1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2017 Joyent, Inc.
25 */
26
27 /*
28 * Copyright 2023 Oxide Computer Company
29 */
30
31 /*
32 * modctl system call for loadable module support.
33 */
34
35 #include <sys/param.h>
36 #include <sys/user.h>
37 #include <sys/systm.h>
38 #include <sys/exec.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/conf.h>
42 #include <sys/time.h>
43 #include <sys/reboot.h>
44 #include <sys/fs/ufs_fsdir.h>
45 #include <sys/kmem.h>
46 #include <sys/sysconf.h>
47 #include <sys/cmn_err.h>
48 #include <sys/ddi.h>
49 #include <sys/sunddi.h>
50 #include <sys/sunndi.h>
51 #include <sys/ndi_impldefs.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/ddi_implfuncs.h>
54 #include <sys/bootconf.h>
55 #include <sys/dc_ki.h>
56 #include <sys/cladm.h>
57 #include <sys/dtrace.h>
58 #include <sys/kdi.h>
59
60 #include <sys/devpolicy.h>
61 #include <sys/modctl.h>
62 #include <sys/kobj.h>
63 #include <sys/devops.h>
64 #include <sys/autoconf.h>
65 #include <sys/hwconf.h>
66 #include <sys/callb.h>
67 #include <sys/debug.h>
68 #include <sys/cpuvar.h>
69 #include <sys/sysmacros.h>
70 #include <sys/sysevent.h>
71 #include <sys/sysevent_impl.h>
72 #include <sys/instance.h>
73 #include <sys/modhash.h>
74 #include <sys/modhash_impl.h>
75 #include <sys/dacf_impl.h>
76 #include <sys/vfs.h>
77 #include <sys/pathname.h>
78 #include <sys/console.h>
79 #include <sys/policy.h>
80 #include <ipp/ipp_impl.h>
81 #include <sys/fs/dv_node.h>
82 #include <sys/strsubr.h>
83 #include <sys/fs/sdev_impl.h>
84
85 static int mod_circdep(struct modctl *);
86 static int modinfo(modid_t, struct modinfo *);
87
88 static void mod_uninstall_all(void);
89 static int mod_getinfo(struct modctl *, struct modinfo *);
90 static struct modctl *allocate_modp(const char *, const char *);
91
92 static int mod_load(struct modctl *, int);
93 static void mod_unload(struct modctl *);
94 static int modinstall(struct modctl *);
95 static int moduninstall(struct modctl *);
96
97 static struct modctl *mod_hold_by_name_common(struct modctl *, const char *);
98 static struct modctl *mod_hold_next_by_id(modid_t);
99 static struct modctl *mod_hold_loaded_mod(struct modctl *, char *, int *);
100 static struct modctl *mod_hold_installed_mod(char *, int, int, int *);
101
102 static void mod_release(struct modctl *);
103 static void mod_make_requisite(struct modctl *, struct modctl *);
104 static int mod_install_requisites(struct modctl *);
105 static void check_esc_sequences(char *, char *);
106 static struct modctl *mod_hold_by_name_requisite(struct modctl *, char *);
107
108 /*
109 * module loading thread control structure. Calls to kobj_load_module()() are
110 * handled off to a separate thead using this structure.
111 */
112 struct loadmt {
113 ksema_t sema;
114 struct modctl *mp;
115 int usepath;
116 kthread_t *owner;
117 int retval;
118 };
119
120 static void modload_thread(struct loadmt *);
121
122 kcondvar_t mod_cv;
123 kcondvar_t mod_uninstall_cv; /* Communication between swapper */
124 /* and the uninstall daemon. */
125 kmutex_t mod_lock; /* protects &modules insert linkage, */
126 /* mod_busy, mod_want, and mod_ref. */
127 /* blocking operations while holding */
128 /* mod_lock should be avoided */
129 kmutex_t mod_uninstall_lock; /* protects mod_uninstall_cv */
130 kthread_id_t mod_aul_thread;
131
132 int modunload_wait;
133 kmutex_t modunload_wait_mutex;
134 kcondvar_t modunload_wait_cv;
135 int modunload_active_count;
136 int modunload_disable_count;
137
138 int isminiroot; /* set if running as miniroot */
139 int modrootloaded; /* set after root driver and fs are loaded */
140 int moddebug = 0x0; /* debug flags for module writers */
141 int swaploaded; /* set after swap driver and fs are loaded */
142 int bop_io_quiesced = 0; /* set when BOP I/O can no longer be used */
143 int last_module_id;
144 clock_t mod_uninstall_interval = 0;
145 int mod_uninstall_pass_max = 6;
146 int mod_uninstall_ref_zero; /* # modules that went mod_ref == 0 */
147 int mod_uninstall_pass_exc; /* mod_uninstall_all left new stuff */
148
149 int ddi_modclose_unload = 1; /* 0 -> just decrement reference */
150
151 int devcnt_incr = 256; /* allow for additional drivers */
152 int devcnt_min = 512; /* and always at least this number */
153
154 struct devnames *devnamesp;
155 struct devnames orphanlist;
156
157 krwlock_t devinfo_tree_lock; /* obsolete, to be removed */
158
159 #define MAJBINDFILE "/etc/name_to_major"
160 #define SYSBINDFILE "/etc/name_to_sysnum"
161
162 static char majbind[] = MAJBINDFILE;
163 static char sysbind[] = SYSBINDFILE;
164 static uint_t mod_autounload_key; /* for module autounload detection */
165
166 extern int obpdebug;
167
168 #define DEBUGGER_PRESENT ((boothowto & RB_DEBUG) || (obpdebug != 0))
169
170 static int minorperm_loaded = 0;
171
172 void
mod_setup(void)173 mod_setup(void)
174 {
175 struct sysent *callp;
176 int callnum, exectype;
177 int num_devs;
178 int i;
179
180 /*
181 * Initialize the list of loaded driver dev_ops.
182 * XXX - This must be done before reading the system file so that
183 * forceloads of drivers will work.
184 */
185 num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
186 /*
187 * Since read_binding_file is common code, it doesn't enforce that all
188 * of the binding file entries have major numbers <= MAXMAJ32. Thus,
189 * ensure that we don't allocate some massive amount of space due to a
190 * bad entry. We can't have major numbers bigger than MAXMAJ32
191 * until file system support for larger major numbers exists.
192 */
193
194 /*
195 * Leave space for expansion, but not more than L_MAXMAJ32
196 */
197 devcnt = MIN(num_devs + devcnt_incr, L_MAXMAJ32);
198 devcnt = MAX(devcnt, devcnt_min);
199 devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
200 for (i = 0; i < devcnt; i++)
201 devopsp[i] = &mod_nodev_ops;
202
203 init_devnamesp(devcnt);
204
205 /*
206 * Sync up with the work that the stand-alone linker has already done.
207 */
208 (void) kobj_sync();
209
210 if (boothowto & RB_DEBUG)
211 kdi_dvec_modavail();
212
213 make_aliases(mb_hashtab);
214
215 /*
216 * Initialize streams device implementation structures.
217 */
218 devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
219
220 /*
221 * If the cl_bootstrap module is present,
222 * we should be configured as a cluster. Loading this module
223 * will set "cluster_bootflags" to non-zero.
224 */
225 (void) modload("misc", "cl_bootstrap");
226
227 (void) read_binding_file(sysbind, sb_hashtab, make_mbind);
228 init_syscallnames(NSYSCALL);
229
230 /*
231 * Start up dynamic autoconfiguration framework (dacf).
232 */
233 mod_hash_init();
234 dacf_init();
235
236 /*
237 * Start up IP policy framework (ipp).
238 */
239 ipp_init();
240
241 /*
242 * Allocate loadable native system call locks.
243 */
244 for (callnum = 0, callp = sysent; callnum < NSYSCALL;
245 callnum++, callp++) {
246 if (LOADABLE_SYSCALL(callp)) {
247 if (mod_getsysname(callnum) != NULL) {
248 callp->sy_lock =
249 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
250 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
251 } else {
252 callp->sy_flags &= ~SE_LOADABLE;
253 callp->sy_callc = nosys;
254 }
255 #ifdef DEBUG
256 } else {
257 /*
258 * Do some sanity checks on the sysent table
259 */
260 switch (callp->sy_flags & SE_RVAL_MASK) {
261 case SE_32RVAL1:
262 /* only r_val1 returned */
263 case SE_32RVAL1 | SE_32RVAL2:
264 /* r_val1 and r_val2 returned */
265 case SE_64RVAL:
266 /* 64-bit rval returned */
267 break;
268 default:
269 cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
270 callnum, callp->sy_flags);
271 }
272 #endif
273 }
274 }
275
276 #ifdef _SYSCALL32_IMPL
277 /*
278 * Allocate loadable system call locks for 32-bit compat syscalls
279 */
280 for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
281 callnum++, callp++) {
282 if (LOADABLE_SYSCALL(callp)) {
283 if (mod_getsysname(callnum) != NULL) {
284 callp->sy_lock =
285 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
286 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
287 } else {
288 callp->sy_flags &= ~SE_LOADABLE;
289 callp->sy_callc = nosys;
290 }
291 #ifdef DEBUG
292 } else {
293 /*
294 * Do some sanity checks on the sysent table
295 */
296 switch (callp->sy_flags & SE_RVAL_MASK) {
297 case SE_32RVAL1:
298 /* only r_val1 returned */
299 case SE_32RVAL1 | SE_32RVAL2:
300 /* r_val1 and r_val2 returned */
301 case SE_64RVAL:
302 /* 64-bit rval returned */
303 break;
304 default:
305 cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
306 callnum, callp->sy_flags);
307 goto skip;
308 }
309
310 /*
311 * Cross-check the native and compatibility tables.
312 */
313 if (callp->sy_callc == nosys ||
314 sysent[callnum].sy_callc == nosys)
315 continue;
316 /*
317 * If only one or the other slot is loadable, then
318 * there's an error -- they should match!
319 */
320 if ((callp->sy_callc == loadable_syscall) ^
321 (sysent[callnum].sy_callc == loadable_syscall)) {
322 cmn_err(CE_WARN, "sysent[%d] loadable?",
323 callnum);
324 }
325 /*
326 * This is more of a heuristic test -- if the
327 * system call returns two values in the 32-bit
328 * world, it should probably return two 32-bit
329 * values in the 64-bit world too.
330 */
331 if (((callp->sy_flags & SE_32RVAL2) == 0) ^
332 ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
333 cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
334 callnum);
335 }
336 skip:;
337 #endif /* DEBUG */
338 }
339 }
340 #endif /* _SYSCALL32_IMPL */
341
342 /*
343 * Allocate loadable exec locks. (Assumes all execs are loadable)
344 */
345 for (exectype = 0; exectype < nexectype; exectype++) {
346 execsw[exectype].exec_lock =
347 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
348 rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
349 }
350
351 read_class_file();
352
353 /* init thread specific structure for mod_uninstall_all */
354 tsd_create(&mod_autounload_key, NULL);
355 }
356
357 static int
modctl_modload(int use_path,char * filename,int * rvp)358 modctl_modload(int use_path, char *filename, int *rvp)
359 {
360 struct modctl *modp;
361 int retval = 0;
362 char *filenamep;
363 int modid;
364
365 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
366
367 if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
368 retval = EFAULT;
369 goto out;
370 }
371
372 filenamep[MOD_MAXPATH - 1] = 0;
373 modp = mod_hold_installed_mod(filenamep, use_path, 0, &retval);
374
375 if (modp == NULL)
376 goto out;
377
378 modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
379 modid = modp->mod_id;
380 mod_release_mod(modp);
381 CPU_STATS_ADDQ(CPU, sys, modload, 1);
382 if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
383 retval = EFAULT;
384 out:
385 kmem_free(filenamep, MOD_MAXPATH);
386
387 return (retval);
388 }
389
390 static int
modctl_modunload(modid_t id)391 modctl_modunload(modid_t id)
392 {
393 int rval = 0;
394
395 if (id == 0) {
396 #ifdef DEBUG
397 /*
398 * Turn on mod_uninstall_daemon
399 */
400 if (mod_uninstall_interval == 0) {
401 mod_uninstall_interval = 60;
402 modreap();
403 return (rval);
404 }
405 #endif
406 mod_uninstall_all();
407 } else {
408 rval = modunload(id);
409 }
410 return (rval);
411 }
412
413 static int
modctl_modinfo(modid_t id,struct modinfo * umodi)414 modctl_modinfo(modid_t id, struct modinfo *umodi)
415 {
416 int retval;
417 struct modinfo modi;
418 #if defined(_SYSCALL32_IMPL)
419 int nobase;
420 struct modinfo32 modi32;
421 #endif
422
423 nobase = 0;
424 if (get_udatamodel() == DATAMODEL_NATIVE) {
425 if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
426 return (EFAULT);
427 }
428 #ifdef _SYSCALL32_IMPL
429 else {
430 bzero(&modi, sizeof (modi));
431 if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
432 return (EFAULT);
433 modi.mi_info = modi32.mi_info;
434 modi.mi_id = modi32.mi_id;
435 modi.mi_nextid = modi32.mi_nextid;
436 nobase = modi.mi_info & MI_INFO_NOBASE;
437 }
438 #endif
439 /*
440 * This flag is -only- for the kernels use.
441 */
442 modi.mi_info &= ~MI_INFO_LINKAGE;
443
444 retval = modinfo(id, &modi);
445 if (retval)
446 return (retval);
447
448 if (get_udatamodel() == DATAMODEL_NATIVE) {
449 if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
450 retval = EFAULT;
451 #ifdef _SYSCALL32_IMPL
452 } else {
453 int i;
454
455 if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
456 return (EOVERFLOW);
457
458 modi32.mi_info = modi.mi_info;
459 modi32.mi_state = modi.mi_state;
460 modi32.mi_id = modi.mi_id;
461 modi32.mi_nextid = modi.mi_nextid;
462 modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
463 modi32.mi_size = modi.mi_size;
464 modi32.mi_rev = modi.mi_rev;
465 modi32.mi_loadcnt = modi.mi_loadcnt;
466 bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
467 for (i = 0; i < MODMAXLINK32; i++) {
468 modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
469 bcopy(modi.mi_msinfo[i].msi_linkinfo,
470 modi32.mi_msinfo[i].msi_linkinfo,
471 sizeof (modi32.mi_msinfo[0].msi_linkinfo));
472 }
473 if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
474 retval = EFAULT;
475 #endif
476 }
477
478 return (retval);
479 }
480
481 /*
482 * Return the last major number in the range of permissible major numbers.
483 */
484 /*ARGSUSED*/
485 static int
modctl_modreserve(modid_t id,int * data)486 modctl_modreserve(modid_t id, int *data)
487 {
488 if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
489 return (EFAULT);
490 return (0);
491 }
492
493 /* Add/Remove driver and binding aliases */
494 static int
modctl_update_driver_aliases(int add,int * data)495 modctl_update_driver_aliases(int add, int *data)
496 {
497 struct modconfig mc;
498 int i, n, rv = 0;
499 struct aliases alias;
500 struct aliases *ap;
501 char name[MAXMODCONFNAME];
502 char cname[MAXMODCONFNAME];
503 char *drvname;
504 int resid;
505 struct alias_info {
506 char *alias_name;
507 int alias_resid;
508 } *aliases, *aip;
509
510 aliases = NULL;
511 bzero(&mc, sizeof (struct modconfig));
512 if (get_udatamodel() == DATAMODEL_NATIVE) {
513 if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
514 return (EFAULT);
515 }
516 #ifdef _SYSCALL32_IMPL
517 else {
518 struct modconfig32 modc32;
519 if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
520 return (EFAULT);
521 else {
522 bcopy(modc32.drvname, mc.drvname,
523 sizeof (modc32.drvname));
524 bcopy(modc32.drvclass, mc.drvclass,
525 sizeof (modc32.drvclass));
526 mc.major = modc32.major;
527 mc.flags = modc32.flags;
528 mc.num_aliases = modc32.num_aliases;
529 mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
530 }
531 }
532 #endif
533
534 /*
535 * If the driver is already in the mb_hashtab, and the name given
536 * doesn't match that driver's name, fail. Otherwise, pass, since
537 * we may be adding aliases.
538 */
539 drvname = mod_major_to_name(mc.major);
540 if ((drvname != NULL) && strcmp(drvname, mc.drvname) != 0)
541 return (EINVAL);
542
543 /*
544 * Precede alias removal by unbinding as many devices as possible.
545 */
546 if (add == 0) {
547 (void) i_ddi_unload_drvconf(mc.major);
548 i_ddi_unbind_devs(mc.major);
549 }
550
551 /*
552 * Add/remove each supplied driver alias to/from mb_hashtab
553 */
554 ap = mc.ap;
555 if (mc.num_aliases > 0)
556 aliases = kmem_zalloc(
557 mc.num_aliases * sizeof (struct alias_info), KM_SLEEP);
558 aip = aliases;
559 for (i = 0; i < mc.num_aliases; i++) {
560 bzero(&alias, sizeof (struct aliases));
561 if (get_udatamodel() == DATAMODEL_NATIVE) {
562 if (copyin(ap, &alias, sizeof (struct aliases)) != 0) {
563 rv = EFAULT;
564 goto error;
565 }
566 if (alias.a_len > MAXMODCONFNAME) {
567 rv = EINVAL;
568 goto error;
569 }
570 if (copyin(alias.a_name, name, alias.a_len) != 0) {
571 rv = EFAULT;
572 goto error;
573 }
574 if (name[alias.a_len - 1] != '\0') {
575 rv = EINVAL;
576 goto error;
577 }
578 }
579 #ifdef _SYSCALL32_IMPL
580 else {
581 struct aliases32 al32;
582 bzero(&al32, sizeof (struct aliases32));
583 if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) {
584 rv = EFAULT;
585 goto error;
586 }
587 if (al32.a_len > MAXMODCONFNAME) {
588 rv = EINVAL;
589 goto error;
590 }
591 if (copyin((void *)(uintptr_t)al32.a_name,
592 name, al32.a_len) != 0) {
593 rv = EFAULT;
594 goto error;
595 }
596 if (name[al32.a_len - 1] != '\0') {
597 rv = EINVAL;
598 goto error;
599 }
600 alias.a_next = (void *)(uintptr_t)al32.a_next;
601 }
602 #endif
603 check_esc_sequences(name, cname);
604 aip->alias_name = strdup(cname);
605 ap = alias.a_next;
606 aip++;
607 }
608
609 if (add == 0) {
610 ap = mc.ap;
611 resid = 0;
612 aip = aliases;
613 /* attempt to unbind all devices bound to each alias */
614 for (i = 0; i < mc.num_aliases; i++) {
615 n = i_ddi_unbind_devs_by_alias(
616 mc.major, aip->alias_name);
617 resid += n;
618 aip->alias_resid = n;
619 }
620
621 /*
622 * If some device bound to an alias remains in use,
623 * and override wasn't specified, no change is made to
624 * the binding state and we fail the operation.
625 */
626 if (resid > 0 && ((mc.flags & MOD_UNBIND_OVERRIDE) == 0)) {
627 rv = EBUSY;
628 goto error;
629 }
630
631 /*
632 * No device remains bound of any of the aliases,
633 * or force was requested. Mark each alias as
634 * inactive via delete_mbind so no future binds
635 * to this alias take place and that a new
636 * binding can be established.
