						if (!VPP_ISSWAPRES(cvp))
5875 							VPP_SETSWAPRES(cvp);
5876 					}
5877 				}
5878 			}
5879 		} else {
5880 			/*
5881 			 * Swap space is released only if this segment
5882 			 * does not map anonymous memory, since read faults
5883 			 * on such segments still need an anon slot to read
5884 			 * in the data.
5885 			 */
5886 			if (svd->swresv != 0 && svd->vp != NULL &&
5887 			    svd->amp == NULL && addr == seg->s_base &&
5888 			    len == seg->s_size && svd->pageprot == 0) {
5889 				ASSERT(svd->pageswap == 0);
5890 				anon_unresv_zone(svd->swresv,
5891 				    seg->s_as->a_proc->p_zone);
5892 				svd->swresv = 0;
5893 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5894 				    "anon proc:%p %lu %u", seg, 0, 0);
5895 			}
5896 		}
5897 	}
5898 
5899 	if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5900 		if (svd->prot == prot) {
5901 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5902 			return (0);			/* all done */
5903 		}
5904 		svd->prot = (uchar_t)prot;
5905 	} else if (svd->type == MAP_PRIVATE) {
5906 		struct anon *ap = NULL;
5907 		page_t *pp;
5908 		u_offset_t offset, off;
5909 		struct anon_map *amp;
5910 		ulong_t anon_idx = 0;
5911 
5912 		/*
5913 		 * A vpage structure exists or else the change does not
5914 		 * involve the entire segment.  Establish a vpage structure
5915 		 * if none is there.  Then, for each page in the range,
5916 		 * adjust its individual permissions.  Note that write-
5917 		 * enabling a MAP_PRIVATE page can affect the claims for
5918 		 * locked down memory.  Overcommitting memory terminates
5919 		 * the operation.
5920 		 */
5921 		segvn_vpage(seg);
5922 		if (svd->vpage == NULL) {
5923 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5924 			return (ENOMEM);
5925 		}
5926 		svd->pageprot = 1;
5927 		if ((amp = svd->amp) != NULL) {
5928 			anon_idx = svd->anon_index + seg_page(seg, addr);
5929 			ASSERT(seg->s_szc == 0 ||
5930 			    IS_P2ALIGNED(anon_idx, pgcnt));
5931 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5932 		}
5933 
5934 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5935 		evp = &svd->vpage[seg_page(seg, addr + len)];
5936 
5937 		/*
5938 		 * See Statement at the beginning of segvn_lockop regarding
5939 		 * the way cowcnts and lckcnts are handled.
5940 		 */
5941 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5942 
5943 			if (seg->s_szc != 0) {
5944 				if (amp != NULL) {
5945 					anon_array_enter(amp, anon_idx,
5946 					    &cookie);
5947 				}
5948 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5949 				    !segvn_claim_pages(seg, svp, offset,
5950 				    anon_idx, prot)) {
5951 					if (amp != NULL) {
5952 						anon_array_exit(&cookie);
5953 					}
5954 					break;
5955 				}
5956 				if (amp != NULL) {
5957 					anon_array_exit(&cookie);
5958 				}
5959 				anon_idx++;
5960 			} else {
5961 				if (amp != NULL) {
5962 					anon_array_enter(amp, anon_idx,
5963 					    &cookie);
5964 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5965 				}
5966 
5967 				if (VPP_ISPPLOCK(svp) &&
5968 				    VPP_PROT(svp) != prot) {
5969 
5970 					if (amp == NULL || ap == NULL) {
5971 						vp = svd->vp;
5972 						off = offset;
5973 					} else
5974 						swap_xlate(ap, &vp, &off);
5975 					if (amp != NULL)
5976 						anon_array_exit(&cookie);
5977 
5978 					if ((pp = page_lookup(vp, off,
5979 					    SE_SHARED)) == NULL) {
5980 						panic("segvn_setprot: no page");
5981 						/*NOTREACHED*/
5982 					}
5983 					ASSERT(seg->s_szc == 0);
5984 					if ((VPP_PROT(svp) ^ prot) &
5985 					    PROT_WRITE) {
5986 						if (prot & PROT_WRITE) {
5987 							if (!page_addclaim(
5988 							    pp)) {
5989 								page_unlock(pp);
5990 								break;
5991 							}
5992 						} else {
5993 							if (!page_subclaim(
5994 							    pp)) {
5995 								page_unlock(pp);
5996 								break;
5997 							}
5998 						}
5999 					}
6000 					page_unlock(pp);
6001 				} else if (amp != NULL)
6002 					anon_array_exit(&cookie);
6003 			}
6004 			VPP_SETPROT(svp, prot);
6005 			offset += PAGESIZE;
6006 		}
6007 		if (amp != NULL)
6008 			ANON_LOCK_EXIT(&amp->a_rwlock);
6009 
6010 		/*
6011 		 * Did we terminate prematurely?  If so, simply unload
6012 		 * the translations to the things we've updated so far.
6013 		 */
6014 		if (svp != evp) {
6015 			if (unload_done) {
6016 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6017 				return (IE_NOMEM);
6018 			}
6019 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
6020 			    PAGESIZE;
6021 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
6022 			if (len != 0)
6023 				hat_unload(seg->s_as->a_hat, addr,
6024 				    len, HAT_UNLOAD);
6025 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6026 			return (IE_NOMEM);
6027 		}
6028 	} else {
6029 		segvn_vpage(seg);
6030 		if (svd->vpage == NULL) {
6031 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6032 			return (ENOMEM);
6033 		}
6034 		svd->pageprot = 1;
6035 		evp = &svd->vpage[seg_page(seg, addr + len)];
6036 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
6037 			VPP_SETPROT(svp, prot);
6038 		}
6039 	}
6040 
6041 	if (unload_done) {
6042 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6043 		return (0);
6044 	}
6045 
6046 	if (((prot & PROT_WRITE) != 0 &&
6047 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
6048 	    (prot & ~PROT_USER) == PROT_NONE) {
6049 		/*
6050 		 * Either private or shared data with write access (in
6051 		 * which case we need to throw out all former translations
6052 		 * so that we get the right translations set up on fault
6053 		 * and we don't allow write access to any copy-on-write pages
6054 		 * that might be around or to prevent write access to pages
6055 		 * representing holes in a file), or we don't have permission
6056 		 * to access the memory at all (in which case we have to
6057 		 * unload any current translations that might exist).
6058 		 */
6059 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
6060 	} else {
6061 		/*
6062 		 * A shared mapping or a private mapping in which write
6063 		 * protection is going to be denied - just change all the
6064 		 * protections over the range of addresses in question.
6065 		 * segvn does not support any other attributes other
6066 		 * than prot so we can use hat_chgattr.
6067 		 */
6068 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6069 	}
6070 
6071 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6072 
6073 	return (0);
6074 }
6075 
6076 /*
6077  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
6078  * to determine if the seg is capable of mapping the requested szc.
6079  */
6080 static int
6081 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6082 {
6083 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6084 	struct segvn_data *nsvd;
6085 	struct anon_map *amp = svd->amp;
6086 	struct seg *nseg;
6087 	caddr_t eaddr = addr + len, a;
6088 	size_t pgsz = page_get_pagesize(szc);
6089 	pgcnt_t pgcnt = page_get_pagecnt(szc);
6090 	int err;
6091 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6092 
6093 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
6094 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6095 
6096 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6097 		return (0);
6098 	}
6099 
6100 	/*
6101 	 * addr should always be pgsz aligned but eaddr may be misaligned if
6102 	 * it's at the end of the segment.
6103 	 *
6104 	 * XXX we should assert this condition since as_setpagesize() logic
6105 	 * guarantees it.
6106 	 */
6107 	if (!IS_P2ALIGNED(addr, pgsz) ||
6108 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
6109 	    eaddr != seg->s_base + seg->s_size)) {
6110 
6111 		segvn_setpgsz_align_err++;
6112 		return (EINVAL);
6113 	}
6114 
6115 	if (amp != NULL && svd->type == MAP_SHARED) {
6116 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6117 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6118 
6119 			segvn_setpgsz_anon_align_err++;
6120 			return (EINVAL);
6121 		}
6122 	}
6123 
6124 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6125 	    szc > segvn_maxpgszc) {
6126 		return (EINVAL);
6127 	}
6128 
6129 	/* paranoid check */
6130 	if (svd->vp != NULL &&
6131 	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6132 		return (EINVAL);
6133 	}
6134 
6135 	if (seg->s_szc == 0 && svd->vp != NULL &&
6136 	    map_addr_vacalign_check(addr, off)) {
6137 		return (EINVAL);
6138 	}
6139 
6140 	/*
6141 	 * Check that protections are the same within new page
6142 	 * size boundaries.
6143 	 */
6144 	if (svd->pageprot) {
6145 		for (a = addr; a < eaddr; a += pgsz) {
6146 			if ((a + pgsz) > eaddr) {
6147 				if (!sameprot(seg, a, eaddr - a)) {
6148 					return (EINVAL);
6149 				}
6150 			} else {
6151 				if (!sameprot(seg, a, pgsz)) {
6152 					return (EINVAL);
6153 				}
6154 			}
6155 		}
6156 	}
6157 
6158 	/*
6159 	 * Since we are changing page size we first have to flush
6160 	 * the cache. This makes sure all the pagelock calls have
6161 	 * to recheck protections.
6162 	 */
6163 	if (svd->softlockcnt > 0) {
6164 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6165 
6166 		/*
6167 		 * If this is shared segment non 0 softlockcnt
6168 		 * means locked pages are still in use.
6169 		 */
6170 		if (svd->type == MAP_SHARED) {
6171 			return (EAGAIN);
6172 		}
6173 
6174 		/*
6175 		 * Since we do have the segvn writers lock nobody can fill
6176 		 * the cache with entries belonging to this seg during
6177 		 * the purge. The flush either succeeds or we still have
6178 		 * pending I/Os.
6179 		 */
6180 		segvn_purge(seg);
6181 		if (svd->softlockcnt > 0) {
6182 			return (EAGAIN);
6183 		}
6184 	}
6185 
6186 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6187 		ASSERT(svd->amp == NULL);
6188 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6189 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6190 		    HAT_REGION_TEXT);
6191 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6192 	} else if (svd->tr_state == SEGVN_TR_INIT) {
6193 		svd->tr_state = SEGVN_TR_OFF;
6194 	} else if (svd->tr_state == SEGVN_TR_ON) {
6195 		ASSERT(svd->amp != NULL);
6196 		segvn_textunrepl(seg, 1);
6197 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6198 		amp = NULL;
6199 	}
6200 
6201 	/*
6202 	 * Operation for sub range of existing segment.
6203 	 */
6204 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6205 		if (szc < seg->s_szc) {
6206 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
6207 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6208 			if (err == 0) {
6209 				return (IE_RETRY);
6210 			}
6211 			if (err == ENOMEM) {
6212 				return (IE_NOMEM);
6213 			}
6214 			return (err);
6215 		}
6216 		if (addr != seg->s_base) {
6217 			nseg = segvn_split_seg(seg, addr);
6218 			if (eaddr != (nseg->s_base + nseg->s_size)) {
6219 				/* eaddr is szc aligned */
6220 				(void) segvn_split_seg(nseg, eaddr);
6221 			}
6222 			return (IE_RETRY);
6223 		}
6224 		if (eaddr != (seg->s_base + seg->s_size)) {
6225 			/* eaddr is szc aligned */
6226 			(void) segvn_split_seg(seg, eaddr);
6227 		}
6228 		return (IE_RETRY);
6229 	}
6230 
6231 	/*
6232 	 * Break any low level sharing and reset seg->s_szc to 0.
6233 	 */
6234 	if ((err = segvn_clrszc(seg)) != 0) {
6235 		if (err == ENOMEM) {
6236 			err = IE_NOMEM;
6237 		}
6238 		return (err);
6239 	}
6240 	ASSERT(seg->s_szc == 0);
6241 
6242 	/*
6243 	 * If the end of the current segment is not pgsz aligned
6244 	 * then attempt to concatenate with the next segment.
6245 	 */
6246 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
6247 		nseg = AS_SEGNEXT(seg->s_as, seg);
6248 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6249 			return (ENOMEM);
6250 		}
6251 		if (nseg->s_ops != &segvn_ops) {
6252 			return (EINVAL);
6253 		}
6254 		nsvd = (struct segvn_data *)nseg->s_data;
6255 		if (nsvd->softlockcnt > 0) {
6256 			/*
6257 			 * If this is shared segment non 0 softlockcnt
6258 			 * means locked pages are still in use.
6259 			 */
6260 			if (nsvd->type == MAP_SHARED) {
6261 				return (EAGAIN);
6262 			}
6263 			segvn_purge(nseg);
6264 			if (nsvd->softlockcnt > 0) {
6265 				return (EAGAIN);
6266 			}
6267 		}
6268 		err = segvn_clrszc(nseg);
6269 		if (err == ENOMEM) {
6270 			err = IE_NOMEM;
6271 		}
6272 		if (err != 0) {
6273 			return (err);
6274 		}
6275 		ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6276 		err = segvn_concat(seg, nseg, 1);
6277 		if (err == -1) {
6278 			return (EINVAL);
6279 		}
6280 		if (err == -2) {
6281 			return (IE_NOMEM);
6282 		}
6283 		return (IE_RETRY);
6284 	}
6285 
6286 	/*
6287 	 * May need to re-align anon array to
6288 	 * new szc.
6289 	 */
6290 	if (amp != NULL) {
6291 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6292 			struct anon_hdr *nahp;
6293 
6294 			ASSERT(svd->type == MAP_PRIVATE);
6295 
6296 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6297 			ASSERT(amp->refcnt == 1);
6298 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6299 			if (nahp == NULL) {
6300 				ANON_LOCK_EXIT(&amp->a_rwlock);
6301 				return (IE_NOMEM);
6302 			}
6303 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
6304 			    nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6305 				anon_release(nahp, btop(amp->size));
6306 				ANON_LOCK_EXIT(&amp->a_rwlock);
6307 				return (IE_NOMEM);
6308 			}
6309 			anon_release(amp->ahp, btop(amp->size));
6310 			amp->ahp = nahp;
6311 			svd->anon_index = 0;
6312 			ANON_LOCK_EXIT(&amp->a_rwlock);
6313 		}
6314 	}
6315 	if (svd->vp != NULL && szc != 0) {
6316 		struct vattr va;
6317 		u_offset_t eoffpage = svd->offset;
6318 		va.va_mask = AT_SIZE;
6319 		eoffpage += seg->s_size;
6320 		eoffpage = btopr(eoffpage);
6321 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6322 			segvn_setpgsz_getattr_err++;
6323 			return (EINVAL);
6324 		}
6325 		if (btopr(va.va_size) < eoffpage) {
6326 			segvn_setpgsz_eof_err++;
6327 			return (EINVAL);
6328 		}
6329 		if (amp != NULL) {
6330 			/*
6331 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
6332 			 * don't take anon map lock here to avoid holding it
6333 			 * across VOP_GETPAGE() calls that may call back into
6334 			 * segvn for klsutering checks. We don't really need
6335 			 * anon map lock here since it's a private segment and
6336 			 * we hold as level lock as writers.
6337 			 */
6338 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
6339 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
6340 			    seg->s_size, szc, svd->prot, svd->vpage,
6341 			    svd->cred)) != 0) {
6342 				return (EINVAL);
6343 			}
6344 		}
6345 		segvn_setvnode_mpss(svd->vp);
6346 	}
6347 
6348 	if (amp != NULL) {
6349 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6350 		if (svd->type == MAP_PRIVATE) {
6351 			amp->a_szc = szc;
6352 		} else if (szc > amp->a_szc) {
6353 			amp->a_szc = szc;
6354 		}
6355 		ANON_LOCK_EXIT(&amp->a_rwlock);
6356 	}
6357 
6358 	seg->s_szc = szc;
6359 
6360 	return (0);
6361 }
6362 
6363 static int
6364 segvn_clrszc(struct seg *seg)
6365 {
6366 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6367 	struct anon_map *amp = svd->amp;
6368 	size_t pgsz;
6369 	pgcnt_t pages;
6370 	int err = 0;
6371 	caddr_t a = seg->s_base;
6372 	caddr_t ea = a + seg->s_size;
6373 	ulong_t an_idx = svd->anon_index;
6374 	vnode_t *vp = svd->vp;
6375 	struct vpage *vpage = svd->vpage;
6376 	page_t *anon_pl[1 + 1], *pp;
6377 	struct anon *ap, *oldap;
6378 	uint_t prot = svd->prot, vpprot;
6379 	int pageflag = 0;
6380 
6381 	ASSERT(AS_WRITE_HELD(seg->s_as) ||
6382 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6383 	ASSERT(svd->softlockcnt == 0);
6384 
6385 	if (vp == NULL && amp == NULL) {
6386 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6387 		seg->s_szc = 0;
6388 		return (0);
6389 	}
6390 
6391 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6392 		ASSERT(svd->amp == NULL);
6393 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6394 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6395 		    HAT_REGION_TEXT);
6396 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6397 	} else if (svd->tr_state == SEGVN_TR_ON) {
6398 		ASSERT(svd->amp != NULL);
6399 		segvn_textunrepl(seg, 1);
6400 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6401 		amp = NULL;
6402 	} else {
6403 		if (svd->tr_state != SEGVN_TR_OFF) {
6404 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
6405 			svd->tr_state = SEGVN_TR_OFF;
6406 		}
6407 
6408 		/*
6409 		 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6410 		 * unload argument is 0 when we are freeing the segment
6411 		 * and unload was already done.
6412 		 */
6413 		hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6414 		    HAT_UNLOAD_UNMAP);
6415 	}
6416 
6417 	if (amp == NULL || svd->type == MAP_SHARED) {
6418 		seg->s_szc = 0;
6419 		return (0);
6420 	}
6421 
6422 	pgsz = page_get_pagesize(seg->s_szc);
6423 	pages = btop(pgsz);
6424 
6425 	/*
6426 	 * XXX anon rwlock is not really needed because this is a
6427 	 * private segment and we are writers.
