xref: /illumos-gate/usr/src/uts/common/rpc/svc_clts.c (revision ff31d5bfa079d4db9f78f481637d7ed9f9fa4a49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  *  Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
29 /*	  All Rights Reserved  	*/
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 /*
37  * svc_clts.c
38  * Server side for RPC in the kernel.
39  *
40  */
41 
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/sysmacros.h>
45 #include <sys/file.h>
46 #include <sys/stream.h>
47 #include <sys/strsun.h>
48 #include <sys/strsubr.h>
49 #include <sys/tihdr.h>
50 #include <sys/tiuser.h>
51 #include <sys/t_kuser.h>
52 #include <sys/fcntl.h>
53 #include <sys/errno.h>
54 #include <sys/kmem.h>
55 #include <sys/systm.h>
56 #include <sys/cmn_err.h>
57 #include <sys/kstat.h>
58 #include <sys/vtrace.h>
59 #include <sys/debug.h>
60 
61 #include <rpc/types.h>
62 #include <rpc/xdr.h>
63 #include <rpc/auth.h>
64 #include <rpc/clnt.h>
65 #include <rpc/rpc_msg.h>
66 #include <rpc/svc.h>
67 #include <inet/ip.h>
68 
69 /*
70  * Routines exported through ops vector.
71  */
72 static bool_t		svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
73 static bool_t		svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
74 static bool_t		svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
75 static bool_t		svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
76 static void		svc_clts_kdestroy(SVCMASTERXPRT *);
77 static int		svc_clts_kdup(struct svc_req *, caddr_t, int,
78 				struct dupreq **, bool_t *);
79 static void		svc_clts_kdupdone(struct dupreq *, caddr_t,
80 				void (*)(), int, int);
81 static int32_t		*svc_clts_kgetres(SVCXPRT *, int);
82 static void		svc_clts_kclone_destroy(SVCXPRT *);
83 static void		svc_clts_kfreeres(SVCXPRT *);
84 static void		svc_clts_kstart(SVCMASTERXPRT *);
85 static void		svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
86 static void		svc_clts_ktattrs(SVCXPRT *, int, void **);
87 
88 /*
89  * Server transport operations vector.
90  */
91 struct svc_ops svc_clts_op = {
92 	svc_clts_krecv,		/* Get requests */
93 	svc_clts_kgetargs,	/* Deserialize arguments */
94 	svc_clts_ksend,		/* Send reply */
95 	svc_clts_kfreeargs,	/* Free argument data space */
96 	svc_clts_kdestroy,	/* Destroy transport handle */
97 	svc_clts_kdup,		/* Check entry in dup req cache */
98 	svc_clts_kdupdone,	/* Mark entry in dup req cache as done */
99 	svc_clts_kgetres,	/* Get pointer to response buffer */
100 	svc_clts_kfreeres,	/* Destroy pre-serialized response header */
101 	svc_clts_kclone_destroy, /* Destroy a clone xprt */
102 	svc_clts_kstart,	/* Tell `ready-to-receive' to rpcmod */
103 	svc_clts_kclone_xprt,	/* transport specific clone xprt function */
104 	svc_clts_ktattrs	/* Transport specific attributes. */
105 };
106 
107 /*
108  * Transport private data.
109  * Kept in xprt->xp_p2buf.
