xref: /illumos-gate/usr/src/uts/common/os/modctl.c (revision e912cc3d5decbbfbb3005d9f678e9fc3ccbcf91f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * modctl system call for loadable module support.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/user.h>
32 #include <sys/systm.h>
33 #include <sys/exec.h>
34 #include <sys/file.h>
35 #include <sys/stat.h>
36 #include <sys/conf.h>
37 #include <sys/time.h>
38 #include <sys/reboot.h>
39 #include <sys/fs/ufs_fsdir.h>
40 #include <sys/kmem.h>
41 #include <sys/sysconf.h>
42 #include <sys/cmn_err.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/ndi_impldefs.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/ddi_implfuncs.h>
49 #include <sys/bootconf.h>
50 #include <sys/dc_ki.h>
51 #include <sys/cladm.h>
52 #include <sys/dtrace.h>
53 #include <sys/kdi.h>
54 
55 #include <sys/devpolicy.h>
56 #include <sys/modctl.h>
57 #include <sys/kobj.h>
58 #include <sys/devops.h>
59 #include <sys/autoconf.h>
60 #include <sys/hwconf.h>
61 #include <sys/callb.h>
62 #include <sys/debug.h>
63 #include <sys/cpuvar.h>
64 #include <sys/sysmacros.h>
65 #include <sys/sysevent.h>
66 #include <sys/sysevent_impl.h>
67 #include <sys/instance.h>
68 #include <sys/modhash.h>
69 #include <sys/modhash_impl.h>
70 #include <sys/dacf_impl.h>
71 #include <sys/vfs.h>
72 #include <sys/pathname.h>
73 #include <sys/console.h>
74 #include <sys/policy.h>
75 #include <ipp/ipp_impl.h>
76 #include <sys/fs/dv_node.h>
77 #include <sys/strsubr.h>
78 #include <sys/fs/sdev_impl.h>
79 
80 static int		mod_circdep(struct modctl *);
81 static int		modinfo(modid_t, struct modinfo *);
82 
83 static void		mod_uninstall_all(void);
84 static int		mod_getinfo(struct modctl *, struct modinfo *);
85 static struct modctl	*allocate_modp(const char *, const char *);
86 
87 static int		mod_load(struct modctl *, int);
88 static void		mod_unload(struct modctl *);
89 static int		modinstall(struct modctl *);
90 static int		moduninstall(struct modctl *);
91 
92 static struct modctl	*mod_hold_by_name_common(struct modctl *, const char *);
93 static struct modctl	*mod_hold_next_by_id(modid_t);
94 static struct modctl	*mod_hold_loaded_mod(struct modctl *, char *, int *);
95 static struct modctl	*mod_hold_installed_mod(char *, int, int, int *);
96 
97 static void		mod_release(struct modctl *);
98 static void		mod_make_requisite(struct modctl *, struct modctl *);
99 static int		mod_install_requisites(struct modctl *);
100 static void		check_esc_sequences(char *, char *);
101 static struct modctl	*mod_hold_by_name_requisite(struct modctl *, char *);
102 
103 /*
104  * module loading thread control structure. Calls to kobj_load_module()() are
105  * handled off to a separate thead using this structure.
106  */
107 struct loadmt {
108 	ksema_t		sema;
109 	struct modctl	*mp;
110 	int		usepath;
111 	kthread_t	*owner;
112 	int		retval;
113 };
114 
115 static void	modload_thread(struct loadmt *);
116 
117 kcondvar_t	mod_cv;
118 kcondvar_t	mod_uninstall_cv;	/* Communication between swapper */
119 					/* and the uninstall daemon. */
120 kmutex_t	mod_lock;		/* protects &modules insert linkage, */
121 					/* mod_busy, mod_want, and mod_ref. */
122 					/* blocking operations while holding */
123 					/* mod_lock should be avoided */
124 kmutex_t	mod_uninstall_lock;	/* protects mod_uninstall_cv */
125 kthread_id_t	mod_aul_thread;
126 
127 int		modunload_wait;
128 kmutex_t	modunload_wait_mutex;
129 kcondvar_t	modunload_wait_cv;
130 int		modunload_active_count;
131 int		modunload_disable_count;
132 
133 int	isminiroot;		/* set if running as miniroot */
134 int	modrootloaded;		/* set after root driver and fs are loaded */
135 int	moddebug = 0x0;		/* debug flags for module writers */
136 int	swaploaded;		/* set after swap driver and fs are loaded */
137 int	bop_io_quiesced = 0;	/* set when BOP I/O can no longer be used */
138 int	last_module_id;
139 clock_t	mod_uninstall_interval = 0;
140 int	mod_uninstall_pass_max = 6;
141 int	mod_uninstall_ref_zero;	/* # modules that went mod_ref == 0 */
142 int	mod_uninstall_pass_exc;	/* mod_uninstall_all left new stuff */
143 
144 int	ddi_modclose_unload = 1;	/* 0 -> just decrement reference */
145 
146 int	devcnt_incr	= 256;		/* allow for additional drivers */
147 int	devcnt_min	= 512;		/* and always at least this number */
148 
149 struct devnames *devnamesp;
150 struct devnames orphanlist;
151 
152 krwlock_t	devinfo_tree_lock;	/* obsolete, to be removed */
153 
154 #define	MAJBINDFILE "/etc/name_to_major"
155 #define	SYSBINDFILE "/etc/name_to_sysnum"
156 
157 static char	majbind[] = MAJBINDFILE;
158 static char	sysbind[] = SYSBINDFILE;
159 static uint_t	mod_autounload_key;	/* for module autounload detection */
160 
161 extern int obpdebug;
162 
163 #define	DEBUGGER_PRESENT	((boothowto & RB_DEBUG) || (obpdebug != 0))
164 
165 static int minorperm_loaded = 0;
166 
167 void
168 mod_setup(void)
169 {
170 	struct sysent *callp;
171 	int callnum, exectype;
172 	int	num_devs;
173 	int	i;
174 
175 	/*
176 	 * Initialize the list of loaded driver dev_ops.
177 	 * XXX - This must be done before reading the system file so that
178 	 * forceloads of drivers will work.
179 	 */
180 	num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
181 	/*
182 	 * Since read_binding_file is common code, it doesn't enforce that all
183 	 * of the binding file entries have major numbers <= MAXMAJ32.	Thus,
184 	 * ensure that we don't allocate some massive amount of space due to a
185 	 * bad entry.  We can't have major numbers bigger than MAXMAJ32
186 	 * until file system support for larger major numbers exists.
187 	 */
188 
189 	/*
190 	 * Leave space for expansion, but not more than L_MAXMAJ32
191 	 */
192 	devcnt = MIN(num_devs + devcnt_incr, L_MAXMAJ32);
193 	devcnt = MAX(devcnt, devcnt_min);
194 	devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
195 	for (i = 0; i < devcnt; i++)
196 		devopsp[i] = &mod_nodev_ops;
197 
198 	init_devnamesp(devcnt);
199 
200 	/*
201 	 * Sync up with the work that the stand-alone linker has already done.
202 	 */
203 	(void) kobj_sync();
204 
205 	if (boothowto & RB_DEBUG)
206 		kdi_dvec_modavail();
207 
208 	make_aliases(mb_hashtab);
209 
210 	/*
211 	 * Initialize streams device implementation structures.
212 	 */
213 	devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
214 
215 	/*
216 	 * If the cl_bootstrap module is present,
217 	 * we should be configured as a cluster. Loading this module
218 	 * will set "cluster_bootflags" to non-zero.
219 	 */
220 	(void) modload("misc", "cl_bootstrap");
221 
222 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
223 	init_syscallnames(NSYSCALL);
224 
225 	/*
226 	 * Start up dynamic autoconfiguration framework (dacf).
227 	 */
228 	mod_hash_init();
229 	dacf_init();
230 
231 	/*
232 	 * Start up IP policy framework (ipp).
233 	 */
234 	ipp_init();
235 
236 	/*
237 	 * Allocate loadable native system call locks.
238 	 */
239 	for (callnum = 0, callp = sysent; callnum < NSYSCALL;
240 	    callnum++, callp++) {
241 		if (LOADABLE_SYSCALL(callp)) {
242 			if (mod_getsysname(callnum) != NULL) {
243 				callp->sy_lock =
244 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
245 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
246 			} else {
247 				callp->sy_flags &= ~SE_LOADABLE;
248 				callp->sy_callc = nosys;
249 			}
250 #ifdef DEBUG
251 		} else {
252 			/*
253 			 * Do some sanity checks on the sysent table
254 			 */
255 			switch (callp->sy_flags & SE_RVAL_MASK) {
256 			case SE_32RVAL1:
257 				/* only r_val1 returned */
258 			case SE_32RVAL1 | SE_32RVAL2:
259 				/* r_val1 and r_val2 returned */
260 			case SE_64RVAL:
261 				/* 64-bit rval returned */
262 				break;
263 			default:
264 				cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
265 				    callnum, callp->sy_flags);
266 			}
267 #endif
268 		}
269 	}
270 
271 #ifdef _SYSCALL32_IMPL
272 	/*
273 	 * Allocate loadable system call locks for 32-bit compat syscalls
274 	 */
275 	for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
276 	    callnum++, callp++) {
277 		if (LOADABLE_SYSCALL(callp)) {
278 			if (mod_getsysname(callnum) != NULL) {
279 				callp->sy_lock =
280 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
281 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
282 			} else {
283 				callp->sy_flags &= ~SE_LOADABLE;
284 				callp->sy_callc = nosys;
285 			}
286 #ifdef DEBUG
287 		} else {
288 			/*
289 			 * Do some sanity checks on the sysent table
290 			 */
291 			switch (callp->sy_flags & SE_RVAL_MASK) {
292 			case SE_32RVAL1:
293 				/* only r_val1 returned */
294 			case SE_32RVAL1 | SE_32RVAL2:
295 				/* r_val1 and r_val2 returned */
296 			case SE_64RVAL:
297 				/* 64-bit rval returned */
298 				break;
299 			default:
300 				cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
301 				    callnum, callp->sy_flags);
302 				goto skip;
303 			}
304 
305 			/*
306 			 * Cross-check the native and compatibility tables.
307 			 */
308 			if (callp->sy_callc == nosys ||
309 			    sysent[callnum].sy_callc == nosys)
310 				continue;
311 			/*
312 			 * If only one or the other slot is loadable, then
313 			 * there's an error -- they should match!
314 			 */
315 			if ((callp->sy_callc == loadable_syscall) ^
316 			    (sysent[callnum].sy_callc == loadable_syscall)) {
317 				cmn_err(CE_WARN, "sysent[%d] loadable?",
318 				    callnum);
319 			}
320 			/*
321 			 * This is more of a heuristic test -- if the
322 			 * system call returns two values in the 32-bit
323 			 * world, it should probably return two 32-bit
324 			 * values in the 64-bit world too.
325 			 */
326 			if (((callp->sy_flags & SE_32RVAL2) == 0) ^
327 			    ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
328 				cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
329 				    callnum);
330 			}
331 skip:;
332 #endif	/* DEBUG */
333 		}
334 	}
335 #endif	/* _SYSCALL32_IMPL */
336 
337 	/*
338 	 * Allocate loadable exec locks.  (Assumes all execs are loadable)
339 	 */
340 	for (exectype = 0; exectype < nexectype; exectype++) {
341 		execsw[exectype].exec_lock =
342 		    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
343 		rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
344 	}
345 
346 	read_class_file();
347 
348 	/* init thread specific structure for mod_uninstall_all */
349 	tsd_create(&mod_autounload_key, NULL);
350 }
351 
352 static int
353 modctl_modload(int use_path, char *filename, int *rvp)
354 {
355 	struct modctl *modp;
356 	int retval = 0;
357 	char *filenamep;
358 	int modid;
359 
360 	filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
361 
362 	if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
363 		retval = EFAULT;
364 		goto out;
365 	}
366 
367 	filenamep[MOD_MAXPATH - 1] = 0;
368 	modp = mod_hold_installed_mod(filenamep, use_path, 0, &retval);
369 
370 	if (modp == NULL)
371 		goto out;
372 
373 	modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
374 	modid = modp->mod_id;
375 	mod_release_mod(modp);
376 	CPU_STATS_ADDQ(CPU, sys, modload, 1);
377 	if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
378 		retval = EFAULT;
379 out:
380 	kmem_free(filenamep, MOD_MAXPATH);
381 
382 	return (retval);
383 }
384 
385 static int
386 modctl_modunload(modid_t id)
387 {
388 	int rval = 0;
389 
390 	if (id == 0) {
391 #ifdef DEBUG
392 		/*
393 		 * Turn on mod_uninstall_daemon
394 		 */
395 		if (mod_uninstall_interval == 0) {
396 			mod_uninstall_interval = 60;
397 			modreap();
398 			return (rval);
399 		}
400 #endif
401 		mod_uninstall_all();
402 	} else {
403 		rval = modunload(id);
404 	}
405 	return (rval);
406 }
407 
408 static int
409 modctl_modinfo(modid_t id, struct modinfo *umodi)
410 {
411 	int retval;
412 	struct modinfo modi;
413 #if defined(_SYSCALL32_IMPL)
414 	int nobase;
415 	struct modinfo32 modi32;
416 #endif
417 
418 	nobase = 0;
419 	if (get_udatamodel() == DATAMODEL_NATIVE) {
420 		if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
421 			return (EFAULT);
422 	}
423 #ifdef _SYSCALL32_IMPL
424 	else {
425 		bzero(&modi, sizeof (modi));
426 		if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
427 			return (EFAULT);
428 		modi.mi_info = modi32.mi_info;
429 		modi.mi_id = modi32.mi_id;
430 		modi.mi_nextid = modi32.mi_nextid;
431 		nobase = modi.mi_info & MI_INFO_NOBASE;
432 	}
433 #endif
434 	/*
435 	 * This flag is -only- for the kernels use.
436 	 */
437 	modi.mi_info &= ~MI_INFO_LINKAGE;
438 
439 	retval = modinfo(id, &modi);
440 	if (retval)
441 		return (retval);
442 
443 	if (get_udatamodel() == DATAMODEL_NATIVE) {
444 		if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
445 			retval = EFAULT;
446 #ifdef _SYSCALL32_IMPL
447 	} else {
448 		int i;
449 
450 		if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
451 			return (EOVERFLOW);
452 
453 		modi32.mi_info = modi.mi_info;
454 		modi32.mi_state = modi.mi_state;
455 		modi32.mi_id = modi.mi_id;
456 		modi32.mi_nextid = modi.mi_nextid;
457 		modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
458 		modi32.mi_size = modi.mi_size;
459 		modi32.mi_rev = modi.mi_rev;
460 		modi32.mi_loadcnt = modi.mi_loadcnt;
461 		bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
462 		for (i = 0; i < MODMAXLINK32; i++) {
463 			modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
464 			bcopy(modi.mi_msinfo[i].msi_linkinfo,
465 			    modi32.mi_msinfo[i].msi_linkinfo,
466 			    sizeof (modi32.mi_msinfo[0].msi_linkinfo));
467 		}
468 		if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
469 			retval = EFAULT;
470 #endif
471 	}
472 
473 	return (retval);
474 }
475 
476 /*
477  * Return the last major number in the range of permissible major numbers.
478  */
479 /*ARGSUSED*/
480 static int
481 modctl_modreserve(modid_t id, int *data)
482 {
483 	if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
484 		return (EFAULT);
485 	return (0);
486 }
487 
488 /* Add/Remove driver and binding aliases */
489 static int
490 modctl_update_driver_aliases(int add, int *data)
491 {
492 	struct modconfig	mc;
493 	int			i, n, rv = 0;
494 	struct aliases		alias;
495 	struct aliases		*ap;
496 	char			name[MAXMODCONFNAME];
497 	char			cname[MAXMODCONFNAME];
498 	char			*drvname;
499 	int			resid;
500 	struct alias_info {
501 		char	*alias_name;
502 		int	alias_resid;
503 	} *aliases, *aip;
504 
505 	aliases = NULL;
506 	bzero(&mc, sizeof (struct modconfig));
507 	if (get_udatamodel() == DATAMODEL_NATIVE) {
508 		if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
509 			return (EFAULT);
510 	}
511 #ifdef _SYSCALL32_IMPL
512 	else {
513 		struct modconfig32 modc32;
514 		if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
515 			return (EFAULT);
516 		else {
517 			bcopy(modc32.drvname, mc.drvname,
518 			    sizeof (modc32.drvname));
519 			bcopy(modc32.drvclass, mc.drvclass,
520 			    sizeof (modc32.drvclass));
521 			mc.major = modc32.major;
522 			mc.flags = modc32.flags;
523 			mc.num_aliases = modc32.num_aliases;
524 			mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
525 		}
526 	}
527 #endif
528 
529 	/*
530 	 * If the driver is already in the mb_hashtab, and the name given
531 	 * doesn't match that driver's name, fail.  Otherwise, pass, since
532 	 * we may be adding aliases.
533 	 */
534 	drvname = mod_major_to_name(mc.major);
535 	if ((drvname != NULL) && strcmp(drvname, mc.drvname) != 0)
536 		return (EINVAL);
537 
538 	/*
539 	 * Precede alias removal by unbinding as many devices as possible.
540 	 */
541 	if (add == 0) {
542 		(void) i_ddi_unload_drvconf(mc.major);
543 		i_ddi_unbind_devs(mc.major);
544 	}
545 
546 	/*
547 	 * Add/remove each supplied driver alias to/from mb_hashtab
548 	 */
549 	ap = mc.ap;
550 	if (mc.num_aliases > 0)
551 		aliases = kmem_zalloc(
552 		    mc.num_aliases * sizeof (struct alias_info), KM_SLEEP);
553 	aip = aliases;
554 	for (i = 0; i < mc.num_aliases; i++) {
555 		bzero(&alias, sizeof (struct aliases));
556 		if (get_udatamodel() == DATAMODEL_NATIVE) {
557 			if (copyin(ap, &alias, sizeof (struct aliases)) != 0) {
558 				rv = EFAULT;
559 				goto error;
560 			}
561 			if (alias.a_len > MAXMODCONFNAME) {
562 				rv = EINVAL;
563 				goto error;
564 			}
565 			if (copyin(alias.a_name, name, alias.a_len) != 0) {
566 				rv = EFAULT;
567 				goto error;
568 			}
569 			if (name[alias.a_len - 1] != '\0') {
570 				rv = EINVAL;
571 				goto error;
572 			}
573 		}
574 #ifdef _SYSCALL32_IMPL
575 		else {
576 			struct aliases32 al32;
577 			bzero(&al32, sizeof (struct aliases32));
578 			if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) {
579 				rv = EFAULT;
580 				goto error;
581 			}
582 			if (al32.a_len > MAXMODCONFNAME) {
583 				rv = EINVAL;
584 				goto error;
585 			}
586 			if (copyin((void *)(uintptr_t)al32.a_name,
587 			    name, al32.a_len) != 0) {
588 				rv = EFAULT;
589 				goto error;
590 			}
591 			if (name[al32.a_len - 1] != '\0') {
592 				rv = EINVAL;
593 				goto error;
594 			}
595 			alias.a_next = (void *)(uintptr_t)al32.a_next;
596 		}
597 #endif
598 		check_esc_sequences(name, cname);
599 		aip->alias_name = strdup(cname);
600 		ap = alias.a_next;
601 		aip++;
602 	}
603 
604 	if (add == 0) {
605 		ap = mc.ap;
606 		resid = 0;
607 		aip = aliases;
608 		/* attempt to unbind all devices bound to each alias */
609 		for (i = 0; i < mc.num_aliases; i++) {
610 			n = i_ddi_unbind_devs_by_alias(
611 			    mc.major, aip->alias_name);
612 			resid += n;
613 			aip->alias_resid = n;
614 		}
615 
616 		/*
617 		 * If some device bound to an alias remains in use,
618 		 * and override wasn't specified, no change is made to
619 		 * the binding state and we fail the operation.
