1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
33 * All Rights Reserved
34 */
35
36 /*
37 * Portions of this source code were derived from Berkeley 4.3 BSD
38 * under license from the Regents of the University of California.
39 */
40
41
42 /*
43 * Implements a kernel based, client side RPC.
44 */
45
46 #include <sys/param.h>
47 #include <sys/types.h>
48 #include <sys/systm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/stream.h>
51 #include <sys/strsubr.h>
52 #include <sys/ddi.h>
53 #include <sys/tiuser.h>
54 #include <sys/tihdr.h>
55 #include <sys/t_kuser.h>
56 #include <sys/errno.h>
57 #include <sys/kmem.h>
58 #include <sys/debug.h>
59 #include <sys/kstat.h>
60 #include <sys/t_lock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/conf.h>
63 #include <sys/disp.h>
64 #include <sys/taskq.h>
65 #include <sys/list.h>
66 #include <sys/atomic.h>
67 #include <sys/zone.h>
68 #include <netinet/in.h>
69 #include <rpc/types.h>
70 #include <rpc/xdr.h>
71 #include <rpc/auth.h>
72 #include <rpc/clnt.h>
73 #include <rpc/rpc_msg.h>
74
75 #include <sys/sdt.h>
76
77 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
78 caddr_t, xdrproc_t, caddr_t, struct timeval);
79 static void clnt_clts_kabort(CLIENT *);
80 static void clnt_clts_kerror(CLIENT *, struct rpc_err *);
81 static bool_t clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
82 static bool_t clnt_clts_kcontrol(CLIENT *, int, char *);
83 static void clnt_clts_kdestroy(CLIENT *);
84 static int clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
85 struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
86
87 /*
88 * Operations vector for CLTS based RPC
89 */
90 static struct clnt_ops clts_ops = {
91 clnt_clts_kcallit, /* do rpc call */
92 clnt_clts_kabort, /* abort call */
93 clnt_clts_kerror, /* return error status */
94 clnt_clts_kfreeres, /* free results */
95 clnt_clts_kdestroy, /* destroy rpc handle */
96 clnt_clts_kcontrol, /* the ioctl() of rpc */
97 clnt_clts_ksettimers /* set retry timers */
98 };
99
100 /*
101 * Endpoint for CLTS (INET, INET6, loopback, etc.)
102 */
103 typedef struct endpnt_type {
104 struct endpnt_type *e_next; /* pointer to next endpoint type */
105 list_t e_pool; /* list of available endpoints */
106 list_t e_ilist; /* list of idle endpoints */
107 struct endpnt *e_pcurr; /* pointer to current endpoint */
108 char e_protofmly[KNC_STRSIZE]; /* protocol family */
109 dev_t e_rdev; /* device */
110 kmutex_t e_plock; /* pool lock */
111 kmutex_t e_ilock; /* idle list lock */
112 timeout_id_t e_itimer; /* timer to dispatch the taskq */
113 uint_t e_cnt; /* number of endpoints in the pool */
114 zoneid_t e_zoneid; /* zoneid of endpoint type */
115 kcondvar_t e_async_cv; /* cv for asynchronous reap threads */
116 uint_t e_async_count; /* count of asynchronous reap threads */
117 } endpnt_type_t;
118
119 typedef struct endpnt {
120 list_node_t e_node; /* link to the pool */
121 list_node_t e_idle; /* link to the idle list */
122 endpnt_type_t *e_type; /* back pointer to endpoint type */
123 TIUSER *e_tiptr; /* pointer to transport endpoint */
124 queue_t *e_wq; /* write queue */
125 uint_t e_flags; /* endpoint flags */
126 uint_t e_ref; /* ref count on endpoint */
127 kcondvar_t e_cv; /* condition variable */
128 kmutex_t e_lock; /* protects cv and flags */
129 time_t e_itime; /* time when rele'd */
130 } endpnt_t;
131
132 #define ENDPNT_ESTABLISHED 0x1 /* endpoint is established */
133 #define ENDPNT_WAITING 0x2 /* thread waiting for endpoint */
134 #define ENDPNT_BOUND 0x4 /* endpoint is bound */
135 #define ENDPNT_STALE 0x8 /* endpoint is dead */
136 #define ENDPNT_ONIDLE 0x10 /* endpoint is on the idle list */
137
138 static krwlock_t endpnt_type_lock; /* protects endpnt_type_list */
139 static endpnt_type_t *endpnt_type_list = NULL; /* list of CLTS endpoints */
140 static struct kmem_cache *endpnt_cache; /* cache of endpnt_t's */
141 static taskq_t *endpnt_taskq; /* endpnt_t reaper thread */
142 static bool_t taskq_created; /* flag for endpnt_taskq */
143 static kmutex_t endpnt_taskq_lock; /* taskq lock */
144 static zone_key_t endpnt_destructor_key;
145
146 #define DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
147 #define DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
148
149 /*
150 * Endpoint tunables
151 */
152 static int clnt_clts_max_endpoints = -1;
153 static int clnt_clts_hash_size = DEFAULT_HASH_SIZE;
154 static time_t clnt_clts_endpoint_reap_interval = -1;
155 static clock_t clnt_clts_taskq_dispatch_interval;
156
157 /*
158 * Response completion hash queue
159 */
160 static call_table_t *clts_call_ht;
161
162 /*
163 * Routines for the endpoint manager
164 */
165 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
166 static void endpnt_type_free(struct endpnt_type *);
167 static int check_endpnt(struct endpnt *, struct endpnt **);
168 static struct endpnt *endpnt_get(struct knetconfig *, int);
169 static void endpnt_rele(struct endpnt *);
170 static void endpnt_reap_settimer(endpnt_type_t *);
171 static void endpnt_reap(endpnt_type_t *);
172 static void endpnt_reap_dispatch(void *);
173 static void endpnt_reclaim(zoneid_t);
174
175
176 /*
177 * Request dipatching function.
178 */
179 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
180 calllist_t *, uint_t, cred_t *);
181
182 /*
183 * The size of the preserialized RPC header information.
184 */
185 #define CKU_HDRSIZE 20
186 /*
187 * The initial allocation size. It is small to reduce space requirements.
188 */
189 #define CKU_INITSIZE 2048
190 /*
191 * The size of additional allocations, if required. It is larger to
192 * reduce the number of actual allocations.
193 */
194 #define CKU_ALLOCSIZE 8192
195
196 /*
197 * Private data per rpc handle. This structure is allocated by
198 * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
199 */
200 struct cku_private {
201 CLIENT cku_client; /* client handle */
202 int cku_retrys; /* request retrys */
203 calllist_t cku_call;
204 struct endpnt *cku_endpnt; /* open end point */
205 struct knetconfig cku_config;
206 struct netbuf cku_addr; /* remote address */
207 struct rpc_err cku_err; /* error status */
208 XDR cku_outxdr; /* xdr stream for output */
209 XDR cku_inxdr; /* xdr stream for input */
210 char cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
211 struct cred *cku_cred; /* credentials */
212 struct rpc_timers *cku_timers; /* for estimating RTT */
213 struct rpc_timers *cku_timeall; /* for estimating RTT */
214 void (*cku_feedback)(int, int, caddr_t);
215 /* ptr to feedback rtn */
216 caddr_t cku_feedarg; /* argument for feedback func */
217 uint32_t cku_xid; /* current XID */
218 bool_t cku_bcast; /* RPC broadcast hint */
219 int cku_useresvport; /* Use reserved port */
220 struct rpc_clts_client *cku_stats; /* counters for the zone */
221 };
222
223 static const struct rpc_clts_client {
224 kstat_named_t rccalls;
225 kstat_named_t rcbadcalls;
226 kstat_named_t rcretrans;
227 kstat_named_t rcbadxids;
228 kstat_named_t rctimeouts;
229 kstat_named_t rcnewcreds;
230 kstat_named_t rcbadverfs;
231 kstat_named_t rctimers;
232 kstat_named_t rcnomem;
233 kstat_named_t rccantsend;
234 } clts_rcstat_tmpl = {
235 { "calls", KSTAT_DATA_UINT64 },
236 { "badcalls", KSTAT_DATA_UINT64 },
237 { "retrans", KSTAT_DATA_UINT64 },
238 { "badxids", KSTAT_DATA_UINT64 },
239 { "timeouts", KSTAT_DATA_UINT64 },
240 { "newcreds", KSTAT_DATA_UINT64 },
241 { "badverfs", KSTAT_DATA_UINT64 },
242 { "timers", KSTAT_DATA_UINT64 },
243 { "nomem", KSTAT_DATA_UINT64 },
244 { "cantsend", KSTAT_DATA_UINT64 },
245 };
246
247 static uint_t clts_rcstat_ndata =
248 sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
249
250 #define RCSTAT_INCR(s, x) \
251 atomic_inc_64(&(s)->x.value.ui64)
252
253 #define ptoh(p) (&((p)->cku_client))
254 #define htop(h) ((struct cku_private *)((h)->cl_private))
255
256 /*
257 * Times to retry
258 */
259 #define SNDTRIES 4
260 #define REFRESHES 2 /* authentication refreshes */
261
262 /*
263 * The following is used to determine the global default behavior for
264 * CLTS when binding to a local port.
265 *
266 * If the value is set to 1 the default will be to select a reserved
267 * (aka privileged) port, if the value is zero the default will be to
268 * use non-reserved ports. Users of kRPC may override this by using
269 * CLNT_CONTROL() and CLSET_BINDRESVPORT.