6428 	 */
6429 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6430 
6431 	for (; a < ea; a += pgsz, an_idx += pages) {
6432 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6433 			ASSERT(vpage != NULL || svd->pageprot == 0);
6434 			if (vpage != NULL) {
6435 				ASSERT(sameprot(seg, a, pgsz));
6436 				prot = VPP_PROT(vpage);
6437 				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6438 			}
6439 			if (seg->s_szc != 0) {
6440 				ASSERT(vp == NULL || anon_pages(amp->ahp,
6441 				    an_idx, pages) == pages);
6442 				if ((err = anon_map_demotepages(amp, an_idx,
6443 				    seg, a, prot, vpage, svd->cred)) != 0) {
6444 					goto out;
6445 				}
6446 			} else {
6447 				if (oldap->an_refcnt == 1) {
6448 					continue;
6449 				}
6450 				if ((err = anon_getpage(&oldap, &vpprot,
6451 				    anon_pl, PAGESIZE, seg, a, S_READ,
6452 				    svd->cred))) {
6453 					goto out;
6454 				}
6455 				if ((pp = anon_private(&ap, seg, a, prot,
6456 				    anon_pl[0], pageflag, svd->cred)) == NULL) {
6457 					err = ENOMEM;
6458 					goto out;
6459 				}
6460 				anon_decref(oldap);
6461 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
6462 				    ANON_SLEEP);
6463 				page_unlock(pp);
6464 			}
6465 		}
6466 		vpage = (vpage == NULL) ? NULL : vpage + pages;
6467 	}
6468 
6469 	amp->a_szc = 0;
6470 	seg->s_szc = 0;
6471 out:
6472 	ANON_LOCK_EXIT(&amp->a_rwlock);
6473 	return (err);
6474 }
6475 
6476 static int
6477 segvn_claim_pages(
6478 	struct seg *seg,
6479 	struct vpage *svp,
6480 	u_offset_t off,
6481 	ulong_t anon_idx,
6482 	uint_t prot)
6483 {
6484 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
6485 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6486 	page_t	**ppa;
6487 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6488 	struct anon_map *amp = svd->amp;
6489 	struct vpage *evp = svp + pgcnt;
6490 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6491 	    + seg->s_base;
6492 	struct anon *ap;
6493 	struct vnode *vp = svd->vp;
6494 	page_t *pp;
6495 	pgcnt_t pg_idx, i;
6496 	int err = 0;
6497 	anoff_t aoff;
6498 	int anon = (amp != NULL) ? 1 : 0;
6499 
6500 	ASSERT(svd->type == MAP_PRIVATE);
6501 	ASSERT(svd->vpage != NULL);
6502 	ASSERT(seg->s_szc != 0);
6503 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6504 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6505 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6506 
6507 	if (VPP_PROT(svp) == prot)
6508 		return (1);
6509 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6510 		return (1);
6511 
6512 	ppa = kmem_alloc(ppasize, KM_SLEEP);
6513 	if (anon && vp != NULL) {
6514 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6515 			anon = 0;
6516 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6517 		}
6518 		ASSERT(!anon ||
6519 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6520 	}
6521 
6522 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6523 		if (!VPP_ISPPLOCK(svp))
6524 			continue;
6525 		if (anon) {
6526 			ap = anon_get_ptr(amp->ahp, anon_idx);
6527 			if (ap == NULL) {
6528 				panic("segvn_claim_pages: no anon slot");
6529 			}
6530 			swap_xlate(ap, &vp, &aoff);
6531 			off = (u_offset_t)aoff;
6532 		}
6533 		ASSERT(vp != NULL);
6534 		if ((pp = page_lookup(vp,
6535 		    (u_offset_t)off, SE_SHARED)) == NULL) {
6536 			panic("segvn_claim_pages: no page");
6537 		}
6538 		ppa[pg_idx++] = pp;
6539 		off += PAGESIZE;
6540 	}
6541 
6542 	if (ppa[0] == NULL) {
6543 		kmem_free(ppa, ppasize);
6544 		return (1);
6545 	}
6546 
6547 	ASSERT(pg_idx <= pgcnt);
6548 	ppa[pg_idx] = NULL;
6549 
6550 
6551 	/* Find each large page within ppa, and adjust its claim */
6552 
6553 	/* Does ppa cover a single large page? */
6554 	if (ppa[0]->p_szc == seg->s_szc) {
6555 		if (prot & PROT_WRITE)
6556 			err = page_addclaim_pages(ppa);
6557 		else
6558 			err = page_subclaim_pages(ppa);
6559 	} else {
6560 		for (i = 0; ppa[i]; i += pgcnt) {
6561 			ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt));
6562 			if (prot & PROT_WRITE)
6563 				err = page_addclaim_pages(&ppa[i]);
6564 			else
6565 				err = page_subclaim_pages(&ppa[i]);
6566 			if (err == 0)
6567 				break;
6568 		}
6569 	}
6570 
6571 	for (i = 0; i < pg_idx; i++) {
6572 		ASSERT(ppa[i] != NULL);
6573 		page_unlock(ppa[i]);
6574 	}
6575 
6576 	kmem_free(ppa, ppasize);
6577 	return (err);
6578 }
6579 
6580 /*
6581  * Returns right (upper address) segment if split occurred.
6582  * If the address is equal to the beginning or end of its segment it returns
6583  * the current segment.
6584  */
6585 static struct seg *
6586 segvn_split_seg(struct seg *seg, caddr_t addr)
6587 {
6588 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6589 	struct seg *nseg;
6590 	size_t nsize;
6591 	struct segvn_data *nsvd;
6592 
6593 	ASSERT(AS_WRITE_HELD(seg->s_as));
6594 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6595 
6596 	ASSERT(addr >= seg->s_base);
6597 	ASSERT(addr <= seg->s_base + seg->s_size);
6598 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6599 
6600 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6601 		return (seg);
6602 
6603 	nsize = seg->s_base + seg->s_size - addr;
6604 	seg->s_size = addr - seg->s_base;
6605 	nseg = seg_alloc(seg->s_as, addr, nsize);
6606 	ASSERT(nseg != NULL);
6607 	nseg->s_ops = seg->s_ops;
6608 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6609 	nseg->s_data = (void *)nsvd;
6610 	nseg->s_szc = seg->s_szc;
6611 	*nsvd = *svd;
6612 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6613 	nsvd->seg = nseg;
6614 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6615 
6616 	if (nsvd->vp != NULL) {
6617 		VN_HOLD(nsvd->vp);
6618 		nsvd->offset = svd->offset +
6619 		    (uintptr_t)(nseg->s_base - seg->s_base);
6620 		if (nsvd->type == MAP_SHARED)
6621 			lgrp_shm_policy_init(NULL, nsvd->vp);
6622 	} else {
6623 		/*
6624 		 * The offset for an anonymous segment has no signifigance in
6625 		 * terms of an offset into a file. If we were to use the above
6626 		 * calculation instead, the structures read out of
6627 		 * /proc/<pid>/xmap would be more difficult to decipher since
6628 		 * it would be unclear whether two seemingly contiguous
6629 		 * prxmap_t structures represented different segments or a
6630 		 * single segment that had been split up into multiple prxmap_t
6631 		 * structures (e.g. if some part of the segment had not yet
6632 		 * been faulted in).
6633 		 */
6634 		nsvd->offset = 0;
6635 	}
6636 
6637 	ASSERT(svd->softlockcnt == 0);
6638 	ASSERT(svd->softlockcnt_sbase == 0);
6639 	ASSERT(svd->softlockcnt_send == 0);
6640 	crhold(svd->cred);
6641 
6642 	if (svd->vpage != NULL) {
6643 		size_t bytes = vpgtob(seg_pages(seg));
6644 		size_t nbytes = vpgtob(seg_pages(nseg));
6645 		struct vpage *ovpage = svd->vpage;
6646 
6647 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6648 		bcopy(ovpage, svd->vpage, bytes);
6649 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6650 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6651 		kmem_free(ovpage, bytes + nbytes);
6652 	}
6653 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6654 		struct anon_map *oamp = svd->amp, *namp;
6655 		struct anon_hdr *nahp;
6656 
6657 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6658 		ASSERT(oamp->refcnt == 1);
6659 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6660 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6661 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6662 
6663 		namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6664 		namp->a_szc = nseg->s_szc;
6665 		(void) anon_copy_ptr(oamp->ahp,
6666 		    svd->anon_index + btop(seg->s_size),
6667 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6668 		anon_release(oamp->ahp, btop(oamp->size));
6669 		oamp->ahp = nahp;
6670 		oamp->size = seg->s_size;
6671 		svd->anon_index = 0;
6672 		nsvd->amp = namp;
6673 		nsvd->anon_index = 0;
6674 		ANON_LOCK_EXIT(&oamp->a_rwlock);
6675 	} else if (svd->amp != NULL) {
6676 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6677 		ASSERT(svd->amp == nsvd->amp);
6678 		ASSERT(seg->s_szc <= svd->amp->a_szc);
6679 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6680 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6681 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6682 		svd->amp->refcnt++;
6683 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6684 	}
6685 
6686 	/*
6687 	 * Split the amount of swap reserved.
6688 	 */
6689 	if (svd->swresv) {
6690 		/*
6691 		 * For MAP_NORESERVE, only allocate swap reserve for pages
6692 		 * being used.  Other segments get enough to cover whole
6693 		 * segment.
6694 		 */
6695 		if (svd->flags & MAP_NORESERVE) {
6696 			size_t	oswresv;
6697 
6698 			ASSERT(svd->amp);
6699 			oswresv = svd->swresv;
6700 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6701 			    svd->anon_index, btop(seg->s_size)));
6702 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6703 			    nsvd->anon_index, btop(nseg->s_size)));
6704 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6705 		} else {
6706 			if (svd->pageswap) {
6707 				svd->swresv = segvn_count_swap_by_vpages(seg);
6708 				ASSERT(nsvd->swresv >= svd->swresv);
6709 				nsvd->swresv -= svd->swresv;
6710 			} else {
6711 				ASSERT(svd->swresv == seg->s_size +
6712 				    nseg->s_size);
6713 				svd->swresv = seg->s_size;
6714 				nsvd->swresv = nseg->s_size;
6715 			}
6716 		}
6717 	}
6718 
6719 	return (nseg);
6720 }
6721 
6722 /*
6723  * called on memory operations (unmap, setprot, setpagesize) for a subset
6724  * of a large page segment to either demote the memory range (SDR_RANGE)
6725  * or the ends (SDR_END) by addr/len.
6726  *
6727  * returns 0 on success. returns errno, including ENOMEM, on failure.
6728  */
6729 static int
6730 segvn_demote_range(
6731 	struct seg *seg,
6732 	caddr_t addr,
6733 	size_t len,
6734 	int flag,
6735 	uint_t szcvec)
6736 {
6737 	caddr_t eaddr = addr + len;
6738 	caddr_t lpgaddr, lpgeaddr;
6739 	struct seg *nseg;
6740 	struct seg *badseg1 = NULL;
6741 	struct seg *badseg2 = NULL;
6742 	size_t pgsz;
6743 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6744 	int err;
6745 	uint_t szc = seg->s_szc;
6746 	uint_t tszcvec;
6747 
6748 	ASSERT(AS_WRITE_HELD(seg->s_as));
6749 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6750 	ASSERT(szc != 0);
6751 	pgsz = page_get_pagesize(szc);
6752 	ASSERT(seg->s_base != addr || seg->s_size != len);
6753 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6754 	ASSERT(svd->softlockcnt == 0);
6755 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6756 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6757 
6758 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6759 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6760 	if (flag == SDR_RANGE) {
6761 		/* demote entire range */
6762 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6763 		(void) segvn_split_seg(nseg, lpgeaddr);
6764 		ASSERT(badseg1->s_base == lpgaddr);
6765 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6766 	} else if (addr != lpgaddr) {
6767 		ASSERT(flag == SDR_END);
6768 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6769 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6770 		    eaddr < lpgaddr + 2 * pgsz) {
6771 			(void) segvn_split_seg(nseg, lpgeaddr);
6772 			ASSERT(badseg1->s_base == lpgaddr);
6773 			ASSERT(badseg1->s_size == 2 * pgsz);
6774 		} else {
6775 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6776 			ASSERT(badseg1->s_base == lpgaddr);
6777 			ASSERT(badseg1->s_size == pgsz);
6778 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6779 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6780 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6781 				badseg2 = nseg;
6782 				(void) segvn_split_seg(nseg, lpgeaddr);
6783 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6784 				ASSERT(badseg2->s_size == pgsz);
6785 			}
6786 		}
6787 	} else {
6788 		ASSERT(flag == SDR_END);
6789 		ASSERT(eaddr < lpgeaddr);
6790 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6791 		(void) segvn_split_seg(nseg, lpgeaddr);
6792 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6793 		ASSERT(badseg1->s_size == pgsz);
6794 	}
6795 
6796 	ASSERT(badseg1 != NULL);
6797 	ASSERT(badseg1->s_szc == szc);
6798 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6799 	    badseg1->s_size == 2 * pgsz);
6800 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6801 	ASSERT(badseg1->s_size == pgsz ||
6802 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6803 	if (err = segvn_clrszc(badseg1)) {
6804 		return (err);
6805 	}
6806 	ASSERT(badseg1->s_szc == 0);
6807 
6808 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6809 		uint_t tszc = highbit(tszcvec) - 1;
6810 		caddr_t ta = MAX(addr, badseg1->s_base);
6811 		caddr_t te;
6812 		size_t tpgsz = page_get_pagesize(tszc);
6813 
6814 		ASSERT(svd->type == MAP_SHARED);
6815 		ASSERT(flag == SDR_END);
6816 		ASSERT(tszc < szc && tszc > 0);
6817 
6818 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6819 			te = badseg1->s_base + badseg1->s_size;
6820 		} else {
6821 			te = eaddr;
6822 		}
6823 
6824 		ASSERT(ta <= te);
6825 		badseg1->s_szc = tszc;
6826 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6827 			if (badseg2 != NULL) {
6828 				err = segvn_demote_range(badseg1, ta, te - ta,
6829 				    SDR_END, tszcvec);
6830 				if (err != 0) {
6831 					return (err);
6832 				}
6833 			} else {
6834 				return (segvn_demote_range(badseg1, ta,
6835 				    te - ta, SDR_END, tszcvec));
6836 			}
6837 		}
6838 	}
6839 
6840 	if (badseg2 == NULL)
6841 		return (0);
6842 	ASSERT(badseg2->s_szc == szc);
6843 	ASSERT(badseg2->s_size == pgsz);
6844 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6845 	if (err = segvn_clrszc(badseg2)) {
6846 		return (err);
6847 	}
6848 	ASSERT(badseg2->s_szc == 0);
6849 
6850 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6851 		uint_t tszc = highbit(tszcvec) - 1;
6852 		size_t tpgsz = page_get_pagesize(tszc);
6853 
6854 		ASSERT(svd->type == MAP_SHARED);
6855 		ASSERT(flag == SDR_END);
6856 		ASSERT(tszc < szc && tszc > 0);
6857 		ASSERT(badseg2->s_base > addr);
6858 		ASSERT(eaddr > badseg2->s_base);
6859 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6860 
6861 		badseg2->s_szc = tszc;
6862 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6863 			return (segvn_demote_range(badseg2, badseg2->s_base,
6864 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6865 		}
6866 	}
6867 
6868 	return (0);
6869 }
6870 
6871 static int
6872 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6873 {
6874 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6875 	struct vpage *vp, *evp;
6876 
6877 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6878 
6879 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6880 	/*
6881 	 * If segment protection can be used, simply check against them.
6882 	 */
6883 	if (svd->pageprot == 0) {
6884 		int err;
6885 
6886 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6887 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6888 		return (err);
6889 	}
6890 
6891 	/*
6892 	 * Have to check down to the vpage level.
6893 	 */
6894 	evp = &svd->vpage[seg_page(seg, addr + len)];
6895 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6896 		if ((VPP_PROT(vp) & prot) != prot) {
6897 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6898 			return (EACCES);
6899 		}
6900 	}
6901 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6902 	return (0);
6903 }
6904 
6905 static int
6906 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6907 {
6908 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6909 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6910 
6911 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6912 
6913 	if (pgno != 0) {
6914 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6915 		if (svd->pageprot == 0) {
6916 			do {
6917 				protv[--pgno] = svd->prot;
6918 			} while (pgno != 0);
6919 		} else {
6920 			size_t pgoff = seg_page(seg, addr);
6921 
6922 			do {
6923 				pgno--;
6924 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6925 			} while (pgno != 0);
6926 		}
6927 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6928 	}
6929 	return (0);
6930 }
6931 
6932 static u_offset_t
6933 segvn_getoffset(struct seg *seg, caddr_t addr)
6934 {
6935 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6936 
6937 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6938 
6939 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6940 }
6941 
6942 /*ARGSUSED*/
6943 static int
6944 segvn_gettype(struct seg *seg, caddr_t addr)
6945 {
6946 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6947 
6948 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6949 
6950 	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6951 	    MAP_INITDATA)));
6952 }
6953 
6954 /*ARGSUSED*/
6955 static int
6956 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6957 {
6958 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6959 
6960 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6961 
6962 	*vpp = svd->vp;
6963 	return (0);
6964 }
6965 
6966 /*
6967  * Check to see if it makes sense to do kluster/read ahead to
6968  * addr + delta relative to the mapping at addr.  We assume here
6969  * that delta is a signed PAGESIZE'd multiple (which can be negative).
6970  *
6971  * For segvn, we currently "approve" of the action if we are
6972  * still in the segment and it maps from the same vp/off,
6973  * or if the advice stored in segvn_data or vpages allows it.
6974  * Currently, klustering is not allowed only if MADV_RANDOM is set.
6975  */
6976 static int
6977 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6978 {
6979 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6980 	struct anon *oap, *ap;
6981 	ssize_t pd;
6982 	size_t page;
6983 	struct vnode *vp1, *vp2;
6984 	u_offset_t off1, off2;
6985 	struct anon_map *amp;
6986 
6987 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
6988 	ASSERT(AS_WRITE_HELD(seg->s_as) ||
6989 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6990 
6991 	if (addr + delta < seg->s_base ||
6992 	    addr + delta >= (seg->s_base + seg->s_size))
6993 		return (-1);		/* exceeded segment bounds */
6994 
6995 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6996 	page = seg_page(seg, addr);
6997 
6998 	/*
6999 	 * Check to see if either of the pages addr or addr + delta
7000 	 * have advice set that prevents klustering (if MADV_RANDOM advice
7001 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
7002 	 * is negative).
7003 	 */
7004 	if (svd->advice == MADV_RANDOM ||
7005 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
7006 		return (-1);
7007 	else if (svd->pageadvice && svd->vpage) {
7008 		struct vpage *bvpp, *evpp;
7009 
7010 		bvpp = &svd->vpage[page];
7011 		evpp = &svd->vpage[page + pd];
7012 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
7013 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
7014 			return (-1);
7015 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
7016 		    VPP_ADVICE(evpp) == MADV_RANDOM)
7017 			return (-1);
7018 	}
7019 
7020 	if (svd->type == MAP_SHARED)
7021 		return (0);		/* shared mapping - all ok */
7022 
7023 	if ((amp = svd->amp) == NULL)
7024 		return (0);		/* off original vnode */
7025 
7026 	page += svd->anon_index;
7027 
7028 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7029 
7030 	oap = anon_get_ptr(amp->ahp, page);
7031 	ap = anon_get_ptr(amp->ahp, page + pd);
7032 
7033 	ANON_LOCK_EXIT(&amp->a_rwlock);
7034 
7035 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
7036 		return (-1);		/* one with and one without an anon */
7037 	}
7038 
7039 	if (oap == NULL) {		/* implies that ap == NULL */
7040 		return (0);		/* off original vnode */
7041 	}
7042 
7043 	/*
7044 	 * Now we know we have two anon pointers - check to
7045 	 * see if they happen to be properly allocated.
7046 	 */
7047 
7048 	/*
7049 	 * XXX We cheat here and don't lock the anon slots. We can't because
7050 	 * we may have been called from the anon layer which might already
7051 	 * have locked them. We are holding a refcnt on the slots so they
7052 	 * can't disappear. The worst that will happen is we'll get the wrong
7053 	 * names (vp, off) for the slots and make a poor klustering decision.
7054 	 */
7055 	swap_xlate(ap, &vp1, &off1);
7056 	swap_xlate(oap, &vp2, &off2);
7057 
7058 
7059 	if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta)
7060 		return (-1);
7061 	return (0);
7062 }
7063 
7064 /*
7065  * Swap the pages of seg out to secondary storage, returning the
7066  * number of bytes of storage freed.
7067  *
7068  * The basic idea is first to unload all translations and then to call
7069  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
7070  * swap device.  Pages to which other segments have mappings will remain
7071  * mapped and won't be swapped.  Our caller (as_swapout) has already
7072  * performed the unloading step.
