1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * modctl system call for loadable module support. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/exec.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/conf.h> 40 #include <sys/time.h> 41 #include <sys/reboot.h> 42 #include <sys/fs/ufs_fsdir.h> 43 #include <sys/kmem.h> 44 #include <sys/sysconf.h> 45 #include <sys/cmn_err.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunndi.h> 49 #include <sys/ndi_impldefs.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/ddi_implfuncs.h> 52 #include <sys/bootconf.h> 53 #include <sys/dc_ki.h> 54 #include <sys/cladm.h> 55 #include <sys/dtrace.h> 56 #include <sys/kdi.h> 57 58 #include <sys/devpolicy.h> 59 #include <sys/modctl.h> 60 #include <sys/kobj.h> 61 #include <sys/devops.h> 62 #include <sys/autoconf.h> 63 #include <sys/hwconf.h> 64 #include <sys/callb.h> 65 #include <sys/debug.h> 66 #include <sys/cpuvar.h> 67 #include <sys/sysmacros.h> 68 #include <sys/sysevent.h> 69 #include <sys/sysevent_impl.h> 70 #include <sys/instance.h> 71 #include <sys/modhash.h> 72 #include <sys/modhash_impl.h> 73 #include <sys/dacf_impl.h> 74 #include <sys/vfs.h> 75 #include <sys/pathname.h> 76 #include <sys/console.h> 77 #include <sys/policy.h> 78 #include <ipp/ipp_impl.h> 79 #include <sys/fs/dv_node.h> 80 #include <sys/strsubr.h> 81 #include <sys/fs/sdev_node.h> 82 83 static int mod_circdep(struct modctl *); 84 static int modinfo(modid_t, struct modinfo *); 85 86 static void mod_uninstall_all(void); 87 static int mod_getinfo(struct modctl *, struct modinfo *); 88 static struct modctl *allocate_modp(const char *, const char *); 89 90 static int mod_load(struct modctl *, int); 91 static void mod_unload(struct modctl *); 92 static int modinstall(struct modctl *); 93 static int moduninstall(struct modctl *); 94 95 static struct modctl *mod_hold_by_name_common(struct modctl *, const char *); 96 static struct modctl *mod_hold_next_by_id(modid_t); 97 static struct modctl *mod_hold_loaded_mod(struct modctl *, char *, int *); 98 static struct modctl *mod_hold_installed_mod(char *, int, int *); 99 100 static void mod_release(struct modctl *); 101 static void mod_make_requisite(struct modctl *, struct modctl *); 102 static int mod_install_requisites(struct modctl *); 103 static void check_esc_sequences(char *, char *); 104 static struct modctl *mod_hold_by_name_requisite(struct modctl *, char *); 105 106 /* 107 * module loading thread control structure. Calls to kobj_load_module()() are 108 * handled off to a separate thead using this structure. 109 */ 110 struct loadmt { 111 ksema_t sema; 112 struct modctl *mp; 113 int usepath; 114 kthread_t *owner; 115 int retval; 116 }; 117 118 static void modload_thread(struct loadmt *); 119 120 kcondvar_t mod_cv; 121 kcondvar_t mod_uninstall_cv; /* Communication between swapper */ 122 /* and the uninstall daemon. */ 123 kmutex_t mod_lock; /* protects &modules insert linkage, */ 124 /* mod_busy, mod_want, and mod_ref. */ 125 /* blocking operations while holding */ 126 /* mod_lock should be avoided */ 127 kmutex_t mod_uninstall_lock; /* protects mod_uninstall_cv */ 128 kthread_id_t mod_aul_thread; 129 130 int modunload_wait; 131 kmutex_t modunload_wait_mutex; 132 kcondvar_t modunload_wait_cv; 133 int modunload_active_count; 134 int modunload_disable_count; 135 136 int isminiroot; /* set if running as miniroot */ 137 int modrootloaded; /* set after root driver and fs are loaded */ 138 int moddebug = 0x0; /* debug flags for module writers */ 139 int swaploaded; /* set after swap driver and fs are loaded */ 140 int bop_io_quiesced = 0; /* set when BOP I/O can no longer be used */ 141 int last_module_id; 142 clock_t mod_uninstall_interval = 0; 143 int ddi_modclose_unload = 1; /* 0 -> just decrement reference */ 144 145 struct devnames *devnamesp; 146 struct devnames orphanlist; 147 148 krwlock_t devinfo_tree_lock; /* obsolete, to be removed */ 149 150 #define MAJBINDFILE "/etc/name_to_major" 151 #define SYSBINDFILE "/etc/name_to_sysnum" 152 153 static char majbind[] = MAJBINDFILE; 154 static char sysbind[] = SYSBINDFILE; 155 static uint_t mod_autounload_key; /* for module autounload detection */ 156 157 extern int obpdebug; 158 extern int make_mbind(char *, int, char *, struct bind **); 159 160 #define DEBUGGER_PRESENT ((boothowto & RB_DEBUG) || (obpdebug != 0)) 161 162 static int minorperm_loaded = 0; 163 164 void 165 mod_setup(void) 166 { 167 struct sysent *callp; 168 int callnum, exectype; 169 int num_devs; 170 int i; 171 172 /* 173 * Initialize the list of loaded driver dev_ops. 174 * XXX - This must be done before reading the system file so that 175 * forceloads of drivers will work. 176 */ 177 num_devs = read_binding_file(majbind, mb_hashtab, make_mbind); 178 /* 179 * Since read_binding_file is common code, it doesn't enforce that all 180 * of the binding file entries have major numbers <= MAXMAJ32. Thus, 181 * ensure that we don't allocate some massive amount of space due to a 182 * bad entry. We can't have major numbers bigger than MAXMAJ32 183 * until file system support for larger major numbers exists. 