270 */
271 static int clnt_clts_do_bindresvport = 1;
272
273 #define BINDRESVPORT_RETRIES 5
274
275 void
clnt_clts_stats_init(zoneid_t zoneid,struct rpc_clts_client ** statsp)276 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
277 {
278 kstat_t *ksp;
279 kstat_named_t *knp;
280
281 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
282 (const kstat_named_t *)&clts_rcstat_tmpl,
283 sizeof (clts_rcstat_tmpl));
284 /*
285 * Backwards compatibility for old kstat clients
286 */
287 ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
288 KSTAT_TYPE_NAMED, clts_rcstat_ndata,
289 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
290 if (ksp) {
291 ksp->ks_data = knp;
292 kstat_install(ksp);
293 }
294 *statsp = (struct rpc_clts_client *)knp;
295 }
296
297 void
clnt_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_client ** statsp)298 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
299 {
300 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
301 kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
302 kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
303 }
304
305 /*
306 * Create an rpc handle for a clts rpc connection.
307 * Allocates space for the handle structure and the private data.
308 */
309 /* ARGSUSED */
310 int
clnt_clts_kcreate(struct knetconfig * config,struct netbuf * addr,rpcprog_t pgm,rpcvers_t vers,int retrys,struct cred * cred,CLIENT ** cl)311 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
312 rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
313 CLIENT **cl)
314 {
315 CLIENT *h;
316 struct cku_private *p;
317 struct rpc_msg call_msg;
318 int error;
319 int plen;
320
321 if (cl == NULL)
322 return (EINVAL);
323
324 *cl = NULL;
325 error = 0;
326
327 p = kmem_zalloc(sizeof (*p), KM_SLEEP);
328
329 h = ptoh(p);
330
331 /* handle */
332 h->cl_ops = &clts_ops;
333 h->cl_private = (caddr_t)p;
334 h->cl_auth = authkern_create();
335
336 /* call message, just used to pre-serialize below */
337 call_msg.rm_xid = 0;
338 call_msg.rm_direction = CALL;
339 call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
340 call_msg.rm_call.cb_prog = pgm;
341 call_msg.rm_call.cb_vers = vers;
342
343 /* private */
344 clnt_clts_kinit(h, addr, retrys, cred);
345
346 xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
347
348 /* pre-serialize call message header */
349 if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
350 XDR_DESTROY(&p->cku_outxdr);
351 error = EINVAL; /* XXX */
352 goto bad;
353 }
354 XDR_DESTROY(&p->cku_outxdr);
355
356 p->cku_config.knc_rdev = config->knc_rdev;
357 p->cku_config.knc_semantics = config->knc_semantics;
358 plen = strlen(config->knc_protofmly) + 1;
359 p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
360 bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
361 p->cku_useresvport = -1; /* value is has not been set */
362
363 cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
364 mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
365
366 *cl = h;
367 return (0);
368
369 bad:
370 auth_destroy(h->cl_auth);
371 kmem_free(p->cku_addr.buf, addr->maxlen);
372 kmem_free(p, sizeof (struct cku_private));
373
374 return (error);
375 }
376
377 void
clnt_clts_kinit(CLIENT * h,struct netbuf * addr,int retrys,cred_t * cred)378 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
379 {
380 /* LINTED pointer alignment */
381 struct cku_private *p = htop(h);
382 struct rpcstat *rsp;
383
384 rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
385 ASSERT(rsp != NULL);
386
387 p->cku_retrys = retrys;
388
389 if (p->cku_addr.maxlen < addr->len) {
390 if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
391 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
392
393 p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
394 p->cku_addr.maxlen = addr->maxlen;
395 }
396
397 p->cku_addr.len = addr->len;
398 bcopy(addr->buf, p->cku_addr.buf, addr->len);
399
400 p->cku_cred = cred;
401 p->cku_xid = 0;
402 p->cku_timers = NULL;
403 p->cku_timeall = NULL;
404 p->cku_feedback = NULL;
405 p->cku_bcast = FALSE;
406 p->cku_call.call_xid = 0;
407 p->cku_call.call_hash = 0;
408 p->cku_call.call_notified = FALSE;
409 p->cku_call.call_next = NULL;
410 p->cku_call.call_prev = NULL;
411 p->cku_call.call_reply = NULL;
412 p->cku_call.call_wq = NULL;
413 p->cku_stats = rsp->rpc_clts_client;
414 }
415
416 /*
417 * set the timers. Return current retransmission timeout.
418 */
419 static int
clnt_clts_ksettimers(CLIENT * h,struct rpc_timers * t,struct rpc_timers * all,int minimum,void (* feedback)(int,int,caddr_t),caddr_t arg,uint32_t xid)420 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
421 int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
422 uint32_t xid)
423 {
424 /* LINTED pointer alignment */
425 struct cku_private *p = htop(h);
426 int value;
427
428 p->cku_feedback = feedback;
429 p->cku_feedarg = arg;
430 p->cku_timers = t;
431 p->cku_timeall = all;
432 if (xid)
433 p->cku_xid = xid;
434 value = all->rt_rtxcur;
435 value += t->rt_rtxcur;
436 if (value < minimum)
437 return (minimum);
438 RCSTAT_INCR(p->cku_stats, rctimers);
439 return (value);
440 }
441
442 /*
443 * Time out back off function. tim is in HZ
444 */
445 #define MAXTIMO (20 * hz)
446 #define backoff(tim) (((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
447 #define dobackoff(tim) ((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
448
449 #define RETRY_POLL_TIMO 30
450
451 /*
452 * Call remote procedure.
453 * Most of the work of rpc is done here. We serialize what is left
454 * of the header (some was pre-serialized in the handle), serialize
455 * the arguments, and send it off. We wait for a reply or a time out.
456 * Timeout causes an immediate return, other packet problems may cause
457 * a retry on the receive. When a good packet is received we deserialize
458 * it, and check verification. A bad reply code will cause one retry
459 * with full (longhand) credentials.
460 */
461 enum clnt_stat
clnt_clts_kcallit_addr(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait,struct netbuf * sin)462 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
463 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
464 struct timeval wait, struct netbuf *sin)
465 {
466 /* LINTED pointer alignment */
467 struct cku_private *p = htop(h);
468 XDR *xdrs;
469 int stries = p->cku_retrys;
470 int refreshes = REFRESHES; /* number of times to refresh cred */
471 int round_trip; /* time the RPC */
472 int error;
473 mblk_t *mp;
474 mblk_t *mpdup;
475 mblk_t *resp = NULL;
476 mblk_t *tmp;
477 calllist_t *call = &p->cku_call;
478 clock_t ori_timout, timout;
479 bool_t interrupted;
480 enum clnt_stat status;
481 struct rpc_msg reply_msg;
482 enum clnt_stat re_status;
483 endpnt_t *endpt;
484
485 RCSTAT_INCR(p->cku_stats, rccalls);
486
487 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
488 RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
489
490 timout = TIMEVAL_TO_TICK(&wait);
491 ori_timout = timout;
492
493 if (p->cku_xid == 0) {
494 p->cku_xid = alloc_xid();
495 if (p->cku_endpnt != NULL)
496 endpnt_rele(p->cku_endpnt);
497 p->cku_endpnt = NULL;
498 }
499 call->call_zoneid = rpc_zoneid();
500
501 mpdup = NULL;
502 call_again:
503
504 if (mpdup == NULL) {
505
506 while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
507 if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
508 p->cku_err.re_status = RPC_SYSTEMERROR;
509 p->cku_err.re_errno = ENOSR;
510 goto done;
511 }
512 }
513
514 xdrs = &p->cku_outxdr;
515 xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
516
517 if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
518 /*
519 * Copy in the preserialized RPC header
520 * information.
521 */
522 bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
523
524 /*
525 * transaction id is the 1st thing in the output
526 * buffer.
527 */
528 /* LINTED pointer alignment */
529 (*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
530
531 /* Skip the preserialized stuff. */
532 XDR_SETPOS(xdrs, CKU_HDRSIZE);
533
534 /* Serialize dynamic stuff into the output buffer. */
535 if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
536 (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
537 (!(*xdr_args)(xdrs, argsp))) {
538 XDR_DESTROY(xdrs);
539 freemsg(mp);
540 p->cku_err.re_status = RPC_CANTENCODEARGS;
541 p->cku_err.re_errno = EIO;
542 goto done;
543 }
544 } else {
545 uint32_t *uproc = (uint32_t *)
546 &p->cku_rpchdr[CKU_HDRSIZE];
547 IXDR_PUT_U_INT32(uproc, procnum);
548
549 (*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
550 XDR_SETPOS(xdrs, 0);
551
552 /* Serialize the procedure number and the arguments. */
553 if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
554 CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
555 XDR_DESTROY(xdrs);
556 freemsg(mp);
557 p->cku_err.re_status = RPC_CANTENCODEARGS;
558 p->cku_err.re_errno = EIO;
559 goto done;
560 }
561 }
562
563 XDR_DESTROY(xdrs);
564 } else
565 mp = mpdup;
566
567 mpdup = dupmsg(mp);
568 if (mpdup == NULL) {
569 freemsg(mp);
570 p->cku_err.re_status = RPC_SYSTEMERROR;
571 p->cku_err.re_errno = ENOSR;
572 goto done;
573 }
574
575 /*
576 * Grab an endpnt only if the endpoint is NULL. We could be retrying
577 * the request and in this case we want to go through the same
578 * source port, so that the duplicate request cache may detect a
579 * retry.
