1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 /* 35 * svc_clts.c 36 * Server side for RPC in the kernel. 37 * 38 */ 39 40 #include <sys/param.h> 41 #include <sys/types.h> 42 #include <sys/sysmacros.h> 43 #include <sys/file.h> 44 #include <sys/stream.h> 45 #include <sys/strsubr.h> 46 #include <sys/tihdr.h> 47 #include <sys/tiuser.h> 48 #include <sys/t_kuser.h> 49 #include <sys/fcntl.h> 50 #include <sys/errno.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/cmn_err.h> 54 #include <sys/kstat.h> 55 #include <sys/vtrace.h> 56 #include <sys/debug.h> 57 58 #include <rpc/types.h> 59 #include <rpc/xdr.h> 60 #include <rpc/auth.h> 61 #include <rpc/clnt.h> 62 #include <rpc/rpc_msg.h> 63 #include <rpc/svc.h> 64 #include <inet/ip.h> 65 66 /* 67 * Routines exported through ops vector. 68 */ 69 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *); 70 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *); 71 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t); 72 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t); 73 static void svc_clts_kdestroy(SVCMASTERXPRT *); 74 static int svc_clts_kdup(struct svc_req *, caddr_t, int, 75 struct dupreq **, bool_t *); 76 static void svc_clts_kdupdone(struct dupreq *, caddr_t, 77 void (*)(), int, int); 78 static int32_t *svc_clts_kgetres(SVCXPRT *, int); 79 static void svc_clts_kclone_destroy(SVCXPRT *); 80 static void svc_clts_kfreeres(SVCXPRT *); 81 static void svc_clts_kstart(SVCMASTERXPRT *); 82 83 /* 84 * Server transport operations vector. 85 */ 86 struct svc_ops svc_clts_op = { 87 svc_clts_krecv, /* Get requests */ 88 svc_clts_kgetargs, /* Deserialize arguments */ 89 svc_clts_ksend, /* Send reply */ 90 svc_clts_kfreeargs, /* Free argument data space */ 91 svc_clts_kdestroy, /* Destroy transport handle */ 92 svc_clts_kdup, /* Check entry in dup req cache */ 93 svc_clts_kdupdone, /* Mark entry in dup req cache as done */ 94 svc_clts_kgetres, /* Get pointer to response buffer */ 95 svc_clts_kfreeres, /* Destroy pre-serialized response header */ 96 svc_clts_kclone_destroy, /* Destroy a clone xprt */ 97 svc_clts_kstart /* Tell `ready-to-receive' to rpcmod */ 98 }; 99 100 /* 101 * Transport private data. 102 * Kept in xprt->xp_p2buf. 103 */ 104 struct udp_data { 105 mblk_t *ud_resp; /* buffer for response */ 106 mblk_t *ud_inmp; /* mblk chain of request */ 107 }; 108 109 #define UD_MAXSIZE 8800 110 #define UD_INITSIZE 2048 111 112 /* 113 * Connectionless server statistics 114 */ 115 static const struct rpc_clts_server { 116 kstat_named_t rscalls; 117 kstat_named_t rsbadcalls; 118 kstat_named_t rsnullrecv; 119 kstat_named_t rsbadlen; 120 kstat_named_t rsxdrcall; 121 kstat_named_t rsdupchecks; 122 kstat_named_t rsdupreqs; 123 } clts_rsstat_tmpl = { 124 { "calls", KSTAT_DATA_UINT64 }, 125 { "badcalls", KSTAT_DATA_UINT64 }, 126 { "nullrecv", KSTAT_DATA_UINT64 }, 127 { "badlen", KSTAT_DATA_UINT64 }, 128 { "xdrcall", KSTAT_DATA_UINT64 }, 129 { "dupchecks", KSTAT_DATA_UINT64 }, 130 { "dupreqs", KSTAT_DATA_UINT64 } 131 }; 132 133 static uint_t clts_rsstat_ndata = 134 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t); 135 136 #define CLONE2STATS(clone_xprt) \ 137 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2 138 139 #define RSSTAT_INCR(stats, x) \ 140 atomic_add_64(&(stats)->x.value.ui64, 1) 141 142 /* 143 * Create a transport record. 144 * The transport record, output buffer, and private data structure 145 * are allocated. The output buffer is serialized into using xdrmem. 146 * There is one transport record per user process which implements a 147 * set of services. 