620 		 */
621 		if (resid > 0 && ((mc.flags & MOD_UNBIND_OVERRIDE) == 0)) {
622 			rv = EBUSY;
623 			goto error;
624 		}
625 
626 		/*
627 		 * No device remains bound of any of the aliases,
628 		 * or force was requested.  Mark each alias as
629 		 * inactive via delete_mbind so no future binds
630 		 * to this alias take place and that a new
631 		 * binding can be established.
632 		 */
633 		aip = aliases;
634 		for (i = 0; i < mc.num_aliases; i++) {
635 			if (moddebug & MODDEBUG_BINDING)
636 				cmn_err(CE_CONT, "Removing binding for %s "
637 				    "(%d active references)\n",
638 				    aip->alias_name, aip->alias_resid);
639 			delete_mbind(aip->alias_name, mb_hashtab);
640 			aip++;
641 		}
642 		rv = 0;
643 	} else {
644 		aip = aliases;
645 		for (i = 0; i < mc.num_aliases; i++) {
646 			if (moddebug & MODDEBUG_BINDING)
647 				cmn_err(CE_NOTE, "Adding binding for '%s'\n",
648 				    aip->alias_name);
649 			(void) make_mbind(aip->alias_name,
650 			    mc.major, NULL, mb_hashtab);
651 			aip++;
652 		}
653 		/*
654 		 * Try to establish an mbinding for mc.drvname, and add it to
655 		 * devnames. Add class if any after establishing the major
656 		 * number.
657 		 */
658 		(void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
659 		if ((rv = make_devname(mc.drvname, mc.major,
660 		    (mc.flags & MOD_ADDMAJBIND_UPDATE) ?
661 		    DN_DRIVER_INACTIVE : 0)) != 0) {
662 			goto error;
663 		}
664 
665 		if (mc.drvclass[0] != '\0')
666 			add_class(mc.drvname, mc.drvclass);
667 		if ((mc.flags & MOD_ADDMAJBIND_UPDATE) == 0) {
668 			(void) i_ddi_load_drvconf(mc.major);
669 		}
670 	}
671 
672 	/*
673 	 * Ensure that all nodes are bound to the most appropriate driver
674 	 * possible, attempting demotion and rebind when a more appropriate
675 	 * driver now exists.  But not when adding a driver update-only.
676 	 */
677 	if ((add == 0) || ((mc.flags & MOD_ADDMAJBIND_UPDATE) == 0)) {
678 		i_ddi_bind_devs();
679 		i_ddi_di_cache_invalidate();
680 	}
681 
682 error:
683 	if (mc.num_aliases > 0) {
684 		aip = aliases;
685 		for (i = 0; i < mc.num_aliases; i++) {
686 			if (aip->alias_name != NULL)
687 				strfree(aip->alias_name);
688 			aip++;
689 		}
690 		kmem_free(aliases, mc.num_aliases * sizeof (struct alias_info));
691 	}
692 	return (rv);
693 }
694 
695 static int
696 modctl_add_driver_aliases(int *data)
697 {
698 	return (modctl_update_driver_aliases(1, data));
699 }
700 
701 static int
702 modctl_remove_driver_aliases(int *data)
703 {
704 	return (modctl_update_driver_aliases(0, data));
705 }
706 
707 static int
708 modctl_rem_major(major_t major)
709 {
710 	struct devnames *dnp;
711 
712 	if (major >= devcnt)
713 		return (EINVAL);
714 
715 	/* mark devnames as removed */
716 	dnp = &devnamesp[major];
717 	LOCK_DEV_OPS(&dnp->dn_lock);
718 	if (dnp->dn_name == NULL ||
719 	    (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
720 		UNLOCK_DEV_OPS(&dnp->dn_lock);
721 		return (EINVAL);
722 	}
723 	dnp->dn_flags |= DN_DRIVER_REMOVED;
724 	pm_driver_removed(major);
725 	UNLOCK_DEV_OPS(&dnp->dn_lock);
726 
727 	(void) i_ddi_unload_drvconf(major);
728 	i_ddi_unbind_devs(major);
729 	i_ddi_bind_devs();
730 	i_ddi_di_cache_invalidate();
731 
732 	/* purge all the bindings to this driver */
733 	purge_mbind(major, mb_hashtab);
734 	return (0);
735 }
736 
737 static struct vfs *
738 path_to_vfs(char *name)
739 {
740 	vnode_t *vp;
741 	struct vfs *vfsp;
742 
743 	if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
744 		return (NULL);
745 
746 	vfsp = vp->v_vfsp;
747 	VN_RELE(vp);
748 	return (vfsp);
749 }
750 
751 static int
752 new_vfs_in_modpath()
753 {
754 	static int n_modpath = 0;
755 	static char *modpath_copy;
756 	static struct pathvfs {
757 		char *path;
758 		struct vfs *vfsp;
759 	} *pathvfs;
760 
761 	int i, new_vfs = 0;
762 	char *tmp, *tmp1;
763 	struct vfs *vfsp;
764 
765 	if (n_modpath != 0) {
766 		for (i = 0; i < n_modpath; i++) {
767 			vfsp = path_to_vfs(pathvfs[i].path);
768 			if (vfsp != pathvfs[i].vfsp) {
769 				pathvfs[i].vfsp = vfsp;
770 				if (vfsp)
771 					new_vfs = 1;
772 			}
773 		}
774 		return (new_vfs);
775 	}
776 
777 	/*
778 	 * First call, initialize the pathvfs structure
779 	 */
780 	modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
781 	tmp = modpath_copy;
782 	n_modpath = 1;
783 	tmp1 = strchr(tmp, ' ');
784 	while (tmp1) {
785 		*tmp1 = '\0';
786 		n_modpath++;
787 		tmp = tmp1 + 1;
788 		tmp1 = strchr(tmp, ' ');
789 	}
790 
791 	pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
792 	tmp = modpath_copy;
793 	for (i = 0; i < n_modpath; i++) {
794 		pathvfs[i].path = tmp;
795 		vfsp = path_to_vfs(tmp);
796 		pathvfs[i].vfsp = vfsp;
797 		tmp += strlen(tmp) + 1;
798 	}
799 	return (1);	/* always reread driver.conf the first time */
800 }
801 
802 static int
803 modctl_load_drvconf(major_t major, int flags)
804 {
805 	int ret;
806 
807 	/*
808 	 * devfsadm -u - read all new driver.conf files
809 	 * and bind and configure devices for new drivers.
810 	 */
811 	if (flags & MOD_LOADDRVCONF_RECONF) {
812 		(void) i_ddi_load_drvconf(DDI_MAJOR_T_NONE);
813 		i_ddi_bind_devs();
814 		i_ddi_di_cache_invalidate();
815 		return (0);
816 	}
817 
818 	/*
819 	 * update_drv <drv> - reload driver.conf for the specified driver
820 	 */
821 	if (major != DDI_MAJOR_T_NONE) {
822 		ret = i_ddi_load_drvconf(major);
823 		if (ret == 0)
824 			i_ddi_bind_devs();
825 		return (ret);
826 	}
827 
828 	/*
829 	 * We are invoked to rescan new driver.conf files. It is
830 	 * only necessary if a new file system was mounted in the
831 	 * module_path. Because rescanning driver.conf files can
832 	 * take some time on older platforms (sun4m), the following
833 	 * code skips unnecessary driver.conf rescans to optimize
834 	 * boot performance.
835 	 */
836 	if (new_vfs_in_modpath()) {
837 		(void) i_ddi_load_drvconf(DDI_MAJOR_T_NONE);
838 		/*
839 		 * If we are still initializing io subsystem,
840 		 * load drivers with ddi-forceattach property
841 		 */
842 		if (!i_ddi_io_initialized())
843 			i_ddi_forceattach_drivers();
844 	}
845 	return (0);
846 }
847 
848 /*
849  * Unload driver.conf file and follow up by attempting
850  * to rebind devices to more appropriate driver.
851  */
852 static int
853 modctl_unload_drvconf(major_t major)
854 {
855 	int ret;
856 
857 	if (major >= devcnt)
858 		return (EINVAL);
859 
860 	ret = i_ddi_unload_drvconf(major);
861 	if (ret != 0)
862 		return (ret);
863 	(void) i_ddi_unbind_devs(major);
864 	i_ddi_bind_devs();
865 
866 	return (0);
867 }
868 
869 static void
870 check_esc_sequences(char *str, char *cstr)
871 {
872 	int i;
873 	size_t len;
874 	char *p;
875 
876 	len = strlen(str);
877 	for (i = 0; i < len; i++, str++, cstr++) {
878 		if (*str != '\\') {
879 			*cstr = *str;
880 		} else {
881 			p = str + 1;
882 			/*
883 			 * we only handle octal escape sequences for SPACE
884 			 */
885 			if (*p++ == '0' && *p++ == '4' && *p == '0') {
886 				*cstr = ' ';
887 				str += 3;
888 			} else {
889 				*cstr = *str;
890 			}
891 		}
892 	}
893 	*cstr = 0;
894 }
895 
896 static int
897 modctl_getmodpathlen(int *data)
898 {
899 	int len;
900 	len = strlen(default_path);
901 	if (copyout(&len, data, sizeof (len)) != 0)
902 		return (EFAULT);
903 	return (0);
904 }
905 
906 static int
907 modctl_getmodpath(char *data)
908 {
909 	if (copyout(default_path, data, strlen(default_path) + 1) != 0)
910 		return (EFAULT);
911 	return (0);
912 }
913 
914 static int
915 modctl_read_sysbinding_file(void)
916 {
917 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
918 	return (0);
919 }
920 
921 static int
922 modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
923 {
924 	char name[256];
925 	int retval;
926 	major_t major;
927 
928 	if (ulen == 0)
929 		return (EINVAL);
930 	if ((retval = copyinstr(uname, name,
931 	    (ulen < 256) ? ulen : 256, 0)) != 0)
932 		return (retval);
933 	if ((major = mod_name_to_major(name)) == DDI_MAJOR_T_NONE)
934 		return (ENODEV);
935 	if (copyout(&major, umajorp, sizeof (major_t)) != 0)
936 		return (EFAULT);
937 	return (0);
938 }
939 
940 static char **
941 convert_constraint_string(char *constraints, size_t len)
942 {
943 	int	i;
944 	int	n;
945 	char	*p;
946 	char	**array;
947 
948 	ASSERT(constraints != NULL);
949 	ASSERT(len > 0);
950 
951 	for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1)
952 		;
953 
954 	n = i;
955 
956 	if (n == 0) {
957 		kmem_free(constraints, len);
958 		return (NULL);
959 	}
960 
961 	array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP);
962 
963 	for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) {
964 		array[i] = i_ddi_strdup(p, KM_SLEEP);
965 	}
966 	array[n] = NULL;
967 
968 	kmem_free(constraints, len);
969 
970 	return (array);
971 }
972 /*ARGSUSED*/
973 static int
974 modctl_retire(char *path, char *uconstraints, size_t ulen)
975 {
976 	char	*pathbuf;
977 	char	*devpath;
978 	size_t	pathsz;
979 	int	retval;
980 	char	*constraints;
981 	char	**cons_array;
982 
983 	if (path == NULL)
984 		return (EINVAL);
985 
986 	if ((uconstraints == NULL) ^ (ulen == 0))
987 		return (EINVAL);
988 
989 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
990 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
991 	if (retval != 0) {
992 		kmem_free(pathbuf, MAXPATHLEN);
993 		return (retval);
994 	}
995 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
996 	kmem_free(pathbuf, MAXPATHLEN);
997 
998 	/*
999 	 * First check if the device is already retired.
1000 	 * If it is, then persist the retire anyway, just in case the retire
1001 	 * store has got out of sync with the boot archive.
1002 	 */
1003 	if (e_ddi_device_retired(devpath)) {
1004 		cmn_err(CE_NOTE, "Device: already retired: %s", devpath);
1005 		(void) e_ddi_retire_persist(devpath);
1006 		kmem_free(devpath, strlen(devpath) + 1);
1007 		return (0);
1008 	}
1009 
1010 	cons_array = NULL;
1011 	if (uconstraints) {
1012 		constraints = kmem_alloc(ulen, KM_SLEEP);
1013 		if (copyin(uconstraints, constraints, ulen)) {
1014 			kmem_free(constraints, ulen);
1015 			kmem_free(devpath, strlen(devpath) + 1);
1016 			return (EFAULT);
1017 		}
1018 		cons_array = convert_constraint_string(constraints, ulen);
1019 	}
1020 
1021 	/*
1022 	 * Try to retire the device first. The following
1023 	 * routine will return an error only if the device
1024 	 * is not retireable i.e. retire constraints forbid
1025 	 * a retire. A return of success from this routine
1026 	 * indicates that device is retireable.
1027 	 */
1028 	retval = e_ddi_retire_device(devpath, cons_array);
1029 	if (retval != DDI_SUCCESS) {
1030 		cmn_err(CE_WARN, "constraints forbid retire: %s", devpath);
1031 		kmem_free(devpath, strlen(devpath) + 1);
1032 		return (ENOTSUP);
1033 	}
1034 
1035 	/*
1036 	 * Ok, the retire succeeded. Persist the retire.
1037 	 * If retiring a nexus, we need to only persist the
1038 	 * nexus retire. Any children of a retired nexus
1039 	 * are automatically covered by the retire store
1040 	 * code.
1041 	 */
1042 	retval = e_ddi_retire_persist(devpath);
1043 	if (retval != 0) {
1044 		cmn_err(CE_WARN, "Failed to persist device retire: error %d: "
1045 		    "%s", retval, devpath);
1046 		kmem_free(devpath, strlen(devpath) + 1);
1047 		return (retval);
1048 	}
1049 	if (moddebug & MODDEBUG_RETIRE)
1050 		cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath);
1051 
1052 	kmem_free(devpath, strlen(devpath) + 1);
1053 	return (0);
1054 }
1055 
1056 static int
1057 modctl_is_retired(char *path, int *statep)
1058 {
1059 	char	*pathbuf;
1060 	char	*devpath;
1061 	size_t	pathsz;
1062 	int	error;
1063 	int	status;
1064 
1065 	if (path == NULL || statep == NULL)
1066 		return (EINVAL);
1067 
1068 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1069 	error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1070 	if (error != 0) {
1071 		kmem_free(pathbuf, MAXPATHLEN);
1072 		return (error);
1073 	}
1074 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1075 	kmem_free(pathbuf, MAXPATHLEN);
1076 
1077 	if (e_ddi_device_retired(devpath))
1078 		status = 1;
1079 	else
1080 		status = 0;
1081 	kmem_free(devpath, strlen(devpath) + 1);
1082 
1083 	return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0);
1084 }
1085 
1086 static int
1087 modctl_unretire(char *path)
1088 {
1089 	char	*pathbuf;
1090 	char	*devpath;
1091 	size_t	pathsz;
1092 	int	retired;
1093 	int	retval;
1094 
1095 	if (path == NULL)
1096 		return (EINVAL);
1097 
1098 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1099 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1100 	if (retval != 0) {
1101 		kmem_free(pathbuf, MAXPATHLEN);
1102 		return (retval);
1103 	}
1104 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1105 	kmem_free(pathbuf, MAXPATHLEN);
1106 
1107 	/*
1108 	 * We check if a device is retired (first) before
1109 	 * unpersisting the retire, because we use the
1110 	 * retire store to determine if a device is retired.
1111 	 * If we unpersist first, the device will always appear
1112 	 * to be unretired. For the rationale behind unpersisting
1113 	 * a device that is not retired, see the next comment.
1114 	 */
1115 	retired = e_ddi_device_retired(devpath);
1116 
1117 	/*
1118 	 * We call unpersist unconditionally because the lookup
1119 	 * for retired devices (e_ddi_device_retired()), skips "bypassed"
1120 	 * devices. We still want to be able remove "bypassed" entries
1121 	 * from the persistent store, so we unpersist unconditionally
1122 	 * i.e. whether or not the entry is found on a lookup.
1123 	 *
1124 	 * e_ddi_retire_unpersist() returns 1 if it found and cleared
1125 	 * an entry from the retire store or 0 otherwise.
1126 	 */
1127 	if (e_ddi_retire_unpersist(devpath))
1128 		if (moddebug & MODDEBUG_RETIRE) {
1129 			cmn_err(CE_NOTE, "Unpersisted retire of device: %s",
1130 			    devpath);
1131 		}
1132 
1133 	/*
1134 	 * Check if the device is already unretired. If so,
1135 	 * the unretire becomes a NOP
1136 	 */
1137 	if (!retired) {
1138 		cmn_err(CE_NOTE, "Not retired: %s", devpath);
1139 		kmem_free(devpath, strlen(devpath) + 1);
1140 		return (0);
1141 	}
1142 
1143 	retval = e_ddi_unretire_device(devpath);
1144 	if (retval != 0) {
1145 		cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n",
1146 		    retval, devpath);
1147 	}
1148 
1149 	kmem_free(devpath, strlen(devpath) + 1);
1150 
1151 	return (retval);
1152 }
1153 
1154 static int
1155 modctl_getname(char *uname, uint_t ulen, int *umajorp)
1156 {
1157 	char *name;
1158 	major_t major;
1159 
1160 	if (copyin(umajorp, &major, sizeof (major)) != 0)
1161 		return (EFAULT);
1162 	if ((name = mod_major_to_name(major)) == NULL)
1163 		return (ENODEV);
1164 	if ((strlen(name) + 1) > ulen)
1165 		return (ENOSPC);
1166 	return (copyoutstr(name, uname, ulen, NULL));
1167 }
1168 
1169 static int
1170 modctl_devt2instance(dev_t dev, int *uinstancep)
1171 {
1172 	int	instance;
1173 
1174 	if ((instance = dev_to_instance(dev)) == -1)
1175 		return (EINVAL);
1176 
1177 	return (copyout(&instance, uinstancep, sizeof (int)));
1178 }
1179 
1180 /*
1181  * Return the sizeof of the device id.
1182  */
1183 static int
1184 modctl_sizeof_devid(dev_t dev, uint_t *len)
1185 {
1186 	uint_t		sz;
1187 	ddi_devid_t	devid;
1188 
1189 	/* get device id */
1190 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1191 		return (EINVAL);
1192 
1193 	sz = ddi_devid_sizeof(devid);
1194 	ddi_devid_free(devid);
1195 
1196 	/* copyout device id size */
1197 	if (copyout(&sz, len, sizeof (sz)) != 0)
1198 		return (EFAULT);
1199 
1200 	return (0);
1201 }
1202 
1203 /*
1204  * Return a copy of the device id.
1205  */
1206 static int
1207 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
1208 {
1209 	uint_t		sz;
1210 	ddi_devid_t	devid;
1211 	int		err = 0;
1212 
1213 	/* get device id */
1214 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1215 		return (EINVAL);
1216 
1217 	sz = ddi_devid_sizeof(devid);
1218 
1219 	/* Error if device id is larger than space allocated */
1220 	if (sz > len) {
1221 		ddi_devid_free(devid);
1222 		return (ENOSPC);
1223 	}
1224 
1225 	/* copy out device id */
1226 	if (copyout(devid, udevid, sz) != 0)
1227 		err = EFAULT;
1228 	ddi_devid_free(devid);
1229 	return (err);
1230 }
1231 
1232 /*
1233  * return the /devices paths associated with the specified devid and
1234  * minor name.