110  */
111 struct udp_data {
112 	mblk_t	*ud_resp;			/* buffer for response */
113 	mblk_t	*ud_inmp;			/* mblk chain of request */
114 };
115 
116 #define	UD_MAXSIZE	8800
117 #define	UD_INITSIZE	2048
118 
119 /*
120  * Connectionless server statistics
121  */
122 static const struct rpc_clts_server {
123 	kstat_named_t	rscalls;
124 	kstat_named_t	rsbadcalls;
125 	kstat_named_t	rsnullrecv;
126 	kstat_named_t	rsbadlen;
127 	kstat_named_t	rsxdrcall;
128 	kstat_named_t	rsdupchecks;
129 	kstat_named_t	rsdupreqs;
130 } clts_rsstat_tmpl = {
131 	{ "calls",	KSTAT_DATA_UINT64 },
132 	{ "badcalls",	KSTAT_DATA_UINT64 },
133 	{ "nullrecv",	KSTAT_DATA_UINT64 },
134 	{ "badlen",	KSTAT_DATA_UINT64 },
135 	{ "xdrcall",	KSTAT_DATA_UINT64 },
136 	{ "dupchecks",	KSTAT_DATA_UINT64 },
137 	{ "dupreqs",	KSTAT_DATA_UINT64 }
138 };
139 
140 static uint_t clts_rsstat_ndata =
141 	sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
142 
143 #define	CLONE2STATS(clone_xprt)	\
144 	(struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
145 
146 #define	RSSTAT_INCR(stats, x)	\
147 	atomic_inc_64(&(stats)->x.value.ui64)
148 
149 /*
150  * Create a transport record.
151  * The transport record, output buffer, and private data structure
152  * are allocated.  The output buffer is serialized into using xdrmem.
153  * There is one transport record per user process which implements a
154  * set of services.
155  */
156 /* ARGSUSED */
157 int
158 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
159     SVCMASTERXPRT **nxprt)
160 {
161 	SVCMASTERXPRT *xprt;
162 	struct rpcstat *rpcstat;
163 
164 	if (nxprt == NULL)
165 		return (EINVAL);
166 
167 	rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
168 	ASSERT(rpcstat != NULL);
169 
170 	xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
171 	xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
172 	xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
173 	xprt->xp_ops = &svc_clts_op;
174 	xprt->xp_msg_size = tinfo->TSDU_size;
175 
176 	xprt->xp_rtaddr.buf = NULL;
177 	xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
178 	xprt->xp_rtaddr.len = 0;
179 
180 	*nxprt = xprt;
181 
182 	return (0);
183 }
184 
185 /*
186  * Destroy a transport record.
187  * Frees the space allocated for a transport record.
188  */
189 static void
190 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
191 {
192 	if (xprt->xp_netid)
193 		kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
194 	if (xprt->xp_addrmask.maxlen)
195 		kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
196 
197 	mutex_destroy(&xprt->xp_req_lock);
198 	mutex_destroy(&xprt->xp_thread_lock);
199 
200 	kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
201 	kmem_free(xprt, sizeof (SVCMASTERXPRT));
202 }
203 
204 /*
205  * Transport-type specific part of svc_xprt_cleanup().
206  * Frees the message buffer space allocated for a clone of a transport record
207  */
208 static void
209 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
210 {
211 	/* LINTED pointer alignment */
212 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
213 
214 	if (ud->ud_resp) {
215 		/*
216 		 * There should not be any left over results buffer.
217 		 */
218 		ASSERT(ud->ud_resp->b_cont == NULL);
219 
220 		/*
221 		 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
222 		 * saved.
223 		 */
224 		freeb(ud->ud_resp);
225 	}
226 	if (ud->ud_inmp)
227 		freemsg(ud->ud_inmp);
228 }
229 
230 /*
231  * svc_tli_kcreate() calls this function at the end to tell
232  * rpcmod that the transport is ready to receive requests.
233  */
234 /* ARGSUSED */
235 static void
236 svc_clts_kstart(SVCMASTERXPRT *xprt)
237 {
238 }
239 
240 static void
241 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
242 {
243 	struct udp_data *ud_src =
244 	    (struct udp_data *)src_xprt->xp_p2buf;
245 	struct udp_data *ud_dst =
246 	    (struct udp_data *)dst_xprt->xp_p2buf;
247 
248 	if (ud_src->ud_resp)
249 		ud_dst->ud_resp = dupb(ud_src->ud_resp);
250 
251 }
252 
253 static void
254 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
255 {
256 	*tattr = NULL;
257 
258 	switch (attrflag) {
259 	case SVC_TATTR_ADDRMASK:
260 		*tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
261 	}
262 }
263 
264 /*
265  * Receive rpc requests.