148 */ 149 /* ARGSUSED */ 150 int 151 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo, 152 SVCMASTERXPRT **nxprt) 153 { 154 SVCMASTERXPRT *xprt; 155 struct rpcstat *rpcstat; 156 157 if (nxprt == NULL) 158 return (EINVAL); 159 160 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone); 161 ASSERT(rpcstat != NULL); 162 163 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP); 164 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP); 165 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server; 166 xprt->xp_ops = &svc_clts_op; 167 xprt->xp_msg_size = tinfo->TSDU_size; 168 169 xprt->xp_rtaddr.buf = NULL; 170 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size; 171 xprt->xp_rtaddr.len = 0; 172 173 *nxprt = xprt; 174 175 return (0); 176 } 177 178 /* 179 * Destroy a transport record. 180 * Frees the space allocated for a transport record. 181 */ 182 static void 183 svc_clts_kdestroy(SVCMASTERXPRT *xprt) 184 { 185 if (xprt->xp_netid) 186 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1); 187 if (xprt->xp_addrmask.maxlen) 188 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen); 189 190 mutex_destroy(&xprt->xp_req_lock); 191 mutex_destroy(&xprt->xp_thread_lock); 192 193 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t)); 194 kmem_free(xprt, sizeof (SVCMASTERXPRT)); 195 } 196 197 /* 198 * Transport-type specific part of svc_xprt_cleanup(). 199 * Frees the message buffer space allocated for a clone of a transport record 200 */ 201 static void 202 svc_clts_kclone_destroy(SVCXPRT *clone_xprt) 203 { 204 /* LINTED pointer alignment */ 205 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 206 207 if (ud->ud_resp) { 208 /* 209 * There should not be any left over results buffer. 210 */ 211 ASSERT(ud->ud_resp->b_cont == NULL); 212 213 /* 214 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv 215 * saved. 216 */ 217 freeb(ud->ud_resp); 218 } 219 if (ud->ud_inmp) 220 freemsg(ud->ud_inmp); 221 } 222 223 /* 224 * svc_tli_kcreate() calls this function at the end to tell 225 * rpcmod that the transport is ready to receive requests. 226 */ 227 /* ARGSUSED */ 228 static void 229 svc_clts_kstart(SVCMASTERXPRT *xprt) 230 { 231 } 232 233 /* 234 * Receive rpc requests. 235 * Pulls a request in off the socket, checks if the packet is intact, 236 * and deserializes the call packet. 237 */ 238 static bool_t 239 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg) 240 { 241 /* LINTED pointer alignment */ 242 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 243 XDR *xdrs = &clone_xprt->xp_xdrin; 244 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt); 245 union T_primitives *pptr; 246 int hdrsz; 247 248 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START, 249 "svc_clts_krecv_start:"); 250 251 RSSTAT_INCR(stats, rscalls); 252 253 /* 254 * The incoming request should start with an M_PROTO message. 255 */ 256 if (mp->b_datap->db_type != M_PROTO) { 257 goto bad; 258 } 259 260 /* 261 * The incoming request should be an T_UNITDTA_IND. There 262 * might be other messages coming up the stream, but we can 263 * ignore them. 264 */ 265 pptr = (union T_primitives *)mp->b_rptr; 266 if (pptr->type != T_UNITDATA_IND) { 267 goto bad; 268 } 269 /* 270 * Do some checking to make sure that the header at least looks okay. 271 */ 272 hdrsz = (int)(mp->b_wptr - mp->b_rptr); 273 if (hdrsz < TUNITDATAINDSZ || 274 hdrsz < (pptr->unitdata_ind.OPT_offset + 275 pptr->unitdata_ind.OPT_length) || 276 hdrsz < (pptr->unitdata_ind.SRC_offset + 277 pptr->unitdata_ind.SRC_length)) { 278 goto bad; 279 } 280 281 /* 282 * Make sure that the transport provided a usable address. 