184 */ 185 186 /* 187 * Leave space for expansion, but not more than L_MAXMAJ32 188 */ 189 devcnt = MIN(num_devs + 30, L_MAXMAJ32); 190 devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP); 191 for (i = 0; i < devcnt; i++) 192 devopsp[i] = &mod_nodev_ops; 193 194 init_devnamesp(devcnt); 195 196 /* 197 * Sync up with the work that the stand-alone linker has already done. 198 */ 199 (void) kobj_sync(); 200 201 if (boothowto & RB_DEBUG) 202 kdi_dvec_modavail(); 203 204 make_aliases(mb_hashtab); 205 206 /* 207 * Initialize streams device implementation structures. 208 */ 209 devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP); 210 211 /* 212 * If the cl_bootstrap module is present, 213 * we should be configured as a cluster. Loading this module 214 * will set "cluster_bootflags" to non-zero. 215 */ 216 (void) modload("misc", "cl_bootstrap"); 217 218 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 219 init_syscallnames(NSYSCALL); 220 221 /* 222 * Start up dynamic autoconfiguration framework (dacf). 223 */ 224 mod_hash_init(); 225 dacf_init(); 226 227 /* 228 * Start up IP policy framework (ipp). 229 */ 230 ipp_init(); 231 232 /* 233 * Allocate loadable native system call locks. 234 */ 235 for (callnum = 0, callp = sysent; callnum < NSYSCALL; 236 callnum++, callp++) { 237 if (LOADABLE_SYSCALL(callp)) { 238 if (mod_getsysname(callnum) != NULL) { 239 callp->sy_lock = 240 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 241 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 242 } else { 243 callp->sy_flags &= ~SE_LOADABLE; 244 callp->sy_callc = nosys; 245 } 246 #ifdef DEBUG 247 } else { 248 /* 249 * Do some sanity checks on the sysent table 250 */ 251 switch (callp->sy_flags & SE_RVAL_MASK) { 252 case SE_32RVAL1: 253 /* only r_val1 returned */ 254 case SE_32RVAL1 | SE_32RVAL2: 255 /* r_val1 and r_val2 returned */ 256 case SE_64RVAL: 257 /* 64-bit rval returned */ 258 break; 259 default: 260 cmn_err(CE_WARN, "sysent[%d]: bad flags %x", 261 callnum, callp->sy_flags); 262 } 263 #endif 264 } 265 } 266 267 #ifdef _SYSCALL32_IMPL 268 /* 269 * Allocate loadable system call locks for 32-bit compat syscalls 270 */ 271 for (callnum = 0, callp = sysent32; callnum < NSYSCALL; 272 callnum++, callp++) { 273 if (LOADABLE_SYSCALL(callp)) { 274 if (mod_getsysname(callnum) != NULL) { 275 callp->sy_lock = 276 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 277 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 278 } else { 279 callp->sy_flags &= ~SE_LOADABLE; 280 callp->sy_callc = nosys; 281 } 282 #ifdef DEBUG 283 } else { 284 /* 285 * Do some sanity checks on the sysent table 286 */ 287 switch (callp->sy_flags & SE_RVAL_MASK) { 288 case SE_32RVAL1: 289 /* only r_val1 returned */ 290 case SE_32RVAL1 | SE_32RVAL2: 291 /* r_val1 and r_val2 returned */ 292 case SE_64RVAL: 293 /* 64-bit rval returned */ 294 break; 295 default: 296 cmn_err(CE_WARN, "sysent32[%d]: bad flags %x", 297 callnum, callp->sy_flags); 298 goto skip; 299 } 300 301 /* 302 * Cross-check the native and compatibility tables. 303 */ 304 if (callp->sy_callc == nosys || 305 sysent[callnum].sy_callc == nosys) 306 continue; 307 /* 308 * If only one or the other slot is loadable, then 309 * there's an error -- they should match! 310 */ 311 if ((callp->sy_callc == loadable_syscall) ^ 312 (sysent[callnum].sy_callc == loadable_syscall)) { 313 cmn_err(CE_WARN, "sysent[%d] loadable?", 314 callnum); 315 } 316 /* 317 * This is more of a heuristic test -- if the 318 * system call returns two values in the 32-bit 319 * world, it should probably return two 32-bit 320 * values in the 64-bit world too. 321 */ 322 if (((callp->sy_flags & SE_32RVAL2) == 0) ^ 323 ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) { 324 cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!", 325 callnum); 326 } 327 skip:; 328 #endif /* DEBUG */ 329 } 330 } 331 #endif /* _SYSCALL32_IMPL */ 332 333 /* 334 * Allocate loadable exec locks. (Assumes all execs are loadable) 335 */ 336 for (exectype = 0; exectype < nexectype; exectype++) { 337 execsw[exectype].exec_lock = 338 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 339 rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL); 340 } 341 342 read_class_file(); 343 344 /* init thread specific structure for mod_uninstall_all */ 345 tsd_create(&mod_autounload_key, NULL); 346 } 347 348 static int 349 modctl_modload(int use_path, char *filename, int *rvp) 350 { 351 struct modctl *modp; 352 int retval = 0; 353 char *filenamep; 354 int modid; 355 356 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 357 358 if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) { 359 retval = EFAULT; 360 goto out; 361 } 362 363 filenamep[MOD_MAXPATH - 1] = 0; 364 modp = mod_hold_installed_mod(filenamep, use_path, &retval); 365 366 if (modp == NULL) 367 goto out; 368 369 modp->mod_loadflags |= MOD_NOAUTOUNLOAD; 370 modid = modp->mod_id; 371 mod_release_mod(modp); 372 CPU_STATS_ADDQ(CPU, sys, modload, 1); 373 if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0) 374 retval = EFAULT; 375 out: 376 kmem_free(filenamep, MOD_MAXPATH); 377 378 return (retval); 379 } 380 381 static int 382 modctl_modunload(modid_t id) 383 { 384 int rval = 0; 385 386 if (id == 0) { 387 #ifdef DEBUG 388 /* 389 * Turn on mod_uninstall_daemon 390 */ 391 if (mod_uninstall_interval == 0) { 392 mod_uninstall_interval = 60; 393 modreap(); 394 return (rval); 395 } 396 #endif 397 mod_uninstall_all(); 398 } else { 399 rval = modunload(id); 400 } 401 return (rval); 402 } 403 404 static int 405 modctl_modinfo(modid_t id, struct modinfo *umodi) 406 { 407 int retval; 408 struct modinfo modi; 409 #if defined(_SYSCALL32_IMPL) 410 int nobase; 411 struct modinfo32 modi32; 412 #endif 413 414 if (get_udatamodel() == DATAMODEL_NATIVE) { 415 if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0) 416 return (EFAULT); 417 } 418 #ifdef _SYSCALL32_IMPL 419 else { 420 bzero(&modi, sizeof (modi)); 421 if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0) 422 return (EFAULT); 423 modi.mi_info = modi32.mi_info; 424 modi.mi_id = modi32.mi_id; 425 modi.mi_nextid = modi32.mi_nextid; 426 nobase = modi.mi_info & MI_INFO_NOBASE; 427 } 428 #endif 429 /* 430 * This flag is -only- for the kernels use. 431 */ 432 modi.mi_info &= ~MI_INFO_LINKAGE; 433 434 retval = modinfo(id, &modi); 435 if (retval) 436 return (retval); 437 438 if (get_udatamodel() == DATAMODEL_NATIVE) { 439 if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0) 440 retval = EFAULT; 441 #ifdef _SYSCALL32_IMPL 442 } else { 443 int i; 444 445 if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX) 446 return (EOVERFLOW); 447 448 modi32.mi_info = modi.mi_info; 449 modi32.mi_state = modi.mi_state; 450 modi32.mi_id = modi.mi_id; 451 modi32.mi_nextid = modi.mi_nextid; 452 modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base; 453 modi32.mi_size = modi.mi_size; 454 modi32.mi_rev = modi.mi_rev; 455 modi32.mi_loadcnt = modi.mi_loadcnt; 456 bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name)); 457 for (i = 0; i < MODMAXLINK32; i++) { 458 modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0; 459 bcopy(modi.mi_msinfo[i].msi_linkinfo, 460 modi32.mi_msinfo[i].msi_linkinfo, 461 sizeof (modi32.mi_msinfo[0].msi_linkinfo)); 462 } 463 if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0) 464 retval = EFAULT; 465 #endif 466 } 467 468 return (retval); 469 } 470 471 /* 472 * Return the last major number in the range of permissible major numbers. 473 */ 474 /*ARGSUSED*/ 475 static int 476 modctl_modreserve(modid_t id, int *data) 477 { 478 if (copyout(&devcnt, data, sizeof (devcnt)) != 0) 479 return (EFAULT); 480 return (0); 481 } 482 483 static int 484 modctl_add_major(int *data) 485 { 486 struct modconfig mc; 487 int i, rv; 488 struct aliases alias; 489 struct aliases *ap; 490 char name[MAXMODCONFNAME]; 491 char cname[MAXMODCONFNAME]; 492 char *drvname; 493 494 bzero(&mc, sizeof (struct modconfig)); 495 if (get_udatamodel() == DATAMODEL_NATIVE) { 496 if (copyin(data, &mc, sizeof (struct modconfig)) != 0) 497 return (EFAULT); 498 } 499 #ifdef _SYSCALL32_IMPL 500 else { 501 struct modconfig32 modc32; 502 503 if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0) 504 return (EFAULT); 505 else { 506 bcopy(modc32.drvname, mc.drvname, 507 sizeof (modc32.drvname)); 508 bcopy(modc32.drvclass, mc.drvclass, 509 sizeof (modc32.drvclass)); 510 mc.major = modc32.major; 511 mc.num_aliases = modc32.num_aliases; 512 mc.ap = (struct aliases *)(uintptr_t)modc32.ap; 513 } 514 } 515 #endif 516 517 /* 518 * If the driver is already in the mb_hashtab, and the name given 519 * doesn't match that driver's name, fail. Otherwise, pass, since 520 * we may be adding aliases. 521 */ 522 if ((drvname = mod_major_to_name(mc.major)) != NULL && 523 strcmp(drvname, mc.drvname) != 0) 524 return (EINVAL); 525 526 /* 527 * Add each supplied driver alias to mb_hashtab 528 */ 529 ap = mc.ap; 530 for (i = 0; i < mc.num_aliases; i++) { 531 bzero(&alias, sizeof (struct aliases)); 532 533 if (get_udatamodel() == DATAMODEL_NATIVE) { 534 if (copyin(ap, &alias, sizeof (struct aliases)) != 0) 535 return (EFAULT); 536 537 if (alias.a_len > MAXMODCONFNAME) 538 return (EINVAL); 539 540 if (copyin(alias.a_name, name, alias.a_len) != 0) 541 return (EFAULT); 542 543 if (name[alias.a_len - 1] != '\0') 544 return (EINVAL); 545 } 546 #ifdef _SYSCALL32_IMPL 547 else { 548 struct aliases32 al32; 549 550 bzero(&al32, sizeof (struct aliases32)); 551 if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) 552 return (EFAULT); 553 554 if (al32.a_len > MAXMODCONFNAME) 555 return (EINVAL); 556 557 if (copyin((void *)(uintptr_t)al32.a_name, 558 name, al32.a_len) != 0) 559 return (EFAULT); 560 561 if (name[al32.a_len - 1] != '\0') 562 return (EINVAL); 563 564 alias.a_next = (void *)(uintptr_t)al32.a_next; 565 } 566 #endif 567 check_esc_sequences(name, cname); 568 (void) make_mbind(cname, mc.major, NULL, mb_hashtab); 569 ap = alias.a_next; 570 } 571 572 /* 573 * Try to establish an mbinding for mc.drvname, and add it to devnames. 