266  * Pulls a request in off the socket, checks if the packet is intact,
267  * and deserializes the call packet.
268  */
269 static bool_t
270 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
271 {
272 	/* LINTED pointer alignment */
273 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
274 	XDR *xdrs = &clone_xprt->xp_xdrin;
275 	struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
276 	union T_primitives *pptr;
277 	int hdrsz;
278 	cred_t *cr;
279 
280 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
281 	    "svc_clts_krecv_start:");
282 
283 	RSSTAT_INCR(stats, rscalls);
284 
285 	/*
286 	 * The incoming request should start with an M_PROTO message.
287 	 */
288 	if (mp->b_datap->db_type != M_PROTO) {
289 		goto bad;
290 	}
291 
292 	/*
293 	 * The incoming request should be an T_UNITDTA_IND.  There
294 	 * might be other messages coming up the stream, but we can
295 	 * ignore them.
296 	 */
297 	pptr = (union T_primitives *)mp->b_rptr;
298 	if (pptr->type != T_UNITDATA_IND) {
299 		goto bad;
300 	}
301 	/*
302 	 * Do some checking to make sure that the header at least looks okay.
303 	 */
304 	hdrsz = (int)(mp->b_wptr - mp->b_rptr);
305 	if (hdrsz < TUNITDATAINDSZ ||
306 	    hdrsz < (pptr->unitdata_ind.OPT_offset +
307 	    pptr->unitdata_ind.OPT_length) ||
308 	    hdrsz < (pptr->unitdata_ind.SRC_offset +
309 	    pptr->unitdata_ind.SRC_length)) {
310 		goto bad;
311 	}
312 
313 	/*
314 	 * Make sure that the transport provided a usable address.
315 	 */
316 	if (pptr->unitdata_ind.SRC_length <= 0) {
317 		goto bad;
318 	}
319 	/*
320 	 * Point the remote transport address in the service_transport
321 	 * handle at the address in the request.
322 	 */
323 	clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
324 	    pptr->unitdata_ind.SRC_offset;
325 	clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
326 
327 	/*
328 	 * Copy the local transport address in the service_transport
329 	 * handle at the address in the request. We will have only
330 	 * the local IP address in options.
331 	 */
332 	((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
333 	if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
334 		char *dstopt = (char *)mp->b_rptr +
335 		    pptr->unitdata_ind.OPT_offset;
336 		struct T_opthdr *toh = (struct T_opthdr *)dstopt;
337 
338 		if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
339 		    toh->name == IPV6_PKTINFO) {
340 			struct in6_pktinfo *pkti;
341 
342 			dstopt += sizeof (struct T_opthdr);
343 			pkti = (struct in6_pktinfo *)dstopt;
344 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
345 			    = pkti->ipi6_addr;
346 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
347 			    = AF_INET6;
348 		} else if (toh->level == IPPROTO_IP && toh->status == 0 &&
349 		    toh->name == IP_RECVDSTADDR) {
350 			dstopt += sizeof (struct T_opthdr);
351 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
352 			    = *(struct in_addr *)dstopt;
353 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
354 			    = AF_INET;
355 		}
356 	}
357 
358 	/*
359 	 * Save the first mblk which contains the T_unidata_ind in
360 	 * ud_resp.  It will be used to generate the T_unitdata_req
361 	 * during the reply.
362 	 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
363 	 * since we must pass any SCM_UCRED across in order for TX to
364 	 * work. We also make sure any cred_t is carried across.