283 */ 284 if (pptr->unitdata_ind.SRC_length <= 0) { 285 goto bad; 286 } 287 /* 288 * Point the remote transport address in the service_transport 289 * handle at the address in the request. 290 */ 291 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr + 292 pptr->unitdata_ind.SRC_offset; 293 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length; 294 295 /* 296 * Copy the local transport address in the service_transport 297 * handle at the address in the request. We will have only 298 * the local IP address in options. 299 */ 300 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) { 301 char *dstopt = (char *)mp->b_rptr + 302 pptr->unitdata_ind.OPT_offset; 303 struct T_opthdr *toh = (struct T_opthdr *)dstopt; 304 305 if (toh->level == IPPROTO_IPV6 && toh->status == 0 && 306 toh->name == IPV6_PKTINFO) { 307 struct in6_pktinfo *pkti; 308 309 dstopt += sizeof (struct T_opthdr); 310 pkti = (struct in6_pktinfo *)dstopt; 311 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr 312 = pkti->ipi6_addr; 313 } else if (toh->level == IPPROTO_IP && toh->status == 0 && 314 toh->name == IP_RECVDSTADDR) { 315 dstopt += sizeof (struct T_opthdr); 316 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr 317 = *(struct in_addr *)dstopt; 318 } 319 } 320 321 /* 322 * Save the first mblk which contains the T_unidata_ind in 323 * ud_resp. It will be used to generate the T_unitdata_req 324 * during the reply. 325 */ 326 if (ud->ud_resp) { 327 if (ud->ud_resp->b_cont != NULL) { 328 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, " 329 "b_cont %p", (void *)ud->ud_resp, 330 (void *)ud->ud_resp->b_cont); 331 } 332 freeb(ud->ud_resp); 333 } 334 ud->ud_resp = mp; 335 mp = mp->b_cont; 336 ud->ud_resp->b_cont = NULL; 337 338 xdrmblk_init(xdrs, mp, XDR_DECODE, 0); 339 340 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START, 341 "xdr_callmsg_start:"); 342 if (! xdr_callmsg(xdrs, msg)) { 343 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 344 "xdr_callmsg_end:(%S)", "bad"); 345 RSSTAT_INCR(stats, rsxdrcall); 346 goto bad; 347 } 348 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, 349 "xdr_callmsg_end:(%S)", "good"); 350 351 clone_xprt->xp_xid = msg->rm_xid; 352 ud->ud_inmp = mp; 353 354 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 355 "svc_clts_krecv_end:(%S)", "good"); 356 return (TRUE); 357 358 bad: 359 if (mp) 360 freemsg(mp); 361 if (ud->ud_resp) { 362 /* 363 * There should not be any left over results buffer. 364 */ 365 ASSERT(ud->ud_resp->b_cont == NULL); 366 freeb(ud->ud_resp); 367 ud->ud_resp = NULL; 368 } 369 370 RSSTAT_INCR(stats, rsbadcalls); 371 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, 372 "svc_clts_krecv_end:(%S)", "bad"); 373 return (FALSE); 374 } 375 376 /* 377 * Send rpc reply. 378 * Serialize the reply packet into the output buffer then 379 * call t_ksndudata to send it. 380 */ 381 static bool_t 382 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg) 383 { 384 /* LINTED pointer alignment */ 385 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 386 XDR *xdrs = &clone_xprt->xp_xdrout; 387 int stat = FALSE; 388 mblk_t *mp; 389 int msgsz; 390 struct T_unitdata_req *udreq; 391 xdrproc_t xdr_results; 392 caddr_t xdr_location; 393 bool_t has_args; 394 395 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START, 396 "svc_clts_ksend_start:"); 397 398 ASSERT(ud->ud_resp != NULL); 399 400 /* 