xref: /illumos-gate/usr/src/uts/common/rpc/svc_clts.c (revision 4a3b05278938491ea95d557939c130d3eb17cfd4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  * Copyright 2012 Marcel Telka <marcel@telka.sk>
27  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
28  */
29 
30 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
31 /*	All Rights Reserved	*/
32 
33 /*
34  * Portions of this source code were derived from Berkeley 4.3 BSD
35  * under license from the Regents of the University of California.
36  */
37 
38 /*
39  * svc_clts.c
40  * Server side for RPC in the kernel.
41  *
42  */
43 
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/sysmacros.h>
47 #include <sys/file.h>
48 #include <sys/stream.h>
49 #include <sys/strsun.h>
50 #include <sys/strsubr.h>
51 #include <sys/tihdr.h>
52 #include <sys/tiuser.h>
53 #include <sys/t_kuser.h>
54 #include <sys/fcntl.h>
55 #include <sys/errno.h>
56 #include <sys/kmem.h>
57 #include <sys/systm.h>
58 #include <sys/cmn_err.h>
59 #include <sys/kstat.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
62 
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 #include <rpc/rpc_msg.h>
68 #include <rpc/svc.h>
69 #include <inet/ip.h>
70 
71 /*
72  * Routines exported through ops vector.
73  */
74 static bool_t		svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
75 static bool_t		svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
76 static bool_t		svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
77 static bool_t		svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
78 static void		svc_clts_kdestroy(SVCMASTERXPRT *);
79 static int		svc_clts_kdup(struct svc_req *, caddr_t, int,
80 				struct dupreq **, bool_t *);
81 static void		svc_clts_kdupdone(struct dupreq *, caddr_t,
82 				void (*)(), int, int);
83 static int32_t		*svc_clts_kgetres(SVCXPRT *, int);
84 static void		svc_clts_kclone_destroy(SVCXPRT *);
85 static void		svc_clts_kfreeres(SVCXPRT *);
86 static void		svc_clts_kstart(SVCMASTERXPRT *);
87 static void		svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
88 static void		svc_clts_ktattrs(SVCXPRT *, int, void **);
89 
90 /*
91  * Server transport operations vector.
92  */
93 struct svc_ops svc_clts_op = {
94 	svc_clts_krecv,		/* Get requests */
95 	svc_clts_kgetargs,	/* Deserialize arguments */
96 	svc_clts_ksend,		/* Send reply */
97 	svc_clts_kfreeargs,	/* Free argument data space */
98 	svc_clts_kdestroy,	/* Destroy transport handle */
99 	svc_clts_kdup,		/* Check entry in dup req cache */
100 	svc_clts_kdupdone,	/* Mark entry in dup req cache as done */
101 	svc_clts_kgetres,	/* Get pointer to response buffer */
102 	svc_clts_kfreeres,	/* Destroy pre-serialized response header */
103 	svc_clts_kclone_destroy, /* Destroy a clone xprt */
104 	svc_clts_kstart,	/* Tell `ready-to-receive' to rpcmod */
105 	svc_clts_kclone_xprt,	/* transport specific clone xprt function */
106 	svc_clts_ktattrs,	/* Transport specific attributes */
107 	rpcmod_hold,		/* Increment transport reference count */
108 	rpcmod_release		/* Decrement transport reference count */
109 };
110 
111 /*
112  * Transport private data.
113  * Kept in xprt->xp_p2buf.
