xref: /illumos-gate/usr/src/uts/common/rpc/clnt_clts.c (revision 628e3cbed6489fa1db545d8524a06cd6535af456)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28  * All Rights Reserved
29  */
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 #pragma ident	"%Z%%M%	%I%	%E% SMI"
37 
38 /*
39  * Implements a kernel based, client side RPC.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/systm.h>
45 #include <sys/sysmacros.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/ddi.h>
49 #include <sys/tiuser.h>
50 #include <sys/tihdr.h>
51 #include <sys/t_kuser.h>
52 #include <sys/errno.h>
53 #include <sys/kmem.h>
54 #include <sys/debug.h>
55 #include <sys/kstat.h>
56 #include <sys/t_lock.h>
57 #include <sys/cmn_err.h>
58 #include <sys/conf.h>
59 #include <sys/disp.h>
60 #include <sys/taskq.h>
61 #include <sys/list.h>
62 #include <sys/atomic.h>
63 #include <sys/zone.h>
64 #include <netinet/in.h>
65 #include <rpc/types.h>
66 #include <rpc/xdr.h>
67 #include <rpc/auth.h>
68 #include <rpc/clnt.h>
69 #include <rpc/rpc_msg.h>
70 
71 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
72 		    caddr_t, xdrproc_t, caddr_t, struct timeval);
73 static void	clnt_clts_kabort(CLIENT *);
74 static void	clnt_clts_kerror(CLIENT *, struct rpc_err *);
75 static bool_t	clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
76 static bool_t	clnt_clts_kcontrol(CLIENT *, int, char *);
77 static void	clnt_clts_kdestroy(CLIENT *);
78 static int	clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
79 		    struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
80 
81 /*
82  * Operations vector for CLTS based RPC
83  */
84 static struct clnt_ops clts_ops = {
85 	clnt_clts_kcallit,	/* do rpc call */
86 	clnt_clts_kabort,	/* abort call */
87 	clnt_clts_kerror,	/* return error status */
88 	clnt_clts_kfreeres,	/* free results */
89 	clnt_clts_kdestroy,	/* destroy rpc handle */
90 	clnt_clts_kcontrol,	/* the ioctl() of rpc */
91 	clnt_clts_ksettimers	/* set retry timers */
92 };
93 
94 /*
95  * Endpoint for CLTS (INET, INET6, loopback, etc.)
96  */
97 typedef struct endpnt_type {
98 	struct endpnt_type *e_next;	/* pointer to next endpoint type */
99 	list_t		e_pool;		/* list of available endpoints */
100 	list_t		e_ilist;	/* list of idle endpints */
101 	struct endpnt	*e_pcurr;	/* pointer to current endpoint */
102 	char		e_protofmly[KNC_STRSIZE];	/* protocol family */
103 	dev_t		e_rdev;		/* device */
104 	kmutex_t	e_plock;	/* pool lock */
105 	kmutex_t	e_ilock;	/* idle list lock */
106 	timeout_id_t	e_itimer;	/* timer to dispatch the taskq */
107 	uint_t		e_cnt;		/* number of endpoints in the pool */
108 	zoneid_t	e_zoneid;	/* zoneid of endpoint type */
109 	kcondvar_t	e_async_cv;	/* cv for asynchronous reap threads */
110 	uint_t		e_async_count;	/* count of asynchronous reap threads */
111 } endpnt_type_t;
112 
113 typedef struct endpnt {
114 	list_node_t	e_node;		/* link to the pool */
115 	list_node_t	e_idle;		/* link to the idle list */
116 	endpnt_type_t	*e_type;	/* back pointer to endpoint type */
117 	TIUSER		*e_tiptr;	/* pointer to transport endpoint */
118 	queue_t		*e_wq;		/* write queue */
119 	uint_t		e_flags;	/* endpoint flags */
120 	uint_t		e_ref;		/* ref count on endpoint */
121 	kcondvar_t	e_cv;		/* condition variable */
122 	kmutex_t	e_lock;		/* protects cv and flags */
123 	time_t		e_itime;	/* time when rele'd */
124 } endpnt_t;
125 
126 #define	ENDPNT_ESTABLISHED	0x1	/* endpoint is established */
127 #define	ENDPNT_WAITING		0x2	/* thread waiting for endpoint */
128 #define	ENDPNT_BOUND		0x4	/* endpoint is bound */
129 #define	ENDPNT_STALE		0x8	/* endpoint is dead */
130 #define	ENDPNT_ONIDLE		0x10	/* endpoint is on the idle list */
131 
132 static krwlock_t	endpnt_type_lock; /* protects endpnt_type_list */
133 static endpnt_type_t	*endpnt_type_list = NULL; /* list of CLTS endpoints */
134 static struct kmem_cache	*endpnt_cache; /* cache of endpnt_t's */
135 static taskq_t			*endpnt_taskq; /* endpnt_t reaper thread */
136 static bool_t			taskq_created; /* flag for endpnt_taskq */
137 static kmutex_t			endpnt_taskq_lock; /* taskq lock */
138 static zone_key_t		endpnt_destructor_key;
139 
140 #define	DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
141 #define	DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
142 
143 /*
144  * Endpoint tunables
145  */
146 static int	clnt_clts_max_endpoints = -1;
147 static int	clnt_clts_hash_size = DEFAULT_HASH_SIZE;
148 static time_t	clnt_clts_endpoint_reap_interval = -1;
149 static clock_t	clnt_clts_taskq_dispatch_interval;
150 
151 /*
152  * Response completion hash queue
153  */
154 static call_table_t *clts_call_ht;
155 
156 /*
157  * Routines for the endpoint manager
158  */
159 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
160 static void endpnt_type_free(struct endpnt_type *);
161 static int check_endpnt(struct endpnt *, struct endpnt **);
162 static struct endpnt *endpnt_get(struct knetconfig *, int);
163 static void endpnt_rele(struct endpnt *);
164 static void endpnt_reap_settimer(endpnt_type_t *);
165 static void endpnt_reap(endpnt_type_t *);
166 static void endpnt_reap_dispatch(void *);
167 static void endpnt_reclaim(zoneid_t);
168 
169 
170 /*
171  * Request dipatching function.
172  */
173 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
174 					calllist_t *, uint_t);
175 
176 /*
177  * The size of the preserialized RPC header information.
178  */
179 #define	CKU_HDRSIZE	20
180 /*
181  * The initial allocation size.  It is small to reduce space requirements.
182  */
183 #define	CKU_INITSIZE	2048
184 /*
185  * The size of additional allocations, if required.  It is larger to
186  * reduce the number of actual allocations.
187  */
188 #define	CKU_ALLOCSIZE	8192
189 
190 /*
191  * Private data per rpc handle.  This structure is allocated by
192  * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
193  */
194 struct cku_private {
195 	CLIENT			 cku_client;	/* client handle */
196 	int			 cku_retrys;	/* request retrys */
197 	calllist_t		 cku_call;
198 	struct endpnt		*cku_endpnt;	/* open end point */
199 	struct knetconfig	 cku_config;
200 	struct netbuf		 cku_addr;	/* remote address */
201 	struct rpc_err		 cku_err;	/* error status */
202 	XDR			 cku_outxdr;	/* xdr stream for output */
203 	XDR			 cku_inxdr;	/* xdr stream for input */
204 	char			 cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
205 	struct cred		*cku_cred;	/* credentials */
206 	struct rpc_timers	*cku_timers;	/* for estimating RTT */
207 	struct rpc_timers	*cku_timeall;	/* for estimating RTT */
208 	void			 (*cku_feedback)(int, int, caddr_t);
209 						/* ptr to feedback rtn */
210 	caddr_t			 cku_feedarg;	/* argument for feedback func */
211 	uint32_t		 cku_xid;	/* current XID */
212 	bool_t			 cku_bcast;	/* RPC broadcast hint */
213 	int			cku_useresvport; /* Use reserved port */
214 	struct rpc_clts_client	*cku_stats;	/* counters for the zone */
215 };
216 
217 static const struct rpc_clts_client {
218 	kstat_named_t	rccalls;
219 	kstat_named_t	rcbadcalls;
220 	kstat_named_t	rcretrans;
221 	kstat_named_t	rcbadxids;
222 	kstat_named_t	rctimeouts;
223 	kstat_named_t	rcnewcreds;
224 	kstat_named_t	rcbadverfs;
225 	kstat_named_t	rctimers;
226 	kstat_named_t	rcnomem;
227 	kstat_named_t	rccantsend;
228 } clts_rcstat_tmpl = {
229 	{ "calls",	KSTAT_DATA_UINT64 },
230 	{ "badcalls",	KSTAT_DATA_UINT64 },
231 	{ "retrans",	KSTAT_DATA_UINT64 },
232 	{ "badxids",	KSTAT_DATA_UINT64 },
233 	{ "timeouts",	KSTAT_DATA_UINT64 },
234 	{ "newcreds",	KSTAT_DATA_UINT64 },
235 	{ "badverfs",	KSTAT_DATA_UINT64 },
236 	{ "timers",	KSTAT_DATA_UINT64 },
237 	{ "nomem",	KSTAT_DATA_UINT64 },
238 	{ "cantsend",	KSTAT_DATA_UINT64 },
239 };
240 
241 static uint_t clts_rcstat_ndata =
242 	sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
243 
244 #define	RCSTAT_INCR(s, x)			\
245 	atomic_add_64(&(s)->x.value.ui64, 1)
246 
247 #define	ptoh(p)		(&((p)->cku_client))
248 #define	htop(h)		((struct cku_private *)((h)->cl_private))
249 
250 /*
251  * Times to retry
252  */
253 #define	SNDTRIES	4
254 #define	REFRESHES	2	/* authentication refreshes */
255 
256 /*
257  * The following is used to determine the global default behavior for
258  * CLTS when binding to a local port.
259  *
260  * If the value is set to 1 the default will be to select a reserved
261  * (aka privileged) port, if the value is zero the default will be to
262  * use non-reserved ports.  Users of kRPC may override this by using
263  * CLNT_CONTROL() and CLSET_BINDRESVPORT.