574 * Add class if any after establishing the major number 575 */ 576 (void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab); 577 rv = make_devname(mc.drvname, mc.major); 578 579 if (rv == 0) { 580 if (mc.drvclass[0] != '\0') 581 add_class(mc.drvname, mc.drvclass); 582 (void) i_ddi_load_drvconf(mc.major); 583 i_ddi_bind_devs(); 584 i_ddi_di_cache_invalidate(KM_SLEEP); 585 } 586 return (rv); 587 } 588 589 static int 590 modctl_rem_major(major_t major) 591 { 592 struct devnames *dnp; 593 594 if (major >= devcnt) 595 return (EINVAL); 596 597 /* mark devnames as removed */ 598 dnp = &devnamesp[major]; 599 LOCK_DEV_OPS(&dnp->dn_lock); 600 if (dnp->dn_name == NULL || 601 (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) { 602 UNLOCK_DEV_OPS(&dnp->dn_lock); 603 return (EINVAL); 604 } 605 dnp->dn_flags |= DN_DRIVER_REMOVED; 606 pm_driver_removed(major); 607 UNLOCK_DEV_OPS(&dnp->dn_lock); 608 609 (void) i_ddi_unload_drvconf(major); 610 i_ddi_unbind_devs(major); 611 i_ddi_di_cache_invalidate(KM_SLEEP); 612 return (0); 613 } 614 615 static struct vfs * 616 path_to_vfs(char *name) 617 { 618 vnode_t *vp; 619 struct vfs *vfsp; 620 621 if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp)) 622 return (NULL); 623 624 vfsp = vp->v_vfsp; 625 VN_RELE(vp); 626 return (vfsp); 627 } 628 629 static int 630 new_vfs_in_modpath() 631 { 632 static int n_modpath = 0; 633 static char *modpath_copy; 634 static struct pathvfs { 635 char *path; 636 struct vfs *vfsp; 637 } *pathvfs; 638 639 int i, new_vfs = 0; 640 char *tmp, *tmp1; 641 struct vfs *vfsp; 642 643 if (n_modpath != 0) { 644 for (i = 0; i < n_modpath; i++) { 645 vfsp = path_to_vfs(pathvfs[i].path); 646 if (vfsp != pathvfs[i].vfsp) { 647 pathvfs[i].vfsp = vfsp; 648 if (vfsp) 649 new_vfs = 1; 650 } 651 } 652 return (new_vfs); 653 } 654 655 /* 656 * First call, initialize the pathvfs structure 657 */ 658 modpath_copy = i_ddi_strdup(default_path, KM_SLEEP); 659 tmp = modpath_copy; 660 n_modpath = 1; 661 tmp1 = strchr(tmp, ' '); 662 while (tmp1) { 663 *tmp1 = '\0'; 664 n_modpath++; 665 tmp = tmp1 + 1; 666 tmp1 = strchr(tmp, ' '); 667 } 668 669 pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP); 670 tmp = modpath_copy; 671 for (i = 0; i < n_modpath; i++) { 672 pathvfs[i].path = tmp; 673 vfsp = path_to_vfs(tmp); 674 pathvfs[i].vfsp = vfsp; 675 tmp += strlen(tmp) + 1; 676 } 677 return (1); /* always reread driver.conf the first time */ 678 } 679 680 static int 681 modctl_load_drvconf(major_t major) 682 { 683 int ret; 684 685 if (major != (major_t)-1) { 686 ret = i_ddi_load_drvconf(major); 687 if (ret == 0) 688 i_ddi_bind_devs(); 689 return (ret); 690 } 691 692 /* 693 * We are invoked to rescan new driver.conf files. It is 694 * only necessary if a new file system was mounted in the 695 * module_path. Because rescanning driver.conf files can 696 * take some time on older platforms (sun4m), the following 697 * code skips unnecessary driver.conf rescans to optimize 698 * boot performance. 699 */ 700 if (new_vfs_in_modpath()) { 701 (void) i_ddi_load_drvconf((major_t)-1); 702 /* 703 * If we are still initializing io subsystem, 704 * load drivers with ddi-forceattach property 705 */ 706 if (!i_ddi_io_initialized()) 707 i_ddi_forceattach_drivers(); 708 } 709 return (0); 710 } 711 712 static int 713 modctl_unload_drvconf(major_t major) 714 { 715 int ret; 716 717 if (major >= devcnt) 718 return (EINVAL); 719 720 ret = i_ddi_unload_drvconf(major); 721 if (ret != 0) 722 return (ret); 723 (void) i_ddi_unbind_devs(major); 724 725 return (0); 726 } 727 728 static void 729 check_esc_sequences(char *str, char *cstr) 730 { 731 int i; 732 size_t len; 733 char *p; 734 735 len = strlen(str); 736 for (i = 0; i < len; i++, str++, cstr++) { 737 if (*str != '\\') { 738 *cstr = *str; 739 } else { 740 p = str + 1; 741 /* 742 * we only handle octal escape sequences for SPACE 743 */ 744 if (*p++ == '0' && *p++ == '4' && *p == '0') { 745 *cstr = ' '; 746 str += 3; 747 } else { 748 *cstr = *str; 749 } 750 } 751 } 752 *cstr = 0; 753 } 754 755 static int 756 modctl_getmodpathlen(int *data) 757 { 758 int len; 759 len = strlen(default_path); 760 if (copyout(&len, data, sizeof (len)) != 0) 761 return (EFAULT); 762 return (0); 763 } 764 765 static int 766 modctl_getmodpath(char *data) 767 { 768 if (copyout(default_path, data, strlen(default_path) + 1) != 0) 769 return (EFAULT); 770 return (0); 771 } 772 773 static int 774 modctl_read_sysbinding_file(void) 775 { 776 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 777 return (0); 778 } 779 780 static int 781 modctl_getmaj(char *uname, uint_t ulen, int *umajorp) 782 { 783 char name[256]; 784 int retval; 785 major_t major; 786 787 if (ulen == 0) 788 return (EINVAL); 789 if ((retval = copyinstr(uname, name, 790 (ulen < 256) ? ulen : 256, 0)) != 0) 791 return (retval); 792 if ((major = mod_name_to_major(name)) == (major_t)-1) 793 return (ENODEV); 794 if (copyout(&major, umajorp, sizeof (major_t)) != 0) 795 return (EFAULT); 796 return (0); 797 } 798 799 static char ** 800 convert_constraint_string(char *constraints, size_t len) 801 { 802 int i; 803 int n; 804 char *p; 805 char **array; 806 807 ASSERT(constraints != NULL); 808 ASSERT(len > 0); 809 810 for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1) 811 ; 812 813 n = i; 814 815 if (n == 0) { 816 kmem_free(constraints, len); 817 return (NULL); 818 } 819 820 array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP); 821 822 for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) { 823 array[i] = i_ddi_strdup(p, KM_SLEEP); 824 } 825 array[n] = NULL; 826 827 kmem_free(constraints, len); 828 829 return (array); 830 } 831 /*ARGSUSED*/ 832 static int 833 modctl_retire(char *path, char *uconstraints, size_t ulen) 834 { 835 char *pathbuf; 836 char *devpath; 837 size_t pathsz; 838 int retval; 839 char *constraints; 840 char **cons_array; 841 842 if (path == NULL) 843 return (EINVAL); 844 845 if ((uconstraints == NULL) ^ (ulen == 0)) 846 return (EINVAL); 847 848 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 849 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 850 if (retval != 0) { 851 kmem_free(pathbuf, MAXPATHLEN); 852 return (retval); 853 } 854 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 855 kmem_free(pathbuf, MAXPATHLEN); 856 857 /* 858 * First check if the device is already retired. 