114  */
115 struct udp_data {
116 	mblk_t	*ud_resp;			/* buffer for response */
117 	mblk_t	*ud_inmp;			/* mblk chain of request */
118 };
119 
120 #define	UD_MAXSIZE	8800
121 #define	UD_INITSIZE	2048
122 
123 /*
124  * Connectionless server statistics
125  */
126 static const struct rpc_clts_server {
127 	kstat_named_t	rscalls;
128 	kstat_named_t	rsbadcalls;
129 	kstat_named_t	rsnullrecv;
130 	kstat_named_t	rsbadlen;
131 	kstat_named_t	rsxdrcall;
132 	kstat_named_t	rsdupchecks;
133 	kstat_named_t	rsdupreqs;
134 } clts_rsstat_tmpl = {
135 	{ "calls",	KSTAT_DATA_UINT64 },
136 	{ "badcalls",	KSTAT_DATA_UINT64 },
137 	{ "nullrecv",	KSTAT_DATA_UINT64 },
138 	{ "badlen",	KSTAT_DATA_UINT64 },
139 	{ "xdrcall",	KSTAT_DATA_UINT64 },
140 	{ "dupchecks",	KSTAT_DATA_UINT64 },
141 	{ "dupreqs",	KSTAT_DATA_UINT64 }
142 };
143 
144 static uint_t clts_rsstat_ndata =
145 	sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
146 
147 #define	CLONE2STATS(clone_xprt)	\
148 	(struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
149 
150 #define	RSSTAT_INCR(stats, x)	\
151 	atomic_inc_64(&(stats)->x.value.ui64)
152 
153 /*
154  * Create a transport record.
155  * The transport record, output buffer, and private data structure
156  * are allocated.  The output buffer is serialized into using xdrmem.
157  * There is one transport record per user process which implements a
158  * set of services.
159  */
160 /* ARGSUSED */
161 int
svc_clts_kcreate(file_t * fp,uint_t sendsz,struct T_info_ack * tinfo,SVCMASTERXPRT ** nxprt)162 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
163     SVCMASTERXPRT **nxprt)
164 {
165 	SVCMASTERXPRT *xprt;
166 	struct rpcstat *rpcstat;
167 
168 	if (nxprt == NULL)
169 		return (EINVAL);
170 
171 	rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
172 	ASSERT(rpcstat != NULL);
173 
174 	xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
175 	xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
176 	xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
177 	xprt->xp_ops = &svc_clts_op;
178 	xprt->xp_msg_size = tinfo->TSDU_size;
179 
180 	xprt->xp_rtaddr.buf = NULL;
181 	xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
182 	xprt->xp_rtaddr.len = 0;
183 
184 	*nxprt = xprt;
185 
186 	return (0);
187 }
188 
189 /*
190  * Destroy a transport record.
191  * Frees the space allocated for a transport record.
192  */
193 static void
svc_clts_kdestroy(SVCMASTERXPRT * xprt)194 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
195 {
196 	if (xprt->xp_netid)
197 		kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
198 	if (xprt->xp_addrmask.maxlen)
199 		kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
200 
201 	mutex_destroy(&xprt->xp_req_lock);
202 	mutex_destroy(&xprt->xp_thread_lock);
203 
204 	kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
205 	kmem_free(xprt, sizeof (SVCMASTERXPRT));
206 }
207 
208 /*
209  * Transport-type specific part of svc_xprt_cleanup().
210  * Frees the message buffer space allocated for a clone of a transport record
211  */
212 static void
svc_clts_kclone_destroy(SVCXPRT * clone_xprt)213 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
214 {
215 	/* LINTED pointer alignment */
216 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
217 
218 	if (ud->ud_resp) {
219 		/*
220 		 * There should not be any left over results buffer.
221 		 */
222 		ASSERT(ud->ud_resp->b_cont == NULL);
223 
224 		/*
225 		 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
226 		 * saved.
227 		 */
228 		freeb(ud->ud_resp);
229 	}
230 	if (ud->ud_inmp)
231 		freemsg(ud->ud_inmp);
232 }
233 
234 /*
235  * svc_tli_kcreate() calls this function at the end to tell
236  * rpcmod that the transport is ready to receive requests.
237  */
238 /* ARGSUSED */
239 static void
svc_clts_kstart(SVCMASTERXPRT * xprt)240 svc_clts_kstart(SVCMASTERXPRT *xprt)
241 {
242 }
243 
244 static void
svc_clts_kclone_xprt(SVCXPRT * src_xprt,SVCXPRT * dst_xprt)245 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
246 {
247 	struct udp_data *ud_src =
248 	    (struct udp_data *)src_xprt->xp_p2buf;
249 	struct udp_data *ud_dst =
250 	    (struct udp_data *)dst_xprt->xp_p2buf;
251 
252 	if (ud_src->ud_resp)
253 		ud_dst->ud_resp = dupb(ud_src->ud_resp);
254 
255 }
256 
257 static void
svc_clts_ktattrs(SVCXPRT * clone_xprt,int attrflag,void ** tattr)258 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
259 {
260 	*tattr = NULL;
261 
262 	switch (attrflag) {
263 	case SVC_TATTR_ADDRMASK:
264 		*tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
265 	}
266 }
267 
268 /*
269  * Receive rpc requests.