1235  */
1236 /*ARGSUSED*/
1237 static int
1238 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
1239     size_t *ulensp, char *upaths)
1240 {
1241 	ddi_devid_t	devid = NULL;
1242 	int		devid_len;
1243 	char		*minor_name = NULL;
1244 	dev_info_t	*dip = NULL;
1245 	int		circ;
1246 	struct ddi_minor_data	*dmdp;
1247 	char		*path = NULL;
1248 	int		ulens;
1249 	int		lens;
1250 	int		len;
1251 	dev_t		*devlist = NULL;
1252 	int		ndevs;
1253 	int		i;
1254 	int		ret = 0;
1255 
1256 	/*
1257 	 * If upaths is NULL then we are only computing the amount of space
1258 	 * needed to hold the paths and returning the value in *ulensp. If we
1259 	 * are copying out paths then we get the amount of space allocated by
1260 	 * the caller. If the actual space needed for paths is larger, or
1261 	 * things are changing out from under us, then we return EAGAIN.
1262 	 */
1263 	if (upaths) {
1264 		if (ulensp == NULL)
1265 			return (EINVAL);
1266 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1267 			return (EFAULT);
1268 	}
1269 
1270 	/*
1271 	 * copyin enough of the devid to determine the length then
1272 	 * reallocate and copy in the entire devid.
1273 	 */
1274 	devid_len = ddi_devid_sizeof(NULL);
1275 	devid = kmem_alloc(devid_len, KM_SLEEP);
1276 	if (copyin(udevid, devid, devid_len)) {
1277 		ret = EFAULT;
1278 		goto out;
1279 	}
1280 	len = devid_len;
1281 	devid_len = ddi_devid_sizeof(devid);
1282 	kmem_free(devid, len);
1283 	devid = kmem_alloc(devid_len, KM_SLEEP);
1284 	if (copyin(udevid, devid, devid_len)) {
1285 		ret = EFAULT;
1286 		goto out;
1287 	}
1288 
1289 	/* copyin the minor name if specified. */
1290 	minor_name = uminor_name;
1291 	if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1292 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1293 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
1294 		minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1295 		if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
1296 			ret = EFAULT;
1297 			goto out;
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * Use existing function to resolve the devid into a devlist.
1303 	 *
1304 	 * NOTE: there is a loss of spectype information in the current
1305 	 * ddi_lyr_devid_to_devlist implementation. We work around this by not
1306 	 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
1307 	 * node forms in the loop processing the devlist below. It would be
1308 	 * best if at some point the use of this interface here was replaced
1309 	 * with a path oriented call.
1310 	 */
1311 	if (ddi_lyr_devid_to_devlist(devid,
1312 	    (minor_name == DEVID_MINOR_NAME_ALL) ?
1313 	    DEVID_MINOR_NAME_ALL_CHR : minor_name,
1314 	    &ndevs, &devlist) != DDI_SUCCESS) {
1315 		ret = EINVAL;
1316 		goto out;
1317 	}
1318 
1319 	/*
1320 	 * loop over the devlist, converting each devt to a path and doing
1321 	 * a copyout of the path and computation of the amount of space
1322 	 * needed to hold all the paths
1323 	 */
1324 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1325 	for (i = 0, lens = 0; i < ndevs; i++) {
1326 
1327 		/* find the dip associated with the dev_t */
1328 		if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
1329 			continue;
1330 
1331 		/* loop over all the minor nodes, skipping ones we don't want */
1332 		ndi_devi_enter(dip, &circ);
1333 		for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
1334 			if ((dmdp->ddm_dev != devlist[i]) ||
1335 			    (dmdp->type != DDM_MINOR))
1336 				continue;
1337 
1338 			if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1339 			    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1340 			    (minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
1341 			    strcmp(minor_name, dmdp->ddm_name))
1342 				continue;
1343 			else {
1344 				if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
1345 				    (dmdp->ddm_spec_type != S_IFCHR))
1346 					continue;
1347 				if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
1348 				    (dmdp->ddm_spec_type != S_IFBLK))
1349 					continue;
1350 			}
1351 
1352 			(void) ddi_pathname_minor(dmdp, path);
1353 			len = strlen(path) + 1;
1354 			*(path + len) = '\0';	/* set double termination */
1355 			lens += len;
1356 
1357 			/* copyout the path with double terminations */
1358 			if (upaths) {
1359 				if (lens > ulens) {
1360 					ret = EAGAIN;
1361 					goto out;
1362 				}
1363 				if (copyout(path, upaths, len + 1)) {
1364 					ret = EFAULT;
1365 					goto out;
1366 				}
1367 				upaths += len;
1368 			}
1369 		}
1370 		ndi_devi_exit(dip, circ);
1371 		ddi_release_devi(dip);
1372 		dip = NULL;
1373 	}
1374 	lens++;		/* add one for double termination */
1375 
1376 	/* copy out the amount of space needed to hold the paths */
1377 	if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
1378 		ret = EFAULT;
1379 		goto out;
1380 	}
1381 	ret = 0;
1382 
1383 out:	if (dip) {
1384 		ndi_devi_exit(dip, circ);
1385 		ddi_release_devi(dip);
1386 	}
1387 	if (path)
1388 		kmem_free(path, MAXPATHLEN);
1389 	if (devlist)
1390 		ddi_lyr_free_devlist(devlist, ndevs);
1391 	if (minor_name &&
1392 	    (minor_name != DEVID_MINOR_NAME_ALL) &&
1393 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1394 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK))
1395 		kmem_free(minor_name, MAXPATHLEN);
1396 	if (devid)
1397 		kmem_free(devid, devid_len);
1398 	return (ret);
1399 }
1400 
1401 /*
1402  * Return the size of the minor name.
1403  */
1404 static int
1405 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
1406 {
1407 	uint_t	sz;
1408 	char	*name;
1409 
1410 	/* get the minor name */
1411 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1412 		return (EINVAL);
1413 
1414 	sz = strlen(name) + 1;
1415 	kmem_free(name, sz);
1416 
1417 	/* copy out the size of the minor name */
1418 	if (copyout(&sz, len, sizeof (sz)) != 0)
1419 		return (EFAULT);
1420 
1421 	return (0);
1422 }
1423 
1424 /*
1425  * Return the minor name.
1426  */
1427 static int
1428 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
1429 {
1430 	uint_t	sz;
1431 	char	*name;
1432 	int	err = 0;
1433 
1434 	/* get the minor name */
1435 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1436 		return (EINVAL);
1437 
1438 	sz = strlen(name) + 1;
1439 
1440 	/* Error if the minor name is larger than the space allocated */
1441 	if (sz > len) {
1442 		kmem_free(name, sz);
1443 		return (ENOSPC);
1444 	}
1445 
1446 	/* copy out the minor name */
1447 	if (copyout(name, uname, sz) != 0)
1448 		err = EFAULT;
1449 	kmem_free(name, sz);
1450 	return (err);
1451 }
1452 
1453 /*
1454  * Return the size of the (dev_t,spectype) devfspath name.
1455  */
1456 static int
1457 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
1458 {
1459 	uint_t	sz;
1460 	char	*name;
1461 
1462 	/* get the path name */
1463 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1464 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1465 		kmem_free(name, MAXPATHLEN);
1466 		return (EINVAL);
1467 	}
1468 
1469 	sz = strlen(name) + 1;
1470 	kmem_free(name, MAXPATHLEN);
1471 
1472 	/* copy out the size of the path name */
1473 	if (copyout(&sz, len, sizeof (sz)) != 0)
1474 		return (EFAULT);
1475 
1476 	return (0);
1477 }
1478 
1479 /*
1480  * Return the (dev_t,spectype) devfspath name.
1481  */
1482 static int
1483 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
1484 {
1485 	uint_t	sz;
1486 	char	*name;
1487 	int	err = 0;
1488 
1489 	/* get the path name */
1490 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1491 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1492 		kmem_free(name, MAXPATHLEN);
1493 		return (EINVAL);
1494 	}
1495 
1496 	sz = strlen(name) + 1;
1497 
1498 	/* Error if the path name is larger than the space allocated */
1499 	if (sz > len) {
1500 		kmem_free(name, MAXPATHLEN);
1501 		return (ENOSPC);
1502 	}
1503 
1504 	/* copy out the path name */
1505 	if (copyout(name, uname, sz) != 0)
1506 		err = EFAULT;
1507 	kmem_free(name, MAXPATHLEN);
1508 	return (err);
1509 }
1510 
1511 /*
1512  * Return the size of the (major,instance) devfspath name.
1513  */
1514 static int
1515 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len)
1516 {
1517 	uint_t	sz;
1518 	char	*name;
1519 
1520 	/* get the path name */
1521 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1522 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1523 		kmem_free(name, MAXPATHLEN);
1524 		return (EINVAL);
1525 	}
1526 
1527 	sz = strlen(name) + 1;
1528 	kmem_free(name, MAXPATHLEN);
1529 
1530 	/* copy out the size of the path name */
1531 	if (copyout(&sz, len, sizeof (sz)) != 0)
1532 		return (EFAULT);
1533 
1534 	return (0);
1535 }
1536 
1537 /*
1538  * Return the (major_instance) devfspath name.
1539  * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to
1540  * return a path - it uses the instance tree.
1541  */
1542 static int
1543 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname)
1544 {
1545 	uint_t	sz;
1546 	char	*name;
1547 	int	err = 0;
1548 
1549 	/* get the path name */
1550 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1551 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1552 		kmem_free(name, MAXPATHLEN);
1553 		return (EINVAL);
1554 	}
1555 
1556 	sz = strlen(name) + 1;
1557 
1558 	/* Error if the path name is larger than the space allocated */
1559 	if (sz > len) {
1560 		kmem_free(name, MAXPATHLEN);
1561 		return (ENOSPC);
1562 	}
1563 
1564 	/* copy out the path name */
1565 	if (copyout(name, uname, sz) != 0)
1566 		err = EFAULT;
1567 	kmem_free(name, MAXPATHLEN);
1568 	return (err);
1569 }
1570 
1571 static int
1572 modctl_get_fbname(char *path)
1573 {
1574 	extern dev_t fbdev;
1575 	char *pathname = NULL;
1576 	int rval = 0;
1577 
1578 	/* make sure fbdev is set before we plunge in */
1579 	if (fbdev == NODEV)
1580 		return (ENODEV);
1581 
1582 	pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1583 	if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
1584 	    pathname)) == DDI_SUCCESS) {
1585 		if (copyout(pathname, path, strlen(pathname)+1) != 0) {
1586 			rval = EFAULT;
1587 		}
1588 	}
1589 	kmem_free(pathname, MAXPATHLEN);
1590 	return (rval);
1591 }
1592 
1593 /*
1594  * modctl_reread_dacf()
1595  *	Reread the dacf rules database from the named binding file.
1596  *	If NULL is specified, pass along the NULL, it means 'use the default'.
1597  */
1598 static int
1599 modctl_reread_dacf(char *path)
1600 {
1601 	int rval = 0;
1602 	char *filename, *filenamep;
1603 
1604 	filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1605 
1606 	if (path == NULL) {
1607 		filenamep = NULL;
1608 	} else {
1609 		if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
1610 			rval = EFAULT;
1611 			goto out;
1612 		}
1613 		filenamep = filename;
1614 		filenamep[MAXPATHLEN - 1] = '\0';
1615 	}
1616 
1617 	rval = read_dacf_binding_file(filenamep);
1618 out:
1619 	kmem_free(filename, MAXPATHLEN);
1620 	return (rval);
1621 }
1622 
1623 /*ARGSUSED*/
1624 static int
1625 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1626     uint_t flag)
1627 {
1628 	int error = 0;
1629 	char *filenamep;
1630 
1631 	switch (subcmd) {
1632 
1633 	case MODEVENTS_FLUSH:
1634 		/* flush all currently queued events */
1635 		log_sysevent_flushq(subcmd, flag);
1636 		break;
1637 
1638 	case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
1639 		/*
1640 		 * bind door_upcall to filename
1641 		 * this should only be done once per invocation
1642 		 * of the event daemon.
1643 		 */
1644 
1645 		filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
1646 
1647 		if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
1648 			error = EFAULT;
1649 		} else {
1650 			error = log_sysevent_filename(filenamep);
1651 		}
1652 		kmem_free(filenamep, MOD_MAXPATH);
1653 		break;
1654 
1655 	case MODEVENTS_GETDATA:
1656 		error = log_sysevent_copyout_data((sysevent_id_t *)a2,
1657 		    (size_t)a3, (caddr_t)a4);
1658 		break;
1659 
1660 	case MODEVENTS_FREEDATA:
1661 		error = log_sysevent_free_data((sysevent_id_t *)a2);
1662 		break;
1663 	case MODEVENTS_POST_EVENT:
1664 		error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
1665 		    (sysevent_id_t *)a4);
1666 		break;
1667 	case MODEVENTS_REGISTER_EVENT:
1668 		error = log_sysevent_register((char *)a2, (char *)a3,
1669 		    (se_pubsub_t *)a4);
1670 		break;
1671 	default:
1672 		error = EINVAL;
1673 	}
1674 
1675 	return (error);
1676 }
1677 
1678 static void
1679 free_mperm(mperm_t *mp)
1680 {
1681 	int len;
1682 
1683 	if (mp->mp_minorname) {
1684 		len = strlen(mp->mp_minorname) + 1;
1685 		kmem_free(mp->mp_minorname, len);
1686 	}
1687 	kmem_free(mp, sizeof (mperm_t));
1688 }
1689 
1690 #define	MP_NO_DRV_ERR	\
1691 	"/etc/minor_perm: no driver for %s\n"
1692 
1693 #define	MP_EMPTY_MINOR	\
1694 	"/etc/minor_perm: empty minor name for driver %s\n"
1695 
1696 #define	MP_NO_MINOR	\
1697 	"/etc/minor_perm: no minor matching %s for driver %s\n"
1698 
1699 /*
1700  * Remove mperm entry with matching minorname
1701  */
1702 static void
1703 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1704 {
1705 	mperm_t **mp_head;
1706 	mperm_t *freemp = NULL;
1707 	struct devnames *dnp = &devnamesp[major];
1708 	mperm_t **wildmp;
1709 
1710 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1711 
1712 	LOCK_DEV_OPS(&dnp->dn_lock);
1713 	if (strcmp(mp->mp_minorname, "*") == 0) {
1714 		wildmp = ((is_clone == 0) ?
1715 		    &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1716 		if (*wildmp)
1717 			freemp = *wildmp;
1718 		*wildmp = NULL;
1719 	} else {
1720 		mp_head = &dnp->dn_mperm;
1721 		while (*mp_head) {
1722 			if (strcmp((*mp_head)->mp_minorname,
1723 			    mp->mp_minorname) != 0) {
1724 				mp_head = &(*mp_head)->mp_next;
1725 				continue;
1726 			}
1727 			/* remove the entry */
1728 			freemp = *mp_head;
1729 			*mp_head = freemp->mp_next;
1730 			break;
1731 		}
1732 	}
1733 	if (freemp) {
1734 		if (moddebug & MODDEBUG_MINORPERM) {
1735 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1736 			    drvname, freemp->mp_minorname,
1737 			    freemp->mp_mode & 0777,
1738 			    freemp->mp_uid, freemp->mp_gid);
1739 		}
1740 		free_mperm(freemp);
1741 	} else {
1742 		if (moddebug & MODDEBUG_MINORPERM) {
1743 			cmn_err(CE_CONT, MP_NO_MINOR,
1744 			    drvname, mp->mp_minorname);
1745 		}
1746 	}
1747 
1748 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1749 }
1750 
1751 /*
1752  * Add minor perm entry
1753  */
1754 static void
1755 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1756 {
1757 	mperm_t **mp_head;
1758 	mperm_t *freemp = NULL;
1759 	struct devnames *dnp = &devnamesp[major];
1760 	mperm_t **wildmp;
1761 
1762 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1763 
1764 	/*
1765 	 * Note that update_drv replace semantics require
1766 	 * replacing matching entries with the new permissions.
1767 	 */
1768 	LOCK_DEV_OPS(&dnp->dn_lock);
1769 	if (strcmp(mp->mp_minorname, "*") == 0) {
1770 		wildmp = ((is_clone == 0) ?
1771 		    &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1772 		if (*wildmp)
1773 			freemp = *wildmp;
1774 		*wildmp = mp;
1775 	} else {
1776 		mperm_t *p, *v = NULL;
1777 		for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
1778 			if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
1779 				if (v == NULL)
1780 					dnp->dn_mperm = mp;
1781 				else
1782 					v->mp_next = mp;
1783 				mp->mp_next = p->mp_next;
1784 				freemp = p;
1785 				goto replaced;
1786 			}
1787 		}
1788 		if (p == NULL) {
1789 			mp_head = &dnp->dn_mperm;
1790 			if (*mp_head == NULL) {
1791 				*mp_head = mp;
1792 			} else {
1793 				mp->mp_next = *mp_head;
1794 				*mp_head = mp;
1795 			}
1796 		}
1797 	}
1798 replaced:
1799 	if (freemp) {
1800 		if (moddebug & MODDEBUG_MINORPERM) {
1801 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1802 			    drvname, freemp->mp_minorname,
1803 			    freemp->mp_mode & 0777,
1804 			    freemp->mp_uid, freemp->mp_gid);
1805 		}
1806 		free_mperm(freemp);
1807 	}
1808 	if (moddebug & MODDEBUG_MINORPERM) {
1809 		cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
1810 		    drvname, mp->mp_minorname, mp->mp_mode & 0777,
1811 		    mp->mp_uid, mp->mp_gid);
1812 	}
1813 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1814 }
1815 
1816 
1817 static int
1818 process_minorperm(int cmd, nvlist_t *nvl)
1819 {
1820 	char *minor;
1821 	major_t major;
1822 	mperm_t *mp;
1823 	nvpair_t *nvp;
1824 	char *name;
1825 	int is_clone;
1826 	major_t minmaj;
1827 
1828 	ASSERT(cmd == MODLOADMINORPERM ||
1829 	    cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
1830 
1831 	nvp = NULL;
1832 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1833 		name = nvpair_name(nvp);
1834 
1835 		is_clone = 0;
1836 		(void) nvpair_value_string(nvp, &minor);
1837 		major = ddi_name_to_major(name);
1838 		if (major != DDI_MAJOR_T_NONE) {
1839 			mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
1840 			if (minor == NULL || strlen(minor) == 0) {
1841 				if (moddebug & MODDEBUG_MINORPERM) {
1842 					cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
1843 				}
1844 				minor = "*";
1845 			}
1846 
1847 			/*
1848 			 * The minor name of a node using the clone
1849 			 * driver must be the driver name.  To avoid
1850 			 * multiple searches, we map entries in the form
1851 			 * clone:<driver> to <driver>:*.  This also allows us
1852 			 * to filter out some of the litter in /etc/minor_perm.
1853 			 * Minor perm alias entries where the name is not
1854 			 * the driver kept on the clone list itself.
1855 			 * This all seems very fragile as a driver could
1856 			 * be introduced with an existing alias name.