637 */
638 aip = aliases;
639 for (i = 0; i < mc.num_aliases; i++) {
640 if (moddebug & MODDEBUG_BINDING)
641 cmn_err(CE_CONT, "Removing binding for %s "
642 "(%d active references)\n",
643 aip->alias_name, aip->alias_resid);
644 delete_mbind(aip->alias_name, mb_hashtab);
645 aip++;
646 }
647 rv = 0;
648 } else {
649 aip = aliases;
650 for (i = 0; i < mc.num_aliases; i++) {
651 if (moddebug & MODDEBUG_BINDING)
652 cmn_err(CE_NOTE, "Adding binding for '%s'\n",
653 aip->alias_name);
654 (void) make_mbind(aip->alias_name,
655 mc.major, NULL, mb_hashtab);
656 aip++;
657 }
658 /*
659 * Try to establish an mbinding for mc.drvname, and add it to
660 * devnames. Add class if any after establishing the major
661 * number.
662 */
663 (void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
664 if ((rv = make_devname(mc.drvname, mc.major,
665 (mc.flags & MOD_ADDMAJBIND_UPDATE) ?
666 DN_DRIVER_INACTIVE : 0)) != 0) {
667 goto error;
668 }
669
670 if (mc.drvclass[0] != '\0')
671 add_class(mc.drvname, mc.drvclass);
672 if ((mc.flags & MOD_ADDMAJBIND_UPDATE) == 0) {
673 (void) i_ddi_load_drvconf(mc.major);
674 }
675 }
676
677 /*
678 * Ensure that all nodes are bound to the most appropriate driver
679 * possible, attempting demotion and rebind when a more appropriate
680 * driver now exists. But not when adding a driver update-only.
681 */
682 if ((add == 0) || ((mc.flags & MOD_ADDMAJBIND_UPDATE) == 0)) {
683 i_ddi_bind_devs();
684 i_ddi_di_cache_invalidate();
685 }
686
687 error:
688 if (mc.num_aliases > 0) {
689 aip = aliases;
690 for (i = 0; i < mc.num_aliases; i++) {
691 if (aip->alias_name != NULL)
692 strfree(aip->alias_name);
693 aip++;
694 }
695 kmem_free(aliases, mc.num_aliases * sizeof (struct alias_info));
696 }
697 return (rv);
698 }
699
700 static int
modctl_add_driver_aliases(int * data)701 modctl_add_driver_aliases(int *data)
702 {
703 return (modctl_update_driver_aliases(1, data));
704 }
705
706 static int
modctl_remove_driver_aliases(int * data)707 modctl_remove_driver_aliases(int *data)
708 {
709 return (modctl_update_driver_aliases(0, data));
710 }
711
712 static int
modctl_rem_major(major_t major)713 modctl_rem_major(major_t major)
714 {
715 struct devnames *dnp;
716
717 if (major >= devcnt)
718 return (EINVAL);
719
720 /* mark devnames as removed */
721 dnp = &devnamesp[major];
722 LOCK_DEV_OPS(&dnp->dn_lock);
723 if (dnp->dn_name == NULL ||
724 (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
725 UNLOCK_DEV_OPS(&dnp->dn_lock);
726 return (EINVAL);
727 }
728 dnp->dn_flags |= DN_DRIVER_REMOVED;
729 pm_driver_removed(major);
730 UNLOCK_DEV_OPS(&dnp->dn_lock);
731
732 (void) i_ddi_unload_drvconf(major);
733 i_ddi_unbind_devs(major);
734 i_ddi_bind_devs();
735 i_ddi_di_cache_invalidate();
736
737 /* purge all the bindings to this driver */
738 purge_mbind(major, mb_hashtab);
739 return (0);
740 }
741
742 static struct vfs *
path_to_vfs(char * name)743 path_to_vfs(char *name)
744 {
745 vnode_t *vp;
746 struct vfs *vfsp;
747
748 if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
749 return (NULL);
750
751 vfsp = vp->v_vfsp;
752 VN_RELE(vp);
753 return (vfsp);
754 }
755
756 static int
new_vfs_in_modpath()757 new_vfs_in_modpath()
758 {
759 static int n_modpath = 0;
760 static char *modpath_copy;
761 static struct pathvfs {
762 char *path;
763 struct vfs *vfsp;
764 } *pathvfs;
765
766 int i, new_vfs = 0;
767 char *tmp, *tmp1;
768 struct vfs *vfsp;
769
770 if (n_modpath != 0) {
771 for (i = 0; i < n_modpath; i++) {
772 vfsp = path_to_vfs(pathvfs[i].path);
773 if (vfsp != pathvfs[i].vfsp) {
774 pathvfs[i].vfsp = vfsp;
775 if (vfsp)
776 new_vfs = 1;
777 }
778 }
779 return (new_vfs);
780 }
781
782 /*
783 * First call, initialize the pathvfs structure
784 */
785 modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
786 tmp = modpath_copy;
787 n_modpath = 1;
788 tmp1 = strchr(tmp, ' ');
789 while (tmp1) {
790 *tmp1 = '\0';
791 n_modpath++;
792 tmp = tmp1 + 1;
793 tmp1 = strchr(tmp, ' ');
794 }
795
796 pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
797 tmp = modpath_copy;
798 for (i = 0; i < n_modpath; i++) {
799 pathvfs[i].path = tmp;
800 vfsp = path_to_vfs(tmp);
801 pathvfs[i].vfsp = vfsp;
802 tmp += strlen(tmp) + 1;
803 }
804 return (1); /* always reread driver.conf the first time */
805 }
806
807 static int
modctl_load_drvconf(major_t major,int flags)808 modctl_load_drvconf(major_t major, int flags)
809 {
810 int ret;
811
812 /*
813 * devfsadm -u - read all new driver.conf files
814 * and bind and configure devices for new drivers.
815 */
816 if (flags & MOD_LOADDRVCONF_RECONF) {
817 (void) i_ddi_load_drvconf(DDI_MAJOR_T_NONE);
818 i_ddi_bind_devs();
819 i_ddi_di_cache_invalidate();
820 return (0);
821 }
822
823 /*
824 * update_drv <drv> - reload driver.conf for the specified driver
825 */
826 if (major != DDI_MAJOR_T_NONE) {
827 ret = i_ddi_load_drvconf(major);
828 if (ret == 0)
829 i_ddi_bind_devs();
830 return (ret);
831 }
832
833 /*
834 * We are invoked to rescan new driver.conf files. It is
835 * only necessary if a new file system was mounted in the
836 * module_path. Because rescanning driver.conf files can
837 * take some time on older platforms (sun4m), the following
838 * code skips unnecessary driver.conf rescans to optimize
839 * boot performance.
840 */
841 if (new_vfs_in_modpath()) {
842 (void) i_ddi_load_drvconf(DDI_MAJOR_T_NONE);
843 /*
844 * If we are still initializing io subsystem,
845 * load drivers with ddi-forceattach property
846 */
847 if (!i_ddi_io_initialized())
848 i_ddi_forceattach_drivers();
849 }
850 return (0);
851 }
852
853 /*
854 * Unload driver.conf file and follow up by attempting
855 * to rebind devices to more appropriate driver.
856 */
857 static int
modctl_unload_drvconf(major_t major)858 modctl_unload_drvconf(major_t major)
859 {
860 int ret;
861
862 if (major >= devcnt)
863 return (EINVAL);
864
865 ret = i_ddi_unload_drvconf(major);
866 if (ret != 0)
867 return (ret);
868 (void) i_ddi_unbind_devs(major);
869 i_ddi_bind_devs();
870
871 return (0);
872 }
873
874 static void
check_esc_sequences(char * str,char * cstr)875 check_esc_sequences(char *str, char *cstr)
876 {
877 int i;
878 size_t len;
879 char *p;
880
881 len = strlen(str);
882 for (i = 0; i < len; i++, str++, cstr++) {
883 if (*str != '\\') {
884 *cstr = *str;
885 } else {
886 p = str + 1;
887 /*
888 * we only handle octal escape sequences for SPACE
889 */
890 if (*p++ == '0' && *p++ == '4' && *p == '0') {
891 *cstr = ' ';
892 str += 3;
893 } else {
894 *cstr = *str;
895 }
896 }
897 }
898 *cstr = 0;
899 }
900
901 static int
modctl_getmodpathlen(int * data)902 modctl_getmodpathlen(int *data)
903 {
904 int len;
905 len = strlen(default_path);
906 if (copyout(&len, data, sizeof (len)) != 0)
907 return (EFAULT);
908 return (0);
909 }
910
911 static int
modctl_getmodpath(char * data)912 modctl_getmodpath(char *data)
913 {
914 if (copyout(default_path, data, strlen(default_path) + 1) != 0)
915 return (EFAULT);
916 return (0);
917 }
918
919 static int
modctl_read_sysbinding_file(void)920 modctl_read_sysbinding_file(void)
921 {
922 (void) read_binding_file(sysbind, sb_hashtab, make_mbind);
923 return (0);
924 }
925
926 static int
modctl_getmaj(char * uname,uint_t ulen,int * umajorp)927 modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
928 {
929 char name[256];
930 int retval;
931 major_t major;
932
933 if (ulen == 0)
934 return (EINVAL);
935 if ((retval = copyinstr(uname, name,
936 (ulen < 256) ? ulen : 256, 0)) != 0)
937 return (retval);
938 if ((major = mod_name_to_major(name)) == DDI_MAJOR_T_NONE)
939 return (ENODEV);
940 if (copyout(&major, umajorp, sizeof (major_t)) != 0)
941 return (EFAULT);
942 return (0);
943 }
944
945 static char **
convert_constraint_string(char * constraints,size_t len)946 convert_constraint_string(char *constraints, size_t len)
947 {
948 int i;
949 int n;
950 char *p;
951 char **array;
952
953 ASSERT(constraints != NULL);
954 ASSERT(len > 0);
955
956 for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1)
957 ;
958
959 n = i;
960
961 if (n == 0) {
962 kmem_free(constraints, len);
963 return (NULL);
964 }
965
966 array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP);
967
968 for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) {
969 array[i] = i_ddi_strdup(p, KM_SLEEP);
970 }
971 array[n] = NULL;
972
973 kmem_free(constraints, len);
974
975 return (array);
976 }
977 /*ARGSUSED*/
978 static int
modctl_retire(char * path,char * uconstraints,size_t ulen)979 modctl_retire(char *path, char *uconstraints, size_t ulen)
980 {
981 char *pathbuf;
982 char *devpath;
983 size_t pathsz;
984 int retval;
985 char *constraints;
986 char **cons_array;
987
988 if (path == NULL)
989 return (EINVAL);
990
991 if ((uconstraints == NULL) ^ (ulen == 0))
992 return (EINVAL);
993
994 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
995 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
996 if (retval != 0) {
997 kmem_free(pathbuf, MAXPATHLEN);
998 return (retval);
999 }
1000 devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1001 kmem_free(pathbuf, MAXPATHLEN);
1002
1003 /*
1004 * First check if the device is already retired.
1005 * If it is, then persist the retire anyway, just in case the retire
1006 * store has got out of sync with the boot archive.
1007 */
1008 if (e_ddi_device_retired(devpath)) {
1009 cmn_err(CE_NOTE, "Device: already retired: %s", devpath);
1010 (void) e_ddi_retire_persist(devpath);
1011 kmem_free(devpath, strlen(devpath) + 1);
1012 return (0);
1013 }
1014
1015 cons_array = NULL;
1016 if (uconstraints) {
1017 constraints = kmem_alloc(ulen, KM_SLEEP);
1018 if (copyin(uconstraints, constraints, ulen)) {
1019 kmem_free(constraints, ulen);
1020 kmem_free(devpath, strlen(devpath) + 1);
1021 return (EFAULT);
1022 }
1023 cons_array = convert_constraint_string(constraints, ulen);
1024 }
1025
1026 /*
1027 * Try to retire the device first. The following
1028 * routine will return an error only if the device
1029 * is not retireable i.e. retire constraints forbid
1030 * a retire. A return of success from this routine
1031 * indicates that device is retireable.
1032 */
1033 retval = e_ddi_retire_device(devpath, cons_array);
1034 if (retval != DDI_SUCCESS) {
1035 cmn_err(CE_WARN, "constraints forbid retire: %s", devpath);
1036 kmem_free(devpath, strlen(devpath) + 1);
1037 return (ENOTSUP);
1038 }
1039
1040 /*
1041 * Ok, the retire succeeded. Persist the retire.
1042 * If retiring a nexus, we need to only persist the
1043 * nexus retire. Any children of a retired nexus
1044 * are automatically covered by the retire store
1045 * code.
1046 */
1047 retval = e_ddi_retire_persist(devpath);
1048 if (retval != 0) {
1049 cmn_err(CE_WARN, "Failed to persist device retire: error %d: "
1050 "%s", retval, devpath);
1051 kmem_free(devpath, strlen(devpath) + 1);
1052 return (retval);
1053 }
1054 if (moddebug & MODDEBUG_RETIRE)
1055 cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath);
1056
1057 kmem_free(devpath, strlen(devpath) + 1);
1058 return (0);
1059 }
1060
1061 static int
modctl_is_retired(char * path,int * statep)1062 modctl_is_retired(char *path, int *statep)
1063 {
1064 char *pathbuf;
1065 char *devpath;
1066 size_t pathsz;
1067 int error;
1068 int status;
1069
1070 if (path == NULL || statep == NULL)
1071 return (EINVAL);
1072
1073 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1074 error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1075 if (error != 0) {
1076 kmem_free(pathbuf, MAXPATHLEN);
1077 return (error);
1078 }
1079 devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1080 kmem_free(pathbuf, MAXPATHLEN);
1081
1082 if (e_ddi_device_retired(devpath))
1083 status = 1;
1084 else
1085 status = 0;
1086 kmem_free(devpath, strlen(devpath) + 1);
1087
1088 return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0);
1089 }
1090
1091 static int
modctl_unretire(char * path)1092 modctl_unretire(char *path)
1093 {
1094 char *pathbuf;
1095 char *devpath;
1096 size_t pathsz;
1097 int retired;
1098 int retval;
1099
1100 if (path == NULL)
1101 return (EINVAL);
1102
1103 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1104 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1105 if (retval != 0) {
1106 kmem_free(pathbuf, MAXPATHLEN);
1107 return (retval);
1108 }
1109 devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1110 kmem_free(pathbuf, MAXPATHLEN);
1111
1112 /*
1113 * We check if a device is retired (first) before
1114 * unpersisting the retire, because we use the
1115 * retire store to determine if a device is retired.
1116 * If we unpersist first, the device will always appear
1117 * to be unretired. For the rationale behind unpersisting
1118 * a device that is not retired, see the next comment.
1119 */
1120 retired = e_ddi_device_retired(devpath);
1121
1122 /*
1123 * We call unpersist unconditionally because the lookup
1124 * for retired devices (e_ddi_device_retired()), skips "bypassed"
1125 * devices. We still want to be able remove "bypassed" entries
1126 * from the persistent store, so we unpersist unconditionally
1127 * i.e. whether or not the entry is found on a lookup.
1128 *
1129 * e_ddi_retire_unpersist() returns 1 if it found and cleared
1130 * an entry from the retire store or 0 otherwise.
1131 */
1132 if (e_ddi_retire_unpersist(devpath))
1133 if (moddebug & MODDEBUG_RETIRE) {
1134 cmn_err(CE_NOTE, "Unpersisted retire of device: %s",
1135 devpath);
1136 }
1137
1138 /*
1139 * Check if the device is already unretired. If so,
1140 * the unretire becomes a NOP
1141 */
1142 if (!retired) {
1143 cmn_err(CE_NOTE, "Not retired: %s", devpath);
1144 kmem_free(devpath, strlen(devpath) + 1);
1145 return (0);
1146 }
1147
1148 retval = e_ddi_unretire_device(devpath);
1149 if (retval != 0) {
1150 cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n",
1151 retval, devpath);
1152 }
1153
1154 kmem_free(devpath, strlen(devpath) + 1);
1155
1156 return (retval);
1157 }
1158
1159 static int
modctl_getname(char * uname,uint_t ulen,int * umajorp)1160 modctl_getname(char *uname, uint_t ulen, int *umajorp)
1161 {
1162 char *name;
1163 major_t major;
1164
1165 if (copyin(umajorp, &major, sizeof (major)) != 0)
1166 return (EFAULT);
1167 if ((name = mod_major_to_name(major)) == NULL)
1168 return (ENODEV);
1169 if ((strlen(name) + 1) > ulen)
1170 return (ENOSPC);
1171 return (copyoutstr(name, uname, ulen, NULL));
1172 }
1173
1174 static int
modctl_devt2instance(dev_t dev,int * uinstancep)1175 modctl_devt2instance(dev_t dev, int *uinstancep)
1176 {
1177 int instance;
1178
1179 if ((instance = dev_to_instance(dev)) == -1)
1180 return (EINVAL);
1181
1182 return (copyout(&instance, uinstancep, sizeof (int)));
1183 }
1184
1185 /*
1186 * Return the sizeof of the device id.
1187 */
1188 static int
modctl_sizeof_devid(dev_t dev,uint_t * len)1189 modctl_sizeof_devid(dev_t dev, uint_t *len)
1190 {
1191 uint_t sz;
1192 ddi_devid_t devid;
1193
1194 /* get device id */
1195 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1196 return (EINVAL);
1197
1198 sz = ddi_devid_sizeof(devid);
1199 ddi_devid_free(devid);
1200
1201 /* copyout device id size */
1202 if (copyout(&sz, len, sizeof (sz)) != 0)
1203 return (EFAULT);
1204
1205 return (0);
1206 }
1207
1208 /*
1209 * Return a copy of the device id.
1210 */
1211 static int
modctl_get_devid(dev_t dev,uint_t len,ddi_devid_t udevid)1212 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
1213 {
1214 uint_t sz;
1215 ddi_devid_t devid;
1216 int err = 0;
1217
1218 /* get device id */
1219 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1220 return (EINVAL);
1221
1222 sz = ddi_devid_sizeof(devid);
1223
1224 /* Error if device id is larger than space allocated */
1225 if (sz > len) {
1226 ddi_devid_free(devid);
1227 return (ENOSPC);
1228 }
1229
1230 /* copy out device id */
1231 if (copyout(devid, udevid, sz) != 0)
1232 err = EFAULT;
1233 ddi_devid_free(devid);
1234 return (err);
1235 }
1236
1237 /*
1238 * return the /devices paths associated with the specified devid and
1239 * minor name.
1240 */
1241 /*ARGSUSED*/
1242 static int
modctl_devid2paths(ddi_devid_t udevid,char * uminor_name,uint_t flag,size_t * ulensp,char * upaths)1243 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
1244 size_t *ulensp, char *upaths)
1245 {
1246 ddi_devid_t devid = NULL;
1247 int devid_len;
1248 char *minor_name = NULL;
1249 dev_info_t *dip = NULL;
1250 struct ddi_minor_data *dmdp;
1251 char *path = NULL;
1252 int ulens;
1253 int lens;
1254 int len;
1255 dev_t *devlist = NULL;
1256 int ndevs;
1257 int i;
1258 int ret = 0;
1259
1260 /*
1261 * If upaths is NULL then we are only computing the amount of space
1262 * needed to hold the paths and returning the value in *ulensp. If we
1263 * are copying out paths then we get the amount of space allocated by
1264 * the caller. If the actual space needed for paths is larger, or
1265 * things are changing out from under us, then we return EAGAIN.