7073  *
7074  * The value returned is intended to correlate well with the process's
7075  * memory requirements.  However, there are some caveats:
7076  * 1)	When given a shared segment as argument, this routine will
7077  *	only succeed in swapping out pages for the last sharer of the
7078  *	segment.  (Previous callers will only have decremented mapping
7079  *	reference counts.)
7080  * 2)	We assume that the hat layer maintains a large enough translation
7081  *	cache to capture process reference patterns.
7082  */
7083 static size_t
7084 segvn_swapout(struct seg *seg)
7085 {
7086 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7087 	struct anon_map *amp;
7088 	pgcnt_t pgcnt = 0;
7089 	pgcnt_t npages;
7090 	pgcnt_t page;
7091 	ulong_t anon_index;
7092 
7093 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7094 
7095 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7096 	/*
7097 	 * Find pages unmapped by our caller and force them
7098 	 * out to the virtual swap device.
7099 	 */
7100 	if ((amp = svd->amp) != NULL)
7101 		anon_index = svd->anon_index;
7102 	npages = seg->s_size >> PAGESHIFT;
7103 	for (page = 0; page < npages; page++) {
7104 		page_t *pp;
7105 		struct anon *ap;
7106 		struct vnode *vp;
7107 		u_offset_t off;
7108 		anon_sync_obj_t cookie;
7109 
7110 		/*
7111 		 * Obtain <vp, off> pair for the page, then look it up.
7112 		 *
7113 		 * Note that this code is willing to consider regular
7114 		 * pages as well as anon pages.  Is this appropriate here?
7115 		 */
7116 		ap = NULL;
7117 		if (amp != NULL) {
7118 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7119 			if (anon_array_try_enter(amp, anon_index + page,
7120 			    &cookie)) {
7121 				ANON_LOCK_EXIT(&amp->a_rwlock);
7122 				continue;
7123 			}
7124 			ap = anon_get_ptr(amp->ahp, anon_index + page);
7125 			if (ap != NULL) {
7126 				swap_xlate(ap, &vp, &off);
7127 			} else {
7128 				vp = svd->vp;
7129 				off = svd->offset + ptob(page);
7130 			}
7131 			anon_array_exit(&cookie);
7132 			ANON_LOCK_EXIT(&amp->a_rwlock);
7133 		} else {
7134 			vp = svd->vp;
7135 			off = svd->offset + ptob(page);
7136 		}
7137 		if (vp == NULL) {		/* untouched zfod page */
7138 			ASSERT(ap == NULL);
7139 			continue;
7140 		}
7141 
7142 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7143 		if (pp == NULL)
7144 			continue;
7145 
7146 
7147 		/*
7148 		 * Examine the page to see whether it can be tossed out,
7149 		 * keeping track of how many we've found.
7150 		 */
7151 		if (!page_tryupgrade(pp)) {
7152 			/*
7153 			 * If the page has an i/o lock and no mappings,
7154 			 * it's very likely that the page is being
7155 			 * written out as a result of klustering.
7156 			 * Assume this is so and take credit for it here.
7157 			 */
7158 			if (!page_io_trylock(pp)) {
7159 				if (!hat_page_is_mapped(pp))
7160 					pgcnt++;
7161 			} else {
7162 				page_io_unlock(pp);
7163 			}
7164 			page_unlock(pp);
7165 			continue;
7166 		}
7167 		ASSERT(!page_iolock_assert(pp));
7168 
7169 
7170 		/*
7171 		 * Skip if page is locked or has mappings.
7172 		 * We don't need the page_struct_lock to look at lckcnt
7173 		 * and cowcnt because the page is exclusive locked.
7174 		 */
7175 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7176 		    hat_page_is_mapped(pp)) {
7177 			page_unlock(pp);
7178 			continue;
7179 		}
7180 
7181 		/*
7182 		 * dispose skips large pages so try to demote first.
7183 		 */
7184 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7185 			page_unlock(pp);
7186 			/*
7187 			 * XXX should skip the remaining page_t's of this
7188 			 * large page.
7189 			 */
7190 			continue;
7191 		}
7192 
7193 		ASSERT(pp->p_szc == 0);
7194 
7195 		/*
7196 		 * No longer mapped -- we can toss it out.  How
7197 		 * we do so depends on whether or not it's dirty.
7198 		 */
7199 		if (hat_ismod(pp) && pp->p_vnode) {
7200 			/*
7201 			 * We must clean the page before it can be
7202 			 * freed.  Setting B_FREE will cause pvn_done
7203 			 * to free the page when the i/o completes.
7204 			 * XXX:	This also causes it to be accounted
7205 			 *	as a pageout instead of a swap: need
7206 			 *	B_SWAPOUT bit to use instead of B_FREE.
7207 			 *
7208 			 * Hold the vnode before releasing the page lock
7209 			 * to prevent it from being freed and re-used by
7210 			 * some other thread.
7211 			 */
7212 			VN_HOLD(vp);
7213 			page_unlock(pp);
7214 
7215 			/*
7216 			 * Queue all i/o requests for the pageout thread
7217 			 * to avoid saturating the pageout devices.
7218 			 */
7219 			if (!queue_io_request(vp, off))
7220 				VN_RELE(vp);
7221 		} else {
7222 			/*
7223 			 * The page was clean, free it.
7224 			 *
7225 			 * XXX:	Can we ever encounter modified pages
7226 			 *	with no associated vnode here?
7227 			 */
7228 			ASSERT(pp->p_vnode != NULL);
7229 			/*LINTED: constant in conditional context*/
7230 			VN_DISPOSE(pp, B_FREE, 0, kcred);
7231 		}
7232 
7233 		/*
7234 		 * Credit now even if i/o is in progress.
7235 		 */
7236 		pgcnt++;
7237 	}
7238 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7239 
7240 	/*
7241 	 * Wakeup pageout to initiate i/o on all queued requests.
7242 	 */
7243 	cv_signal_pageout();
7244 	return (ptob(pgcnt));
7245 }
7246 
7247 /*
7248  * Synchronize primary storage cache with real object in virtual memory.
7249  *
7250  * XXX - Anonymous pages should not be sync'ed out at all.
7251  */
7252 static int
7253 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7254 {
7255 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7256 	struct vpage *vpp;
7257 	page_t *pp;
7258 	u_offset_t offset;
7259 	struct vnode *vp;
7260 	u_offset_t off;
7261 	caddr_t eaddr;
7262 	int bflags;
7263 	int err = 0;
7264 	int segtype;
7265 	int pageprot = 0;
7266 	int prot;
7267 	ulong_t anon_index = 0;
7268 	struct anon_map *amp;
7269 	struct anon *ap;
7270 	anon_sync_obj_t cookie;
7271 
7272 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7273 
7274 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7275 
7276 	if (svd->softlockcnt > 0) {
7277 		/*
7278 		 * If this is shared segment non 0 softlockcnt
7279 		 * means locked pages are still in use.
7280 		 */
7281 		if (svd->type == MAP_SHARED) {
7282 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7283 			return (EAGAIN);
7284 		}
7285 
7286 		/*
7287 		 * flush all pages from seg cache
7288 		 * otherwise we may deadlock in swap_putpage
7289 		 * for B_INVAL page (4175402).
7290 		 *
7291 		 * Even if we grab segvn WRITER's lock
7292 		 * here, there might be another thread which could've
7293 		 * successfully performed lookup/insert just before
7294 		 * we acquired the lock here.  So, grabbing either
7295 		 * lock here is of not much use.  Until we devise
7296 		 * a strategy at upper layers to solve the
7297 		 * synchronization issues completely, we expect
7298 		 * applications to handle this appropriately.
7299 		 */
7300 		segvn_purge(seg);
7301 		if (svd->softlockcnt > 0) {
7302 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7303 			return (EAGAIN);
7304 		}
7305 	} else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7306 	    svd->amp->a_softlockcnt > 0) {
7307 		/*
7308 		 * Try to purge this amp's entries from pcache. It will
7309 		 * succeed only if other segments that share the amp have no
7310 		 * outstanding softlock's.
7311 		 */
7312 		segvn_purge(seg);
7313 		if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) {
7314 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7315 			return (EAGAIN);
7316 		}
7317 	}
7318 
7319 	vpp = svd->vpage;
7320 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7321 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7322 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7323 
7324 	if (attr) {
7325 		pageprot = attr & ~(SHARED|PRIVATE);
7326 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7327 
7328 		/*
7329 		 * We are done if the segment types don't match
7330 		 * or if we have segment level protections and
7331 		 * they don't match.
7332 		 */
7333 		if (svd->type != segtype) {
7334 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7335 			return (0);
7336 		}
7337 		if (vpp == NULL) {
7338 			if (svd->prot != pageprot) {
7339 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7340 				return (0);
7341 			}
7342 			prot = svd->prot;
7343 		} else
7344 			vpp = &svd->vpage[seg_page(seg, addr)];
7345 
7346 	} else if (svd->vp && svd->amp == NULL &&
7347 	    (flags & MS_INVALIDATE) == 0) {
7348 
7349 		/*
7350 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
7351 		 * is not on, just use one big request.
7352 		 */
7353 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7354 		    bflags, svd->cred, NULL);
7355 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7356 		return (err);
7357 	}
7358 
7359 	if ((amp = svd->amp) != NULL)
7360 		anon_index = svd->anon_index + seg_page(seg, addr);
7361 
7362 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7363 		ap = NULL;
7364 		if (amp != NULL) {
7365 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7366 			anon_array_enter(amp, anon_index, &cookie);
7367 			ap = anon_get_ptr(amp->ahp, anon_index++);
7368 			if (ap != NULL) {
7369 				swap_xlate(ap, &vp, &off);
7370 			} else {
7371 				vp = svd->vp;
7372 				off = offset;
7373 			}
7374 			anon_array_exit(&cookie);
7375 			ANON_LOCK_EXIT(&amp->a_rwlock);
7376 		} else {
7377 			vp = svd->vp;
7378 			off = offset;
7379 		}
7380 		offset += PAGESIZE;
7381 
7382 		if (vp == NULL)		/* untouched zfod page */
7383 			continue;
7384 
7385 		if (attr) {
7386 			if (vpp) {
7387 				prot = VPP_PROT(vpp);
7388 				vpp++;
7389 			}
7390 			if (prot != pageprot) {
7391 				continue;
7392 			}
7393 		}
7394 
7395 		/*
7396 		 * See if any of these pages are locked --  if so, then we
7397 		 * will have to truncate an invalidate request at the first
7398 		 * locked one. We don't need the page_struct_lock to test
7399 		 * as this is only advisory; even if we acquire it someone
7400 		 * might race in and lock the page after we unlock and before
7401 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7402 		 */
7403 		if (flags & MS_INVALIDATE) {
7404 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7405 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7406 					page_unlock(pp);
7407 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7408 					return (EBUSY);
7409 				}
7410 				if (ap != NULL && pp->p_szc != 0 &&
7411 				    page_tryupgrade(pp)) {
7412 					if (pp->p_lckcnt == 0 &&
7413 					    pp->p_cowcnt == 0) {
7414 						/*
7415 						 * swapfs VN_DISPOSE() won't
7416 						 * invalidate large pages.
7417 						 * Attempt to demote.
7418 						 * XXX can't help it if it
7419 						 * fails. But for swapfs
7420 						 * pages it is no big deal.
7421 						 */
7422 						(void) page_try_demote_pages(
7423 						    pp);
7424 					}
7425 				}
7426 				page_unlock(pp);
7427 			}
7428 		} else if (svd->type == MAP_SHARED && amp != NULL) {
7429 			/*
7430 			 * Avoid writing out to disk ISM's large pages
7431 			 * because segspt_free_pages() relies on NULL an_pvp
7432 			 * of anon slots of such pages.
7433 			 */
7434 
7435 			ASSERT(svd->vp == NULL);
7436 			/*
7437 			 * swapfs uses page_lookup_nowait if not freeing or
7438 			 * invalidating and skips a page if
7439 			 * page_lookup_nowait returns NULL.
7440 			 */
7441 			pp = page_lookup_nowait(vp, off, SE_SHARED);
7442 			if (pp == NULL) {
7443 				continue;
7444 			}
7445 			if (pp->p_szc != 0) {
7446 				page_unlock(pp);
7447 				continue;
7448 			}
7449 
7450 			/*
7451 			 * Note ISM pages are created large so (vp, off)'s
7452 			 * page cannot suddenly become large after we unlock
7453 			 * pp.
7454 			 */
7455 			page_unlock(pp);
7456 		}
7457 		/*
7458 		 * XXX - Should ultimately try to kluster
7459 		 * calls to VOP_PUTPAGE() for performance.
7460 		 */
7461 		VN_HOLD(vp);
7462 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7463 		    (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)),
7464 		    svd->cred, NULL);
7465 
7466 		VN_RELE(vp);
7467 		if (err)
7468 			break;
7469 	}
7470 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7471 	return (err);
7472 }
7473 
7474 /*
7475  * Determine if we have data corresponding to pages in the
7476  * primary storage virtual memory cache (i.e., "in core").
7477  */
7478 static size_t
7479 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7480 {
7481 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7482 	struct vnode *vp, *avp;
7483 	u_offset_t offset, aoffset;
7484 	size_t p, ep;
7485 	int ret;
7486 	struct vpage *vpp;
7487 	page_t *pp;
7488 	uint_t start;
7489 	struct anon_map *amp;		/* XXX - for locknest */
7490 	struct anon *ap;
7491 	uint_t attr;
7492 	anon_sync_obj_t cookie;
7493 
7494 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7495 
7496 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7497 	if (svd->amp == NULL && svd->vp == NULL) {
7498 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7499 		bzero(vec, btopr(len));
7500 		return (len);	/* no anonymous pages created yet */
7501 	}
7502 
7503 	p = seg_page(seg, addr);
7504 	ep = seg_page(seg, addr + len);
7505 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7506 
7507 	amp = svd->amp;
7508 	for (; p < ep; p++, addr += PAGESIZE) {
7509 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7510 		ret = start;
7511 		ap = NULL;
7512 		avp = NULL;
7513 		/* Grab the vnode/offset for the anon slot */
7514 		if (amp != NULL) {
7515 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7516 			anon_array_enter(amp, svd->anon_index + p, &cookie);
7517 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7518 			if (ap != NULL) {
7519 				swap_xlate(ap, &avp, &aoffset);
7520 			}
7521 			anon_array_exit(&cookie);
7522 			ANON_LOCK_EXIT(&amp->a_rwlock);
7523 		}
7524 		if ((avp != NULL) && page_exists(avp, aoffset)) {
7525 			/* A page exists for the anon slot */
7526 			ret |= SEG_PAGE_INCORE;
7527 
7528 			/*
7529 			 * If page is mapped and writable
7530 			 */
7531 			attr = (uint_t)0;
7532 			if ((hat_getattr(seg->s_as->a_hat, addr,
7533 			    &attr) != -1) && (attr & PROT_WRITE)) {
7534 				ret |= SEG_PAGE_ANON;
7535 			}
7536 			/*
7537 			 * Don't get page_struct lock for lckcnt and cowcnt,
7538 			 * since this is purely advisory.
7539 			 */
7540 			if ((pp = page_lookup_nowait(avp, aoffset,
7541 			    SE_SHARED)) != NULL) {
7542 				if (pp->p_lckcnt)
7543 					ret |= SEG_PAGE_SOFTLOCK;
7544 				if (pp->p_cowcnt)
7545 					ret |= SEG_PAGE_HASCOW;
7546 				page_unlock(pp);
7547 			}
7548 		}
7549 
7550 		/* Gather vnode statistics */
7551 		vp = svd->vp;
7552 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7553 
7554 		if (vp != NULL) {
7555 			/*
7556 			 * Try to obtain a "shared" lock on the page
7557 			 * without blocking.  If this fails, determine
7558 			 * if the page is in memory.
7559 			 */
7560 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
7561 			if ((pp == NULL) && (page_exists(vp, offset))) {
7562 				/* Page is incore, and is named */
7563 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7564 			}
7565 			/*
7566 			 * Don't get page_struct lock for lckcnt and cowcnt,
7567 			 * since this is purely advisory.
7568 			 */
7569 			if (pp != NULL) {
7570 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7571 				if (pp->p_lckcnt)
7572 					ret |= SEG_PAGE_SOFTLOCK;
7573 				if (pp->p_cowcnt)
7574 					ret |= SEG_PAGE_HASCOW;
7575 				page_unlock(pp);
7576 			}
7577 		}
7578 
7579 		/* Gather virtual page information */
7580 		if (vpp) {
7581 			if (VPP_ISPPLOCK(vpp))
7582 				ret |= SEG_PAGE_LOCKED;
7583 			vpp++;
7584 		}
7585 
7586 		*vec++ = (char)ret;
7587 	}
7588 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7589 	return (len);
7590 }
7591 
7592 /*
7593  * Statement for p_cowcnts/p_lckcnts.
7594  *
7595  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7596  * irrespective of the following factors or anything else:
7597  *
7598  *	(1) anon slots are populated or not
7599  *	(2) cow is broken or not
7600  *	(3) refcnt on ap is 1 or greater than 1
7601  *
7602  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7603  * and munlock.
7604  *
7605  *
7606  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7607  *
7608  *	if vpage has PROT_WRITE
7609  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
7610  *	else
7611  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
7612  *
7613  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
7614  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7615  *
7616  *	We may also break COW if softlocking on read access in the physio case.
7617  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
7618  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7619  *	vpage doesn't have PROT_WRITE.
7620  *
7621  *
7622  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7623  *
7624  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7625  *	increment p_lckcnt by calling page_subclaim() which takes care of
7626  * 	availrmem accounting and p_lckcnt overflow.
7627  *
7628  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7629  *	increment p_cowcnt by calling page_addclaim() which takes care of
7630  *	availrmem availability and p_cowcnt overflow.
7631  */
7632 
7633 /*
7634  * Lock down (or unlock) pages mapped by this segment.
7635  *
7636  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7637  * At fault time they will be relocated into larger pages.
7638  */
7639 static int
7640 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7641     int attr, int op, ulong_t *lockmap, size_t pos)
7642 {
7643 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7644 	struct vpage *vpp;
7645 	struct vpage *evp;
7646 	page_t *pp;
7647 	u_offset_t offset;
7648 	u_offset_t off;
7649 	int segtype;
7650 	int pageprot = 0;
7651 	int claim;
7652 	struct vnode *vp;
7653 	ulong_t anon_index = 0;
7654 	struct anon_map *amp;
7655 	struct anon *ap;
7656 	struct vattr va;
7657 	anon_sync_obj_t cookie;
7658 	struct kshmid *sp = NULL;
7659 	struct proc	*p = curproc;
7660 	kproject_t	*proj = NULL;
7661 	int chargeproc = 1;
7662 	size_t locked_bytes = 0;
7663 	size_t unlocked_bytes = 0;
7664 	int err = 0;
7665 
7666 	/*
7667 	 * Hold write lock on address space because may split or concatenate
7668 	 * segments
7669 	 */
7670 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
7671 
7672 	/*
7673 	 * If this is a shm, use shm's project and zone, else use
7674 	 * project and zone of calling process
7675 	 */
7676 
7677 	/* Determine if this segment backs a sysV shm */
7678 	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7679 		ASSERT(svd->type == MAP_SHARED);
7680 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
7681 		sp = svd->amp->a_sp;
7682 		proj = sp->shm_perm.ipc_proj;
7683 		chargeproc = 0;
7684 	}
7685 
7686 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7687 	if (attr) {
7688 		pageprot = attr & ~(SHARED|PRIVATE);
7689 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7690 
7691 		/*
7692 		 * We are done if the segment types don't match
7693 		 * or if we have segment level protections and
7694 		 * they don't match.
