1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 * Copyright 2012 Marcel Telka <marcel@telka.sk>
27 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
28 */
29
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
32
33 /*
34 * Portions of this source code were derived from Berkeley 4.3 BSD
35 * under license from the Regents of the University of California.
36 */
37
38 /*
39 * svc_clts.c
40 * Server side for RPC in the kernel.
41 *
42 */
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/sysmacros.h>
47 #include <sys/file.h>
48 #include <sys/stream.h>
49 #include <sys/strsun.h>
50 #include <sys/strsubr.h>
51 #include <sys/tihdr.h>
52 #include <sys/tiuser.h>
53 #include <sys/t_kuser.h>
54 #include <sys/fcntl.h>
55 #include <sys/errno.h>
56 #include <sys/kmem.h>
57 #include <sys/systm.h>
58 #include <sys/cmn_err.h>
59 #include <sys/kstat.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
62
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 #include <rpc/rpc_msg.h>
68 #include <rpc/svc.h>
69 #include <inet/ip.h>
70
71 /*
72 * Routines exported through ops vector.
73 */
74 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
75 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
76 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
77 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
78 static void svc_clts_kdestroy(SVCMASTERXPRT *);
79 static int svc_clts_kdup(struct svc_req *, caddr_t, int,
80 struct dupreq **, bool_t *);
81 static void svc_clts_kdupdone(struct dupreq *, caddr_t,
82 void (*)(), int, int);
83 static int32_t *svc_clts_kgetres(SVCXPRT *, int);
84 static void svc_clts_kclone_destroy(SVCXPRT *);
85 static void svc_clts_kfreeres(SVCXPRT *);
86 static void svc_clts_kstart(SVCMASTERXPRT *);
87 static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
88 static void svc_clts_ktattrs(SVCXPRT *, int, void **);
89
90 /*
91 * Server transport operations vector.
92 */
93 struct svc_ops svc_clts_op = {
94 svc_clts_krecv, /* Get requests */
95 svc_clts_kgetargs, /* Deserialize arguments */
96 svc_clts_ksend, /* Send reply */
97 svc_clts_kfreeargs, /* Free argument data space */
98 svc_clts_kdestroy, /* Destroy transport handle */
99 svc_clts_kdup, /* Check entry in dup req cache */
100 svc_clts_kdupdone, /* Mark entry in dup req cache as done */
101 svc_clts_kgetres, /* Get pointer to response buffer */
102 svc_clts_kfreeres, /* Destroy pre-serialized response header */
103 svc_clts_kclone_destroy, /* Destroy a clone xprt */
104 svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */
105 svc_clts_kclone_xprt, /* transport specific clone xprt function */
106 svc_clts_ktattrs, /* Transport specific attributes */
107 rpcmod_hold, /* Increment transport reference count */
108 rpcmod_release /* Decrement transport reference count */
109 };
110
111 /*
112 * Transport private data.
113 * Kept in xprt->xp_p2buf.
114 */
115 struct udp_data {
116 mblk_t *ud_resp; /* buffer for response */
117 mblk_t *ud_inmp; /* mblk chain of request */
118 };
119
120 #define UD_MAXSIZE 8800
121 #define UD_INITSIZE 2048
122
123 /*
124 * Connectionless server statistics
125 */
126 static const struct rpc_clts_server {
127 kstat_named_t rscalls;
128 kstat_named_t rsbadcalls;
129 kstat_named_t rsnullrecv;
130 kstat_named_t rsbadlen;
131 kstat_named_t rsxdrcall;
132 kstat_named_t rsdupchecks;
133 kstat_named_t rsdupreqs;
134 } clts_rsstat_tmpl = {
135 { "calls", KSTAT_DATA_UINT64 },
136 { "badcalls", KSTAT_DATA_UINT64 },
137 { "nullrecv", KSTAT_DATA_UINT64 },
138 { "badlen", KSTAT_DATA_UINT64 },
139 { "xdrcall", KSTAT_DATA_UINT64 },
140 { "dupchecks", KSTAT_DATA_UINT64 },
141 { "dupreqs", KSTAT_DATA_UINT64 }
142 };
143
144 static uint_t clts_rsstat_ndata =
145 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
146
147 #define CLONE2STATS(clone_xprt) \
148 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
149
150 #define RSSTAT_INCR(stats, x) \
151 atomic_inc_64(&(stats)->x.value.ui64)
152
153 /*
154 * Create a transport record.