264  */
265 static int clnt_clts_do_bindresvport = 1;
266 
267 #define	BINDRESVPORT_RETRIES 5
268 
269 void
270 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
271 {
272 	kstat_t *ksp;
273 	kstat_named_t *knp;
274 
275 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
276 	    (const kstat_named_t *)&clts_rcstat_tmpl,
277 	    sizeof (clts_rcstat_tmpl));
278 	/*
279 	 * Backwards compatibility for old kstat clients
280 	 */
281 	ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
282 	    KSTAT_TYPE_NAMED, clts_rcstat_ndata,
283 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
284 	if (ksp) {
285 		ksp->ks_data = knp;
286 		kstat_install(ksp);
287 	}
288 	*statsp = (struct rpc_clts_client *)knp;
289 }
290 
291 void
292 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
293 {
294 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
295 	kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
296 	kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
297 }
298 
299 /*
300  * Create an rpc handle for a clts rpc connection.
301  * Allocates space for the handle structure and the private data.
302  */
303 /* ARGSUSED */
304 int
305 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
306 	rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
307 	CLIENT **cl)
308 {
309 	CLIENT *h;
310 	struct cku_private *p;
311 	struct rpc_msg call_msg;
312 	int error;
313 	int plen;
314 
315 	if (cl == NULL)
316 		return (EINVAL);
317 
318 	*cl = NULL;
319 	error = 0;
320 
321 	p = kmem_zalloc(sizeof (*p), KM_SLEEP);
322 
323 	h = ptoh(p);
324 
325 	/* handle */
326 	h->cl_ops = &clts_ops;
327 	h->cl_private = (caddr_t)p;
328 	h->cl_auth = authkern_create();
329 
330 	/* call message, just used to pre-serialize below */
331 	call_msg.rm_xid = 0;
332 	call_msg.rm_direction = CALL;
333 	call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
334 	call_msg.rm_call.cb_prog = pgm;
335 	call_msg.rm_call.cb_vers = vers;
336 
337 	/* private */
338 	clnt_clts_kinit(h, addr, retrys, cred);
339 
340 	xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
341 
342 	/* pre-serialize call message header */
343 	if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
344 		error = EINVAL;		/* XXX */
345 		goto bad;
346 	}
347 
348 	p->cku_config.knc_rdev = config->knc_rdev;
349 	p->cku_config.knc_semantics = config->knc_semantics;
350 	plen = strlen(config->knc_protofmly) + 1;
351 	p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
352 	bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
353 	p->cku_useresvport = -1; /* value is has not been set */
354 
355 	cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
356 	mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
357 
358 	*cl = h;
359 	return (0);
360 
361 bad:
362 	auth_destroy(h->cl_auth);
363 	kmem_free(p->cku_addr.buf, addr->maxlen);
364 	kmem_free(p, sizeof (struct cku_private));
365 
366 	return (error);
367 }
368 
369 void
370 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
371 {
372 	/* LINTED pointer alignment */
373 	struct cku_private *p = htop(h);
374 	struct rpcstat *rsp;
375 
376 	rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
377 	ASSERT(rsp != NULL);
378 
379 	p->cku_retrys = retrys;
380 
381 	if (p->cku_addr.maxlen < addr->len) {
382 		if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
383 			kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
384 
385 		p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
386 		p->cku_addr.maxlen = addr->maxlen;
387 	}
388 
389 	p->cku_addr.len = addr->len;
390 	bcopy(addr->buf, p->cku_addr.buf, addr->len);
391 
392 	p->cku_cred = cred;
393 	p->cku_xid = 0;
394 	p->cku_timers = NULL;
395 	p->cku_timeall = NULL;
396 	p->cku_feedback = NULL;
397 	p->cku_bcast = FALSE;
398 	p->cku_call.call_xid = 0;
399 	p->cku_call.call_hash = 0;
400 	p->cku_call.call_notified = FALSE;
401 	p->cku_call.call_next = NULL;
402 	p->cku_call.call_prev = NULL;
403 	p->cku_call.call_reply = NULL;
404 	p->cku_call.call_wq = NULL;
405 	p->cku_stats = rsp->rpc_clts_client;
406 }
407 
408 /*
409  * set the timers.  Return current retransmission timeout.
410  */
411 static int
412 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
413 	int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
414 	uint32_t xid)
415 {
416 	/* LINTED pointer alignment */
417 	struct cku_private *p = htop(h);
418 	int value;
419 
420 	p->cku_feedback = feedback;
421 	p->cku_feedarg = arg;
422 	p->cku_timers = t;
423 	p->cku_timeall = all;
424 	if (xid)
425 		p->cku_xid = xid;
426 	value = all->rt_rtxcur;
427 	value += t->rt_rtxcur;
428 	if (value < minimum)
429 		return (minimum);
430 	RCSTAT_INCR(p->cku_stats, rctimers);
431 	return (value);
432 }
433 
434 /*
435  * Time out back off function. tim is in HZ
436  */
437 #define	MAXTIMO	(20 * hz)
438 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
439 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
440 
441 #define	RETRY_POLL_TIMO	30
442 
443 /*
444  * Call remote procedure.
445  * Most of the work of rpc is done here.  We serialize what is left
446  * of the header (some was pre-serialized in the handle), serialize
447  * the arguments, and send it off.  We wait for a reply or a time out.
448  * Timeout causes an immediate return, other packet problems may cause
449  * a retry on the receive.  When a good packet is received we deserialize
450  * it, and check verification.  A bad reply code will cause one retry
451  * with full (longhand) credentials.
452  */
453 enum clnt_stat
454 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
455 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
456 	struct timeval wait, struct netbuf *sin)
457 {
458 	/* LINTED pointer alignment */
459 	struct cku_private *p = htop(h);
460 	XDR *xdrs;
461 	int stries = p->cku_retrys;
462 	int refreshes = REFRESHES;	/* number of times to refresh cred */
463 	int round_trip;			/* time the RPC */
464 	int error;
465 	int hdrsz;
466 	mblk_t *mp;
467 	mblk_t *mpdup;
468 	mblk_t *resp = NULL;
469 	mblk_t *tmp;
470 	calllist_t *call = &p->cku_call;
471 	clock_t timout = 0;
472 	bool_t interrupted;
473 	enum clnt_stat status;
474 	struct rpc_msg reply_msg;
475 	enum clnt_stat re_status;
476 	endpnt_t *endpt;
477 
478 	RCSTAT_INCR(p->cku_stats, rccalls);
479 
480 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
481 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
482 
483 	timout = TIMEVAL_TO_TICK(&wait);
484 
485 	if (p->cku_xid == 0) {
486 		p->cku_xid = alloc_xid();
487 		if (p->cku_endpnt != NULL)
488 			endpnt_rele(p->cku_endpnt);
489 		p->cku_endpnt = NULL;
490 	}
491 	call->call_zoneid = rpc_zoneid();
492 
493 	mpdup = NULL;
494 call_again:
495 
496 	if (mpdup == NULL) {
497 
498 		while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
499 			if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
500 				p->cku_err.re_status = RPC_SYSTEMERROR;
501 				p->cku_err.re_errno = ENOSR;
502 				goto done;
503 			}
504 		}
505 
506 		xdrs = &p->cku_outxdr;
507 		xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
508 
509 		if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
510 			/*
511 			 * Copy in the preserialized RPC header
512 			 * information.
513 			 */
514 			bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
515 
516 			/*
517 			 * transaction id is the 1st thing in the output
518 			 * buffer.
519 			 */
520 			/* LINTED pointer alignment */
521 			(*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
522 
523 			/* Skip the preserialized stuff. */
524 			XDR_SETPOS(xdrs, CKU_HDRSIZE);
525 
526 			/* Serialize dynamic stuff into the output buffer. */
527 			if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
528 			    (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
529 			    (!(*xdr_args)(xdrs, argsp))) {
530 				freemsg(mp);
531 				p->cku_err.re_status = RPC_CANTENCODEARGS;
532 				p->cku_err.re_errno = EIO;
533 				goto done;
534 			}
535 		} else {
536 			uint32_t *uproc = (uint32_t *)
537 			    &p->cku_rpchdr[CKU_HDRSIZE];
538 			IXDR_PUT_U_INT32(uproc, procnum);
539 
540 			(*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
541 			XDR_SETPOS(xdrs, 0);
542 
543 			/* Serialize the procedure number and the arguments. */
544 			if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
545 			    CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
546 				freemsg(mp);
547 				p->cku_err.re_status = RPC_CANTENCODEARGS;
548 				p->cku_err.re_errno = EIO;
549 				goto done;
550 			}
551 		}
552 	} else
553 		mp = mpdup;
554 
555 	mpdup = dupmsg(mp);
556 	if (mpdup == NULL) {
557 		freemsg(mp);
558 		p->cku_err.re_status = RPC_SYSTEMERROR;
559 		p->cku_err.re_errno = ENOSR;
560 		goto done;
561 	}
562 
563 	/*
564 	 * Grab an endpnt only if the endpoint is NULL.  We could be retrying
565 	 * the request and in this case we want to go through the same
566 	 * source port, so that the duplicate request cache may detect a
567 	 * retry.
568 	 */
569 
570 	if (p->cku_endpnt == NULL)
571 		p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
572 
573 	if (p->cku_endpnt == NULL) {
574 		freemsg(mp);
575 		p->cku_err.re_status = RPC_SYSTEMERROR;
576 		p->cku_err.re_errno = ENOSR;
577 		goto done;
578 	}
579 
580 	round_trip = lbolt;
581 
582 	error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
583 	    &p->cku_addr, call, p->cku_xid);
584 
585 	if (error != 0) {
586 		freemsg(mp);
587 		p->cku_err.re_status = RPC_CANTSEND;
588 		p->cku_err.re_errno = error;
589 		RCSTAT_INCR(p->cku_stats, rccantsend);
590 		goto done1;
591 	}
592 
593 	RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
594 	    p->cku_xid);
595 
596 	/*
597 	 * There are two reasons for which we go back to to tryread.
598 	 *
599 	 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
600 	 *    broadcast we should not get any invalid messages with the
601 	 *    RPC_PROCUNAVAIL error back. Some broken RPC implementations
602 	 *    send them and for this we have to ignore them ( as we would
603 	 *    have never received them ) and look for another message
604 	 *    which might contain the valid response because we don't know
605 	 *    how many broken implementations are in the network. So we are
606 	 *    going to loop until
607 	 *    - we received a valid response
608 	 *    - we have processed all invalid responses and
609 	 *	got a time out when we try to receive again a
610 	 *	message.