401 * If there is a result procedure specified in the reply message, 402 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP. 403 * We need to make sure it won't be processed twice, so we null 404 * it for xdr_replymsg here. 405 */ 406 has_args = FALSE; 407 if (msg->rm_reply.rp_stat == MSG_ACCEPTED && 408 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { 409 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) { 410 has_args = TRUE; 411 xdr_location = msg->acpted_rply.ar_results.where; 412 msg->acpted_rply.ar_results.proc = xdr_void; 413 msg->acpted_rply.ar_results.where = NULL; 414 } 415 } 416 417 if (ud->ud_resp->b_cont == NULL) { 418 /* 419 * Allocate an initial mblk for the response data. 420 */ 421 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 422 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 423 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 424 "svc_clts_ksend_end:(%S)", "strwaitbuf"); 425 return (FALSE); 426 } 427 } 428 429 /* 430 * Initialize the XDR decode stream. Additional mblks 431 * will be allocated if necessary. They will be UD_MAXSIZE 432 * sized. 433 */ 434 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 435 436 /* 437 * Leave some space for protocol headers. 438 */ 439 (void) XDR_SETPOS(xdrs, 512); 440 mp->b_rptr += 512; 441 442 msg->rm_xid = clone_xprt->xp_xid; 443 444 ud->ud_resp->b_cont = mp; 445 446 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START, 447 "xdr_replymsg_start:"); 448 if (!(xdr_replymsg(xdrs, msg) && 449 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 450 xdr_results, xdr_location)))) { 451 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 452 "xdr_replymsg_end:(%S)", "bad"); 453 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n"); 454 goto out; 455 } 456 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, 457 "xdr_replymsg_end:(%S)", "good"); 458 459 } else if (!(xdr_replymsg_body(xdrs, msg) && 460 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, 461 xdr_results, xdr_location)))) { 462 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n"); 463 goto out; 464 } 465 466 msgsz = (int)xmsgsize(ud->ud_resp->b_cont); 467 468 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 && 469 msgsz > clone_xprt->xp_msg_size)) { 470 #ifdef DEBUG 471 cmn_err(CE_NOTE, 472 "KRPC: server response message of %d bytes; transport limits are [0, %d]", 473 msgsz, clone_xprt->xp_msg_size); 474 #endif 475 goto out; 476 } 477 478 /* 479 * Construct the T_unitdata_req. We take advantage 480 * of the fact that T_unitdata_ind looks just like 481 * T_unitdata_req, except for the primitive type. 482 */ 483 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr; 484 udreq->PRIM_type = T_UNITDATA_REQ; 485 486 put(clone_xprt->xp_wq, ud->ud_resp); 487 stat = TRUE; 488 ud->ud_resp = NULL; 489 490 out: 491 if (stat == FALSE) { 492 freemsg(ud->ud_resp); 493 ud->ud_resp = NULL; 494 } 495 496 /* 497 * This is completely disgusting. If public is set it is 498 * a pointer to a structure whose first field is the address 499 * of the function to free that structure and any related 500 * stuff. (see rrokfree in nfs_xdr.c). 501 */ 502 if (xdrs->x_public) { 503 /* LINTED pointer alignment */ 504 (**((int (**)())xdrs->x_public))(xdrs->x_public); 505 } 506 507 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, 508 "svc_clts_ksend_end:(%S)", "done"); 509 return (stat); 510 } 511 512 /* 513 * Deserialize arguments. 