155 * The transport record, output buffer, and private data structure
156 * are allocated. The output buffer is serialized into using xdrmem.
157 * There is one transport record per user process which implements a
158 * set of services.
159 */
160 /* ARGSUSED */
161 int
svc_clts_kcreate(file_t * fp,uint_t sendsz,struct T_info_ack * tinfo,SVCMASTERXPRT ** nxprt)162 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
163 SVCMASTERXPRT **nxprt)
164 {
165 SVCMASTERXPRT *xprt;
166 struct rpcstat *rpcstat;
167
168 if (nxprt == NULL)
169 return (EINVAL);
170
171 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
172 ASSERT(rpcstat != NULL);
173
174 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
175 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
176 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
177 xprt->xp_ops = &svc_clts_op;
178 xprt->xp_msg_size = tinfo->TSDU_size;
179
180 xprt->xp_rtaddr.buf = NULL;
181 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
182 xprt->xp_rtaddr.len = 0;
183
184 *nxprt = xprt;
185
186 return (0);
187 }
188
189 /*
190 * Destroy a transport record.
191 * Frees the space allocated for a transport record.
192 */
193 static void
svc_clts_kdestroy(SVCMASTERXPRT * xprt)194 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
195 {
196 if (xprt->xp_netid)
197 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
198 if (xprt->xp_addrmask.maxlen)
199 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
200
201 mutex_destroy(&xprt->xp_req_lock);
202 mutex_destroy(&xprt->xp_thread_lock);
203
204 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
205 kmem_free(xprt, sizeof (SVCMASTERXPRT));
206 }
207
208 /*
209 * Transport-type specific part of svc_xprt_cleanup().
210 * Frees the message buffer space allocated for a clone of a transport record
211 */
212 static void
svc_clts_kclone_destroy(SVCXPRT * clone_xprt)213 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
214 {
215 /* LINTED pointer alignment */
216 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
217
218 if (ud->ud_resp) {
219 /*
220 * There should not be any left over results buffer.
221 */
222 ASSERT(ud->ud_resp->b_cont == NULL);
223
224 /*
225 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
226 * saved.
227 */
228 freeb(ud->ud_resp);
229 }
230 if (ud->ud_inmp)
231 freemsg(ud->ud_inmp);
232 }
233
234 /*
235 * svc_tli_kcreate() calls this function at the end to tell
236 * rpcmod that the transport is ready to receive requests.
237 */
238 /* ARGSUSED */
239 static void
svc_clts_kstart(SVCMASTERXPRT * xprt)240 svc_clts_kstart(SVCMASTERXPRT *xprt)
241 {
242 }
243
244 static void
svc_clts_kclone_xprt(SVCXPRT * src_xprt,SVCXPRT * dst_xprt)245 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
246 {
247 struct udp_data *ud_src =
248 (struct udp_data *)src_xprt->xp_p2buf;
249 struct udp_data *ud_dst =
250 (struct udp_data *)dst_xprt->xp_p2buf;
251
252 if (ud_src->ud_resp)
253 ud_dst->ud_resp = dupb(ud_src->ud_resp);
254
255 }
256
257 static void
svc_clts_ktattrs(SVCXPRT * clone_xprt,int attrflag,void ** tattr)258 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
259 {
260 *tattr = NULL;
261
262 switch (attrflag) {
263 case SVC_TATTR_ADDRMASK:
264 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
265 }
266 }
267
268 /*
269 * Receive rpc requests.