1266 */
1267 if (upaths) {
1268 if (ulensp == NULL)
1269 return (EINVAL);
1270 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1271 return (EFAULT);
1272 }
1273
1274 /*
1275 * copyin enough of the devid to determine the length then
1276 * reallocate and copy in the entire devid.
1277 */
1278 devid_len = ddi_devid_sizeof(NULL);
1279 devid = kmem_alloc(devid_len, KM_SLEEP);
1280 if (copyin(udevid, devid, devid_len)) {
1281 ret = EFAULT;
1282 goto out;
1283 }
1284 len = devid_len;
1285 devid_len = ddi_devid_sizeof(devid);
1286 kmem_free(devid, len);
1287 devid = kmem_alloc(devid_len, KM_SLEEP);
1288 if (copyin(udevid, devid, devid_len)) {
1289 ret = EFAULT;
1290 goto out;
1291 }
1292
1293 /* copyin the minor name if specified. */
1294 minor_name = uminor_name;
1295 if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1296 (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1297 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
1298 minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1299 if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
1300 ret = EFAULT;
1301 goto out;
1302 }
1303 }
1304
1305 /*
1306 * Use existing function to resolve the devid into a devlist.
1307 *
1308 * NOTE: there is a loss of spectype information in the current
1309 * ddi_lyr_devid_to_devlist implementation. We work around this by not
1310 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
1311 * node forms in the loop processing the devlist below. It would be
1312 * best if at some point the use of this interface here was replaced
1313 * with a path oriented call.
1314 */
1315 if (ddi_lyr_devid_to_devlist(devid,
1316 (minor_name == DEVID_MINOR_NAME_ALL) ?
1317 DEVID_MINOR_NAME_ALL_CHR : minor_name,
1318 &ndevs, &devlist) != DDI_SUCCESS) {
1319 ret = EINVAL;
1320 goto out;
1321 }
1322
1323 /*
1324 * loop over the devlist, converting each devt to a path and doing
1325 * a copyout of the path and computation of the amount of space
1326 * needed to hold all the paths
1327 */
1328 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1329 for (i = 0, lens = 0; i < ndevs; i++) {
1330
1331 /* find the dip associated with the dev_t */
1332 if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
1333 continue;
1334
1335 /* loop over all the minor nodes, skipping ones we don't want */
1336 ndi_devi_enter(dip);
1337 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
1338 if ((dmdp->ddm_dev != devlist[i]) ||
1339 (dmdp->type != DDM_MINOR))
1340 continue;
1341
1342 if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1343 (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1344 (minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
1345 strcmp(minor_name, dmdp->ddm_name))
1346 continue;
1347 else {
1348 if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
1349 (dmdp->ddm_spec_type != S_IFCHR))
1350 continue;
1351 if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
1352 (dmdp->ddm_spec_type != S_IFBLK))
1353 continue;
1354 }
1355
1356 (void) ddi_pathname_minor(dmdp, path);
1357 len = strlen(path) + 1;
1358 *(path + len) = '\0'; /* set double termination */
1359 lens += len;
1360
1361 /* copyout the path with double terminations */
1362 if (upaths) {
1363 if (lens > ulens) {
1364 ret = EAGAIN;
1365 goto out;
1366 }
1367 if (copyout(path, upaths, len + 1)) {
1368 ret = EFAULT;
1369 goto out;
1370 }
1371 upaths += len;
1372 }
1373 }
1374 ndi_devi_exit(dip);
1375 ddi_release_devi(dip);
1376 dip = NULL;
1377 }
1378 lens++; /* add one for double termination */
1379
1380 /* copy out the amount of space needed to hold the paths */
1381 if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
1382 ret = EFAULT;
1383 goto out;
1384 }
1385 ret = 0;
1386
1387 out: if (dip) {
1388 ndi_devi_exit(dip);
1389 ddi_release_devi(dip);
1390 }
1391 if (path)
1392 kmem_free(path, MAXPATHLEN);
1393 if (devlist)
1394 ddi_lyr_free_devlist(devlist, ndevs);
1395 if (minor_name &&
1396 (minor_name != DEVID_MINOR_NAME_ALL) &&
1397 (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1398 (minor_name != DEVID_MINOR_NAME_ALL_BLK))
1399 kmem_free(minor_name, MAXPATHLEN);
1400 if (devid)
1401 kmem_free(devid, devid_len);
1402 return (ret);
1403 }
1404
1405 /*
1406 * Return the size of the minor name.
1407 */
1408 static int
modctl_sizeof_minorname(dev_t dev,int spectype,uint_t * len)1409 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
1410 {
1411 uint_t sz;
1412 char *name;
1413
1414 /* get the minor name */
1415 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1416 return (EINVAL);
1417
1418 sz = strlen(name) + 1;
1419 kmem_free(name, sz);
1420
1421 /* copy out the size of the minor name */
1422 if (copyout(&sz, len, sizeof (sz)) != 0)
1423 return (EFAULT);
1424
1425 return (0);
1426 }
1427
1428 /*
1429 * Return the minor name.
1430 */
1431 static int
modctl_get_minorname(dev_t dev,int spectype,uint_t len,char * uname)1432 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
1433 {
1434 uint_t sz;
1435 char *name;
1436 int err = 0;
1437
1438 /* get the minor name */
1439 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1440 return (EINVAL);
1441
1442 sz = strlen(name) + 1;
1443
1444 /* Error if the minor name is larger than the space allocated */
1445 if (sz > len) {
1446 kmem_free(name, sz);
1447 return (ENOSPC);
1448 }
1449
1450 /* copy out the minor name */
1451 if (copyout(name, uname, sz) != 0)
1452 err = EFAULT;
1453 kmem_free(name, sz);
1454 return (err);
1455 }
1456
1457 /*
1458 * Return the size of the (dev_t,spectype) devfspath name.
1459 */
1460 static int
modctl_devfspath_len(dev_t dev,int spectype,uint_t * len)1461 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
1462 {
1463 uint_t sz;
1464 char *name;
1465
1466 /* get the path name */
1467 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1468 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1469 kmem_free(name, MAXPATHLEN);
1470 return (EINVAL);
1471 }
1472
1473 sz = strlen(name) + 1;
1474 kmem_free(name, MAXPATHLEN);
1475
1476 /* copy out the size of the path name */
1477 if (copyout(&sz, len, sizeof (sz)) != 0)
1478 return (EFAULT);
1479
1480 return (0);
1481 }
1482
1483 /*
1484 * Return the (dev_t,spectype) devfspath name.
1485 */
1486 static int
modctl_devfspath(dev_t dev,int spectype,uint_t len,char * uname)1487 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
1488 {
1489 uint_t sz;
1490 char *name;
1491 int err = 0;
1492
1493 /* get the path name */
1494 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1495 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1496 kmem_free(name, MAXPATHLEN);
1497 return (EINVAL);
1498 }
1499
1500 sz = strlen(name) + 1;
1501
1502 /* Error if the path name is larger than the space allocated */
1503 if (sz > len) {
1504 kmem_free(name, MAXPATHLEN);
1505 return (ENOSPC);
1506 }
1507
1508 /* copy out the path name */
1509 if (copyout(name, uname, sz) != 0)
1510 err = EFAULT;
1511 kmem_free(name, MAXPATHLEN);
1512 return (err);
1513 }
1514
1515 /*
1516 * Return the size of the (major,instance) devfspath name.
1517 */
1518 static int
modctl_devfspath_mi_len(major_t major,int instance,uint_t * len)1519 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len)
1520 {
1521 uint_t sz;
1522 char *name;
1523
1524 /* get the path name */
1525 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1526 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1527 kmem_free(name, MAXPATHLEN);
1528 return (EINVAL);
1529 }
1530
1531 sz = strlen(name) + 1;
1532 kmem_free(name, MAXPATHLEN);
1533
1534 /* copy out the size of the path name */
1535 if (copyout(&sz, len, sizeof (sz)) != 0)
1536 return (EFAULT);
1537
1538 return (0);
1539 }
1540
1541 /*
1542 * Return the (major_instance) devfspath name.
1543 * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to
1544 * return a path - it uses the instance tree.
1545 */
1546 static int
modctl_devfspath_mi(major_t major,int instance,uint_t len,char * uname)1547 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname)
1548 {
1549 uint_t sz;
1550 char *name;
1551 int err = 0;
1552
1553 /* get the path name */
1554 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1555 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1556 kmem_free(name, MAXPATHLEN);
1557 return (EINVAL);
1558 }
1559
1560 sz = strlen(name) + 1;
1561
1562 /* Error if the path name is larger than the space allocated */
1563 if (sz > len) {
1564 kmem_free(name, MAXPATHLEN);
1565 return (ENOSPC);
1566 }
1567
1568 /* copy out the path name */
1569 if (copyout(name, uname, sz) != 0)
1570 err = EFAULT;
1571 kmem_free(name, MAXPATHLEN);
1572 return (err);
1573 }
1574
1575 static int
modctl_get_fbname(char * path)1576 modctl_get_fbname(char *path)
1577 {
1578 extern dev_t fbdev;
1579 char *pathname = NULL;
1580 int rval = 0;
1581
1582 /* make sure fbdev is set before we plunge in */
1583 if (fbdev == NODEV)
1584 return (ENODEV);
1585
1586 pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1587 if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
1588 pathname)) == DDI_SUCCESS) {
1589 if (copyout(pathname, path, strlen(pathname)+1) != 0) {
1590 rval = EFAULT;
1591 }
1592 }
1593 kmem_free(pathname, MAXPATHLEN);
1594 return (rval);
1595 }
1596
1597 /*
1598 * modctl_reread_dacf()
1599 * Reread the dacf rules database from the named binding file.
1600 * If NULL is specified, pass along the NULL, it means 'use the default'.
1601 */
1602 static int
modctl_reread_dacf(char * path)1603 modctl_reread_dacf(char *path)
1604 {
1605 int rval = 0;
1606 char *filename, *filenamep;
1607
1608 filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1609
1610 if (path == NULL) {
1611 filenamep = NULL;
1612 } else {
1613 if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
1614 rval = EFAULT;
1615 goto out;
1616 }
1617 filenamep = filename;
1618 filenamep[MAXPATHLEN - 1] = '\0';
1619 }
1620
1621 rval = read_dacf_binding_file(filenamep);
1622 out:
1623 kmem_free(filename, MAXPATHLEN);
1624 return (rval);
1625 }
1626
1627 /*ARGSUSED*/
1628 static int
modctl_modevents(int subcmd,uintptr_t a2,uintptr_t a3,uintptr_t a4,uint_t flag)1629 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1630 uint_t flag)
1631 {
1632 int error = 0;
1633 char *filenamep;
1634
1635 switch (subcmd) {
1636
1637 case MODEVENTS_FLUSH:
1638 /* flush all currently queued events */
1639 log_sysevent_flushq(subcmd, flag);
1640 break;
1641
1642 case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
1643 /*
1644 * bind door_upcall to filename
1645 * this should only be done once per invocation
1646 * of the event daemon.
1647 */
1648
1649 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
1650
1651 if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
1652 error = EFAULT;
1653 } else {
1654 error = log_sysevent_filename(filenamep);
1655 }
1656 kmem_free(filenamep, MOD_MAXPATH);
1657 break;
1658
1659 case MODEVENTS_GETDATA:
1660 error = log_sysevent_copyout_data((sysevent_id_t *)a2,
1661 (size_t)a3, (caddr_t)a4);
1662 break;
1663
1664 case MODEVENTS_FREEDATA:
1665 error = log_sysevent_free_data((sysevent_id_t *)a2);
1666 break;
1667 case MODEVENTS_POST_EVENT:
1668 error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
1669 (sysevent_id_t *)a4);
1670 break;
1671 case MODEVENTS_REGISTER_EVENT:
1672 error = log_sysevent_register((char *)a2, (char *)a3,
1673 (se_pubsub_t *)a4);
1674 break;
1675 default:
1676 error = EINVAL;
1677 }
1678
1679 return (error);
1680 }
1681
1682 static void
free_mperm(mperm_t * mp)1683 free_mperm(mperm_t *mp)
1684 {
1685 int len;
1686
1687 if (mp->mp_minorname) {
1688 len = strlen(mp->mp_minorname) + 1;
1689 kmem_free(mp->mp_minorname, len);
1690 }
1691 kmem_free(mp, sizeof (mperm_t));
1692 }
1693
1694 #define MP_NO_DRV_ERR \
1695 "/etc/minor_perm: no driver for %s\n"
1696
1697 #define MP_EMPTY_MINOR \
1698 "/etc/minor_perm: empty minor name for driver %s\n"
1699
1700 #define MP_NO_MINOR \
1701 "/etc/minor_perm: no minor matching %s for driver %s\n"
1702
1703 /*
1704 * Remove mperm entry with matching minorname
1705 */
1706 static void
rem_minorperm(major_t major,char * drvname,mperm_t * mp,int is_clone)1707 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1708 {
1709 mperm_t **mp_head;
1710 mperm_t *freemp = NULL;
1711 struct devnames *dnp = &devnamesp[major];
1712 mperm_t **wildmp;
1713
1714 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1715
1716 LOCK_DEV_OPS(&dnp->dn_lock);
1717 if (strcmp(mp->mp_minorname, "*") == 0) {
1718 wildmp = ((is_clone == 0) ?
1719 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1720 if (*wildmp)
1721 freemp = *wildmp;
1722 *wildmp = NULL;
1723 } else {
1724 mp_head = &dnp->dn_mperm;
1725 while (*mp_head) {
1726 if (strcmp((*mp_head)->mp_minorname,
1727 mp->mp_minorname) != 0) {
1728 mp_head = &(*mp_head)->mp_next;
1729 continue;
1730 }
1731 /* remove the entry */
1732 freemp = *mp_head;
1733 *mp_head = freemp->mp_next;
1734 break;
1735 }
1736 }
1737 if (freemp) {
1738 if (moddebug & MODDEBUG_MINORPERM) {
1739 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1740 drvname, freemp->mp_minorname,
1741 freemp->mp_mode & 0777,
1742 freemp->mp_uid, freemp->mp_gid);
1743 }
1744 free_mperm(freemp);
1745 } else {
1746 if (moddebug & MODDEBUG_MINORPERM) {
1747 cmn_err(CE_CONT, MP_NO_MINOR,
1748 drvname, mp->mp_minorname);
1749 }
1750 }
1751
1752 UNLOCK_DEV_OPS(&dnp->dn_lock);
1753 }
1754
1755 /*
1756 * Add minor perm entry
1757 */
1758 static void
add_minorperm(major_t major,char * drvname,mperm_t * mp,int is_clone)1759 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1760 {
1761 mperm_t **mp_head;
1762 mperm_t *freemp = NULL;
1763 struct devnames *dnp = &devnamesp[major];
1764 mperm_t **wildmp;
1765
1766 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1767
1768 /*
1769 * Note that update_drv replace semantics require
1770 * replacing matching entries with the new permissions.
1771 */
1772 LOCK_DEV_OPS(&dnp->dn_lock);
1773 if (strcmp(mp->mp_minorname, "*") == 0) {
1774 wildmp = ((is_clone == 0) ?
1775 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1776 if (*wildmp)
1777 freemp = *wildmp;
1778 *wildmp = mp;
1779 } else {
1780 mperm_t *p, *v = NULL;
1781 for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
1782 if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
1783 if (v == NULL)
1784 dnp->dn_mperm = mp;
1785 else
1786 v->mp_next = mp;
1787 mp->mp_next = p->mp_next;
1788 freemp = p;
1789 goto replaced;
1790 }
1791 }
1792 if (p == NULL) {
1793 mp_head = &dnp->dn_mperm;
1794 if (*mp_head == NULL) {
1795 *mp_head = mp;
1796 } else {
1797 mp->mp_next = *mp_head;
1798 *mp_head = mp;
1799 }
1800 }
1801 }
1802 replaced:
1803 if (freemp) {
1804 if (moddebug & MODDEBUG_MINORPERM) {
1805 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1806 drvname, freemp->mp_minorname,
1807 freemp->mp_mode & 0777,
1808 freemp->mp_uid, freemp->mp_gid);
1809 }
1810 free_mperm(freemp);
1811 }
1812 if (moddebug & MODDEBUG_MINORPERM) {
1813 cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
1814 drvname, mp->mp_minorname, mp->mp_mode & 0777,
1815 mp->mp_uid, mp->mp_gid);
1816 }
1817 UNLOCK_DEV_OPS(&dnp->dn_lock);
1818 }
1819
1820
1821 static int
process_minorperm(int cmd,nvlist_t * nvl)1822 process_minorperm(int cmd, nvlist_t *nvl)
1823 {
1824 char *minor;
1825 major_t major;
1826 mperm_t *mp;
1827 nvpair_t *nvp;
1828 char *name;
1829 int is_clone;
1830 major_t minmaj;
1831
1832 ASSERT(cmd == MODLOADMINORPERM ||
1833 cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
1834
1835 nvp = NULL;
1836 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1837 name = nvpair_name(nvp);
1838
1839 is_clone = 0;
1840 (void) nvpair_value_string(nvp, &minor);
1841 major = ddi_name_to_major(name);
1842 if (major != DDI_MAJOR_T_NONE) {
1843 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
1844 if (minor == NULL || strlen(minor) == 0) {
1845 if (moddebug & MODDEBUG_MINORPERM) {
1846 cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
1847 }
1848 minor = "*";
1849 }
1850
1851 /*
1852 * The minor name of a node using the clone
1853 * driver must be the driver name. To avoid
1854 * multiple searches, we map entries in the form
1855 * clone:<driver> to <driver>:*. This also allows us
1856 * to filter out some of the litter in /etc/minor_perm.
1857 * Minor perm alias entries where the name is not
1858 * the driver kept on the clone list itself.
1859 * This all seems very fragile as a driver could
1860 * be introduced with an existing alias name.