580 */
581
582 if (p->cku_endpnt == NULL)
583 p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
584
585 if (p->cku_endpnt == NULL) {
586 freemsg(mp);
587 p->cku_err.re_status = RPC_SYSTEMERROR;
588 p->cku_err.re_errno = ENOSR;
589 goto done;
590 }
591
592 round_trip = ddi_get_lbolt();
593
594 error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
595 &p->cku_addr, call, p->cku_xid, p->cku_cred);
596
597 if (error != 0) {
598 freemsg(mp);
599 p->cku_err.re_status = RPC_CANTSEND;
600 p->cku_err.re_errno = error;
601 RCSTAT_INCR(p->cku_stats, rccantsend);
602 goto done1;
603 }
604
605 RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
606 p->cku_xid);
607
608 /*
609 * There are two reasons for which we go back to to tryread.
610 *
611 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
612 * broadcast we should not get any invalid messages with the
613 * RPC_PROCUNAVAIL error back. Some broken RPC implementations
614 * send them and for this we have to ignore them ( as we would
615 * have never received them ) and look for another message
616 * which might contain the valid response because we don't know
617 * how many broken implementations are in the network. So we are
618 * going to loop until
619 * - we received a valid response
620 * - we have processed all invalid responses and
621 * got a time out when we try to receive again a
622 * message.
623 *
624 * b) We will jump back to tryread also in case we failed
625 * within the AUTH_VALIDATE. In this case we should move
626 * on and loop until we received a valid response or we
627 * have processed all responses with broken authentication
628 * and we got a time out when we try to receive a message.
629 */
630 tryread:
631 mutex_enter(&call->call_lock);
632 interrupted = FALSE;
633 if (call->call_notified == FALSE) {
634 klwp_t *lwp = ttolwp(curthread);
635 clock_t cv_wait_ret = 1; /* init to > 0 */
636 clock_t cv_timout = timout;
637
638 if (lwp != NULL)
639 lwp->lwp_nostop++;
640
641 cv_timout += ddi_get_lbolt();
642
643 if (h->cl_nosignal)
644 while ((cv_wait_ret =
645 cv_timedwait(&call->call_cv,
646 &call->call_lock, cv_timout)) > 0 &&
647 call->call_notified == FALSE)
648 ;
649 else
650 while ((cv_wait_ret =
651 cv_timedwait_sig(&call->call_cv,
652 &call->call_lock, cv_timout)) > 0 &&
653 call->call_notified == FALSE)
654 ;
655
656 if (cv_wait_ret == 0)
657 interrupted = TRUE;
658
659 if (lwp != NULL)
660 lwp->lwp_nostop--;
661 }
662 resp = call->call_reply;
663 call->call_reply = NULL;
664 status = call->call_status;
665 /*
666 * We have to reset the call_notified here. In case we have
667 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
668 * error ) we need to set this to false to ensure that
669 * we will wait for the next message. When the next message
670 * is going to arrive the function clnt_clts_dispatch_notify
671 * will set this to true again.
672 */
673 call->call_notified = FALSE;
674 call->call_status = RPC_TIMEDOUT;
675 mutex_exit(&call->call_lock);
676
677 if (status == RPC_TIMEDOUT) {
678 if (interrupted) {
679 /*
680 * We got interrupted, bail out
681 */
682 p->cku_err.re_status = RPC_INTR;
683 p->cku_err.re_errno = EINTR;
684 goto done1;
685 } else {
686 RPCLOG(8, "clnt_clts_kcallit_addr: "
687 "request w/xid 0x%x timedout "
688 "waiting for reply\n", p->cku_xid);
689 #if 0 /* XXX not yet */
690 /*
691 * Timeout may be due to a dead gateway. Send
692 * an ioctl downstream advising deletion of
693 * route when we reach the half-way point to
694 * timing out.
695 */
696 if (stries == p->cku_retrys/2) {
697 t_kadvise(p->cku_endpnt->e_tiptr,
698 (uchar_t *)p->cku_addr.buf,
699 p->cku_addr.len);
700 }
701 #endif /* not yet */
702 p->cku_err.re_status = RPC_TIMEDOUT;
703 p->cku_err.re_errno = ETIMEDOUT;
704 RCSTAT_INCR(p->cku_stats, rctimeouts);
705 goto done1;
706 }
707 }
708
709 ASSERT(resp != NULL);
710
711 /*
712 * Prepare the message for further processing. We need to remove
713 * the datagram header and copy the source address if necessary. No
714 * need to verify the header since rpcmod took care of that.
715 */
716 /*
717 * Copy the source address if the caller has supplied a netbuf.
718 */
719 if (sin != NULL) {
720 union T_primitives *pptr;
721
722 pptr = (union T_primitives *)resp->b_rptr;
723 bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
724 pptr->unitdata_ind.SRC_length);
725 sin->len = pptr->unitdata_ind.SRC_length;
726 }
727
728 /*
729 * Pop off the datagram header.
730 * It was retained in rpcmodrput().
731 */
732 tmp = resp;
733 resp = resp->b_cont;
734 tmp->b_cont = NULL;
735 freeb(tmp);
736
737 round_trip = ddi_get_lbolt() - round_trip;
738 /*
739 * Van Jacobson timer algorithm here, only if NOT a retransmission.
740 */
741 if (p->cku_timers != NULL && stries == p->cku_retrys) {
742 int rt;
743
744 rt = round_trip;
745 rt -= (p->cku_timers->rt_srtt >> 3);
746 p->cku_timers->rt_srtt += rt;
747 if (rt < 0)
748 rt = - rt;
749 rt -= (p->cku_timers->rt_deviate >> 2);
750 p->cku_timers->rt_deviate += rt;
751 p->cku_timers->rt_rtxcur =
752 (clock_t)((p->cku_timers->rt_srtt >> 2) +
753 p->cku_timers->rt_deviate) >> 1;
754
755 rt = round_trip;
756 rt -= (p->cku_timeall->rt_srtt >> 3);
757 p->cku_timeall->rt_srtt += rt;
758 if (rt < 0)
759 rt = - rt;
760 rt -= (p->cku_timeall->rt_deviate >> 2);
761 p->cku_timeall->rt_deviate += rt;
762 p->cku_timeall->rt_rtxcur =
763 (clock_t)((p->cku_timeall->rt_srtt >> 2) +
764 p->cku_timeall->rt_deviate) >> 1;
765 if (p->cku_feedback != NULL) {
766 (*p->cku_feedback)(FEEDBACK_OK, procnum,
767 p->cku_feedarg);
768 }
769 }
770
771 /*
772 * Process reply
773 */
774 xdrs = &(p->cku_inxdr);
775 xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
776
777 reply_msg.rm_direction = REPLY;
778 reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
779 reply_msg.acpted_rply.ar_stat = SUCCESS;
780 reply_msg.acpted_rply.ar_verf = _null_auth;
781 /*
782 * xdr_results will be done in AUTH_UNWRAP.
783 */
784 reply_msg.acpted_rply.ar_results.where = NULL;
785 reply_msg.acpted_rply.ar_results.proc = xdr_void;
786
787 /*
788 * Decode and validate the response.
789 */
790 if (!xdr_replymsg(xdrs, &reply_msg)) {
791 p->cku_err.re_status = RPC_CANTDECODERES;
792 p->cku_err.re_errno = EIO;
793 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
794 XDR_DESTROY(xdrs);
795 goto done1;
796 }
797
798 _seterr_reply(&reply_msg, &(p->cku_err));
799
800 re_status = p->cku_err.re_status;
801 if (re_status == RPC_SUCCESS) {
802 /*
803 * Reply is good, check auth.
804 */
805 if (!AUTH_VALIDATE(h->cl_auth,
806 &reply_msg.acpted_rply.ar_verf)) {
807 p->cku_err.re_status = RPC_AUTHERROR;
808 p->cku_err.re_why = AUTH_INVALIDRESP;
809 RCSTAT_INCR(p->cku_stats, rcbadverfs);
810 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
811 XDR_DESTROY(xdrs);
812 goto tryread;
813 }
814 if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
815 p->cku_err.re_status = RPC_CANTDECODERES;
816 p->cku_err.re_errno = EIO;
817 }
818 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
819 XDR_DESTROY(xdrs);
820 goto done1;
821 }
822 /* set errno in case we can't recover */
823 if (re_status != RPC_VERSMISMATCH &&
824 re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
825 p->cku_err.re_errno = EIO;
826 /*
827 * Determine whether or not we're doing an RPC
828 * broadcast. Some server implementations don't
829 * follow RFC 1050, section 7.4.2 in that they
830 * don't remain silent when they see a proc
831 * they don't support. Therefore we keep trying
832 * to receive on RPC_PROCUNAVAIL, hoping to get
833 * a valid response from a compliant server.
834 */
835 if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
836 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
837 XDR_DESTROY(xdrs);
838 goto tryread;
839 }
840 if (re_status == RPC_AUTHERROR) {
841
842 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
843 XDR_DESTROY(xdrs);
844 call_table_remove(call);
845 if (call->call_reply != NULL) {
846 freemsg(call->call_reply);
847 call->call_reply = NULL;
848 }
849
850 /*
851 * Maybe our credential need to be refreshed
852 */
853 if (refreshes > 0 &&
854 AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
855 /*
856 * The credential is refreshed. Try the request again.
857 * Even if stries == 0, we still retry as long as
858 * refreshes > 0. This prevents a soft authentication
859 * error turning into a hard one at an upper level.
860 */
861 refreshes--;
862 RCSTAT_INCR(p->cku_stats, rcbadcalls);
863 RCSTAT_INCR(p->cku_stats, rcnewcreds);
864
865 freemsg(mpdup);
866 mpdup = NULL;
867 freemsg(resp);
868 resp = NULL;
869 goto call_again;
870 }
871 /*
872 * We have used the client handle to do an AUTH_REFRESH
873 * and the RPC status may be set to RPC_SUCCESS;
874 * Let's make sure to set it to RPC_AUTHERROR.