514 */ 515 static bool_t 516 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 517 caddr_t args_ptr) 518 { 519 520 /* LINTED pointer alignment */ 521 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin, 522 xdr_args, args_ptr)); 523 524 } 525 526 static bool_t 527 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, 528 caddr_t args_ptr) 529 { 530 /* LINTED pointer alignment */ 531 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 532 XDR *xdrs = &clone_xprt->xp_xdrin; 533 bool_t retval; 534 535 if (args_ptr) { 536 xdrs->x_op = XDR_FREE; 537 retval = (*xdr_args)(xdrs, args_ptr); 538 } else 539 retval = TRUE; 540 541 if (ud->ud_inmp) { 542 freemsg(ud->ud_inmp); 543 ud->ud_inmp = NULL; 544 } 545 546 return (retval); 547 } 548 549 static int32_t * 550 svc_clts_kgetres(SVCXPRT *clone_xprt, int size) 551 { 552 /* LINTED pointer alignment */ 553 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 554 XDR *xdrs = &clone_xprt->xp_xdrout; 555 mblk_t *mp; 556 int32_t *buf; 557 struct rpc_msg rply; 558 559 /* 560 * Allocate an initial mblk for the response data. 561 */ 562 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { 563 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { 564 return (FALSE); 565 } 566 } 567 568 mp->b_cont = NULL; 569 570 /* 571 * Initialize the XDR decode stream. Additional mblks 572 * will be allocated if necessary. They will be UD_MAXSIZE 573 * sized. 574 */ 575 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); 576 577 /* 578 * Leave some space for protocol headers. 579 */ 580 (void) XDR_SETPOS(xdrs, 512); 581 mp->b_rptr += 512; 582 583 /* 584 * Assume a successful RPC since most of them are. 585 */ 586 rply.rm_xid = clone_xprt->xp_xid; 587 rply.rm_direction = REPLY; 588 rply.rm_reply.rp_stat = MSG_ACCEPTED; 589 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 590 rply.acpted_rply.ar_stat = SUCCESS; 591 592 if (!xdr_replymsg_hdr(xdrs, &rply)) { 593 freeb(mp); 594 return (NULL); 595 } 596 597 buf = XDR_INLINE(xdrs, size); 598 599 if (buf == NULL) 600 freeb(mp); 601 else 602 ud->ud_resp->b_cont = mp; 603 604 return (buf); 605 } 606 607 static void 608 svc_clts_kfreeres(SVCXPRT *clone_xprt) 609 { 610 /* LINTED pointer alignment */ 611 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; 612 613 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL) 614 return; 615 616 /* 617 * SVC_FREERES() is called whenever the server decides not to 618 * send normal reply. Thus, we expect only one mblk to be allocated, 619 * because we have not attempted any XDR encoding. 620 * If we do any XDR encoding and we get an error, then SVC_REPLY() 621 * will freemsg(ud->ud_resp); 622 */ 623 ASSERT(ud->ud_resp->b_cont->b_cont == NULL); 624 freeb(ud->ud_resp->b_cont); 625 ud->ud_resp->b_cont = NULL; 626 } 627 628 /* 629 * the dup cacheing routines below provide a cache of non-failure 630 * transaction id's. rpc service routines can use this to detect 631 * retransmissions and re-send a non-failure response. 632 */ 633 634 /* 635 * MAXDUPREQS is the number of cached items. It should be adjusted 636 * to the service load so that there is likely to be a response entry 637 * when the first retransmission comes in. 638 */ 639 #define MAXDUPREQS 1024 640 641 /* 642 * This should be appropriately scaled to MAXDUPREQS. 643 */ 644 #define DRHASHSZ 257 645 646 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0) 647 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1)) 648 #else 649 #define XIDHASH(xid) ((xid) % DRHASHSZ) 650 #endif 651 #define DRHASH(dr) XIDHASH((dr)->dr_xid) 652 #define REQTOXID(req) ((req)->rq_xprt->xp_xid) 653 654 static int ndupreqs = 0; 655 int maxdupreqs = MAXDUPREQS; 656 static kmutex_t dupreq_lock; 657 static struct dupreq *drhashtbl[DRHASHSZ]; 658 static int drhashstat[DRHASHSZ]; 659 660 static void unhash(struct dupreq *); 661 662 /* 663 * drmru points to the head of a circular linked list in lru order. 