270  * Pulls a request in off the socket, checks if the packet is intact,
271  * and deserializes the call packet.
272  */
273 static bool_t
svc_clts_krecv(SVCXPRT * clone_xprt,mblk_t * mp,struct rpc_msg * msg)274 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
275 {
276 	/* LINTED pointer alignment */
277 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
278 	XDR *xdrs = &clone_xprt->xp_xdrin;
279 	struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
280 	union T_primitives *pptr;
281 	int hdrsz;
282 	cred_t *cr;
283 
284 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
285 	    "svc_clts_krecv_start:");
286 
287 	RSSTAT_INCR(stats, rscalls);
288 
289 	/*
290 	 * The incoming request should start with an M_PROTO message.
291 	 */
292 	if (mp->b_datap->db_type != M_PROTO) {
293 		goto bad;
294 	}
295 
296 	/*
297 	 * The incoming request should be an T_UNITDTA_IND.  There
298 	 * might be other messages coming up the stream, but we can
299 	 * ignore them.
300 	 */
301 	pptr = (union T_primitives *)mp->b_rptr;
302 	if (pptr->type != T_UNITDATA_IND) {
303 		goto bad;
304 	}
305 	/*
306 	 * Do some checking to make sure that the header at least looks okay.
307 	 */
308 	hdrsz = (int)(mp->b_wptr - mp->b_rptr);
309 	if (hdrsz < TUNITDATAINDSZ ||
310 	    hdrsz < (pptr->unitdata_ind.OPT_offset +
311 	    pptr->unitdata_ind.OPT_length) ||
312 	    hdrsz < (pptr->unitdata_ind.SRC_offset +
313 	    pptr->unitdata_ind.SRC_length)) {
314 		goto bad;
315 	}
316 
317 	/*
318 	 * Make sure that the transport provided a usable address.
319 	 */
320 	if (pptr->unitdata_ind.SRC_length <= 0) {
321 		goto bad;
322 	}
323 	/*
324 	 * Point the remote transport address in the service_transport
325 	 * handle at the address in the request.
326 	 */
327 	clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
328 	    pptr->unitdata_ind.SRC_offset;
329 	clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
330 
331 	/*
332 	 * Copy the local transport address in the service_transport
333 	 * handle at the address in the request. We will have only
334 	 * the local IP address in options.
335 	 */
336 	((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
337 	if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
338 		char *dstopt = (char *)mp->b_rptr +
339 		    pptr->unitdata_ind.OPT_offset;
340 		struct T_opthdr *toh = (struct T_opthdr *)dstopt;
341 
342 		if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
343 		    toh->name == IPV6_PKTINFO) {
344 			struct in6_pktinfo *pkti;
345 
346 			dstopt += sizeof (struct T_opthdr);
347 			pkti = (struct in6_pktinfo *)dstopt;
348 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
349 			    = pkti->ipi6_addr;
350 			((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
351 			    = AF_INET6;
352 		} else if (toh->level == IPPROTO_IP && toh->status == 0 &&
353 		    toh->name == IP_RECVDSTADDR) {
354 			dstopt += sizeof (struct T_opthdr);
355 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
356 			    = *(struct in_addr *)dstopt;
357 			((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
358 			    = AF_INET;
359 		}
360 	}
361 
362 	/*
363 	 * Save the first mblk which contains the T_unidata_ind in
364 	 * ud_resp.  It will be used to generate the T_unitdata_req
365 	 * during the reply.
366 	 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
367 	 * since we must pass any SCM_UCRED across in order for TX to
368 	 * work. We also make sure any cred_t is carried across.