365 	 */
366 	if (ud->ud_resp) {
367 		if (ud->ud_resp->b_cont != NULL) {
368 			cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
369 			    "b_cont %p", (void *)ud->ud_resp,
370 			    (void *)ud->ud_resp->b_cont);
371 		}
372 		freeb(ud->ud_resp);
373 	}
374 	/* Move any cred_t to the first mblk in the message */
375 	cr = msg_getcred(mp, NULL);
376 	if (cr != NULL)
377 		mblk_setcred(mp, cr, NOPID);
378 
379 	ud->ud_resp = mp;
380 	mp = mp->b_cont;
381 	ud->ud_resp->b_cont = NULL;
382 
383 	xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
384 
385 	TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
386 	    "xdr_callmsg_start:");
387 	if (! xdr_callmsg(xdrs, msg)) {
388 		XDR_DESTROY(xdrs);
389 		TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
390 		    "xdr_callmsg_end:(%S)", "bad");
391 		RSSTAT_INCR(stats, rsxdrcall);
392 		goto bad;
393 	}
394 	TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
395 	    "xdr_callmsg_end:(%S)", "good");
396 
397 	clone_xprt->xp_xid = msg->rm_xid;
398 	ud->ud_inmp = mp;
399 
400 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
401 	    "svc_clts_krecv_end:(%S)", "good");
402 	return (TRUE);
403 
404 bad:
405 	freemsg(mp);
406 	if (ud->ud_resp) {
407 		/*
408 		 * There should not be any left over results buffer.
409 		 */
410 		ASSERT(ud->ud_resp->b_cont == NULL);
411 		freeb(ud->ud_resp);
412 		ud->ud_resp = NULL;
413 	}
414 
415 	RSSTAT_INCR(stats, rsbadcalls);
416 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
417 	    "svc_clts_krecv_end:(%S)", "bad");
418 	return (FALSE);
419 }
420 
421 /*
422  * Send rpc reply.
423  * Serialize the reply packet into the output buffer then
424  * call t_ksndudata to send it.
425  */
426 static bool_t
427 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
428 {
429 	/* LINTED pointer alignment */
430 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
431 	XDR *xdrs = &clone_xprt->xp_xdrout;
432 	int stat = FALSE;
433 	mblk_t *mp;
434 	int msgsz;
435 	struct T_unitdata_req *udreq;
436 	xdrproc_t xdr_results;
437 	caddr_t xdr_location;
438 	bool_t has_args;
439 
440 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
441 	    "svc_clts_ksend_start:");
442 
443 	ASSERT(ud->ud_resp != NULL);
444 
445 	/*
446 	 * If there is a result procedure specified in the reply message,
447 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
448 	 * We need to make sure it won't be processed twice, so we null
449 	 * it for xdr_replymsg here.
450 	 */
451 	has_args = FALSE;
452 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
453 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
454 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
455 			has_args = TRUE;
456 			xdr_location = msg->acpted_rply.ar_results.where;
457 			msg->acpted_rply.ar_results.proc = xdr_void;
458 			msg->acpted_rply.ar_results.where = NULL;
459 		}
460 	}
461 
462 	if (ud->ud_resp->b_cont == NULL) {
463 		/*
464 		 * Allocate an initial mblk for the response data.
465 		 */
466 		while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
467 			if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
468 				TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
469 				    "svc_clts_ksend_end:(%S)", "strwaitbuf");
470 				return (FALSE);
471 			}
472 		}
473 
474 		/*
475 		 * Initialize the XDR encode stream.  Additional mblks
476 		 * will be allocated if necessary.  They will be UD_MAXSIZE
477 		 * sized.
478 		 */
479 		xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
480 
481 		/*
482 		 * Leave some space for protocol headers.
483 		 */
484 		(void) XDR_SETPOS(xdrs, 512);
485 		mp->b_rptr += 512;
486 
487 		msg->rm_xid = clone_xprt->xp_xid;
488 
489 		ud->ud_resp->b_cont = mp;
490 
491 		TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
492 		    "xdr_replymsg_start:");
493 		if (!(xdr_replymsg(xdrs, msg) &&
494 		    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
495 		    xdr_results, xdr_location)))) {
496 			XDR_DESTROY(xdrs);
497 			TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
498 			    "xdr_replymsg_end:(%S)", "bad");
499 			RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
500 			goto out;
501 		}
502 		TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
503 		    "xdr_replymsg_end:(%S)", "good");
504 
505 	} else if (!(xdr_replymsg_body(xdrs, msg) &&
506 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
507 	    xdr_results, xdr_location)))) {
508 		XDR_DESTROY(xdrs);
509 		RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
510 		goto out;
511 	}
512 
513 	XDR_DESTROY(xdrs);
514 
515 	msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
516 
517 	if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
518 	    msgsz > clone_xprt->xp_msg_size)) {
519 #ifdef	DEBUG
520 		cmn_err(CE_NOTE,
521 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
522 		    msgsz, clone_xprt->xp_msg_size);
523 #endif
524 		goto out;
525 	}
526 
527 	/*
528 	 * Construct the T_unitdata_req.  We take advantage of the fact that
529 	 * T_unitdata_ind looks just like T_unitdata_req, except for the
530 	 * primitive type.  Reusing it means we preserve the SCM_UCRED, and
531 	 * we must preserve it for TX to work.