611 	 *
612 	 * b) We will jump back to tryread also in case we failed
613 	 *    within the AUTH_VALIDATE. In this case we should move
614 	 *    on and loop until we received a valid response or we
615 	 *    have processed all responses with broken authentication
616 	 *    and we got a time out when we try to receive a message.
617 	 */
618 tryread:
619 	mutex_enter(&call->call_lock);
620 	interrupted = FALSE;
621 	if (call->call_notified == FALSE) {
622 		klwp_t *lwp = ttolwp(curthread);
623 		clock_t cv_wait_ret = 1; /* init to > 0 */
624 		clock_t cv_timout = timout;
625 
626 		if (lwp != NULL)
627 			lwp->lwp_nostop++;
628 
629 		cv_timout += lbolt;
630 
631 		if (h->cl_nosignal)
632 			while ((cv_wait_ret =
633 			    cv_timedwait(&call->call_cv,
634 			    &call->call_lock, cv_timout)) > 0 &&
635 			    call->call_notified == FALSE)
636 				;
637 		else
638 			while ((cv_wait_ret =
639 			    cv_timedwait_sig(&call->call_cv,
640 			    &call->call_lock, cv_timout)) > 0 &&
641 			    call->call_notified == FALSE)
642 				;
643 
644 		if (cv_wait_ret == 0)
645 			interrupted = TRUE;
646 
647 		if (lwp != NULL)
648 			lwp->lwp_nostop--;
649 	}
650 	resp = call->call_reply;
651 	call->call_reply = NULL;
652 	status = call->call_status;
653 	/*
654 	 * We have to reset the call_notified here. In case we have
655 	 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
656 	 * error ) we need to set this to false to ensure that
657 	 * we will wait for the next message. When the next message
658 	 * is going to arrive the function clnt_clts_dispatch_notify
659 	 * will set this to true again.
660 	 */
661 	call->call_notified = FALSE;
662 	mutex_exit(&call->call_lock);
663 
664 	if (status == RPC_TIMEDOUT) {
665 		if (interrupted) {
666 			/*
667 			 * We got interrupted, bail out
668 			 */
669 			p->cku_err.re_status = RPC_INTR;
670 			p->cku_err.re_errno = EINTR;
671 			goto done1;
672 		} else {
673 			/*
674 			 * It's possible that our response arrived
675 			 * right after we timed out.  Check to see
676 			 * if it has arrived before we remove the
677 			 * calllist from the dispatch queue.
678 			 */
679 			mutex_enter(&call->call_lock);
680 			if (call->call_notified == TRUE) {
681 				resp = call->call_reply;
682 				call->call_reply = NULL;
683 				mutex_exit(&call->call_lock);
684 				RPCLOG(8, "clnt_clts_kcallit_addr: "
685 				    "response received for request "
686 				    "w/xid 0x%x after timeout\n",
687 				    p->cku_xid);
688 				goto getresponse;
689 			}
690 			mutex_exit(&call->call_lock);
691 
692 			RPCLOG(8, "clnt_clts_kcallit_addr: "
693 			    "request w/xid 0x%x timedout "
694 			    "waiting for reply\n", p->cku_xid);
695 #if 0 /* XXX not yet */
696 			/*
697 			 * Timeout may be due to a dead gateway. Send
698 			 * an ioctl downstream advising deletion of
699 			 * route when we reach the half-way point to
700 			 * timing out.
701 			 */
702 			if (stries == p->cku_retrys/2) {
703 				t_kadvise(p->cku_endpnt->e_tiptr,
704 				    (uchar_t *)p->cku_addr.buf,
705 				    p->cku_addr.len);
706 			}
707 #endif /* not yet */
708 			p->cku_err.re_status = RPC_TIMEDOUT;
709 			p->cku_err.re_errno = ETIMEDOUT;
710 			RCSTAT_INCR(p->cku_stats, rctimeouts);
711 			goto done1;
712 		}
713 	}
714 
715 getresponse:
716 	/*
717 	 * Check to see if a response arrived.  If it one is
718 	 * present then proceed to process the reponse.  Otherwise
719 	 * fall through to retry or retransmit the request.  This
720 	 * is probably not the optimal thing to do, but since we
721 	 * are most likely dealing with a unrealiable transport it
722 	 * is the safe thing to so.
723 	 */
724 	if (resp == NULL) {
725 		p->cku_err.re_status = RPC_CANTRECV;
726 		p->cku_err.re_errno = EIO;
727 		goto done1;
728 	}
729 
730 	/*
731 	 * Prepare the message for further processing.  We need to remove
732 	 * the datagram header and copy the source address if necessary.  No
733 	 * need to verify the header since rpcmod took care of that.
734 	 */
735 	/*
736 	 * Copy the source address if the caller has supplied a netbuf.
737 	 */
738 	if (sin != NULL) {
739 		union T_primitives *pptr;
740 
741 		pptr = (union T_primitives *)resp->b_rptr;
742 		bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
743 		    pptr->unitdata_ind.SRC_length);
744 		sin->len = pptr->unitdata_ind.SRC_length;
745 	}
746 
747 	/*
748 	 * Pop off the datagram header.
749 	 */
750 	hdrsz = resp->b_wptr - resp->b_rptr;
751 	if ((resp->b_wptr - (resp->b_rptr + hdrsz)) == 0) {
752 		tmp = resp;
753 		resp = resp->b_cont;
754 		tmp->b_cont = NULL;
755 		freeb(tmp);
756 	} else {
757 		unsigned char *ud_off = resp->b_rptr;
758 		resp->b_rptr += hdrsz;
759 		tmp = dupb(resp);
760 		if (tmp == NULL) {
761 			p->cku_err.re_status = RPC_SYSTEMERROR;
762 			p->cku_err.re_errno = ENOSR;
763 			freemsg(resp);
764 			goto done1;
765 		}
766 		tmp->b_cont = resp->b_cont;
767 		resp->b_rptr = ud_off;
768 		freeb(resp);
769 		resp = tmp;
770 	}
771 
772 	round_trip = lbolt - round_trip;
773 	/*
774 	 * Van Jacobson timer algorithm here, only if NOT a retransmission.
775 	 */
776 	if (p->cku_timers != NULL && stries == p->cku_retrys) {
777 		int rt;
778 
779 		rt = round_trip;
780 		rt -= (p->cku_timers->rt_srtt >> 3);
781 		p->cku_timers->rt_srtt += rt;
782 		if (rt < 0)
783 			rt = - rt;
784 		rt -= (p->cku_timers->rt_deviate >> 2);
785 		p->cku_timers->rt_deviate += rt;
786 		p->cku_timers->rt_rtxcur =
787 		    (clock_t)((p->cku_timers->rt_srtt >> 2) +
788 		    p->cku_timers->rt_deviate) >> 1;
789 
790 		rt = round_trip;
791 		rt -= (p->cku_timeall->rt_srtt >> 3);
792 		p->cku_timeall->rt_srtt += rt;
793 		if (rt < 0)
794 			rt = - rt;
795 		rt -= (p->cku_timeall->rt_deviate >> 2);
796 		p->cku_timeall->rt_deviate += rt;
797 		p->cku_timeall->rt_rtxcur =
798 		    (clock_t)((p->cku_timeall->rt_srtt >> 2) +
799 		    p->cku_timeall->rt_deviate) >> 1;
800 		if (p->cku_feedback != NULL) {
801 			(*p->cku_feedback)(FEEDBACK_OK, procnum,
802 			    p->cku_feedarg);
803 		}
804 	}
805 
806 	/*
807 	 * Process reply
808 	 */
809 	xdrs = &(p->cku_inxdr);
810 	xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
811 
812 	reply_msg.rm_direction = REPLY;
813 	reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
814 	reply_msg.acpted_rply.ar_stat = SUCCESS;
815 	reply_msg.acpted_rply.ar_verf = _null_auth;
816 	/*
817 	 *  xdr_results will be done in AUTH_UNWRAP.
818 	 */
819 	reply_msg.acpted_rply.ar_results.where = NULL;
820 	reply_msg.acpted_rply.ar_results.proc = xdr_void;
821 
822 	/*
823 	 * Decode and validate the response.
824 	 */
825 	if (!xdr_replymsg(xdrs, &reply_msg)) {
826 		p->cku_err.re_status = RPC_CANTDECODERES;
827 		p->cku_err.re_errno = EIO;
828 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
829 		goto done1;
830 	}
831 
832 	_seterr_reply(&reply_msg, &(p->cku_err));
833 
834 	re_status = p->cku_err.re_status;
835 	if (re_status == RPC_SUCCESS) {
836 		/*
837 		 * Reply is good, check auth.
838 		 */
839 		if (!AUTH_VALIDATE(h->cl_auth,
840 		    &reply_msg.acpted_rply.ar_verf)) {
841 			p->cku_err.re_status = RPC_AUTHERROR;
842 			p->cku_err.re_why = AUTH_INVALIDRESP;
843 			RCSTAT_INCR(p->cku_stats, rcbadverfs);
844 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
845 			goto tryread;
846 		}
847 		if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
848 			p->cku_err.re_status = RPC_CANTDECODERES;
849 			p->cku_err.re_errno = EIO;
850 		}
851 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
852 		goto done1;
853 	}
854 	/* set errno in case we can't recover */
855 	if (re_status != RPC_VERSMISMATCH &&
856 	    re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
857 		p->cku_err.re_errno = EIO;
858 	/*
859 	 * Determine whether or not we're doing an RPC
860 	 * broadcast. Some server implementations don't
861 	 * follow RFC 1050, section 7.4.2 in that they
862 	 * don't remain silent when they see a proc
863 	 * they don't support. Therefore we keep trying
864 	 * to receive on RPC_PROCUNAVAIL, hoping to get
865 	 * a valid response from a compliant server.
866 	 */
867 	if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
868 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
869 		goto tryread;
870 	}
871 	if (re_status == RPC_AUTHERROR) {
872 		/*
873 		 * Maybe our credential need to be refreshed
874 		 */
875 		if (refreshes > 0 &&
876 		    AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
877 			/*
878 			 * The credential is refreshed. Try the request again.