1861 */
1862 if (strcmp(name, "clone") == 0) {
1863 minmaj = ddi_name_to_major(minor);
1864 if (minmaj != DDI_MAJOR_T_NONE) {
1865 if (moddebug & MODDEBUG_MINORPERM) {
1866 cmn_err(CE_CONT,
1867 "mapping %s:%s to %s:*\n",
1868 name, minor, minor);
1869 }
1870 major = minmaj;
1871 name = minor;
1872 minor = "*";
1873 is_clone = 1;
1874 }
1875 }
1876
1877 if (mp) {
1878 mp->mp_minorname =
1879 i_ddi_strdup(minor, KM_SLEEP);
1880 }
1881 } else {
1882 mp = NULL;
1883 if (moddebug & MODDEBUG_MINORPERM) {
1884 cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
1885 }
1886 }
1887
1888 /* mode */
1889 nvp = nvlist_next_nvpair(nvl, nvp);
1890 ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
1891 if (mp)
1892 (void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
1893 /* uid */
1894 nvp = nvlist_next_nvpair(nvl, nvp);
1895 ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
1896 if (mp)
1897 (void) nvpair_value_uint32(nvp, &mp->mp_uid);
1898 /* gid */
1899 nvp = nvlist_next_nvpair(nvl, nvp);
1900 ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
1901 if (mp) {
1902 (void) nvpair_value_uint32(nvp, &mp->mp_gid);
1903
1904 if (cmd == MODREMMINORPERM) {
1905 rem_minorperm(major, name, mp, is_clone);
1906 free_mperm(mp);
1907 } else {
1908 add_minorperm(major, name, mp, is_clone);
1909 }
1910 }
1911 }
1912
1913 if (cmd == MODLOADMINORPERM)
1914 minorperm_loaded = 1;
1915
1916 /*
1917 * Reset permissions of cached dv_nodes
1918 */
1919 (void) devfs_reset_perm(DV_RESET_PERM);
1920
1921 return (0);
1922 }
1923
1924 static int
modctl_minorperm(int cmd,char * usrbuf,size_t buflen)1925 modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
1926 {
1927 int error;
1928 nvlist_t *nvl;
1929 char *buf = kmem_alloc(buflen, KM_SLEEP);
1930
1931 if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
1932 kmem_free(buf, buflen);
1933 return (error);
1934 }
1935
1936 error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
1937 kmem_free(buf, buflen);
1938 if (error)
1939 return (error);
1940
1941 error = process_minorperm(cmd, nvl);
1942 nvlist_free(nvl);
1943 return (error);
1944 }
1945
1946 struct walk_args {
1947 char *wa_drvname;
1948 list_t wa_pathlist;
1949 };
1950
1951 struct path_elem {
1952 char *pe_dir;
1953 char *pe_nodename;
1954 list_node_t pe_node;
1955 int pe_dirlen;
1956 };
1957
1958 /*ARGSUSED*/
1959 static int
modctl_inst_walker(const char * path,in_node_t * np,in_drv_t * dp,void * arg)1960 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
1961 {
1962 struct walk_args *wargs = (struct walk_args *)arg;
1963 struct path_elem *pe;
1964 char *nodename;
1965
1966 /*
1967 * Search may be restricted to a single driver in the case of rem_drv
1968 */
1969 if (wargs->wa_drvname &&
1970 strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
1971 return (INST_WALK_CONTINUE);
1972
1973 pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
1974 pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
1975 pe->pe_dirlen = strlen(pe->pe_dir) + 1;
1976 ASSERT(strrchr(pe->pe_dir, '/') != NULL);
1977 nodename = strrchr(pe->pe_dir, '/');
1978 *nodename++ = 0;
1979 pe->pe_nodename = nodename;
1980 list_insert_tail(&wargs->wa_pathlist, pe);
1981
1982 return (INST_WALK_CONTINUE);
1983 }
1984
1985 /*
1986 * /devices attribute nodes clean-up optionally performed
1987 * when removing a driver (rem_drv -C).
1988 *
1989 * Removing attribute nodes allows a machine to be reprovisioned
1990 * without the side-effect of inadvertently picking up stale
1991 * device node ownership or permissions.
1992 *
1993 * Preserving attributes (not performing cleanup) allows devices
1994 * attribute changes to be preserved across upgrades, as
1995 * upgrade rather heavy-handedly does a rem_drv/add_drv cycle.
1996 */
1997 static int
modctl_remdrv_cleanup(const char * u_drvname)1998 modctl_remdrv_cleanup(const char *u_drvname)
1999 {
2000 struct walk_args *wargs;
2001 struct path_elem *pe;
2002 char *drvname;
2003 int err, rval = 0;
2004
2005 drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
2006 if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
2007 kmem_free(drvname, MAXMODCONFNAME);
2008 return (err);
2009 }
2010
2011 /*
2012 * First go through the instance database. For each
2013 * instance of a device bound to the driver being
2014 * removed, remove any underlying devfs attribute nodes.
2015 *
2016 * This is a two-step process. First we go through
2017 * the instance data itself, constructing a list of
2018 * the nodes discovered. The second step is then
2019 * to find and remove any devfs attribute nodes
2020 * for the instances discovered in the first step.
2021 * The two-step process avoids any difficulties
2022 * which could arise by holding the instance data
2023 * lock with simultaneous devfs operations.
2024 */
2025 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2026
2027 wargs->wa_drvname = drvname;
2028 list_create(&wargs->wa_pathlist,
2029 sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2030
2031 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2032
2033 for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2034 pe = list_next(&wargs->wa_pathlist, pe)) {
2035 err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2036 (const char *)pe->pe_nodename);
2037 if (rval == 0)
2038 rval = err;
2039 }
2040
2041 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2042 list_remove(&wargs->wa_pathlist, pe);
2043 kmem_free(pe->pe_dir, pe->pe_dirlen);
2044 kmem_free(pe, sizeof (*pe));
2045 }
2046 kmem_free(wargs, sizeof (*wargs));
2047
2048 /*
2049 * Pseudo nodes aren't recorded in the instance database
2050 * so any such nodes need to be handled separately.
2051 */
2052 err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
2053 if (rval == 0)
2054 rval = err;
2055
2056 kmem_free(drvname, MAXMODCONFNAME);
2057 return (rval);
2058 }
2059
2060 /*
2061 * Perform a cleanup of non-existent /devices attribute nodes,
2062 * similar to rem_drv -C, but for all drivers/devices.
2063 * This is also optional, performed as part of devfsadm -C.
2064 */
2065 void
dev_devices_cleanup()2066 dev_devices_cleanup()
2067 {
2068 struct walk_args *wargs;
2069 struct path_elem *pe;
2070 dev_info_t *devi;
2071 char *path;
2072 int err;
2073
2074 /*
2075 * It's expected that all drivers have been loaded and
2076 * module unloading disabled while performing cleanup.
2077 */
2078 ASSERT(modunload_disable_count > 0);
2079
2080 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2081 wargs->wa_drvname = NULL;
2082 list_create(&wargs->wa_pathlist,
2083 sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2084
2085 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2086
2087 path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2088
2089 for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2090 pe = list_next(&wargs->wa_pathlist, pe)) {
2091 (void) snprintf(path, MAXPATHLEN, "%s/%s",
2092 pe->pe_dir, pe->pe_nodename);
2093 devi = e_ddi_hold_devi_by_path(path, 0);
2094 if (devi != NULL) {
2095 ddi_release_devi(devi);
2096 } else {
2097 err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2098 (const char *)pe->pe_nodename);
2099 if (err) {
2100 cmn_err(CE_CONT,
2101 "devfs: %s: clean-up error %d\n",
2102 path, err);
2103 }
2104 }
2105 }
2106
2107 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2108 list_remove(&wargs->wa_pathlist, pe);
2109 kmem_free(pe->pe_dir, pe->pe_dirlen);
2110 kmem_free(pe, sizeof (*pe));
2111 }
2112 kmem_free(wargs, sizeof (*wargs));
2113 kmem_free(path, MAXPATHLEN);
2114 }
2115
2116 static int
modctl_allocpriv(const char * name)2117 modctl_allocpriv(const char *name)
2118 {
2119 char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
2120 int error;
2121
2122 if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
2123 kmem_free(pstr, PRIVNAME_MAX);
2124 return (error);
2125 }
2126 error = priv_getbyname(pstr, PRIV_ALLOC);
2127 if (error < 0)
2128 error = -error;
2129 else
2130 error = 0;
2131 kmem_free(pstr, PRIVNAME_MAX);
2132 return (error);
2133 }
2134
2135 static int
modctl_devexists(const char * upath,int pathlen)2136 modctl_devexists(const char *upath, int pathlen)
2137 {
2138 char *path;
2139 int ret;
2140
2141 /*
2142 * copy in the path, including the terminating null
2143 */
2144 pathlen++;
2145 if (pathlen <= 1 || pathlen > MAXPATHLEN)
2146 return (EINVAL);
2147 path = kmem_zalloc(pathlen + 1, KM_SLEEP);
2148 if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) {
2149 ret = sdev_modctl_devexists(path);
2150 }
2151
2152 kmem_free(path, pathlen + 1);
2153 return (ret);
2154 }
2155
2156 static int
modctl_devreaddir(const char * udir,int udirlen,char * upaths,int64_t * ulensp)2157 modctl_devreaddir(const char *udir, int udirlen,
2158 char *upaths, int64_t *ulensp)
2159 {
2160 char *paths = NULL;
2161 char **dirlist = NULL;
2162 char *dir;
2163 int64_t ulens;
2164 int64_t lens;
2165 int i, n;
2166 int ret = 0;
2167 char *p;
2168 int npaths;
2169 int npaths_alloc;
2170
2171 /*
2172 * If upaths is NULL then we are only computing the amount of space
2173 * needed to return the paths, with the value returned in *ulensp. If we
2174 * are copying out paths then we get the amount of space allocated by
2175 * the caller. If the actual space needed for paths is larger, or
2176 * things are changing out from under us, then we return EAGAIN.
2177 */
2178 if (upaths) {
2179 if (ulensp == NULL)
2180 return (EINVAL);
2181 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
2182 return (EFAULT);
2183 }
2184
2185 /*
2186 * copyin the /dev path including terminating null
2187 */
2188 udirlen++;
2189 if (udirlen <= 1 || udirlen > MAXPATHLEN)
2190 return (EINVAL);
2191 dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2192 if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2193 goto err;
2194
2195 if ((ret = sdev_modctl_readdir(dir, &dirlist,
2196 &npaths, &npaths_alloc, 0)) != 0) {
2197 ASSERT(dirlist == NULL);
2198 goto err;
2199 }
2200
2201 lens = 0;
2202 for (i = 0; i < npaths; i++) {
2203 lens += strlen(dirlist[i]) + 1;
2204 }
2205 lens++; /* add one for double termination */
2206
2207 if (upaths) {
2208 if (lens > ulens) {
2209 ret = EAGAIN;
2210 goto out;
2211 }
2212
2213 paths = kmem_alloc(lens, KM_SLEEP);
2214
2215 p = paths;
2216 for (i = 0; i < npaths; i++) {
2217 n = strlen(dirlist[i]) + 1;
2218 bcopy(dirlist[i], p, n);
2219 p += n;
2220 }
2221 *p = 0;
2222
2223 if (copyout(paths, upaths, lens)) {
2224 ret = EFAULT;
2225 goto err;
2226 }
2227 }
2228
2229 out:
2230 /* copy out the amount of space needed to hold the paths */
2231 if (copyout(&lens, ulensp, sizeof (lens)))
2232 ret = EFAULT;
2233
2234 err:
2235 if (dirlist)
2236 sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2237 if (paths)
2238 kmem_free(paths, lens);
2239 kmem_free(dir, udirlen + 1);
2240 return (ret);
2241 }
2242
2243 static int
modctl_devemptydir(const char * udir,int udirlen,int * uempty)2244 modctl_devemptydir(const char *udir, int udirlen, int *uempty)
2245 {
2246 char *dir;
2247 int ret;
2248 char **dirlist = NULL;
2249 int npaths;
2250 int npaths_alloc;
2251 int empty;
2252
2253 /*
2254 * copyin the /dev path including terminating null
2255 */
2256 udirlen++;
2257 if (udirlen <= 1 || udirlen > MAXPATHLEN)
2258 return (EINVAL);
2259 dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2260 if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2261 goto err;
2262
2263 if ((ret = sdev_modctl_readdir(dir, &dirlist,
2264 &npaths, &npaths_alloc, 1)) != 0) {
2265 goto err;
2266 }
2267
2268 empty = npaths ? 0 : 1;
2269 if (copyout(&empty, uempty, sizeof (empty)))
2270 ret = EFAULT;
2271
2272 err:
2273 if (dirlist)
2274 sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2275 kmem_free(dir, udirlen + 1);
2276 return (ret);
2277 }
2278
2279 static int
modctl_hp(int subcmd,const char * path,char * cn_name,uintptr_t arg,uintptr_t rval)2280 modctl_hp(int subcmd, const char *path, char *cn_name, uintptr_t arg,
2281 uintptr_t rval)
2282 {
2283 int error = 0;
2284 size_t pathsz, namesz;
2285 char *devpath, *cn_name_str;
2286
2287 if (path == NULL)
2288 return (EINVAL);
2289
2290 devpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2291 error = copyinstr(path, devpath, MAXPATHLEN, &pathsz);
2292 if (error != 0) {
2293 kmem_free(devpath, MAXPATHLEN);
2294 return (EFAULT);
2295 }
2296
2297 cn_name_str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
2298 error = copyinstr(cn_name, cn_name_str, MAXNAMELEN, &namesz);
2299 if (error != 0) {
2300 kmem_free(devpath, MAXPATHLEN);
2301 kmem_free(cn_name_str, MAXNAMELEN);
2302
2303 return (EFAULT);
2304 }
2305
2306 switch (subcmd) {
2307 case MODHPOPS_CHANGE_STATE:
2308 error = ddihp_modctl(DDI_HPOP_CN_CHANGE_STATE, devpath,
2309 cn_name_str, arg, 0);
2310 break;
2311 case MODHPOPS_CREATE_PORT:
2312 /* Create an empty PORT */
2313 error = ddihp_modctl(DDI_HPOP_CN_CREATE_PORT, devpath,
2314 cn_name_str, 0, 0);
2315 break;
2316 case MODHPOPS_REMOVE_PORT:
2317 /* Remove an empty PORT */
2318 error = ddihp_modctl(DDI_HPOP_CN_REMOVE_PORT, devpath,
2319 cn_name_str, 0, 0);
2320 break;
2321 case MODHPOPS_BUS_GET:
2322 error = ddihp_modctl(DDI_HPOP_CN_GET_PROPERTY, devpath,
2323 cn_name_str, arg, rval);
2324 break;
2325 case MODHPOPS_BUS_SET:
2326 error = ddihp_modctl(DDI_HPOP_CN_SET_PROPERTY, devpath,
2327 cn_name_str, arg, rval);
2328 break;
2329 default:
2330 error = ENOTSUP;
2331 break;
2332 }
2333
2334 kmem_free(devpath, MAXPATHLEN);
2335 kmem_free(cn_name_str, MAXNAMELEN);
2336
2337 return (error);
2338 }
2339
2340 int
modctl_moddevname(int subcmd,uintptr_t a1,uintptr_t a2)2341 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2)
2342 {
2343 int error = 0;
2344
2345 switch (subcmd) {
2346 case MODDEVNAME_LOOKUPDOOR:
2347 error = devname_filename_register((char *)a1);
2348 break;
2349 case MODDEVNAME_PROFILE:
2350 error = devname_profile_update((char *)a1, (size_t)a2);
2351 break;
2352 case MODDEVNAME_RECONFIG:
2353 i_ddi_set_reconfig();
2354 break;
2355 case MODDEVNAME_SYSAVAIL:
2356 i_ddi_set_sysavail();
2357 break;
2358 default:
2359 error = EINVAL;
2360 break;
2361 }
2362
2363 return (error);
2364 }
2365
2366 /*ARGSUSED5*/
2367 int
modctl(int cmd,uintptr_t a1,uintptr_t a2,uintptr_t a3,uintptr_t a4,uintptr_t a5)2368 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
2369 uintptr_t a5)
2370 {
2371 int error = EINVAL;
2372 dev_t dev;
2373
2374 if (secpolicy_modctl(CRED(), cmd) != 0)
2375 return (set_errno(EPERM));
2376
2377 switch (cmd) {
2378 case MODLOAD: /* load a module */
2379 error = modctl_modload((int)a1, (char *)a2, (int *)a3);
2380 break;
2381
2382 case MODUNLOAD: /* unload a module */
2383 error = modctl_modunload((modid_t)a1);
2384 break;
2385
2386 case MODINFO: /* get module status */
2387 error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
2388 break;
2389
2390 case MODRESERVED: /* get last major number in range */
2391 error = modctl_modreserve((modid_t)a1, (int *)a2);
2392 break;
2393
2394 case MODSETMINIROOT: /* we are running in miniroot */
2395 isminiroot = 1;
2396 error = 0;
2397 break;
2398
2399 case MODADDMAJBIND: /* add major / driver alias bindings */
2400 error = modctl_add_driver_aliases((int *)a2);
2401 break;
2402
2403 case MODGETPATHLEN: /* get modpath length */
2404 error = modctl_getmodpathlen((int *)a2);
2405 break;
2406
2407 case MODGETPATH: /* get modpath */
2408 error = modctl_getmodpath((char *)a2);
2409 break;
2410
2411 case MODREADSYSBIND: /* read system call binding file */
2412 error = modctl_read_sysbinding_file();
2413 break;
2414
2415 case MODGETMAJBIND: /* get major number for named device */
2416 error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
2417 break;
2418
2419 case MODGETNAME: /* get name of device given major number */
2420 error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
2421 break;
2422
2423 case MODDEVT2INSTANCE:
2424 if (get_udatamodel() == DATAMODEL_NATIVE) {
2425 dev = (dev_t)a1;
2426 }
2427 #ifdef _SYSCALL32_IMPL
2428 else {
2429 dev = expldev(a1);
2430 }
2431 #endif
2432 error = modctl_devt2instance(dev, (int *)a2);
2433 break;
2434
2435 case MODSIZEOF_DEVID: /* sizeof device id of device given dev_t */
2436 if (get_udatamodel() == DATAMODEL_NATIVE) {
2437 dev = (dev_t)a1;
2438 }
2439 #ifdef _SYSCALL32_IMPL
2440 else {
2441 dev = expldev(a1);
2442 }
2443 #endif
2444 error = modctl_sizeof_devid(dev, (uint_t *)a2);
2445 break;
2446
2447 case MODGETDEVID: /* get device id of device given dev_t */
2448 if (get_udatamodel() == DATAMODEL_NATIVE) {
2449 dev = (dev_t)a1;
2450 }
2451 #ifdef _SYSCALL32_IMPL
2452 else {
2453 dev = expldev(a1);
2454 }
2455 #endif
2456 error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
2457 break;
2458
2459 case MODSIZEOF_MINORNAME: /* sizeof minor nm (dev_t,spectype) */
2460 if (get_udatamodel() == DATAMODEL_NATIVE) {
2461 error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
2462 (uint_t *)a3);
2463 }
2464 #ifdef _SYSCALL32_IMPL
2465 else {
2466 error = modctl_sizeof_minorname(expldev(a1), (int)a2,
2467 (uint_t *)a3);
2468 }
2469
2470 #endif
2471 break;
2472
2473 case MODGETMINORNAME: /* get minor name of (dev_t,spectype) */
2474 if (get_udatamodel() == DATAMODEL_NATIVE) {
2475 error = modctl_get_minorname((dev_t)a1, (int)a2,
2476 (uint_t)a3, (char *)a4);
2477 }
2478 #ifdef _SYSCALL32_IMPL
2479 else {
2480 error = modctl_get_minorname(expldev(a1), (int)a2,
2481 (uint_t)a3, (char *)a4);
2482 }
2483 #endif
2484 break;
2485
2486 case MODGETDEVFSPATH_LEN: /* sizeof path nm of (dev_t,spectype) */
2487 if (get_udatamodel() == DATAMODEL_NATIVE) {
2488 error = modctl_devfspath_len((dev_t)a1, (int)a2,
2489 (uint_t *)a3);
2490 }
2491 #ifdef _SYSCALL32_IMPL
2492 else {
2493 error = modctl_devfspath_len(expldev(a1), (int)a2,
2494 (uint_t *)a3);
2495 }
2496
2497 #endif
2498 break;
2499
2500 case MODGETDEVFSPATH: /* get path name of (dev_t,spec) type */
2501 if (get_udatamodel() == DATAMODEL_NATIVE) {
2502 error = modctl_devfspath((dev_t)a1, (int)a2,
2503 (uint_t)a3, (char *)a4);
2504 }
2505 #ifdef _SYSCALL32_IMPL
2506 else {
2507 error = modctl_devfspath(expldev(a1), (int)a2,
2508 (uint_t)a3, (char *)a4);
2509 }
2510 #endif
2511 break;
2512
2513 case MODGETDEVFSPATH_MI_LEN: /* sizeof path nm of (major,instance) */
2514 error = modctl_devfspath_mi_len((major_t)a1, (int)a2,
2515 (uint_t *)a3);
2516 break;
2517
2518 case MODGETDEVFSPATH_MI: /* get path name of (major,instance) */
2519 error = modctl_devfspath_mi((major_t)a1, (int)a2,
2520 (uint_t)a3, (char *)a4);
2521 break;
2522
2523
2524 case MODEVENTS:
2525 error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
2526 break;
2527
2528 case MODGETFBNAME: /* get the framebuffer name */
2529 error = modctl_get_fbname((char *)a1);
2530 break;
2531
2532 case MODREREADDACF: /* reread dacf rule database from given file */
2533 error = modctl_reread_dacf((char *)a1);
2534 break;
2535
2536 case MODLOADDRVCONF: /* load driver.conf file for major */
2537 error = modctl_load_drvconf((major_t)a1, (int)a2);
2538 break;
2539
2540 case MODUNLOADDRVCONF: /* unload driver.conf file for major */
2541 error = modctl_unload_drvconf((major_t)a1);
2542 break;
2543
2544 case MODREMMAJBIND: /* remove a major binding */
2545 error = modctl_rem_major((major_t)a1);
2546 break;
2547
2548 case MODREMDRVALIAS: /* remove a major/alias binding */
2549 error = modctl_remove_driver_aliases((int *)a2);
2550 break;
2551
2552 case MODDEVID2PATHS: /* get paths given devid */
2553 error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
2554 (uint_t)a3, (size_t *)a4, (char *)a5);
2555 break;
2556
2557 case MODSETDEVPOLICY: /* establish device policy */
2558 error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
2559 break;
2560
2561 case MODGETDEVPOLICY: /* get device policy */
2562 error = devpolicy_get((int *)a1, (size_t)a2,
2563 (devplcysys_t *)a3);
2564 break;
2565
2566 case MODALLOCPRIV:
2567 error = modctl_allocpriv((const char *)a1);
2568 break;
2569
2570 case MODGETDEVPOLICYBYNAME:
2571 error = devpolicy_getbyname((size_t)a1,
2572 (devplcysys_t *)a2, (char *)a3);
2573 break;
2574
2575 case MODLOADMINORPERM:
2576 case MODADDMINORPERM:
2577 case MODREMMINORPERM:
2578 error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
2579 break;
2580
2581 case MODREMDRVCLEANUP:
2582 error = modctl_remdrv_cleanup((const char *)a1);
2583 break;
2584
2585 case MODDEVEXISTS: /* non-reconfiguring /dev lookup */
2586 error = modctl_devexists((const char *)a1, (size_t)a2);
2587 break;
2588
2589 case MODDEVREADDIR: /* non-reconfiguring /dev readdir */
2590 error = modctl_devreaddir((const char *)a1, (size_t)a2,
2591 (char *)a3, (int64_t *)a4);
2592 break;
2593
2594 case MODDEVEMPTYDIR: /* non-reconfiguring /dev emptydir */
2595 error = modctl_devemptydir((const char *)a1, (size_t)a2,
2596 (int *)a3);
2597 break;
2598
2599 case MODDEVNAME:
2600 error = modctl_moddevname((int)a1, a2, a3);
2601 break;
2602
2603 case MODRETIRE: /* retire device named by physpath a1 */
2604 error = modctl_retire((char *)a1, (char *)a2, (size_t)a3);
2605 break;
2606
2607 case MODISRETIRED: /* check if a device is retired. */
2608 error = modctl_is_retired((char *)a1, (int *)a2);
2609 break;
2610
2611 case MODUNRETIRE: /* unretire device named by physpath a1 */
2612 error = modctl_unretire((char *)a1);
2613 break;
2614
2615 case MODHPOPS: /* hotplug operations */
2616 /* device named by physpath a2 and Connection name a3 */
2617 error = modctl_hp((int)a1, (char *)a2, (char *)a3, a4, a5);
2618 break;
2619
2620 default:
2621 error = EINVAL;
2622 break;
2623 }
2624
2625 return (error ? set_errno(error) : 0);
2626 }
2627
2628 /*
2629 * Calls to kobj_load_module()() are handled off to this routine in a
2630 * separate thread.