1857 			 */
1858 			if (strcmp(name, "clone") == 0) {
1859 				minmaj = ddi_name_to_major(minor);
1860 				if (minmaj != DDI_MAJOR_T_NONE) {
1861 					if (moddebug & MODDEBUG_MINORPERM) {
1862 						cmn_err(CE_CONT,
1863 						    "mapping %s:%s to %s:*\n",
1864 						    name, minor, minor);
1865 					}
1866 					major = minmaj;
1867 					name = minor;
1868 					minor = "*";
1869 					is_clone = 1;
1870 				}
1871 			}
1872 
1873 			if (mp) {
1874 				mp->mp_minorname =
1875 				    i_ddi_strdup(minor, KM_SLEEP);
1876 			}
1877 		} else {
1878 			mp = NULL;
1879 			if (moddebug & MODDEBUG_MINORPERM) {
1880 				cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
1881 			}
1882 		}
1883 
1884 		/* mode */
1885 		nvp = nvlist_next_nvpair(nvl, nvp);
1886 		ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
1887 		if (mp)
1888 			(void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
1889 		/* uid */
1890 		nvp = nvlist_next_nvpair(nvl, nvp);
1891 		ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
1892 		if (mp)
1893 			(void) nvpair_value_uint32(nvp, &mp->mp_uid);
1894 		/* gid */
1895 		nvp = nvlist_next_nvpair(nvl, nvp);
1896 		ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
1897 		if (mp) {
1898 			(void) nvpair_value_uint32(nvp, &mp->mp_gid);
1899 
1900 			if (cmd == MODREMMINORPERM) {
1901 				rem_minorperm(major, name, mp, is_clone);
1902 				free_mperm(mp);
1903 			} else {
1904 				add_minorperm(major, name, mp, is_clone);
1905 			}
1906 		}
1907 	}
1908 
1909 	if (cmd == MODLOADMINORPERM)
1910 		minorperm_loaded = 1;
1911 
1912 	/*
1913 	 * Reset permissions of cached dv_nodes
1914 	 */
1915 	(void) devfs_reset_perm(DV_RESET_PERM);
1916 
1917 	return (0);
1918 }
1919 
1920 static int
1921 modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
1922 {
1923 	int error;
1924 	nvlist_t *nvl;
1925 	char *buf = kmem_alloc(buflen, KM_SLEEP);
1926 
1927 	if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
1928 		kmem_free(buf, buflen);
1929 		return (error);
1930 	}
1931 
1932 	error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
1933 	kmem_free(buf, buflen);
1934 	if (error)
1935 		return (error);
1936 
1937 	error = process_minorperm(cmd, nvl);
1938 	nvlist_free(nvl);
1939 	return (error);
1940 }
1941 
1942 struct walk_args {
1943 	char		*wa_drvname;
1944 	list_t		wa_pathlist;
1945 };
1946 
1947 struct path_elem {
1948 	char		*pe_dir;
1949 	char		*pe_nodename;
1950 	list_node_t	pe_node;
1951 	int		pe_dirlen;
1952 };
1953 
1954 /*ARGSUSED*/
1955 static int
1956 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
1957 {
1958 	struct walk_args *wargs = (struct walk_args *)arg;
1959 	struct path_elem *pe;
1960 	char *nodename;
1961 
1962 	/*
1963 	 * Search may be restricted to a single driver in the case of rem_drv
1964 	 */
1965 	if (wargs->wa_drvname &&
1966 	    strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
1967 		return (INST_WALK_CONTINUE);
1968 
1969 	pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
1970 	pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
1971 	pe->pe_dirlen = strlen(pe->pe_dir) + 1;
1972 	ASSERT(strrchr(pe->pe_dir, '/') != NULL);
1973 	nodename = strrchr(pe->pe_dir, '/');
1974 	*nodename++ = 0;
1975 	pe->pe_nodename = nodename;
1976 	list_insert_tail(&wargs->wa_pathlist, pe);
1977 
1978 	return (INST_WALK_CONTINUE);
1979 }
1980 
1981 /*
1982  * /devices attribute nodes clean-up optionally performed
1983  * when removing a driver (rem_drv -C).
1984  *
1985  * Removing attribute nodes allows a machine to be reprovisioned
1986  * without the side-effect of inadvertently picking up stale
1987  * device node ownership or permissions.
1988  *
1989  * Preserving attributes (not performing cleanup) allows devices
1990  * attribute changes to be preserved across upgrades, as
1991  * upgrade rather heavy-handedly does a rem_drv/add_drv cycle.
1992  */
1993 static int
1994 modctl_remdrv_cleanup(const char *u_drvname)
1995 {
1996 	struct walk_args *wargs;
1997 	struct path_elem *pe;
1998 	char *drvname;
1999 	int err, rval = 0;
2000 
2001 	drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
2002 	if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
2003 		kmem_free(drvname, MAXMODCONFNAME);
2004 		return (err);
2005 	}
2006 
2007 	/*
2008 	 * First go through the instance database.  For each
2009 	 * instance of a device bound to the driver being
2010 	 * removed, remove any underlying devfs attribute nodes.
2011 	 *
2012 	 * This is a two-step process.	First we go through
2013 	 * the instance data itself, constructing a list of
2014 	 * the nodes discovered.  The second step is then
2015 	 * to find and remove any devfs attribute nodes
2016 	 * for the instances discovered in the first step.
2017 	 * The two-step process avoids any difficulties
2018 	 * which could arise by holding the instance data
2019 	 * lock with simultaneous devfs operations.
2020 	 */
2021 	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2022 
2023 	wargs->wa_drvname = drvname;
2024 	list_create(&wargs->wa_pathlist,
2025 	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2026 
2027 	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2028 
2029 	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2030 	    pe = list_next(&wargs->wa_pathlist, pe)) {
2031 		err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2032 		    (const char *)pe->pe_nodename);
2033 		if (rval == 0)
2034 			rval = err;
2035 	}
2036 
2037 	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2038 		list_remove(&wargs->wa_pathlist, pe);
2039 		kmem_free(pe->pe_dir, pe->pe_dirlen);
2040 		kmem_free(pe, sizeof (*pe));
2041 	}
2042 	kmem_free(wargs, sizeof (*wargs));
2043 
2044 	/*
2045 	 * Pseudo nodes aren't recorded in the instance database
2046 	 * so any such nodes need to be handled separately.
2047 	 */
2048 	err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
2049 	if (rval == 0)
2050 		rval = err;
2051 
2052 	kmem_free(drvname, MAXMODCONFNAME);
2053 	return (rval);
2054 }
2055 
2056 /*
2057  * Perform a cleanup of non-existent /devices attribute nodes,
2058  * similar to rem_drv -C, but for all drivers/devices.
2059  * This is also optional, performed as part of devfsadm -C.
2060  */
2061 void
2062 dev_devices_cleanup()
2063 {
2064 	struct walk_args *wargs;
2065 	struct path_elem *pe;
2066 	dev_info_t *devi;
2067 	char *path;
2068 	int err;
2069 
2070 	/*
2071 	 * It's expected that all drivers have been loaded and
2072 	 * module unloading disabled while performing cleanup.
2073 	 */
2074 	ASSERT(modunload_disable_count > 0);
2075 
2076 	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2077 	wargs->wa_drvname = NULL;
2078 	list_create(&wargs->wa_pathlist,
2079 	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2080 
2081 	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2082 
2083 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2084 
2085 	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2086 	    pe = list_next(&wargs->wa_pathlist, pe)) {
2087 		(void) snprintf(path, MAXPATHLEN, "%s/%s",
2088 		    pe->pe_dir, pe->pe_nodename);
2089 		devi = e_ddi_hold_devi_by_path(path, 0);
2090 		if (devi != NULL) {
2091 			ddi_release_devi(devi);
2092 		} else {
2093 			err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2094 			    (const char *)pe->pe_nodename);
2095 			if (err) {
2096 				cmn_err(CE_CONT,
2097 				    "devfs: %s: clean-up error %d\n",
2098 				    path, err);
2099 			}
2100 		}
2101 	}
2102 
2103 	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2104 		list_remove(&wargs->wa_pathlist, pe);
2105 		kmem_free(pe->pe_dir, pe->pe_dirlen);
2106 		kmem_free(pe, sizeof (*pe));
2107 	}
2108 	kmem_free(wargs, sizeof (*wargs));
2109 	kmem_free(path, MAXPATHLEN);
2110 }
2111 
2112 static int
2113 modctl_allocpriv(const char *name)
2114 {
2115 	char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
2116 	int error;
2117 
2118 	if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
2119 		kmem_free(pstr, PRIVNAME_MAX);
2120 		return (error);
2121 	}
2122 	error = priv_getbyname(pstr, PRIV_ALLOC);
2123 	if (error < 0)
2124 		error = -error;
2125 	else
2126 		error = 0;
2127 	kmem_free(pstr, PRIVNAME_MAX);
2128 	return (error);
2129 }
2130 
2131 static int
2132 modctl_devexists(const char *upath, int pathlen)
2133 {
2134 	char	*path;
2135 	int	ret;
2136 
2137 	/*
2138 	 * copy in the path, including the terminating null
2139 	 */
2140 	pathlen++;
2141 	if (pathlen <= 1 || pathlen > MAXPATHLEN)
2142 		return (EINVAL);
2143 	path = kmem_zalloc(pathlen + 1, KM_SLEEP);
2144 	if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) {
2145 		ret = sdev_modctl_devexists(path);
2146 	}
2147 
2148 	kmem_free(path, pathlen + 1);
2149 	return (ret);
2150 }
2151 
2152 static int
2153 modctl_devreaddir(const char *udir, int udirlen,
2154     char *upaths, int64_t *ulensp)
2155 {
2156 	char	*paths = NULL;
2157 	char	**dirlist = NULL;
2158 	char	*dir;
2159 	int64_t	ulens;
2160 	int64_t	lens;
2161 	int	i, n;
2162 	int	ret = 0;
2163 	char	*p;
2164 	int	npaths;
2165 	int	npaths_alloc;
2166 
2167 	/*
2168 	 * If upaths is NULL then we are only computing the amount of space
2169 	 * needed to return the paths, with the value returned in *ulensp. If we
2170 	 * are copying out paths then we get the amount of space allocated by
2171 	 * the caller. If the actual space needed for paths is larger, or
2172 	 * things are changing out from under us, then we return EAGAIN.
2173 	 */
2174 	if (upaths) {
2175 		if (ulensp == NULL)
2176 			return (EINVAL);
2177 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
2178 			return (EFAULT);
2179 	}
2180 
2181 	/*
2182 	 * copyin the /dev path including terminating null
2183 	 */
2184 	udirlen++;
2185 	if (udirlen <= 1 || udirlen > MAXPATHLEN)
2186 		return (EINVAL);
2187 	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2188 	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2189 		goto err;
2190 
2191 	if ((ret = sdev_modctl_readdir(dir, &dirlist,
2192 	    &npaths, &npaths_alloc, 0)) != 0) {
2193 		ASSERT(dirlist == NULL);
2194 		goto err;
2195 	}
2196 
2197 	lens = 0;
2198 	for (i = 0; i < npaths; i++) {
2199 		lens += strlen(dirlist[i]) + 1;
2200 	}
2201 	lens++;		/* add one for double termination */
2202 
2203 	if (upaths) {
2204 		if (lens > ulens) {
2205 			ret = EAGAIN;
2206 			goto out;
2207 		}
2208 
2209 		paths = kmem_alloc(lens, KM_SLEEP);
2210 
2211 		p = paths;
2212 		for (i = 0; i < npaths; i++) {
2213 			n = strlen(dirlist[i]) + 1;
2214 			bcopy(dirlist[i], p, n);
2215 			p += n;
2216 		}
2217 		*p = 0;
2218 
2219 		if (copyout(paths, upaths, lens)) {
2220 			ret = EFAULT;
2221 			goto err;
2222 		}
2223 	}
2224 
2225 out:
2226 	/* copy out the amount of space needed to hold the paths */
2227 	if (copyout(&lens, ulensp, sizeof (lens)))
2228 		ret = EFAULT;
2229 
2230 err:
2231 	if (dirlist)
2232 		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2233 	if (paths)
2234 		kmem_free(paths, lens);
2235 	kmem_free(dir, udirlen + 1);
2236 	return (ret);
2237 }
2238 
2239 static int
2240 modctl_devemptydir(const char *udir, int udirlen, int *uempty)
2241 {
2242 	char	*dir;
2243 	int	ret;
2244 	char	**dirlist = NULL;
2245 	int	npaths;
2246 	int	npaths_alloc;
2247 	int	empty;
2248 
2249 	/*
2250 	 * copyin the /dev path including terminating null
2251 	 */
2252 	udirlen++;
2253 	if (udirlen <= 1 || udirlen > MAXPATHLEN)
2254 		return (EINVAL);
2255 	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2256 	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2257 		goto err;
2258 
2259 	if ((ret = sdev_modctl_readdir(dir, &dirlist,
2260 	    &npaths, &npaths_alloc, 1)) != 0) {
2261 		goto err;
2262 	}
2263 
2264 	empty = npaths ? 0 : 1;
2265 	if (copyout(&empty, uempty, sizeof (empty)))
2266 		ret = EFAULT;
2267 
2268 err:
2269 	if (dirlist)
2270 		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2271 	kmem_free(dir, udirlen + 1);
2272 	return (ret);
2273 }
2274 
2275 static int
2276 modctl_hp(int subcmd, const char *path, char *cn_name, uintptr_t arg,
2277     uintptr_t rval)
2278 {
2279 	int error = 0;
2280 	size_t pathsz, namesz;
2281 	char *devpath, *cn_name_str;
2282 
2283 	if (path == NULL)
2284 		return (EINVAL);
2285 
2286 	devpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2287 	error = copyinstr(path, devpath, MAXPATHLEN, &pathsz);
2288 	if (error != 0) {
2289 		kmem_free(devpath, MAXPATHLEN);
2290 		return (EFAULT);
2291 	}
2292 
2293 	cn_name_str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
2294 	error = copyinstr(cn_name, cn_name_str, MAXNAMELEN, &namesz);
2295 	if (error != 0) {
2296 		kmem_free(devpath, MAXPATHLEN);
2297 		kmem_free(cn_name_str, MAXNAMELEN);
2298 
2299 		return (EFAULT);
2300 	}
2301 
2302 	switch (subcmd) {
2303 	case MODHPOPS_CHANGE_STATE:
2304 		error = ddihp_modctl(DDI_HPOP_CN_CHANGE_STATE, devpath,
2305 		    cn_name_str, arg, 0);
2306 		break;
2307 	case MODHPOPS_CREATE_PORT:
2308 		/* Create an empty PORT */
2309 		error = ddihp_modctl(DDI_HPOP_CN_CREATE_PORT, devpath,
2310 		    cn_name_str, 0, 0);
2311 		break;
2312 	case MODHPOPS_REMOVE_PORT:
2313 		/* Remove an empty PORT */
2314 		error = ddihp_modctl(DDI_HPOP_CN_REMOVE_PORT, devpath,
2315 		    cn_name_str, 0, 0);
2316 		break;
2317 	case MODHPOPS_BUS_GET:
2318 		error = ddihp_modctl(DDI_HPOP_CN_GET_PROPERTY, devpath,
2319 		    cn_name_str, arg, rval);
2320 		break;
2321 	case MODHPOPS_BUS_SET:
2322 		error = ddihp_modctl(DDI_HPOP_CN_SET_PROPERTY, devpath,
2323 		    cn_name_str, arg, rval);
2324 		break;
2325 	default:
2326 		error = ENOTSUP;
2327 		break;
2328 	}
2329 
2330 	kmem_free(devpath, MAXPATHLEN);
2331 	kmem_free(cn_name_str, MAXNAMELEN);
2332 
2333 	return (error);
2334 }
2335 
2336 int
2337 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2)
2338 {
2339 	int error = 0;
2340 
2341 	switch (subcmd) {
2342 	case MODDEVNAME_LOOKUPDOOR:
2343 		error = devname_filename_register((char *)a1);
2344 		break;
2345 	case MODDEVNAME_PROFILE:
2346 		error = devname_profile_update((char *)a1, (size_t)a2);
2347 		break;
2348 	case MODDEVNAME_RECONFIG:
2349 		i_ddi_set_reconfig();
2350 		break;
2351 	case MODDEVNAME_SYSAVAIL:
2352 		i_ddi_set_sysavail();
2353 		break;
2354 	default:
2355 		error = EINVAL;
2356 		break;
2357 	}
2358 
2359 	return (error);
2360 }
2361 
2362 /*ARGSUSED5*/
2363 int
2364 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
2365     uintptr_t a5)
2366 {
2367 	int	error = EINVAL;
2368 	dev_t	dev;
2369 
2370 	if (secpolicy_modctl(CRED(), cmd) != 0)
2371 		return (set_errno(EPERM));
2372 
2373 	switch (cmd) {
2374 	case MODLOAD:		/* load a module */
2375 		error = modctl_modload((int)a1, (char *)a2, (int *)a3);
2376 		break;
2377 
2378 	case MODUNLOAD:		/* unload a module */
2379 		error = modctl_modunload((modid_t)a1);
2380 		break;
2381 
2382 	case MODINFO:		/* get module status */
2383 		error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
2384 		break;
2385 
2386 	case MODRESERVED:	/* get last major number in range */
2387 		error = modctl_modreserve((modid_t)a1, (int *)a2);
2388 		break;
2389 
2390 	case MODSETMINIROOT:	/* we are running in miniroot */
2391 		isminiroot = 1;
2392 		error = 0;
2393 		break;
2394 
2395 	case MODADDMAJBIND:	/* add major / driver alias bindings */
2396 		error = modctl_add_driver_aliases((int *)a2);
2397 		break;
2398 
2399 	case MODGETPATHLEN:	/* get modpath length */
2400 		error = modctl_getmodpathlen((int *)a2);
2401 		break;
2402 
2403 	case MODGETPATH:	/* get modpath */
2404 		error = modctl_getmodpath((char *)a2);
2405 		break;
2406 
2407 	case MODREADSYSBIND:	/* read system call binding file */
2408 		error = modctl_read_sysbinding_file();
2409 		break;
2410 
2411 	case MODGETMAJBIND:	/* get major number for named device */
2412 		error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
2413 		break;
2414 
2415 	case MODGETNAME:	/* get name of device given major number */
2416 		error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
2417 		break;
2418 
2419 	case MODDEVT2INSTANCE:
2420 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2421 			dev = (dev_t)a1;
2422 		}
2423 #ifdef _SYSCALL32_IMPL
2424 		else {
2425 			dev = expldev(a1);
2426 		}
2427 #endif
2428 		error = modctl_devt2instance(dev, (int *)a2);
2429 		break;
2430 
2431 	case MODSIZEOF_DEVID:	/* sizeof device id of device given dev_t */
2432 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2433 			dev = (dev_t)a1;
2434 		}
2435 #ifdef _SYSCALL32_IMPL
2436 		else {
2437 			dev = expldev(a1);
2438 		}
2439 #endif
2440 		error = modctl_sizeof_devid(dev, (uint_t *)a2);
2441 		break;
2442 
2443 	case MODGETDEVID:	/* get device id of device given dev_t */
2444 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2445 			dev = (dev_t)a1;
2446 		}
2447 #ifdef _SYSCALL32_IMPL
2448 		else {
2449 			dev = expldev(a1);
2450 		}
2451 #endif
2452 		error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
2453 		break;
2454 
2455 	case MODSIZEOF_MINORNAME:	/* sizeof minor nm (dev_t,spectype) */
2456 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2457 			error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
2458 			    (uint_t *)a3);
2459 		}
2460 #ifdef _SYSCALL32_IMPL
2461 		else {
2462 			error = modctl_sizeof_minorname(expldev(a1), (int)a2,
2463 			    (uint_t *)a3);
2464 		}
2465 
2466 #endif
2467 		break;
2468 
2469 	case MODGETMINORNAME:		/* get minor name of (dev_t,spectype) */
2470 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2471 			error = modctl_get_minorname((dev_t)a1, (int)a2,
2472 			    (uint_t)a3, (char *)a4);
2473 		}
2474 #ifdef _SYSCALL32_IMPL
2475 		else {
2476 			error = modctl_get_minorname(expldev(a1), (int)a2,
2477 			    (uint_t)a3, (char *)a4);
2478 		}
2479 #endif
2480 		break;
2481 
2482 	case MODGETDEVFSPATH_LEN:	/* sizeof path nm of (dev_t,spectype) */
2483 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2484 			error = modctl_devfspath_len((dev_t)a1, (int)a2,
2485 			    (uint_t *)a3);
2486 		}
2487 #ifdef _SYSCALL32_IMPL
2488 		else {
2489 			error = modctl_devfspath_len(expldev(a1), (int)a2,
2490 			    (uint_t *)a3);
2491 		}
2492 
2493 #endif
2494 		break;
2495 
2496 	case MODGETDEVFSPATH:		/* get path name of (dev_t,spec) type */
2497 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2498 			error = modctl_devfspath((dev_t)a1, (int)a2,
2499 			    (uint_t)a3, (char *)a4);
2500 		}
2501 #ifdef _SYSCALL32_IMPL
2502 		else {
2503 			error = modctl_devfspath(expldev(a1), (int)a2,
2504 			    (uint_t)a3, (char *)a4);
2505 		}
2506 #endif
2507 		break;
2508 
2509 	case MODGETDEVFSPATH_MI_LEN:	/* sizeof path nm of (major,instance) */
2510 		error = modctl_devfspath_mi_len((major_t)a1, (int)a2,
2511 		    (uint_t *)a3);
2512 		break;
2513 
2514 	case MODGETDEVFSPATH_MI:	/* get path name of (major,instance) */
2515 		error = modctl_devfspath_mi((major_t)a1, (int)a2,
2516 		    (uint_t)a3, (char *)a4);
2517 		break;
2518 
2519 
2520 	case MODEVENTS:
2521 		error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
2522 		break;
2523 
2524 	case MODGETFBNAME:	/* get the framebuffer name */
2525 		error = modctl_get_fbname((char *)a1);
2526 		break;
2527 
2528 	case MODREREADDACF:	/* reread dacf rule database from given file */
2529 		error = modctl_reread_dacf((char *)a1);
2530 		break;
2531 
2532 	case MODLOADDRVCONF:	/* load driver.conf file for major */
2533 		error = modctl_load_drvconf((major_t)a1, (int)a2);
2534 		break;
2535 
2536 	case MODUNLOADDRVCONF:	/* unload driver.conf file for major */
2537 		error = modctl_unload_drvconf((major_t)a1);
2538 		break;
2539 
2540 	case MODREMMAJBIND:	/* remove a major binding */
2541 		error = modctl_rem_major((major_t)a1);
2542 		break;
2543 
2544 	case MODREMDRVALIAS:	/* remove a major/alias binding */
2545 		error = modctl_remove_driver_aliases((int *)a2);
2546 		break;
2547 
2548 	case MODDEVID2PATHS:	/* get paths given devid */
2549 		error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
2550 		    (uint_t)a3, (size_t *)a4, (char *)a5);
2551 		break;
2552 
2553 	case MODSETDEVPOLICY:	/* establish device policy */
2554 		error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
2555 		break;
2556 
2557 	case MODGETDEVPOLICY:	/* get device policy */
2558 		error = devpolicy_get((int *)a1, (size_t)a2,
2559 		    (devplcysys_t *)a3);
2560 		break;
2561 
2562 	case MODALLOCPRIV:
2563 		error = modctl_allocpriv((const char *)a1);
2564 		break;
2565 
2566 	case MODGETDEVPOLICYBYNAME:
2567 		error = devpolicy_getbyname((size_t)a1,
2568 		    (devplcysys_t *)a2, (char *)a3);
2569 		break;
2570 
2571 	case MODLOADMINORPERM:
2572 	case MODADDMINORPERM:
2573 	case MODREMMINORPERM:
2574 		error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
2575 		break;
2576 
2577 	case MODREMDRVCLEANUP:
2578 		error = modctl_remdrv_cleanup((const char *)a1);
2579 		break;
2580 
2581 	case MODDEVEXISTS:	/* non-reconfiguring /dev lookup */
2582 		error = modctl_devexists((const char *)a1, (size_t)a2);
2583 		break;
2584 
2585 	case MODDEVREADDIR:	/* non-reconfiguring /dev readdir */
2586 		error = modctl_devreaddir((const char *)a1, (size_t)a2,
2587 		    (char *)a3, (int64_t *)a4);
2588 		break;
2589 
2590 	case MODDEVEMPTYDIR:	/* non-reconfiguring /dev emptydir */
2591 		error = modctl_devemptydir((const char *)a1, (size_t)a2,
2592 		    (int *)a3);
2593 		break;
2594 
2595 	case MODDEVNAME:
2596 		error = modctl_moddevname((int)a1, a2, a3);
2597 		break;
2598 
2599 	case MODRETIRE:	/* retire device named by physpath a1 */
2600 		error = modctl_retire((char *)a1, (char *)a2, (size_t)a3);
2601 		break;
2602 
2603 	case MODISRETIRED:  /* check if a device is retired. */
2604 		error = modctl_is_retired((char *)a1, (int *)a2);
2605 		break;
2606 
2607 	case MODUNRETIRE:	/* unretire device named by physpath a1 */
2608 		error = modctl_unretire((char *)a1);
2609 		break;
2610 
2611 	case MODHPOPS:	/* hotplug operations */
2612 		/* device named by physpath a2 and Connection name a3 */
2613 		error = modctl_hp((int)a1, (char *)a2, (char *)a3, a4, a5);
2614 		break;
2615 
2616 	default:
2617 		error = EINVAL;
2618 		break;
2619 	}
2620 
2621 	return (error ? set_errno(error) : 0);
2622 }
2623 
2624 /*
2625  * Calls to kobj_load_module()() are handled off to this routine in a
2626  * separate thread.