879 			 * Even if stries == 0, we still retry as long as
880 			 * refreshes > 0. This prevents a soft authentication
881 			 * error turning into a hard one at an upper level.
882 			 */
883 			refreshes--;
884 			RCSTAT_INCR(p->cku_stats, rcbadcalls);
885 			RCSTAT_INCR(p->cku_stats, rcnewcreds);
886 
887 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
888 			freemsg(mpdup);
889 			call_table_remove(call);
890 			mutex_enter(&call->call_lock);
891 			if (call->call_reply != NULL) {
892 				freemsg(call->call_reply);
893 				call->call_reply = NULL;
894 			}
895 			mutex_exit(&call->call_lock);
896 
897 			freemsg(resp);
898 			mpdup = NULL;
899 			goto call_again;
900 		}
901 		/*
902 		 * We have used the client handle to do an AUTH_REFRESH
903 		 * and the RPC status may be set to RPC_SUCCESS;
904 		 * Let's make sure to set it to RPC_AUTHERROR.
905 		 */
906 		p->cku_err.re_status = RPC_CANTDECODERES;
907 
908 		/*
909 		 * Map recoverable and unrecoverable
910 		 * authentication errors to appropriate errno
911 		 */
912 		switch (p->cku_err.re_why) {
913 		case AUTH_TOOWEAK:
914 			/*
915 			 * Could be an nfsportmon failure, set
916 			 * useresvport and try again.
917 			 */
918 			if (p->cku_useresvport != 1) {
919 				p->cku_useresvport = 1;
920 				(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
921 				freemsg(mpdup);
922 
923 				call_table_remove(call);
924 				mutex_enter(&call->call_lock);
925 				if (call->call_reply != NULL) {
926 					freemsg(call->call_reply);
927 					call->call_reply = NULL;
928 				}
929 				mutex_exit(&call->call_lock);
930 
931 				freemsg(resp);
932 				mpdup = NULL;
933 				endpt = p->cku_endpnt;
934 				if (endpt->e_tiptr != NULL) {
935 					mutex_enter(&endpt->e_lock);
936 					endpt->e_flags &= ~ENDPNT_BOUND;
937 					(void) t_kclose(endpt->e_tiptr, 1);
938 					endpt->e_tiptr = NULL;
939 					mutex_exit(&endpt->e_lock);
940 
941 				}
942 
943 				p->cku_xid = alloc_xid();
944 				endpnt_rele(p->cku_endpnt);
945 				p->cku_endpnt = NULL;
946 				goto call_again;
947 			}
948 			/* FALLTHRU */
949 		case AUTH_BADCRED:
950 		case AUTH_BADVERF:
951 		case AUTH_INVALIDRESP:
952 		case AUTH_FAILED:
953 		case RPCSEC_GSS_NOCRED:
954 		case RPCSEC_GSS_FAILED:
955 			p->cku_err.re_errno = EACCES;
956 			break;
957 		case AUTH_REJECTEDCRED:
958 		case AUTH_REJECTEDVERF:
959 		default:
960 			p->cku_err.re_errno = EIO;
961 			break;
962 		}
963 		RPCLOG(1, "clnt_clts_kcallit : authentication failed "
964 		    "with RPC_AUTHERROR of type %d\n",
965 		    p->cku_err.re_why);
966 	}
967 
968 	(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
969 
970 done1:
971 	call_table_remove(call);
972 	mutex_enter(&call->call_lock);
973 	if (call->call_reply != NULL) {
974 		freemsg(call->call_reply);
975 		call->call_reply = NULL;
976 	}
977 	mutex_exit(&call->call_lock);
978 	RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
979 	    p->cku_xid);
980 
981 done:
982 	if (resp != NULL) {
983 		freemsg(resp);
984 		resp = NULL;
985 	}
986 
987 	if ((p->cku_err.re_status != RPC_SUCCESS) &&
988 	    (p->cku_err.re_status != RPC_INTR) &&
989 	    (p->cku_err.re_status != RPC_UDERROR) &&
990 	    !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
991 		if (p->cku_feedback != NULL && stries == p->cku_retrys) {
992 			(*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
993 			    p->cku_feedarg);
994 		}
995 
996 		timout = backoff(timout);
997 		if (p->cku_timeall != (struct rpc_timers *)0)
998 			p->cku_timeall->rt_rtxcur = timout;
999 
1000 		if (p->cku_err.re_status == RPC_SYSTEMERROR ||
1001 		    p->cku_err.re_status == RPC_CANTSEND) {
1002 			/*
1003 			 * Errors due to lack of resources, wait a bit
1004 			 * and try again.
1005 			 */
1006 			(void) delay(hz/10);
1007 			/* (void) sleep((caddr_t)&lbolt, PZERO-4); */
1008 		}
1009 		if (stries-- > 0) {
1010 			RCSTAT_INCR(p->cku_stats, rcretrans);
1011 			goto call_again;
1012 		}
1013 	}
1014 
1015 	if (mpdup != NULL)
1016 		freemsg(mpdup);
1017 
1018 	if (p->cku_err.re_status != RPC_SUCCESS) {
1019 		RCSTAT_INCR(p->cku_stats, rcbadcalls);
1020 	}
1021 
1022 	/*
1023 	 * Allow the endpoint to be held by the client handle in case this
1024 	 * RPC was not successful.  A retry may occur at a higher level and
1025 	 * in this case we may want to send the request over the same
1026 	 * source port.
1027 	 */
1028 	if (p->cku_err.re_status == RPC_SUCCESS && p->cku_endpnt != NULL) {
1029 		endpnt_rele(p->cku_endpnt);
1030 		p->cku_endpnt = NULL;
1031 	}
1032 
1033 	return (p->cku_err.re_status);
1034 }
1035 
1036 static enum clnt_stat
1037 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1038 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1039 	struct timeval wait)
1040 {
1041 	return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1042 	    xdr_results, resultsp, wait, NULL));
1043 }
1044 
1045 /*
1046  * Return error info on this handle.
1047  */
1048 static void
1049 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1050 {
1051 	/* LINTED pointer alignment */
1052 	struct cku_private *p = htop(h);
1053 
1054 	*err = p->cku_err;
1055 }
1056 
1057 static bool_t
1058 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1059 {
1060 	/* LINTED pointer alignment */
1061 	struct cku_private *p = htop(h);
1062 	XDR *xdrs;
1063 
1064 	xdrs = &(p->cku_outxdr);
1065 	xdrs->x_op = XDR_FREE;
1066 	return ((*xdr_res)(xdrs, res_ptr));
1067 }
1068 
1069 /*ARGSUSED*/
1070 static void
1071 clnt_clts_kabort(CLIENT *h)
1072 {
1073 }
1074 
1075 static bool_t
1076 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1077 {
1078 	/* LINTED pointer alignment */
1079 	struct cku_private *p = htop(h);
1080 
1081 	switch (cmd) {
1082 	case CLSET_XID:
1083 		p->cku_xid = *((uint32_t *)arg);
1084 		return (TRUE);
1085 
1086 	case CLGET_XID:
1087 		*((uint32_t *)arg) = p->cku_xid;
1088 		return (TRUE);
1089 
1090 	case CLSET_BCAST:
1091 		p->cku_bcast = *((uint32_t *)arg);
1092 		return (TRUE);
1093 
1094 	case CLGET_BCAST:
1095 		*((uint32_t *)arg) = p->cku_bcast;
1096 		return (TRUE);
1097 	case CLSET_BINDRESVPORT:
1098 		if (arg == NULL)
1099 			return (FALSE);
1100 
1101 		if (*(int *)arg != 1 && *(int *)arg != 0)
1102 			return (FALSE);
1103 
1104 		p->cku_useresvport = *(int *)arg;
1105 
1106 		return (TRUE);
1107 
1108 	case CLGET_BINDRESVPORT:
1109 		if (arg == NULL)
1110 			return (FALSE);
1111 
1112 		*(int *)arg = p->cku_useresvport;
1113 
1114 		return (TRUE);
1115 
1116 	default:
1117 		return (FALSE);
1118 	}
1119 }
1120 
1121 /*
1122  * Destroy rpc handle.
1123  * Frees the space used for output buffer, private data, and handle
1124  * structure, and the file pointer/TLI data on last reference.
1125  */
1126 static void
1127 clnt_clts_kdestroy(CLIENT *h)
1128 {
1129 	/* LINTED pointer alignment */
1130 	struct cku_private *p = htop(h);
1131 	calllist_t *call = &p->cku_call;
1132 
1133 	int plen;
1134 
1135 	RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1136 	RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1137 
1138 	if (p->cku_endpnt != NULL)
1139 		endpnt_rele(p->cku_endpnt);
1140 
1141 	cv_destroy(&call->call_cv);
1142 	mutex_destroy(&call->call_lock);
1143 
1144 	plen = strlen(p->cku_config.knc_protofmly) + 1;
1145 	kmem_free(p->cku_config.knc_protofmly, plen);
1146 	kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1147 	kmem_free(p, sizeof (*p));
1148 }
1149 
1150 /*
1151  * The connectionless (CLTS) kRPC endpoint management subsystem.
1152  *
1153  * Because endpoints are potentially shared among threads making RPC calls,
1154  * they are managed in a pool according to type (endpnt_type_t).  Each
1155  * endpnt_type_t points to a list of usable endpoints through the e_pool
1156  * field, which is of type list_t.  list_t is a doubly-linked list.
1157  * The number of endpoints in the pool is stored in the e_cnt field of
1158  * endpnt_type_t and the endpoints are reference counted using the e_ref field
1159  * in the endpnt_t structure.
1160  *
1161  * As an optimization, endpoints that have no references are also linked
1162  * to an idle list via e_ilist which is also of type list_t.  When a thread
1163  * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1164  * consulted and if such an endpoint exists, it is removed from the idle list
1165  * and returned to the caller.
1166  *
1167  * If the idle list is empty, then a check is made to see if more endpoints
1168  * can be created.  If so, we proceed and create a new endpoint which is added
1169  * to the pool and returned to the caller.  If we have reached the limit and
1170  * cannot make a new endpoint then one is returned to the caller via round-
1171  * robin policy.