2631 */
2632 static void
modload_thread(struct loadmt * ltp)2633 modload_thread(struct loadmt *ltp)
2634 {
2635 /* load the module and signal the creator of this thread */
2636 kmutex_t cpr_lk;
2637 callb_cpr_t cpr_i;
2638
2639 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
2640 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
2641 /* borrow the devi lock from thread which invoked us */
2642 pm_borrow_lock(ltp->owner);
2643 ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
2644 pm_return_lock();
2645 sema_v(<p->sema);
2646 mutex_enter(&cpr_lk);
2647 CALLB_CPR_EXIT(&cpr_i);
2648 mutex_destroy(&cpr_lk);
2649 thread_exit();
2650 }
2651
2652 /*
2653 * load a module, adding a reference if caller specifies rmodp. If rmodp
2654 * is specified then an errno is returned, otherwise a module index is
2655 * returned (-1 on error).
2656 */
2657 static int
modrload(const char * subdir,const char * filename,struct modctl ** rmodp)2658 modrload(const char *subdir, const char *filename, struct modctl **rmodp)
2659 {
2660 struct modctl *modp;
2661 size_t size;
2662 char *fullname;
2663 int retval = EINVAL;
2664 int id = -1;
2665
2666 if (rmodp)
2667 *rmodp = NULL; /* avoid garbage */
2668
2669 if (subdir != NULL) {
2670 /*
2671 * refuse / in filename to prevent "../" escapes.
2672 */
2673 if (strchr(filename, '/') != NULL)
2674 return (rmodp ? retval : id);
2675
2676 /*
2677 * allocate enough space for <subdir>/<filename><NULL>
2678 */
2679 size = strlen(subdir) + strlen(filename) + 2;
2680 fullname = kmem_zalloc(size, KM_SLEEP);
2681 (void) sprintf(fullname, "%s/%s", subdir, filename);
2682 } else {
2683 fullname = (char *)filename;
2684 }
2685
2686 modp = mod_hold_installed_mod(fullname, 1, 0, &retval);
2687 if (modp != NULL) {
2688 id = modp->mod_id;
2689 if (rmodp) {
2690 /* add mod_ref and return *rmodp */
2691 mutex_enter(&mod_lock);
2692 modp->mod_ref++;
2693 mutex_exit(&mod_lock);
2694 *rmodp = modp;
2695 }
2696 mod_release_mod(modp);
2697 CPU_STATS_ADDQ(CPU, sys, modload, 1);
2698 }
2699
2700 if (subdir != NULL)
2701 kmem_free(fullname, size);
2702 return (rmodp ? retval : id);
2703 }
2704
2705 /*
2706 * This is the primary kernel interface to load a module. It loads and
2707 * installs the named module. It does not hold mod_ref of the module, so
2708 * a module unload attempt can occur at any time - it is up to the
2709 * _fini/mod_remove implementation to determine if unload will succeed.
2710 */
2711 int
modload(const char * subdir,const char * filename)2712 modload(const char *subdir, const char *filename)
2713 {
2714 return (modrload(subdir, filename, NULL));
2715 }
2716
2717 /*
2718 * Load a module using a series of qualified names from most specific to least
2719 * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try:
2720 * Value returned in *chosen
2721 * foo/bar.baz.1.2.3 3
2722 * foo/bar.baz.1.2 2
2723 * foo/bar.baz.1 1
2724 * foo/bar.baz 0
2725 *
2726 * Return the module ID on success; -1 if no module was loaded. On success
2727 * and if 'chosen' is not NULL we also return the number of suffices that
2728 * were in the module we chose to load.
2729 */
2730 int
modload_qualified(const char * subdir,const char * p1,const char * p2,const char * delim,uint_t suffv[],int suffc,int * chosen)2731 modload_qualified(const char *subdir, const char *p1,
2732 const char *p2, const char *delim, uint_t suffv[], int suffc, int *chosen)
2733 {
2734 char path[MOD_MAXPATH];
2735 size_t n, resid = sizeof (path);
2736 char *p = path;
2737
2738 char **dotv;
2739 int i, rc, id;
2740 modctl_t *mp;
2741
2742 if (p2 != NULL)
2743 n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2);
2744 else
2745 n = snprintf(p, resid, "%s/%s", subdir, p1);
2746
2747 if (n >= resid)
2748 return (-1);
2749
2750 p += n;
2751 resid -= n;
2752 dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP);
2753
2754 for (i = 0; i < suffc; i++) {
2755 dotv[i] = p;
2756 n = snprintf(p, resid, "%s%u", delim, suffv[i]);
2757
2758 if (n >= resid) {
2759 kmem_free(dotv, sizeof (char *) * (suffc + 1));
2760 return (-1);
2761 }
2762
2763 p += n;
2764 resid -= n;
2765 }
2766
2767 dotv[suffc] = p;
2768
2769 for (i = suffc; i >= 0; i--) {
2770 dotv[i][0] = '\0';
2771 mp = mod_hold_installed_mod(path, 1, 1, &rc);
2772
2773 if (mp != NULL) {
2774 kmem_free(dotv, sizeof (char *) * (suffc + 1));
2775 id = mp->mod_id;
2776 mod_release_mod(mp);
2777 if (chosen != NULL)
2778 *chosen = i;
2779 return (id);
2780 }
2781 }
2782
2783 kmem_free(dotv, sizeof (char *) * (suffc + 1));
2784 return (-1);
2785 }
2786
2787 /*
2788 * Load a module.
2789 */
2790 int
modloadonly(const char * subdir,const char * filename)2791 modloadonly(const char *subdir, const char *filename)
2792 {
2793 struct modctl *modp;
2794 char *fullname;
2795 size_t size;
2796 int id, retval;
2797
2798 if (subdir != NULL) {
2799 /*
2800 * allocate enough space for <subdir>/<filename><NULL>
2801 */
2802 size = strlen(subdir) + strlen(filename) + 2;
2803 fullname = kmem_zalloc(size, KM_SLEEP);
2804 (void) sprintf(fullname, "%s/%s", subdir, filename);
2805 } else {
2806 fullname = (char *)filename;
2807 }
2808
2809 id = -1;
2810 modp = mod_hold_loaded_mod(NULL, fullname, &retval);
2811 if (modp) {
2812 id = modp->mod_id;
2813 mod_release_mod(modp);
2814 }
2815
2816 if (subdir != NULL)
2817 kmem_free(fullname, size);
2818
2819 if (retval == 0)
2820 return (id);
2821 return (-1);
2822 }
2823
2824 /*
2825 * Try to uninstall and unload a module, removing a reference if caller
2826 * specifies rmodp.
2827 */
2828 static int
modunrload(modid_t id,struct modctl ** rmodp,int unload)2829 modunrload(modid_t id, struct modctl **rmodp, int unload)
2830 {
2831 struct modctl *modp;
2832 int retval;
2833
2834 if (rmodp)
2835 *rmodp = NULL; /* avoid garbage */
2836
2837 if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
2838 return (EINVAL);
2839
2840 if (rmodp) {
2841 mutex_enter(&mod_lock);
2842 modp->mod_ref--;
2843 if (modp->mod_ref == 0)
2844 mod_uninstall_ref_zero++;
2845 mutex_exit(&mod_lock);
2846 *rmodp = modp;
2847 }
2848
2849 if (unload) {
2850 retval = moduninstall(modp);
2851 if (retval == 0) {
2852 mod_unload(modp);
2853 CPU_STATS_ADDQ(CPU, sys, modunload, 1);
2854 } else if (retval == EALREADY)
2855 retval = 0; /* already unloaded, not an error */
2856 } else
2857 retval = 0;
2858
2859 mod_release_mod(modp);
2860 return (retval);
2861 }
2862
2863 /*
2864 * Uninstall and unload a module.
2865 */
2866 int
modunload(modid_t id)2867 modunload(modid_t id)
2868 {
2869 int retval;
2870
2871 /* synchronize with any active modunload_disable() */
2872 modunload_begin();
2873 if (ddi_root_node())
2874 (void) devfs_clean(ddi_root_node(), NULL, 0);
2875 retval = modunrload(id, NULL, 1);
2876 modunload_end();
2877 return (retval);
2878 }
2879
2880 /*
2881 * Return status of a loaded module.
2882 */
2883 static int
modinfo(modid_t id,struct modinfo * modinfop)2884 modinfo(modid_t id, struct modinfo *modinfop)
2885 {
2886 struct modctl *modp;
2887 modid_t mid;
2888 int i;
2889
2890 mid = modinfop->mi_id;
2891 if (modinfop->mi_info & MI_INFO_ALL) {
2892 while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
2893 if ((modinfop->mi_info & MI_INFO_CNT) ||
2894 modp->mod_installed)
2895 break;
2896 mod_release_mod(modp);
2897 }
2898 if (modp == NULL)
2899 return (EINVAL);
2900 } else {
2901 modp = mod_hold_by_id(id);
2902 if (modp == NULL)
2903 return (EINVAL);
2904 if (!(modinfop->mi_info & MI_INFO_CNT) &&
2905 (modp->mod_installed == 0)) {
2906 mod_release_mod(modp);
2907 return (EINVAL);
2908 }
2909 }
2910
2911 modinfop->mi_rev = 0;
2912 modinfop->mi_state = 0;
2913 for (i = 0; i < MODMAXLINK; i++) {
2914 modinfop->mi_msinfo[i].msi_p0 = -1;
2915 modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
2916 }
2917 if (modp->mod_loaded) {
2918 modinfop->mi_state = MI_LOADED;
2919 kobj_getmodinfo(modp->mod_mp, modinfop);
2920 }
2921 if (modp->mod_installed) {
2922 modinfop->mi_state |= MI_INSTALLED;
2923
2924 (void) mod_getinfo(modp, modinfop);
2925 }
2926
2927 modinfop->mi_id = modp->mod_id;
2928 modinfop->mi_loadcnt = modp->mod_loadcnt;
2929 (void) strcpy(modinfop->mi_name, modp->mod_modname);
2930
2931 mod_release_mod(modp);
2932 return (0);
2933 }
2934
2935 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
2936 static char no_err[] = "No error function for weak stub %s";
2937
2938 /*
2939 * used by the stubs themselves to load and hold a module.
2940 * Returns 0 if the module is successfully held;
2941 * the stub needs to call mod_release_stub().
2942 * -1 if the stub should just call the err_fcn.
2943 * Note that this code is stretched out so that we avoid subroutine calls
2944 * and optimize for the most likely case. That is, the case where the
2945 * module is loaded and installed and not held. In that case we just inc
2946 * the mod_ref count and continue.
2947 */
2948 int
mod_hold_stub(struct mod_stub_info * stub)2949 mod_hold_stub(struct mod_stub_info *stub)
2950 {
2951 struct modctl *mp;
2952 struct mod_modinfo *mip;
2953
2954 mip = stub->mods_modinfo;
2955
2956 mutex_enter(&mod_lock);
2957
2958 /* we do mod_hold_by_modctl inline for speed */
2959
2960 mod_check_again:
2961 if ((mp = mip->mp) != NULL) {
2962 if (mp->mod_busy == 0) {
2963 if (mp->mod_installed) {
2964 /* increment the reference count */
2965 mp->mod_ref++;
2966 ASSERT(mp->mod_ref && mp->mod_installed);
2967 mutex_exit(&mod_lock);
2968 return (0);
2969 } else {
2970 mp->mod_busy = 1;
2971 mp->mod_inprogress_thread =
2972 (curthread == NULL ?
2973 (kthread_id_t)-1 : curthread);
2974 }
2975 } else {
2976 /*
2977 * wait one time and then go see if someone
2978 * else has resolved the stub (set mip->mp).
2979 */
2980 if (mod_hold_by_modctl(mp,
2981 MOD_WAIT_ONCE | MOD_LOCK_HELD))
2982 goto mod_check_again;
2983
2984 /*
2985 * what we have now may have been unloaded!, in
2986 * that case, mip->mp will be NULL, we'll hit this
2987 * module and load again..
2988 */
2989 cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
2990 }
2991 mutex_exit(&mod_lock);
2992 } else {
2993 /* first time we've hit this module */
2994 mutex_exit(&mod_lock);
2995 mp = mod_hold_by_name(mip->modm_module_name);
2996 mip->mp = mp;
2997 }
2998
2999 /*
3000 * If we are here, it means that the following conditions
3001 * are satisfied.
3002 *
3003 * mip->mp != NULL
3004 * this thread has set the mp->mod_busy = 1
3005 * mp->mod_installed = 0
3006 *
3007 */
3008 ASSERT(mp != NULL);
3009 ASSERT(mp->mod_busy == 1);
3010
3011 if (mp->mod_installed == 0) {
3012 /* Module not loaded, if weak stub don't load it */
3013 if (stub->mods_flag & MODS_WEAK) {
3014 if (stub->mods_errfcn == NULL) {
3015 mod_release_mod(mp);
3016 cmn_err(CE_PANIC, no_err,
3017 mip->modm_module_name);
3018 }
3019 } else {
3020 /* Not a weak stub so load the module */
3021
3022 if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
3023 /*
3024 * If mod_load() was successful
3025 * and modinstall() failed, then
3026 * unload the module.
3027 */
3028 if (mp->mod_loaded)
3029 mod_unload(mp);
3030
3031 mod_release_mod(mp);
3032 if (stub->mods_errfcn == NULL) {
3033 cmn_err(CE_PANIC, mod_stub_err,
3034 mip->modm_module_name);
3035 } else {
3036 return (-1);
3037 }
3038 }
3039 }
3040 }
3041
3042 /*
3043 * At this point module is held and loaded. Release
3044 * the mod_busy and mod_inprogress_thread before
3045 * returning. We actually call mod_release() here so
3046 * that if another stub wants to access this module,
3047 * it can do so. mod_ref is incremented before mod_release()
3048 * is called to prevent someone else from snatching the
3049 * module from this thread.