532 	 *
533 	 * This has the side effect that we can also pass certain receive-side
534 	 * options like IPV6_PKTINFO back down the send side.  This implies
535 	 * that we can not ASSERT on a non-NULL db_credp when we have send-side
536 	 * options in UDP.
537 	 */
538 	ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
539 	udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
540 	ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
541 	udreq->PRIM_type = T_UNITDATA_REQ;
542 
543 	/*
544 	 * If the local IPv4 transport address is known use it as a source
545 	 * address for the outgoing UDP packet.
546 	 */
547 	if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
548 		struct T_opthdr *opthdr;
549 		in_pktinfo_t *pktinfo;
550 		size_t size;
551 
552 		if (udreq->DEST_length == 0)
553 			udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
554 		else
555 			udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
556 			    udreq->DEST_length);
557 
558 		udreq->OPT_length = sizeof (struct T_opthdr) +
559 		    sizeof (in_pktinfo_t);
560 
561 		size = udreq->OPT_length + udreq->OPT_offset;
562 
563 		/* make sure we have enough space for the option data */
564 		mp = reallocb(ud->ud_resp, size, 1);
565 		if (mp == NULL)
566 			goto out;
567 		ud->ud_resp = mp;
568 		udreq = (struct T_unitdata_req *)mp->b_rptr;
569 
570 		/* set desired option header */
571 		opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
572 		opthdr->len = udreq->OPT_length;
573 		opthdr->level = IPPROTO_IP;
574 		opthdr->name = IP_PKTINFO;
575 
576 		/*
577 		 * 1. set source IP of outbound packet
578 		 * 2. value '0' for index means IP layer uses this as source
579 		 *    address
580 		 */
581 		pktinfo = (in_pktinfo_t *)(opthdr + 1);
582 		(void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
583 		pktinfo->ipi_spec_dst.s_addr =
584 		    ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
585 		pktinfo->ipi_ifindex = 0;
586 
587 		/* adjust the end of active data */
588 		mp->b_wptr = mp->b_rptr + size;
589 	}
590 
591 	put(clone_xprt->xp_wq, ud->ud_resp);
592 	stat = TRUE;
593 	ud->ud_resp = NULL;
594 
595 out:
596 	if (stat == FALSE) {
597 		freemsg(ud->ud_resp);
598 		ud->ud_resp = NULL;
599 	}
600 
601 	/*
602 	 * This is completely disgusting.  If public is set it is
603 	 * a pointer to a structure whose first field is the address
604 	 * of the function to free that structure and any related
605 	 * stuff.  (see rrokfree in nfs_xdr.c).
606 	 */
607 	if (xdrs->x_public) {
608 		/* LINTED pointer alignment */
609 		(**((int (**)())xdrs->x_public))(xdrs->x_public);
610 	}
611 
612 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
613 	    "svc_clts_ksend_end:(%S)", "done");
614 	return (stat);
615 }
616 
617 /*
618  * Deserialize arguments.