369 	 */
370 	if (ud->ud_resp) {
371 		if (ud->ud_resp->b_cont != NULL) {
372 			cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
373 			    "b_cont %p", (void *)ud->ud_resp,
374 			    (void *)ud->ud_resp->b_cont);
375 		}
376 		freeb(ud->ud_resp);
377 	}
378 	/* Move any cred_t to the first mblk in the message */
379 	cr = msg_getcred(mp, NULL);
380 	if (cr != NULL)
381 		mblk_setcred(mp, cr, NOPID);
382 
383 	ud->ud_resp = mp;
384 	mp = mp->b_cont;
385 	ud->ud_resp->b_cont = NULL;
386 
387 	xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
388 
389 	TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
390 	    "xdr_callmsg_start:");
391 	if (! xdr_callmsg(xdrs, msg)) {
392 		XDR_DESTROY(xdrs);
393 		TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
394 		    "xdr_callmsg_end:(%S)", "bad");
395 		RSSTAT_INCR(stats, rsxdrcall);
396 		goto bad;
397 	}
398 	TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
399 	    "xdr_callmsg_end:(%S)", "good");
400 
401 	clone_xprt->xp_xid = msg->rm_xid;
402 	ud->ud_inmp = mp;
403 
404 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
405 	    "svc_clts_krecv_end:(%S)", "good");
406 	return (TRUE);
407 
408 bad:
409 	freemsg(mp);
410 	if (ud->ud_resp) {
411 		/*
412 		 * There should not be any left over results buffer.
413 		 */
414 		ASSERT(ud->ud_resp->b_cont == NULL);
415 		freeb(ud->ud_resp);
416 		ud->ud_resp = NULL;
417 	}
418 
419 	RSSTAT_INCR(stats, rsbadcalls);
420 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
421 	    "svc_clts_krecv_end:(%S)", "bad");
422 	return (FALSE);
423 }
424 
425 /*
426  * Send rpc reply.
427  * Serialize the reply packet into the output buffer then
428  * call t_ksndudata to send it.
429  */
430 static bool_t
svc_clts_ksend(SVCXPRT * clone_xprt,struct rpc_msg * msg)431 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
432 {
433 	/* LINTED pointer alignment */
434 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
435 	XDR *xdrs = &clone_xprt->xp_xdrout;
436 	int stat = FALSE;
437 	mblk_t *mp;
438 	int msgsz;
439 	struct T_unitdata_req *udreq;
440 	xdrproc_t xdr_results;
441 	caddr_t xdr_location;
442 	bool_t has_args;
443 
444 	TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
445 	    "svc_clts_ksend_start:");
446 
447 	ASSERT(ud->ud_resp != NULL);
448 
449 	/*
450 	 * If there is a result procedure specified in the reply message,
451 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
452 	 * We need to make sure it won't be processed twice, so we null
453 	 * it for xdr_replymsg here.
454 	 */
455 	has_args = FALSE;
456 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
457 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
458 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
459 			has_args = TRUE;
460 			xdr_location = msg->acpted_rply.ar_results.where;
461 			msg->acpted_rply.ar_results.proc = xdr_void;
462 			msg->acpted_rply.ar_results.where = NULL;
463 		}
464 	}
465 
466 	if (ud->ud_resp->b_cont == NULL) {
467 		/*
468 		 * Allocate an initial mblk for the response data.
469 		 */
470 		while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
471 			if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
472 				TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
473 				    "svc_clts_ksend_end:(%S)", "strwaitbuf");
474 				return (FALSE);
475 			}
476 		}
477 
478 		/*
479 		 * Initialize the XDR encode stream.  Additional mblks
480 		 * will be allocated if necessary.  They will be UD_MAXSIZE
481 		 * sized.
482 		 */
483 		xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
484 
485 		/*
486 		 * Leave some space for protocol headers.