3050 */
3051 mutex_enter(&mod_lock);
3052 mp->mod_ref++;
3053 ASSERT(mp->mod_ref &&
3054 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
3055 mod_release(mp);
3056 mutex_exit(&mod_lock);
3057 return (0);
3058 }
3059
3060 void
mod_release_stub(struct mod_stub_info * stub)3061 mod_release_stub(struct mod_stub_info *stub)
3062 {
3063 struct modctl *mp = stub->mods_modinfo->mp;
3064
3065 /* inline mod_release_mod */
3066 mutex_enter(&mod_lock);
3067 ASSERT(mp->mod_ref &&
3068 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
3069 mp->mod_ref--;
3070 if (mp->mod_ref == 0)
3071 mod_uninstall_ref_zero++;
3072 if (mp->mod_want) {
3073 mp->mod_want = 0;
3074 cv_broadcast(&mod_cv);
3075 }
3076 mutex_exit(&mod_lock);
3077 }
3078
3079 static struct modctl *
mod_hold_loaded_mod(struct modctl * dep,char * filename,int * status)3080 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
3081 {
3082 struct modctl *modp;
3083 int retval;
3084
3085 /*
3086 * Hold the module.
3087 */
3088 modp = mod_hold_by_name_requisite(dep, filename);
3089 if (modp) {
3090 retval = mod_load(modp, 1);
3091 if (retval != 0) {
3092 mod_release_mod(modp);
3093 modp = NULL;
3094 }
3095 *status = retval;
3096 } else {
3097 *status = ENOSPC;
3098 }
3099
3100 /*
3101 * if dep is not NULL, clear the module dependency information.
3102 * This information is set in mod_hold_by_name_common().
3103 */
3104 if (dep != NULL && dep->mod_requisite_loading != NULL) {
3105 ASSERT(dep->mod_busy);
3106 dep->mod_requisite_loading = NULL;
3107 }
3108
3109 return (modp);
3110 }
3111
3112 /*
3113 * hold, load, and install the named module
3114 */
3115 static struct modctl *
mod_hold_installed_mod(char * name,int usepath,int forcecheck,int * r)3116 mod_hold_installed_mod(char *name, int usepath, int forcecheck, int *r)
3117 {
3118 struct modctl *modp;
3119 int retval;
3120
3121 /*
3122 * Verify that that module in question actually exists on disk
3123 * before allocation of module structure by mod_hold_by_name.
3124 */
3125 if (modrootloaded && swaploaded || forcecheck) {
3126 if (!kobj_path_exists(name, usepath)) {
3127 *r = ENOENT;
3128 return (NULL);
3129 }
3130 }
3131
3132 /*
3133 * Hold the module.
3134 */
3135 modp = mod_hold_by_name(name);
3136 if (modp) {
3137 retval = mod_load(modp, usepath);
3138 if (retval != 0) {
3139 mod_release_mod(modp);
3140 modp = NULL;
3141 *r = retval;
3142 } else {
3143 if ((*r = modinstall(modp)) != 0) {
3144 /*
3145 * We loaded it, but failed to _init() it.
3146 * Be kind to developers -- force it
3147 * out of memory now so that the next
3148 * attempt to use the module will cause
3149 * a reload. See 1093793.
3150 */
3151 mod_unload(modp);
3152 mod_release_mod(modp);
3153 modp = NULL;
3154 }
3155 }
3156 } else {
3157 *r = ENOSPC;
3158 }
3159 return (modp);
3160 }
3161
3162 static char mod_excl_msg[] =
3163 "module %s(%s) is EXCLUDED and will not be loaded\n";
3164 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
3165
3166 /*
3167 * This routine is needed for dependencies. Users specify dependencies
3168 * by declaring a character array initialized to filenames of dependents.
3169 * So the code that handles dependents deals with filenames (and not
3170 * module names) because that's all it has. We load by filename and once
3171 * we've loaded a file we can get the module name.
3172 * Unfortunately there isn't a single unified filename/modulename namespace.
3173 * C'est la vie.
3174 *
3175 * We allow the name being looked up to be prepended by an optional
3176 * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
3177 */
3178 struct modctl *
mod_find_by_filename(char * subdir,char * filename)3179 mod_find_by_filename(char *subdir, char *filename)
3180 {
3181 struct modctl *mp;
3182 size_t sublen;
3183
3184 ASSERT(!MUTEX_HELD(&mod_lock));
3185 if (subdir != NULL)
3186 sublen = strlen(subdir);
3187 else
3188 sublen = 0;
3189
3190 mutex_enter(&mod_lock);
3191 mp = &modules;
3192 do {
3193 if (sublen) {
3194 char *mod_filename = mp->mod_filename;
3195
3196 if (strncmp(subdir, mod_filename, sublen) == 0 &&
3197 mod_filename[sublen] == '/' &&
3198 strcmp(filename, &mod_filename[sublen + 1]) == 0) {
3199 mutex_exit(&mod_lock);
3200 return (mp);
3201 }
3202 } else if (strcmp(filename, mp->mod_filename) == 0) {
3203 mutex_exit(&mod_lock);
3204 return (mp);
3205 }
3206 } while ((mp = mp->mod_next) != &modules);
3207 mutex_exit(&mod_lock);
3208 return (NULL);
3209 }
3210
3211 /*
3212 * Check for circular dependencies. This is called from do_dependents()
3213 * in kobj.c. If we are the thread already loading this module, then
3214 * we're trying to load a dependent that we're already loading which
3215 * means the user specified circular dependencies.
3216 */
3217 static int
mod_circdep(struct modctl * modp)3218 mod_circdep(struct modctl *modp)
3219 {
3220 struct modctl *rmod;
3221
3222 ASSERT(MUTEX_HELD(&mod_lock));
3223
3224 /*
3225 * Check the mod_inprogress_thread first.
3226 * mod_inprogress_thread is used in mod_hold_stub()
3227 * directly to improve performance.
3228 */
3229 if (modp->mod_inprogress_thread == curthread)
3230 return (1);
3231
3232 /*
3233 * Check the module circular dependencies.
3234 */
3235 for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
3236 /*
3237 * Check if there is a module circular dependency.
3238 */
3239 if (rmod->mod_requisite_loading == modp)
3240 return (1);
3241 }
3242 return (0);
3243 }
3244
3245 static int
mod_getinfo(struct modctl * modp,struct modinfo * modinfop)3246 mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
3247 {
3248 int (*func)(struct modinfo *);
3249 int retval;
3250
3251 ASSERT(modp->mod_busy);
3252
3253 /* primary modules don't do getinfo */
3254 if (modp->mod_prim)
3255 return (0);
3256
3257 func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
3258
3259 if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
3260 cmn_err(CE_WARN, "_info() not defined properly in %s",
3261 modp->mod_filename);
3262 /*
3263 * The semantics of mod_info(9F) are that 0 is failure
3264 * and non-zero is success.
3265 */
3266 retval = 0;
3267 } else
3268 retval = (*func)(modinfop); /* call _info() function */
3269
3270 if (moddebug & MODDEBUG_USERDEBUG)
3271 printf("Returned from _info, retval = %x\n", retval);
3272
3273 return (retval);
3274 }
3275
3276 static void
modadd(struct modctl * mp)3277 modadd(struct modctl *mp)
3278 {
3279 ASSERT(MUTEX_HELD(&mod_lock));
3280
3281 mp->mod_id = last_module_id++;
3282 mp->mod_next = &modules;
3283 mp->mod_prev = modules.mod_prev;
3284 modules.mod_prev->mod_next = mp;
3285 modules.mod_prev = mp;
3286 }
3287
3288 /*ARGSUSED*/
3289 static struct modctl *
allocate_modp(const char * filename,const char * modname)3290 allocate_modp(const char *filename, const char *modname)
3291 {
3292 struct modctl *mp;
3293
3294 mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
3295 mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
3296 (void) strcpy(mp->mod_modname, modname);
3297 return (mp);
3298 }
3299
3300 /*
3301 * Get the value of a symbol. This is a wrapper routine that
3302 * calls kobj_getsymvalue(). kobj_getsymvalue() may go away but this
3303 * wrapper will prevent callers from noticing.
3304 */
3305 uintptr_t
modgetsymvalue(char * name,int kernelonly)3306 modgetsymvalue(char *name, int kernelonly)
3307 {
3308 return (kobj_getsymvalue(name, kernelonly));
3309 }
3310
3311 /*
3312 * Get the symbol nearest an address. This is a wrapper routine that
3313 * calls kobj_getsymname(). kobj_getsymname() may go away but this
3314 * wrapper will prevent callers from noticing.
3315 */
3316 char *
modgetsymname(uintptr_t value,ulong_t * offset)3317 modgetsymname(uintptr_t value, ulong_t *offset)
3318 {
3319 return (kobj_getsymname(value, offset));
3320 }
3321
3322 /*
3323 * Lookup a symbol in a specified module. These are wrapper routines that
3324 * call kobj_lookup(). kobj_lookup() may go away but these wrappers will
3325 * prevent callers from noticing.
3326 */
3327 uintptr_t
modlookup(const char * modname,const char * symname)3328 modlookup(const char *modname, const char *symname)
3329 {
3330 struct modctl *modp;
3331 uintptr_t val;
3332
3333 if ((modp = mod_hold_by_name(modname)) == NULL)
3334 return (0);
3335 val = kobj_lookup(modp->mod_mp, symname);
3336 mod_release_mod(modp);
3337 return (val);
3338 }
3339
3340 uintptr_t
modlookup_by_modctl(modctl_t * modp,const char * symname)3341 modlookup_by_modctl(modctl_t *modp, const char *symname)
3342 {
3343 ASSERT(modp->mod_ref > 0 || modp->mod_busy);
3344
3345 return (kobj_lookup(modp->mod_mp, symname));
3346 }
3347
3348 /*
3349 * Ask the user for the name of the system file and the default path
3350 * for modules.
3351 */
3352 void
mod_askparams()3353 mod_askparams()
3354 {
3355 static char s0[64];
3356 intptr_t fd;
3357
3358 if ((fd = kobj_open(systemfile)) != -1L)
3359 kobj_close(fd);
3360 else
3361 systemfile = self_assembly = NULL;
3362
3363 /*CONSTANTCONDITION*/
3364 while (1) {
3365 printf("Name of system file [%s]: ",
3366 systemfile ? systemfile : "/dev/null");
3367
3368 console_gets(s0, sizeof (s0));
3369
3370 if (s0[0] == '\0')
3371 break;
3372 else if (strcmp(s0, "/dev/null") == 0) {
3373 systemfile = self_assembly = NULL;
3374 break;
3375 } else {
3376 if ((fd = kobj_open(s0)) != -1L) {
3377 kobj_close(fd);
3378 systemfile = s0;
3379 self_assembly = NULL;
3380 break;
3381 }
3382 }
3383 printf("can't find file %s\n", s0);
3384 }
3385 }
3386
3387 static char loading_msg[] = "loading '%s' id %d\n";
3388 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
3389
3390 /*
3391 * Common code for loading a module (but not installing it).
3392 * Handoff the task of module loading to a separate thread
3393 * with a large stack if possible, since this code may recurse a few times.
3394 * Return zero if there are no errors or an errno value.
3395 */
3396 static int
mod_load(struct modctl * mp,int usepath)3397 mod_load(struct modctl *mp, int usepath)
3398 {
3399 int retval;
3400 struct modinfo *modinfop = NULL;
3401 struct loadmt lt;
3402
3403 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3404 ASSERT(mp->mod_busy);
3405
3406 if (mp->mod_loaded)
3407 return (0);
3408
3409 if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
3410 mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
3411 if (moddebug & MODDEBUG_LOADMSG) {
3412 printf(mod_excl_msg, mp->mod_filename,
3413 mp->mod_modname);
3414 }
3415 return (ENXIO);
3416 }
3417 if (moddebug & MODDEBUG_LOADMSG2)
3418 printf(loading_msg, mp->mod_filename, mp->mod_id);
3419
3420 if (curthread != &t0) {
3421 lt.mp = mp;
3422 lt.usepath = usepath;
3423 lt.owner = curthread;
3424 sema_init(<.sema, 0, NULL, SEMA_DEFAULT, NULL);
3425
3426 /* create thread to hand of call to */
3427 (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3428 modload_thread, <, 0, &p0, TS_RUN, maxclsyspri);
3429
3430 /* wait for thread to complete kobj_load_module */
3431 sema_p(<.sema);
3432
3433 sema_destroy(<.sema);
3434 retval = lt.retval;
3435 } else
3436 retval = kobj_load_module(mp, usepath);
3437
3438 if (mp->mod_mp) {
3439 ASSERT(retval == 0);
3440 mp->mod_loaded = 1;
3441 mp->mod_loadcnt++;
3442 if (moddebug & MODDEBUG_LOADMSG) {
3443 printf(load_msg, mp->mod_filename, mp->mod_id,
3444 (void *)((struct module *)mp->mod_mp)->text,
3445 (void *)((struct module *)mp->mod_mp)->data,
3446 ((struct module *)mp->mod_mp)->text_size,
3447 ((struct module *)mp->mod_mp)->data_size);
3448 }
3449
3450 /*
3451 * XXX - There should be a better way to get this.
3452 */
3453 modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
3454 modinfop->mi_info = MI_INFO_LINKAGE;
3455 if (mod_getinfo(mp, modinfop) == 0)
3456 mp->mod_linkage = NULL;
3457 else {
3458 mp->mod_linkage = (void *)modinfop->mi_base;
3459 ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
3460 }
3461
3462 /*
3463 * DCS: bootstrapping code. If the driver is loaded
3464 * before root mount, it is assumed that the driver
3465 * may be used before mounting root. In order to
3466 * access mappings of global to local minor no.'s
3467 * during installation/open of the driver, we load
3468 * them into memory here while the BOP_interfaces
3469 * are still up.
3470 */
3471 if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
3472 retval = clboot_modload(mp);
3473 }
3474
3475 kmem_free(modinfop, sizeof (struct modinfo));
3476 (void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
3477 retval = install_stubs_by_name(mp, mp->mod_modname);
3478
3479 /*
3480 * Perform hotinlines before module is started.
3481 */
3482 do_hotinlines(mp->mod_mp);
3483
3484 /*
3485 * Now that the module is loaded, we need to give DTrace
3486 * a chance to notify its providers. This is done via
3487 * the dtrace_modload function pointer.
3488 */
3489 if (strcmp(mp->mod_modname, "dtrace") != 0) {
3490 struct modctl *dmp = mod_hold_by_name("dtrace");
3491
3492 if (dmp != NULL && dtrace_modload != NULL)
3493 (*dtrace_modload)(mp);
3494
3495 mod_release_mod(dmp);
3496 }
3497
3498 } else {
3499 /*
3500 * If load failed then we need to release any requisites
3501 * that we had established.
3502 */
3503 ASSERT(retval);
3504 mod_release_requisites(mp);
3505
3506 if (moddebug & MODDEBUG_ERRMSG)
3507 printf("error loading '%s', error %d\n",
3508 mp->mod_filename, retval);
3509 }
3510 return (retval);
3511 }
3512
3513 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
3514
3515 static void
mod_unload(struct modctl * mp)3516 mod_unload(struct modctl *mp)
3517 {
3518 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3519 ASSERT(mp->mod_busy);
3520 ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
3521 ((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
3522
3523 if (moddebug & MODDEBUG_LOADMSG)
3524 printf(unload_msg, mp->mod_modname,
3525 mp->mod_id, mp->mod_loadcnt);
3526
3527 /*
3528 * If mod_ref is not zero, it means some modules might still refer
3529 * to this module. Then you can't unload this module right now.
3530 * Instead, set 1 to mod_delay_unload to notify the system of
3531 * unloading this module later when it's not required any more.
3532 */
3533 if (mp->mod_ref > 0) {
3534 mp->mod_delay_unload = 1;
3535 if (moddebug & MODDEBUG_LOADMSG2) {
3536 printf("module %s not unloaded,"
3537 " non-zero reference count (%d)",
3538 mp->mod_modname, mp->mod_ref);
3539 }
3540 return;
3541 }
3542
3543 if (((mp->mod_loaded == 0) || mp->mod_installed) ||
3544 (mp->mod_ref || mp->mod_prim)) {
3545 /*
3546 * A DEBUG kernel would ASSERT panic above, the code is broken
3547 * if we get this warning.
3548 */
3549 cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
3550 mp->mod_filename, mp->mod_installed, mp->mod_loaded,
3551 mp->mod_ref);
3552 return;
3553 }
3554
3555 /* reset stub functions to call the binder again */
3556 reset_stubs(mp);
3557
3558 /*
3559 * mark module as unloaded before the modctl structure is freed.
3560 * This is required not to reuse the modctl structure before
3561 * the module is marked as unloaded.
3562 */
3563 mp->mod_loaded = 0;
3564 mp->mod_linkage = NULL;
3565
3566 /* free the memory */
3567 kobj_unload_module(mp);
3568
3569 if (mp->mod_delay_unload) {
3570 mp->mod_delay_unload = 0;
3571 if (moddebug & MODDEBUG_LOADMSG2) {
3572 printf("deferred unload of module %s"
3573 " (id %d) successful",
3574 mp->mod_modname, mp->mod_id);
3575 }
3576 }
3577
3578 /* release hold on requisites */
3579 mod_release_requisites(mp);
3580
3581 /*
3582 * Now that the module is gone, we need to give DTrace a chance to
3583 * remove any probes that it may have had in the module. This is
3584 * done via the dtrace_modunload function pointer.
3585 */
3586 if (strcmp(mp->mod_modname, "dtrace") != 0) {
3587 struct modctl *dmp = mod_hold_by_name("dtrace");
3588
3589 if (dmp != NULL && dtrace_modunload != NULL)
3590 (*dtrace_modunload)(mp);
3591
3592 mod_release_mod(dmp);
3593 }
3594 }
3595
3596 static int
modinstall(struct modctl * mp)3597 modinstall(struct modctl *mp)
3598 {
3599 int val;
3600 int (*func)(void);
3601
3602 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3603 ASSERT(mp->mod_busy && mp->mod_loaded);
3604
3605 if (mp->mod_installed)
3606 return (0);
3607 /*
3608 * If mod_delay_unload is on, it means the system chose the deferred
3609 * unload for this module. Then you can't install this module until
3610 * it's unloaded from the system.
3611 */
3612 if (mp->mod_delay_unload)
3613 return (ENXIO);
3614
3615 if (moddebug & MODDEBUG_LOADMSG)
3616 printf("installing %s, module id %d.\n",
3617 mp->mod_modname, mp->mod_id);
3618
3619 ASSERT(mp->mod_mp != NULL);
3620 if (mod_install_requisites(mp) != 0) {
3621 /*
3622 * Note that we can't call mod_unload(mp) here since
3623 * if modinstall() was called by mod_install_requisites(),
3624 * we won't be able to hold the dependent modules
3625 * (otherwise there would be a deadlock).