875 */
876 p->cku_err.re_status = RPC_CANTDECODERES;
877
878 /*
879 * Map recoverable and unrecoverable
880 * authentication errors to appropriate errno
881 */
882 switch (p->cku_err.re_why) {
883 case AUTH_TOOWEAK:
884 /*
885 * Could be an nfsportmon failure, set
886 * useresvport and try again.
887 */
888 if (p->cku_useresvport != 1) {
889 p->cku_useresvport = 1;
890
891 freemsg(mpdup);
892 mpdup = NULL;
893 freemsg(resp);
894 resp = NULL;
895
896 endpt = p->cku_endpnt;
897 if (endpt->e_tiptr != NULL) {
898 mutex_enter(&endpt->e_lock);
899 endpt->e_flags &= ~ENDPNT_BOUND;
900 (void) t_kclose(endpt->e_tiptr, 1);
901 endpt->e_tiptr = NULL;
902 mutex_exit(&endpt->e_lock);
903
904 }
905
906 p->cku_xid = alloc_xid();
907 endpnt_rele(p->cku_endpnt);
908 p->cku_endpnt = NULL;
909 goto call_again;
910 }
911 /* FALLTHRU */
912 case AUTH_BADCRED:
913 case AUTH_BADVERF:
914 case AUTH_INVALIDRESP:
915 case AUTH_FAILED:
916 case RPCSEC_GSS_NOCRED:
917 case RPCSEC_GSS_FAILED:
918 p->cku_err.re_errno = EACCES;
919 break;
920 case AUTH_REJECTEDCRED:
921 case AUTH_REJECTEDVERF:
922 default:
923 p->cku_err.re_errno = EIO;
924 break;
925 }
926 RPCLOG(1, "clnt_clts_kcallit : authentication failed "
927 "with RPC_AUTHERROR of type %d\n",
928 p->cku_err.re_why);
929 goto done;
930 }
931
932 (void) xdr_rpc_free_verifier(xdrs, &reply_msg);
933 XDR_DESTROY(xdrs);
934
935 done1:
936 call_table_remove(call);
937 if (call->call_reply != NULL) {
938 freemsg(call->call_reply);
939 call->call_reply = NULL;
940 }
941 RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
942 p->cku_xid);
943
944 done:
945 if (resp != NULL) {
946 freemsg(resp);
947 resp = NULL;
948 }
949
950 if ((p->cku_err.re_status != RPC_SUCCESS) &&
951 (p->cku_err.re_status != RPC_INTR) &&
952 (p->cku_err.re_status != RPC_UDERROR) &&
953 !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
954 if (p->cku_feedback != NULL && stries == p->cku_retrys) {
955 (*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
956 p->cku_feedarg);
957 }
958
959 timout = backoff(timout);
960 if (p->cku_timeall != (struct rpc_timers *)0)
961 p->cku_timeall->rt_rtxcur = timout;
962
963 if (p->cku_err.re_status == RPC_SYSTEMERROR ||
964 p->cku_err.re_status == RPC_CANTSEND) {
965 /*
966 * Errors due to lack of resources, wait a bit
967 * and try again.
968 */
969 (void) delay(hz/10);
970 }
971 if (stries-- > 0) {
972 RCSTAT_INCR(p->cku_stats, rcretrans);
973 goto call_again;
974 }
975 }
976
977 if (mpdup != NULL)
978 freemsg(mpdup);
979
980 if (p->cku_err.re_status != RPC_SUCCESS) {
981 RCSTAT_INCR(p->cku_stats, rcbadcalls);
982 }
983
984 /*
985 * Allow the endpoint to be held by the client handle in case this
986 * RPC was not successful. A retry may occur at a higher level and
987 * in this case we may want to send the request over the same
988 * source port.
989 * Endpoint is also released for one-way RPC: no reply, nor retransmit
990 * is expected.
991 */
992 if ((p->cku_err.re_status == RPC_SUCCESS ||
993 (p->cku_err.re_status == RPC_TIMEDOUT && ori_timout == 0)) &&
994 p->cku_endpnt != NULL) {
995 endpnt_rele(p->cku_endpnt);
996 p->cku_endpnt = NULL;
997 } else {
998 DTRACE_PROBE2(clnt_clts_kcallit_done, int, p->cku_err.re_status,
999 struct endpnt *, p->cku_endpnt);
1000 }
1001
1002 return (p->cku_err.re_status);
1003 }
1004
1005 static enum clnt_stat
clnt_clts_kcallit(CLIENT * h,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_results,caddr_t resultsp,struct timeval wait)1006 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1007 caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1008 struct timeval wait)
1009 {
1010 return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1011 xdr_results, resultsp, wait, NULL));
1012 }
1013
1014 /*
1015 * Return error info on this handle.
1016 */
1017 static void
clnt_clts_kerror(CLIENT * h,struct rpc_err * err)1018 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1019 {
1020 /* LINTED pointer alignment */
1021 struct cku_private *p = htop(h);
1022
1023 *err = p->cku_err;
1024 }
1025
1026 /*ARGSUSED*/
1027 static bool_t
clnt_clts_kfreeres(CLIENT * h,xdrproc_t xdr_res,caddr_t res_ptr)1028 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1029 {
1030 xdr_free(xdr_res, res_ptr);
1031
1032 return (TRUE);
1033 }
1034
1035 /*ARGSUSED*/
1036 static void
clnt_clts_kabort(CLIENT * h)1037 clnt_clts_kabort(CLIENT *h)
1038 {
1039 }
1040
1041 static bool_t
clnt_clts_kcontrol(CLIENT * h,int cmd,char * arg)1042 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1043 {
1044 /* LINTED pointer alignment */
1045 struct cku_private *p = htop(h);
1046
1047 switch (cmd) {
1048 case CLSET_XID:
1049 p->cku_xid = *((uint32_t *)arg);
1050 return (TRUE);
1051
1052 case CLGET_XID:
1053 *((uint32_t *)arg) = p->cku_xid;
1054 return (TRUE);
1055
1056 case CLSET_NODELAYONERR:
1057 /*
1058 * CLTS does not have this functionality, but
1059 * we return TRUE here to avoid error messages.
1060 */
1061 return (TRUE);
1062
1063 case CLGET_NODELAYONERR:
1064 /* CLTS does not support this functionality. */
1065 return (FALSE);
1066
1067 case CLSET_BCAST:
1068 p->cku_bcast = *((uint32_t *)arg);
1069 return (TRUE);
1070
1071 case CLGET_BCAST:
1072 *((uint32_t *)arg) = p->cku_bcast;
1073 return (TRUE);
1074 case CLSET_BINDRESVPORT:
1075 if (arg == NULL)
1076 return (FALSE);
1077
1078 if (*(int *)arg != 1 && *(int *)arg != 0)
1079 return (FALSE);
1080
1081 p->cku_useresvport = *(int *)arg;
1082
1083 return (TRUE);
1084
1085 case CLGET_BINDRESVPORT:
1086 if (arg == NULL)
1087 return (FALSE);
1088
1089 *(int *)arg = p->cku_useresvport;
1090
1091 return (TRUE);
1092
1093 default:
1094 return (FALSE);
1095 }
1096 }
1097
1098 /*
1099 * Destroy rpc handle.
1100 * Frees the space used for output buffer, private data, and handle
1101 * structure, and the file pointer/TLI data on last reference.
1102 */
1103 static void
clnt_clts_kdestroy(CLIENT * h)1104 clnt_clts_kdestroy(CLIENT *h)
1105 {
1106 /* LINTED pointer alignment */
1107 struct cku_private *p = htop(h);
1108 calllist_t *call = &p->cku_call;
1109
1110 int plen;
1111
1112 RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1113 RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1114
1115 if (p->cku_endpnt != NULL)
1116 endpnt_rele(p->cku_endpnt);
1117
1118 cv_destroy(&call->call_cv);
1119 mutex_destroy(&call->call_lock);
1120
1121 plen = strlen(p->cku_config.knc_protofmly) + 1;
1122 kmem_free(p->cku_config.knc_protofmly, plen);
1123 kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1124 kmem_free(p, sizeof (*p));
1125 }
1126
1127 /*
1128 * The connectionless (CLTS) kRPC endpoint management subsystem.
1129 *
1130 * Because endpoints are potentially shared among threads making RPC calls,
1131 * they are managed in a pool according to type (endpnt_type_t). Each
1132 * endpnt_type_t points to a list of usable endpoints through the e_pool
1133 * field, which is of type list_t. list_t is a doubly-linked list.
1134 * The number of endpoints in the pool is stored in the e_cnt field of
1135 * endpnt_type_t and the endpoints are reference counted using the e_ref field
1136 * in the endpnt_t structure.
1137 *
1138 * As an optimization, endpoints that have no references are also linked
1139 * to an idle list via e_ilist which is also of type list_t. When a thread
1140 * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1141 * consulted and if such an endpoint exists, it is removed from the idle list
1142 * and returned to the caller.
1143 *
1144 * If the idle list is empty, then a check is made to see if more endpoints
1145 * can be created. If so, we proceed and create a new endpoint which is added
1146 * to the pool and returned to the caller. If we have reached the limit and
1147 * cannot make a new endpoint then one is returned to the caller via round-
1148 * robin policy.