270 * Pulls a request in off the socket, checks if the packet is intact,
271 * and deserializes the call packet.
272 */
273 static bool_t
svc_clts_krecv(SVCXPRT * clone_xprt,mblk_t * mp,struct rpc_msg * msg)274 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
275 {
276 /* LINTED pointer alignment */
277 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
278 XDR *xdrs = &clone_xprt->xp_xdrin;
279 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
280 union T_primitives *pptr;
281 int hdrsz;
282 cred_t *cr;
283
284 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
285 "svc_clts_krecv_start:");
286
287 RSSTAT_INCR(stats, rscalls);
288
289 /*
290 * The incoming request should start with an M_PROTO message.
291 */
292 if (mp->b_datap->db_type != M_PROTO) {
293 goto bad;
294 }
295
296 /*
297 * The incoming request should be an T_UNITDTA_IND. There
298 * might be other messages coming up the stream, but we can
299 * ignore them.
300 */
301 pptr = (union T_primitives *)mp->b_rptr;
302 if (pptr->type != T_UNITDATA_IND) {
303 goto bad;
304 }
305 /*
306 * Do some checking to make sure that the header at least looks okay.
307 */
308 hdrsz = (int)(mp->b_wptr - mp->b_rptr);
309 if (hdrsz < TUNITDATAINDSZ ||
310 hdrsz < (pptr->unitdata_ind.OPT_offset +
311 pptr->unitdata_ind.OPT_length) ||
312 hdrsz < (pptr->unitdata_ind.SRC_offset +
313 pptr->unitdata_ind.SRC_length)) {
314 goto bad;
315 }
316
317 /*
318 * Make sure that the transport provided a usable address.
319 */
320 if (pptr->unitdata_ind.SRC_length <= 0) {
321 goto bad;
322 }
323 /*
324 * Point the remote transport address in the service_transport
325 * handle at the address in the request.
326 */
327 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
328 pptr->unitdata_ind.SRC_offset;
329 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
330
331 /*
332 * Copy the local transport address in the service_transport
333 * handle at the address in the request. We will have only
334 * the local IP address in options.
335 */
336 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
337 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
338 char *dstopt = (char *)mp->b_rptr +
339 pptr->unitdata_ind.OPT_offset;
340 struct T_opthdr *toh = (struct T_opthdr *)dstopt;
341
342 if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
343 toh->name == IPV6_PKTINFO) {
344 struct in6_pktinfo *pkti;
345
346 dstopt += sizeof (struct T_opthdr);
347 pkti = (struct in6_pktinfo *)dstopt;
348 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
349 = pkti->ipi6_addr;
350 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
351 = AF_INET6;
352 } else if (toh->level == IPPROTO_IP && toh->status == 0 &&
353 toh->name == IP_RECVDSTADDR) {
354 dstopt += sizeof (struct T_opthdr);
355 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
356 = *(struct in_addr *)dstopt;
357 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
358 = AF_INET;
359 }
360 }
361
362 /*
363 * Save the first mblk which contains the T_unidata_ind in
364 * ud_resp. It will be used to generate the T_unitdata_req
365 * during the reply.
366 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
367 * since we must pass any SCM_UCRED across in order for TX to
368 * work. We also make sure any cred_t is carried across.