3626 */
3627 return (ENXIO);
3628 }
3629
3630 if (moddebug & MODDEBUG_ERRMSG) {
3631 printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
3632 mp->mod_filename, mp->mod_id,
3633 (void *)((struct module *)mp->mod_mp)->text,
3634 (void *)((struct module *)mp->mod_mp)->data,
3635 ((struct module *)mp->mod_mp)->text_size,
3636 ((struct module *)mp->mod_mp)->data_size);
3637 }
3638
3639 func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
3640
3641 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3642 cmn_err(CE_WARN, "_init() not defined properly in %s",
3643 mp->mod_filename);
3644 return (EFAULT);
3645 }
3646
3647 if (moddebug & MODDEBUG_USERDEBUG) {
3648 printf("breakpoint before calling %s:_init()\n",
3649 mp->mod_modname);
3650 if (DEBUGGER_PRESENT)
3651 debug_enter("_init");
3652 }
3653
3654 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3655 ASSERT(mp->mod_busy && mp->mod_loaded);
3656 val = (*func)(); /* call _init */
3657
3658 if (moddebug & MODDEBUG_USERDEBUG)
3659 printf("Returned from _init, val = %x\n", val);
3660
3661 if (val == 0) {
3662 /*
3663 * Set the MODS_INSTALLED flag to enable this module
3664 * being called now.
3665 */
3666 install_stubs(mp);
3667 mp->mod_installed = 1;
3668 } else if (moddebug & MODDEBUG_ERRMSG)
3669 printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
3670
3671 return (val);
3672 }
3673
3674 int detach_driver_unconfig = 0;
3675
3676 static int
detach_driver(char * name)3677 detach_driver(char *name)
3678 {
3679 major_t major;
3680 int error;
3681
3682 /*
3683 * If being called from mod_uninstall_all() then the appropriate
3684 * driver detaches (leaf only) have already been done.
3685 */
3686 if (mod_in_autounload())
3687 return (0);
3688
3689 major = ddi_name_to_major(name);
3690 if (major == DDI_MAJOR_T_NONE)
3691 return (0);
3692
3693 error = ndi_devi_unconfig_driver(ddi_root_node(),
3694 NDI_DETACH_DRIVER | detach_driver_unconfig, major);
3695 return (error == NDI_SUCCESS ? 0 : -1);
3696 }
3697
3698 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
3699
3700 static int
moduninstall(struct modctl * mp)3701 moduninstall(struct modctl *mp)
3702 {
3703 int status = 0;
3704 int (*func)(void);
3705
3706 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3707 ASSERT(mp->mod_busy);
3708
3709 /*
3710 * Verify that we need to do something and can uninstall the module.
3711 *
3712 * If we should not uninstall the module or if the module is not in
3713 * the correct state to start an uninstall we return EBUSY to prevent
3714 * us from progressing to mod_unload. If the module has already been
3715 * uninstalled and unloaded we return EALREADY.
3716 */
3717 if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
3718 return (EBUSY);
3719 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
3720 return (EALREADY);
3721
3722 /*
3723 * To avoid devinfo / module deadlock we must release this module
3724 * prior to initiating the detach_driver, otherwise the detach_driver
3725 * might deadlock on a devinfo node held by another thread
3726 * coming top down and involving the module we have locked.
3727 *
3728 * When we regrab the module we must reverify that it is OK
3729 * to proceed with the uninstall operation.
3730 */
3731 mod_release_mod(mp);
3732 status = detach_driver(mp->mod_modname);
3733 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3734
3735 /* check detach status and reverify state with lock */
3736 mutex_enter(&mod_lock);
3737 if ((status != 0) || mp->mod_prim || mp->mod_ref) {
3738 mutex_exit(&mod_lock);
3739 return (EBUSY);
3740 }
3741 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
3742 mutex_exit(&mod_lock);
3743 return (EALREADY);
3744 }
3745 mutex_exit(&mod_lock);
3746
3747 if (moddebug & MODDEBUG_LOADMSG2)
3748 printf("uninstalling %s\n", mp->mod_modname);
3749
3750 /*
3751 * lookup _fini, return EBUSY if not defined.
3752 *
3753 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
3754 * detach(9E) - it allows bufctl addresses to be resolved.
3755 */
3756 func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
3757 if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
3758 (moddebug & MODDEBUG_FINI_EBUSY))
3759 return (EBUSY);
3760
3761 /* verify that _fini is in this module */
3762 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3763 cmn_err(CE_WARN, "_fini() not defined properly in %s",
3764 mp->mod_filename);
3765 return (EFAULT);
3766 }
3767
3768 /* call _fini() */
3769 ASSERT(MUTEX_NOT_HELD(&mod_lock));
3770 ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
3771
3772 status = (*func)();
3773
3774 if (status == 0) {
3775 /* _fini returned success, the module is no longer installed */
3776 if (moddebug & MODDEBUG_LOADMSG)
3777 printf("uninstalled %s\n", mp->mod_modname);
3778
3779 /*
3780 * Even though we only set mod_installed to zero here, a zero
3781 * return value means we are committed to a code path were
3782 * mod_loaded will also end up as zero - we have no other
3783 * way to get the module data and bss back to the pre _init
3784 * state except a reload. To ensure this, after return,
3785 * mod_busy must stay set until mod_loaded is cleared.
3786 */
3787 mp->mod_installed = 0;
3788
3789 /*
3790 * Clear the MODS_INSTALLED flag not to call functions
3791 * in the module directly from now on.
3792 */
3793 uninstall_stubs(mp);
3794 } else {
3795 if (moddebug & MODDEBUG_USERDEBUG)
3796 printf(finiret_msg, mp->mod_filename, status);
3797 /*
3798 * By definition _fini is only allowed to return EBUSY or the
3799 * result of mod_remove (EBUSY or EINVAL). In the off chance
3800 * that a driver returns EALREADY we convert this to EINVAL
3801 * since to our caller EALREADY means module was already
3802 * removed.
3803 */
3804 if (status == EALREADY)
3805 status = EINVAL;
3806 }
3807
3808 return (status);
3809 }
3810
3811 /*
3812 * Uninstall all modules.
3813 */
3814 static void
mod_uninstall_all(void)3815 mod_uninstall_all(void)
3816 {
3817 struct modctl *mp;
3818 int pass;
3819 modid_t modid;
3820
3821 /* synchronize with any active modunload_disable() */
3822 modunload_begin();
3823
3824 /* mark this thread as doing autounloading */
3825 (void) tsd_set(mod_autounload_key, (void *)1);
3826
3827 (void) devfs_clean(ddi_root_node(), NULL, 0);
3828 (void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
3829
3830 /*
3831 * Loop up to max times if we keep producing unreferenced modules.
3832 * A new unreferenced module is an opportunity to unload.
3833 */
3834 for (pass = 0; pass < mod_uninstall_pass_max; pass++) {
3835
3836 /* zero count of modules that go unreferenced during pass */
3837 mod_uninstall_ref_zero = 0;
3838
3839 modid = 0;
3840 while ((mp = mod_hold_next_by_id(modid)) != NULL) {
3841 modid = mp->mod_id;
3842
3843 /*
3844 * Skip modules with the MOD_NOAUTOUNLOAD flag set
3845 */
3846 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3847 mod_release_mod(mp);
3848 continue;
3849 }
3850
3851 if (moduninstall(mp) == 0) {
3852 mod_unload(mp);
3853 CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3854 }
3855 mod_release_mod(mp);
3856 }
3857
3858 /* break if no modules went unreferenced during pass */
3859 if (mod_uninstall_ref_zero == 0)
3860 break;
3861 }
3862 if (pass >= mod_uninstall_pass_max)
3863 mod_uninstall_pass_exc++;
3864
3865 (void) tsd_set(mod_autounload_key, NULL);
3866 modunload_end();
3867 }
3868
3869 /* wait for unloads that have begun before registering disable */
3870 void
modunload_disable(void)3871 modunload_disable(void)
3872 {
3873 mutex_enter(&modunload_wait_mutex);
3874 while (modunload_active_count) {
3875 modunload_wait++;
3876 cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3877 modunload_wait--;
3878 }
3879 modunload_disable_count++;
3880 mutex_exit(&modunload_wait_mutex);
3881 }
3882
3883 /* mark end of disable and signal waiters */
3884 void
modunload_enable(void)3885 modunload_enable(void)
3886 {
3887 mutex_enter(&modunload_wait_mutex);
3888 modunload_disable_count--;
3889 if ((modunload_disable_count == 0) && modunload_wait)
3890 cv_broadcast(&modunload_wait_cv);
3891 mutex_exit(&modunload_wait_mutex);
3892 }
3893
3894 /* wait for disables to complete before begining unload */
3895 void
modunload_begin()3896 modunload_begin()
3897 {
3898 mutex_enter(&modunload_wait_mutex);
3899 while (modunload_disable_count) {
3900 modunload_wait++;
3901 cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3902 modunload_wait--;
3903 }
3904 modunload_active_count++;
3905 mutex_exit(&modunload_wait_mutex);
3906 }
3907
3908 /* mark end of unload and signal waiters */
3909 void
modunload_end()3910 modunload_end()
3911 {
3912 mutex_enter(&modunload_wait_mutex);
3913 modunload_active_count--;
3914 if ((modunload_active_count == 0) && modunload_wait)
3915 cv_broadcast(&modunload_wait_cv);
3916 mutex_exit(&modunload_wait_mutex);
3917 }
3918
3919 void
mod_uninstall_daemon(void)3920 mod_uninstall_daemon(void)
3921 {
3922 callb_cpr_t cprinfo;
3923 clock_t ticks;
3924
3925 mod_aul_thread = curthread;
3926
3927 CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
3928 for (;;) {
3929 mutex_enter(&mod_uninstall_lock);
3930 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3931 /*
3932 * In DEBUG kernels, unheld drivers are uninstalled periodically
3933 * every mod_uninstall_interval seconds. Periodic uninstall can
3934 * be disabled by setting mod_uninstall_interval to 0 which is
3935 * the default for a non-DEBUG kernel.
3936 */
3937 if (mod_uninstall_interval) {
3938 ticks = drv_usectohz(mod_uninstall_interval * 1000000);
3939 (void) cv_reltimedwait(&mod_uninstall_cv,
3940 &mod_uninstall_lock, ticks, TR_CLOCK_TICK);
3941 } else {
3942 cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
3943 }
3944 /*
3945 * The whole daemon is safe for CPR except we don't want
3946 * the daemon to run if FREEZE is issued and this daemon
3947 * wakes up from the cv_wait above. In this case, it'll be
3948 * blocked in CALLB_CPR_SAFE_END until THAW is issued.
3949 *
3950 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
3951 * mod_uninstall_lock is used to protect cprinfo and
3952 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
3953 * called.
3954 */
3955 CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
3956 CALLB_CPR_SAFE_BEGIN(&cprinfo);
3957 mutex_exit(&mod_uninstall_lock);
3958 if ((modunload_disable_count == 0) &&
3959 ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
3960 mod_uninstall_all();
3961 }
3962 }
3963 }
3964
3965 /*
3966 * Unload all uninstalled modules.
3967 */
3968 void
modreap(void)3969 modreap(void)
3970 {
3971 mutex_enter(&mod_uninstall_lock);
3972 cv_broadcast(&mod_uninstall_cv);
3973 mutex_exit(&mod_uninstall_lock);
3974 }
3975
3976 /*
3977 * Hold the specified module. This is the module holding primitive.
3978 *
3979 * If MOD_LOCK_HELD then the caller already holds the mod_lock.
3980 *
3981 * Return values:
3982 * 0 ==> the module is held
3983 * 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
3984 * to determine how to retry.
3985 */
3986 int
mod_hold_by_modctl(struct modctl * mp,int f)3987 mod_hold_by_modctl(struct modctl *mp, int f)
3988 {
3989 ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
3990 ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
3991 (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
3992 ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
3993 ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
3994 (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
3995 ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
3996
3997 if (f & MOD_LOCK_NOT_HELD)
3998 mutex_enter(&mod_lock);
3999
4000 while (mp->mod_busy) {
4001 mp->mod_want = 1;
4002 cv_wait(&mod_cv, &mod_lock);
4003 /*
4004 * Module may be unloaded by daemon.
4005 * Nevertheless, modctl structure is still in linked list
4006 * (i.e., off &modules), not freed!
4007 * Caller is not supposed to assume "mp" is valid, but there
4008 * is no reasonable way to detect this but using
4009 * mp->mod_modinfo->mp == NULL check (follow the back pointer)
4010 * (or similar check depending on calling context)
4011 * DON'T free modctl structure, it will be very very
4012 * problematic.
4013 */
4014 if (f & MOD_WAIT_ONCE) {
4015 if (f & MOD_LOCK_NOT_HELD)
4016 mutex_exit(&mod_lock);
4017 return (1); /* caller decides how to retry */
4018 }
4019 }
4020
4021 mp->mod_busy = 1;
4022 mp->mod_inprogress_thread =
4023 (curthread == NULL ? (kthread_id_t)-1 : curthread);
4024
4025 if (f & MOD_LOCK_NOT_HELD)
4026 mutex_exit(&mod_lock);
4027 return (0);
4028 }
4029
4030 static struct modctl *
mod_hold_by_name_common(struct modctl * dep,const char * filename)4031 mod_hold_by_name_common(struct modctl *dep, const char *filename)
4032 {
4033 const char *modname;
4034 struct modctl *mp;
4035 char *curname, *newname;
4036 int found = 0;
4037
4038 mutex_enter(&mod_lock);
4039
4040 if ((modname = strrchr(filename, '/')) == NULL)
4041 modname = filename;
4042 else
4043 modname++;
4044
4045 mp = &modules;
4046 do {
4047 if (strcmp(modname, mp->mod_modname) == 0) {
4048 found = 1;
4049 break;
4050 }
4051 } while ((mp = mp->mod_next) != &modules);
4052
4053 if (found == 0) {
4054 mp = allocate_modp(filename, modname);
4055 modadd(mp);
4056 }
4057
4058 /*
4059 * if dep is not NULL, set the mp in mod_requisite_loading for
4060 * the module circular dependency check. This field is used in
4061 * mod_circdep(), but it's cleard in mod_hold_loaded_mod().
4062 */
4063 if (dep != NULL) {
4064 ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
4065 dep->mod_requisite_loading = mp;
4066 }
4067
4068 /*
4069 * If the module was held, then it must be us who has it held.
4070 */
4071 if (mod_circdep(mp))
4072 mp = NULL;
4073 else {
4074 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4075
4076 /*
4077 * If the name hadn't been set or has changed, allocate
4078 * space and set it. Free space used by previous name.
4079 *
4080 * Do not change the name of primary modules, for primary
4081 * modules the mod_filename was allocated in standalone mode:
4082 * it is illegal to kobj_alloc in standalone mode and kobj_free
4083 * in non-standalone mode.
4084 */
4085 curname = mp->mod_filename;
4086 if (curname == NULL ||
4087 ((mp->mod_prim == 0) &&
4088 (curname != filename) &&
4089 (modname != filename) &&
4090 (strcmp(curname, filename) != 0))) {
4091 newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
4092 (void) strcpy(newname, filename);
4093 mp->mod_filename = newname;
4094 if (curname != NULL)
4095 kobj_free(curname, strlen(curname) + 1);
4096 }
4097 }
4098
4099 mutex_exit(&mod_lock);
4100 if (mp && moddebug & MODDEBUG_LOADMSG2)
4101 printf("Holding %s\n", mp->mod_filename);
4102 if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
4103 printf("circular dependency loading %s\n", filename);
4104 return (mp);
4105 }
4106
4107 static struct modctl *
mod_hold_by_name_requisite(struct modctl * dep,char * filename)4108 mod_hold_by_name_requisite(struct modctl *dep, char *filename)
4109 {
4110 return (mod_hold_by_name_common(dep, filename));
4111 }
4112
4113 struct modctl *
mod_hold_by_name(const char * filename)4114 mod_hold_by_name(const char *filename)
4115 {
4116 return (mod_hold_by_name_common(NULL, filename));
4117 }
4118
4119 struct modctl *
mod_hold_by_id(modid_t modid)4120 mod_hold_by_id(modid_t modid)
4121 {
4122 struct modctl *mp;
4123 int found = 0;
4124
4125 mutex_enter(&mod_lock);
4126 mp = &modules;
4127 do {
4128 if (mp->mod_id == modid) {
4129 found = 1;
4130 break;
4131 }
4132 } while ((mp = mp->mod_next) != &modules);
4133
4134 if ((found == 0) || mod_circdep(mp))
4135 mp = NULL;
4136 else
4137 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4138
4139 mutex_exit(&mod_lock);
4140 return (mp);
4141 }
4142
4143 static struct modctl *
mod_hold_next_by_id(modid_t modid)4144 mod_hold_next_by_id(modid_t modid)
4145 {
4146 struct modctl *mp;
4147 int found = 0;
4148
4149 if (modid < -1)
4150 return (NULL);
4151
4152 mutex_enter(&mod_lock);
4153
4154 mp = &modules;
4155 do {
4156 if (mp->mod_id > modid) {
4157 found = 1;
4158 break;
4159 }
4160 } while ((mp = mp->mod_next) != &modules);
4161
4162 if ((found == 0) || mod_circdep(mp))
4163 mp = NULL;
4164 else
4165 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4166
4167 mutex_exit(&mod_lock);
4168 return (mp);
4169 }
4170
4171 static void
mod_release(struct modctl * mp)4172 mod_release(struct modctl *mp)
4173 {
4174 ASSERT(MUTEX_HELD(&mod_lock));
4175 ASSERT(mp->mod_busy);
4176
4177 mp->mod_busy = 0;
4178 mp->mod_inprogress_thread = NULL;
4179 if (mp->mod_want) {
4180 mp->mod_want = 0;
4181 cv_broadcast(&mod_cv);
4182 }
4183 }
4184
4185 void
mod_release_mod(struct modctl * mp)4186 mod_release_mod(struct modctl *mp)
4187 {
4188 if (moddebug & MODDEBUG_LOADMSG2)
4189 printf("Releasing %s\n", mp->mod_filename);
4190 mutex_enter(&mod_lock);
4191 mod_release(mp);
4192 mutex_exit(&mod_lock);
4193 }
4194
4195 modid_t
mod_name_to_modid(const char * filename)4196 mod_name_to_modid(const char *filename)
4197 {
4198 const char *modname;
4199 struct modctl *mp;
4200
4201 mutex_enter(&mod_lock);
4202
4203 if ((modname = strrchr(filename, '/')) == NULL)
4204 modname = filename;
4205 else
4206 modname++;
4207
4208 mp = &modules;
4209 do {
4210 if (strcmp(modname, mp->mod_modname) == 0) {
4211 mutex_exit(&mod_lock);
4212 return (mp->mod_id);
4213 }
4214 } while ((mp = mp->mod_next) != &modules);
4215
4216 mutex_exit(&mod_lock);
4217 return (-1);
4218 }
4219
4220
4221 int
mod_remove_by_name(char * name)4222 mod_remove_by_name(char *name)
4223 {
4224 struct modctl *mp;
4225 int retval;
4226
4227 mp = mod_hold_by_name(name);
4228
4229 if (mp == NULL)
4230 return (EINVAL);
4231
4232 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
4233 /*
4234 * Do not unload forceloaded modules
4235 */
4236 mod_release_mod(mp);
4237 return (0);
4238 }
4239
4240 if ((retval = moduninstall(mp)) == 0) {
4241 mod_unload(mp);
4242 CPU_STATS_ADDQ(CPU, sys, modunload, 1);
4243 } else if (retval == EALREADY)
4244 retval = 0; /* already unloaded, not an error */
4245 mod_release_mod(mp);
4246 return (retval);
4247 }
4248
4249 /*
4250 * Record that module "dep" is dependent on module "on_mod."