619  */
620 static bool_t
621 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
622     caddr_t args_ptr)
623 {
624 
625 	/* LINTED pointer alignment */
626 	return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
627 	    xdr_args, args_ptr));
628 
629 }
630 
631 static bool_t
632 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
633     caddr_t args_ptr)
634 {
635 	/* LINTED pointer alignment */
636 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
637 	XDR *xdrs = &clone_xprt->xp_xdrin;
638 	bool_t retval;
639 
640 	if (args_ptr) {
641 		xdrs->x_op = XDR_FREE;
642 		retval = (*xdr_args)(xdrs, args_ptr);
643 	} else
644 		retval = TRUE;
645 
646 	XDR_DESTROY(xdrs);
647 
648 	if (ud->ud_inmp) {
649 		freemsg(ud->ud_inmp);
650 		ud->ud_inmp = NULL;
651 	}
652 
653 	return (retval);
654 }
655 
656 static int32_t *
657 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
658 {
659 	/* LINTED pointer alignment */
660 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
661 	XDR *xdrs = &clone_xprt->xp_xdrout;
662 	mblk_t *mp;
663 	int32_t *buf;
664 	struct rpc_msg rply;
665 
666 	/*
667 	 * Allocate an initial mblk for the response data.
668 	 */
669 	while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
670 		if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
671 			return (NULL);
672 		}
673 	}
674 
675 	mp->b_cont = NULL;
676 
677 	/*
678 	 * Initialize the XDR encode stream.  Additional mblks
679 	 * will be allocated if necessary.  They will be UD_MAXSIZE
680 	 * sized.
681 	 */
682 	xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
683 
684 	/*
685 	 * Leave some space for protocol headers.
686 	 */
687 	(void) XDR_SETPOS(xdrs, 512);
688 	mp->b_rptr += 512;
689 
690 	/*
691 	 * Assume a successful RPC since most of them are.
692 	 */
693 	rply.rm_xid = clone_xprt->xp_xid;
694 	rply.rm_direction = REPLY;
695 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
696 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
697 	rply.acpted_rply.ar_stat = SUCCESS;
698 
699 	if (!xdr_replymsg_hdr(xdrs, &rply)) {
700 		XDR_DESTROY(xdrs);
701 		freeb(mp);
702 		return (NULL);
703 	}
704 
705 	buf = XDR_INLINE(xdrs, size);
706 
707 	if (buf == NULL) {
708 		XDR_DESTROY(xdrs);
709 		freeb(mp);
710 	} else {
711 		ud->ud_resp->b_cont = mp;
712 	}
713 
714 	return (buf);
715 }
716 
717 static void
718 svc_clts_kfreeres(SVCXPRT *clone_xprt)
719 {
720 	/* LINTED pointer alignment */
721 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
722 
723 	if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
724 		return;
725 
726 	XDR_DESTROY(&clone_xprt->xp_xdrout);
727 
728 	/*
729 	 * SVC_FREERES() is called whenever the server decides not to
730 	 * send normal reply. Thus, we expect only one mblk to be allocated,
731 	 * because we have not attempted any XDR encoding.
732 	 * If we do any XDR encoding and we get an error, then SVC_REPLY()
733 	 * will freemsg(ud->ud_resp);
734 	 */
735 	ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
736 	freeb(ud->ud_resp->b_cont);
737 	ud->ud_resp->b_cont = NULL;
738 }
739 
740 /*
741  * the dup cacheing routines below provide a cache of non-failure
742  * transaction id's.  rpc service routines can use this to detect
743  * retransmissions and re-send a non-failure response.
744  */
745 
746 /*
747  * MAXDUPREQS is the number of cached items.  It should be adjusted
748  * to the service load so that there is likely to be a response entry
749  * when the first retransmission comes in.
750  */
751 #define	MAXDUPREQS	8192
752 
753 /*
754  * This should be appropriately scaled to MAXDUPREQS.  To produce as less as
755  * possible collisions it is suggested to set this to a prime.
756  */
757 #define	DRHASHSZ	2053
758 
759 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
760 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
761 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
762 
763 static int	ndupreqs = 0;
764 int	maxdupreqs = MAXDUPREQS;
765 static kmutex_t dupreq_lock;
766 static struct dupreq *drhashtbl[DRHASHSZ];
767 static int	drhashstat[DRHASHSZ];
768 
769 static void unhash(struct dupreq *);
770 
771 /*
772  * drmru points to the head of a circular linked list in lru order.