1172  *
1173  * When an endpoint is placed on the idle list by a thread calling
1174  * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1175  * be dispatched if one hasn't already been.  When the timer fires, the
1176  * taskq traverses the idle list and checks to see which endpoints are
1177  * eligible to be closed.  It determines this by checking if the timestamp
1178  * when the endpoint was released has exceeded the the threshold for how long
1179  * it should stay alive.
1180  *
1181  * endpnt_t structures remain persistent until the memory reclaim callback,
1182  * endpnt_reclaim(), is invoked.
1183  *
1184  * Here is an example of how the data structures would be laid out by the
1185  * subsystem:
1186  *
1187  *       endpnt_type_t
1188  *
1189  *	 loopback		                  inet
1190  *	 _______________	                  ______________
1191  *	| e_next        |----------------------->| e_next       |---->>
1192  *	| e_pool        |<---+                   | e_pool       |<----+
1193  *	| e_ilist       |<---+--+                | e_ilist      |<----+--+
1194  *   +->| e_pcurr       |----+--+--+	      +->| e_pcurr      |-----+--+--+
1195  *   |	| ...           |    |  |  |	      |	 | ...	        |     |  |  |
1196  *   |	| e_itimer (90) |    |  |  |	      |	 | e_itimer (0) |     |  |  |
1197  *   |	| e_cnt (1)     |    |  |  |	      |	 | e_cnt (3)    |     |  |  |
1198  *   |	+---------------+    |  |  |	      |	 +--------------+     |  |  |
1199  *   |			     |  |  |	      |			      |  |  |
1200  *   |   endpnt_t            |  |  |          |	                      |  |  |
1201  *   |	 ____________        |  |  |	      |	  ____________        |  |  |
1202  *   |	| e_node     |<------+  |  |	      |	 | e_node     |<------+  |  |
1203  *   |	| e_idle     |<---------+  |	      |	 | e_idle     |       |  |  |
1204  *   +--| e_type     |<------------+	      +--| e_type     |       |  |  |
1205  *	| e_tiptr    |                        |  | e_tiptr    |       |  |  |
1206  *      | ...	     |		              |	 | ...	      |       |  |  |
1207  *	| e_lock     |		              |	 | e_lock     |       |  |  |
1208  *	| ...        |		              |	 | ...	      |       |  |  |
1209  *      | e_ref (0)  |		              |	 | e_ref (2)  |       |  |  |
1210  *	| e_itime    |	                      |	 | e_itime    |       |  |  |
1211  *	+------------+		              |	 +------------+       |  |  |
1212  *					      |			      |  |  |
1213  *					      |			      |  |  |
1214  *					      |	  ____________        |  |  |
1215  *					      |	 | e_node     |<------+  |  |
1216  *					      |	 | e_idle     |<------+--+  |
1217  *					      +--| e_type     |       |     |
1218  *					      |	 | e_tiptr    |       |     |
1219  *					      |	 | ...	      |       |     |
1220  *					      |	 | e_lock     |       |     |
1221  *					      |	 | ...	      |       |     |
1222  *					      |	 | e_ref (0)  |       |     |
1223  *					      |	 | e_itime    |       |     |
1224  *					      |	 +------------+       |     |
1225  *					      |			      |     |
1226  *					      |			      |     |
1227  *					      |	  ____________        |     |
1228  *					      |	 | e_node     |<------+     |
1229  *					      |	 | e_idle     |             |
1230  *					      +--| e_type     |<------------+
1231  *						 | e_tiptr    |
1232  *						 | ...	      |
1233  *						 | e_lock     |
1234  *						 | ...	      |
1235  *						 | e_ref (1)  |
1236  *						 | e_itime    |
1237  *						 +------------+
1238  *
1239  * Endpoint locking strategy:
1240  *
1241  * The following functions manipulate lists which hold the endpoint and the
1242  * endpoints themselves:
1243  *
1244  * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1245  *
1246  * Lock description follows:
1247  *
1248  * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1249  *		     endpnt_type_list.
1250  *
1251  * e_plock: Lock defined in the endpnt_type_t.  It is intended to
1252  *	    protect accesses to the pool of endopints (e_pool) for a given
1253  *	    endpnt_type_t.
1254  *
1255  * e_ilock: Lock defined in endpnt_type_t.  It is intended to protect accesses
1256  *	    to the idle list (e_ilist) of available endpoints for a given
1257  *	    endpnt_type_t.  It also protects access to the e_itimer, e_async_cv,
1258  *	    and e_async_count fields in endpnt_type_t.
1259  *
1260  * e_lock: Lock defined in the endpnt structure.  It is intended to protect
1261  *	   flags, cv, and ref count.
1262  *
1263  * The order goes as follows so as not to induce deadlock.
1264  *
1265  * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1266  *
1267  * Interaction with Zones and shutting down:
1268  *
1269  * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1270  * tuple, which means that a zone may not reuse another zone's idle endpoints
1271  * without first doing a t_kclose().
1272  *
1273  * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1274  * and e_async_count are used to keep track of the threads in endpnt_taskq
1275  * trying to reap endpnt_ts in the endpnt_type_t.
1276  */
1277 
1278 /*
1279  * Allocate and initialize an endpnt_type_t
1280  */
1281 static struct endpnt_type *
1282 endpnt_type_create(struct knetconfig *config)
1283 {
1284 	struct endpnt_type	*etype;
1285 
1286 	/*
1287 	 * Allocate a new endpoint type to hang a list of
1288 	 * endpoints off of it.
1289 	 */
1290 	etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1291 	etype->e_next = NULL;
1292 	etype->e_pcurr = NULL;
1293 	etype->e_itimer = 0;
1294 	etype->e_cnt = 0;
1295 
1296 	(void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1297 	mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1298 	mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1299 	etype->e_rdev = config->knc_rdev;
1300 	etype->e_zoneid = rpc_zoneid();
1301 	etype->e_async_count = 0;
1302 	cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1303 
1304 	list_create(&etype->e_pool, sizeof (endpnt_t),
1305 	    offsetof(endpnt_t, e_node));
1306 	list_create(&etype->e_ilist, sizeof (endpnt_t),
1307 	    offsetof(endpnt_t, e_idle));
1308 
1309 	/*
1310 	 * Check to see if we need to create a taskq for endpoint
1311 	 * reaping
1312 	 */
1313 	mutex_enter(&endpnt_taskq_lock);
1314 	if (taskq_created == FALSE) {
1315 		taskq_created = TRUE;
1316 		mutex_exit(&endpnt_taskq_lock);
1317 		ASSERT(endpnt_taskq == NULL);
1318 		endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1319 		    minclsyspri, 200, INT_MAX, 0);
1320 	} else
1321 		mutex_exit(&endpnt_taskq_lock);
1322 
1323 	return (etype);
1324 }
1325 
1326 /*
1327  * Free an endpnt_type_t
1328  */
1329 static void
1330 endpnt_type_free(struct endpnt_type *etype)
1331 {
1332 	mutex_destroy(&etype->e_plock);
1333 	mutex_destroy(&etype->e_ilock);
1334 	list_destroy(&etype->e_pool);
1335 	list_destroy(&etype->e_ilist);
1336 	kmem_free(etype, sizeof (endpnt_type_t));
1337 }
1338 
1339 /*
1340  * Check the endpoint to ensure that it is suitable for use.
1341  *
1342  * Possible return values:
1343  *
1344  * return (1) - Endpoint is established, but needs to be re-opened.
1345  * return (0) && *newp == NULL - Endpoint is established, but unusable.
1346  * return (0) && *newp != NULL - Endpoint is established and usable.
1347  */
1348 static int
1349 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1350 {
1351 	*newp = endp;
1352 
1353 	mutex_enter(&endp->e_lock);
1354 	ASSERT(endp->e_ref >= 1);
1355 
1356 	/*
1357 	 * The first condition we check for is if the endpoint has been
1358 	 * allocated, but is unusable either because it has been closed or
1359 	 * has been marked stale.  Only *one* thread will be allowed to
1360 	 * execute the then clause.  This is enforced becuase the first thread
1361 	 * to check this condition will clear the flags, so that subsequent
1362 	 * thread(s) checking this endpoint will move on.
1363 	 */
1364 	if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1365 	    (!(endp->e_flags & ENDPNT_BOUND) ||
1366 	    (endp->e_flags & ENDPNT_STALE))) {
1367 		/*
1368 		 * Clear the flags here since they will be
1369 		 * set again by this thread.  They need to be
1370 		 * individually cleared because we want to maintain
1371 		 * the state for ENDPNT_ONIDLE.
1372 		 */
1373 		endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1374 		    ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1375 		mutex_exit(&endp->e_lock);
1376 		return (1);
1377 	}
1378 
1379 	/*
1380 	 * The second condition is meant for any thread that is waiting for
1381 	 * an endpoint to become established.  It will cv_wait() until
1382 	 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1383 	 * ENDPNT_STALE.
1384 	 */
1385 	while (!(endp->e_flags & ENDPNT_BOUND) &&
1386 	    !(endp->e_flags & ENDPNT_STALE)) {
1387 		endp->e_flags |= ENDPNT_WAITING;
1388 		cv_wait(&endp->e_cv, &endp->e_lock);
1389 	}
1390 
1391 	ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1392 
1393 	/*
1394 	 * The last case we check for is if the endpoint has been marked stale.
1395 	 * If this is the case then set *newp to NULL and return, so that the
1396 	 * caller is notified of the error and can take appropriate action.
1397 	 */
1398 	if (endp->e_flags & ENDPNT_STALE) {
1399 		endp->e_ref--;
1400 		*newp = NULL;
1401 	}
1402 	mutex_exit(&endp->e_lock);
1403 	return (0);
1404 }
1405 
1406 #ifdef DEBUG
1407 /*
1408  * Provide a fault injection setting to test error conditions.
1409  */
1410 static int endpnt_get_return_null = 0;
1411 #endif
1412 
1413 /*
1414  * Returns a handle (struct endpnt *) to an open and bound endpoint
1415  * specified by the knetconfig passed in.  Returns NULL if no valid endpoint
1416  * can be obtained.