4251 */
4252 static void
mod_make_requisite(struct modctl * dependent,struct modctl * on_mod)4253 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
4254 {
4255 struct modctl_list **pmlnp; /* previous next pointer */
4256 struct modctl_list *mlp;
4257 struct modctl_list *new;
4258
4259 ASSERT(dependent->mod_busy && on_mod->mod_busy);
4260 mutex_enter(&mod_lock);
4261
4262 /*
4263 * Search dependent's requisite list to see if on_mod is recorded.
4264 * List is ordered by id.
4265 */
4266 for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
4267 mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
4268 if (mlp->modl_modp->mod_id >= on_mod->mod_id)
4269 break;
4270
4271 /* Create and insert if not already recorded */
4272 if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
4273 new = kobj_zalloc(sizeof (*new), KM_SLEEP);
4274 new->modl_modp = on_mod;
4275 new->modl_next = mlp;
4276 *pmlnp = new;
4277
4278 /*
4279 * Increment the mod_ref count in our new requisite module.
4280 * This is what keeps a module that has other modules
4281 * which are dependent on it from being uninstalled and
4282 * unloaded. "on_mod"'s mod_ref count decremented in
4283 * mod_release_requisites when the "dependent" module
4284 * unload is complete. "on_mod" must be loaded, but may not
4285 * yet be installed.
4286 */
4287 on_mod->mod_ref++;
4288 ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
4289 }
4290
4291 mutex_exit(&mod_lock);
4292 }
4293
4294 /*
4295 * release the hold associated with mod_make_requisite mod_ref++
4296 * as part of unload.
4297 */
4298 void
mod_release_requisites(struct modctl * modp)4299 mod_release_requisites(struct modctl *modp)
4300 {
4301 struct modctl_list *modl;
4302 struct modctl_list *next;
4303 struct modctl *req;
4304 struct modctl_list *start = NULL, *mod_garbage;
4305
4306 ASSERT(!quiesce_active);
4307 ASSERT(modp->mod_busy);
4308 ASSERT(MUTEX_NOT_HELD(&mod_lock));
4309
4310 mutex_enter(&mod_lock); /* needed for manipulation of req */
4311 for (modl = modp->mod_requisites; modl; modl = next) {
4312 next = modl->modl_next;
4313 req = modl->modl_modp;
4314 ASSERT(req->mod_ref >= 1 && req->mod_loaded);
4315 req->mod_ref--;
4316 if (req->mod_ref == 0)
4317 mod_uninstall_ref_zero++;
4318
4319 /*
4320 * Check if the module has to be unloaded or not.
4321 */
4322 if (req->mod_ref == 0 && req->mod_delay_unload) {
4323 struct modctl_list *new;
4324 /*
4325 * Allocate the modclt_list holding the garbage
4326 * module which should be unloaded later.
4327 */
4328 new = kobj_zalloc(sizeof (struct modctl_list),
4329 KM_SLEEP);
4330 new->modl_modp = req;
4331
4332 if (start == NULL)
4333 mod_garbage = start = new;
4334 else {
4335 mod_garbage->modl_next = new;
4336 mod_garbage = new;
4337 }
4338 }
4339
4340 /* free the list as we go */
4341 kobj_free(modl, sizeof (*modl));
4342 }
4343 modp->mod_requisites = NULL;
4344 mutex_exit(&mod_lock);
4345
4346 /*
4347 * Unload the garbage modules.
4348 */
4349 for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
4350 struct modctl_list *old = mod_garbage;
4351 struct modctl *mp = mod_garbage->modl_modp;
4352 ASSERT(mp != NULL);
4353
4354 /*
4355 * Hold this module until it's unloaded completely.
4356 */
4357 (void) mod_hold_by_modctl(mp,
4358 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4359 /*
4360 * Check if the module is not unloaded yet and nobody requires
4361 * the module. If it's unloaded already or somebody still
4362 * requires the module, don't unload it now.
4363 */
4364 if (mp->mod_loaded && mp->mod_ref == 0)
4365 mod_unload(mp);
4366 ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
4367 (mp->mod_ref > 0));
4368 mod_release_mod(mp);
4369
4370 mod_garbage = mod_garbage->modl_next;
4371 kobj_free(old, sizeof (struct modctl_list));
4372 }
4373 }
4374
4375 /*
4376 * Process dependency of the module represented by "dep" on the
4377 * module named by "on."
4378 *
4379 * Called from kobj_do_dependents() to load a module "on" on which
4380 * "dep" depends.
4381 */
4382 struct modctl *
mod_load_requisite(struct modctl * dep,char * on)4383 mod_load_requisite(struct modctl *dep, char *on)
4384 {
4385 struct modctl *on_mod;
4386 int retval;
4387
4388 if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
4389 mod_make_requisite(dep, on_mod);
4390 } else if (moddebug & MODDEBUG_ERRMSG) {
4391 printf("error processing %s on which module %s depends\n",
4392 on, dep->mod_modname);
4393 }
4394 return (on_mod);
4395 }
4396
4397 static int
mod_install_requisites(struct modctl * modp)4398 mod_install_requisites(struct modctl *modp)
4399 {
4400 struct modctl_list *modl;
4401 struct modctl *req;
4402 int status = 0;
4403
4404 ASSERT(MUTEX_NOT_HELD(&mod_lock));
4405 ASSERT(modp->mod_busy);
4406
4407 for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
4408 req = modl->modl_modp;
4409 (void) mod_hold_by_modctl(req,
4410 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4411 status = modinstall(req);
4412 mod_release_mod(req);
4413
4414 if (status != 0)
4415 break;
4416 }
4417 return (status);
4418 }
4419
4420 /*
4421 * returns 1 if this thread is doing autounload, 0 otherwise.
4422 * see mod_uninstall_all.
4423 */
4424 int
mod_in_autounload()4425 mod_in_autounload()
4426 {
4427 return ((int)(uintptr_t)tsd_get(mod_autounload_key));
4428 }
4429
4430 /*
4431 * gmatch adapted from libc, stripping the wchar stuff
4432 */
4433 #define popchar(p, c) { \
4434 c = *p++; \
4435 if (c == 0) { \
4436 return (0); \
4437 } \
4438 }
4439
4440 int
gmatch(const char * s,const char * p)4441 gmatch(const char *s, const char *p)
4442 {
4443 int c, sc;
4444 int ok, lc, notflag;
4445
4446 sc = *s++;
4447 c = *p++;
4448 if (c == 0)
4449 return (sc == c); /* nothing matches nothing */
4450
4451 switch (c) {
4452 case '\\':
4453 /* skip to quoted character */
4454 popchar(p, c);
4455 /*FALLTHRU*/
4456
4457 default:
4458 /* straight comparison */
4459 if (c != sc)
4460 return (0);
4461 /*FALLTHRU*/
4462
4463 case '?':
4464 /* first char matches, move to remainder */
4465 return (sc != '\0' ? gmatch(s, p) : 0);
4466
4467
4468 case '*':
4469 while (*p == '*')
4470 p++;
4471
4472 /* * matches everything */
4473 if (*p == 0)
4474 return (1);
4475
4476 /* undo skip at the beginning & iterate over substrings */
4477 --s;
4478 while (*s) {
4479 if (gmatch(s, p))
4480 return (1);
4481 s++;
4482 }
4483 return (0);
4484
4485 case '[':
4486 /* match any char within [] */
4487 if (sc == 0)
4488 return (0);
4489
4490 ok = lc = notflag = 0;
4491
4492 if (*p == '!') {
4493 notflag = 1;
4494 p++;
4495 }
4496 popchar(p, c);
4497
4498 do {
4499 if (c == '-' && lc && *p != ']') {
4500 /* test sc against range [c1-c2] */
4501 popchar(p, c);
4502 if (c == '\\') {
4503 popchar(p, c);
4504 }
4505
4506 if (notflag) {
4507 /* return 0 on mismatch */
4508 if (lc <= sc && sc <= c)
4509 return (0);
4510 ok++;
4511 } else if (lc <= sc && sc <= c) {
4512 ok++;
4513 }
4514 /* keep going, may get a match next */
4515 } else if (c == '\\') {
4516 /* skip to quoted character */
4517 popchar(p, c);
4518 }
4519 lc = c;
4520 if (notflag) {
4521 if (sc == lc)
4522 return (0);
4523 ok++;
4524 } else if (sc == lc) {
4525 ok++;
4526 }
4527 popchar(p, c);
4528 } while (c != ']');
4529
4530 /* recurse on remainder of string */
4531 return (ok ? gmatch(s, p) : 0);
4532 }
4533 /*NOTREACHED*/
4534 }
4535
4536
4537 /*
4538 * Get default perm for device from /etc/minor_perm. Return 0 if match found.
4539 *
4540 * Pure wild-carded patterns are handled separately so the ordering of
4541 * these patterns doesn't matter. We're still dependent on ordering
4542 * however as the first matching entry is the one returned.
4543 * Not ideal but all existing examples and usage do imply this
4544 * ordering implicitly.
4545 *
4546 * Drivers using the clone driver are always good for some entertainment.
4547 * Clone nodes under pseudo have the form clone@0:<driver>. Some minor
4548 * perm entries have the form clone:<driver>, others use <driver>:*
4549 * Examples are clone:llc1 vs. llc2:*, for example.
4550 *
4551 * Minor perms in the clone:<driver> form are mapped to the drivers's
4552 * mperm list, not the clone driver, as wildcard entries for clone
4553 * reference only. In other words, a clone wildcard will match
4554 * references for clone@0:<driver> but never <driver>@<minor>.
4555 *
4556 * Additional minor perms in the standard form are also supported,
4557 * for mixed usage, ie a node with an entry clone:<driver> could
4558 * provide further entries <driver>:<minor>.
4559 *
4560 * Finally, some uses of clone use an alias as the minor name rather
4561 * than the driver name, with the alias as the minor perm entry.
4562 * This case is handled by attaching the driver to bring its
4563 * minor list into existence, then discover the alias via DDI_ALIAS.
4564 * The clone device's minor perm list can then be searched for
4565 * that alias.
4566 */
4567
4568 static int
dev_alias_minorperm(dev_info_t * dip,char * minor_name,mperm_t * rmp)4569 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
4570 {
4571 major_t major;
4572 struct devnames *dnp;
4573 mperm_t *mp;
4574 char *alias = NULL;
4575 dev_info_t *cdevi;
4576 struct ddi_minor_data *dmd;
4577
4578 major = ddi_name_to_major(minor_name);
4579
4580 ASSERT(dip == clone_dip);
4581 ASSERT(major != DDI_MAJOR_T_NONE);
4582
4583 /*
4584 * Attach the driver named by the minor node, then
4585 * search its first instance's minor list for an
4586 * alias node.
4587 */
4588 if (ddi_hold_installed_driver(major) == NULL)
4589 return (1);
4590
4591 dnp = &devnamesp[major];
4592 LOCK_DEV_OPS(&dnp->dn_lock);
4593
4594 if ((cdevi = dnp->dn_head) != NULL) {
4595 ndi_devi_enter(cdevi);
4596 for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
4597 if (dmd->type == DDM_ALIAS) {
4598 alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
4599 break;
4600 }
4601 }
4602 ndi_devi_exit(cdevi);
4603 }
4604
4605 UNLOCK_DEV_OPS(&dnp->dn_lock);
4606 ddi_rele_driver(major);
4607
4608 if (alias == NULL) {
4609 if (moddebug & MODDEBUG_MINORPERM)
4610 cmn_err(CE_CONT, "dev_minorperm: "
4611 "no alias for %s\n", minor_name);
4612 return (1);
4613 }
4614
4615 major = ddi_driver_major(clone_dip);
4616 dnp = &devnamesp[major];
4617 LOCK_DEV_OPS(&dnp->dn_lock);
4618
4619 /*
4620 * Go through the clone driver's mperm list looking
4621 * for a match for the specified alias.
4622 */
4623 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4624 if (strcmp(alias, mp->mp_minorname) == 0) {
4625 break;
4626 }
4627 }
4628
4629 if (mp) {
4630 if (moddebug & MODDEBUG_MP_MATCH) {
4631 cmn_err(CE_CONT,
4632 "minor perm defaults: %s %s 0%o %d %d (aliased)\n",
4633 minor_name, alias, mp->mp_mode,
4634 mp->mp_uid, mp->mp_gid);
4635 }
4636 rmp->mp_uid = mp->mp_uid;
4637 rmp->mp_gid = mp->mp_gid;
4638 rmp->mp_mode = mp->mp_mode;
4639 }
4640 UNLOCK_DEV_OPS(&dnp->dn_lock);
4641
4642 kmem_free(alias, strlen(alias)+1);
4643
4644 return (mp == NULL);
4645 }
4646
4647 int
dev_minorperm(dev_info_t * dip,char * name,mperm_t * rmp)4648 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
4649 {
4650 major_t major;
4651 char *minor_name;
4652 struct devnames *dnp;
4653 mperm_t *mp;
4654 int is_clone = 0;
4655
4656 if (!minorperm_loaded) {
4657 if (moddebug & MODDEBUG_MINORPERM)
4658 cmn_err(CE_CONT,
4659 "%s: minor perm not yet loaded\n", name);
4660 return (1);
4661 }
4662
4663 minor_name = strchr(name, ':');
4664 if (minor_name == NULL)
4665 return (1);
4666 minor_name++;
4667
4668 /*
4669 * If it's the clone driver, search the driver as named
4670 * by the minor. All clone minor perm entries other than
4671 * alias nodes are actually installed on the real driver's list.
4672 */
4673 if (dip == clone_dip) {
4674 major = ddi_name_to_major(minor_name);
4675 if (major == DDI_MAJOR_T_NONE) {
4676 if (moddebug & MODDEBUG_MINORPERM)
4677 cmn_err(CE_CONT, "dev_minorperm: "
4678 "%s: no such driver\n", minor_name);
4679 return (1);
4680 }
4681 is_clone = 1;
4682 } else {
4683 major = ddi_driver_major(dip);
4684 ASSERT(major != DDI_MAJOR_T_NONE);
4685 }
4686
4687 dnp = &devnamesp[major];
4688 LOCK_DEV_OPS(&dnp->dn_lock);
4689
4690 /*
4691 * Go through the driver's mperm list looking for
4692 * a match for the specified minor. If there's
4693 * no matching pattern, use the wild card.
4694 * Defer to the clone wild for clone if specified,
4695 * otherwise fall back to the normal form.
4696 */
4697 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4698 if (gmatch(minor_name, mp->mp_minorname) != 0) {
4699 break;
4700 }
4701 }
4702 if (mp == NULL) {
4703 if (is_clone)
4704 mp = dnp->dn_mperm_clone;
4705 if (mp == NULL)
4706 mp = dnp->dn_mperm_wild;
4707 }
4708
4709 if (mp) {
4710 if (moddebug & MODDEBUG_MP_MATCH) {
4711 cmn_err(CE_CONT,
4712 "minor perm defaults: %s %s 0%o %d %d\n",
4713 name, mp->mp_minorname, mp->mp_mode,
4714 mp->mp_uid, mp->mp_gid);
4715 }
4716 rmp->mp_uid = mp->mp_uid;
4717 rmp->mp_gid = mp->mp_gid;
4718 rmp->mp_mode = mp->mp_mode;
4719 }
4720 UNLOCK_DEV_OPS(&dnp->dn_lock);
4721
4722 /*
4723 * If no match can be found for a clone node,
4724 * search for a possible match for an alias.
4725 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
4726 * with minor perm entry clone:ptmx.
4727 */
4728 if (mp == NULL && is_clone) {
4729 return (dev_alias_minorperm(dip, minor_name, rmp));
4730 }
4731
4732 return (mp == NULL);
4733 }
4734
4735 /*
4736 * dynamicaly reference load a dl module/library, returning handle
4737 */
4738 /*ARGSUSED*/
4739 ddi_modhandle_t
ddi_modopen(const char * modname,int mode,int * errnop)4740 ddi_modopen(const char *modname, int mode, int *errnop)
4741 {
4742 char *subdir;
4743 char *mod;
4744 int subdirlen;
4745 struct modctl *hmodp = NULL;
4746 int retval = EINVAL;
4747
4748 ASSERT(modname && (mode == KRTLD_MODE_FIRST));
4749 if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
4750 goto out;
4751
4752 /* find last '/' in modname */
4753 mod = strrchr(modname, '/');
4754
4755 if (mod) {
4756 /* for subdir string without modification to argument */
4757 mod++;
4758 subdirlen = mod - modname;
4759 subdir = kmem_alloc(subdirlen, KM_SLEEP);
4760 (void) strlcpy(subdir, modname, subdirlen);
4761 } else {
4762 subdirlen = 0;
4763 subdir = "misc";
4764 mod = (char *)modname;
4765 }
4766
4767 /* reference load with errno return value */
4768 retval = modrload(subdir, mod, &hmodp);
4769
4770 if (subdirlen)
4771 kmem_free(subdir, subdirlen);
4772
4773 out: if (errnop)
4774 *errnop = retval;
4775
4776 if (moddebug & MODDEBUG_DDI_MOD)
4777 printf("ddi_modopen %s mode %x: %s %p %d\n",
4778 modname ? modname : "<unknown>", mode,
4779 hmodp ? hmodp->mod_filename : "<unknown>",
4780 (void *)hmodp, retval);
4781
4782 return ((ddi_modhandle_t)hmodp);
4783 }
4784
4785 /* lookup "name" in open dl module/library */
4786 void *
ddi_modsym(ddi_modhandle_t h,const char * name,int * errnop)4787 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
4788 {
4789 struct modctl *hmodp = (struct modctl *)h;
4790 void *f;
4791 int retval;
4792
4793 ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4794 if ((hmodp == NULL) || (name == NULL) ||
4795 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4796 f = NULL;
4797 retval = EINVAL;
4798 } else {
4799 f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
4800 if (f)
4801 retval = 0;
4802 else
4803 retval = ENOTSUP;
4804 }
4805
4806 if (moddebug & MODDEBUG_DDI_MOD)
4807 printf("ddi_modsym in %s of %s: %d %p\n",
4808 hmodp ? hmodp->mod_modname : "<unknown>",
4809 name ? name : "<unknown>", retval, f);
4810
4811 if (errnop)
4812 *errnop = retval;
4813 return (f);
4814 }
4815
4816 /* dynamic (un)reference unload of an open dl module/library */
4817 int
ddi_modclose(ddi_modhandle_t h)4818 ddi_modclose(ddi_modhandle_t h)
4819 {
4820 struct modctl *hmodp = (struct modctl *)h;
4821 struct modctl *modp = NULL;
4822 int retval;
4823
4824 ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4825 if ((hmodp == NULL) ||
4826 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4827 retval = EINVAL;
4828 goto out;
4829 }
4830
4831 retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
4832 if (retval == EBUSY)
4833 retval = 0; /* EBUSY is not an error */
4834
4835 if (retval == 0) {
4836 ASSERT(hmodp == modp);
4837 if (hmodp != modp)
4838 retval = EINVAL;
4839 }
4840
4841 out: if (moddebug & MODDEBUG_DDI_MOD)
4842 printf("ddi_modclose %s: %d\n",
4843 hmodp ? hmodp->mod_modname : "<unknown>", retval);
4844
4845 return (retval);
4846 }
4847