773  * drmru->dr_next == drlru
774  */
775 struct dupreq *drmru;
776 
777 /*
778  * PSARC 2003/523 Contract Private Interface
779  * svc_clts_kdup
780  * Changes must be reviewed by Solaris File Sharing
781  * Changes must be communicated to contract-2003-523@sun.com
782  *
783  * svc_clts_kdup searches the request cache and returns 0 if the
784  * request is not found in the cache.  If it is found, then it
785  * returns the state of the request (in progress or done) and
786  * the status or attributes that were part of the original reply.
787  *
788  * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
789  * value of the response. In that case, also return in *dupcachedp
790  * whether the response free routine is cached in the dupreq - in which case
791  * the caller should not be freeing it, because it will be done later
792  * in the svc_clts_kdup code when the dupreq is reused.
793  */
794 static int
795 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
796     bool_t *dupcachedp)
797 {
798 	struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
799 	struct dupreq *dr;
800 	uint32_t xid;
801 	uint32_t drhash;
802 	int status;
803 
804 	xid = REQTOXID(req);
805 	mutex_enter(&dupreq_lock);
806 	RSSTAT_INCR(stats, rsdupchecks);
807 	/*
808 	 * Check to see whether an entry already exists in the cache.
809 	 */
810 	dr = drhashtbl[XIDHASH(xid)];
811 	while (dr != NULL) {
812 		if (dr->dr_xid == xid &&
813 		    dr->dr_proc == req->rq_proc &&
814 		    dr->dr_prog == req->rq_prog &&
815 		    dr->dr_vers == req->rq_vers &&
816 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
817 		    bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
818 		    dr->dr_addr.len) == 0) {
819 			status = dr->dr_status;
820 			if (status == DUP_DONE) {
821 				bcopy(dr->dr_resp.buf, res, size);
822 				if (dupcachedp != NULL)
823 					*dupcachedp = (dr->dr_resfree != NULL);
824 			} else {
825 				dr->dr_status = DUP_INPROGRESS;
826 				*drpp = dr;
827 			}
828 			RSSTAT_INCR(stats, rsdupreqs);
829 			mutex_exit(&dupreq_lock);
830 			return (status);
831 		}
832 		dr = dr->dr_chain;
833 	}
834 
835 	/*
836 	 * There wasn't an entry, either allocate a new one or recycle
837 	 * an old one.
838 	 */
839 	if (ndupreqs < maxdupreqs) {
840 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
841 		if (dr == NULL) {
842 			mutex_exit(&dupreq_lock);
843 			return (DUP_ERROR);
844 		}
845 		dr->dr_resp.buf = NULL;
846 		dr->dr_resp.maxlen = 0;
847 		dr->dr_addr.buf = NULL;
848 		dr->dr_addr.maxlen = 0;
849 		if (drmru) {
850 			dr->dr_next = drmru->dr_next;
851 			drmru->dr_next = dr;
852 		} else {
853 			dr->dr_next = dr;
854 		}
855 		ndupreqs++;
856 	} else {
857 		dr = drmru->dr_next;
858 		while (dr->dr_status == DUP_INPROGRESS) {
859 			dr = dr->dr_next;
860 			if (dr == drmru->dr_next) {
861 				cmn_err(CE_WARN, "svc_clts_kdup no slots free");
862 				mutex_exit(&dupreq_lock);
863 				return (DUP_ERROR);
864 			}
865 		}
866 		unhash(dr);
867 		if (dr->dr_resfree) {
868 			(*dr->dr_resfree)(dr->dr_resp.buf);
869 		}
870 	}
871 	dr->dr_resfree = NULL;
872 	drmru = dr;
873 
874 	dr->dr_xid = REQTOXID(req);
875 	dr->dr_prog = req->rq_prog;
876 	dr->dr_vers = req->rq_vers;
877 	dr->dr_proc = req->rq_proc;
878 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
879 		if (dr->dr_addr.buf != NULL)
880 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
881 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
882 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
883 		    KM_NOSLEEP);