1417  */
1418 static struct endpnt *
1419 endpnt_get(struct knetconfig *config, int useresvport)
1420 {
1421 	struct endpnt_type	*n_etype = NULL;
1422 	struct endpnt_type	*np = NULL;
1423 	struct endpnt		*new = NULL;
1424 	struct endpnt		*endp = NULL;
1425 	struct endpnt		*next = NULL;
1426 	TIUSER			*tiptr = NULL;
1427 	int			rtries = BINDRESVPORT_RETRIES;
1428 	int			i = 0;
1429 	int			error;
1430 	int			retval;
1431 	zoneid_t		zoneid = rpc_zoneid();
1432 	cred_t			*cr;
1433 
1434 	RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1435 	RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1436 
1437 #ifdef DEBUG
1438 	/*
1439 	 * Inject fault if desired.  Pretend we have a stale endpoint
1440 	 * and return NULL.
1441 	 */
1442 	if (endpnt_get_return_null > 0) {
1443 		endpnt_get_return_null--;
1444 		return (NULL);
1445 	}
1446 #endif
1447 	rw_enter(&endpnt_type_lock, RW_READER);
1448 
1449 top:
1450 	for (np = endpnt_type_list; np != NULL; np = np->e_next)
1451 		if ((np->e_zoneid == zoneid) &&
1452 		    (np->e_rdev == config->knc_rdev) &&
1453 		    (strcmp(np->e_protofmly,
1454 		    config->knc_protofmly) == 0))
1455 			break;
1456 
1457 	if (np == NULL && n_etype != NULL) {
1458 		ASSERT(rw_write_held(&endpnt_type_lock));
1459 
1460 		/*
1461 		 * Link the endpoint type onto the list
1462 		 */
1463 		n_etype->e_next = endpnt_type_list;
1464 		endpnt_type_list = n_etype;
1465 		np = n_etype;
1466 		n_etype = NULL;
1467 	}
1468 
1469 	if (np == NULL) {
1470 		/*
1471 		 * The logic here is that we were unable to find an
1472 		 * endpnt_type_t that matched our criteria, so we allocate a
1473 		 * new one.  Because kmem_alloc() needs to be called with
1474 		 * KM_SLEEP, we drop our locks so that we don't induce
1475 		 * deadlock.  After allocating and initializing the
1476 		 * endpnt_type_t, we reaquire the lock and go back to check
1477 		 * if this entry needs to be added to the list.  Since we do
1478 		 * some operations without any locking other threads may
1479 		 * have been looking for the same endpnt_type_t and gone
1480 		 * through this code path.  We check for this case and allow
1481 		 * one thread to link its endpnt_type_t to the list and the
1482 		 * other threads will simply free theirs.
1483 		 */
1484 		rw_exit(&endpnt_type_lock);
1485 		n_etype = endpnt_type_create(config);
1486 
1487 		/*
1488 		 * We need to reaquire the lock with RW_WRITER here so that
1489 		 * we can safely link the new endpoint type onto the list.
1490 		 */
1491 		rw_enter(&endpnt_type_lock, RW_WRITER);
1492 		goto top;
1493 	}
1494 
1495 	rw_exit(&endpnt_type_lock);
1496 	/*
1497 	 * If n_etype is not NULL, then another thread was able to
1498 	 * insert an endpnt_type_t of this type  onto the list before
1499 	 * we did.  Go ahead and free ours.
1500 	 */
1501 	if (n_etype != NULL)
1502 		endpnt_type_free(n_etype);
1503 
1504 	mutex_enter(&np->e_ilock);
1505 	/*
1506 	 * The algorithm to hand out endpoints is to first
1507 	 * give out those that are idle if such endpoints
1508 	 * exist.  Otherwise, create a new one if we haven't
1509 	 * reached the max threshold.  Finally, we give out
1510 	 * endpoints in a pseudo LRU fashion (round-robin).
1511 	 *
1512 	 * Note:  The idle list is merely a hint of those endpoints
1513 	 * that should be idle.  There exists a window after the
1514 	 * endpoint is released and before it is linked back onto the
1515 	 * idle list where a thread could get a reference to it and
1516 	 * use it.  This is okay, since the reference counts will
1517 	 * still be consistent.
1518 	 */
1519 	if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1520 		timeout_id_t t_id = 0;
1521 
1522 		mutex_enter(&endp->e_lock);
1523 		endp->e_ref++;
1524 		endp->e_itime = 0;
1525 		endp->e_flags &= ~ENDPNT_ONIDLE;
1526 		mutex_exit(&endp->e_lock);
1527 
1528 		/*
1529 		 * Pop the endpoint off the idle list and hand it off
1530 		 */
1531 		list_remove(&np->e_ilist, endp);
1532 
1533 		if (np->e_itimer != 0) {
1534 			t_id = np->e_itimer;
1535 			np->e_itimer = 0;
1536 		}
1537 		mutex_exit(&np->e_ilock);
1538 		/*
1539 		 * Reset the idle timer if it has been set
1540 		 */
1541 		if (t_id != (timeout_id_t)0)
1542 			(void) untimeout(t_id);
1543 
1544 		if (check_endpnt(endp, &new) == 0)
1545 			return (new);
1546 	} else if (np->e_cnt >= clnt_clts_max_endpoints) {
1547 		/*
1548 		 * There are no idle endpoints currently, so
1549 		 * create a new one if we have not reached the maximum or
1550 		 * hand one out in round-robin.
1551 		 */
1552 		mutex_exit(&np->e_ilock);
1553 		mutex_enter(&np->e_plock);
1554 		endp = np->e_pcurr;
1555 		mutex_enter(&endp->e_lock);
1556 		endp->e_ref++;
1557 		mutex_exit(&endp->e_lock);
1558 
1559 		ASSERT(endp != NULL);
1560 		/*
1561 		 * Advance the pointer to the next eligible endpoint, if
1562 		 * necessary.
1563 		 */
1564 		if (np->e_cnt > 1) {
1565 			next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1566 			if (next == NULL)
1567 				next = (endpnt_t *)list_head(&np->e_pool);
1568 			np->e_pcurr = next;
1569 		}
1570 
1571 		mutex_exit(&np->e_plock);
1572 
1573 		/*
1574 		 * We need to check to see if this endpoint is bound or
1575 		 * not.  If it is in progress then just wait until
1576 		 * the set up is complete
1577 		 */
1578 		if (check_endpnt(endp, &new) == 0)
1579 			return (new);
1580 	} else {
1581 		mutex_exit(&np->e_ilock);
1582 		mutex_enter(&np->e_plock);
1583 
1584 		/*
1585 		 * Allocate a new endpoint to use.  If we can't allocate any
1586 		 * more memory then use one that is already established if any
1587 		 * such endpoints exist.
1588 		 */
1589 		new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1590 		if (new == NULL) {
1591 			RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1592 			/*
1593 			 * Try to recover by using an existing endpoint.
1594 			 */
1595 			if (np->e_cnt <= 0) {
1596 				mutex_exit(&np->e_plock);
1597 				return (NULL);
1598 			}
1599 			endp = np->e_pcurr;
1600 			if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1601 			    NULL)
1602 				np->e_pcurr = next;
1603 			ASSERT(endp != NULL);
1604 			mutex_enter(&endp->e_lock);
1605 			endp->e_ref++;
1606 			mutex_exit(&endp->e_lock);
1607 			mutex_exit(&np->e_plock);
1608 
1609 			if (check_endpnt(endp, &new) == 0)
1610 				return (new);
1611 		} else {
1612 			/*
1613 			 * Partially init an endpoint structure and put
1614 			 * it on the list, so that other interested threads
1615 			 * know that one is being created
1616 			 */
1617 			bzero(new, sizeof (struct endpnt));
1618 
1619 			cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1620 			mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1621 			new->e_ref = 1;
1622 			new->e_type = np;
1623 
1624 			/*
1625 			 * Link the endpoint into the pool.
1626 			 */
1627 			list_insert_head(&np->e_pool, new);
1628 			np->e_cnt++;
1629 			if (np->e_pcurr == NULL)
1630 				np->e_pcurr = new;
1631 			mutex_exit(&np->e_plock);
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * The transport should be opened with sufficient privs
1637 	 */
1638 	cr = zone_kcred();
1639 	error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1640 	    cr);
1641 	if (error) {
1642 		RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1643 		goto bad;
1644 	}
1645 
1646 	new->e_tiptr = tiptr;
1647 	rpc_poptimod(tiptr->fp->f_vnode);
1648 
1649 	/*
1650 	 * Allow the kernel to push the module on behalf of the user.
1651 	 */
1652 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1653 	    K_TO_K, cr, &retval);
1654 	if (error) {
1655 		RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1656 		goto bad;
1657 	}
1658 
1659 	error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1660 	    cr, &retval);
1661 	if (error) {
1662 		RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1663 		goto bad;
1664 	}
1665 
1666 	/*
1667 	 * Connectionless data flow should bypass the stream head.
1668 	 */
1669 	new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1670 
1671 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1672 	    K_TO_K, cr, &retval);
1673 	if (error) {
1674 		RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1675 		goto bad;
1676 	}
1677 
1678 	/*
1679 	 * Attempt to bind the endpoint.  If we fail then propogate
1680 	 * error back to calling subsystem, so that it can be handled
1681 	 * appropriately.
1682 	 * If the caller has not specified reserved port usage then
1683 	 * take the system default.
1684 	 */
1685 	if (useresvport == -1)
1686 		useresvport = clnt_clts_do_bindresvport;
1687 
1688 	if (useresvport &&
1689 	    (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1690 	    strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1691 
1692 		while ((error =
1693 		    bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1694 			RPCLOG(1,
1695 			    "endpnt_get: bindresvport error %d\n", error);
1696 			if (error != EPROTO) {
1697 				if (rtries-- <= 0)
1698 					goto bad;
1699 
1700 				delay(hz << i++);
1701 				continue;
1702 			}
1703 
1704 			(void) t_kclose(new->e_tiptr, 1);
1705 			/*
1706 			 * reopen with all privileges
1707 			 */
1708 			error = t_kopen(NULL, config->knc_rdev,
1709 			    FREAD|FWRITE|FNDELAY,
1710 			    &new->e_tiptr, cr);
1711 			if (error) {
1712 				RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1713 					new->e_tiptr = NULL;
1714 					goto bad;
1715 			}
1716 		}
1717 	} else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1718 		RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1719 		goto bad;
1720 	}
1721 
1722 	/*
1723 	 * Set the flags and notify and waiters that we have an established
1724 	 * endpoint.