859 * If it is, this becomes a NOP 860 */ 861 if (e_ddi_device_retired(devpath)) { 862 cmn_err(CE_NOTE, "Device: already retired: %s", devpath); 863 kmem_free(devpath, strlen(devpath) + 1); 864 return (0); 865 } 866 867 cons_array = NULL; 868 if (uconstraints) { 869 constraints = kmem_alloc(ulen, KM_SLEEP); 870 if (copyin(uconstraints, constraints, ulen)) { 871 kmem_free(constraints, ulen); 872 kmem_free(devpath, strlen(devpath) + 1); 873 return (EFAULT); 874 } 875 cons_array = convert_constraint_string(constraints, ulen); 876 } 877 878 /* 879 * Try to retire the device first. The following 880 * routine will return an error only if the device 881 * is not retireable i.e. retire constraints forbid 882 * a retire. A return of success from this routine 883 * indicates that device is retireable. 884 */ 885 retval = e_ddi_retire_device(devpath, cons_array); 886 if (retval != DDI_SUCCESS) { 887 cmn_err(CE_WARN, "constraints forbid retire: %s", devpath); 888 kmem_free(devpath, strlen(devpath) + 1); 889 return (ENOTSUP); 890 } 891 892 /* 893 * Ok, the retire succeeded. Persist the retire. 894 * If retiring a nexus, we need to only persist the 895 * nexus retire. Any children of a retired nexus 896 * are automatically covered by the retire store 897 * code. 898 */ 899 retval = e_ddi_retire_persist(devpath); 900 if (retval != 0) { 901 cmn_err(CE_WARN, "Failed to persist device retire: error %d: " 902 "%s", retval, devpath); 903 kmem_free(devpath, strlen(devpath) + 1); 904 return (retval); 905 } 906 if (moddebug & MODDEBUG_RETIRE) 907 cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath); 908 909 kmem_free(devpath, strlen(devpath) + 1); 910 return (0); 911 } 912 913 static int 914 modctl_is_retired(char *path, int *statep) 915 { 916 char *pathbuf; 917 char *devpath; 918 size_t pathsz; 919 int error; 920 int status; 921 922 if (path == NULL || statep == NULL) 923 return (EINVAL); 924 925 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 926 error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 927 if (error != 0) { 928 kmem_free(pathbuf, MAXPATHLEN); 929 return (error); 930 } 931 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 932 kmem_free(pathbuf, MAXPATHLEN); 933 934 if (e_ddi_device_retired(devpath)) 935 status = 1; 936 else 937 status = 0; 938 kmem_free(devpath, strlen(devpath) + 1); 939 940 return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0); 941 } 942 943 static int 944 modctl_unretire(char *path) 945 { 946 char *pathbuf; 947 char *devpath; 948 size_t pathsz; 949 int retired; 950 int retval; 951 952 if (path == NULL) 953 return (EINVAL); 954 955 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 956 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 957 if (retval != 0) { 958 kmem_free(pathbuf, MAXPATHLEN); 959 return (retval); 960 } 961 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 962 kmem_free(pathbuf, MAXPATHLEN); 963 964 /* 965 * We check if a device is retired (first) before 966 * unpersisting the retire, because we use the 967 * retire store to determine if a device is retired. 968 * If we unpersist first, the device will always appear 969 * to be unretired. For the rationale behind unpersisting 970 * a device that is not retired, see the next comment. 971 */ 972 retired = e_ddi_device_retired(devpath); 973 974 /* 975 * We call unpersist unconditionally because the lookup 976 * for retired devices (e_ddi_device_retired()), skips "bypassed" 977 * devices. We still want to be able remove "bypassed" entries 978 * from the persistent store, so we unpersist unconditionally 979 * i.e. whether or not the entry is found on a lookup. 980 * 981 * e_ddi_retire_unpersist() returns 1 if it found and cleared 982 * an entry from the retire store or 0 otherwise. 983 */ 984 if (e_ddi_retire_unpersist(devpath)) 985 if (moddebug & MODDEBUG_RETIRE) { 986 cmn_err(CE_NOTE, "Unpersisted retire of device: %s", 987 devpath); 988 } 989 990 /* 991 * Check if the device is already unretired. If so, 992 * the unretire becomes a NOP 993 */ 994 if (!retired) { 995 cmn_err(CE_NOTE, "Not retired: %s", devpath); 996 kmem_free(devpath, strlen(devpath) + 1); 997 return (0); 998 } 999 1000 retval = e_ddi_unretire_device(devpath); 1001 if (retval != 0) { 1002 cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n", 1003 retval, devpath); 1004 } 1005 1006 kmem_free(devpath, strlen(devpath) + 1); 1007 1008 return (retval); 1009 } 1010 1011 static int 1012 modctl_getname(char *uname, uint_t ulen, int *umajorp) 1013 { 1014 char *name; 1015 major_t major; 1016 1017 if (copyin(umajorp, &major, sizeof (major)) != 0) 1018 return (EFAULT); 1019 if ((name = mod_major_to_name(major)) == NULL) 1020 return (ENODEV); 1021 if ((strlen(name) + 1) > ulen) 1022 return (ENOSPC); 1023 return (copyoutstr(name, uname, ulen, NULL)); 1024 } 1025 1026 static int 1027 modctl_devt2instance(dev_t dev, int *uinstancep) 1028 { 1029 int instance; 1030 1031 if ((instance = dev_to_instance(dev)) == -1) 1032 return (EINVAL); 1033 1034 return (copyout(&instance, uinstancep, sizeof (int))); 