1149 *
1150 * When an endpoint is placed on the idle list by a thread calling
1151 * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1152 * be dispatched if one hasn't already been. When the timer fires, the
1153 * taskq traverses the idle list and checks to see which endpoints are
1154 * eligible to be closed. It determines this by checking if the timestamp
1155 * when the endpoint was released has exceeded the the threshold for how long
1156 * it should stay alive.
1157 *
1158 * endpnt_t structures remain persistent until the memory reclaim callback,
1159 * endpnt_reclaim(), is invoked.
1160 *
1161 * Here is an example of how the data structures would be laid out by the
1162 * subsystem:
1163 *
1164 * endpnt_type_t
1165 *
1166 * loopback inet
1167 * _______________ ______________
1168 * | e_next |----------------------->| e_next |---->>
1169 * | e_pool |<---+ | e_pool |<----+
1170 * | e_ilist |<---+--+ | e_ilist |<----+--+
1171 * +->| e_pcurr |----+--+--+ +->| e_pcurr |-----+--+--+
1172 * | | ... | | | | | | ... | | | |
1173 * | | e_itimer (90) | | | | | | e_itimer (0) | | | |
1174 * | | e_cnt (1) | | | | | | e_cnt (3) | | | |
1175 * | +---------------+ | | | | +--------------+ | | |
1176 * | | | | | | | |
1177 * | endpnt_t | | | | | | |
1178 * | ____________ | | | | ____________ | | |
1179 * | | e_node |<------+ | | | | e_node |<------+ | |
1180 * | | e_idle |<---------+ | | | e_idle | | | |
1181 * +--| e_type |<------------+ +--| e_type | | | |
1182 * | e_tiptr | | | e_tiptr | | | |
1183 * | ... | | | ... | | | |
1184 * | e_lock | | | e_lock | | | |
1185 * | ... | | | ... | | | |
1186 * | e_ref (0) | | | e_ref (2) | | | |
1187 * | e_itime | | | e_itime | | | |
1188 * +------------+ | +------------+ | | |
1189 * | | | |
1190 * | | | |
1191 * | ____________ | | |
1192 * | | e_node |<------+ | |
1193 * | | e_idle |<------+--+ |
1194 * +--| e_type | | |
1195 * | | e_tiptr | | |
1196 * | | ... | | |
1197 * | | e_lock | | |
1198 * | | ... | | |
1199 * | | e_ref (0) | | |
1200 * | | e_itime | | |
1201 * | +------------+ | |
1202 * | | |
1203 * | | |
1204 * | ____________ | |
1205 * | | e_node |<------+ |
1206 * | | e_idle | |
1207 * +--| e_type |<------------+
1208 * | e_tiptr |
1209 * | ... |
1210 * | e_lock |
1211 * | ... |
1212 * | e_ref (1) |
1213 * | e_itime |
1214 * +------------+
1215 *
1216 * Endpoint locking strategy:
1217 *
1218 * The following functions manipulate lists which hold the endpoint and the
1219 * endpoints themselves:
1220 *
1221 * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1222 *
1223 * Lock description follows:
1224 *
1225 * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1226 * endpnt_type_list.
1227 *
1228 * e_plock: Lock defined in the endpnt_type_t. It is intended to
1229 * protect accesses to the pool of endopints (e_pool) for a given
1230 * endpnt_type_t.
1231 *
1232 * e_ilock: Lock defined in endpnt_type_t. It is intended to protect accesses
1233 * to the idle list (e_ilist) of available endpoints for a given
1234 * endpnt_type_t. It also protects access to the e_itimer, e_async_cv,
1235 * and e_async_count fields in endpnt_type_t.
1236 *
1237 * e_lock: Lock defined in the endpnt structure. It is intended to protect
1238 * flags, cv, and ref count.
1239 *
1240 * The order goes as follows so as not to induce deadlock.
1241 *
1242 * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1243 *
1244 * Interaction with Zones and shutting down:
1245 *
1246 * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1247 * tuple, which means that a zone may not reuse another zone's idle endpoints
1248 * without first doing a t_kclose().
1249 *
1250 * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1251 * and e_async_count are used to keep track of the threads in endpnt_taskq
1252 * trying to reap endpnt_ts in the endpnt_type_t.
1253 */
1254
1255 /*
1256 * Allocate and initialize an endpnt_type_t
1257 */
1258 static struct endpnt_type *
endpnt_type_create(struct knetconfig * config)1259 endpnt_type_create(struct knetconfig *config)
1260 {
1261 struct endpnt_type *etype;
1262
1263 /*
1264 * Allocate a new endpoint type to hang a list of
1265 * endpoints off of it.
1266 */
1267 etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1268 etype->e_next = NULL;
1269 etype->e_pcurr = NULL;
1270 etype->e_itimer = 0;
1271 etype->e_cnt = 0;
1272
1273 (void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1274 mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1275 mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1276 etype->e_rdev = config->knc_rdev;
1277 etype->e_zoneid = rpc_zoneid();
1278 etype->e_async_count = 0;
1279 cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1280
1281 list_create(&etype->e_pool, sizeof (endpnt_t),
1282 offsetof(endpnt_t, e_node));
1283 list_create(&etype->e_ilist, sizeof (endpnt_t),
1284 offsetof(endpnt_t, e_idle));
1285
1286 /*
1287 * Check to see if we need to create a taskq for endpoint
1288 * reaping
1289 */
1290 mutex_enter(&endpnt_taskq_lock);
1291 if (taskq_created == FALSE) {
1292 taskq_created = TRUE;
1293 mutex_exit(&endpnt_taskq_lock);
1294 ASSERT(endpnt_taskq == NULL);
1295 endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1296 minclsyspri, 200, INT_MAX, 0);
1297 } else
1298 mutex_exit(&endpnt_taskq_lock);
1299
1300 return (etype);
1301 }
1302
1303 /*
1304 * Free an endpnt_type_t
1305 */
1306 static void
endpnt_type_free(struct endpnt_type * etype)1307 endpnt_type_free(struct endpnt_type *etype)
1308 {
1309 mutex_destroy(&etype->e_plock);
1310 mutex_destroy(&etype->e_ilock);
1311 list_destroy(&etype->e_pool);
1312 list_destroy(&etype->e_ilist);
1313 kmem_free(etype, sizeof (endpnt_type_t));
1314 }
1315
1316 /*
1317 * Check the endpoint to ensure that it is suitable for use.
1318 *
1319 * Possible return values:
1320 *
1321 * return (1) - Endpoint is established, but needs to be re-opened.
1322 * return (0) && *newp == NULL - Endpoint is established, but unusable.
1323 * return (0) && *newp != NULL - Endpoint is established and usable.
1324 */
1325 static int
check_endpnt(struct endpnt * endp,struct endpnt ** newp)1326 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1327 {
1328 *newp = endp;
1329
1330 mutex_enter(&endp->e_lock);
1331 ASSERT(endp->e_ref >= 1);
1332
1333 /*
1334 * The first condition we check for is if the endpoint has been
1335 * allocated, but is unusable either because it has been closed or
1336 * has been marked stale. Only *one* thread will be allowed to
1337 * execute the then clause. This is enforced because the first thread
1338 * to check this condition will clear the flags, so that subsequent
1339 * thread(s) checking this endpoint will move on.
1340 */
1341 if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1342 (!(endp->e_flags & ENDPNT_BOUND) ||
1343 (endp->e_flags & ENDPNT_STALE))) {
1344 /*
1345 * Clear the flags here since they will be
1346 * set again by this thread. They need to be
1347 * individually cleared because we want to maintain
1348 * the state for ENDPNT_ONIDLE.
1349 */
1350 endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1351 ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1352 mutex_exit(&endp->e_lock);
1353 return (1);
1354 }
1355
1356 /*
1357 * The second condition is meant for any thread that is waiting for
1358 * an endpoint to become established. It will cv_wait() until
1359 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1360 * ENDPNT_STALE.
1361 */
1362 while (!(endp->e_flags & ENDPNT_BOUND) &&
1363 !(endp->e_flags & ENDPNT_STALE)) {
1364 endp->e_flags |= ENDPNT_WAITING;
1365 cv_wait(&endp->e_cv, &endp->e_lock);
1366 }
1367
1368 ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1369
1370 /*
1371 * The last case we check for is if the endpoint has been marked stale.
1372 * If this is the case then set *newp to NULL and return, so that the
1373 * caller is notified of the error and can take appropriate action.
1374 */
1375 if (endp->e_flags & ENDPNT_STALE) {
1376 endp->e_ref--;
1377 *newp = NULL;
1378 }
1379 mutex_exit(&endp->e_lock);
1380 return (0);
1381 }
1382
1383 #ifdef DEBUG
1384 /*
1385 * Provide a fault injection setting to test error conditions.
1386 */
1387 static int endpnt_get_return_null = 0;
1388 #endif
1389
1390 /*
1391 * Returns a handle (struct endpnt *) to an open and bound endpoint
1392 * specified by the knetconfig passed in. Returns NULL if no valid endpoint
1393 * can be obtained.
1394 */
1395 static struct endpnt *
endpnt_get(struct knetconfig * config,int useresvport)1396 endpnt_get(struct knetconfig *config, int useresvport)
1397 {
1398 struct endpnt_type *n_etype = NULL;
1399 struct endpnt_type *np = NULL;
1400 struct endpnt *new = NULL;
1401 struct endpnt *endp = NULL;
1402 struct endpnt *next = NULL;
1403 TIUSER *tiptr = NULL;
1404 int rtries = BINDRESVPORT_RETRIES;
1405 int i = 0;
1406 int error;
1407 int retval;
1408 zoneid_t zoneid = rpc_zoneid();
1409 cred_t *cr;
1410
1411 RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1412 RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1413
1414 #ifdef DEBUG
1415 /*
1416 * Inject fault if desired. Pretend we have a stale endpoint
1417 * and return NULL.