1725 	 */
1726 	mutex_enter(&new->e_lock);
1727 	new->e_flags |= ENDPNT_ESTABLISHED;
1728 	new->e_flags |= ENDPNT_BOUND;
1729 	if (new->e_flags & ENDPNT_WAITING) {
1730 		cv_broadcast(&new->e_cv);
1731 		new->e_flags &= ~ENDPNT_WAITING;
1732 	}
1733 	mutex_exit(&new->e_lock);
1734 
1735 	return (new);
1736 
1737 bad:
1738 	ASSERT(new != NULL);
1739 	/*
1740 	 * mark this endpoint as stale and notify any threads waiting
1741 	 * on this endpoint that it will be going away.
1742 	 */
1743 	mutex_enter(&new->e_lock);
1744 	if (new->e_ref > 0) {
1745 		new->e_flags |= ENDPNT_ESTABLISHED;
1746 		new->e_flags |= ENDPNT_STALE;
1747 		if (new->e_flags & ENDPNT_WAITING) {
1748 			cv_broadcast(&new->e_cv);
1749 			new->e_flags &= ~ENDPNT_WAITING;
1750 		}
1751 	}
1752 	new->e_ref--;
1753 	new->e_tiptr = NULL;
1754 	mutex_exit(&new->e_lock);
1755 
1756 	/*
1757 	 * If there was a transport endopoint opened, then close it.
1758 	 */
1759 	if (tiptr != NULL)
1760 		(void) t_kclose(tiptr, 1);
1761 
1762 	return (NULL);
1763 }
1764 
1765 /*
1766  * Release a referece to the endpoint
1767  */
1768 static void
1769 endpnt_rele(struct endpnt *sp)
1770 {
1771 	mutex_enter(&sp->e_lock);
1772 	ASSERT(sp->e_ref > 0);
1773 	sp->e_ref--;
1774 	/*
1775 	 * If the ref count is zero, then start the idle timer and link
1776 	 * the endpoint onto the idle list.
1777 	 */
1778 	if (sp->e_ref == 0) {
1779 		sp->e_itime = gethrestime_sec();
1780 
1781 		/*
1782 		 * Check to see if the endpoint is already linked to the idle
1783 		 * list, so that we don't try to reinsert it.
1784 		 */
1785 		if (sp->e_flags & ENDPNT_ONIDLE) {
1786 			mutex_exit(&sp->e_lock);
1787 			mutex_enter(&sp->e_type->e_ilock);
1788 			endpnt_reap_settimer(sp->e_type);
1789 			mutex_exit(&sp->e_type->e_ilock);
1790 			return;
1791 		}
1792 
1793 		sp->e_flags |= ENDPNT_ONIDLE;
1794 		mutex_exit(&sp->e_lock);
1795 		mutex_enter(&sp->e_type->e_ilock);
1796 		list_insert_tail(&sp->e_type->e_ilist, sp);
1797 		endpnt_reap_settimer(sp->e_type);
1798 		mutex_exit(&sp->e_type->e_ilock);
1799 	} else
1800 		mutex_exit(&sp->e_lock);
1801 }
1802 
1803 static void
1804 endpnt_reap_settimer(endpnt_type_t *etp)
1805 {
1806 	if (etp->e_itimer == (timeout_id_t)0)
1807 		etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1808 		    clnt_clts_taskq_dispatch_interval);
1809 }
1810 
1811 static void
1812 endpnt_reap_dispatch(void *a)
1813 {
1814 	endpnt_type_t *etp = a;
1815 
1816 	/*
1817 	 * The idle timer has fired, so dispatch the taskq to close the
1818 	 * endpoint.
1819 	 */
1820 	if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1821 	    TQ_NOSLEEP) == NULL)
1822 		return;
1823 	mutex_enter(&etp->e_ilock);
1824 	etp->e_async_count++;
1825 	mutex_exit(&etp->e_ilock);
1826 }
1827 
1828 /*
1829  * Traverse the idle list and close those endpoints that have reached their
1830  * timeout interval.
1831  */
1832 static void
1833 endpnt_reap(endpnt_type_t *etp)
1834 {
1835 	struct endpnt *e;
1836 	struct endpnt *next_node = NULL;
1837 
1838 	mutex_enter(&etp->e_ilock);
1839 	e = list_head(&etp->e_ilist);
1840 	while (e != NULL) {
1841 		next_node = list_next(&etp->e_ilist, e);
1842 
1843 		mutex_enter(&e->e_lock);
1844 		if (e->e_ref > 0) {
1845 			mutex_exit(&e->e_lock);
1846 			e = next_node;
1847 			continue;
1848 		}
1849 
1850 		ASSERT(e->e_ref == 0);
1851 		if (e->e_itime > 0 &&
1852 		    (e->e_itime + clnt_clts_endpoint_reap_interval) <
1853 		    gethrestime_sec()) {
1854 			e->e_flags &= ~ENDPNT_BOUND;
1855 			(void) t_kclose(e->e_tiptr, 1);
1856 			e->e_tiptr = NULL;
1857 			e->e_itime = 0;
1858 		}
1859 		mutex_exit(&e->e_lock);
1860 		e = next_node;
1861 	}
1862 	etp->e_itimer = 0;
1863 	if (--etp->e_async_count == 0)
1864 		cv_signal(&etp->e_async_cv);
1865 	mutex_exit(&etp->e_ilock);
1866 }
1867 
1868 static void
1869 endpnt_reclaim(zoneid_t zoneid)
1870 {
1871 	struct endpnt_type *np;
1872 	struct endpnt *e;
1873 	struct endpnt *next_node = NULL;
1874 	list_t free_list;
1875 	int rcnt = 0;
1876 
1877 	list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1878 
1879 	RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1880 	rw_enter(&endpnt_type_lock, RW_READER);
1881 	for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1882 		if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1883 			continue;
1884 
1885 		mutex_enter(&np->e_plock);
1886 		RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1887 		    np->e_protofmly);
1888 		RPCLOG(1, "rdev %ld\n", np->e_rdev);
1889 		RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1890 		    np->e_cnt);
1891 
1892 		if (np->e_cnt == 0) {
1893 			mutex_exit(&np->e_plock);
1894 			continue;
1895 		}
1896 
1897 		/*
1898 		 * The nice thing about maintaining an idle list is that if
1899 		 * there are any endpoints to reclaim, they are going to be
1900 		 * on this list.  Just go through and reap the one's that
1901 		 * have ref counts of zero.
1902 		 */
1903 		mutex_enter(&np->e_ilock);
1904 		e = list_head(&np->e_ilist);
1905 		while (e != NULL) {
1906 			next_node = list_next(&np->e_ilist, e);
1907 			mutex_enter(&e->e_lock);
1908 			if (e->e_ref > 0) {
1909 				mutex_exit(&e->e_lock);
1910 				e = next_node;
1911 				continue;
1912 			}
1913 			ASSERT(e->e_ref == 0);
1914 			mutex_exit(&e->e_lock);
1915 
1916 			list_remove(&np->e_ilist, e);
1917 			list_remove(&np->e_pool, e);
1918 			list_insert_head(&free_list, e);
1919 
1920 			rcnt++;
1921 			np->e_cnt--;
1922 			e = next_node;
1923 		}
1924 		mutex_exit(&np->e_ilock);
1925 		/*
1926 		 * Reset the current pointer to be safe
1927 		 */
1928 		if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1929 			np->e_pcurr = e;
1930 		else {
1931 			ASSERT(np->e_cnt == 0);
1932 			np->e_pcurr = NULL;
1933 		}
1934 
1935 		mutex_exit(&np->e_plock);
1936 	}
1937 	rw_exit(&endpnt_type_lock);
1938 
1939 	while ((e = list_head(&free_list)) != NULL) {
1940 		list_remove(&free_list, e);
1941 		if (e->e_tiptr != NULL)
1942 			(void) t_kclose(e->e_tiptr, 1);
1943 
1944 		cv_destroy(&e->e_cv);
1945 		mutex_destroy(&e->e_lock);
1946 		kmem_cache_free(endpnt_cache, e);
1947 	}
1948 	list_destroy(&free_list);
1949 	RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1950 }
1951 
1952 /*
1953  * Endpoint reclaim zones destructor callback routine.
1954  *
1955  * After reclaiming any cached entries, we basically go through the endpnt_type
1956  * list, canceling outstanding timeouts and free'ing data structures.
1957  */
1958 /* ARGSUSED */
1959 static void
1960 endpnt_destructor(zoneid_t zoneid, void *a)
1961 {
1962 	struct endpnt_type **npp;
1963 	struct endpnt_type *np;
1964 	struct endpnt_type *free_list = NULL;
1965 	timeout_id_t t_id = 0;
1966 	extern void clcleanup_zone(zoneid_t);
1967 	extern void clcleanup4_zone(zoneid_t);
1968 
1969 	/* Make sure NFS client handles are released. */
1970 	clcleanup_zone(zoneid);
1971 	clcleanup4_zone(zoneid);
1972 
1973 	endpnt_reclaim(zoneid);
1974 	/*
1975 	 * We don't need to be holding on to any locks across the call to
1976 	 * endpnt_reclaim() and the code below; we know that no-one can
1977 	 * be holding open connections for this zone (all processes and kernel
1978 	 * threads are gone), so nothing could be adding anything to the list.
1979 	 */
1980 	rw_enter(&endpnt_type_lock, RW_WRITER);
1981 	npp = &endpnt_type_list;
1982 	while ((np = *npp) != NULL) {
1983 		if (np->e_zoneid != zoneid) {
1984 			npp = &np->e_next;
1985 			continue;
1986 		}
1987 		mutex_enter(&np->e_plock);
1988 		mutex_enter(&np->e_ilock);
1989 		if (np->e_itimer != 0) {
1990 			t_id = np->e_itimer;
1991 			np->e_itimer = 0;
1992 		}
1993 		ASSERT(np->e_cnt == 0);
1994 		ASSERT(list_head(&np->e_pool) == NULL);
1995 		ASSERT(list_head(&np->e_ilist) == NULL);
1996 
1997 		mutex_exit(&np->e_ilock);
1998 		mutex_exit(&np->e_plock);
1999 
2000 		/*
2001 		 * untimeout() any outstanding timers that have not yet fired.