369 */
370 if (ud->ud_resp) {
371 if (ud->ud_resp->b_cont != NULL) {
372 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
373 "b_cont %p", (void *)ud->ud_resp,
374 (void *)ud->ud_resp->b_cont);
375 }
376 freeb(ud->ud_resp);
377 }
378 /* Move any cred_t to the first mblk in the message */
379 cr = msg_getcred(mp, NULL);
380 if (cr != NULL)
381 mblk_setcred(mp, cr, NOPID);
382
383 ud->ud_resp = mp;
384 mp = mp->b_cont;
385 ud->ud_resp->b_cont = NULL;
386
387 xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
388
389 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
390 "xdr_callmsg_start:");
391 if (! xdr_callmsg(xdrs, msg)) {
392 XDR_DESTROY(xdrs);
393 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
394 "xdr_callmsg_end:(%S)", "bad");
395 RSSTAT_INCR(stats, rsxdrcall);
396 goto bad;
397 }
398 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
399 "xdr_callmsg_end:(%S)", "good");
400
401 clone_xprt->xp_xid = msg->rm_xid;
402 ud->ud_inmp = mp;
403
404 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
405 "svc_clts_krecv_end:(%S)", "good");
406 return (TRUE);
407
408 bad:
409 freemsg(mp);
410 if (ud->ud_resp) {
411 /*
412 * There should not be any left over results buffer.
413 */
414 ASSERT(ud->ud_resp->b_cont == NULL);
415 freeb(ud->ud_resp);
416 ud->ud_resp = NULL;
417 }
418
419 RSSTAT_INCR(stats, rsbadcalls);
420 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
421 "svc_clts_krecv_end:(%S)", "bad");
422 return (FALSE);
423 }
424
425 /*
426 * Send rpc reply.
427 * Serialize the reply packet into the output buffer then
428 * call t_ksndudata to send it.
429 */
430 static bool_t
svc_clts_ksend(SVCXPRT * clone_xprt,struct rpc_msg * msg)431 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
432 {
433 /* LINTED pointer alignment */
434 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
435 XDR *xdrs = &clone_xprt->xp_xdrout;
436 int stat = FALSE;
437 mblk_t *mp;
438 int msgsz;
439 struct T_unitdata_req *udreq;
440 xdrproc_t xdr_results;
441 caddr_t xdr_location;
442 bool_t has_args;
443
444 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
445 "svc_clts_ksend_start:");
446
447 ASSERT(ud->ud_resp != NULL);
448
449 /*
450 * If there is a result procedure specified in the reply message,
451 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
452 * We need to make sure it won't be processed twice, so we null
453 * it for xdr_replymsg here.
454 */
455 has_args = FALSE;
456 if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
457 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
458 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
459 has_args = TRUE;
460 xdr_location = msg->acpted_rply.ar_results.where;
461 msg->acpted_rply.ar_results.proc = xdr_void;
462 msg->acpted_rply.ar_results.where = NULL;
463 }
464 }
465
466 if (ud->ud_resp->b_cont == NULL) {
467 /*
468 * Allocate an initial mblk for the response data.
469 */
470 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
471 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
472 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
473 "svc_clts_ksend_end:(%S)", "strwaitbuf");
474 return (FALSE);
475 }
476 }
477
478 /*
479 * Initialize the XDR encode stream. Additional mblks
480 * will be allocated if necessary. They will be UD_MAXSIZE
481 * sized.
482 */
483 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
484
485 /*
486 * Leave some space for protocol headers.
487 */
488 (void) XDR_SETPOS(xdrs, 512);
489 mp->b_rptr += 512;
490
491 msg->rm_xid = clone_xprt->xp_xid;
492
493 ud->ud_resp->b_cont = mp;
494
495 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
496 "xdr_replymsg_start:");
497 if (!(xdr_replymsg(xdrs, msg) &&
498 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
499 xdr_results, xdr_location)))) {
500 XDR_DESTROY(xdrs);
501 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
502 "xdr_replymsg_end:(%S)", "bad");
503 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
504 goto out;
505 }
506 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
507 "xdr_replymsg_end:(%S)", "good");
508
509 } else if (!(xdr_replymsg_body(xdrs, msg) &&
510 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
511 xdr_results, xdr_location)))) {
512 XDR_DESTROY(xdrs);
513 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
514 goto out;
515 }
516
517 XDR_DESTROY(xdrs);
518
519 msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
520
521 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
522 msgsz > clone_xprt->xp_msg_size)) {
523 #ifdef DEBUG
524 cmn_err(CE_NOTE,
525 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
526 msgsz, clone_xprt->xp_msg_size);
527 #endif
528 goto out;
529 }
530
531 /*
532 * Construct the T_unitdata_req. We take advantage of the fact that
533 * T_unitdata_ind looks just like T_unitdata_req, except for the
534 * primitive type. Reusing it means we preserve the SCM_UCRED, and
535 * we must preserve it for TX to work.