7695 		 */
7696 		if (svd->type != segtype) {
7697 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7698 			return (0);
7699 		}
7700 		if (svd->pageprot == 0 && svd->prot != pageprot) {
7701 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7702 			return (0);
7703 		}
7704 	}
7705 
7706 	if (op == MC_LOCK) {
7707 		if (svd->tr_state == SEGVN_TR_INIT) {
7708 			svd->tr_state = SEGVN_TR_OFF;
7709 		} else if (svd->tr_state == SEGVN_TR_ON) {
7710 			ASSERT(svd->amp != NULL);
7711 			segvn_textunrepl(seg, 0);
7712 			ASSERT(svd->amp == NULL &&
7713 			    svd->tr_state == SEGVN_TR_OFF);
7714 		}
7715 	}
7716 
7717 	/*
7718 	 * If we're locking, then we must create a vpage structure if
7719 	 * none exists.  If we're unlocking, then check to see if there
7720 	 * is a vpage --  if not, then we could not have locked anything.
7721 	 */
7722 
7723 	if ((vpp = svd->vpage) == NULL) {
7724 		if (op == MC_LOCK) {
7725 			segvn_vpage(seg);
7726 			if (svd->vpage == NULL) {
7727 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7728 				return (ENOMEM);
7729 			}
7730 		} else {
7731 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7732 			return (0);
7733 		}
7734 	}
7735 
7736 	/*
7737 	 * The anonymous data vector (i.e., previously
7738 	 * unreferenced mapping to swap space) can be allocated
7739 	 * by lazily testing for its existence.
7740 	 */
7741 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7742 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7743 		svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7744 		svd->amp->a_szc = seg->s_szc;
7745 	}
7746 
7747 	if ((amp = svd->amp) != NULL) {
7748 		anon_index = svd->anon_index + seg_page(seg, addr);
7749 	}
7750 
7751 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7752 	evp = &svd->vpage[seg_page(seg, addr + len)];
7753 
7754 	if (sp != NULL)
7755 		mutex_enter(&sp->shm_mlock);
7756 
7757 	/* determine number of unlocked bytes in range for lock operation */
7758 	if (op == MC_LOCK) {
7759 
7760 		if (sp == NULL) {
7761 			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7762 			    vpp++) {
7763 				if (!VPP_ISPPLOCK(vpp))
7764 					unlocked_bytes += PAGESIZE;
7765 			}
7766 		} else {
7767 			ulong_t		i_idx, i_edx;
7768 			anon_sync_obj_t	i_cookie;
7769 			struct anon	*i_ap;
7770 			struct vnode	*i_vp;
7771 			u_offset_t	i_off;
7772 
7773 			/* Only count sysV pages once for locked memory */
7774 			i_edx = svd->anon_index + seg_page(seg, addr + len);
7775 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7776 			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7777 				anon_array_enter(amp, i_idx, &i_cookie);
7778 				i_ap = anon_get_ptr(amp->ahp, i_idx);
7779 				if (i_ap == NULL) {
7780 					unlocked_bytes += PAGESIZE;
7781 					anon_array_exit(&i_cookie);
7782 					continue;
7783 				}
7784 				swap_xlate(i_ap, &i_vp, &i_off);
7785 				anon_array_exit(&i_cookie);
7786 				pp = page_lookup(i_vp, i_off, SE_SHARED);
7787 				if (pp == NULL) {
7788 					unlocked_bytes += PAGESIZE;
7789 					continue;
7790 				} else if (pp->p_lckcnt == 0)
7791 					unlocked_bytes += PAGESIZE;
7792 				page_unlock(pp);
7793 			}
7794 			ANON_LOCK_EXIT(&amp->a_rwlock);
7795 		}
7796 
7797 		mutex_enter(&p->p_lock);
7798 		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7799 		    chargeproc);
7800 		mutex_exit(&p->p_lock);
7801 
7802 		if (err) {
7803 			if (sp != NULL)
7804 				mutex_exit(&sp->shm_mlock);
7805 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7806 			return (err);
7807 		}
7808 	}
7809 	/*
7810 	 * Loop over all pages in the range.  Process if we're locking and
7811 	 * page has not already been locked in this mapping; or if we're
7812 	 * unlocking and the page has been locked.
7813 	 */
7814 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7815 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7816 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7817 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7818 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7819 
7820 			if (amp != NULL)
7821 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7822 			/*
7823 			 * If this isn't a MAP_NORESERVE segment and
7824 			 * we're locking, allocate anon slots if they
7825 			 * don't exist.  The page is brought in later on.
7826 			 */
7827 			if (op == MC_LOCK && svd->vp == NULL &&
7828 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7829 			    amp != NULL &&
7830 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7831 			    == NULL)) {
7832 				anon_array_enter(amp, anon_index, &cookie);
7833 
7834 				if ((ap = anon_get_ptr(amp->ahp,
7835 				    anon_index)) == NULL) {
7836 					pp = anon_zero(seg, addr, &ap,
7837 					    svd->cred);
7838 					if (pp == NULL) {
7839 						anon_array_exit(&cookie);
7840 						ANON_LOCK_EXIT(&amp->a_rwlock);
7841 						err = ENOMEM;
7842 						goto out;
7843 					}
7844 					ASSERT(anon_get_ptr(amp->ahp,
7845 					    anon_index) == NULL);
7846 					(void) anon_set_ptr(amp->ahp,
7847 					    anon_index, ap, ANON_SLEEP);
7848 					page_unlock(pp);
7849 				}
7850 				anon_array_exit(&cookie);
7851 			}
7852 
7853 			/*
7854 			 * Get name for page, accounting for
7855 			 * existence of private copy.
7856 			 */
7857 			ap = NULL;
7858 			if (amp != NULL) {
7859 				anon_array_enter(amp, anon_index, &cookie);
7860 				ap = anon_get_ptr(amp->ahp, anon_index);
7861 				if (ap != NULL) {
7862 					swap_xlate(ap, &vp, &off);
7863 				} else {
7864 					if (svd->vp == NULL &&
7865 					    (svd->flags & MAP_NORESERVE)) {
7866 						anon_array_exit(&cookie);
7867 						ANON_LOCK_EXIT(&amp->a_rwlock);
7868 						continue;
7869 					}
7870 					vp = svd->vp;
7871 					off = offset;
7872 				}
7873 				if (op != MC_LOCK || ap == NULL) {
7874 					anon_array_exit(&cookie);
7875 					ANON_LOCK_EXIT(&amp->a_rwlock);
7876 				}
7877 			} else {
7878 				vp = svd->vp;
7879 				off = offset;
7880 			}
7881 
7882 			/*
7883 			 * Get page frame.  It's ok if the page is
7884 			 * not available when we're unlocking, as this
7885 			 * may simply mean that a page we locked got
7886 			 * truncated out of existence after we locked it.
7887 			 *
7888 			 * Invoke VOP_GETPAGE() to obtain the page struct
7889 			 * since we may need to read it from disk if its
7890 			 * been paged out.
7891 			 */
7892 			if (op != MC_LOCK)
7893 				pp = page_lookup(vp, off, SE_SHARED);
7894 			else {
7895 				page_t *pl[1 + 1];
7896 				int error;
7897 
7898 				ASSERT(vp != NULL);
7899 
7900 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7901 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7902 				    S_OTHER, svd->cred, NULL);
7903 
7904 				if (error && ap != NULL) {
7905 					anon_array_exit(&cookie);
7906 					ANON_LOCK_EXIT(&amp->a_rwlock);
7907 				}
7908 
7909 				/*
7910 				 * If the error is EDEADLK then we must bounce
7911 				 * up and drop all vm subsystem locks and then
7912 				 * retry the operation later
7913 				 * This behavior is a temporary measure because
7914 				 * ufs/sds logging is badly designed and will
7915 				 * deadlock if we don't allow this bounce to
7916 				 * happen.  The real solution is to re-design
7917 				 * the logging code to work properly.  See bug
7918 				 * 4125102 for details of the problem.
7919 				 */
7920 				if (error == EDEADLK) {
7921 					err = error;
7922 					goto out;
7923 				}
7924 				/*
7925 				 * Quit if we fail to fault in the page.  Treat
7926 				 * the failure as an error, unless the addr
7927 				 * is mapped beyond the end of a file.
7928 				 */
7929 				if (error && svd->vp) {
7930 					va.va_mask = AT_SIZE;
7931 					if (VOP_GETATTR(svd->vp, &va, 0,
7932 					    svd->cred, NULL) != 0) {
7933 						err = EIO;
7934 						goto out;
7935 					}
7936 					if (btopr(va.va_size) >=
7937 					    btopr(off + 1)) {
7938 						err = EIO;
7939 						goto out;
7940 					}
7941 					goto out;
7942 
7943 				} else if (error) {
7944 					err = EIO;
7945 					goto out;
7946 				}
7947 				pp = pl[0];
7948 				ASSERT(pp != NULL);
7949 			}
7950 
7951 			/*
7952 			 * See Statement at the beginning of this routine.
7953 			 *
7954 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7955 			 * irrespective of following factors:
7956 			 *
7957 			 * (1) anon slots are populated or not
7958 			 * (2) cow is broken or not
7959 			 * (3) refcnt on ap is 1 or greater than 1
7960 			 *
7961 			 * See 4140683 for details
7962 			 */
7963 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7964 			    (svd->type == MAP_PRIVATE));
7965 
7966 			/*
7967 			 * Perform page-level operation appropriate to
7968 			 * operation.  If locking, undo the SOFTLOCK
7969 			 * performed to bring the page into memory
7970 			 * after setting the lock.  If unlocking,
7971 			 * and no page was found, account for the claim
7972 			 * separately.
7973 			 */
7974 			if (op == MC_LOCK) {
7975 				int ret = 1;	/* Assume success */
7976 
7977 				ASSERT(!VPP_ISPPLOCK(vpp));
7978 
7979 				ret = page_pp_lock(pp, claim, 0);
7980 				if (ap != NULL) {
7981 					if (ap->an_pvp != NULL) {
7982 						anon_swap_free(ap, pp);
7983 					}
7984 					anon_array_exit(&cookie);
7985 					ANON_LOCK_EXIT(&amp->a_rwlock);
7986 				}
7987 				if (ret == 0) {
7988 					/* locking page failed */
7989 					page_unlock(pp);
7990 					err = EAGAIN;
7991 					goto out;
7992 				}
7993 				VPP_SETPPLOCK(vpp);
7994 				if (sp != NULL) {
7995 					if (pp->p_lckcnt == 1)
7996 						locked_bytes += PAGESIZE;
7997 				} else
7998 					locked_bytes += PAGESIZE;
7999 
8000 				if (lockmap != (ulong_t *)NULL)
8001 					BT_SET(lockmap, pos);
8002 
8003 				page_unlock(pp);
8004 			} else {
8005 				ASSERT(VPP_ISPPLOCK(vpp));
8006 				if (pp != NULL) {
8007 					/* sysV pages should be locked */
8008 					ASSERT(sp == NULL || pp->p_lckcnt > 0);
8009 					page_pp_unlock(pp, claim, 0);
8010 					if (sp != NULL) {
8011 						if (pp->p_lckcnt == 0)
8012 							unlocked_bytes
8013 							    += PAGESIZE;
8014 					} else
8015 						unlocked_bytes += PAGESIZE;
8016 					page_unlock(pp);
8017 				} else {
8018 					ASSERT(sp == NULL);
8019 					unlocked_bytes += PAGESIZE;
8020 				}
8021 				VPP_CLRPPLOCK(vpp);
8022 			}
8023 		}
8024 	}
8025 out:
8026 	if (op == MC_LOCK) {
8027 		/* Credit back bytes that did not get locked */
8028 		if ((unlocked_bytes - locked_bytes) > 0) {
8029 			if (proj == NULL)
8030 				mutex_enter(&p->p_lock);
8031 			rctl_decr_locked_mem(p, proj,
8032 			    (unlocked_bytes - locked_bytes), chargeproc);
8033 			if (proj == NULL)
8034 				mutex_exit(&p->p_lock);
8035 		}
8036 
8037 	} else {
8038 		/* Account bytes that were unlocked */
8039 		if (unlocked_bytes > 0) {
8040 			if (proj == NULL)
8041 				mutex_enter(&p->p_lock);
8042 			rctl_decr_locked_mem(p, proj, unlocked_bytes,
8043 			    chargeproc);
8044 			if (proj == NULL)
8045 				mutex_exit(&p->p_lock);
8046 		}
8047 	}
8048 	if (sp != NULL)
8049 		mutex_exit(&sp->shm_mlock);
8050 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8051 
8052 	return (err);
8053 }
8054 
8055 /*
8056  * Set advice from user for specified pages
8057  * There are 10 types of advice:
8058  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
8059  *	MADV_RANDOM	- Random page references
8060  *				do not allow readahead or 'klustering'
8061  *	MADV_SEQUENTIAL	- Sequential page references
8062  *				Pages previous to the one currently being
8063  *				accessed (determined by fault) are 'not needed'
8064  *				and are freed immediately
8065  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
8066  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
8067  *	MADV_FREE	- Contents can be discarded
8068  *	MADV_ACCESS_DEFAULT- Default access
8069  *	MADV_ACCESS_LWP	- Next LWP will access heavily
8070  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
8071  *	MADV_PURGE	- Contents will be immediately discarded
8072  */
8073 static int
8074 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8075 {
8076 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8077 	size_t page;
8078 	int err = 0;
8079 	int already_set;
8080 	struct anon_map *amp;
8081 	ulong_t anon_index;
8082 	struct seg *next;
8083 	lgrp_mem_policy_t policy;
8084 	struct seg *prev;
8085 	struct vnode *vp;
8086 
8087 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8088 
8089 	/*
8090 	 * In case of MADV_FREE/MADV_PURGE, we won't be modifying any segment
8091 	 * private data structures; so, we only need to grab READER's lock
8092 	 */
8093 	if (behav != MADV_FREE && behav != MADV_PURGE) {
8094 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8095 		if (svd->tr_state != SEGVN_TR_OFF) {
8096 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8097 			return (0);
8098 		}
8099 	} else {
8100 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8101 	}
8102 
8103 	/*
8104 	 * Large pages are assumed to be only turned on when accesses to the
8105 	 * segment's address range have spatial and temporal locality. That
8106 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
8107 	 * Also, ignore advice affecting lgroup memory allocation
8108 	 * if don't need to do lgroup optimizations on this system
8109 	 */
8110 
8111 	if ((behav == MADV_SEQUENTIAL &&
8112 	    (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
8113 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
8114 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
8115 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8116 		return (0);
8117 	}
8118 
8119 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
8120 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
8121 		/*
8122 		 * Since we are going to unload hat mappings
8123 		 * we first have to flush the cache. Otherwise
8124 		 * this might lead to system panic if another
8125 		 * thread is doing physio on the range whose
8126 		 * mappings are unloaded by madvise(3C).
8127 		 */
8128 		if (svd->softlockcnt > 0) {
8129 			/*
8130 			 * If this is shared segment non 0 softlockcnt
8131 			 * means locked pages are still in use.
8132 			 */
8133 			if (svd->type == MAP_SHARED) {
8134 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8135 				return (EAGAIN);
8136 			}
8137 			/*
8138 			 * Since we do have the segvn writers lock
8139 			 * nobody can fill the cache with entries
8140 			 * belonging to this seg during the purge.
8141 			 * The flush either succeeds or we still
8142 			 * have pending I/Os. In the later case,
8143 			 * madvise(3C) fails.
8144 			 */
8145 			segvn_purge(seg);
8146 			if (svd->softlockcnt > 0) {
8147 				/*
8148 				 * Since madvise(3C) is advisory and
8149 				 * it's not part of UNIX98, madvise(3C)
8150 				 * failure here doesn't cause any hardship.
8151 				 * Note that we don't block in "as" layer.
8152 				 */
8153 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8154 				return (EAGAIN);
8155 			}
8156 		} else if (svd->type == MAP_SHARED && svd->amp != NULL &&
8157 		    svd->amp->a_softlockcnt > 0) {
8158 			/*
8159 			 * Try to purge this amp's entries from pcache. It
8160 			 * will succeed only if other segments that share the
8161 			 * amp have no outstanding softlock's.
8162 			 */
8163 			segvn_purge(seg);
8164 		}
8165 	}
8166 
8167 	amp = svd->amp;
8168 	vp = svd->vp;
8169 	if (behav == MADV_FREE || behav == MADV_PURGE) {
8170 		pgcnt_t purged;
8171 
8172 		if (behav == MADV_FREE && (vp != NULL || amp == NULL)) {
8173 			/*
8174 			 * MADV_FREE is not supported for segments with an
8175 			 * underlying object; if anonmap is NULL, anon slots
8176 			 * are not yet populated and there is nothing for us
8177 			 * to do. As MADV_FREE is advisory, we don't return an
8178 			 * error in either case.
8179 			 */
8180 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8181 			return (0);
8182 		}
8183 
8184 		if (amp == NULL) {
8185 			/*
8186 			 * If we're here with a NULL anonmap, it's because we
8187 			 * are doing a MADV_PURGE.  We have nothing to do, but
8188 			 * because MADV_PURGE isn't merely advisory, we return
8189 			 * an error in this case.
8190 			 */
8191 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8192 			return (EBUSY);
8193 		}
8194 
8195 		segvn_purge(seg);
8196 
8197 		page = seg_page(seg, addr);
8198 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8199 		err = anon_disclaim(amp,
8200 		    svd->anon_index + page, len, behav, &purged);
8201 
8202 		if (purged != 0 && (svd->flags & MAP_NORESERVE)) {
8203 			/*
8204 			 * If we purged pages on a MAP_NORESERVE mapping, we
8205 			 * need to be sure to now unreserve our reserved swap.
8206 			 * (We use the atomic operations to manipulate our
8207 			 * segment and address space counters because we only
8208 			 * have the corresponding locks held as reader, not
8209 			 * writer.)
8210 			 */
8211 			ssize_t bytes = ptob(purged);
8212 
8213 			anon_unresv_zone(bytes, seg->s_as->a_proc->p_zone);
8214 			atomic_add_long(&svd->swresv, -bytes);
8215 			atomic_add_long(&seg->s_as->a_resvsize, -bytes);
8216 		}
8217 
8218 		ANON_LOCK_EXIT(&amp->a_rwlock);
8219 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8220 
8221 		/*
8222 		 * MADV_PURGE and MADV_FREE differ in their return semantics:
8223 		 * because MADV_PURGE is designed to be bug-for-bug compatible
8224 		 * with its clumsy Linux forebear, it will fail where MADV_FREE
8225 		 * does not.
8226 		 */
8227 		return (behav == MADV_PURGE ? err : 0);
8228 	}
8229 
8230 	/*
8231 	 * If advice is to be applied to entire segment,
8232 	 * use advice field in seg_data structure
8233 	 * otherwise use appropriate vpage entry.