884 		if (dr->dr_addr.buf == NULL) {
885 			dr->dr_addr.maxlen = 0;
886 			dr->dr_status = DUP_DROP;
887 			mutex_exit(&dupreq_lock);
888 			return (DUP_ERROR);
889 		}
890 	}
891 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
892 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
893 	if (dr->dr_resp.maxlen < size) {
894 		if (dr->dr_resp.buf != NULL)
895 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
896 		dr->dr_resp.maxlen = (unsigned int)size;
897 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
898 		if (dr->dr_resp.buf == NULL) {
899 			dr->dr_resp.maxlen = 0;
900 			dr->dr_status = DUP_DROP;
901 			mutex_exit(&dupreq_lock);
902 			return (DUP_ERROR);
903 		}
904 	}
905 	dr->dr_status = DUP_INPROGRESS;
906 
907 	drhash = (uint32_t)DRHASH(dr);
908 	dr->dr_chain = drhashtbl[drhash];
909 	drhashtbl[drhash] = dr;
910 	drhashstat[drhash]++;
911 	mutex_exit(&dupreq_lock);
912 	*drpp = dr;
913 	return (DUP_NEW);
914 }
915 
916 /*
917  * PSARC 2003/523 Contract Private Interface
918  * svc_clts_kdupdone
919  * Changes must be reviewed by Solaris File Sharing
920  * Changes must be communicated to contract-2003-523@sun.com
921  *
922  * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
923  * and stores the response.
924  */
925 static void
926 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
927     int size, int status)
928 {
929 
930 	ASSERT(dr->dr_resfree == NULL);
931 	if (status == DUP_DONE) {
932 		bcopy(res, dr->dr_resp.buf, size);
933 		dr->dr_resfree = dis_resfree;
934 	}
935 	dr->dr_status = status;
936 }
937 
938 /*
939  * This routine expects that the mutex, dupreq_lock, is already held.
940  */
941 static void
942 unhash(struct dupreq *dr)
943 {
944 	struct dupreq *drt;
945 	struct dupreq *drtprev = NULL;
946 	uint32_t drhash;
947 
948 	ASSERT(MUTEX_HELD(&dupreq_lock));
949 
950 	drhash = (uint32_t)DRHASH(dr);
951 	drt = drhashtbl[drhash];
952 	while (drt != NULL) {
953 		if (drt == dr) {
954 			drhashstat[drhash]--;
955 			if (drtprev == NULL) {
956 				drhashtbl[drhash] = drt->dr_chain;
957 			} else {
958 				drtprev->dr_chain = drt->dr_chain;
959 			}
960 			return;
961 		}
962 		drtprev = drt;
963 		drt = drt->dr_chain;
964 	}
965 }
966 
967 void
968 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
969 {
970 	kstat_t *ksp;
971 	kstat_named_t *knp;
972 
973 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
974 	    (const kstat_named_t *)&clts_rsstat_tmpl,
975 	    sizeof (clts_rsstat_tmpl));
976 	/*
977 	 * Backwards compatibility for old kstat clients
978 	 */
979 	ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
980 	    KSTAT_TYPE_NAMED, clts_rsstat_ndata,
981 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
982 	if (ksp) {
983 		ksp->ks_data = knp;
984 		kstat_install(ksp);
985 	}
986 	*statsp = (struct rpc_clts_server *)knp;
987 }
988 
989 void
990 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
991 {
992 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
993 	kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
994 	kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
995 }
996 
997 void
998 svc_clts_init()
999 {
1000 	/*
1001 	 * Check to make sure that the clts private data will fit into
1002 	 * the stack buffer allocated by svc_run.  The compiler should
1003 	 * remove this check, but it's a safety net if the udp_data
1004 	 * structure ever changes.
1005 	 */
1006 	/*CONSTANTCONDITION*/
1007 	ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
1008 
1009 	mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
1010 }
1011