664 * drmru->dr_next == drlru 665 */ 666 struct dupreq *drmru; 667 668 /* 669 * PSARC 2003/523 Contract Private Interface 670 * svc_clts_kdup 671 * Changes must be reviewed by Solaris File Sharing 672 * Changes must be communicated to contract-2003-523@sun.com 673 * 674 * svc_clts_kdup searches the request cache and returns 0 if the 675 * request is not found in the cache. If it is found, then it 676 * returns the state of the request (in progress or done) and 677 * the status or attributes that were part of the original reply. 678 * 679 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the 680 * value of the response. In that case, also return in *dupcachedp 681 * whether the response free routine is cached in the dupreq - in which case 682 * the caller should not be freeing it, because it will be done later 683 * in the svc_clts_kdup code when the dupreq is reused. 684 */ 685 static int 686 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp, 687 bool_t *dupcachedp) 688 { 689 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt); 690 struct dupreq *dr; 691 uint32_t xid; 692 uint32_t drhash; 693 int status; 694 695 xid = REQTOXID(req); 696 mutex_enter(&dupreq_lock); 697 RSSTAT_INCR(stats, rsdupchecks); 698 /* 699 * Check to see whether an entry already exists in the cache. 700 */ 701 dr = drhashtbl[XIDHASH(xid)]; 702 while (dr != NULL) { 703 if (dr->dr_xid == xid && 704 dr->dr_proc == req->rq_proc && 705 dr->dr_prog == req->rq_prog && 706 dr->dr_vers == req->rq_vers && 707 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len && 708 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf, 709 dr->dr_addr.len) == 0) { 710 status = dr->dr_status; 711 if (status == DUP_DONE) { 712 bcopy(dr->dr_resp.buf, res, size); 713 if (dupcachedp != NULL) 714 *dupcachedp = (dr->dr_resfree != NULL); 715 } else { 716 dr->dr_status = DUP_INPROGRESS; 717 *drpp = dr; 718 } 719 RSSTAT_INCR(stats, rsdupreqs); 720 mutex_exit(&dupreq_lock); 721 return (status); 722 } 723 dr = dr->dr_chain; 724 } 725 726 /* 727 * There wasn't an entry, either allocate a new one or recycle 728 * an old one. 729 */ 730 if (ndupreqs < maxdupreqs) { 731 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP); 732 if (dr == NULL) { 733 mutex_exit(&dupreq_lock); 734 return (DUP_ERROR); 735 } 736 dr->dr_resp.buf = NULL; 737 dr->dr_resp.maxlen = 0; 738 dr->dr_addr.buf = NULL; 739 dr->dr_addr.maxlen = 0; 740 if (drmru) { 741 dr->dr_next = drmru->dr_next; 742 drmru->dr_next = dr; 743 } else { 744 dr->dr_next = dr; 745 } 746 ndupreqs++; 747 } else { 748 dr = drmru->dr_next; 749 while (dr->dr_status == DUP_INPROGRESS) { 750 dr = dr->dr_next; 751 if (dr == drmru->dr_next) { 752 cmn_err(CE_WARN, "svc_clts_kdup no slots free"); 753 mutex_exit(&dupreq_lock); 754 return (DUP_ERROR); 755 } 756 } 757 unhash(dr); 758 if (dr->dr_resfree) { 759 (*dr->dr_resfree)(dr->dr_resp.buf); 760 } 761 } 762 dr->dr_resfree = NULL; 763 drmru = dr; 764 765 dr->dr_xid = REQTOXID(req); 766 dr->dr_prog = req->rq_prog; 767 dr->dr_vers = req->rq_vers; 768 dr->dr_proc = req->rq_proc; 769 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) { 770 if (dr->dr_addr.buf != NULL) 771 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen); 772 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len; 