8234 	 */
8235 	if ((addr == seg->s_base) && (len == seg->s_size)) {
8236 		switch (behav) {
8237 		case MADV_ACCESS_LWP:
8238 		case MADV_ACCESS_MANY:
8239 		case MADV_ACCESS_DEFAULT:
8240 			/*
8241 			 * Set memory allocation policy for this segment
8242 			 */
8243 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8244 			if (svd->type == MAP_SHARED)
8245 				already_set = lgrp_shm_policy_set(policy, amp,
8246 				    svd->anon_index, vp, svd->offset, len);
8247 			else {
8248 				/*
8249 				 * For private memory, need writers lock on
8250 				 * address space because the segment may be
8251 				 * split or concatenated when changing policy
8252 				 */
8253 				if (AS_READ_HELD(seg->s_as)) {
8254 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8255 					return (IE_RETRY);
8256 				}
8257 
8258 				already_set = lgrp_privm_policy_set(policy,
8259 				    &svd->policy_info, len);
8260 			}
8261 
8262 			/*
8263 			 * If policy set already and it shouldn't be reapplied,
8264 			 * don't do anything.
8265 			 */
8266 			if (already_set &&
8267 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8268 				break;
8269 
8270 			/*
8271 			 * Mark any existing pages in given range for
8272 			 * migration
8273 			 */
8274 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8275 			    vp, svd->offset, 1);
8276 
8277 			/*
8278 			 * If same policy set already or this is a shared
8279 			 * memory segment, don't need to try to concatenate
8280 			 * segment with adjacent ones.
8281 			 */
8282 			if (already_set || svd->type == MAP_SHARED)
8283 				break;
8284 
8285 			/*
8286 			 * Try to concatenate this segment with previous
8287 			 * one and next one, since we changed policy for
8288 			 * this one and it may be compatible with adjacent
8289 			 * ones now.
8290 			 */
8291 			prev = AS_SEGPREV(seg->s_as, seg);
8292 			next = AS_SEGNEXT(seg->s_as, seg);
8293 
8294 			if (next && next->s_ops == &segvn_ops &&
8295 			    addr + len == next->s_base)
8296 				(void) segvn_concat(seg, next, 1);
8297 
8298 			if (prev && prev->s_ops == &segvn_ops &&
8299 			    addr == prev->s_base + prev->s_size) {
8300 				/*
8301 				 * Drop lock for private data of current
8302 				 * segment before concatenating (deleting) it
8303 				 * and return IE_REATTACH to tell as_ctl() that
8304 				 * current segment has changed
8305 				 */
8306 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8307 				if (!segvn_concat(prev, seg, 1))
8308 					err = IE_REATTACH;
8309 
8310 				return (err);
8311 			}
8312 			break;
8313 
8314 		case MADV_SEQUENTIAL:
8315 			/*
8316 			 * unloading mapping guarantees
8317 			 * detection in segvn_fault
8318 			 */
8319 			ASSERT(seg->s_szc == 0);
8320 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8321 			hat_unload(seg->s_as->a_hat, addr, len,
8322 			    HAT_UNLOAD);
8323 			/* FALLTHROUGH */
8324 		case MADV_NORMAL:
8325 		case MADV_RANDOM:
8326 			svd->advice = (uchar_t)behav;
8327 			svd->pageadvice = 0;
8328 			break;
8329 		case MADV_WILLNEED:	/* handled in memcntl */
8330 		case MADV_DONTNEED:	/* handled in memcntl */
8331 		case MADV_FREE:		/* handled above */
8332 		case MADV_PURGE:	/* handled above */
8333 			break;
8334 		default:
8335 			err = EINVAL;
8336 		}
8337 	} else {
8338 		caddr_t			eaddr;
8339 		struct seg		*new_seg;
8340 		struct segvn_data	*new_svd = NULL;
8341 		u_offset_t		off;
8342 		caddr_t			oldeaddr;
8343 
8344 		page = seg_page(seg, addr);
8345 
8346 		segvn_vpage(seg);
8347 		if (svd->vpage == NULL) {
8348 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8349 			return (ENOMEM);
8350 		}
8351 
8352 		switch (behav) {
8353 			struct vpage *bvpp, *evpp;
8354 
8355 		case MADV_ACCESS_LWP:
8356 		case MADV_ACCESS_MANY:
8357 		case MADV_ACCESS_DEFAULT:
8358 			/*
8359 			 * Set memory allocation policy for portion of this
8360 			 * segment
8361 			 */
8362 
8363 			/*
8364 			 * Align address and length of advice to page
8365 			 * boundaries for large pages
8366 			 */
8367 			if (seg->s_szc != 0) {
8368 				size_t	pgsz;
8369 
8370 				pgsz = page_get_pagesize(seg->s_szc);
8371 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8372 				len = P2ROUNDUP(len, pgsz);
8373 			}
8374 
8375 			/*
8376 			 * Check to see whether policy is set already
8377 			 */
8378 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8379 
8380 			anon_index = svd->anon_index + page;
8381 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
8382 
8383 			if (svd->type == MAP_SHARED)
8384 				already_set = lgrp_shm_policy_set(policy, amp,
8385 				    anon_index, vp, off, len);
8386 			else
8387 				already_set =
8388 				    (policy == svd->policy_info.mem_policy);
8389 
8390 			/*
8391 			 * If policy set already and it shouldn't be reapplied,
8392 			 * don't do anything.
8393 			 */
8394 			if (already_set &&
8395 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8396 				break;
8397 
8398 			/*
8399 			 * For private memory, need writers lock on
8400 			 * address space because the segment may be
8401 			 * split or concatenated when changing policy
8402 			 */
8403 			if (svd->type == MAP_PRIVATE &&
8404 			    AS_READ_HELD(seg->s_as)) {
8405 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8406 				return (IE_RETRY);
8407 			}
8408 
8409 			/*
8410 			 * Mark any existing pages in given range for
8411 			 * migration
8412 			 */
8413 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8414 			    vp, svd->offset, 1);
8415 
8416 			/*
8417 			 * Don't need to try to split or concatenate
8418 			 * segments, since policy is same or this is a shared
8419 			 * memory segment
8420 			 */
8421 			if (already_set || svd->type == MAP_SHARED)
8422 				break;
8423 
8424 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8425 				ASSERT(svd->amp == NULL);
8426 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
8427 				ASSERT(svd->softlockcnt == 0);
8428 				hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8429 				    HAT_REGION_TEXT);
8430 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
8431 			}
8432 
8433 			/*
8434 			 * Split off new segment if advice only applies to a
8435 			 * portion of existing segment starting in middle
8436 			 */
8437 			new_seg = NULL;
8438 			eaddr = addr + len;
8439 			oldeaddr = seg->s_base + seg->s_size;
8440 			if (addr > seg->s_base) {
8441 				/*
8442 				 * Must flush I/O page cache
8443 				 * before splitting segment
8444 				 */
8445 				if (svd->softlockcnt > 0)
8446 					segvn_purge(seg);
8447 
8448 				/*
8449 				 * Split segment and return IE_REATTACH to tell
8450 				 * as_ctl() that current segment changed
8451 				 */
8452 				new_seg = segvn_split_seg(seg, addr);
8453 				new_svd = (struct segvn_data *)new_seg->s_data;
8454 				err = IE_REATTACH;
8455 
8456 				/*
8457 				 * If new segment ends where old one
8458 				 * did, try to concatenate the new
8459 				 * segment with next one.
8460 				 */
8461 				if (eaddr == oldeaddr) {
8462 					/*
8463 					 * Set policy for new segment
8464 					 */
8465 					(void) lgrp_privm_policy_set(policy,
8466 					    &new_svd->policy_info,
8467 					    new_seg->s_size);
8468 
8469 					next = AS_SEGNEXT(new_seg->s_as,
8470 					    new_seg);
8471 
8472 					if (next &&
8473 					    next->s_ops == &segvn_ops &&
8474 					    eaddr == next->s_base)
8475 						(void) segvn_concat(new_seg,
8476 						    next, 1);
8477 				}
8478 			}
8479 
8480 			/*
8481 			 * Split off end of existing segment if advice only
8482 			 * applies to a portion of segment ending before
8483 			 * end of the existing segment
8484 			 */
8485 			if (eaddr < oldeaddr) {
8486 				/*
8487 				 * Must flush I/O page cache
8488 				 * before splitting segment
8489 				 */
8490 				if (svd->softlockcnt > 0)
8491 					segvn_purge(seg);
8492 
8493 				/*
8494 				 * If beginning of old segment was already
8495 				 * split off, use new segment to split end off
8496 				 * from.
8497 				 */
8498 				if (new_seg != NULL && new_seg != seg) {
8499 					/*
8500 					 * Split segment
8501 					 */
8502 					(void) segvn_split_seg(new_seg, eaddr);
8503 
8504 					/*
8505 					 * Set policy for new segment
8506 					 */
8507 					(void) lgrp_privm_policy_set(policy,
8508 					    &new_svd->policy_info,
8509 					    new_seg->s_size);
8510 				} else {
8511 					/*
8512 					 * Split segment and return IE_REATTACH
8513 					 * to tell as_ctl() that current
8514 					 * segment changed
8515 					 */
8516 					(void) segvn_split_seg(seg, eaddr);
8517 					err = IE_REATTACH;
8518 
8519 					(void) lgrp_privm_policy_set(policy,
8520 					    &svd->policy_info, seg->s_size);
8521 
8522 					/*
8523 					 * If new segment starts where old one
8524 					 * did, try to concatenate it with
8525 					 * previous segment.
8526 					 */
8527 					if (addr == seg->s_base) {
8528 						prev = AS_SEGPREV(seg->s_as,
8529 						    seg);
8530 
8531 						/*
8532 						 * Drop lock for private data
8533 						 * of current segment before
8534 						 * concatenating (deleting) it
8535 						 */
8536 						if (prev &&
8537 						    prev->s_ops ==
8538 						    &segvn_ops &&
8539 						    addr == prev->s_base +
8540 						    prev->s_size) {
8541 							SEGVN_LOCK_EXIT(
8542 							    seg->s_as,
8543 							    &svd->lock);
8544 							(void) segvn_concat(
8545 							    prev, seg, 1);
8546 							return (err);
8547 						}
8548 					}
8549 				}
8550 			}
8551 			break;
8552 		case MADV_SEQUENTIAL:
8553 			ASSERT(seg->s_szc == 0);
8554 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8555 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8556 			/* FALLTHROUGH */
8557 		case MADV_NORMAL:
8558 		case MADV_RANDOM:
8559 			bvpp = &svd->vpage[page];
8560 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8561 			for (; bvpp < evpp; bvpp++)
8562 				VPP_SETADVICE(bvpp, behav);
8563 			svd->advice = MADV_NORMAL;
8564 			break;
8565 		case MADV_WILLNEED:	/* handled in memcntl */
8566 		case MADV_DONTNEED:	/* handled in memcntl */
8567 		case MADV_FREE:		/* handled above */
8568 		case MADV_PURGE:	/* handled above */
8569 			break;
8570 		default:
8571 			err = EINVAL;
8572 		}
8573 	}
8574 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8575 	return (err);
8576 }
8577 
8578 /*
8579  * There is one kind of inheritance that can be specified for pages:
8580  *
8581  *     SEGP_INH_ZERO - Pages should be zeroed in the child
8582  */
8583 static int
8584 segvn_inherit(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8585 {
8586 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8587 	struct vpage *bvpp, *evpp;
8588 	size_t page;
8589 	int ret = 0;
8590 
8591 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8592 
8593 	/* Can't support something we don't know about */
8594 	if (behav != SEGP_INH_ZERO)
8595 		return (ENOTSUP);
8596 
8597 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8598 
8599 	/*
8600 	 * This must be a straightforward anonymous segment that is mapped
8601 	 * privately and is not backed by a vnode.
8602 	 */
8603 	if (svd->tr_state != SEGVN_TR_OFF ||
8604 	    svd->type != MAP_PRIVATE ||
8605 	    svd->vp != NULL) {
8606 		ret = EINVAL;
8607 		goto out;
8608 	}
8609 
8610 	/*
8611 	 * If the entire segment has been marked as inherit zero, then no reason
8612 	 * to do anything else.
8613 	 */
8614 	if (svd->svn_inz == SEGVN_INZ_ALL) {
8615 		ret = 0;
8616 		goto out;
8617 	}
8618 
8619 	/*
8620 	 * If this applies to the entire segment, simply mark it and we're done.
8621 	 */
8622 	if ((addr == seg->s_base) && (len == seg->s_size)) {
8623 		svd->svn_inz = SEGVN_INZ_ALL;
8624 		ret = 0;
8625 		goto out;
8626 	}
8627 
8628 	/*
8629 	 * We've been asked to mark a subset of this segment as inherit zero,
8630 	 * therefore we need to mainpulate its vpages.
8631 	 */
8632 	if (svd->vpage == NULL) {
8633 		segvn_vpage(seg);
8634 		if (svd->vpage == NULL) {
8635 			ret = ENOMEM;
8636 			goto out;
8637 		}
8638 	}
8639 
8640 	svd->svn_inz = SEGVN_INZ_VPP;
8641 	page = seg_page(seg, addr);
8642 	bvpp = &svd->vpage[page];
8643 	evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8644 	for (; bvpp < evpp; bvpp++)
8645 		VPP_SETINHZERO(bvpp);
8646 	ret = 0;
8647 
8648 out:
8649 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8650 	return (ret);
8651 }
8652 
8653 /*
8654  * Create a vpage structure for this seg.
8655  */
8656 static void
8657 segvn_vpage(struct seg *seg)
8658 {
8659 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8660 	struct vpage *vp, *evp;
8661 	static pgcnt_t page_limit = 0;
8662 
8663 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8664 
8665 	/*
8666 	 * If no vpage structure exists, allocate one.  Copy the protections
8667 	 * and the advice from the segment itself to the individual pages.
8668 	 */
8669 	if (svd->vpage == NULL) {
8670 		/*
8671 		 * Start by calculating the number of pages we must allocate to
8672 		 * track the per-page vpage structs needs for this entire
8673 		 * segment. If we know now that it will require more than our
8674 		 * heuristic for the maximum amount of kmem we can consume then
8675 		 * fail. We do this here, instead of trying to detect this deep
8676 		 * in page_resv and propagating the error up, since the entire
8677 		 * memory allocation stack is not amenable to passing this
8678 		 * back. Instead, it wants to keep trying.
8679 		 *
8680 		 * As a heuristic we set a page limit of 5/8s of total_pages
8681 		 * for this allocation. We use shifts so that no floating
8682 		 * point conversion takes place and only need to do the
8683 		 * calculation once.
8684 		 */
8685 		ulong_t mem_needed = seg_pages(seg) * sizeof (struct vpage);
8686 		pgcnt_t npages = mem_needed >> PAGESHIFT;
8687 
8688 		if (page_limit == 0)
8689 			page_limit = (total_pages >> 1) + (total_pages >> 3);
8690 
8691 		if (npages > page_limit)
8692 			return;
8693 
8694 		svd->pageadvice = 1;
8695 		svd->vpage = kmem_zalloc(mem_needed, KM_SLEEP);
8696 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8697 		for (vp = svd->vpage; vp < evp; vp++) {
8698 			VPP_SETPROT(vp, svd->prot);
8699 			VPP_SETADVICE(vp, svd->advice);
8700 		}
8701 	}
8702 }
8703 
8704 /*
8705  * Dump the pages belonging to this segvn segment.
8706  */
8707 static void
8708 segvn_dump(struct seg *seg)
8709 {
8710 	struct segvn_data *svd;
8711 	page_t *pp;
8712 	struct anon_map *amp;
8713 	ulong_t	anon_index = 0;
8714 	struct vnode *vp;
8715 	u_offset_t off, offset;
8716 	pfn_t pfn;
8717 	pgcnt_t page, npages;
8718 	caddr_t addr;
8719 
8720 	npages = seg_pages(seg);
8721 	svd = (struct segvn_data *)seg->s_data;
8722 	vp = svd->vp;
8723 	off = offset = svd->offset;
8724 	addr = seg->s_base;
8725 
8726 	if ((amp = svd->amp) != NULL) {
8727 		anon_index = svd->anon_index;
8728 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8729 	}
8730 
8731 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
8732 		struct anon *ap;
8733 		int we_own_it = 0;
8734 
8735 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8736 			swap_xlate_nopanic(ap, &vp, &off);
8737 		} else {
8738 			vp = svd->vp;
8739 			off = offset;
8740 		}
8741 
8742 		/*
8743 		 * If pp == NULL, the page either does not exist
8744 		 * or is exclusively locked.  So determine if it
8745 		 * exists before searching for it.
8746 		 */
8747 
8748 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8749 			we_own_it = 1;
8750 		else
8751 			pp = page_exists(vp, off);
8752 
8753 		if (pp) {
8754 			pfn = page_pptonum(pp);
8755 			dump_addpage(seg->s_as, addr, pfn);
8756 			if (we_own_it)
8757 				page_unlock(pp);
8758 		}
8759 		addr += PAGESIZE;
8760 		dump_timeleft = dump_timeout;
8761 	}
8762 
8763 	if (amp != NULL)
8764 		ANON_LOCK_EXIT(&amp->a_rwlock);
8765 }
8766 
8767 #ifdef DEBUG
8768 static uint32_t segvn_pglock_mtbf = 0;
8769 #endif
8770 
8771 #define	PCACHE_SHWLIST		((page_t *)-2)
8772 #define	NOPCACHE_SHWLIST	((page_t *)-1)
8773 
8774 /*
8775  * Lock/Unlock anon pages over a given range. Return shadow list. This routine
8776  * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages
8777  * to avoid the overhead of per page locking, unlocking for subsequent IOs to
8778  * the same parts of the segment. Currently shadow list creation is only
8779  * supported for pure anon segments. MAP_PRIVATE segment pcache entries are
8780  * tagged with segment pointer, starting virtual address and length. This
8781  * approach for MAP_SHARED segments may add many pcache entries for the same
8782  * set of pages and lead to long hash chains that decrease pcache lookup
8783  * performance. To avoid this issue for shared segments shared anon map and
8784  * starting anon index are used for pcache entry tagging. This allows all
8785  * segments to share pcache entries for the same anon range and reduces pcache
8786  * chain's length as well as memory overhead from duplicate shadow lists and
8787  * pcache entries.
8788  *
8789  * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd
8790  * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock
8791  * part of softlockcnt accounting is done differently for private and shared
8792  * segments. In private segment case softlock is only incremented when a new
8793  * shadow list is created but not when an existing one is found via
8794  * seg_plookup(). pcache entries have reference count incremented/decremented
8795  * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0
8796  * reference count can be purged (and purging is needed before segment can be
8797  * freed). When a private segment pcache entry is purged segvn_reclaim() will
8798  * decrement softlockcnt. Since in private segment case each of its pcache
8799  * entries only belongs to this segment we can expect that when
8800  * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8801  * segment purge will succeed and softlockcnt will drop to 0. In shared
8802  * segment case reference count in pcache entry counts active locks from many
8803  * different segments so we can't expect segment purging to succeed even when
8804  * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8805  * segment. To be able to determine when there're no pending pagelocks in
8806  * shared segment case we don't rely on purging to make softlockcnt drop to 0
8807  * but instead softlockcnt is incremented and decremented for every
8808  * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow
8809  * list was created or an existing one was found. When softlockcnt drops to 0
8810  * this segment no longer has any claims for pcached shadow lists and the
8811  * segment can be freed even if there're still active pcache entries
8812  * shared by this segment anon map. Shared segment pcache entries belong to
8813  * anon map and are typically removed when anon map is freed after all
8814  * processes destroy the segments that use this anon map.