487 		 */
488 		(void) XDR_SETPOS(xdrs, 512);
489 		mp->b_rptr += 512;
490 
491 		msg->rm_xid = clone_xprt->xp_xid;
492 
493 		ud->ud_resp->b_cont = mp;
494 
495 		TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
496 		    "xdr_replymsg_start:");
497 		if (!(xdr_replymsg(xdrs, msg) &&
498 		    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
499 		    xdr_results, xdr_location)))) {
500 			XDR_DESTROY(xdrs);
501 			TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
502 			    "xdr_replymsg_end:(%S)", "bad");
503 			RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
504 			goto out;
505 		}
506 		TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
507 		    "xdr_replymsg_end:(%S)", "good");
508 
509 	} else if (!(xdr_replymsg_body(xdrs, msg) &&
510 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
511 	    xdr_results, xdr_location)))) {
512 		XDR_DESTROY(xdrs);
513 		RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
514 		goto out;
515 	}
516 
517 	XDR_DESTROY(xdrs);
518 
519 	msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
520 
521 	if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
522 	    msgsz > clone_xprt->xp_msg_size)) {
523 #ifdef	DEBUG
524 		cmn_err(CE_NOTE,
525 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
526 		    msgsz, clone_xprt->xp_msg_size);
527 #endif
528 		goto out;
529 	}
530 
531 	/*
532 	 * Construct the T_unitdata_req.  We take advantage of the fact that
533 	 * T_unitdata_ind looks just like T_unitdata_req, except for the
534 	 * primitive type.  Reusing it means we preserve the SCM_UCRED, and
535 	 * we must preserve it for TX to work.
536 	 *
537 	 * This has the side effect that we can also pass certain receive-side
538 	 * options like IPV6_PKTINFO back down the send side.  This implies
539 	 * that we can not ASSERT on a non-NULL db_credp when we have send-side
540 	 * options in UDP.
541 	 */
542 	ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
543 	udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
544 	ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
545 	udreq->PRIM_type = T_UNITDATA_REQ;
546 
547 	/*
548 	 * If the local IPv4 transport address is known use it as a source
549 	 * address for the outgoing UDP packet.
550 	 */
551 	if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
552 		struct T_opthdr *opthdr;
553 		in_pktinfo_t *pktinfo;
554 		size_t size;
555 
556 		if (udreq->DEST_length == 0)
557 			udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
558 		else
559 			udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
560 			    udreq->DEST_length);
561 
562 		udreq->OPT_length = sizeof (struct T_opthdr) +
563 		    sizeof (in_pktinfo_t);
564 
565 		size = udreq->OPT_length + udreq->OPT_offset;
566 
567 		/* make sure we have enough space for the option data */
568 		mp = reallocb(ud->ud_resp, size, 1);
569 		if (mp == NULL)
570 			goto out;
571 		ud->ud_resp = mp;
572 		udreq = (struct T_unitdata_req *)mp->b_rptr;
573 
574 		/* set desired option header */
575 		opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
576 		opthdr->len = udreq->OPT_length;
577 		opthdr->level = IPPROTO_IP;
578 		opthdr->name = IP_PKTINFO;
579 
580 		/*
581 		 * 1. set source IP of outbound packet
582 		 * 2. value '0' for index means IP layer uses this as source
583 		 *    address
584 		 */
585 		pktinfo = (in_pktinfo_t *)(opthdr + 1);
586 		(void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
587 		pktinfo->ipi_spec_dst.s_addr =
588 		    ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
589 		pktinfo->ipi_ifindex = 0;
590 
591 		/* adjust the end of active data */
592 		mp->b_wptr = mp->b_rptr + size;
593 	}
594 
595 	put(clone_xprt->xp_wq, ud->ud_resp);
596 	stat = TRUE;
597 	ud->ud_resp = NULL;
598 
599 out:
600 	if (stat == FALSE) {
601 		freemsg(ud->ud_resp);
602 		ud->ud_resp = NULL;
603 	}
604 
605 	/*
606 	 * This is completely disgusting.  If public is set it is
607 	 * a pointer to a structure whose first field is the address
608 	 * of the function to free that structure and any related
609 	 * stuff.  (see rrokfree in nfs_xdr.c).
610 	 */
611 	if (xdrs->x_public) {
612 		/* LINTED pointer alignment */
613 		(**((int (**)())xdrs->x_public))(xdrs->x_public);
614 	}
615 
616 	TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
617 	    "svc_clts_ksend_end:(%S)", "done");
618 	return (stat);
619 }
620 
621 /*
622  * Deserialize arguments.