536 *
537 * This has the side effect that we can also pass certain receive-side
538 * options like IPV6_PKTINFO back down the send side. This implies
539 * that we can not ASSERT on a non-NULL db_credp when we have send-side
540 * options in UDP.
541 */
542 ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
543 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
544 ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
545 udreq->PRIM_type = T_UNITDATA_REQ;
546
547 /*
548 * If the local IPv4 transport address is known use it as a source
549 * address for the outgoing UDP packet.
550 */
551 if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
552 struct T_opthdr *opthdr;
553 in_pktinfo_t *pktinfo;
554 size_t size;
555
556 if (udreq->DEST_length == 0)
557 udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
558 else
559 udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
560 udreq->DEST_length);
561
562 udreq->OPT_length = sizeof (struct T_opthdr) +
563 sizeof (in_pktinfo_t);
564
565 size = udreq->OPT_length + udreq->OPT_offset;
566
567 /* make sure we have enough space for the option data */
568 mp = reallocb(ud->ud_resp, size, 1);
569 if (mp == NULL)
570 goto out;
571 ud->ud_resp = mp;
572 udreq = (struct T_unitdata_req *)mp->b_rptr;
573
574 /* set desired option header */
575 opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
576 opthdr->len = udreq->OPT_length;
577 opthdr->level = IPPROTO_IP;
578 opthdr->name = IP_PKTINFO;
579
580 /*
581 * 1. set source IP of outbound packet
582 * 2. value '0' for index means IP layer uses this as source
583 * address
584 */
585 pktinfo = (in_pktinfo_t *)(opthdr + 1);
586 (void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
587 pktinfo->ipi_spec_dst.s_addr =
588 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
589 pktinfo->ipi_ifindex = 0;
590
591 /* adjust the end of active data */
592 mp->b_wptr = mp->b_rptr + size;
593 }
594
595 put(clone_xprt->xp_wq, ud->ud_resp);
596 stat = TRUE;
597 ud->ud_resp = NULL;
598
599 out:
600 if (stat == FALSE) {
601 freemsg(ud->ud_resp);
602 ud->ud_resp = NULL;
603 }
604
605 /*
606 * This is completely disgusting. If public is set it is
607 * a pointer to a structure whose first field is the address
608 * of the function to free that structure and any related
609 * stuff. (see rrokfree in nfs_xdr.c).
610 */
611 if (xdrs->x_public) {
612 /* LINTED pointer alignment */
613 (**((int (**)())xdrs->x_public))(xdrs->x_public);
614 }
615
616 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
617 "svc_clts_ksend_end:(%S)", "done");
618 return (stat);
619 }
620
621 /*
622 * Deserialize arguments.
623 */
624 static bool_t
svc_clts_kgetargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)625 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
626 caddr_t args_ptr)
627 {
628
629 /* LINTED pointer alignment */
630 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
631 xdr_args, args_ptr));
632
633 }
634
635 static bool_t
svc_clts_kfreeargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)636 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
637 caddr_t args_ptr)
638 {
639 /* LINTED pointer alignment */
640 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
641 XDR *xdrs = &clone_xprt->xp_xdrin;
642 bool_t retval;
643
644 if (args_ptr) {
645 xdrs->x_op = XDR_FREE;
646 retval = (*xdr_args)(xdrs, args_ptr);
647 } else
648 retval = TRUE;
649
650 XDR_DESTROY(xdrs);
651
652 if (ud->ud_inmp) {
653 freemsg(ud->ud_inmp);
654 ud->ud_inmp = NULL;
655 }
656
657 return (retval);
658 }
659
660 static int32_t *
svc_clts_kgetres(SVCXPRT * clone_xprt,int size)661 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
662 {
663 /* LINTED pointer alignment */
664 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
665 XDR *xdrs = &clone_xprt->xp_xdrout;
666 mblk_t *mp;
667 int32_t *buf;
668 struct rpc_msg rply;
669
670 /*
671 * Allocate an initial mblk for the response data.