1418 */
1419 if (endpnt_get_return_null > 0) {
1420 endpnt_get_return_null--;
1421 return (NULL);
1422 }
1423 #endif
1424 rw_enter(&endpnt_type_lock, RW_READER);
1425
1426 top:
1427 for (np = endpnt_type_list; np != NULL; np = np->e_next)
1428 if ((np->e_zoneid == zoneid) &&
1429 (np->e_rdev == config->knc_rdev) &&
1430 (strcmp(np->e_protofmly,
1431 config->knc_protofmly) == 0))
1432 break;
1433
1434 if (np == NULL && n_etype != NULL) {
1435 ASSERT(rw_write_held(&endpnt_type_lock));
1436
1437 /*
1438 * Link the endpoint type onto the list
1439 */
1440 n_etype->e_next = endpnt_type_list;
1441 endpnt_type_list = n_etype;
1442 np = n_etype;
1443 n_etype = NULL;
1444 }
1445
1446 if (np == NULL) {
1447 /*
1448 * The logic here is that we were unable to find an
1449 * endpnt_type_t that matched our criteria, so we allocate a
1450 * new one. Because kmem_alloc() needs to be called with
1451 * KM_SLEEP, we drop our locks so that we don't induce
1452 * deadlock. After allocating and initializing the
1453 * endpnt_type_t, we reaquire the lock and go back to check
1454 * if this entry needs to be added to the list. Since we do
1455 * some operations without any locking other threads may
1456 * have been looking for the same endpnt_type_t and gone
1457 * through this code path. We check for this case and allow
1458 * one thread to link its endpnt_type_t to the list and the
1459 * other threads will simply free theirs.
1460 */
1461 rw_exit(&endpnt_type_lock);
1462 n_etype = endpnt_type_create(config);
1463
1464 /*
1465 * We need to reaquire the lock with RW_WRITER here so that
1466 * we can safely link the new endpoint type onto the list.
1467 */
1468 rw_enter(&endpnt_type_lock, RW_WRITER);
1469 goto top;
1470 }
1471
1472 rw_exit(&endpnt_type_lock);
1473 /*
1474 * If n_etype is not NULL, then another thread was able to
1475 * insert an endpnt_type_t of this type onto the list before
1476 * we did. Go ahead and free ours.
1477 */
1478 if (n_etype != NULL)
1479 endpnt_type_free(n_etype);
1480
1481 mutex_enter(&np->e_ilock);
1482 /*
1483 * The algorithm to hand out endpoints is to first
1484 * give out those that are idle if such endpoints
1485 * exist. Otherwise, create a new one if we haven't
1486 * reached the max threshold. Finally, we give out
1487 * endpoints in a pseudo LRU fashion (round-robin).
1488 *
1489 * Note: The idle list is merely a hint of those endpoints
1490 * that should be idle. There exists a window after the
1491 * endpoint is released and before it is linked back onto the
1492 * idle list where a thread could get a reference to it and
1493 * use it. This is okay, since the reference counts will
1494 * still be consistent.
1495 */
1496 if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1497 timeout_id_t t_id = 0;
1498
1499 mutex_enter(&endp->e_lock);
1500 endp->e_ref++;
1501 endp->e_itime = 0;
1502 endp->e_flags &= ~ENDPNT_ONIDLE;
1503 mutex_exit(&endp->e_lock);
1504
1505 /*
1506 * Pop the endpoint off the idle list and hand it off
1507 */
1508 list_remove(&np->e_ilist, endp);
1509
1510 if (np->e_itimer != 0) {
1511 t_id = np->e_itimer;
1512 np->e_itimer = 0;
1513 }
1514 mutex_exit(&np->e_ilock);
1515 /*
1516 * Reset the idle timer if it has been set
1517 */
1518 if (t_id != (timeout_id_t)0)
1519 (void) untimeout(t_id);
1520
1521 if (check_endpnt(endp, &new) == 0)
1522 return (new);
1523 } else if (np->e_cnt >= clnt_clts_max_endpoints) {
1524 /*
1525 * There are no idle endpoints currently, so
1526 * create a new one if we have not reached the maximum or
1527 * hand one out in round-robin.
1528 */
1529 mutex_exit(&np->e_ilock);
1530 mutex_enter(&np->e_plock);
1531 endp = np->e_pcurr;
1532 mutex_enter(&endp->e_lock);
1533 endp->e_ref++;
1534 mutex_exit(&endp->e_lock);
1535
1536 ASSERT(endp != NULL);
1537 /*
1538 * Advance the pointer to the next eligible endpoint, if
1539 * necessary.
1540 */
1541 if (np->e_cnt > 1) {
1542 next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1543 if (next == NULL)
1544 next = (endpnt_t *)list_head(&np->e_pool);
1545 np->e_pcurr = next;
1546 }
1547
1548 mutex_exit(&np->e_plock);
1549
1550 /*
1551 * We need to check to see if this endpoint is bound or
1552 * not. If it is in progress then just wait until
1553 * the set up is complete
1554 */
1555 if (check_endpnt(endp, &new) == 0)
1556 return (new);
1557 } else {
1558 mutex_exit(&np->e_ilock);
1559 mutex_enter(&np->e_plock);
1560
1561 /*
1562 * Allocate a new endpoint to use. If we can't allocate any
1563 * more memory then use one that is already established if any
1564 * such endpoints exist.
1565 */
1566 new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1567 if (new == NULL) {
1568 RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1569 /*
1570 * Try to recover by using an existing endpoint.
1571 */
1572 if (np->e_cnt <= 0) {
1573 mutex_exit(&np->e_plock);
1574 return (NULL);
1575 }
1576 endp = np->e_pcurr;
1577 if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1578 NULL)
1579 np->e_pcurr = next;
1580 ASSERT(endp != NULL);
1581 mutex_enter(&endp->e_lock);
1582 endp->e_ref++;
1583 mutex_exit(&endp->e_lock);
1584 mutex_exit(&np->e_plock);
1585
1586 if (check_endpnt(endp, &new) == 0)
1587 return (new);
1588 } else {
1589 /*
1590 * Partially init an endpoint structure and put
1591 * it on the list, so that other interested threads
1592 * know that one is being created
1593 */
1594 bzero(new, sizeof (struct endpnt));
1595
1596 cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1597 mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1598 new->e_ref = 1;
1599 new->e_type = np;
1600
1601 /*
1602 * Link the endpoint into the pool.
1603 */
1604 list_insert_head(&np->e_pool, new);
1605 np->e_cnt++;
1606 if (np->e_pcurr == NULL)
1607 np->e_pcurr = new;
1608 mutex_exit(&np->e_plock);
1609 }
1610 }
1611
1612 /*
1613 * The transport should be opened with sufficient privs
1614 */
1615 cr = zone_kcred();
1616 error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1617 cr);
1618 if (error) {
1619 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1620 goto bad;
1621 }
1622
1623 new->e_tiptr = tiptr;
1624 rpc_poptimod(tiptr->fp->f_vnode);
1625
1626 /*
1627 * Allow the kernel to push the module on behalf of the user.
1628 */
1629 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1630 K_TO_K, cr, &retval);
1631 if (error) {
1632 RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1633 goto bad;
1634 }
1635
1636 error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1637 cr, &retval);
1638 if (error) {
1639 RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1640 goto bad;
1641 }
1642
1643 /*
1644 * Connectionless data flow should bypass the stream head.
1645 */
1646 new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1647
1648 error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1649 K_TO_K, cr, &retval);
1650 if (error) {
1651 RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1652 goto bad;
1653 }
1654
1655 /*
1656 * Attempt to bind the endpoint. If we fail then propogate
1657 * error back to calling subsystem, so that it can be handled
1658 * appropriately.
1659 * If the caller has not specified reserved port usage then
1660 * take the system default.
1661 */
1662 if (useresvport == -1)
1663 useresvport = clnt_clts_do_bindresvport;
1664
1665 if (useresvport &&
1666 (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1667 strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1668
1669 while ((error =
1670 bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1671 RPCLOG(1,
1672 "endpnt_get: bindresvport error %d\n", error);
1673 if (error != EPROTO) {
1674 if (rtries-- <= 0)
1675 goto bad;
1676
1677 delay(hz << i++);
1678 continue;
1679 }
1680
1681 (void) t_kclose(new->e_tiptr, 1);
1682 /*
1683 * reopen with all privileges
1684 */
1685 error = t_kopen(NULL, config->knc_rdev,
1686 FREAD|FWRITE|FNDELAY,
1687 &new->e_tiptr, cr);
1688 if (error) {
1689 RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1690 new->e_tiptr = NULL;
1691 goto bad;
1692 }
1693 }
1694 } else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1695 RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1696 goto bad;
1697 }
1698
1699 /*
1700 * Set the flags and notify and waiters that we have an established
1701 * endpoint.
1702 */
1703 mutex_enter(&new->e_lock);
1704 new->e_flags |= ENDPNT_ESTABLISHED;
1705 new->e_flags |= ENDPNT_BOUND;
1706 if (new->e_flags & ENDPNT_WAITING) {
1707 cv_broadcast(&new->e_cv);
1708 new->e_flags &= ~ENDPNT_WAITING;
1709 }
1710 mutex_exit(&new->e_lock);
1711
1712 return (new);
1713
1714 bad:
1715 ASSERT(new != NULL);
1716 /*
1717 * mark this endpoint as stale and notify any threads waiting
1718 * on this endpoint that it will be going away.