8815  */
8816 static int
8817 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8818     enum lock_type type, enum seg_rw rw)
8819 {
8820 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8821 	size_t np;
8822 	pgcnt_t adjustpages;
8823 	pgcnt_t npages;
8824 	ulong_t anon_index;
8825 	uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE;
8826 	uint_t error;
8827 	struct anon_map *amp;
8828 	pgcnt_t anpgcnt;
8829 	struct page **pplist, **pl, *pp;
8830 	caddr_t a;
8831 	size_t page;
8832 	caddr_t lpgaddr, lpgeaddr;
8833 	anon_sync_obj_t cookie;
8834 	int anlock;
8835 	struct anon_map *pamp;
8836 	caddr_t paddr;
8837 	seg_preclaim_cbfunc_t preclaim_callback;
8838 	size_t pgsz;
8839 	int use_pcache;
8840 	size_t wlen = 0;
8841 	uint_t pflags = 0;
8842 	int sftlck_sbase = 0;
8843 	int sftlck_send = 0;
8844 
8845 #ifdef DEBUG
8846 	if (type == L_PAGELOCK && segvn_pglock_mtbf) {
8847 		hrtime_t ts = gethrtime();
8848 		if ((ts % segvn_pglock_mtbf) == 0) {
8849 			return (ENOTSUP);
8850 		}
8851 		if ((ts % segvn_pglock_mtbf) == 1) {
8852 			return (EFAULT);
8853 		}
8854 	}
8855 #endif
8856 
8857 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8858 	    "segvn_pagelock: start seg %p addr %p", seg, addr);
8859 
8860 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
8861 	ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
8862 
8863 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8864 
8865 	/*
8866 	 * for now we only support pagelock to anon memory. We would have to
8867 	 * check protections for vnode objects and call into the vnode driver.
8868 	 * That's too much for a fast path. Let the fault entry point handle
8869 	 * it.
8870 	 */
8871 	if (svd->vp != NULL) {
8872 		if (type == L_PAGELOCK) {
8873 			error = ENOTSUP;
8874 			goto out;
8875 		}
8876 		panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL");
8877 	}
8878 	if ((amp = svd->amp) == NULL) {
8879 		if (type == L_PAGELOCK) {
8880 			error = EFAULT;
8881 			goto out;
8882 		}
8883 		panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL");
8884 	}
8885 	if (rw != S_READ && rw != S_WRITE) {
8886 		if (type == L_PAGELOCK) {
8887 			error = ENOTSUP;
8888 			goto out;
8889 		}
8890 		panic("segvn_pagelock(L_PAGEUNLOCK): bad rw");
8891 	}
8892 
8893 	if (seg->s_szc != 0) {
8894 		/*
8895 		 * We are adjusting the pagelock region to the large page size
8896 		 * boundary because the unlocked part of a large page cannot
8897 		 * be freed anyway unless all constituent pages of a large
8898 		 * page are locked. Bigger regions reduce pcache chain length
8899 		 * and improve lookup performance. The tradeoff is that the
8900 		 * very first segvn_pagelock() call for a given page is more
8901 		 * expensive if only 1 page_t is needed for IO. This is only
8902 		 * an issue if pcache entry doesn't get reused by several
8903 		 * subsequent calls. We optimize here for the case when pcache
8904 		 * is heavily used by repeated IOs to the same address range.
8905 		 *
8906 		 * Note segment's page size cannot change while we are holding
8907 		 * as lock.  And then it cannot change while softlockcnt is
8908 		 * not 0. This will allow us to correctly recalculate large
8909 		 * page size region for the matching pageunlock/reclaim call
8910 		 * since as_pageunlock() caller must always match
8911 		 * as_pagelock() call's addr and len.
8912 		 *
8913 		 * For pageunlock *ppp points to the pointer of page_t that
8914 		 * corresponds to the real unadjusted start address. Similar
8915 		 * for pagelock *ppp must point to the pointer of page_t that
8916 		 * corresponds to the real unadjusted start address.
8917 		 */
8918 		pgsz = page_get_pagesize(seg->s_szc);
8919 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8920 		adjustpages = btop((uintptr_t)(addr - lpgaddr));
8921 	} else if (len < segvn_pglock_comb_thrshld) {
8922 		lpgaddr = addr;
8923 		lpgeaddr = addr + len;
8924 		adjustpages = 0;
8925 		pgsz = PAGESIZE;
8926 	} else {
8927 		/*
8928 		 * Align the address range of large enough requests to allow
8929 		 * combining of different shadow lists into 1 to reduce memory
8930 		 * overhead from potentially overlapping large shadow lists
8931 		 * (worst case is we have a 1MB IO into buffers with start
8932 		 * addresses separated by 4K).  Alignment is only possible if
8933 		 * padded chunks have sufficient access permissions. Note
8934 		 * permissions won't change between L_PAGELOCK and
8935 		 * L_PAGEUNLOCK calls since non 0 softlockcnt will force
8936 		 * segvn_setprot() to wait until softlockcnt drops to 0. This
8937 		 * allows us to determine in L_PAGEUNLOCK the same range we
8938 		 * computed in L_PAGELOCK.
8939 		 *
8940 		 * If alignment is limited by segment ends set
8941 		 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when
8942 		 * these flags are set bump softlockcnt_sbase/softlockcnt_send
8943 		 * per segment counters. In L_PAGEUNLOCK case decrease
8944 		 * softlockcnt_sbase/softlockcnt_send counters if
8945 		 * sftlck_sbase/sftlck_send flags are set.  When
8946 		 * softlockcnt_sbase/softlockcnt_send are non 0
8947 		 * segvn_concat()/segvn_extend_prev()/segvn_extend_next()
8948 		 * won't merge the segments. This restriction combined with
8949 		 * restriction on segment unmapping and splitting for segments
8950 		 * that have non 0 softlockcnt allows L_PAGEUNLOCK to
8951 		 * correctly determine the same range that was previously
8952 		 * locked by matching L_PAGELOCK.
8953 		 */
8954 		pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16);
8955 		pgsz = PAGESIZE;
8956 		if (svd->type == MAP_PRIVATE) {
8957 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr,
8958 			    segvn_pglock_comb_balign);
8959 			if (lpgaddr < seg->s_base) {
8960 				lpgaddr = seg->s_base;
8961 				sftlck_sbase = 1;
8962 			}
8963 		} else {
8964 			ulong_t aix = svd->anon_index + seg_page(seg, addr);
8965 			ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign);
8966 			if (aaix < svd->anon_index) {
8967 				lpgaddr = seg->s_base;
8968 				sftlck_sbase = 1;
8969 			} else {
8970 				lpgaddr = addr - ptob(aix - aaix);
8971 				ASSERT(lpgaddr >= seg->s_base);
8972 			}
8973 		}
8974 		if (svd->pageprot && lpgaddr != addr) {
8975 			struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)];
8976 			struct vpage *evp = &svd->vpage[seg_page(seg, addr)];
8977 			while (vp < evp) {
8978 				if ((VPP_PROT(vp) & protchk) == 0) {
8979 					break;
8980 				}
8981 				vp++;
8982 			}
8983 			if (vp < evp) {
8984 				lpgaddr = addr;
8985 				pflags = 0;
8986 			}
8987 		}
8988 		lpgeaddr = addr + len;
8989 		if (pflags) {
8990 			if (svd->type == MAP_PRIVATE) {
8991 				lpgeaddr = (caddr_t)P2ROUNDUP(
8992 				    (uintptr_t)lpgeaddr,
8993 				    segvn_pglock_comb_balign);
8994 			} else {
8995 				ulong_t aix = svd->anon_index +
8996 				    seg_page(seg, lpgeaddr);
8997 				ulong_t aaix = P2ROUNDUP(aix,
8998 				    segvn_pglock_comb_palign);
8999 				if (aaix < aix) {
9000 					lpgeaddr = 0;
9001 				} else {
9002 					lpgeaddr += ptob(aaix - aix);
9003 				}
9004 			}
9005 			if (lpgeaddr == 0 ||
9006 			    lpgeaddr > seg->s_base + seg->s_size) {
9007 				lpgeaddr = seg->s_base + seg->s_size;
9008 				sftlck_send = 1;
9009 			}
9010 		}
9011 		if (svd->pageprot && lpgeaddr != addr + len) {
9012 			struct vpage *vp;
9013 			struct vpage *evp;
9014 
9015 			vp = &svd->vpage[seg_page(seg, addr + len)];
9016 			evp = &svd->vpage[seg_page(seg, lpgeaddr)];
9017 
9018 			while (vp < evp) {
9019 				if ((VPP_PROT(vp) & protchk) == 0) {
9020 					break;
9021 				}
9022 				vp++;
9023 			}
9024 			if (vp < evp) {
9025 				lpgeaddr = addr + len;
9026 			}
9027 		}
9028 		adjustpages = btop((uintptr_t)(addr - lpgaddr));
9029 	}
9030 
9031 	/*
9032 	 * For MAP_SHARED segments we create pcache entries tagged by amp and
9033 	 * anon index so that we can share pcache entries with other segments
9034 	 * that map this amp.  For private segments pcache entries are tagged
9035 	 * with segment and virtual address.
9036 	 */
9037 	if (svd->type == MAP_SHARED) {
9038 		pamp = amp;
9039 		paddr = (caddr_t)((lpgaddr - seg->s_base) +
9040 		    ptob(svd->anon_index));
9041 		preclaim_callback = shamp_reclaim;
9042 	} else {
9043 		pamp = NULL;
9044 		paddr = lpgaddr;
9045 		preclaim_callback = segvn_reclaim;
9046 	}
9047 
9048 	if (type == L_PAGEUNLOCK) {
9049 		VM_STAT_ADD(segvnvmstats.pagelock[0]);
9050 
9051 		/*
9052 		 * update hat ref bits for /proc. We need to make sure
9053 		 * that threads tracing the ref and mod bits of the
9054 		 * address space get the right data.
9055 		 * Note: page ref and mod bits are updated at reclaim time
9056 		 */
9057 		if (seg->s_as->a_vbits) {
9058 			for (a = addr; a < addr + len; a += PAGESIZE) {
9059 				if (rw == S_WRITE) {
9060 					hat_setstat(seg->s_as, a,
9061 					    PAGESIZE, P_REF | P_MOD);
9062 				} else {
9063 					hat_setstat(seg->s_as, a,
9064 					    PAGESIZE, P_REF);
9065 				}
9066 			}
9067 		}
9068 
9069 		/*
9070 		 * Check the shadow list entry after the last page used in
9071 		 * this IO request. If it's NOPCACHE_SHWLIST the shadow list
9072 		 * was not inserted into pcache and is not large page
9073 		 * adjusted.  In this case call reclaim callback directly and
9074 		 * don't adjust the shadow list start and size for large
9075 		 * pages.
9076 		 */
9077 		npages = btop(len);
9078 		if ((*ppp)[npages] == NOPCACHE_SHWLIST) {
9079 			void *ptag;
9080 			if (pamp != NULL) {
9081 				ASSERT(svd->type == MAP_SHARED);
9082 				ptag = (void *)pamp;
9083 				paddr = (caddr_t)((addr - seg->s_base) +
9084 				    ptob(svd->anon_index));
9085 			} else {
9086 				ptag = (void *)seg;
9087 				paddr = addr;
9088 			}
9089 			(void) preclaim_callback(ptag, paddr, len, *ppp, rw, 0);
9090 		} else {
9091 			ASSERT((*ppp)[npages] == PCACHE_SHWLIST ||
9092 			    IS_SWAPFSVP((*ppp)[npages]->p_vnode));
9093 			len = lpgeaddr - lpgaddr;
9094 			npages = btop(len);
9095 			seg_pinactive(seg, pamp, paddr, len,
9096 			    *ppp - adjustpages, rw, pflags, preclaim_callback);
9097 		}
9098 
9099 		if (pamp != NULL) {
9100 			ASSERT(svd->type == MAP_SHARED);
9101 			ASSERT(svd->softlockcnt >= npages);
9102 			atomic_add_long((ulong_t *)&svd->softlockcnt, -npages);
9103 		}
9104 
9105 		if (sftlck_sbase) {
9106 			ASSERT(svd->softlockcnt_sbase > 0);
9107 			atomic_dec_ulong((ulong_t *)&svd->softlockcnt_sbase);
9108 		}
9109 		if (sftlck_send) {
9110 			ASSERT(svd->softlockcnt_send > 0);
9111 			atomic_dec_ulong((ulong_t *)&svd->softlockcnt_send);
9112 		}
9113 
9114 		/*
9115 		 * If someone is blocked while unmapping, we purge
9116 		 * segment page cache and thus reclaim pplist synchronously
9117 		 * without waiting for seg_pasync_thread. This speeds up
9118 		 * unmapping in cases where munmap(2) is called, while
9119 		 * raw async i/o is still in progress or where a thread
9120 		 * exits on data fault in a multithreaded application.
9121 		 */
9122 		if (AS_ISUNMAPWAIT(seg->s_as)) {
9123 			if (svd->softlockcnt == 0) {
9124 				mutex_enter(&seg->s_as->a_contents);
9125 				if (AS_ISUNMAPWAIT(seg->s_as)) {
9126 					AS_CLRUNMAPWAIT(seg->s_as);
9127 					cv_broadcast(&seg->s_as->a_cv);
9128 				}
9129 				mutex_exit(&seg->s_as->a_contents);
9130 			} else if (pamp == NULL) {
9131 				/*
9132 				 * softlockcnt is not 0 and this is a
9133 				 * MAP_PRIVATE segment. Try to purge its
9134 				 * pcache entries to reduce softlockcnt.
9135 				 * If it drops to 0 segvn_reclaim()
9136 				 * will wake up a thread waiting on
9137 				 * unmapwait flag.
9138 				 *
9139 				 * We don't purge MAP_SHARED segments with non
9140 				 * 0 softlockcnt since IO is still in progress
9141 				 * for such segments.
9142 				 */
9143 				ASSERT(svd->type == MAP_PRIVATE);
9144 				segvn_purge(seg);
9145 			}
9146 		}
9147 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9148 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
9149 		    "segvn_pagelock: unlock seg %p addr %p", seg, addr);
9150 		return (0);
9151 	}
9152 
9153 	/* The L_PAGELOCK case ... */
9154 
9155 	VM_STAT_ADD(segvnvmstats.pagelock[1]);
9156 
9157 	/*
9158 	 * For MAP_SHARED segments we have to check protections before
9159 	 * seg_plookup() since pcache entries may be shared by many segments
9160 	 * with potentially different page protections.
9161 	 */
9162 	if (pamp != NULL) {
9163 		ASSERT(svd->type == MAP_SHARED);
9164 		if (svd->pageprot == 0) {
9165 			if ((svd->prot & protchk) == 0) {
9166 				error = EACCES;
9167 				goto out;
9168 			}
9169 		} else {
9170 			/*
9171 			 * check page protections
9172 			 */
9173 			caddr_t ea;
9174 
9175 			if (seg->s_szc) {
9176 				a = lpgaddr;
9177 				ea = lpgeaddr;
9178 			} else {
9179 				a = addr;
9180 				ea = addr + len;
9181 			}
9182 			for (; a < ea; a += pgsz) {
9183 				struct vpage *vp;
9184 
9185 				ASSERT(seg->s_szc == 0 ||
9186 				    sameprot(seg, a, pgsz));
9187 				vp = &svd->vpage[seg_page(seg, a)];
9188 				if ((VPP_PROT(vp) & protchk) == 0) {
9189 					error = EACCES;
9190 					goto out;
9191 				}
9192 			}
9193 		}
9194 	}
9195 
9196 	/*
9197 	 * try to find pages in segment page cache
9198 	 */
9199 	pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags);
9200 	if (pplist != NULL) {
9201 		if (pamp != NULL) {
9202 			npages = btop((uintptr_t)(lpgeaddr - lpgaddr));
9203 			ASSERT(svd->type == MAP_SHARED);
9204 			atomic_add_long((ulong_t *)&svd->softlockcnt,
9205 			    npages);
9206 		}
9207 		if (sftlck_sbase) {
9208 			atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
9209 		}
9210 		if (sftlck_send) {
9211 			atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
9212 		}
9213 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9214 		*ppp = pplist + adjustpages;
9215 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
9216 		    "segvn_pagelock: cache hit seg %p addr %p", seg, addr);
9217 		return (0);
9218 	}
9219 
9220 	/*
9221 	 * For MAP_SHARED segments we already verified above that segment
9222 	 * protections allow this pagelock operation.
9223 	 */
9224 	if (pamp == NULL) {
9225 		ASSERT(svd->type == MAP_PRIVATE);
9226 		if (svd->pageprot == 0) {
9227 			if ((svd->prot & protchk) == 0) {
9228 				error = EACCES;
9229 				goto out;
9230 			}
9231 			if (svd->prot & PROT_WRITE) {
9232 				wlen = lpgeaddr - lpgaddr;
9233 			} else {
9234 				wlen = 0;
9235 				ASSERT(rw == S_READ);
9236 			}
9237 		} else {
9238 			int wcont = 1;
9239 			/*
9240 			 * check page protections
9241 			 */
9242 			for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) {
9243 				struct vpage *vp;
9244 
9245 				ASSERT(seg->s_szc == 0 ||
9246 				    sameprot(seg, a, pgsz));
9247 				vp = &svd->vpage[seg_page(seg, a)];
9248 				if ((VPP_PROT(vp) & protchk) == 0) {
9249 					error = EACCES;
9250 					goto out;
9251 				}
9252 				if (wcont && (VPP_PROT(vp) & PROT_WRITE)) {
9253 					wlen += pgsz;
9254 				} else {
9255 					wcont = 0;
9256 					ASSERT(rw == S_READ);
9257 				}
9258 			}
9259 		}
9260 		ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr);
9261 		ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr);
9262 	}
9263 
9264 	/*
9265 	 * Only build large page adjusted shadow list if we expect to insert
9266 	 * it into pcache. For large enough pages it's a big overhead to
9267 	 * create a shadow list of the entire large page. But this overhead
9268 	 * should be amortized over repeated pcache hits on subsequent reuse
9269 	 * of this shadow list (IO into any range within this shadow list will
9270 	 * find it in pcache since we large page align the request for pcache
9271 	 * lookups). pcache performance is improved with bigger shadow lists
9272 	 * as it reduces the time to pcache the entire big segment and reduces
9273 	 * pcache chain length.
9274 	 */
9275 	if (seg_pinsert_check(seg, pamp, paddr,
9276 	    lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) {
9277 		addr = lpgaddr;
9278 		len = lpgeaddr - lpgaddr;
9279 		use_pcache = 1;
9280 	} else {
9281 		use_pcache = 0;
9282 		/*
9283 		 * Since this entry will not be inserted into the pcache, we
9284 		 * will not do any adjustments to the starting address or
9285 		 * size of the memory to be locked.
9286 		 */
9287 		adjustpages = 0;
9288 	}
9289 	npages = btop(len);
9290 
9291 	pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP);
9292 	pl = pplist;
9293 	*ppp = pplist + adjustpages;
9294 	/*
9295 	 * If use_pcache is 0 this shadow list is not large page adjusted.
9296 	 * Record this info in the last entry of shadow array so that
9297 	 * L_PAGEUNLOCK can determine if it should large page adjust the
9298 	 * address range to find the real range that was locked.
9299 	 */
9300 	pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST;
9301 
9302 	page = seg_page(seg, addr);
9303 	anon_index = svd->anon_index + page;
9304 
9305 	anlock = 0;
9306 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9307 	ASSERT(amp->a_szc >= seg->s_szc);
9308 	anpgcnt = page_get_pagecnt(amp->a_szc);
9309 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
9310 		struct anon *ap;
9311 		struct vnode *vp;
9312 		u_offset_t off;
9313 
9314 		/*
9315 		 * Lock and unlock anon array only once per large page.