623  */
624 static bool_t
svc_clts_kgetargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)625 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
626     caddr_t args_ptr)
627 {
628 
629 	/* LINTED pointer alignment */
630 	return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
631 	    xdr_args, args_ptr));
632 
633 }
634 
635 static bool_t
svc_clts_kfreeargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)636 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
637     caddr_t args_ptr)
638 {
639 	/* LINTED pointer alignment */
640 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
641 	XDR *xdrs = &clone_xprt->xp_xdrin;
642 	bool_t retval;
643 
644 	if (args_ptr) {
645 		xdrs->x_op = XDR_FREE;
646 		retval = (*xdr_args)(xdrs, args_ptr);
647 	} else
648 		retval = TRUE;
649 
650 	XDR_DESTROY(xdrs);
651 
652 	if (ud->ud_inmp) {
653 		freemsg(ud->ud_inmp);
654 		ud->ud_inmp = NULL;
655 	}
656 
657 	return (retval);
658 }
659 
660 static int32_t *
svc_clts_kgetres(SVCXPRT * clone_xprt,int size)661 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
662 {
663 	/* LINTED pointer alignment */
664 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
665 	XDR *xdrs = &clone_xprt->xp_xdrout;
666 	mblk_t *mp;
667 	int32_t *buf;
668 	struct rpc_msg rply;
669 
670 	/*
671 	 * Allocate an initial mblk for the response data.
672 	 */
673 	while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
674 		if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
675 			return (NULL);
676 		}
677 	}
678 
679 	mp->b_cont = NULL;
680 
681 	/*
682 	 * Initialize the XDR encode stream.  Additional mblks
683 	 * will be allocated if necessary.  They will be UD_MAXSIZE
684 	 * sized.
685 	 */
686 	xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
687 
688 	/*
689 	 * Leave some space for protocol headers.
690 	 */
691 	(void) XDR_SETPOS(xdrs, 512);
692 	mp->b_rptr += 512;
693 
694 	/*
695 	 * Assume a successful RPC since most of them are.
696 	 */
697 	rply.rm_xid = clone_xprt->xp_xid;
698 	rply.rm_direction = REPLY;
699 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
700 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
701 	rply.acpted_rply.ar_stat = SUCCESS;
702 
703 	if (!xdr_replymsg_hdr(xdrs, &rply)) {
704 		XDR_DESTROY(xdrs);
705 		freeb(mp);
706 		return (NULL);
707 	}
708 
709 	buf = XDR_INLINE(xdrs, size);
710 
711 	if (buf == NULL) {
712 		XDR_DESTROY(xdrs);
713 		freeb(mp);
714 	} else {
715 		ud->ud_resp->b_cont = mp;
716 	}
717 
718 	return (buf);
719 }
720 
721 static void
svc_clts_kfreeres(SVCXPRT * clone_xprt)722 svc_clts_kfreeres(SVCXPRT *clone_xprt)
723 {
724 	/* LINTED pointer alignment */
725 	struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
726 
727 	if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
728 		return;
729 
730 	XDR_DESTROY(&clone_xprt->xp_xdrout);
731 
732 	/*
733 	 * SVC_FREERES() is called whenever the server decides not to
734 	 * send normal reply. Thus, we expect only one mblk to be allocated,
735 	 * because we have not attempted any XDR encoding.
736 	 * If we do any XDR encoding and we get an error, then SVC_REPLY()
737 	 * will freemsg(ud->ud_resp);
738 	 */
739 	ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
740 	freeb(ud->ud_resp->b_cont);
741 	ud->ud_resp->b_cont = NULL;
742 }
743 
744 /*
745  * the dup cacheing routines below provide a cache of non-failure
746  * transaction id's.  rpc service routines can use this to detect
747  * retransmissions and re-send a non-failure response.
748  */
749 
750 /*
751  * MAXDUPREQS is the number of cached items.  It should be adjusted
752  * to the service load so that there is likely to be a response entry
753  * when the first retransmission comes in.
754  */
755 #define	MAXDUPREQS	8192
756 
757 /*
758  * This should be appropriately scaled to MAXDUPREQS.  To produce as less as
759  * possible collisions it is suggested to set this to a prime.
760  */
761 #define	DRHASHSZ	2053
762 
763 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
764 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
765 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
766 
767 static int	ndupreqs = 0;
768 int	maxdupreqs = MAXDUPREQS;
769 static kmutex_t dupreq_lock;
770 static struct dupreq *drhashtbl[DRHASHSZ];
771 static int	drhashstat[DRHASHSZ];
772 
773 static void unhash(struct dupreq *);
774 
775 /*
776  * drmru points to the head of a circular linked list in lru order.