2002 		 */
2003 		if (t_id != (timeout_id_t)0)
2004 			(void) untimeout(t_id);
2005 		*npp = np->e_next;
2006 		np->e_next = free_list;
2007 		free_list = np;
2008 	}
2009 	rw_exit(&endpnt_type_lock);
2010 
2011 	while (free_list != NULL) {
2012 		np = free_list;
2013 		free_list = free_list->e_next;
2014 		/*
2015 		 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
2016 		 * the endpnt_type_t.
2017 		 */
2018 		mutex_enter(&np->e_ilock);
2019 		while (np->e_async_count > 0)
2020 			cv_wait(&np->e_async_cv, &np->e_ilock);
2021 		cv_destroy(&np->e_async_cv);
2022 		mutex_destroy(&np->e_plock);
2023 		mutex_destroy(&np->e_ilock);
2024 		list_destroy(&np->e_pool);
2025 		list_destroy(&np->e_ilist);
2026 		kmem_free(np, sizeof (endpnt_type_t));
2027 	}
2028 }
2029 
2030 /*
2031  * Endpoint reclaim kmem callback routine.
2032  */
2033 /* ARGSUSED */
2034 static void
2035 endpnt_repossess(void *a)
2036 {
2037 	/*
2038 	 * Reclaim idle endpnt's from all zones.
2039 	 */
2040 	if (endpnt_taskq != NULL)
2041 		(void) taskq_dispatch(endpnt_taskq,
2042 		    (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
2043 		    TQ_NOSLEEP);
2044 }
2045 
2046 /*
2047  * RPC request dispatch routine.  Constructs a datagram message and wraps it
2048  * around the RPC request to pass downstream.
2049  */
2050 static int
2051 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2052 			calllist_t *cp,	uint_t xid)
2053 {
2054 	mblk_t *bp;
2055 	int msgsz;
2056 	struct T_unitdata_req *udreq;
2057 
2058 	/*
2059 	 * Set up the call record.
2060 	 */
2061 	cp->call_wq = q;
2062 	cp->call_xid = xid;
2063 	cp->call_status = RPC_TIMEDOUT;
2064 	cp->call_notified = FALSE;
2065 	RPCLOG(64,
2066 	    "clnt_clts_dispatch_send: putting xid 0x%x on "
2067 	    "dispatch list\n", xid);
2068 	cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2069 	cp->call_bucket = &clts_call_ht[cp->call_hash];
2070 	call_table_enter(cp);
2071 
2072 	/*
2073 	 * Construct the datagram
2074 	 */
2075 	msgsz = (int)TUNITDATAREQSZ;
2076 	while (!(bp = allocb(msgsz + addr->len, BPRI_LO))) {
2077 		if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2078 			return (ENOSR);
2079 	}
2080 
2081 	udreq = (struct T_unitdata_req *)bp->b_wptr;
2082 	udreq->PRIM_type = T_UNITDATA_REQ;
2083 	udreq->DEST_length = addr->len;
2084 
2085 	if (addr->len) {
2086 		bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2087 		udreq->DEST_offset = (t_scalar_t)msgsz;
2088 		msgsz += addr->len;
2089 	} else
2090 		udreq->DEST_offset = 0;
2091 	udreq->OPT_length = 0;
2092 	udreq->OPT_offset = 0;
2093 
2094 	bp->b_datap->db_type = M_PROTO;
2095 	bp->b_wptr += msgsz;
2096 
2097 	/*
2098 	 * Link the datagram header with the actual data
2099 	 */
2100 	linkb(bp, mp);
2101 
2102 	/*
2103 	 * Send downstream.
2104 	 */
2105 	put(cp->call_wq, bp);
2106 
2107 	return (0);
2108 }
2109 
2110 /*
2111  * RPC response delivery routine.  Deliver the response to the waiting
2112  * thread by matching the xid.
2113  */
2114 void
2115 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2116 {
2117 	calllist_t *e = NULL;
2118 	call_table_t *chtp;
2119 	uint32_t xid;
2120 	uint_t hash;
2121 	unsigned char *hdr_offset;
2122 	mblk_t *resp;
2123 
2124 	/*
2125 	 * If the RPC response is not contained in the same mblk as the
2126 	 * datagram header, then move to the next mblk.
2127 	 */
2128 	hdr_offset = mp->b_rptr;
2129 	resp = mp;
2130 	if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2131 		resp = mp->b_cont;
2132 	else
2133 		resp->b_rptr += resp_off;
2134 
2135 	ASSERT(resp != NULL);
2136 
2137 	if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2138 	    (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2139 		xid = *((uint32_t *)resp->b_rptr);
2140 	else {
2141 		int i = 0;
2142 		unsigned char *p = (unsigned char *)&xid;
2143 		unsigned char *rptr;
2144 		mblk_t *tmp = resp;
2145 
2146 		/*
2147 		 * Copy the xid, byte-by-byte into xid.
2148 		 */
2149 		while (tmp) {
2150 			rptr = tmp->b_rptr;
2151 			while (rptr < tmp->b_wptr) {
2152 				*p++ = *rptr++;
2153 				if (++i >= sizeof (xid))
2154 					goto done_xid_copy;
2155 			}
2156 			tmp = tmp->b_cont;
2157 		}
2158 
2159 		/*
2160 		 * If we got here, we ran out of mblk space before the
2161 		 * xid could be copied.
2162 		 */
2163 		ASSERT(tmp == NULL && i < sizeof (xid));
2164 
2165 		RPCLOG0(1,
2166 		    "clnt_dispatch_notify(clts): message less than "
2167 		    "size of xid\n");
2168 
2169 		freemsg(mp);
2170 		return;
2171 	}
2172 
2173 done_xid_copy:
2174 
2175 	/*
2176 	 * Reset the read pointer back to the beginning of the protocol
2177 	 * header if we moved it.
2178 	 */
2179 	if (mp->b_rptr != hdr_offset)
2180 		mp->b_rptr = hdr_offset;
2181 
2182 	hash = call_hash(xid, clnt_clts_hash_size);
2183 	chtp = &clts_call_ht[hash];
2184 	/* call_table_find returns with the hash bucket locked */
2185 	call_table_find(chtp, xid, e);
2186 
2187 	if (e != NULL) {
2188 		mutex_enter(&e->call_lock);
2189 
2190 		/*
2191 		 * verify that the reply is coming in on
2192 		 * the same zone that it was sent from.
2193 		 */
2194 		if (e->call_zoneid != zoneid) {
2195 			mutex_exit(&e->call_lock);
2196 			mutex_exit(&chtp->ct_lock);
2197 			freemsg(mp);
2198 			return;
2199 		}
2200 
2201 		/*
2202 		 * found thread waiting for this reply.
2203 		 */
2204 		if (e->call_reply) {
2205 			RPCLOG(8,
2206 			    "clnt_dispatch_notify (clts): discarding old "
2207 			    "reply for xid 0x%x\n",
2208 			    xid);
2209 			freemsg(e->call_reply);
2210 		}
2211 		e->call_notified = TRUE;
2212 		e->call_reply = mp;
2213 		e->call_status = RPC_SUCCESS;
2214 		cv_signal(&e->call_cv);
2215 		mutex_exit(&e->call_lock);
2216 		mutex_exit(&chtp->ct_lock);
2217 	} else {
2218 		zone_t *zone;
2219 		struct rpcstat *rpcstat;
2220 
2221 		mutex_exit(&chtp->ct_lock);
2222 		RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2223 		    "0x%x\n", xid);
2224 		freemsg(mp);
2225 		/*
2226 		 * This is unfortunate, but we need to lookup the zone so we
2227 		 * can increment its "rcbadxids" counter.
2228 		 */
2229 		zone = zone_find_by_id(zoneid);
2230 		if (zone == NULL) {
2231 			/*
2232 			 * The zone went away...
2233 			 */
2234 			return;
2235 		}
2236 		rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2237 		if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2238 			/*
2239 			 * Not interested
2240 			 */
2241 			zone_rele(zone);
2242 			return;
2243 		}
2244 		RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2245 		zone_rele(zone);
2246 	}
2247 }
2248 
2249 /*
2250  * Init routine.  Called when rpcmod is loaded.
2251  */
2252 void
2253 clnt_clts_init(void)
2254 {
2255 	endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2256 	    sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2257 	    NULL, 0);
2258 
2259 	rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2260 
2261 	/*
2262 	 * Perform simple bounds checking to make sure that the setting is
2263 	 * reasonable
2264 	 */
2265 	if (clnt_clts_max_endpoints <= 0) {
2266 		if (clnt_clts_do_bindresvport)
2267 			clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2268 		else
2269 			clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2270 	}
2271 
2272 	if (clnt_clts_do_bindresvport &&
2273 	    clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2274 		clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2275 	else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2276 		clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2277 
2278 	if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2279 		clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2280 
2281 	/*
2282 	 * Defer creating the taskq until rpcmod gets pushed.  If we are
2283 	 * in diskless boot mode, rpcmod will get loaded early even before
2284 	 * thread_create() is available.
2285 	 */
2286 	endpnt_taskq = NULL;
2287 	taskq_created = FALSE;
2288 	mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2289 
2290 	if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2291 		clnt_clts_endpoint_reap_interval =
2292 		    DEFAULT_ENDPOINT_REAP_INTERVAL;
2293 
2294 	/*
2295 	 * Dispatch the taskq at an interval which is offset from the
2296 	 * interval that the endpoints should be reaped.
2297 	 */
2298 	clnt_clts_taskq_dispatch_interval =
2299 	    (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2300 
2301 	/*
2302 	 * Initialize the completion queue
2303 	 */
2304 	clts_call_ht = call_table_init(clnt_clts_hash_size);
2305 	/*
2306 	 * Initialize the zone destructor callback.
2307 	 */
2308 	zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2309 }
2310 
2311 void
2312 clnt_clts_fini(void)
2313 {
2314 	(void) zone_key_delete(endpnt_destructor_key);
2315 }
2316