672 */
673 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
674 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
675 return (NULL);
676 }
677 }
678
679 mp->b_cont = NULL;
680
681 /*
682 * Initialize the XDR encode stream. Additional mblks
683 * will be allocated if necessary. They will be UD_MAXSIZE
684 * sized.
685 */
686 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
687
688 /*
689 * Leave some space for protocol headers.
690 */
691 (void) XDR_SETPOS(xdrs, 512);
692 mp->b_rptr += 512;
693
694 /*
695 * Assume a successful RPC since most of them are.
696 */
697 rply.rm_xid = clone_xprt->xp_xid;
698 rply.rm_direction = REPLY;
699 rply.rm_reply.rp_stat = MSG_ACCEPTED;
700 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
701 rply.acpted_rply.ar_stat = SUCCESS;
702
703 if (!xdr_replymsg_hdr(xdrs, &rply)) {
704 XDR_DESTROY(xdrs);
705 freeb(mp);
706 return (NULL);
707 }
708
709 buf = XDR_INLINE(xdrs, size);
710
711 if (buf == NULL) {
712 XDR_DESTROY(xdrs);
713 freeb(mp);
714 } else {
715 ud->ud_resp->b_cont = mp;
716 }
717
718 return (buf);
719 }
720
721 static void
svc_clts_kfreeres(SVCXPRT * clone_xprt)722 svc_clts_kfreeres(SVCXPRT *clone_xprt)
723 {
724 /* LINTED pointer alignment */
725 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
726
727 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
728 return;
729
730 XDR_DESTROY(&clone_xprt->xp_xdrout);
731
732 /*
733 * SVC_FREERES() is called whenever the server decides not to
734 * send normal reply. Thus, we expect only one mblk to be allocated,
735 * because we have not attempted any XDR encoding.
736 * If we do any XDR encoding and we get an error, then SVC_REPLY()
737 * will freemsg(ud->ud_resp);
738 */
739 ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
740 freeb(ud->ud_resp->b_cont);
741 ud->ud_resp->b_cont = NULL;
742 }
743
744 /*
745 * the dup cacheing routines below provide a cache of non-failure
746 * transaction id's. rpc service routines can use this to detect
747 * retransmissions and re-send a non-failure response.
748 */
749
750 /*
751 * MAXDUPREQS is the number of cached items. It should be adjusted
752 * to the service load so that there is likely to be a response entry
753 * when the first retransmission comes in.
754 */
755 #define MAXDUPREQS 8192
756
757 /*
758 * This should be appropriately scaled to MAXDUPREQS. To produce as less as
759 * possible collisions it is suggested to set this to a prime.
760 */
761 #define DRHASHSZ 2053
762
763 #define XIDHASH(xid) ((xid) % DRHASHSZ)
764 #define DRHASH(dr) XIDHASH((dr)->dr_xid)
765 #define REQTOXID(req) ((req)->rq_xprt->xp_xid)
766
767 static int ndupreqs = 0;
768 int maxdupreqs = MAXDUPREQS;
769 static kmutex_t dupreq_lock;
770 static struct dupreq *drhashtbl[DRHASHSZ];
771 static int drhashstat[DRHASHSZ];
772
773 static void unhash(struct dupreq *);
774
775 /*
776 * drmru points to the head of a circular linked list in lru order.