2627  */
2628 static void
2629 modload_thread(struct loadmt *ltp)
2630 {
2631 	/* load the module and signal the creator of this thread */
2632 	kmutex_t	cpr_lk;
2633 	callb_cpr_t	cpr_i;
2634 
2635 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
2636 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
2637 	/* borrow the devi lock from thread which invoked us */
2638 	pm_borrow_lock(ltp->owner);
2639 	ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
2640 	pm_return_lock();
2641 	sema_v(&ltp->sema);
2642 	mutex_enter(&cpr_lk);
2643 	CALLB_CPR_EXIT(&cpr_i);
2644 	mutex_destroy(&cpr_lk);
2645 	thread_exit();
2646 }
2647 
2648 /*
2649  * load a module, adding a reference if caller specifies rmodp.  If rmodp
2650  * is specified then an errno is returned, otherwise a module index is
2651  * returned (-1 on error).
2652  */
2653 static int
2654 modrload(const char *subdir, const char *filename, struct modctl **rmodp)
2655 {
2656 	struct modctl *modp;
2657 	size_t size;
2658 	char *fullname;
2659 	int retval = EINVAL;
2660 	int id = -1;
2661 
2662 	if (rmodp)
2663 		*rmodp = NULL;			/* avoid garbage */
2664 
2665 	if (subdir != NULL) {
2666 		/*
2667 		 * refuse / in filename to prevent "../" escapes.
2668 		 */
2669 		if (strchr(filename, '/') != NULL)
2670 			return (rmodp ? retval : id);
2671 
2672 		/*
2673 		 * allocate enough space for <subdir>/<filename><NULL>
2674 		 */
2675 		size = strlen(subdir) + strlen(filename) + 2;
2676 		fullname = kmem_zalloc(size, KM_SLEEP);
2677 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2678 	} else {
2679 		fullname = (char *)filename;
2680 	}
2681 
2682 	modp = mod_hold_installed_mod(fullname, 1, 0, &retval);
2683 	if (modp != NULL) {
2684 		id = modp->mod_id;
2685 		if (rmodp) {
2686 			/* add mod_ref and return *rmodp */
2687 			mutex_enter(&mod_lock);
2688 			modp->mod_ref++;
2689 			mutex_exit(&mod_lock);
2690 			*rmodp = modp;
2691 		}
2692 		mod_release_mod(modp);
2693 		CPU_STATS_ADDQ(CPU, sys, modload, 1);
2694 	}
2695 
2696 done:	if (subdir != NULL)
2697 		kmem_free(fullname, size);
2698 	return (rmodp ? retval : id);
2699 }
2700 
2701 /*
2702  * This is the primary kernel interface to load a module. It loads and
2703  * installs the named module.  It does not hold mod_ref of the module, so
2704  * a module unload attempt can occur at any time - it is up to the
2705  * _fini/mod_remove implementation to determine if unload will succeed.
2706  */
2707 int
2708 modload(const char *subdir, const char *filename)
2709 {
2710 	return (modrload(subdir, filename, NULL));
2711 }
2712 
2713 /*
2714  * Load a module using a series of qualified names from most specific to least
2715  * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try:
2716  *			Value returned in *chosen
2717  * foo/bar.baz.1.2.3	3
2718  * foo/bar.baz.1.2	2
2719  * foo/bar.baz.1	1
2720  * foo/bar.baz		0
2721  *
2722  * Return the module ID on success; -1 if no module was loaded.  On success
2723  * and if 'chosen' is not NULL we also return the number of suffices that
2724  * were in the module we chose to load.
2725  */
2726 int
2727 modload_qualified(const char *subdir, const char *p1,
2728     const char *p2, const char *delim, uint_t suffv[], int suffc, int *chosen)
2729 {
2730 	char path[MOD_MAXPATH];
2731 	size_t n, resid = sizeof (path);
2732 	char *p = path;
2733 
2734 	char **dotv;
2735 	int i, rc, id;
2736 	modctl_t *mp;
2737 
2738 	if (p2 != NULL)
2739 		n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2);
2740 	else
2741 		n = snprintf(p, resid, "%s/%s", subdir, p1);
2742 
2743 	if (n >= resid)
2744 		return (-1);
2745 
2746 	p += n;
2747 	resid -= n;
2748 	dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP);
2749 
2750 	for (i = 0; i < suffc; i++) {
2751 		dotv[i] = p;
2752 		n = snprintf(p, resid, "%s%u", delim, suffv[i]);
2753 
2754 		if (n >= resid) {
2755 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2756 			return (-1);
2757 		}
2758 
2759 		p += n;
2760 		resid -= n;
2761 	}
2762 
2763 	dotv[suffc] = p;
2764 
2765 	for (i = suffc; i >= 0; i--) {
2766 		dotv[i][0] = '\0';
2767 		mp = mod_hold_installed_mod(path, 1, 1, &rc);
2768 
2769 		if (mp != NULL) {
2770 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2771 			id = mp->mod_id;
2772 			mod_release_mod(mp);
2773 			if (chosen != NULL)
2774 				*chosen = i;
2775 			return (id);
2776 		}
2777 	}
2778 
2779 	kmem_free(dotv, sizeof (char *) * (suffc + 1));
2780 	return (-1);
2781 }
2782 
2783 /*
2784  * Load a module.
2785  */
2786 int
2787 modloadonly(const char *subdir, const char *filename)
2788 {
2789 	struct modctl *modp;
2790 	char *fullname;
2791 	size_t size;
2792 	int id, retval;
2793 
2794 	if (subdir != NULL) {
2795 		/*
2796 		 * allocate enough space for <subdir>/<filename><NULL>
2797 		 */
2798 		size = strlen(subdir) + strlen(filename) + 2;
2799 		fullname = kmem_zalloc(size, KM_SLEEP);
2800 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2801 	} else {
2802 		fullname = (char *)filename;
2803 	}
2804 
2805 	id = -1;
2806 	modp = mod_hold_loaded_mod(NULL, fullname, &retval);
2807 	if (modp) {
2808 		id = modp->mod_id;
2809 		mod_release_mod(modp);
2810 	}
2811 
2812 	if (subdir != NULL)
2813 		kmem_free(fullname, size);
2814 
2815 	if (retval == 0)
2816 		return (id);
2817 	return (-1);
2818 }
2819 
2820 /*
2821  * Try to uninstall and unload a module, removing a reference if caller
2822  * specifies rmodp.
2823  */
2824 static int
2825 modunrload(modid_t id, struct modctl **rmodp, int unload)
2826 {
2827 	struct modctl	*modp;
2828 	int		retval;
2829 
2830 	if (rmodp)
2831 		*rmodp = NULL;			/* avoid garbage */
2832 
2833 	if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
2834 		return (EINVAL);
2835 
2836 	if (rmodp) {
2837 		mutex_enter(&mod_lock);
2838 		modp->mod_ref--;
2839 		if (modp->mod_ref == 0)
2840 			mod_uninstall_ref_zero++;
2841 		mutex_exit(&mod_lock);
2842 		*rmodp = modp;
2843 	}
2844 
2845 	if (unload) {
2846 		retval = moduninstall(modp);
2847 		if (retval == 0) {
2848 			mod_unload(modp);
2849 			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
2850 		} else if (retval == EALREADY)
2851 			retval = 0;	/* already unloaded, not an error */
2852 	} else
2853 		retval = 0;
2854 
2855 	mod_release_mod(modp);
2856 	return (retval);
2857 }
2858 
2859 /*
2860  * Uninstall and unload a module.
2861  */
2862 int
2863 modunload(modid_t id)
2864 {
2865 	int		retval;
2866 
2867 	/* synchronize with any active modunload_disable() */
2868 	modunload_begin();
2869 	if (ddi_root_node())
2870 		(void) devfs_clean(ddi_root_node(), NULL, 0);
2871 	retval = modunrload(id, NULL, 1);
2872 	modunload_end();
2873 	return (retval);
2874 }
2875 
2876 /*
2877  * Return status of a loaded module.
2878  */
2879 static int
2880 modinfo(modid_t id, struct modinfo *modinfop)
2881 {
2882 	struct modctl	*modp;
2883 	modid_t		mid;
2884 	int		i;
2885 
2886 	mid = modinfop->mi_id;
2887 	if (modinfop->mi_info & MI_INFO_ALL) {
2888 		while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
2889 			if ((modinfop->mi_info & MI_INFO_CNT) ||
2890 			    modp->mod_installed)
2891 				break;
2892 			mod_release_mod(modp);
2893 		}
2894 		if (modp == NULL)
2895 			return (EINVAL);
2896 	} else {
2897 		modp = mod_hold_by_id(id);
2898 		if (modp == NULL)
2899 			return (EINVAL);
2900 		if (!(modinfop->mi_info & MI_INFO_CNT) &&
2901 		    (modp->mod_installed == 0)) {
2902 			mod_release_mod(modp);
2903 			return (EINVAL);
2904 		}
2905 	}
2906 
2907 	modinfop->mi_rev = 0;
2908 	modinfop->mi_state = 0;
2909 	for (i = 0; i < MODMAXLINK; i++) {
2910 		modinfop->mi_msinfo[i].msi_p0 = -1;
2911 		modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
2912 	}
2913 	if (modp->mod_loaded) {
2914 		modinfop->mi_state = MI_LOADED;
2915 		kobj_getmodinfo(modp->mod_mp, modinfop);
2916 	}
2917 	if (modp->mod_installed) {
2918 		modinfop->mi_state |= MI_INSTALLED;
2919 
2920 		(void) mod_getinfo(modp, modinfop);
2921 	}
2922 
2923 	modinfop->mi_id = modp->mod_id;
2924 	modinfop->mi_loadcnt = modp->mod_loadcnt;
2925 	(void) strcpy(modinfop->mi_name, modp->mod_modname);
2926 
2927 	mod_release_mod(modp);
2928 	return (0);
2929 }
2930 
2931 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
2932 static char no_err[] = "No error function for weak stub %s";
2933 
2934 /*
2935  * used by the stubs themselves to load and hold a module.
2936  * Returns  0 if the module is successfully held;
2937  *	    the stub needs to call mod_release_stub().
2938  *	    -1 if the stub should just call the err_fcn.
2939  * Note that this code is stretched out so that we avoid subroutine calls
2940  * and optimize for the most likely case.  That is, the case where the
2941  * module is loaded and installed and not held.  In that case we just inc
2942  * the mod_ref count and continue.
2943  */
2944 int
2945 mod_hold_stub(struct mod_stub_info *stub)
2946 {
2947 	struct modctl *mp;
2948 	struct mod_modinfo *mip;
2949 
2950 	mip = stub->mods_modinfo;
2951 
2952 	mutex_enter(&mod_lock);
2953 
2954 	/* we do mod_hold_by_modctl inline for speed */
2955 
2956 mod_check_again:
2957 	if ((mp = mip->mp) != NULL) {
2958 		if (mp->mod_busy == 0) {
2959 			if (mp->mod_installed) {
2960 				/* increment the reference count */
2961 				mp->mod_ref++;
2962 				ASSERT(mp->mod_ref && mp->mod_installed);
2963 				mutex_exit(&mod_lock);
2964 				return (0);
2965 			} else {
2966 				mp->mod_busy = 1;
2967 				mp->mod_inprogress_thread =
2968 				    (curthread == NULL ?
2969 				    (kthread_id_t)-1 : curthread);
2970 			}
2971 		} else {
2972 			/*
2973 			 * wait one time and then go see if someone
2974 			 * else has resolved the stub (set mip->mp).
2975 			 */
2976 			if (mod_hold_by_modctl(mp,
2977 			    MOD_WAIT_ONCE | MOD_LOCK_HELD))
2978 				goto mod_check_again;
2979 
2980 			/*
2981 			 * what we have now may have been unloaded!, in
2982 			 * that case, mip->mp will be NULL, we'll hit this
2983 			 * module and load again..
2984 			 */
2985 			cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
2986 		}
2987 		mutex_exit(&mod_lock);
2988 	} else {
2989 		/* first time we've hit this module */
2990 		mutex_exit(&mod_lock);
2991 		mp = mod_hold_by_name(mip->modm_module_name);
2992 		mip->mp = mp;
2993 	}
2994 
2995 	/*
2996 	 * If we are here, it means that the following conditions
2997 	 * are satisfied.
2998 	 *
2999 	 * mip->mp != NULL
3000 	 * this thread has set the mp->mod_busy = 1
3001 	 * mp->mod_installed = 0
3002 	 *
3003 	 */
3004 	ASSERT(mp != NULL);
3005 	ASSERT(mp->mod_busy == 1);
3006 
3007 	if (mp->mod_installed == 0) {
3008 		/* Module not loaded, if weak stub don't load it */
3009 		if (stub->mods_flag & MODS_WEAK) {
3010 			if (stub->mods_errfcn == NULL) {
3011 				mod_release_mod(mp);
3012 				cmn_err(CE_PANIC, no_err,
3013 				    mip->modm_module_name);
3014 			}
3015 		} else {
3016 			/* Not a weak stub so load the module */
3017 
3018 			if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
3019 				/*
3020 				 * If mod_load() was successful
3021 				 * and modinstall() failed, then
3022 				 * unload the module.
3023 				 */
3024 				if (mp->mod_loaded)
3025 					mod_unload(mp);
3026 
3027 				mod_release_mod(mp);
3028 				if (stub->mods_errfcn == NULL) {
3029 					cmn_err(CE_PANIC, mod_stub_err,
3030 					    mip->modm_module_name);
3031 				} else {
3032 					return (-1);
3033 				}
3034 			}
3035 		}
3036 	}
3037 
3038 	/*
3039 	 * At this point module is held and loaded. Release
3040 	 * the mod_busy and mod_inprogress_thread before
3041 	 * returning. We actually call mod_release() here so
3042 	 * that if another stub wants to access this module,
3043 	 * it can do so. mod_ref is incremented before mod_release()
3044 	 * is called to prevent someone else from snatching the
3045 	 * module from this thread.