1719 */
1720 mutex_enter(&new->e_lock);
1721 if (new->e_ref > 0) {
1722 new->e_flags |= ENDPNT_ESTABLISHED;
1723 new->e_flags |= ENDPNT_STALE;
1724 if (new->e_flags & ENDPNT_WAITING) {
1725 cv_broadcast(&new->e_cv);
1726 new->e_flags &= ~ENDPNT_WAITING;
1727 }
1728 }
1729 new->e_ref--;
1730 new->e_tiptr = NULL;
1731 mutex_exit(&new->e_lock);
1732
1733 /*
1734 * If there was a transport endopoint opened, then close it.
1735 */
1736 if (tiptr != NULL)
1737 (void) t_kclose(tiptr, 1);
1738
1739 return (NULL);
1740 }
1741
1742 /*
1743 * Release a referece to the endpoint
1744 */
1745 static void
endpnt_rele(struct endpnt * sp)1746 endpnt_rele(struct endpnt *sp)
1747 {
1748 mutex_enter(&sp->e_lock);
1749 ASSERT(sp->e_ref > 0);
1750 sp->e_ref--;
1751 /*
1752 * If the ref count is zero, then start the idle timer and link
1753 * the endpoint onto the idle list.
1754 */
1755 if (sp->e_ref == 0) {
1756 sp->e_itime = gethrestime_sec();
1757
1758 /*
1759 * Check to see if the endpoint is already linked to the idle
1760 * list, so that we don't try to reinsert it.
1761 */
1762 if (sp->e_flags & ENDPNT_ONIDLE) {
1763 mutex_exit(&sp->e_lock);
1764 mutex_enter(&sp->e_type->e_ilock);
1765 endpnt_reap_settimer(sp->e_type);
1766 mutex_exit(&sp->e_type->e_ilock);
1767 return;
1768 }
1769
1770 sp->e_flags |= ENDPNT_ONIDLE;
1771 mutex_exit(&sp->e_lock);
1772 mutex_enter(&sp->e_type->e_ilock);
1773 list_insert_tail(&sp->e_type->e_ilist, sp);
1774 endpnt_reap_settimer(sp->e_type);
1775 mutex_exit(&sp->e_type->e_ilock);
1776 } else
1777 mutex_exit(&sp->e_lock);
1778 }
1779
1780 static void
endpnt_reap_settimer(endpnt_type_t * etp)1781 endpnt_reap_settimer(endpnt_type_t *etp)
1782 {
1783 if (etp->e_itimer == (timeout_id_t)0)
1784 etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1785 clnt_clts_taskq_dispatch_interval);
1786 }
1787
1788 static void
endpnt_reap_dispatch(void * a)1789 endpnt_reap_dispatch(void *a)
1790 {
1791 endpnt_type_t *etp = a;
1792
1793 /*
1794 * The idle timer has fired, so dispatch the taskq to close the
1795 * endpoint.
1796 */
1797 if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1798 TQ_NOSLEEP) == TASKQID_INVALID)
1799 return;
1800 mutex_enter(&etp->e_ilock);
1801 etp->e_async_count++;
1802 mutex_exit(&etp->e_ilock);
1803 }
1804
1805 /*
1806 * Traverse the idle list and close those endpoints that have reached their
1807 * timeout interval.
1808 */
1809 static void
endpnt_reap(endpnt_type_t * etp)1810 endpnt_reap(endpnt_type_t *etp)
1811 {
1812 struct endpnt *e;
1813 struct endpnt *next_node = NULL;
1814
1815 mutex_enter(&etp->e_ilock);
1816 e = list_head(&etp->e_ilist);
1817 while (e != NULL) {
1818 next_node = list_next(&etp->e_ilist, e);
1819
1820 mutex_enter(&e->e_lock);
1821 if (e->e_ref > 0) {
1822 mutex_exit(&e->e_lock);
1823 e = next_node;
1824 continue;
1825 }
1826
1827 ASSERT(e->e_ref == 0);
1828 if (e->e_itime > 0 &&
1829 (e->e_itime + clnt_clts_endpoint_reap_interval) <
1830 gethrestime_sec()) {
1831 e->e_flags &= ~ENDPNT_BOUND;
1832 (void) t_kclose(e->e_tiptr, 1);
1833 e->e_tiptr = NULL;
1834 e->e_itime = 0;
1835 }
1836 mutex_exit(&e->e_lock);
1837 e = next_node;
1838 }
1839 etp->e_itimer = 0;
1840 if (--etp->e_async_count == 0)
1841 cv_signal(&etp->e_async_cv);
1842 mutex_exit(&etp->e_ilock);
1843 }
1844
1845 static void
endpnt_reclaim(zoneid_t zoneid)1846 endpnt_reclaim(zoneid_t zoneid)
1847 {
1848 struct endpnt_type *np;
1849 struct endpnt *e;
1850 struct endpnt *next_node = NULL;
1851 list_t free_list;
1852 int rcnt = 0;
1853
1854 list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1855
1856 RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1857 rw_enter(&endpnt_type_lock, RW_READER);
1858 for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1859 if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1860 continue;
1861
1862 mutex_enter(&np->e_plock);
1863 RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1864 np->e_protofmly);
1865 RPCLOG(1, "rdev %ld\n", np->e_rdev);
1866 RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1867 np->e_cnt);
1868
1869 if (np->e_cnt == 0) {
1870 mutex_exit(&np->e_plock);
1871 continue;
1872 }
1873
1874 /*
1875 * The nice thing about maintaining an idle list is that if
1876 * there are any endpoints to reclaim, they are going to be
1877 * on this list. Just go through and reap the one's that
1878 * have ref counts of zero.
1879 */
1880 mutex_enter(&np->e_ilock);
1881 e = list_head(&np->e_ilist);
1882 while (e != NULL) {
1883 next_node = list_next(&np->e_ilist, e);
1884 mutex_enter(&e->e_lock);
1885 if (e->e_ref > 0) {
1886 mutex_exit(&e->e_lock);
1887 e = next_node;
1888 continue;
1889 }
1890 ASSERT(e->e_ref == 0);
1891 mutex_exit(&e->e_lock);
1892
1893 list_remove(&np->e_ilist, e);
1894 list_remove(&np->e_pool, e);
1895 list_insert_head(&free_list, e);
1896
1897 rcnt++;
1898 np->e_cnt--;
1899 e = next_node;
1900 }
1901 mutex_exit(&np->e_ilock);
1902 /*
1903 * Reset the current pointer to be safe
1904 */
1905 if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1906 np->e_pcurr = e;
1907 else {
1908 ASSERT(np->e_cnt == 0);
1909 np->e_pcurr = NULL;
1910 }
1911
1912 mutex_exit(&np->e_plock);
1913 }
1914 rw_exit(&endpnt_type_lock);
1915
1916 while ((e = list_head(&free_list)) != NULL) {
1917 list_remove(&free_list, e);
1918 if (e->e_tiptr != NULL)
1919 (void) t_kclose(e->e_tiptr, 1);
1920
1921 cv_destroy(&e->e_cv);
1922 mutex_destroy(&e->e_lock);
1923 kmem_cache_free(endpnt_cache, e);
1924 }
1925 list_destroy(&free_list);
1926 RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1927 }
1928
1929 /*
1930 * Endpoint reclaim zones destructor callback routine.
1931 *
1932 * After reclaiming any cached entries, we basically go through the endpnt_type
1933 * list, canceling outstanding timeouts and free'ing data structures.
1934 */
1935 /* ARGSUSED */
1936 static void
endpnt_destructor(zoneid_t zoneid,void * a)1937 endpnt_destructor(zoneid_t zoneid, void *a)
1938 {
1939 struct endpnt_type **npp;
1940 struct endpnt_type *np;
1941 struct endpnt_type *free_list = NULL;
1942 timeout_id_t t_id = 0;
1943 extern void clcleanup_zone(zoneid_t);
1944 extern void clcleanup4_zone(zoneid_t);
1945
1946 /* Make sure NFS client handles are released. */
1947 clcleanup_zone(zoneid);
1948 clcleanup4_zone(zoneid);
1949
1950 endpnt_reclaim(zoneid);
1951 /*
1952 * We don't need to be holding on to any locks across the call to
1953 * endpnt_reclaim() and the code below; we know that no-one can
1954 * be holding open connections for this zone (all processes and kernel
1955 * threads are gone), so nothing could be adding anything to the list.
1956 */
1957 rw_enter(&endpnt_type_lock, RW_WRITER);
1958 npp = &endpnt_type_list;
1959 while ((np = *npp) != NULL) {
1960 if (np->e_zoneid != zoneid) {
1961 npp = &np->e_next;
1962 continue;
1963 }
1964 mutex_enter(&np->e_plock);
1965 mutex_enter(&np->e_ilock);
1966 if (np->e_itimer != 0) {
1967 t_id = np->e_itimer;
1968 np->e_itimer = 0;
1969 }
1970 ASSERT(np->e_cnt == 0);
1971 ASSERT(list_head(&np->e_pool) == NULL);
1972 ASSERT(list_head(&np->e_ilist) == NULL);
1973
1974 mutex_exit(&np->e_ilock);
1975 mutex_exit(&np->e_plock);
1976
1977 /*
1978 * untimeout() any outstanding timers that have not yet fired.
1979 */
1980 if (t_id != (timeout_id_t)0)
1981 (void) untimeout(t_id);
1982 *npp = np->e_next;
1983 np->e_next = free_list;
1984 free_list = np;
1985 }
1986 rw_exit(&endpnt_type_lock);
1987
1988 while (free_list != NULL) {
1989 np = free_list;
1990 free_list = free_list->e_next;
1991 /*
1992 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
1993 * the endpnt_type_t.