777 * drmru->dr_next == drlru
778 */
779 struct dupreq *drmru;
780
781 /*
782 * PSARC 2003/523 Contract Private Interface
783 * svc_clts_kdup
784 * Changes must be reviewed by Solaris File Sharing
785 * Changes must be communicated to contract-2003-523@sun.com
786 *
787 * svc_clts_kdup searches the request cache and returns 0 if the
788 * request is not found in the cache. If it is found, then it
789 * returns the state of the request (in progress or done) and
790 * the status or attributes that were part of the original reply.
791 *
792 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
793 * value of the response. In that case, also return in *dupcachedp
794 * whether the response free routine is cached in the dupreq - in which case
795 * the caller should not be freeing it, because it will be done later
796 * in the svc_clts_kdup code when the dupreq is reused.
797 */
798 static int
svc_clts_kdup(struct svc_req * req,caddr_t res,int size,struct dupreq ** drpp,bool_t * dupcachedp)799 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
800 bool_t *dupcachedp)
801 {
802 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
803 struct dupreq *dr;
804 uint32_t xid;
805 uint32_t drhash;
806 int status;
807
808 xid = REQTOXID(req);
809 mutex_enter(&dupreq_lock);
810 RSSTAT_INCR(stats, rsdupchecks);
811 /*
812 * Check to see whether an entry already exists in the cache.
813 */
814 dr = drhashtbl[XIDHASH(xid)];
815 while (dr != NULL) {
816 if (dr->dr_xid == xid &&
817 dr->dr_proc == req->rq_proc &&
818 dr->dr_prog == req->rq_prog &&
819 dr->dr_vers == req->rq_vers &&
820 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
821 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
822 dr->dr_addr.len) == 0) {
823 status = dr->dr_status;
824 if (status == DUP_DONE) {
825 bcopy(dr->dr_resp.buf, res, size);
826 if (dupcachedp != NULL)
827 *dupcachedp = (dr->dr_resfree != NULL);
828 } else {
829 dr->dr_status = DUP_INPROGRESS;
830 *drpp = dr;
831 }
832 RSSTAT_INCR(stats, rsdupreqs);
833 mutex_exit(&dupreq_lock);
834 return (status);
835 }
836 dr = dr->dr_chain;
837 }
838
839 /*
840 * There wasn't an entry, either allocate a new one or recycle
841 * an old one.
842 */
843 if (ndupreqs < maxdupreqs) {
844 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
845 if (dr == NULL) {
846 mutex_exit(&dupreq_lock);
847 return (DUP_ERROR);
848 }
849 dr->dr_resp.buf = NULL;
850 dr->dr_resp.maxlen = 0;
851 dr->dr_addr.buf = NULL;
852 dr->dr_addr.maxlen = 0;
853 if (drmru) {
854 dr->dr_next = drmru->dr_next;
855 drmru->dr_next = dr;
856 } else {
857 dr->dr_next = dr;
858 }
859 ndupreqs++;
860 } else {
861 dr = drmru->dr_next;
862 while (dr->dr_status == DUP_INPROGRESS) {
863 dr = dr->dr_next;
864 if (dr == drmru->dr_next) {
865 cmn_err(CE_WARN, "svc_clts_kdup no slots free");
866 mutex_exit(&dupreq_lock);
867 return (DUP_ERROR);
868 }
869 }
870 unhash(dr);
871 if (dr->dr_resfree) {
872 (*dr->dr_resfree)(dr->dr_resp.buf);
873 }
874 }
875 dr->dr_resfree = NULL;
876 drmru = dr;
877
878 dr->dr_xid = REQTOXID(req);
879 dr->dr_prog = req->rq_prog;
880 dr->dr_vers = req->rq_vers;
881 dr->dr_proc = req->rq_proc;
882 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
883 if (dr->dr_addr.buf != NULL)
884 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
885 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
886 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
887 KM_NOSLEEP);
888 if (dr->dr_addr.buf == NULL) {
889 dr->dr_addr.maxlen = 0;
890 dr->dr_status = DUP_DROP;
891 mutex_exit(&dupreq_lock);