777  * drmru->dr_next == drlru
778  */
779 struct dupreq *drmru;
780 
781 /*
782  * PSARC 2003/523 Contract Private Interface
783  * svc_clts_kdup
784  * Changes must be reviewed by Solaris File Sharing
785  * Changes must be communicated to contract-2003-523@sun.com
786  *
787  * svc_clts_kdup searches the request cache and returns 0 if the
788  * request is not found in the cache.  If it is found, then it
789  * returns the state of the request (in progress or done) and
790  * the status or attributes that were part of the original reply.
791  *
792  * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
793  * value of the response. In that case, also return in *dupcachedp
794  * whether the response free routine is cached in the dupreq - in which case
795  * the caller should not be freeing it, because it will be done later
796  * in the svc_clts_kdup code when the dupreq is reused.
797  */
798 static int
svc_clts_kdup(struct svc_req * req,caddr_t res,int size,struct dupreq ** drpp,bool_t * dupcachedp)799 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
800     bool_t *dupcachedp)
801 {
802 	struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
803 	struct dupreq *dr;
804 	uint32_t xid;
805 	uint32_t drhash;
806 	int status;
807 
808 	xid = REQTOXID(req);
809 	mutex_enter(&dupreq_lock);
810 	RSSTAT_INCR(stats, rsdupchecks);
811 	/*
812 	 * Check to see whether an entry already exists in the cache.
813 	 */
814 	dr = drhashtbl[XIDHASH(xid)];
815 	while (dr != NULL) {
816 		if (dr->dr_xid == xid &&
817 		    dr->dr_proc == req->rq_proc &&
818 		    dr->dr_prog == req->rq_prog &&
819 		    dr->dr_vers == req->rq_vers &&
820 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
821 		    bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
822 		    dr->dr_addr.len) == 0) {
823 			status = dr->dr_status;
824 			if (status == DUP_DONE) {
825 				bcopy(dr->dr_resp.buf, res, size);
826 				if (dupcachedp != NULL)
827 					*dupcachedp = (dr->dr_resfree != NULL);
828 			} else {
829 				dr->dr_status = DUP_INPROGRESS;
830 				*drpp = dr;
831 			}
832 			RSSTAT_INCR(stats, rsdupreqs);
833 			mutex_exit(&dupreq_lock);
834 			return (status);
835 		}
836 		dr = dr->dr_chain;
837 	}
838 
839 	/*
840 	 * There wasn't an entry, either allocate a new one or recycle
841 	 * an old one.
842 	 */
843 	if (ndupreqs < maxdupreqs) {
844 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
845 		if (dr == NULL) {
846 			mutex_exit(&dupreq_lock);
847 			return (DUP_ERROR);
848 		}
849 		dr->dr_resp.buf = NULL;
850 		dr->dr_resp.maxlen = 0;
851 		dr->dr_addr.buf = NULL;
852 		dr->dr_addr.maxlen = 0;
853 		if (drmru) {
854 			dr->dr_next = drmru->dr_next;
855 			drmru->dr_next = dr;
856 		} else {
857 			dr->dr_next = dr;
858 		}
859 		ndupreqs++;
860 	} else {
861 		dr = drmru->dr_next;
862 		while (dr->dr_status == DUP_INPROGRESS) {
863 			dr = dr->dr_next;
864 			if (dr == drmru->dr_next) {
865 				cmn_err(CE_WARN, "svc_clts_kdup no slots free");
866 				mutex_exit(&dupreq_lock);
867 				return (DUP_ERROR);
868 			}
869 		}
870 		unhash(dr);
871 		if (dr->dr_resfree) {
872 			(*dr->dr_resfree)(dr->dr_resp.buf);
873 		}
874 	}
875 	dr->dr_resfree = NULL;
876 	drmru = dr;
877 
878 	dr->dr_xid = REQTOXID(req);
879 	dr->dr_prog = req->rq_prog;
880 	dr->dr_vers = req->rq_vers;
881 	dr->dr_proc = req->rq_proc;
882 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
883 		if (dr->dr_addr.buf != NULL)
884 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
885 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
886 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
887 		    KM_NOSLEEP);
888 		if (dr->dr_addr.buf == NULL) {
889 			dr->dr_addr.maxlen = 0;
890 			dr->dr_status = DUP_DROP;