9316 		 * anon_array_enter() locks the root anon slot according to
9317 		 * a_szc which can't change while anon map is locked.  We lock
9318 		 * anon the first time through this loop and each time we
9319 		 * reach anon index that corresponds to a root of a large
9320 		 * page.
9321 		 */
9322 		if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) {
9323 			ASSERT(anlock == 0);
9324 			anon_array_enter(amp, anon_index, &cookie);
9325 			anlock = 1;
9326 		}
9327 		ap = anon_get_ptr(amp->ahp, anon_index);
9328 
9329 		/*
9330 		 * We must never use seg_pcache for COW pages
9331 		 * because we might end up with original page still
9332 		 * lying in seg_pcache even after private page is
9333 		 * created. This leads to data corruption as
9334 		 * aio_write refers to the page still in cache
9335 		 * while all other accesses refer to the private
9336 		 * page.
9337 		 */
9338 		if (ap == NULL || ap->an_refcnt != 1) {
9339 			struct vpage *vpage;
9340 
9341 			if (seg->s_szc) {
9342 				error = EFAULT;
9343 				break;
9344 			}
9345 			if (svd->vpage != NULL) {
9346 				vpage = &svd->vpage[seg_page(seg, a)];
9347 			} else {
9348 				vpage = NULL;
9349 			}
9350 			ASSERT(anlock);
9351 			anon_array_exit(&cookie);
9352 			anlock = 0;
9353 			pp = NULL;
9354 			error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0,
9355 			    vpage, &pp, 0, F_INVAL, rw, 1);
9356 			if (error) {
9357 				error = fc_decode(error);
9358 				break;
9359 			}
9360 			anon_array_enter(amp, anon_index, &cookie);
9361 			anlock = 1;
9362 			ap = anon_get_ptr(amp->ahp, anon_index);
9363 			if (ap == NULL || ap->an_refcnt != 1) {
9364 				error = EFAULT;
9365 				break;
9366 			}
9367 		}
9368 		swap_xlate(ap, &vp, &off);
9369 		pp = page_lookup_nowait(vp, off, SE_SHARED);
9370 		if (pp == NULL) {
9371 			error = EFAULT;
9372 			break;
9373 		}
9374 		if (ap->an_pvp != NULL) {
9375 			anon_swap_free(ap, pp);
9376 		}
9377 		/*
9378 		 * Unlock anon if this is the last slot in a large page.
9379 		 */
9380 		if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) {
9381 			ASSERT(anlock);
9382 			anon_array_exit(&cookie);
9383 			anlock = 0;
9384 		}
9385 		*pplist++ = pp;
9386 	}
9387 	if (anlock) {		/* Ensure the lock is dropped */
9388 		anon_array_exit(&cookie);
9389 	}
9390 	ANON_LOCK_EXIT(&amp->a_rwlock);
9391 
9392 	if (a >= addr + len) {
9393 		atomic_add_long((ulong_t *)&svd->softlockcnt, npages);
9394 		if (pamp != NULL) {
9395 			ASSERT(svd->type == MAP_SHARED);
9396 			atomic_add_long((ulong_t *)&pamp->a_softlockcnt,
9397 			    npages);
9398 			wlen = len;
9399 		}
9400 		if (sftlck_sbase) {
9401 			atomic_inc_ulong((ulong_t *)&svd->softlockcnt_sbase);
9402 		}
9403 		if (sftlck_send) {
9404 			atomic_inc_ulong((ulong_t *)&svd->softlockcnt_send);
9405 		}
9406 		if (use_pcache) {
9407 			(void) seg_pinsert(seg, pamp, paddr, len, wlen, pl,
9408 			    rw, pflags, preclaim_callback);
9409 		}
9410 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9411 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
9412 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
9413 		return (0);
9414 	}
9415 
9416 	pplist = pl;
9417 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
9418 	while (np > (uint_t)0) {
9419 		ASSERT(PAGE_LOCKED(*pplist));
9420 		page_unlock(*pplist);
9421 		np--;
9422 		pplist++;
9423 	}
9424 	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9425 out:
9426 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9427 	*ppp = NULL;
9428 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
9429 	    "segvn_pagelock: cache miss seg %p addr %p", seg, addr);
9430 	return (error);
9431 }
9432 
9433 /*
9434  * purge any cached pages in the I/O page cache
9435  */
9436 static void
9437 segvn_purge(struct seg *seg)
9438 {
9439 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9440 
9441 	/*
9442 	 * pcache is only used by pure anon segments.
9443 	 */
9444 	if (svd->amp == NULL || svd->vp != NULL) {
9445 		return;
9446 	}
9447 
9448 	/*
9449 	 * For MAP_SHARED segments non 0 segment's softlockcnt means
9450 	 * active IO is still in progress via this segment. So we only
9451 	 * purge MAP_SHARED segments when their softlockcnt is 0.
9452 	 */
9453 	if (svd->type == MAP_PRIVATE) {
9454 		if (svd->softlockcnt) {
9455 			seg_ppurge(seg, NULL, 0);
9456 		}
9457 	} else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) {
9458 		seg_ppurge(seg, svd->amp, 0);
9459 	}
9460 }
9461 
9462 /*
9463  * If async argument is not 0 we are called from pcache async thread and don't
9464  * hold AS lock.
9465  */
9466 
9467 /*ARGSUSED*/
9468 static int
9469 segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9470     enum seg_rw rw, int async)
9471 {
9472 	struct seg *seg = (struct seg *)ptag;
9473 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9474 	pgcnt_t np, npages;
9475 	struct page **pl;
9476 
9477 	npages = np = btop(len);
9478 	ASSERT(npages);
9479 
9480 	ASSERT(svd->vp == NULL && svd->amp != NULL);
9481 	ASSERT(svd->softlockcnt >= npages);
9482 	ASSERT(async || AS_LOCK_HELD(seg->s_as));
9483 
9484 	pl = pplist;
9485 
9486 	ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9487 	ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9488 
9489 	while (np > (uint_t)0) {
9490 		if (rw == S_WRITE) {
9491 			hat_setrefmod(*pplist);
9492 		} else {
9493 			hat_setref(*pplist);
9494 		}
9495 		page_unlock(*pplist);
9496 		np--;
9497 		pplist++;
9498 	}
9499 
9500 	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9501 
9502 	/*
9503 	 * If we are pcache async thread we don't hold AS lock. This means if
9504 	 * softlockcnt drops to 0 after the decrement below address space may
9505 	 * get freed. We can't allow it since after softlock derement to 0 we
9506 	 * still need to access as structure for possible wakeup of unmap
9507 	 * waiters. To prevent the disappearance of as we take this segment
9508 	 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to
9509 	 * make sure this routine completes before segment is freed.
9510 	 *
9511 	 * The second complication we have to deal with in async case is a
9512 	 * possibility of missed wake up of unmap wait thread. When we don't
9513 	 * hold as lock here we may take a_contents lock before unmap wait
9514 	 * thread that was first to see softlockcnt was still not 0. As a
9515 	 * result we'll fail to wake up an unmap wait thread. To avoid this
9516 	 * race we set nounmapwait flag in as structure if we drop softlockcnt
9517 	 * to 0 when we were called by pcache async thread.  unmapwait thread
9518 	 * will not block if this flag is set.
9519 	 */
9520 	if (async) {
9521 		mutex_enter(&svd->segfree_syncmtx);
9522 	}
9523 
9524 	if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) {
9525 		if (async || AS_ISUNMAPWAIT(seg->s_as)) {
9526 			mutex_enter(&seg->s_as->a_contents);
9527 			if (async) {
9528 				AS_SETNOUNMAPWAIT(seg->s_as);
9529 			}
9530 			if (AS_ISUNMAPWAIT(seg->s_as)) {
9531 				AS_CLRUNMAPWAIT(seg->s_as);
9532 				cv_broadcast(&seg->s_as->a_cv);
9533 			}
9534 			mutex_exit(&seg->s_as->a_contents);
9535 		}
9536 	}
9537 
9538 	if (async) {
9539 		mutex_exit(&svd->segfree_syncmtx);
9540 	}
9541 	return (0);
9542 }
9543 
9544 /*ARGSUSED*/
9545 static int
9546 shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9547     enum seg_rw rw, int async)
9548 {
9549 	amp_t *amp = (amp_t *)ptag;
9550 	pgcnt_t np, npages;
9551 	struct page **pl;
9552 
9553 	npages = np = btop(len);
9554 	ASSERT(npages);
9555 	ASSERT(amp->a_softlockcnt >= npages);
9556 
9557 	pl = pplist;
9558 
9559 	ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9560 	ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9561 
9562 	while (np > (uint_t)0) {
9563 		if (rw == S_WRITE) {
9564 			hat_setrefmod(*pplist);
9565 		} else {
9566 			hat_setref(*pplist);
9567 		}
9568 		page_unlock(*pplist);
9569 		np--;
9570 		pplist++;
9571 	}
9572 
9573 	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9574 
9575 	/*
9576 	 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt
9577 	 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0
9578 	 * and anonmap_purge() acquires a_purgemtx.
9579 	 */
9580 	mutex_enter(&amp->a_purgemtx);
9581 	if (!atomic_add_long_nv((ulong_t *)&amp->a_softlockcnt, -npages) &&
9582 	    amp->a_purgewait) {
9583 		amp->a_purgewait = 0;
9584 		cv_broadcast(&amp->a_purgecv);
9585 	}
9586 	mutex_exit(&amp->a_purgemtx);
9587 	return (0);
9588 }
9589 
9590 /*
9591  * get a memory ID for an addr in a given segment
9592  *
9593  * XXX only creates PAGESIZE pages if anon slots are not initialized.
9594  * At fault time they will be relocated into larger pages.
9595  */
9596 static int
9597 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9598 {
9599 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9600 	struct anon 	*ap = NULL;
9601 	ulong_t		anon_index = 0;
9602 	struct anon_map	*amp;
9603 	anon_sync_obj_t cookie;
9604 
9605 	if (svd->type == MAP_PRIVATE) {
9606 		memidp->val[0] = (uintptr_t)seg->s_as;
9607 		memidp->val[1] = (uintptr_t)addr;
9608 		return (0);
9609 	}
9610 
9611 	if (svd->type == MAP_SHARED) {
9612 		if (svd->vp) {
9613 			memidp->val[0] = (uintptr_t)svd->vp;
9614 			memidp->val[1] = (u_longlong_t)svd->offset +
9615 			    (uintptr_t)(addr - seg->s_base);
9616 			return (0);
9617 		} else {
9618 
9619 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9620 			if ((amp = svd->amp) != NULL) {
9621 				anon_index = svd->anon_index +
9622 				    seg_page(seg, addr);
9623 			}
9624 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9625 
9626 			ASSERT(amp != NULL);
9627 
9628 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9629 			anon_array_enter(amp, anon_index, &cookie);
9630 			ap = anon_get_ptr(amp->ahp, anon_index);
9631 			if (ap == NULL) {
9632 				page_t		*pp;
9633 
9634 				pp = anon_zero(seg, addr, &ap, svd->cred);
9635 				if (pp == NULL) {
9636 					anon_array_exit(&cookie);
9637 					ANON_LOCK_EXIT(&amp->a_rwlock);
9638 					return (ENOMEM);
9639 				}
9640 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
9641 				    == NULL);
9642 				(void) anon_set_ptr(amp->ahp, anon_index,
9643 				    ap, ANON_SLEEP);
9644 				page_unlock(pp);
9645 			}
9646 
9647 			anon_array_exit(&cookie);
9648 			ANON_LOCK_EXIT(&amp->a_rwlock);
9649 
9650 			memidp->val[0] = (uintptr_t)ap;
9651 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9652 			return (0);
9653 		}
9654 	}
9655 	return (EINVAL);
9656 }
9657 
9658 static int
9659 sameprot(struct seg *seg, caddr_t a, size_t len)
9660 {
9661 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9662 	struct vpage *vpage;
9663 	spgcnt_t pages = btop(len);
9664 	uint_t prot;
9665 
9666 	if (svd->pageprot == 0)
9667 		return (1);
9668 
9669 	ASSERT(svd->vpage != NULL);
9670 
9671 	vpage = &svd->vpage[seg_page(seg, a)];
9672 	prot = VPP_PROT(vpage);
9673 	vpage++;
9674 	pages--;
9675 	while (pages-- > 0) {
9676 		if (prot != VPP_PROT(vpage))
9677 			return (0);
9678 		vpage++;
9679 	}
9680 	return (1);
9681 }
9682 
9683 /*
9684  * Get memory allocation policy info for specified address in given segment
9685  */
9686 static lgrp_mem_policy_info_t *
9687 segvn_getpolicy(struct seg *seg, caddr_t addr)
9688 {
9689 	struct anon_map		*amp;
9690 	ulong_t			anon_index;
9691 	lgrp_mem_policy_info_t	*policy_info;
9692 	struct segvn_data	*svn_data;
9693 	u_offset_t		vn_off;
9694 	vnode_t			*vp;
9695 
9696 	ASSERT(seg != NULL);
9697 
9698 	svn_data = (struct segvn_data *)seg->s_data;
9699 	if (svn_data == NULL)
9700 		return (NULL);
9701 
9702 	/*
9703 	 * Get policy info for private or shared memory
9704 	 */
9705 	if (svn_data->type != MAP_SHARED) {
9706 		if (svn_data->tr_state != SEGVN_TR_ON) {
9707 			policy_info = &svn_data->policy_info;
9708 		} else {
9709 			policy_info = &svn_data->tr_policy_info;
9710 			ASSERT(policy_info->mem_policy ==
9711 			    LGRP_MEM_POLICY_NEXT_SEG);
9712 		}
9713 	} else {
9714 		amp = svn_data->amp;
9715 		anon_index = svn_data->anon_index + seg_page(seg, addr);
9716 		vp = svn_data->vp;
9717 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9718 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9719 	}
9720 
9721 	return (policy_info);
9722 }
9723 
9724 /*ARGSUSED*/
9725 static int
9726 segvn_capable(struct seg *seg, segcapability_t capability)
9727 {
9728 	return (0);
9729 }
9730 
9731 /*
9732  * Bind text vnode segment to an amp. If we bind successfully mappings will be
9733  * established to per vnode mapping per lgroup amp pages instead of to vnode
9734  * pages. There's one amp per vnode text mapping per lgroup. Many processes
9735  * may share the same text replication amp. If a suitable amp doesn't already
9736  * exist in svntr hash table create a new one.  We may fail to bind to amp if
9737  * segment is not eligible for text replication.  Code below first checks for
9738  * these conditions. If binding is successful segment tr_state is set to on
9739  * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9740  * svd->amp remains as NULL.
9741  */
9742 static void
9743 segvn_textrepl(struct seg *seg)
9744 {
9745 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9746 	vnode_t			*vp = svd->vp;
9747 	u_offset_t		off = svd->offset;
9748 	size_t			size = seg->s_size;
9749 	u_offset_t		eoff = off + size;
9750 	uint_t			szc = seg->s_szc;
9751 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9752 	svntr_t			*svntrp;
9753 	struct vattr		va;
9754 	proc_t			*p = seg->s_as->a_proc;
9755 	lgrp_id_t		lgrp_id;
9756 	lgrp_id_t		olid;
9757 	int			first;
9758 	struct anon_map		*amp;
9759 
9760 	ASSERT(AS_LOCK_HELD(seg->s_as));
9761 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9762 	ASSERT(p != NULL);
9763 	ASSERT(svd->tr_state == SEGVN_TR_INIT);
9764 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9765 	ASSERT(svd->flags & MAP_TEXT);
9766 	ASSERT(svd->type == MAP_PRIVATE);
9767 	ASSERT(vp != NULL && svd->amp == NULL);
9768 	ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9769 	ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9770 	ASSERT(seg->s_as != &kas);
9771 	ASSERT(off < eoff);
9772 	ASSERT(svntr_hashtab != NULL);
9773 
9774 	/*
9775 	 * If numa optimizations are no longer desired bail out.
9776 	 */
9777 	if (!lgrp_optimizations()) {
9778 		svd->tr_state = SEGVN_TR_OFF;
9779 		return;
9780 	}
9781 
9782 	/*
9783 	 * Avoid creating anon maps with size bigger than the file size.
9784 	 * If VOP_GETATTR() call fails bail out.
9785 	 */
9786 	va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9787 	if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) {
9788 		svd->tr_state = SEGVN_TR_OFF;
9789 		SEGVN_TR_ADDSTAT(gaerr);
9790 		return;
9791 	}
9792 	if (btopr(va.va_size) < btopr(eoff)) {
9793 		svd->tr_state = SEGVN_TR_OFF;
9794 		SEGVN_TR_ADDSTAT(overmap);
9795 		return;
9796 	}
9797 
9798 	/*
9799 	 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9800 	 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9801 	 * mapping that checks if trcache for this vnode needs to be
9802 	 * invalidated can't miss us.
9803 	 */
9804 	if (!(vp->v_flag & VVMEXEC)) {
9805 		mutex_enter(&vp->v_lock);
9806 		vp->v_flag |= VVMEXEC;
9807 		mutex_exit(&vp->v_lock);
9808 	}
9809 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9810 	/*
9811 	 * Bail out if potentially MAP_SHARED writable mappings exist to this
9812 	 * vnode.  We don't want to use old file contents from existing
9813 	 * replicas if this mapping was established after the original file
9814 	 * was changed.
9815 	 */
9816 	if (vn_is_mapped(vp, V_WRITE)) {
9817 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9818 		svd->tr_state = SEGVN_TR_OFF;
9819 		SEGVN_TR_ADDSTAT(wrcnt);
9820 		return;
9821 	}
9822 	svntrp = svntr_hashtab[hash].tr_head;
9823 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9824 		ASSERT(svntrp->tr_refcnt != 0);
9825 		if (svntrp->tr_vp != vp) {
9826 			continue;
9827 		}
9828 
9829 		/*
9830 		 * Bail out if the file or its attributes were changed after
9831 		 * this replication entry was created since we need to use the
9832 		 * latest file contents. Note that mtime test alone is not
9833 		 * sufficient because a user can explicitly change mtime via
9834 		 * utimes(2) interfaces back to the old value after modifiying
9835 		 * the file contents. To detect this case we also have to test
9836 		 * ctime which among other things records the time of the last
9837 		 * mtime change by utimes(2). ctime is not changed when the file
9838 		 * is only read or executed so we expect that typically existing
9839 		 * replication amp's can be used most of the time.
9840 		 */
9841 		if (!svntrp->tr_valid ||
9842 		    svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9843 		    svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9844 		    svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9845 		    svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9846 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9847 			svd->tr_state = SEGVN_TR_OFF;
9848 			SEGVN_TR_ADDSTAT(stale);
9849 			return;
9850 		}
9851 		/*
9852 		 * if off, eoff and szc match current segment we found the
9853 		 * existing entry we can use.
9854 		 */
9855 		if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9856 		    svntrp->tr_szc == szc) {
9857 			break;
9858 		}
9859 		/*
9860 		 * Don't create different but overlapping in file offsets
9861 		 * entries to avoid replication of the same file pages more
9862 		 * than once per lgroup.