892 return (DUP_ERROR);
893 }
894 }
895 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
896 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
897 if (dr->dr_resp.maxlen < size) {
898 if (dr->dr_resp.buf != NULL)
899 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
900 dr->dr_resp.maxlen = (unsigned int)size;
901 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
902 if (dr->dr_resp.buf == NULL) {
903 dr->dr_resp.maxlen = 0;
904 dr->dr_status = DUP_DROP;
905 mutex_exit(&dupreq_lock);
906 return (DUP_ERROR);
907 }
908 }
909 dr->dr_status = DUP_INPROGRESS;
910
911 drhash = (uint32_t)DRHASH(dr);
912 dr->dr_chain = drhashtbl[drhash];
913 drhashtbl[drhash] = dr;
914 drhashstat[drhash]++;
915 mutex_exit(&dupreq_lock);
916 *drpp = dr;
917 return (DUP_NEW);
918 }
919
920 /*
921 * PSARC 2003/523 Contract Private Interface
922 * svc_clts_kdupdone
923 * Changes must be reviewed by Solaris File Sharing
924 * Changes must be communicated to contract-2003-523@sun.com
925 *
926 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
927 * and stores the response.
928 */
929 static void
svc_clts_kdupdone(struct dupreq * dr,caddr_t res,void (* dis_resfree)(),int size,int status)930 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
931 int size, int status)
932 {
933
934 ASSERT(dr->dr_resfree == NULL);
935 if (status == DUP_DONE) {
936 bcopy(res, dr->dr_resp.buf, size);
937 dr->dr_resfree = dis_resfree;
938 }
939 dr->dr_status = status;
940 }
941
942 /*
943 * This routine expects that the mutex, dupreq_lock, is already held.
944 */
945 static void
unhash(struct dupreq * dr)946 unhash(struct dupreq *dr)
947 {
948 struct dupreq *drt;
949 struct dupreq *drtprev = NULL;
950 uint32_t drhash;
951
952 ASSERT(MUTEX_HELD(&dupreq_lock));
953
954 drhash = (uint32_t)DRHASH(dr);
955 drt = drhashtbl[drhash];
956 while (drt != NULL) {
957 if (drt == dr) {
958 drhashstat[drhash]--;
959 if (drtprev == NULL) {
960 drhashtbl[drhash] = drt->dr_chain;
961 } else {
962 drtprev->dr_chain = drt->dr_chain;
963 }
964 return;
965 }
966 drtprev = drt;
967 drt = drt->dr_chain;
968 }
969 }
970
971 void
svc_clts_stats_init(zoneid_t zoneid,struct rpc_clts_server ** statsp)972 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
973 {
974 kstat_t *ksp;
975 kstat_named_t *knp;
976
977 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
978 (const kstat_named_t *)&clts_rsstat_tmpl,
979 sizeof (clts_rsstat_tmpl));
980 /*
981 * Backwards compatibility for old kstat clients
982 */
983 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
984 KSTAT_TYPE_NAMED, clts_rsstat_ndata,
985 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
986 if (ksp) {
987 ksp->ks_data = knp;
988 kstat_install(ksp);
989 }
990 *statsp = (struct rpc_clts_server *)knp;
991 }
992
993 void
svc_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_server ** statsp)994 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
995 {
996 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
997 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
998 kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
999 }
1000
1001 void
svc_clts_init()1002 svc_clts_init()
1003 {
1004 /*
1005 * Check to make sure that the clts private data will fit into
1006 * the stack buffer allocated by svc_run. The compiler should
1007 * remove this check, but it's a safety net if the udp_data
1008 * structure ever changes.
1009 */
1010 /*CONSTANTCONDITION*/
1011 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
1012
1013 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
1014 }
1015