1035 } 1036 1037 /* 1038 * Return the sizeof of the device id. 1039 */ 1040 static int 1041 modctl_sizeof_devid(dev_t dev, uint_t *len) 1042 { 1043 uint_t sz; 1044 ddi_devid_t devid; 1045 1046 /* get device id */ 1047 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1048 return (EINVAL); 1049 1050 sz = ddi_devid_sizeof(devid); 1051 ddi_devid_free(devid); 1052 1053 /* copyout device id size */ 1054 if (copyout(&sz, len, sizeof (sz)) != 0) 1055 return (EFAULT); 1056 1057 return (0); 1058 } 1059 1060 /* 1061 * Return a copy of the device id. 1062 */ 1063 static int 1064 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid) 1065 { 1066 uint_t sz; 1067 ddi_devid_t devid; 1068 int err = 0; 1069 1070 /* get device id */ 1071 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1072 return (EINVAL); 1073 1074 sz = ddi_devid_sizeof(devid); 1075 1076 /* Error if device id is larger than space allocated */ 1077 if (sz > len) { 1078 ddi_devid_free(devid); 1079 return (ENOSPC); 1080 } 1081 1082 /* copy out device id */ 1083 if (copyout(devid, udevid, sz) != 0) 1084 err = EFAULT; 1085 ddi_devid_free(devid); 1086 return (err); 1087 } 1088 1089 /* 1090 * return the /devices paths associated with the specified devid and 1091 * minor name. 1092 */ 1093 /*ARGSUSED*/ 1094 static int 1095 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag, 1096 size_t *ulensp, char *upaths) 1097 { 1098 ddi_devid_t devid = NULL; 1099 int devid_len; 1100 char *minor_name = NULL; 1101 dev_info_t *dip = NULL; 1102 struct ddi_minor_data *dmdp; 1103 char *path = NULL; 1104 int ulens; 1105 int lens; 1106 int len; 1107 dev_t *devlist = NULL; 1108 int ndevs; 1109 int i; 1110 int ret = 0; 1111 1112 /* 1113 * If upaths is NULL then we are only computing the amount of space 1114 * needed to hold the paths and returning the value in *ulensp. If we 1115 * are copying out paths then we get the amount of space allocated by 1116 * the caller. If the actual space needed for paths is larger, or 1117 * things are changing out from under us, then we return EAGAIN. 1118 */ 1119 if (upaths) { 1120 if (ulensp == NULL) 1121 return (EINVAL); 1122 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 1123 return (EFAULT); 1124 } 1125 1126 /* 1127 * copyin enough of the devid to determine the length then 1128 * reallocate and copy in the entire devid. 1129 */ 1130 devid_len = ddi_devid_sizeof(NULL); 1131 devid = kmem_alloc(devid_len, KM_SLEEP); 1132 if (copyin(udevid, devid, devid_len)) { 1133 ret = EFAULT; 1134 goto out; 1135 } 1136 len = devid_len; 1137 devid_len = ddi_devid_sizeof(devid); 1138 kmem_free(devid, len); 1139 devid = kmem_alloc(devid_len, KM_SLEEP); 1140 if (copyin(udevid, devid, devid_len)) { 1141 ret = EFAULT; 1142 goto out; 1143 } 1144 1145 /* copyin the minor name if specified. */ 1146 minor_name = uminor_name; 1147 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1148 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1149 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) { 1150 minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1151 if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) { 1152 ret = EFAULT; 1153 goto out; 1154 } 1155 } 1156 1157 /* 1158 * Use existing function to resolve the devid into a devlist. 1159 * 1160 * NOTE: there is a loss of spectype information in the current 1161 * ddi_lyr_devid_to_devlist implementation. We work around this by not 1162 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor 1163 * node forms in the loop processing the devlist below. It would be 1164 * best if at some point the use of this interface here was replaced 1165 * with a path oriented call. 1166 */ 1167 if (ddi_lyr_devid_to_devlist(devid, 1168 (minor_name == DEVID_MINOR_NAME_ALL) ? 1169 DEVID_MINOR_NAME_ALL_CHR : minor_name, 1170 &ndevs, &devlist) != DDI_SUCCESS) { 1171 ret = EINVAL; 1172 goto out; 1173 } 1174 1175 /* 1176 * loop over the devlist, converting each devt to a path and doing 1177 * a copyout of the path and computation of the amount of space 1178 * needed to hold all the paths 1179 */ 1180 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1181 for (i = 0, lens = 0; i < ndevs; i++) { 1182 1183 /* find the dip associated with the dev_t */ 1184 if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL) 1185 continue; 1186 1187 /* loop over all the minor nodes, skipping ones we don't want */ 1188 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 1189 if ((dmdp->ddm_dev != devlist[i]) || 1190 (dmdp->type != DDM_MINOR)) 1191 continue; 1192 1193 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1194 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1195 (minor_name != DEVID_MINOR_NAME_ALL_BLK) && 1196 strcmp(minor_name, dmdp->ddm_name)) 1197 continue; 1198 else { 1199 if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) && 1200 (dmdp->ddm_spec_type != S_IFCHR)) 1201 continue; 1202 if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) && 1203 (dmdp->ddm_spec_type != S_IFBLK)) 1204 continue; 1205 } 1206 1207 /* XXX need ddi_pathname_minor(dmdp, path); interface */ 1208 if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type, 1209 path) != DDI_SUCCESS) { 1210 ret = EAGAIN; 1211 goto out; 1212 } 1213 len = strlen(path) + 1; 1214 *(path + len) = '\0'; /* set double termination */ 1215 lens += len; 1216 