891 			mutex_exit(&dupreq_lock);
892 			return (DUP_ERROR);
893 		}
894 	}
895 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
896 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
897 	if (dr->dr_resp.maxlen < size) {
898 		if (dr->dr_resp.buf != NULL)
899 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
900 		dr->dr_resp.maxlen = (unsigned int)size;
901 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
902 		if (dr->dr_resp.buf == NULL) {
903 			dr->dr_resp.maxlen = 0;
904 			dr->dr_status = DUP_DROP;
905 			mutex_exit(&dupreq_lock);
906 			return (DUP_ERROR);
907 		}
908 	}
909 	dr->dr_status = DUP_INPROGRESS;
910 
911 	drhash = (uint32_t)DRHASH(dr);
912 	dr->dr_chain = drhashtbl[drhash];
913 	drhashtbl[drhash] = dr;
914 	drhashstat[drhash]++;
915 	mutex_exit(&dupreq_lock);
916 	*drpp = dr;
917 	return (DUP_NEW);
918 }
919 
920 /*
921  * PSARC 2003/523 Contract Private Interface
922  * svc_clts_kdupdone
923  * Changes must be reviewed by Solaris File Sharing
924  * Changes must be communicated to contract-2003-523@sun.com
925  *
926  * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
927  * and stores the response.
928  */
929 static void
svc_clts_kdupdone(struct dupreq * dr,caddr_t res,void (* dis_resfree)(),int size,int status)930 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
931     int size, int status)
932 {
933 
934 	ASSERT(dr->dr_resfree == NULL);
935 	if (status == DUP_DONE) {
936 		bcopy(res, dr->dr_resp.buf, size);
937 		dr->dr_resfree = dis_resfree;
938 	}
939 	dr->dr_status = status;
940 }
941 
942 /*
943  * This routine expects that the mutex, dupreq_lock, is already held.
944  */
945 static void
unhash(struct dupreq * dr)946 unhash(struct dupreq *dr)
947 {
948 	struct dupreq *drt;
949 	struct dupreq *drtprev = NULL;
950 	uint32_t drhash;
951 
952 	ASSERT(MUTEX_HELD(&dupreq_lock));
953 
954 	drhash = (uint32_t)DRHASH(dr);
955 	drt = drhashtbl[drhash];
956 	while (drt != NULL) {
957 		if (drt == dr) {
958 			drhashstat[drhash]--;
959 			if (drtprev == NULL) {
960 				drhashtbl[drhash] = drt->dr_chain;
961 			} else {
962 				drtprev->dr_chain = drt->dr_chain;
963 			}
964 			return;
965 		}
966 		drtprev = drt;
967 		drt = drt->dr_chain;
968 	}
969 }
970 
971 void
svc_clts_stats_init(zoneid_t zoneid,struct rpc_clts_server ** statsp)972 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
973 {
974 	kstat_t *ksp;
975 	kstat_named_t *knp;
976 
977 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
978 	    (const kstat_named_t *)&clts_rsstat_tmpl,
979 	    sizeof (clts_rsstat_tmpl));
980 	/*
981 	 * Backwards compatibility for old kstat clients
982 	 */
983 	ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
984 	    KSTAT_TYPE_NAMED, clts_rsstat_ndata,
985 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
986 	if (ksp) {
987 		ksp->ks_data = knp;
988 		kstat_install(ksp);
989 	}
990 	*statsp = (struct rpc_clts_server *)knp;
991 }
992 
993 void
svc_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_server ** statsp)994 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
995 {
996 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
997 	kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
998 	kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
999 }
1000 
1001 void
svc_clts_init()1002 svc_clts_init()
1003 {
1004 	/*
1005 	 * Check to make sure that the clts private data will fit into
1006 	 * the stack buffer allocated by svc_run.  The compiler should
1007 	 * remove this check, but it's a safety net if the udp_data
1008 	 * structure ever changes.
1009 	 */
1010 	/*CONSTANTCONDITION*/
1011 	ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
1012 
1013 	mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
1014 }
1015