3046 	 */
3047 	mutex_enter(&mod_lock);
3048 	mp->mod_ref++;
3049 	ASSERT(mp->mod_ref &&
3050 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
3051 	mod_release(mp);
3052 	mutex_exit(&mod_lock);
3053 	return (0);
3054 }
3055 
3056 void
3057 mod_release_stub(struct mod_stub_info *stub)
3058 {
3059 	struct modctl *mp = stub->mods_modinfo->mp;
3060 
3061 	/* inline mod_release_mod */
3062 	mutex_enter(&mod_lock);
3063 	ASSERT(mp->mod_ref &&
3064 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
3065 	mp->mod_ref--;
3066 	if (mp->mod_ref == 0)
3067 		mod_uninstall_ref_zero++;
3068 	if (mp->mod_want) {
3069 		mp->mod_want = 0;
3070 		cv_broadcast(&mod_cv);
3071 	}
3072 	mutex_exit(&mod_lock);
3073 }
3074 
3075 static struct modctl *
3076 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
3077 {
3078 	struct modctl *modp;
3079 	int retval;
3080 
3081 	/*
3082 	 * Hold the module.
3083 	 */
3084 	modp = mod_hold_by_name_requisite(dep, filename);
3085 	if (modp) {
3086 		retval = mod_load(modp, 1);
3087 		if (retval != 0) {
3088 			mod_release_mod(modp);
3089 			modp = NULL;
3090 		}
3091 		*status = retval;
3092 	} else {
3093 		*status = ENOSPC;
3094 	}
3095 
3096 	/*
3097 	 * if dep is not NULL, clear the module dependency information.
3098 	 * This information is set in mod_hold_by_name_common().
3099 	 */
3100 	if (dep != NULL && dep->mod_requisite_loading != NULL) {
3101 		ASSERT(dep->mod_busy);
3102 		dep->mod_requisite_loading = NULL;
3103 	}
3104 
3105 	return (modp);
3106 }
3107 
3108 /*
3109  * hold, load, and install the named module
3110  */
3111 static struct modctl *
3112 mod_hold_installed_mod(char *name, int usepath, int forcecheck, int *r)
3113 {
3114 	struct modctl *modp;
3115 	int retval;
3116 
3117 	/*
3118 	 * Verify that that module in question actually exists on disk
3119 	 * before allocation of module structure by mod_hold_by_name.
3120 	 */
3121 	if (modrootloaded && swaploaded || forcecheck) {
3122 		if (!kobj_path_exists(name, usepath)) {
3123 			*r = ENOENT;
3124 			return (NULL);
3125 		}
3126 	}
3127 
3128 	/*
3129 	 * Hold the module.
3130 	 */
3131 	modp = mod_hold_by_name(name);
3132 	if (modp) {
3133 		retval = mod_load(modp, usepath);
3134 		if (retval != 0) {
3135 			mod_release_mod(modp);
3136 			modp = NULL;
3137 			*r = retval;
3138 		} else {
3139 			if ((*r = modinstall(modp)) != 0) {
3140 				/*
3141 				 * We loaded it, but failed to _init() it.
3142 				 * Be kind to developers -- force it
3143 				 * out of memory now so that the next
3144 				 * attempt to use the module will cause
3145 				 * a reload.  See 1093793.
3146 				 */
3147 				mod_unload(modp);
3148 				mod_release_mod(modp);
3149 				modp = NULL;
3150 			}
3151 		}
3152 	} else {
3153 		*r = ENOSPC;
3154 	}
3155 	return (modp);
3156 }
3157 
3158 static char mod_excl_msg[] =
3159 	"module %s(%s) is EXCLUDED and will not be loaded\n";
3160 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
3161 
3162 /*
3163  * This routine is needed for dependencies.  Users specify dependencies
3164  * by declaring a character array initialized to filenames of dependents.
3165  * So the code that handles dependents deals with filenames (and not
3166  * module names) because that's all it has.  We load by filename and once
3167  * we've loaded a file we can get the module name.
3168  * Unfortunately there isn't a single unified filename/modulename namespace.
3169  * C'est la vie.
3170  *
3171  * We allow the name being looked up to be prepended by an optional
3172  * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
3173  */
3174 struct modctl *
3175 mod_find_by_filename(char *subdir, char *filename)
3176 {
3177 	struct modctl	*mp;
3178 	size_t		sublen;
3179 
3180 	ASSERT(!MUTEX_HELD(&mod_lock));
3181 	if (subdir != NULL)
3182 		sublen = strlen(subdir);
3183 	else
3184 		sublen = 0;
3185 
3186 	mutex_enter(&mod_lock);
3187 	mp = &modules;
3188 	do {
3189 		if (sublen) {
3190 			char *mod_filename = mp->mod_filename;
3191 
3192 			if (strncmp(subdir, mod_filename, sublen) == 0 &&
3193 			    mod_filename[sublen] == '/' &&
3194 			    strcmp(filename, &mod_filename[sublen + 1]) == 0) {
3195 				mutex_exit(&mod_lock);
3196 				return (mp);
3197 			}
3198 		} else if (strcmp(filename, mp->mod_filename) == 0) {
3199 			mutex_exit(&mod_lock);
3200 			return (mp);
3201 		}
3202 	} while ((mp = mp->mod_next) != &modules);
3203 	mutex_exit(&mod_lock);
3204 	return (NULL);
3205 }
3206 
3207 /*
3208  * Check for circular dependencies.  This is called from do_dependents()
3209  * in kobj.c.  If we are the thread already loading this module, then
3210  * we're trying to load a dependent that we're already loading which
3211  * means the user specified circular dependencies.
3212  */
3213 static int
3214 mod_circdep(struct modctl *modp)
3215 {
3216 	struct modctl	*rmod;
3217 
3218 	ASSERT(MUTEX_HELD(&mod_lock));
3219 
3220 	/*
3221 	 * Check the mod_inprogress_thread first.
3222 	 * mod_inprogress_thread is used in mod_hold_stub()
3223 	 * directly to improve performance.
3224 	 */
3225 	if (modp->mod_inprogress_thread == curthread)
3226 		return (1);
3227 
3228 	/*
3229 	 * Check the module circular dependencies.
3230 	 */
3231 	for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
3232 		/*
3233 		 * Check if there is a module circular dependency.
3234 		 */
3235 		if (rmod->mod_requisite_loading == modp)
3236 			return (1);
3237 	}
3238 	return (0);
3239 }
3240 
3241 static int
3242 mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
3243 {
3244 	int (*func)(struct modinfo *);
3245 	int retval;
3246 
3247 	ASSERT(modp->mod_busy);
3248 
3249 	/* primary modules don't do getinfo */
3250 	if (modp->mod_prim)
3251 		return (0);
3252 
3253 	func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
3254 
3255 	if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
3256 		cmn_err(CE_WARN, "_info() not defined properly in %s",
3257 		    modp->mod_filename);
3258 		/*
3259 		 * The semantics of mod_info(9F) are that 0 is failure
3260 		 * and non-zero is success.
3261 		 */
3262 		retval = 0;
3263 	} else
3264 		retval = (*func)(modinfop);	/* call _info() function */
3265 
3266 	if (moddebug & MODDEBUG_USERDEBUG)
3267 		printf("Returned from _info, retval = %x\n", retval);
3268 
3269 	return (retval);
3270 }
3271 
3272 static void
3273 modadd(struct modctl *mp)
3274 {
3275 	ASSERT(MUTEX_HELD(&mod_lock));
3276 
3277 	mp->mod_id = last_module_id++;
3278 	mp->mod_next = &modules;
3279 	mp->mod_prev = modules.mod_prev;
3280 	modules.mod_prev->mod_next = mp;
3281 	modules.mod_prev = mp;
3282 }
3283 
3284 /*ARGSUSED*/
3285 static struct modctl *
3286 allocate_modp(const char *filename, const char *modname)
3287 {
3288 	struct modctl *mp;
3289 
3290 	mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
3291 	mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
3292 	(void) strcpy(mp->mod_modname, modname);
3293 	return (mp);
3294 }
3295 
3296 /*
3297  * Get the value of a symbol.  This is a wrapper routine that
3298  * calls kobj_getsymvalue().  kobj_getsymvalue() may go away but this
3299  * wrapper will prevent callers from noticing.
3300  */
3301 uintptr_t
3302 modgetsymvalue(char *name, int kernelonly)
3303 {
3304 	return (kobj_getsymvalue(name, kernelonly));
3305 }
3306 
3307 /*
3308  * Get the symbol nearest an address.  This is a wrapper routine that
3309  * calls kobj_getsymname().  kobj_getsymname() may go away but this
3310  * wrapper will prevent callers from noticing.
3311  */
3312 char *
3313 modgetsymname(uintptr_t value, ulong_t *offset)
3314 {
3315 	return (kobj_getsymname(value, offset));
3316 }
3317 
3318 /*
3319  * Lookup a symbol in a specified module.  These are wrapper routines that
3320  * call kobj_lookup().	kobj_lookup() may go away but these wrappers will
3321  * prevent callers from noticing.
3322  */
3323 uintptr_t
3324 modlookup(const char *modname, const char *symname)
3325 {
3326 	struct modctl *modp;
3327 	uintptr_t val;
3328 
3329 	if ((modp = mod_hold_by_name(modname)) == NULL)
3330 		return (0);
3331 	val = kobj_lookup(modp->mod_mp, symname);
3332 	mod_release_mod(modp);
3333 	return (val);
3334 }
3335 
3336 uintptr_t
3337 modlookup_by_modctl(modctl_t *modp, const char *symname)
3338 {
3339 	ASSERT(modp->mod_ref > 0 || modp->mod_busy);
3340 
3341 	return (kobj_lookup(modp->mod_mp, symname));
3342 }
3343 
3344 /*
3345  * Ask the user for the name of the system file and the default path
3346  * for modules.
3347  */
3348 void
3349 mod_askparams()
3350 {
3351 	static char s0[64];
3352 	intptr_t fd;
3353 
3354 	if ((fd = kobj_open(systemfile)) != -1L)
3355 		kobj_close(fd);
3356 	else
3357 		systemfile = self_assembly = NULL;
3358 
3359 	/*CONSTANTCONDITION*/
3360 	while (1) {
3361 		printf("Name of system file [%s]:  ",
3362 		    systemfile ? systemfile : "/dev/null");
3363 
3364 		console_gets(s0, sizeof (s0));
3365 
3366 		if (s0[0] == '\0')
3367 			break;
3368 		else if (strcmp(s0, "/dev/null") == 0) {
3369 			systemfile = self_assembly = NULL;
3370 			break;
3371 		} else {
3372 			if ((fd = kobj_open(s0)) != -1L) {
3373 				kobj_close(fd);
3374 				systemfile = s0;
3375 				self_assembly = NULL;
3376 				break;
3377 			}
3378 		}
3379 		printf("can't find file %s\n", s0);
3380 	}
3381 }
3382 
3383 static char loading_msg[] = "loading '%s' id %d\n";
3384 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
3385 
3386 /*
3387  * Common code for loading a module (but not installing it).
3388  * Handoff the task of module loading to a separate thread
3389  * with a large stack if possible, since this code may recurse a few times.
3390  * Return zero if there are no errors or an errno value.
3391  */
3392 static int
3393 mod_load(struct modctl *mp, int usepath)
3394 {
3395 	int		retval;
3396 	struct modinfo	*modinfop = NULL;
3397 	struct loadmt	lt;
3398 
3399 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3400 	ASSERT(mp->mod_busy);
3401 
3402 	if (mp->mod_loaded)
3403 		return (0);
3404 
3405 	if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
3406 	    mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
3407 		if (moddebug & MODDEBUG_LOADMSG) {
3408 			printf(mod_excl_msg, mp->mod_filename,
3409 			    mp->mod_modname);
3410 		}
3411 		return (ENXIO);
3412 	}
3413 	if (moddebug & MODDEBUG_LOADMSG2)
3414 		printf(loading_msg, mp->mod_filename, mp->mod_id);
3415 
3416 	if (curthread != &t0) {
3417 		lt.mp = mp;
3418 		lt.usepath = usepath;
3419 		lt.owner = curthread;
3420 		sema_init(&lt.sema, 0, NULL, SEMA_DEFAULT, NULL);
3421 
3422 		/* create thread to hand of call to */
3423 		(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3424 		    modload_thread, &lt, 0, &p0, TS_RUN, maxclsyspri);
3425 
3426 		/* wait for thread to complete kobj_load_module */
3427 		sema_p(&lt.sema);
3428 
3429 		sema_destroy(&lt.sema);
3430 		retval = lt.retval;
3431 	} else
3432 		retval = kobj_load_module(mp, usepath);
3433 
3434 	if (mp->mod_mp) {
3435 		ASSERT(retval == 0);
3436 		mp->mod_loaded = 1;
3437 		mp->mod_loadcnt++;
3438 		if (moddebug & MODDEBUG_LOADMSG) {
3439 			printf(load_msg, mp->mod_filename, mp->mod_id,
3440 			    (void *)((struct module *)mp->mod_mp)->text,
3441 			    (void *)((struct module *)mp->mod_mp)->data,
3442 			    ((struct module *)mp->mod_mp)->text_size,
3443 			    ((struct module *)mp->mod_mp)->data_size);
3444 		}
3445 
3446 		/*
3447 		 * XXX - There should be a better way to get this.
3448 		 */
3449 		modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
3450 		modinfop->mi_info = MI_INFO_LINKAGE;
3451 		if (mod_getinfo(mp, modinfop) == 0)
3452 			mp->mod_linkage = NULL;
3453 		else {
3454 			mp->mod_linkage = (void *)modinfop->mi_base;
3455 			ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
3456 		}
3457 
3458 		/*
3459 		 * DCS: bootstrapping code. If the driver is loaded
3460 		 * before root mount, it is assumed that the driver
3461 		 * may be used before mounting root. In order to
3462 		 * access mappings of global to local minor no.'s
3463 		 * during installation/open of the driver, we load
3464 		 * them into memory here while the BOP_interfaces
3465 		 * are still up.
3466 		 */
3467 		if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
3468 			retval = clboot_modload(mp);
3469 		}
3470 
3471 		kmem_free(modinfop, sizeof (struct modinfo));
3472 		(void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
3473 		retval = install_stubs_by_name(mp, mp->mod_modname);
3474 
3475 		/*
3476 		 * Now that the module is loaded, we need to give DTrace
3477 		 * a chance to notify its providers.  This is done via
3478 		 * the dtrace_modload function pointer.
3479 		 */
3480 		if (strcmp(mp->mod_modname, "dtrace") != 0) {
3481 			struct modctl *dmp = mod_hold_by_name("dtrace");
3482 
3483 			if (dmp != NULL && dtrace_modload != NULL)
3484 				(*dtrace_modload)(mp);
3485 
3486 			mod_release_mod(dmp);
3487 		}
3488 
3489 	} else {
3490 		/*
3491 		 * If load failed then we need to release any requisites
3492 		 * that we had established.
3493 		 */
3494 		ASSERT(retval);
3495 		mod_release_requisites(mp);
3496 
3497 		if (moddebug & MODDEBUG_ERRMSG)
3498 			printf("error loading '%s', error %d\n",
3499 			    mp->mod_filename, retval);
3500 	}
3501 	return (retval);
3502 }
3503 
3504 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
3505 
3506 static void
3507 mod_unload(struct modctl *mp)
3508 {
3509 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3510 	ASSERT(mp->mod_busy);
3511 	ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
3512 	    ((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
3513 
3514 	if (moddebug & MODDEBUG_LOADMSG)
3515 		printf(unload_msg, mp->mod_modname,
3516 		    mp->mod_id, mp->mod_loadcnt);
3517 
3518 	/*
3519 	 * If mod_ref is not zero, it means some modules might still refer
3520 	 * to this module. Then you can't unload this module right now.
3521 	 * Instead, set 1 to mod_delay_unload to notify the system of
3522 	 * unloading this module later when it's not required any more.
3523 	 */
3524 	if (mp->mod_ref > 0) {
3525 		mp->mod_delay_unload = 1;
3526 		if (moddebug & MODDEBUG_LOADMSG2) {
3527 			printf("module %s not unloaded,"
3528 			    " non-zero reference count (%d)",
3529 			    mp->mod_modname, mp->mod_ref);
3530 		}
3531 		return;
3532 	}
3533 
3534 	if (((mp->mod_loaded == 0) || mp->mod_installed) ||
3535 	    (mp->mod_ref || mp->mod_prim)) {
3536 		/*
3537 		 * A DEBUG kernel would ASSERT panic above, the code is broken
3538 		 * if we get this warning.
3539 		 */
3540 		cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
3541 		    mp->mod_filename, mp->mod_installed, mp->mod_loaded,
3542 		    mp->mod_ref);
3543 		return;
3544 	}
3545 
3546 	/* reset stub functions to call the binder again */
3547 	reset_stubs(mp);
3548 
3549 	/*
3550 	 * mark module as unloaded before the modctl structure is freed.
3551 	 * This is required not to reuse the modctl structure before
3552 	 * the module is marked as unloaded.
3553 	 */
3554 	mp->mod_loaded = 0;
3555 	mp->mod_linkage = NULL;
3556 
3557 	/* free the memory */
3558 	kobj_unload_module(mp);
3559 
3560 	if (mp->mod_delay_unload) {
3561 		mp->mod_delay_unload = 0;
3562 		if (moddebug & MODDEBUG_LOADMSG2) {
3563 			printf("deferred unload of module %s"
3564 			    " (id %d) successful",
3565 			    mp->mod_modname, mp->mod_id);
3566 		}
3567 	}
3568 
3569 	/* release hold on requisites */
3570 	mod_release_requisites(mp);
3571 
3572 	/*
3573 	 * Now that the module is gone, we need to give DTrace a chance to
3574 	 * remove any probes that it may have had in the module.  This is
3575 	 * done via the dtrace_modunload function pointer.
3576 	 */
3577 	if (strcmp(mp->mod_modname, "dtrace") != 0) {
3578 		struct modctl *dmp = mod_hold_by_name("dtrace");
3579 
3580 		if (dmp != NULL && dtrace_modunload != NULL)
3581 			(*dtrace_modunload)(mp);
3582 
3583 		mod_release_mod(dmp);
3584 	}
3585 }
3586 
3587 static int
3588 modinstall(struct modctl *mp)
3589 {
3590 	int val;
3591 	int (*func)(void);
3592 
3593 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3594 	ASSERT(mp->mod_busy && mp->mod_loaded);
3595 
3596 	if (mp->mod_installed)
3597 		return (0);
3598 	/*
3599 	 * If mod_delay_unload is on, it means the system chose the deferred
3600 	 * unload for this module. Then you can't install this module until
3601 	 * it's unloaded from the system.
3602 	 */
3603 	if (mp->mod_delay_unload)
3604 		return (ENXIO);
3605 
3606 	if (moddebug & MODDEBUG_LOADMSG)
3607 		printf("installing %s, module id %d.\n",
3608 		    mp->mod_modname, mp->mod_id);
3609 
3610 	ASSERT(mp->mod_mp != NULL);
3611 	if (mod_install_requisites(mp) != 0) {
3612 		/*
3613 		 * Note that we can't call mod_unload(mp) here since
3614 		 * if modinstall() was called by mod_install_requisites(),
3615 		 * we won't be able to hold the dependent modules
3616 		 * (otherwise there would be a deadlock).
3617 		 */
3618 		return (ENXIO);
3619 	}
3620 
3621 	if (moddebug & MODDEBUG_ERRMSG) {
3622 		printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
3623 		    mp->mod_filename, mp->mod_id,
3624 		    (void *)((struct module *)mp->mod_mp)->text,
3625 		    (void *)((struct module *)mp->mod_mp)->data,
3626 		    ((struct module *)mp->mod_mp)->text_size,
3627 		    ((struct module *)mp->mod_mp)->data_size);
3628 	}
3629 
3630 	func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
3631 
3632 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3633 		cmn_err(CE_WARN, "_init() not defined properly in %s",
3634 		    mp->mod_filename);
3635 		return (EFAULT);
3636 	}
3637 
3638 	if (moddebug & MODDEBUG_USERDEBUG) {
3639 		printf("breakpoint before calling %s:_init()\n",
3640 		    mp->mod_modname);
3641 		if (DEBUGGER_PRESENT)
3642 			debug_enter("_init");
3643 	}
3644 
3645 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3646 	ASSERT(mp->mod_busy && mp->mod_loaded);
3647 	val = (*func)();		/* call _init */
3648 
3649 	if (moddebug & MODDEBUG_USERDEBUG)
3650 		printf("Returned from _init, val = %x\n", val);
3651 
3652 	if (val == 0) {
3653 		/*
3654 		 * Set the MODS_INSTALLED flag to enable this module
3655 		 * being called now.