1994 */
1995 mutex_enter(&np->e_ilock);
1996 while (np->e_async_count > 0)
1997 cv_wait(&np->e_async_cv, &np->e_ilock);
1998 cv_destroy(&np->e_async_cv);
1999 mutex_destroy(&np->e_plock);
2000 mutex_destroy(&np->e_ilock);
2001 list_destroy(&np->e_pool);
2002 list_destroy(&np->e_ilist);
2003 kmem_free(np, sizeof (endpnt_type_t));
2004 }
2005 }
2006
2007 /*
2008 * Endpoint reclaim kmem callback routine.
2009 */
2010 /* ARGSUSED */
2011 static void
endpnt_repossess(void * a)2012 endpnt_repossess(void *a)
2013 {
2014 /*
2015 * Reclaim idle endpnt's from all zones.
2016 */
2017 if (endpnt_taskq != NULL)
2018 (void) taskq_dispatch(endpnt_taskq,
2019 (task_func_t *)(uintptr_t)endpnt_reclaim, (void *)ALL_ZONES,
2020 TQ_NOSLEEP);
2021 }
2022
2023 /*
2024 * RPC request dispatch routine. Constructs a datagram message and wraps it
2025 * around the RPC request to pass downstream.
2026 */
2027 static int
clnt_clts_dispatch_send(queue_t * q,mblk_t * mp,struct netbuf * addr,calllist_t * cp,uint_t xid,cred_t * cr)2028 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2029 calllist_t *cp, uint_t xid, cred_t *cr)
2030 {
2031 mblk_t *bp;
2032 int msgsz;
2033 struct T_unitdata_req *udreq;
2034
2035 /*
2036 * Set up the call record.
2037 */
2038 cp->call_wq = q;
2039 cp->call_xid = xid;
2040 cp->call_status = RPC_TIMEDOUT;
2041 cp->call_notified = FALSE;
2042 RPCLOG(64,
2043 "clnt_clts_dispatch_send: putting xid 0x%x on "
2044 "dispatch list\n", xid);
2045 cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2046 cp->call_bucket = &clts_call_ht[cp->call_hash];
2047 call_table_enter(cp);
2048
2049 /*
2050 * Construct the datagram
2051 */
2052 msgsz = (int)TUNITDATAREQSZ;
2053 /*
2054 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will
2055 * appear as -1.
2056 */
2057 while (!(bp = allocb_cred(msgsz + addr->len, cr, NOPID))) {
2058 if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2059 return (ENOSR);
2060 }
2061
2062 udreq = (struct T_unitdata_req *)bp->b_wptr;
2063 udreq->PRIM_type = T_UNITDATA_REQ;
2064 udreq->DEST_length = addr->len;
2065
2066 if (addr->len) {
2067 bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2068 udreq->DEST_offset = (t_scalar_t)msgsz;
2069 msgsz += addr->len;
2070 } else
2071 udreq->DEST_offset = 0;
2072 udreq->OPT_length = 0;
2073 udreq->OPT_offset = 0;
2074
2075 bp->b_datap->db_type = M_PROTO;
2076 bp->b_wptr += msgsz;
2077
2078 /*
2079 * Link the datagram header with the actual data
2080 */
2081 linkb(bp, mp);
2082
2083 /*
2084 * Send downstream.
2085 */
2086 if (canput(cp->call_wq)) {
2087 put(cp->call_wq, bp);
2088 return (0);
2089 }
2090
2091 return (EIO);
2092 }
2093
2094 /*
2095 * RPC response delivery routine. Deliver the response to the waiting
2096 * thread by matching the xid.
2097 */
2098 void
clnt_clts_dispatch_notify(mblk_t * mp,int resp_off,zoneid_t zoneid)2099 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2100 {
2101 calllist_t *e = NULL;
2102 call_table_t *chtp;
2103 uint32_t xid;
2104 uint_t hash;
2105 unsigned char *hdr_offset;
2106 mblk_t *resp;
2107
2108 /*
2109 * If the RPC response is not contained in the same mblk as the
2110 * datagram header, then move to the next mblk.
2111 */
2112 hdr_offset = mp->b_rptr;
2113 resp = mp;
2114 if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2115 resp = mp->b_cont;
2116 else
2117 resp->b_rptr += resp_off;
2118
2119 ASSERT(resp != NULL);
2120
2121 if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2122 (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2123 xid = *((uint32_t *)resp->b_rptr);
2124 else {
2125 int i = 0;
2126 unsigned char *p = (unsigned char *)&xid;
2127 unsigned char *rptr;
2128 mblk_t *tmp = resp;
2129
2130 /*
2131 * Copy the xid, byte-by-byte into xid.
2132 */
2133 while (tmp) {
2134 rptr = tmp->b_rptr;
2135 while (rptr < tmp->b_wptr) {
2136 *p++ = *rptr++;
2137 if (++i >= sizeof (xid))
2138 goto done_xid_copy;
2139 }
2140 tmp = tmp->b_cont;
2141 }
2142
2143 /*
2144 * If we got here, we ran out of mblk space before the
2145 * xid could be copied.
2146 */
2147 ASSERT(tmp == NULL && i < sizeof (xid));
2148
2149 RPCLOG0(1,
2150 "clnt_dispatch_notify(clts): message less than "
2151 "size of xid\n");
2152
2153 freemsg(mp);
2154 return;
2155 }
2156
2157 done_xid_copy:
2158
2159 /*
2160 * Reset the read pointer back to the beginning of the protocol
2161 * header if we moved it.
2162 */
2163 if (mp->b_rptr != hdr_offset)
2164 mp->b_rptr = hdr_offset;
2165
2166 hash = call_hash(xid, clnt_clts_hash_size);
2167 chtp = &clts_call_ht[hash];
2168 /* call_table_find returns with the hash bucket locked */
2169 call_table_find(chtp, xid, e);
2170
2171 if (e != NULL) {
2172 mutex_enter(&e->call_lock);
2173
2174 /*
2175 * verify that the reply is coming in on
2176 * the same zone that it was sent from.
2177 */
2178 if (e->call_zoneid != zoneid) {
2179 mutex_exit(&e->call_lock);
2180 mutex_exit(&chtp->ct_lock);
2181 RPCLOG0(8, "clnt_dispatch_notify (clts): incorrect "
2182 "zoneid\n");
2183 freemsg(mp);
2184 return;
2185 }
2186
2187 /*
2188 * found thread waiting for this reply.
2189 */
2190 if (e->call_reply) {
2191 RPCLOG(8,
2192 "clnt_dispatch_notify (clts): discarding old "
2193 "reply for xid 0x%x\n",
2194 xid);
2195 freemsg(e->call_reply);
2196 }
2197 e->call_notified = TRUE;
2198 e->call_reply = mp;
2199 e->call_status = RPC_SUCCESS;
2200 cv_signal(&e->call_cv);
2201 mutex_exit(&e->call_lock);
2202 mutex_exit(&chtp->ct_lock);
2203 } else {
2204 zone_t *zone;
2205 struct rpcstat *rpcstat;
2206
2207 mutex_exit(&chtp->ct_lock);
2208 RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2209 "0x%x\n", xid);
2210 freemsg(mp);
2211 /*
2212 * This is unfortunate, but we need to lookup the zone so we
2213 * can increment its "rcbadxids" counter.
2214 */
2215 zone = zone_find_by_id(zoneid);
2216 if (zone == NULL) {
2217 /*
2218 * The zone went away...
2219 */
2220 return;
2221 }
2222 rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2223 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2224 /*
2225 * Not interested
2226 */
2227 zone_rele(zone);
2228 return;
2229 }
2230 RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2231 zone_rele(zone);
2232 }
2233 }
2234
2235 /*
2236 * Init routine. Called when rpcmod is loaded.
2237 */
2238 void
clnt_clts_init(void)2239 clnt_clts_init(void)
2240 {
2241 endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2242 sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2243 NULL, 0);
2244
2245 rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2246
2247 /*
2248 * Perform simple bounds checking to make sure that the setting is
2249 * reasonable
2250 */
2251 if (clnt_clts_max_endpoints <= 0) {
2252 if (clnt_clts_do_bindresvport)
2253 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2254 else
2255 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2256 }
2257
2258 if (clnt_clts_do_bindresvport &&
2259 clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2260 clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2261 else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2262 clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2263
2264 if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2265 clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2266
2267 /*
2268 * Defer creating the taskq until rpcmod gets pushed. If we are
2269 * in diskless boot mode, rpcmod will get loaded early even before
2270 * thread_create() is available.
2271 */
2272 endpnt_taskq = NULL;
2273 taskq_created = FALSE;
2274 mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2275
2276 if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2277 clnt_clts_endpoint_reap_interval =
2278 DEFAULT_ENDPOINT_REAP_INTERVAL;
2279
2280 /*
2281 * Dispatch the taskq at an interval which is offset from the
2282 * interval that the endpoints should be reaped.
2283 */
2284 clnt_clts_taskq_dispatch_interval =
2285 (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2286
2287 /*
2288 * Initialize the completion queue
2289 */
2290 clts_call_ht = call_table_init(clnt_clts_hash_size);
2291 /*
2292 * Initialize the zone destructor callback.
2293 */
2294 zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2295 }
2296
2297 void
clnt_clts_fini(void)2298 clnt_clts_fini(void)
2299 {
2300 (void) zone_key_delete(endpnt_destructor_key);
2301 }
2302