1217 /* copyout the path with double terminations */ 1218 if (upaths) { 1219 if (lens > ulens) { 1220 ret = EAGAIN; 1221 goto out; 1222 } 1223 if (copyout(path, upaths, len + 1)) { 1224 ret = EFAULT; 1225 goto out; 1226 } 1227 upaths += len; 1228 } 1229 } 1230 ddi_release_devi(dip); 1231 dip = NULL; 1232 } 1233 lens++; /* add one for double termination */ 1234 1235 /* copy out the amount of space needed to hold the paths */ 1236 if (ulensp && copyout(&lens, ulensp, sizeof (lens))) { 1237 ret = EFAULT; 1238 goto out; 1239 } 1240 ret = 0; 1241 1242 out: if (dip) 1243 ddi_release_devi(dip); 1244 if (path) 1245 kmem_free(path, MAXPATHLEN); 1246 if (devlist) 1247 ddi_lyr_free_devlist(devlist, ndevs); 1248 if (minor_name && 1249 (minor_name != DEVID_MINOR_NAME_ALL) && 1250 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1251 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) 1252 kmem_free(minor_name, MAXPATHLEN); 1253 if (devid) 1254 kmem_free(devid, devid_len); 1255 return (ret); 1256 } 1257 1258 /* 1259 * Return the size of the minor name. 1260 */ 1261 static int 1262 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len) 1263 { 1264 uint_t sz; 1265 char *name; 1266 1267 /* get the minor name */ 1268 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1269 return (EINVAL); 1270 1271 sz = strlen(name) + 1; 1272 kmem_free(name, sz); 1273 1274 /* copy out the size of the minor name */ 1275 if (copyout(&sz, len, sizeof (sz)) != 0) 1276 return (EFAULT); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Return the minor name. 1283 */ 1284 static int 1285 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname) 1286 { 1287 uint_t sz; 1288 char *name; 1289 int err = 0; 1290 1291 /* get the minor name */ 1292 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1293 return (EINVAL); 1294 1295 sz = strlen(name) + 1; 1296 1297 /* Error if the minor name is larger than the space allocated */ 1298 if (sz > len) { 1299 kmem_free(name, sz); 1300 return (ENOSPC); 1301 } 1302 1303 /* copy out the minor name */ 1304 if (copyout(name, uname, sz) != 0) 1305 err = EFAULT; 1306 kmem_free(name, sz); 1307 return (err); 1308 } 1309 1310 /* 1311 * Return the size of the (dev_t,spectype) devfspath name. 1312 */ 1313 static int 1314 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len) 1315 { 1316 uint_t sz; 1317 char *name; 1318 1319 /* get the path name */ 1320 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1321 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1322 kmem_free(name, MAXPATHLEN); 1323 return (EINVAL); 1324 } 1325 1326 sz = strlen(name) + 1; 1327 kmem_free(name, MAXPATHLEN); 1328 1329 /* copy out the size of the path name */ 1330 if (copyout(&sz, len, sizeof (sz)) != 0) 1331 return (EFAULT); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Return the (dev_t,spectype) devfspath name. 1338 */ 1339 static int 1340 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname) 1341 { 1342 uint_t sz; 1343 char *name; 1344 int err = 0; 1345 1346 /* get the path name */ 1347 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1348 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1349 kmem_free(name, MAXPATHLEN); 1350 return (EINVAL); 1351 } 1352 1353 sz = strlen(name) + 1; 1354 1355 /* Error if the path name is larger than the space allocated */ 1356 if (sz > len) { 1357 kmem_free(name, MAXPATHLEN); 1358 return (ENOSPC); 1359 } 1360 1361 /* copy out the path name */ 1362 if (copyout(name, uname, sz) != 0) 1363 err = EFAULT; 1364 kmem_free(name, MAXPATHLEN); 1365 return (err); 1366 } 1367 1368 /* 1369 * Return the size of the (major,instance) devfspath name. 1370 */ 1371 static int 1372 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len) 1373 { 1374 uint_t sz; 1375 char *name; 1376 1377 /* get the path name */ 1378 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1379 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1380 kmem_free(name, MAXPATHLEN); 1381 return (EINVAL); 1382 } 1383 1384 sz = strlen(name) + 1; 1385 kmem_free(name, MAXPATHLEN); 1386 1387 /* copy out the size of the path name */ 1388 if (copyout(&sz, len, sizeof (sz)) != 0) 1389 return (EFAULT); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * Return the (major_instance) devfspath name. 1396 * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to 1397 * return a path - it uses the instance tree. 1398 */ 1399 static int 1400 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname) 1401 { 1402 uint_t sz; 1403 char *name; 1404 int err = 0; 1405 1406 /* get the path name */ 1407 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1408 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1409 kmem_free(name, MAXPATHLEN); 1410 return (EINVAL); 1411 } 1412 1413 sz = strlen(name) + 1; 1414 1415 /* Error if the path name is larger than the space allocated */ 1416 if (sz > len) { 1417 kmem_free(name, MAXPATHLEN); 1418 return (ENOSPC); 1419 } 1420 1421 /* copy out the path name */ 1422 if (copyout(name, uname, sz) != 0) 1423 err = EFAULT; 1424 kmem_free(name, MAXPATHLEN); 1425 return (err); 1426 } 1427 1428 static int 1429 modctl_get_fbname(char *path) 1430 { 1431 extern dev_t fbdev; 1432 char *pathname = NULL; 1433 int rval = 0; 1434 1435 /* make sure fbdev is set before we plunge in */ 1436 if (fbdev == NODEV) 1437 return (ENODEV); 1438 1439 pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1440 if ((rval = ddi_dev_pathname(fbdev, S_IFCHR, 1441 pathname)) == DDI_SUCCESS) { 1442 if (copyout(pathname, path, strlen(pathname)+1) != 0) { 1443 rval = EFAULT; 1444 } 1445 } 1446 kmem_free(pathname, MAXPATHLEN); 1447 return (rval); 1448 } 1449 1450 /* 1451 * modctl_reread_dacf() 1452 * Reread the dacf rules database from the named binding file. 1453 * If NULL is specified, pass along the NULL, it means 'use the default'. 