773 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, 774 KM_NOSLEEP); 775 if (dr->dr_addr.buf == NULL) { 776 dr->dr_addr.maxlen = 0; 777 dr->dr_status = DUP_DROP; 778 mutex_exit(&dupreq_lock); 779 return (DUP_ERROR); 780 } 781 } 782 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len; 783 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len); 784 if (dr->dr_resp.maxlen < size) { 785 if (dr->dr_resp.buf != NULL) 786 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen); 787 dr->dr_resp.maxlen = (unsigned int)size; 788 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP); 789 if (dr->dr_resp.buf == NULL) { 790 dr->dr_resp.maxlen = 0; 791 dr->dr_status = DUP_DROP; 792 mutex_exit(&dupreq_lock); 793 return (DUP_ERROR); 794 } 795 } 796 dr->dr_status = DUP_INPROGRESS; 797 798 drhash = (uint32_t)DRHASH(dr); 799 dr->dr_chain = drhashtbl[drhash]; 800 drhashtbl[drhash] = dr; 801 drhashstat[drhash]++; 802 mutex_exit(&dupreq_lock); 803 *drpp = dr; 804 return (DUP_NEW); 805 } 806 807 /* 808 * PSARC 2003/523 Contract Private Interface 809 * svc_clts_kdupdone 810 * Changes must be reviewed by Solaris File Sharing 811 * Changes must be communicated to contract-2003-523@sun.com 812 * 813 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP) 814 * and stores the response. 815 */ 816 static void 817 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(), 818 int size, int status) 819 { 820 821 ASSERT(dr->dr_resfree == NULL); 822 if (status == DUP_DONE) { 823 bcopy(res, dr->dr_resp.buf, size); 824 dr->dr_resfree = dis_resfree; 825 } 826 dr->dr_status = status; 827 } 828 829 /* 830 * This routine expects that the mutex, dupreq_lock, is already held. 831 */ 832 static void 833 unhash(struct dupreq *dr) 834 { 835 struct dupreq *drt; 836 struct dupreq *drtprev = NULL; 837 uint32_t drhash; 838 839 ASSERT(MUTEX_HELD(&dupreq_lock)); 840 841 drhash = (uint32_t)DRHASH(dr); 842 drt = drhashtbl[drhash]; 843 while (drt != NULL) { 844 if (drt == dr) { 845 drhashstat[drhash]--; 846 if (drtprev == NULL) { 847 drhashtbl[drhash] = drt->dr_chain; 848 } else { 849 drtprev->dr_chain = drt->dr_chain; 850 } 851 return; 852 } 853 drtprev = drt; 854 drt = drt->dr_chain; 855 } 856 } 857 858 void 859 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp) 860 { 861 kstat_t *ksp; 862 kstat_named_t *knp; 863 864 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server", 865 (const kstat_named_t *)&clts_rsstat_tmpl, 866 sizeof (clts_rsstat_tmpl)); 867 /* 868 * Backwards compatibility for old kstat clients 869 */ 870 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc", 871 KSTAT_TYPE_NAMED, clts_rsstat_ndata, 872 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid); 873 if (ksp) { 874 ksp->ks_data = knp; 875 kstat_install(ksp); 876 } 877 *statsp = (struct rpc_clts_server *)knp; 878 } 879 880 void 881 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp) 882 { 883 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server"); 884 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid); 885 kmem_free(*statsp, sizeof (clts_rsstat_tmpl)); 886 } 887 888 void 889 svc_clts_init() 890 { 891 /* 892 * Check to make sure that the clts private data will fit into 893 * the stack buffer allocated by svc_run. The compiler should 894 * remove this check, but it's a safety net if the udp_data 895 * structure ever changes. 896 */ 897 /*CONSTANTCONDITION*/ 898 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN); 899 900 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL); 901 } 902