9863 		 */
9864 		if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9865 		    (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9866 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9867 			svd->tr_state = SEGVN_TR_OFF;
9868 			SEGVN_TR_ADDSTAT(overlap);
9869 			return;
9870 		}
9871 	}
9872 	/*
9873 	 * If we didn't find existing entry create a new one.
9874 	 */
9875 	if (svntrp == NULL) {
9876 		svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9877 		if (svntrp == NULL) {
9878 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9879 			svd->tr_state = SEGVN_TR_OFF;
9880 			SEGVN_TR_ADDSTAT(nokmem);
9881 			return;
9882 		}
9883 #ifdef DEBUG
9884 		{
9885 			lgrp_id_t i;
9886 			for (i = 0; i < NLGRPS_MAX; i++) {
9887 				ASSERT(svntrp->tr_amp[i] == NULL);
9888 			}
9889 		}
9890 #endif /* DEBUG */
9891 		svntrp->tr_vp = vp;
9892 		svntrp->tr_off = off;
9893 		svntrp->tr_eoff = eoff;
9894 		svntrp->tr_szc = szc;
9895 		svntrp->tr_valid = 1;
9896 		svntrp->tr_mtime = va.va_mtime;
9897 		svntrp->tr_ctime = va.va_ctime;
9898 		svntrp->tr_refcnt = 0;
9899 		svntrp->tr_next = svntr_hashtab[hash].tr_head;
9900 		svntr_hashtab[hash].tr_head = svntrp;
9901 	}
9902 	first = 1;
9903 again:
9904 	/*
9905 	 * We want to pick a replica with pages on main thread's (t_tid = 1,
9906 	 * aka T1) lgrp. Currently text replication is only optimized for
9907 	 * workloads that either have all threads of a process on the same
9908 	 * lgrp or execute their large text primarily on main thread.
9909 	 */
9910 	lgrp_id = p->p_t1_lgrpid;
9911 	if (lgrp_id == LGRP_NONE) {
9912 		/*
9913 		 * In case exec() prefaults text on non main thread use
9914 		 * current thread lgrpid.  It will become main thread anyway
9915 		 * soon.
9916 		 */
9917 		lgrp_id = lgrp_home_id(curthread);
9918 	}
9919 	/*
9920 	 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet.  Otherwise
9921 	 * just set it to NLGRPS_MAX if it's different from current process T1
9922 	 * home lgrp.  p_tr_lgrpid is used to detect if process uses text
9923 	 * replication and T1 new home is different from lgrp used for text
9924 	 * replication. When this happens asyncronous segvn thread rechecks if
9925 	 * segments should change lgrps used for text replication.  If we fail
9926 	 * to set p_tr_lgrpid with atomic_cas_32 then set it to NLGRPS_MAX
9927 	 * without cas if it's not already NLGRPS_MAX and not equal lgrp_id
9928 	 * we want to use.  We don't need to use cas in this case because
9929 	 * another thread that races in between our non atomic check and set
9930 	 * may only change p_tr_lgrpid to NLGRPS_MAX at this point.
9931 	 */
9932 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9933 	olid = p->p_tr_lgrpid;
9934 	if (lgrp_id != olid && olid != NLGRPS_MAX) {
9935 		lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9936 		if (atomic_cas_32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) !=
9937 		    olid) {
9938 			olid = p->p_tr_lgrpid;
9939 			ASSERT(olid != LGRP_NONE);
9940 			if (olid != lgrp_id && olid != NLGRPS_MAX) {
9941 				p->p_tr_lgrpid = NLGRPS_MAX;
9942 			}
9943 		}
9944 		ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9945 		membar_producer();
9946 		/*
9947 		 * lgrp_move_thread() won't schedule async recheck after
9948 		 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9949 		 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9950 		 * is not LGRP_NONE.
9951 		 */
9952 		if (first && p->p_t1_lgrpid != LGRP_NONE &&
9953 		    p->p_t1_lgrpid != lgrp_id) {
9954 			first = 0;
9955 			goto again;
9956 		}
9957 	}
9958 	/*
9959 	 * If no amp was created yet for lgrp_id create a new one as long as
9960 	 * we have enough memory to afford it.
9961 	 */
9962 	if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9963 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9964 		if (trmem > segvn_textrepl_max_bytes) {
9965 			SEGVN_TR_ADDSTAT(normem);
9966 			goto fail;
9967 		}
9968 		if (anon_try_resv_zone(size, NULL) == 0) {
9969 			SEGVN_TR_ADDSTAT(noanon);
9970 			goto fail;
9971 		}
9972 		amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9973 		if (amp == NULL) {
9974 			anon_unresv_zone(size, NULL);
9975 			SEGVN_TR_ADDSTAT(nokmem);
9976 			goto fail;
9977 		}
9978 		ASSERT(amp->refcnt == 1);
9979 		amp->a_szc = szc;
9980 		svntrp->tr_amp[lgrp_id] = amp;
9981 		SEGVN_TR_ADDSTAT(newamp);
9982 	}
9983 	svntrp->tr_refcnt++;
9984 	ASSERT(svd->svn_trnext == NULL);
9985 	ASSERT(svd->svn_trprev == NULL);
9986 	svd->svn_trnext = svntrp->tr_svnhead;
9987 	svd->svn_trprev = NULL;
9988 	if (svntrp->tr_svnhead != NULL) {
9989 		svntrp->tr_svnhead->svn_trprev = svd;
9990 	}
9991 	svntrp->tr_svnhead = svd;
9992 	ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9993 	ASSERT(amp->refcnt >= 1);
9994 	svd->amp = amp;
9995 	svd->anon_index = 0;
9996 	svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9997 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9998 	svd->tr_state = SEGVN_TR_ON;
9999 	mutex_exit(&svntr_hashtab[hash].tr_lock);
10000 	SEGVN_TR_ADDSTAT(repl);
10001 	return;
10002 fail:
10003 	ASSERT(segvn_textrepl_bytes >= size);
10004 	atomic_add_long(&segvn_textrepl_bytes, -size);
10005 	ASSERT(svntrp != NULL);
10006 	ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
10007 	if (svntrp->tr_refcnt == 0) {
10008 		ASSERT(svntrp == svntr_hashtab[hash].tr_head);
10009 		svntr_hashtab[hash].tr_head = svntrp->tr_next;
10010 		mutex_exit(&svntr_hashtab[hash].tr_lock);
10011 		kmem_cache_free(svntr_cache, svntrp);
10012 	} else {
10013 		mutex_exit(&svntr_hashtab[hash].tr_lock);
10014 	}
10015 	svd->tr_state = SEGVN_TR_OFF;
10016 }
10017 
10018 /*
10019  * Convert seg back to regular vnode mapping seg by unbinding it from its text
10020  * replication amp.  This routine is most typically called when segment is
10021  * unmapped but can also be called when segment no longer qualifies for text
10022  * replication (e.g. due to protection changes). If unload_unmap is set use
10023  * HAT_UNLOAD_UNMAP flag in hat_unload_callback().  If we are the last user of
10024  * svntr free all its anon maps and remove it from the hash table.
10025  */
10026 static void
10027 segvn_textunrepl(struct seg *seg, int unload_unmap)
10028 {
10029 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
10030 	vnode_t			*vp = svd->vp;
10031 	u_offset_t		off = svd->offset;
10032 	size_t			size = seg->s_size;
10033 	u_offset_t		eoff = off + size;
10034 	uint_t			szc = seg->s_szc;
10035 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
10036 	svntr_t			*svntrp;
10037 	svntr_t			**prv_svntrp;
10038 	lgrp_id_t		lgrp_id = svd->tr_policy_info.mem_lgrpid;
10039 	lgrp_id_t		i;
10040 
10041 	ASSERT(AS_LOCK_HELD(seg->s_as));
10042 	ASSERT(AS_WRITE_HELD(seg->s_as) ||
10043 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
10044 	ASSERT(svd->tr_state == SEGVN_TR_ON);
10045 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10046 	ASSERT(svd->amp != NULL);
10047 	ASSERT(svd->amp->refcnt >= 1);
10048 	ASSERT(svd->anon_index == 0);
10049 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
10050 	ASSERT(svntr_hashtab != NULL);
10051 
10052 	mutex_enter(&svntr_hashtab[hash].tr_lock);
10053 	prv_svntrp = &svntr_hashtab[hash].tr_head;
10054 	for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
10055 		ASSERT(svntrp->tr_refcnt != 0);
10056 		if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
10057 		    svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
10058 			break;
10059 		}
10060 	}
10061 	if (svntrp == NULL) {
10062 		panic("segvn_textunrepl: svntr record not found");
10063 	}
10064 	if (svntrp->tr_amp[lgrp_id] != svd->amp) {
10065 		panic("segvn_textunrepl: amp mismatch");
10066 	}
10067 	svd->tr_state = SEGVN_TR_OFF;
10068 	svd->amp = NULL;
10069 	if (svd->svn_trprev == NULL) {
10070 		ASSERT(svntrp->tr_svnhead == svd);
10071 		svntrp->tr_svnhead = svd->svn_trnext;
10072 		if (svntrp->tr_svnhead != NULL) {
10073 			svntrp->tr_svnhead->svn_trprev = NULL;
10074 		}
10075 		svd->svn_trnext = NULL;
10076 	} else {
10077 		svd->svn_trprev->svn_trnext = svd->svn_trnext;
10078 		if (svd->svn_trnext != NULL) {
10079 			svd->svn_trnext->svn_trprev = svd->svn_trprev;
10080 			svd->svn_trnext = NULL;
10081 		}
10082 		svd->svn_trprev = NULL;
10083 	}
10084 	if (--svntrp->tr_refcnt) {
10085 		mutex_exit(&svntr_hashtab[hash].tr_lock);
10086 		goto done;
10087 	}
10088 	*prv_svntrp = svntrp->tr_next;
10089 	mutex_exit(&svntr_hashtab[hash].tr_lock);
10090 	for (i = 0; i < NLGRPS_MAX; i++) {
10091 		struct anon_map *amp = svntrp->tr_amp[i];
10092 		if (amp == NULL) {
10093 			continue;
10094 		}
10095 		ASSERT(amp->refcnt == 1);
10096 		ASSERT(amp->swresv == size);
10097 		ASSERT(amp->size == size);
10098 		ASSERT(amp->a_szc == szc);
10099 		if (amp->a_szc != 0) {
10100 			anon_free_pages(amp->ahp, 0, size, szc);
10101 		} else {
10102 			anon_free(amp->ahp, 0, size);
10103 		}
10104 		svntrp->tr_amp[i] = NULL;
10105 		ASSERT(segvn_textrepl_bytes >= size);
10106 		atomic_add_long(&segvn_textrepl_bytes, -size);
10107 		anon_unresv_zone(amp->swresv, NULL);
10108 		amp->refcnt = 0;
10109 		anonmap_free(amp);
10110 	}
10111 	kmem_cache_free(svntr_cache, svntrp);
10112 done:
10113 	hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
10114 	    unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
10115 }
10116 
10117 /*
10118  * This is called when a MAP_SHARED writable mapping is created to a vnode
10119  * that is currently used for execution (VVMEXEC flag is set). In this case we
10120  * need to prevent further use of existing replicas.
10121  */
10122 static void
10123 segvn_inval_trcache(vnode_t *vp)
10124 {
10125 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
10126 	svntr_t			*svntrp;
10127 
10128 	ASSERT(vp->v_flag & VVMEXEC);
10129 
10130 	if (svntr_hashtab == NULL) {
10131 		return;
10132 	}
10133 
10134 	mutex_enter(&svntr_hashtab[hash].tr_lock);
10135 	svntrp = svntr_hashtab[hash].tr_head;
10136 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
10137 		ASSERT(svntrp->tr_refcnt != 0);
10138 		if (svntrp->tr_vp == vp && svntrp->tr_valid) {
10139 			svntrp->tr_valid = 0;
10140 		}
10141 	}
10142 	mutex_exit(&svntr_hashtab[hash].tr_lock);
10143 }
10144 
10145 static void
10146 segvn_trasync_thread(void)
10147 {
10148 	callb_cpr_t cpr_info;
10149 	kmutex_t cpr_lock;	/* just for CPR stuff */
10150 
10151 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
10152 
10153 	CALLB_CPR_INIT(&cpr_info, &cpr_lock,
10154 	    callb_generic_cpr, "segvn_async");
10155 
10156 	if (segvn_update_textrepl_interval == 0) {
10157 		segvn_update_textrepl_interval = segvn_update_tr_time * hz;
10158 	} else {
10159 		segvn_update_textrepl_interval *= hz;
10160 	}
10161 	(void) timeout(segvn_trupdate_wakeup, NULL,
10162 	    segvn_update_textrepl_interval);
10163 
10164 	for (;;) {
10165 		mutex_enter(&cpr_lock);
10166 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
10167 		mutex_exit(&cpr_lock);
10168 		sema_p(&segvn_trasync_sem);
10169 		mutex_enter(&cpr_lock);
10170 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
10171 		mutex_exit(&cpr_lock);
10172 		segvn_trupdate();
10173 	}
10174 }
10175 
10176 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
10177 
10178 static void
10179 segvn_trupdate_wakeup(void *dummy)
10180 {
10181 	uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
10182 
10183 	if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
10184 		segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
10185 		sema_v(&segvn_trasync_sem);
10186 	}
10187 
10188 	if (!segvn_disable_textrepl_update &&
10189 	    segvn_update_textrepl_interval != 0) {
10190 		(void) timeout(segvn_trupdate_wakeup, dummy,
10191 		    segvn_update_textrepl_interval);
10192 	}
10193 }
10194 
10195 static void
10196 segvn_trupdate(void)
10197 {
10198 	ulong_t		hash;
10199 	svntr_t		*svntrp;
10200 	segvn_data_t	*svd;
10201 
10202 	ASSERT(svntr_hashtab != NULL);
10203 
10204 	for (hash = 0; hash < svntr_hashtab_sz; hash++) {
10205 		mutex_enter(&svntr_hashtab[hash].tr_lock);
10206 		svntrp = svntr_hashtab[hash].tr_head;
10207 		for (; svntrp != NULL; svntrp = svntrp->tr_next) {
10208 			ASSERT(svntrp->tr_refcnt != 0);
10209 			svd = svntrp->tr_svnhead;
10210 			for (; svd != NULL; svd = svd->svn_trnext) {
10211 				segvn_trupdate_seg(svd->seg, svd, svntrp,
10212 				    hash);
10213 			}
10214 		}
10215 		mutex_exit(&svntr_hashtab[hash].tr_lock);
10216 	}
10217 }
10218 
10219 static void
10220 segvn_trupdate_seg(struct seg *seg, segvn_data_t *svd, svntr_t *svntrp,
10221     ulong_t hash)
10222 {
10223 	proc_t			*p;
10224 	lgrp_id_t		lgrp_id;
10225 	struct as		*as;
10226 	size_t			size;
10227 	struct anon_map		*amp;
10228 
10229 	ASSERT(svd->vp != NULL);
10230 	ASSERT(svd->vp == svntrp->tr_vp);
10231 	ASSERT(svd->offset == svntrp->tr_off);
10232 	ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
10233 	ASSERT(seg != NULL);
10234 	ASSERT(svd->seg == seg);
10235 	ASSERT(seg->s_data == (void *)svd);
10236 	ASSERT(seg->s_szc == svntrp->tr_szc);
10237 	ASSERT(svd->tr_state == SEGVN_TR_ON);
10238 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10239 	ASSERT(svd->amp != NULL);
10240 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10241 	ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
10242 	ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
10243 	ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
10244 	ASSERT(svntrp->tr_refcnt != 0);
10245 	ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
10246 
10247 	as = seg->s_as;
10248 	ASSERT(as != NULL && as != &kas);
10249 	p = as->a_proc;
10250 	ASSERT(p != NULL);
10251 	ASSERT(p->p_tr_lgrpid != LGRP_NONE);
10252 	lgrp_id = p->p_t1_lgrpid;
10253 	if (lgrp_id == LGRP_NONE) {
10254 		return;
10255 	}
10256 	ASSERT(lgrp_id < NLGRPS_MAX);
10257 	if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
10258 		return;
10259 	}
10260 
10261 	/*
10262 	 * Use tryenter locking since we are locking as/seg and svntr hash
10263 	 * lock in reverse from syncrounous thread order.
10264 	 */
10265 	if (!AS_LOCK_TRYENTER(as, RW_READER)) {
10266 		SEGVN_TR_ADDSTAT(nolock);
10267 		if (segvn_lgrp_trthr_migrs_snpsht) {
10268 			segvn_lgrp_trthr_migrs_snpsht = 0;
10269 		}
10270 		return;
10271 	}
10272 	if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
10273 		AS_LOCK_EXIT(as);
10274 		SEGVN_TR_ADDSTAT(nolock);
10275 		if (segvn_lgrp_trthr_migrs_snpsht) {
10276 			segvn_lgrp_trthr_migrs_snpsht = 0;
10277 		}
10278 		return;
10279 	}
10280 	size = seg->s_size;
10281 	if (svntrp->tr_amp[lgrp_id] == NULL) {
10282 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
10283 		if (trmem > segvn_textrepl_max_bytes) {
10284 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10285 			AS_LOCK_EXIT(as);
10286 			atomic_add_long(&segvn_textrepl_bytes, -size);
10287 			SEGVN_TR_ADDSTAT(normem);
10288 			return;
10289 		}
10290 		if (anon_try_resv_zone(size, NULL) == 0) {
10291 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10292 			AS_LOCK_EXIT(as);
10293 			atomic_add_long(&segvn_textrepl_bytes, -size);
10294 			SEGVN_TR_ADDSTAT(noanon);
10295 			return;
10296 		}
10297 		amp = anonmap_alloc(size, size, KM_NOSLEEP);
10298 		if (amp == NULL) {
10299 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10300 			AS_LOCK_EXIT(as);
10301 			atomic_add_long(&segvn_textrepl_bytes, -size);
10302 			anon_unresv_zone(size, NULL);
10303 			SEGVN_TR_ADDSTAT(nokmem);
10304 			return;
10305 		}
10306 		ASSERT(amp->refcnt == 1);
10307 		amp->a_szc = seg->s_szc;
10308 		svntrp->tr_amp[lgrp_id] = amp;
10309 	}
10310 	/*
10311 	 * We don't need to drop the bucket lock but here we give other
10312 	 * threads a chance.  svntr and svd can't be unlinked as long as
10313 	 * segment lock is held as a writer and AS held as well.  After we
10314 	 * retake bucket lock we'll continue from where we left. We'll be able
10315 	 * to reach the end of either list since new entries are always added
10316 	 * to the beginning of the lists.
10317 	 */
10318 	mutex_exit(&svntr_hashtab[hash].tr_lock);
10319 	hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
10320 	mutex_enter(&svntr_hashtab[hash].tr_lock);
10321 
10322 	ASSERT(svd->tr_state == SEGVN_TR_ON);
10323 	ASSERT(svd->amp != NULL);
10324 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10325 	ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
10326 	ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
10327 
10328 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
10329 	svd->amp = svntrp->tr_amp[lgrp_id];
10330 	p->p_tr_lgrpid = NLGRPS_MAX;
10331 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10332 	AS_LOCK_EXIT(as);
10333 
10334 	ASSERT(svntrp->tr_refcnt != 0);
10335 	ASSERT(svd->vp == svntrp->tr_vp);
10336 	ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
10337 	ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
10338 	ASSERT(svd->seg == seg);
10339 	ASSERT(svd->tr_state == SEGVN_TR_ON);
10340 
10341 	SEGVN_TR_ADDSTAT(asyncrepl);
10342 }
10343