3656 		 */
3657 		install_stubs(mp);
3658 		mp->mod_installed = 1;
3659 	} else if (moddebug & MODDEBUG_ERRMSG)
3660 		printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
3661 
3662 	return (val);
3663 }
3664 
3665 int	detach_driver_unconfig = 0;
3666 
3667 static int
3668 detach_driver(char *name)
3669 {
3670 	major_t major;
3671 	int error;
3672 
3673 	/*
3674 	 * If being called from mod_uninstall_all() then the appropriate
3675 	 * driver detaches (leaf only) have already been done.
3676 	 */
3677 	if (mod_in_autounload())
3678 		return (0);
3679 
3680 	major = ddi_name_to_major(name);
3681 	if (major == DDI_MAJOR_T_NONE)
3682 		return (0);
3683 
3684 	error = ndi_devi_unconfig_driver(ddi_root_node(),
3685 	    NDI_DETACH_DRIVER | detach_driver_unconfig, major);
3686 	return (error == NDI_SUCCESS ? 0 : -1);
3687 }
3688 
3689 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
3690 
3691 static int
3692 moduninstall(struct modctl *mp)
3693 {
3694 	int status = 0;
3695 	int (*func)(void);
3696 
3697 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3698 	ASSERT(mp->mod_busy);
3699 
3700 	/*
3701 	 * Verify that we need to do something and can uninstall the module.
3702 	 *
3703 	 * If we should not uninstall the module or if the module is not in
3704 	 * the correct state to start an uninstall we return EBUSY to prevent
3705 	 * us from progressing to mod_unload.  If the module has already been
3706 	 * uninstalled and unloaded we return EALREADY.
3707 	 */
3708 	if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
3709 		return (EBUSY);
3710 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
3711 		return (EALREADY);
3712 
3713 	/*
3714 	 * To avoid devinfo / module deadlock we must release this module
3715 	 * prior to initiating the detach_driver, otherwise the detach_driver
3716 	 * might deadlock on a devinfo node held by another thread
3717 	 * coming top down and involving the module we have locked.
3718 	 *
3719 	 * When we regrab the module we must reverify that it is OK
3720 	 * to proceed with the uninstall operation.
3721 	 */
3722 	mod_release_mod(mp);
3723 	status = detach_driver(mp->mod_modname);
3724 	(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3725 
3726 	/* check detach status and reverify state with lock */
3727 	mutex_enter(&mod_lock);
3728 	if ((status != 0) || mp->mod_prim || mp->mod_ref) {
3729 		mutex_exit(&mod_lock);
3730 		return (EBUSY);
3731 	}
3732 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
3733 		mutex_exit(&mod_lock);
3734 		return (EALREADY);
3735 	}
3736 	mutex_exit(&mod_lock);
3737 
3738 	if (moddebug & MODDEBUG_LOADMSG2)
3739 		printf("uninstalling %s\n", mp->mod_modname);
3740 
3741 	/*
3742 	 * lookup _fini, return EBUSY if not defined.
3743 	 *
3744 	 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
3745 	 * detach(9E) - it allows bufctl addresses to be resolved.
3746 	 */
3747 	func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
3748 	if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
3749 	    (moddebug & MODDEBUG_FINI_EBUSY))
3750 		return (EBUSY);
3751 
3752 	/* verify that _fini is in this module */
3753 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3754 		cmn_err(CE_WARN, "_fini() not defined properly in %s",
3755 		    mp->mod_filename);
3756 		return (EFAULT);
3757 	}
3758 
3759 	/* call _fini() */
3760 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3761 	ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
3762 
3763 	status = (*func)();
3764 
3765 	if (status == 0) {
3766 		/* _fini returned success, the module is no longer installed */
3767 		if (moddebug & MODDEBUG_LOADMSG)
3768 			printf("uninstalled %s\n", mp->mod_modname);
3769 
3770 		/*
3771 		 * Even though we only set mod_installed to zero here, a zero
3772 		 * return value means we are committed to a code path were
3773 		 * mod_loaded will also end up as zero - we have no other
3774 		 * way to get the module data and bss back to the pre _init
3775 		 * state except a reload. To ensure this, after return,
3776 		 * mod_busy must stay set until mod_loaded is cleared.
3777 		 */
3778 		mp->mod_installed = 0;
3779 
3780 		/*
3781 		 * Clear the MODS_INSTALLED flag not to call functions
3782 		 * in the module directly from now on.
3783 		 */
3784 		uninstall_stubs(mp);
3785 	} else {
3786 		if (moddebug & MODDEBUG_USERDEBUG)
3787 			printf(finiret_msg, mp->mod_filename, status);
3788 		/*
3789 		 * By definition _fini is only allowed to return EBUSY or the
3790 		 * result of mod_remove (EBUSY or EINVAL).  In the off chance
3791 		 * that a driver returns EALREADY we convert this to EINVAL
3792 		 * since to our caller EALREADY means module was already
3793 		 * removed.
3794 		 */
3795 		if (status == EALREADY)
3796 			status = EINVAL;
3797 	}
3798 
3799 	return (status);
3800 }
3801 
3802 /*
3803  * Uninstall all modules.
3804  */
3805 static void
3806 mod_uninstall_all(void)
3807 {
3808 	struct modctl	*mp;
3809 	int		pass;
3810 	modid_t		modid;
3811 
3812 	/* synchronize with any active modunload_disable() */
3813 	modunload_begin();
3814 
3815 	/* mark this thread as doing autounloading */
3816 	(void) tsd_set(mod_autounload_key, (void *)1);
3817 
3818 	(void) devfs_clean(ddi_root_node(), NULL, 0);
3819 	(void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
3820 
3821 	/*
3822 	 * Loop up to max times if we keep producing unreferenced modules.
3823 	 * A new unreferenced module is an opportunity to unload.
3824 	 */
3825 	for (pass = 0; pass < mod_uninstall_pass_max; pass++) {
3826 
3827 		/* zero count of modules that go unreferenced during pass */
3828 		mod_uninstall_ref_zero = 0;
3829 
3830 		modid = 0;
3831 		while ((mp = mod_hold_next_by_id(modid)) != NULL) {
3832 			modid = mp->mod_id;
3833 
3834 			/*
3835 			 * Skip modules with the MOD_NOAUTOUNLOAD flag set
3836 			 */
3837 			if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3838 				mod_release_mod(mp);
3839 				continue;
3840 			}
3841 
3842 			if (moduninstall(mp) == 0) {
3843 				mod_unload(mp);
3844 				CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3845 			}
3846 			mod_release_mod(mp);
3847 		}
3848 
3849 		/* break if no modules went unreferenced during pass */
3850 		if (mod_uninstall_ref_zero == 0)
3851 			break;
3852 	}
3853 	if (pass >= mod_uninstall_pass_max)
3854 		mod_uninstall_pass_exc++;
3855 
3856 	(void) tsd_set(mod_autounload_key, NULL);
3857 	modunload_end();
3858 }
3859 
3860 /* wait for unloads that have begun before registering disable */
3861 void
3862 modunload_disable(void)
3863 {
3864 	mutex_enter(&modunload_wait_mutex);
3865 	while (modunload_active_count) {
3866 		modunload_wait++;
3867 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3868 		modunload_wait--;
3869 	}
3870 	modunload_disable_count++;
3871 	mutex_exit(&modunload_wait_mutex);
3872 }
3873 
3874 /* mark end of disable and signal waiters */
3875 void
3876 modunload_enable(void)
3877 {
3878 	mutex_enter(&modunload_wait_mutex);
3879 	modunload_disable_count--;
3880 	if ((modunload_disable_count == 0) && modunload_wait)
3881 		cv_broadcast(&modunload_wait_cv);
3882 	mutex_exit(&modunload_wait_mutex);
3883 }
3884 
3885 /* wait for disables to complete before begining unload */
3886 void
3887 modunload_begin()
3888 {
3889 	mutex_enter(&modunload_wait_mutex);
3890 	while (modunload_disable_count) {
3891 		modunload_wait++;
3892 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3893 		modunload_wait--;
3894 	}
3895 	modunload_active_count++;
3896 	mutex_exit(&modunload_wait_mutex);
3897 }
3898 
3899 /* mark end of unload and signal waiters */
3900 void
3901 modunload_end()
3902 {
3903 	mutex_enter(&modunload_wait_mutex);
3904 	modunload_active_count--;
3905 	if ((modunload_active_count == 0) && modunload_wait)
3906 		cv_broadcast(&modunload_wait_cv);
3907 	mutex_exit(&modunload_wait_mutex);
3908 }
3909 
3910 void
3911 mod_uninstall_daemon(void)
3912 {
3913 	callb_cpr_t	cprinfo;
3914 	clock_t		ticks;
3915 
3916 	mod_aul_thread = curthread;
3917 
3918 	CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
3919 	for (;;) {
3920 		mutex_enter(&mod_uninstall_lock);
3921 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3922 		/*
3923 		 * In DEBUG kernels, unheld drivers are uninstalled periodically
3924 		 * every mod_uninstall_interval seconds.  Periodic uninstall can
3925 		 * be disabled by setting mod_uninstall_interval to 0 which is
3926 		 * the default for a non-DEBUG kernel.
3927 		 */
3928 		if (mod_uninstall_interval) {
3929 			ticks = drv_usectohz(mod_uninstall_interval * 1000000);
3930 			(void) cv_reltimedwait(&mod_uninstall_cv,
3931 			    &mod_uninstall_lock, ticks, TR_CLOCK_TICK);
3932 		} else {
3933 			cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
3934 		}
3935 		/*
3936 		 * The whole daemon is safe for CPR except we don't want
3937 		 * the daemon to run if FREEZE is issued and this daemon
3938 		 * wakes up from the cv_wait above. In this case, it'll be
3939 		 * blocked in CALLB_CPR_SAFE_END until THAW is issued.
3940 		 *
3941 		 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
3942 		 * mod_uninstall_lock is used to protect cprinfo and
3943 		 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
3944 		 * called.
3945 		 */
3946 		CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
3947 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3948 		mutex_exit(&mod_uninstall_lock);
3949 		if ((modunload_disable_count == 0) &&
3950 		    ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
3951 			mod_uninstall_all();
3952 		}
3953 	}
3954 }
3955 
3956 /*
3957  * Unload all uninstalled modules.
3958  */
3959 void
3960 modreap(void)
3961 {
3962 	mutex_enter(&mod_uninstall_lock);
3963 	cv_broadcast(&mod_uninstall_cv);
3964 	mutex_exit(&mod_uninstall_lock);
3965 }
3966 
3967 /*
3968  * Hold the specified module. This is the module holding primitive.
3969  *
3970  * If MOD_LOCK_HELD then the caller already holds the mod_lock.
3971  *
3972  * Return values:
3973  *	 0 ==> the module is held
3974  *	 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
3975  *		to determine how to retry.
3976  */
3977 int
3978 mod_hold_by_modctl(struct modctl *mp, int f)
3979 {
3980 	ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
3981 	    ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
3982 	    (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
3983 	ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
3984 	    ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
3985 	    (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
3986 	ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
3987 
3988 	if (f & MOD_LOCK_NOT_HELD)
3989 		mutex_enter(&mod_lock);
3990 
3991 	while (mp->mod_busy) {
3992 		mp->mod_want = 1;
3993 		cv_wait(&mod_cv, &mod_lock);
3994 		/*
3995 		 * Module may be unloaded by daemon.
3996 		 * Nevertheless, modctl structure is still in linked list
3997 		 * (i.e., off &modules), not freed!
3998 		 * Caller is not supposed to assume "mp" is valid, but there
3999 		 * is no reasonable way to detect this but using
4000 		 * mp->mod_modinfo->mp == NULL check (follow the back pointer)
4001 		 *   (or similar check depending on calling context)
4002 		 * DON'T free modctl structure, it will be very very
4003 		 * problematic.
4004 		 */
4005 		if (f & MOD_WAIT_ONCE) {
4006 			if (f & MOD_LOCK_NOT_HELD)
4007 				mutex_exit(&mod_lock);
4008 			return (1);	/* caller decides how to retry */
4009 		}
4010 	}
4011 
4012 	mp->mod_busy = 1;
4013 	mp->mod_inprogress_thread =
4014 	    (curthread == NULL ? (kthread_id_t)-1 : curthread);
4015 
4016 	if (f & MOD_LOCK_NOT_HELD)
4017 		mutex_exit(&mod_lock);
4018 	return (0);
4019 }
4020 
4021 static struct modctl *
4022 mod_hold_by_name_common(struct modctl *dep, const char *filename)
4023 {
4024 	const char	*modname;
4025 	struct modctl	*mp;
4026 	char		*curname, *newname;
4027 	int		found = 0;
4028 
4029 	mutex_enter(&mod_lock);
4030 
4031 	if ((modname = strrchr(filename, '/')) == NULL)
4032 		modname = filename;
4033 	else
4034 		modname++;
4035 
4036 	mp = &modules;
4037 	do {
4038 		if (strcmp(modname, mp->mod_modname) == 0) {
4039 			found = 1;
4040 			break;
4041 		}
4042 	} while ((mp = mp->mod_next) != &modules);
4043 
4044 	if (found == 0) {
4045 		mp = allocate_modp(filename, modname);
4046 		modadd(mp);
4047 	}
4048 
4049 	/*
4050 	 * if dep is not NULL, set the mp in mod_requisite_loading for
4051 	 * the module circular dependency check. This field is used in
4052 	 * mod_circdep(), but it's cleard in mod_hold_loaded_mod().
4053 	 */
4054 	if (dep != NULL) {
4055 		ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
4056 		dep->mod_requisite_loading = mp;
4057 	}
4058 
4059 	/*
4060 	 * If the module was held, then it must be us who has it held.
4061 	 */
4062 	if (mod_circdep(mp))
4063 		mp = NULL;
4064 	else {
4065 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4066 
4067 		/*
4068 		 * If the name hadn't been set or has changed, allocate
4069 		 * space and set it.  Free space used by previous name.
4070 		 *
4071 		 * Do not change the name of primary modules, for primary
4072 		 * modules the mod_filename was allocated in standalone mode:
4073 		 * it is illegal to kobj_alloc in standalone mode and kobj_free
4074 		 * in non-standalone mode.
4075 		 */
4076 		curname = mp->mod_filename;
4077 		if (curname == NULL ||
4078 		    ((mp->mod_prim == 0) &&
4079 		    (curname != filename) &&
4080 		    (modname != filename) &&
4081 		    (strcmp(curname, filename) != 0))) {
4082 			newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
4083 			(void) strcpy(newname, filename);
4084 			mp->mod_filename = newname;
4085 			if (curname != NULL)
4086 				kobj_free(curname, strlen(curname) + 1);
4087 		}
4088 	}
4089 
4090 	mutex_exit(&mod_lock);
4091 	if (mp && moddebug & MODDEBUG_LOADMSG2)
4092 		printf("Holding %s\n", mp->mod_filename);
4093 	if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
4094 		printf("circular dependency loading %s\n", filename);
4095 	return (mp);
4096 }
4097 
4098 static struct modctl *
4099 mod_hold_by_name_requisite(struct modctl *dep, char *filename)
4100 {
4101 	return (mod_hold_by_name_common(dep, filename));
4102 }
4103 
4104 struct modctl *
4105 mod_hold_by_name(const char *filename)
4106 {
4107 	return (mod_hold_by_name_common(NULL, filename));
4108 }
4109 
4110 struct modctl *
4111 mod_hold_by_id(modid_t modid)
4112 {
4113 	struct modctl	*mp;
4114 	int		found = 0;
4115 
4116 	mutex_enter(&mod_lock);
4117 	mp = &modules;
4118 	do {
4119 		if (mp->mod_id == modid) {
4120 			found = 1;
4121 			break;
4122 		}
4123 	} while ((mp = mp->mod_next) != &modules);
4124 
4125 	if ((found == 0) || mod_circdep(mp))
4126 		mp = NULL;
4127 	else
4128 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4129 
4130 	mutex_exit(&mod_lock);
4131 	return (mp);
4132 }
4133 
4134 static struct modctl *
4135 mod_hold_next_by_id(modid_t modid)
4136 {
4137 	struct modctl	*mp;
4138 	int		found = 0;
4139 
4140 	if (modid < -1)
4141 		return (NULL);
4142 
4143 	mutex_enter(&mod_lock);
4144 
4145 	mp = &modules;
4146 	do {
4147 		if (mp->mod_id > modid) {
4148 			found = 1;
4149 			break;
4150 		}
4151 	} while ((mp = mp->mod_next) != &modules);
4152 
4153 	if ((found == 0) || mod_circdep(mp))
4154 		mp = NULL;
4155 	else
4156 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4157 
4158 	mutex_exit(&mod_lock);
4159 	return (mp);
4160 }
4161 
4162 static void
4163 mod_release(struct modctl *mp)
4164 {
4165 	ASSERT(MUTEX_HELD(&mod_lock));
4166 	ASSERT(mp->mod_busy);
4167 
4168 	mp->mod_busy = 0;
4169 	mp->mod_inprogress_thread = NULL;
4170 	if (mp->mod_want) {
4171 		mp->mod_want = 0;
4172 		cv_broadcast(&mod_cv);
4173 	}
4174 }
4175 
4176 void
4177 mod_release_mod(struct modctl *mp)
4178 {
4179 	if (moddebug & MODDEBUG_LOADMSG2)
4180 		printf("Releasing %s\n", mp->mod_filename);
4181 	mutex_enter(&mod_lock);
4182 	mod_release(mp);
4183 	mutex_exit(&mod_lock);
4184 }
4185 
4186 modid_t
4187 mod_name_to_modid(char *filename)
4188 {
4189 	char		*modname;
4190 	struct modctl	*mp;
4191 
4192 	mutex_enter(&mod_lock);
4193 
4194 	if ((modname = strrchr(filename, '/')) == NULL)
4195 		modname = filename;
4196 	else
4197 		modname++;
4198 
4199 	mp = &modules;
4200 	do {
4201 		if (strcmp(modname, mp->mod_modname) == 0) {
4202 			mutex_exit(&mod_lock);
4203 			return (mp->mod_id);
4204 		}
4205 	} while ((mp = mp->mod_next) != &modules);
4206 
4207 	mutex_exit(&mod_lock);
4208 	return (-1);
4209 }
4210 
4211 
4212 int
4213 mod_remove_by_name(char *name)
4214 {
4215 	struct modctl *mp;
4216 	int retval;
4217 
4218 	mp = mod_hold_by_name(name);
4219 
4220 	if (mp == NULL)
4221 		return (EINVAL);
4222 
4223 	if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
4224 		/*
4225 		 * Do not unload forceloaded modules
4226 		 */
4227 		mod_release_mod(mp);
4228 		return (0);
4229 	}
4230 
4231 	if ((retval = moduninstall(mp)) == 0) {
4232 		mod_unload(mp);
4233 		CPU_STATS_ADDQ(CPU, sys, modunload, 1);
4234 	} else if (retval == EALREADY)
4235 		retval = 0;		/* already unloaded, not an error */
4236 	mod_release_mod(mp);
4237 	return (retval);
4238 }
4239 
4240 /*
4241  * Record that module "dep" is dependent on module "on_mod."
4242  */
4243 static void
4244 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
4245 {
4246 	struct modctl_list **pmlnp;	/* previous next pointer */
4247 	struct modctl_list *mlp;
4248 	struct modctl_list *new;
4249 
4250 	ASSERT(dependent->mod_busy && on_mod->mod_busy);
4251 	mutex_enter(&mod_lock);
4252 
4253 	/*
4254 	 * Search dependent's requisite list to see if on_mod is recorded.
4255 	 * List is ordered by id.
4256 	 */
4257 	for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
4258 	    mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
4259 		if (mlp->modl_modp->mod_id >= on_mod->mod_id)
4260 			break;
4261 
4262 	/* Create and insert if not already recorded */
4263 	if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
4264 		new = kobj_zalloc(sizeof (*new), KM_SLEEP);
4265 		new->modl_modp = on_mod;
4266 		new->modl_next = mlp;
4267 		*pmlnp = new;
4268 
4269 		/*
4270 		 * Increment the mod_ref count in our new requisite module.
4271 		 * This is what keeps a module that has other modules
4272 		 * which are dependent on it from being uninstalled and
4273 		 * unloaded. "on_mod"'s mod_ref count decremented in
4274 		 * mod_release_requisites when the "dependent" module
4275 		 * unload is complete.	"on_mod" must be loaded, but may not
4276 		 * yet be installed.
4277 		 */
4278 		on_mod->mod_ref++;
4279 		ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
4280 	}
4281 
4282 	mutex_exit(&mod_lock);
4283 }
4284 
4285 /*
4286  * release the hold associated with mod_make_requisite mod_ref++
4287  * as part of unload.
4288  */
4289 void
4290 mod_release_requisites(struct modctl *modp)
4291 {
4292 	struct modctl_list *modl;
4293 	struct modctl_list *next;
4294 	struct modctl *req;
4295 	struct modctl_list *start = NULL, *mod_garbage;
4296 
4297 	ASSERT(!quiesce_active);
4298 	ASSERT(modp->mod_busy);
4299 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
4300 
4301 	mutex_enter(&mod_lock);		/* needed for manipulation of req */
4302 	for (modl = modp->mod_requisites; modl; modl = next) {
4303 		next = modl->modl_next;
4304 		req = modl->modl_modp;
4305 		ASSERT(req->mod_ref >= 1 && req->mod_loaded);
4306 		req->mod_ref--;
4307 		if (req->mod_ref == 0)
4308 			mod_uninstall_ref_zero++;
4309 
4310 		/*
4311 		 * Check if the module has to be unloaded or not.
4312 		 */
4313 		if (req->mod_ref == 0 && req->mod_delay_unload) {
4314 			struct modctl_list *new;
4315 			/*
4316 			 * Allocate the modclt_list holding the garbage
4317 			 * module which should be unloaded later.
4318 			 */
4319 			new = kobj_zalloc(sizeof (struct modctl_list),
4320 			    KM_SLEEP);
4321 			new->modl_modp = req;
4322 
4323 			if (start == NULL)
4324 				mod_garbage = start = new;
4325 			else {
4326 				mod_garbage->modl_next = new;
4327 				mod_garbage = new;
4328 			}
4329 		}
4330 
4331 		/* free the list as we go */
4332 		kobj_free(modl, sizeof (*modl));
4333 	}
4334 	modp->mod_requisites = NULL;
4335 	mutex_exit(&mod_lock);
4336 
4337 	/*
4338 	 * Unload the garbage modules.
4339 	 */
4340 	for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
4341 		struct modctl_list *old = mod_garbage;
4342 		struct modctl *mp = mod_garbage->modl_modp;
4343 		ASSERT(mp != NULL);
4344 
4345 		/*
4346 		 * Hold this module until it's unloaded completely.
4347 		 */
4348 		(void) mod_hold_by_modctl(mp,
4349 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4350 		/*
4351 		 * Check if the module is not unloaded yet and nobody requires
4352 		 * the module. If it's unloaded already or somebody still
4353 		 * requires the module, don't unload it now.
4354 		 */
4355 		if (mp->mod_loaded && mp->mod_ref == 0)
4356 			mod_unload(mp);
4357 		ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
4358 		    (mp->mod_ref > 0));
4359 		mod_release_mod(mp);
4360 
4361 		mod_garbage = mod_garbage->modl_next;
4362 		kobj_free(old, sizeof (struct modctl_list));
4363 	}
4364 }
4365 
4366 /*
4367  * Process dependency of the module represented by "dep" on the
4368  * module named by "on."
4369  *
4370  * Called from kobj_do_dependents() to load a module "on" on which
4371  * "dep" depends.
4372  */
4373 struct modctl *
4374 mod_load_requisite(struct modctl *dep, char *on)
4375 {
4376 	struct modctl *on_mod;
4377 	int retval;
4378 
4379 	if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
4380 		mod_make_requisite(dep, on_mod);
4381 	} else if (moddebug & MODDEBUG_ERRMSG) {
4382 		printf("error processing %s on which module %s depends\n",
4383 		    on, dep->mod_modname);
4384 	}
4385 	return (on_mod);
4386 }
4387 
4388 static int
4389 mod_install_requisites(struct modctl *modp)
4390 {
4391 	struct modctl_list *modl;
4392 	struct modctl *req;
4393 	int status = 0;
4394 
4395 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
4396 	ASSERT(modp->mod_busy);
4397 
4398 	for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
4399 		req = modl->modl_modp;
4400 		(void) mod_hold_by_modctl(req,
4401 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4402 		status = modinstall(req);
4403 		mod_release_mod(req);
4404 
4405 		if (status != 0)
4406 			break;
4407 	}
4408 	return (status);
4409 }
4410 
4411 /*
4412  * returns 1 if this thread is doing autounload, 0 otherwise.
4413  * see mod_uninstall_all.
4414  */
4415 int
4416 mod_in_autounload()
4417 {
4418 	return ((int)(uintptr_t)tsd_get(mod_autounload_key));
4419 }
4420 
4421 /*
4422  * gmatch adapted from libc, stripping the wchar stuff
4423  */
4424 #define	popchar(p, c)	{ \
4425 		c = *p++; \
4426 		if (c == 0) { \
4427 			return (0); \
4428 		} \
4429 	}
4430 
4431 int
4432 gmatch(const char *s, const char *p)
4433 {
4434 	int c, sc;
4435 	int ok, lc, notflag;
4436 
4437 	sc = *s++;
4438 	c = *p++;
4439 	if (c == 0)
4440 		return (sc == c);	/* nothing matches nothing */
4441 
4442 	switch (c) {
4443 	case '\\':
4444 		/* skip to quoted character */
4445 		popchar(p, c);
4446 		/*FALLTHRU*/
4447 
4448 	default:
4449 		/* straight comparison */
4450 		if (c != sc)
4451 			return (0);
4452 		/*FALLTHRU*/
4453 
4454 	case '?':
4455 		/* first char matches, move to remainder */
4456 		return (sc != '\0' ? gmatch(s, p) : 0);
4457 
4458 
4459 	case '*':
4460 		while (*p == '*')
4461 			p++;
4462 
4463 		/* * matches everything */
4464 		if (*p == 0)
4465 			return (1);
4466 
4467 		/* undo skip at the beginning & iterate over substrings */
4468 		--s;
4469 		while (*s) {
4470 			if (gmatch(s, p))
4471 				return (1);
4472 			s++;
4473 		}
4474 		return (0);
4475 
4476 	case '[':
4477 		/* match any char within [] */
4478 		if (sc == 0)
4479 			return (0);
4480 
4481 		ok = lc = notflag = 0;
4482 
4483 		if (*p == '!') {
4484 			notflag = 1;
4485 			p++;
4486 		}
4487 		popchar(p, c);
4488 
4489 		do {
4490 			if (c == '-' && lc && *p != ']') {
4491 				/* test sc against range [c1-c2] */
4492 				popchar(p, c);
4493 				if (c == '\\') {
4494 					popchar(p, c);
4495 				}
4496 
4497 				if (notflag) {
4498 					/* return 0 on mismatch */
4499 					if (lc <= sc && sc <= c)
4500 						return (0);
4501 					ok++;
4502 				} else if (lc <= sc && sc <= c) {
4503 					ok++;
4504 				}
4505 				/* keep going, may get a match next */
4506 			} else if (c == '\\') {
4507 				/* skip to quoted character */
4508 				popchar(p, c);
4509 			}
4510 			lc = c;
4511 			if (notflag) {
4512 				if (sc == lc)
4513 					return (0);
4514 				ok++;
4515 			} else if (sc == lc) {
4516 				ok++;
4517 			}
4518 			popchar(p, c);
4519 		} while (c != ']');
4520 
4521 		/* recurse on remainder of string */
4522 		return (ok ? gmatch(s, p) : 0);
4523 	}
4524 	/*NOTREACHED*/
4525 }
4526 
4527 
4528 /*
4529  * Get default perm for device from /etc/minor_perm. Return 0 if match found.
4530  *
4531  * Pure wild-carded patterns are handled separately so the ordering of
4532  * these patterns doesn't matter.  We're still dependent on ordering
4533  * however as the first matching entry is the one returned.
4534  * Not ideal but all existing examples and usage do imply this
4535  * ordering implicitly.
4536  *
4537  * Drivers using the clone driver are always good for some entertainment.
4538  * Clone nodes under pseudo have the form clone@0:<driver>.  Some minor
4539  * perm entries have the form clone:<driver>, others use <driver>:*
4540  * Examples are clone:llc1 vs. llc2:*, for example.
4541  *
4542  * Minor perms in the clone:<driver> form are mapped to the drivers's
4543  * mperm list, not the clone driver, as wildcard entries for clone
4544  * reference only.  In other words, a clone wildcard will match
4545  * references for clone@0:<driver> but never <driver>@<minor>.
4546  *
4547  * Additional minor perms in the standard form are also supported,
4548  * for mixed usage, ie a node with an entry clone:<driver> could
4549  * provide further entries <driver>:<minor>.
4550  *
4551  * Finally, some uses of clone use an alias as the minor name rather
4552  * than the driver name, with the alias as the minor perm entry.
4553  * This case is handled by attaching the driver to bring its
4554  * minor list into existence, then discover the alias via DDI_ALIAS.
4555  * The clone device's minor perm list can then be searched for
4556  * that alias.
4557  */
4558 
4559 static int
4560 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
4561 {
4562 	major_t			major;
4563 	struct devnames		*dnp;
4564 	mperm_t			*mp;
4565 	char			*alias = NULL;
4566 	dev_info_t		*cdevi;
4567 	int			circ;
4568 	struct ddi_minor_data	*dmd;
4569 
4570 	major = ddi_name_to_major(minor_name);
4571 
4572 	ASSERT(dip == clone_dip);
4573 	ASSERT(major != DDI_MAJOR_T_NONE);
4574 
4575 	/*
4576 	 * Attach the driver named by the minor node, then
4577 	 * search its first instance's minor list for an
4578 	 * alias node.
4579 	 */
4580 	if (ddi_hold_installed_driver(major) == NULL)
4581 		return (1);
4582 
4583 	dnp = &devnamesp[major];
4584 	LOCK_DEV_OPS(&dnp->dn_lock);
4585 
4586 	if ((cdevi = dnp->dn_head) != NULL) {
4587 		ndi_devi_enter(cdevi, &circ);
4588 		for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
4589 			if (dmd->type == DDM_ALIAS) {
4590 				alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
4591 				break;
4592 			}
4593 		}
4594 		ndi_devi_exit(cdevi, circ);
4595 	}
4596 
4597 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4598 	ddi_rele_driver(major);
4599 
4600 	if (alias == NULL) {
4601 		if (moddebug & MODDEBUG_MINORPERM)
4602 			cmn_err(CE_CONT, "dev_minorperm: "
4603 			    "no alias for %s\n", minor_name);
4604 		return (1);
4605 	}
4606 
4607 	major = ddi_driver_major(clone_dip);
4608 	dnp = &devnamesp[major];
4609 	LOCK_DEV_OPS(&dnp->dn_lock);
4610 
4611 	/*
4612 	 * Go through the clone driver's mperm list looking
4613 	 * for a match for the specified alias.
4614 	 */
4615 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4616 		if (strcmp(alias, mp->mp_minorname) == 0) {
4617 			break;
4618 		}
4619 	}
4620 
4621 	if (mp) {
4622 		if (moddebug & MODDEBUG_MP_MATCH) {
4623 			cmn_err(CE_CONT,
4624 			    "minor perm defaults: %s %s 0%o %d %d (aliased)\n",
4625 			    minor_name, alias, mp->mp_mode,
4626 			    mp->mp_uid, mp->mp_gid);
4627 		}
4628 		rmp->mp_uid = mp->mp_uid;
4629 		rmp->mp_gid = mp->mp_gid;
4630 		rmp->mp_mode = mp->mp_mode;
4631 	}
4632 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4633 
4634 	kmem_free(alias, strlen(alias)+1);
4635 
4636 	return (mp == NULL);
4637 }
4638 
4639 int
4640 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
4641 {
4642 	major_t major;
4643 	char *minor_name;
4644 	struct devnames *dnp;
4645 	mperm_t *mp;
4646 	int is_clone = 0;
4647 
4648 	if (!minorperm_loaded) {
4649 		if (moddebug & MODDEBUG_MINORPERM)
4650 			cmn_err(CE_CONT,
4651 			    "%s: minor perm not yet loaded\n", name);
4652 		return (1);
4653 	}
4654 
4655 	minor_name = strchr(name, ':');
4656 	if (minor_name == NULL)
4657 		return (1);
4658 	minor_name++;
4659 
4660 	/*
4661 	 * If it's the clone driver, search the driver as named
4662 	 * by the minor.  All clone minor perm entries other than
4663 	 * alias nodes are actually installed on the real driver's list.
4664 	 */
4665 	if (dip == clone_dip) {
4666 		major = ddi_name_to_major(minor_name);
4667 		if (major == DDI_MAJOR_T_NONE) {
4668 			if (moddebug & MODDEBUG_MINORPERM)
4669 				cmn_err(CE_CONT, "dev_minorperm: "
4670 				    "%s: no such driver\n", minor_name);
4671 			return (1);
4672 		}
4673 		is_clone = 1;
4674 	} else {
4675 		major = ddi_driver_major(dip);
4676 		ASSERT(major != DDI_MAJOR_T_NONE);
4677 	}
4678 
4679 	dnp = &devnamesp[major];
4680 	LOCK_DEV_OPS(&dnp->dn_lock);
4681 
4682 	/*
4683 	 * Go through the driver's mperm list looking for
4684 	 * a match for the specified minor.  If there's
4685 	 * no matching pattern, use the wild card.
4686 	 * Defer to the clone wild for clone if specified,
4687 	 * otherwise fall back to the normal form.
4688 	 */
4689 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4690 		if (gmatch(minor_name, mp->mp_minorname) != 0) {
4691 			break;
4692 		}
4693 	}
4694 	if (mp == NULL) {
4695 		if (is_clone)
4696 			mp = dnp->dn_mperm_clone;
4697 		if (mp == NULL)
4698 			mp = dnp->dn_mperm_wild;
4699 	}
4700 
4701 	if (mp) {
4702 		if (moddebug & MODDEBUG_MP_MATCH) {
4703 			cmn_err(CE_CONT,
4704 			    "minor perm defaults: %s %s 0%o %d %d\n",
4705 			    name, mp->mp_minorname, mp->mp_mode,
4706 			    mp->mp_uid, mp->mp_gid);
4707 		}
4708 		rmp->mp_uid = mp->mp_uid;
4709 		rmp->mp_gid = mp->mp_gid;
4710 		rmp->mp_mode = mp->mp_mode;
4711 	}
4712 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4713 
4714 	/*
4715 	 * If no match can be found for a clone node,
4716 	 * search for a possible match for an alias.
4717 	 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
4718 	 * with minor perm entry clone:ptmx.
4719 	 */
4720 	if (mp == NULL && is_clone) {
4721 		return (dev_alias_minorperm(dip, minor_name, rmp));
4722 	}
4723 
4724 	return (mp == NULL);
4725 }
4726 
4727 /*
4728  * dynamicaly reference load a dl module/library, returning handle
4729  */
4730 /*ARGSUSED*/
4731 ddi_modhandle_t
4732 ddi_modopen(const char *modname, int mode, int *errnop)
4733 {
4734 	char		*subdir;
4735 	char		*mod;
4736 	int		subdirlen;
4737 	struct modctl	*hmodp = NULL;
4738 	int		retval = EINVAL;
4739 
4740 	ASSERT(modname && (mode == KRTLD_MODE_FIRST));
4741 	if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
4742 		goto out;
4743 
4744 	/* find last '/' in modname */
4745 	mod = strrchr(modname, '/');
4746 
4747 	if (mod) {
4748 		/* for subdir string without modification to argument */
4749 		mod++;
4750 		subdirlen = mod - modname;
4751 		subdir = kmem_alloc(subdirlen, KM_SLEEP);
4752 		(void) strlcpy(subdir, modname, subdirlen);
4753 	} else {
4754 		subdirlen = 0;
4755 		subdir = "misc";
4756 		mod = (char *)modname;
4757 	}
4758 
4759 	/* reference load with errno return value */
4760 	retval = modrload(subdir, mod, &hmodp);
4761 
4762 	if (subdirlen)
4763 		kmem_free(subdir, subdirlen);
4764 
4765 out:	if (errnop)
4766 		*errnop = retval;
4767 
4768 	if (moddebug & MODDEBUG_DDI_MOD)
4769 		printf("ddi_modopen %s mode %x: %s %p %d\n",
4770 		    modname ? modname : "<unknown>", mode,
4771 		    hmodp ? hmodp->mod_filename : "<unknown>",
4772 		    (void *)hmodp, retval);
4773 
4774 	return ((ddi_modhandle_t)hmodp);
4775 }
4776 
4777 /* lookup "name" in open dl module/library */
4778 void *
4779 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
4780 {
4781 	struct modctl	*hmodp = (struct modctl *)h;
4782 	void		*f;
4783 	int		retval;
4784 
4785 	ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4786 	if ((hmodp == NULL) || (name == NULL) ||
4787 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4788 		f = NULL;
4789 		retval = EINVAL;
4790 	} else {
4791 		f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
4792 		if (f)
4793 			retval = 0;
4794 		else
4795 			retval = ENOTSUP;
4796 	}
4797 
4798 	if (moddebug & MODDEBUG_DDI_MOD)
4799 		printf("ddi_modsym in %s of %s: %d %p\n",
4800 		    hmodp ? hmodp->mod_modname : "<unknown>",
4801 		    name ? name : "<unknown>", retval, f);
4802 
4803 	if (errnop)
4804 		*errnop = retval;
4805 	return (f);
4806 }
4807 
4808 /* dynamic (un)reference unload of an open dl module/library */
4809 int
4810 ddi_modclose(ddi_modhandle_t h)
4811 {
4812 	struct modctl	*hmodp = (struct modctl *)h;
4813 	struct modctl	*modp = NULL;
4814 	int		retval;
4815 
4816 	ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4817 	if ((hmodp == NULL) ||
4818 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4819 		retval = EINVAL;
4820 		goto out;
4821 	}
4822 
4823 	retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
4824 	if (retval == EBUSY)
4825 		retval = 0;	/* EBUSY is not an error */
4826 
4827 	if (retval == 0) {
4828 		ASSERT(hmodp == modp);
4829 		if (hmodp != modp)
4830 			retval = EINVAL;
4831 	}
4832 
4833 out:	if (moddebug & MODDEBUG_DDI_MOD)
4834 		printf("ddi_modclose %s: %d\n",
4835 		    hmodp ? hmodp->mod_modname : "<unknown>", retval);
4836 
4837 	return (retval);
4838 }
4839