1454 */ 1455 static int 1456 modctl_reread_dacf(char *path) 1457 { 1458 int rval = 0; 1459 char *filename, *filenamep; 1460 1461 filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1462 1463 if (path == NULL) { 1464 filenamep = NULL; 1465 } else { 1466 if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) { 1467 rval = EFAULT; 1468 goto out; 1469 } 1470 filenamep = filename; 1471 filenamep[MAXPATHLEN - 1] = '\0'; 1472 } 1473 1474 rval = read_dacf_binding_file(filenamep); 1475 out: 1476 kmem_free(filename, MAXPATHLEN); 1477 return (rval); 1478 } 1479 1480 /*ARGSUSED*/ 1481 static int 1482 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4, 1483 uint_t flag) 1484 { 1485 int error = 0; 1486 char *filenamep; 1487 1488 switch (subcmd) { 1489 1490 case MODEVENTS_FLUSH: 1491 /* flush all currently queued events */ 1492 log_sysevent_flushq(subcmd, flag); 1493 break; 1494 1495 case MODEVENTS_SET_DOOR_UPCALL_FILENAME: 1496 /* 1497 * bind door_upcall to filename 1498 * this should only be done once per invocation 1499 * of the event daemon. 1500 */ 1501 1502 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 1503 1504 if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) { 1505 error = EFAULT; 1506 } else { 1507 error = log_sysevent_filename(filenamep); 1508 } 1509 kmem_free(filenamep, MOD_MAXPATH); 1510 break; 1511 1512 case MODEVENTS_GETDATA: 1513 error = log_sysevent_copyout_data((sysevent_id_t *)a2, 1514 (size_t)a3, (caddr_t)a4); 1515 break; 1516 1517 case MODEVENTS_FREEDATA: 1518 error = log_sysevent_free_data((sysevent_id_t *)a2); 1519 break; 1520 case MODEVENTS_POST_EVENT: 1521 error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3, 1522 (sysevent_id_t *)a4); 1523 break; 1524 case MODEVENTS_REGISTER_EVENT: 1525 error = log_sysevent_register((char *)a2, (char *)a3, 1526 (se_pubsub_t *)a4); 1527 break; 1528 default: 1529 error = EINVAL; 1530 } 1531 1532 return (error); 1533 } 1534 1535 static void 1536 free_mperm(mperm_t *mp) 1537 { 1538 int len; 1539 1540 if (mp->mp_minorname) { 1541 len = strlen(mp->mp_minorname) + 1; 1542 kmem_free(mp->mp_minorname, len); 1543 } 1544 kmem_free(mp, sizeof (mperm_t)); 1545 } 1546 1547 #define MP_NO_DRV_ERR \ 1548 "/etc/minor_perm: no driver for %s\n" 1549 1550 #define MP_EMPTY_MINOR \ 1551 "/etc/minor_perm: empty minor name for driver %s\n" 1552 1553 #define MP_NO_MINOR \ 1554 "/etc/minor_perm: no minor matching %s for driver %s\n" 1555 1556 /* 1557 * Remove mperm entry with matching minorname 1558 */ 1559 static void 1560 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1561 { 1562 mperm_t **mp_head; 1563 mperm_t *freemp = NULL; 1564 struct devnames *dnp = &devnamesp[major]; 1565 mperm_t **wildmp; 1566 1567 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1568 1569 LOCK_DEV_OPS(&dnp->dn_lock); 1570 if (strcmp(mp->mp_minorname, "*") == 0) { 1571 wildmp = ((is_clone == 0) ? 1572 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1573 if (*wildmp) 1574 freemp = *wildmp; 1575 *wildmp = NULL; 1576 } else { 1577 mp_head = &dnp->dn_mperm; 1578 while (*mp_head) { 1579 if (strcmp((*mp_head)->mp_minorname, 1580 mp->mp_minorname) != 0) { 1581 mp_head = &(*mp_head)->mp_next; 1582 continue; 1583 } 1584 /* remove the entry */ 1585 freemp = *mp_head; 1586 *mp_head = freemp->mp_next; 1587 break; 1588 } 1589 } 1590 if (freemp) { 1591 if (moddebug & MODDEBUG_MINORPERM) { 1592 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1593 drvname, freemp->mp_minorname, 1594 freemp->mp_mode & 0777, 1595 freemp->mp_uid, freemp->mp_gid); 1596 } 1597 free_mperm(freemp); 1598 } else { 1599 if (moddebug & MODDEBUG_MINORPERM) { 1600 cmn_err(CE_CONT, MP_NO_MINOR, 1601 drvname, mp->mp_minorname); 1602 } 1603 } 1604 1605 UNLOCK_DEV_OPS(&dnp->dn_lock); 1606 } 1607 1608 /* 1609 * Add minor perm entry 1610 */ 1611 static void 1612 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1613 { 1614 mperm_t **mp_head; 1615 mperm_t *freemp = NULL; 1616 struct devnames *dnp = &devnamesp[major]; 1617 mperm_t **wildmp; 1618 1619 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1620 1621 /* 1622 * Note that update_drv replace semantics require 1623 * replacing matching entries with the new permissions. 1624 */ 1625 LOCK_DEV_OPS(&dnp->dn_lock); 1626 if (strcmp(mp->mp_minorname, "*") == 0) { 1627 wildmp = ((is_clone == 0) ? 1628 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1629 if (*wildmp) 1630 freemp = *wildmp; 1631 *wildmp = mp; 1632 } else { 1633 mperm_t *p, *v = NULL; 1634 for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) { 1635 if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) { 1636 if (v == NULL) 1637 dnp->dn_mperm = mp; 1638 else 1639 v->mp_next = mp; 1640 mp->mp_next = p->mp_next; 1641 freemp = p; 1642 goto replaced; 1643 } 1644 } 1645 if (p == NULL) { 1646 mp_head = &dnp->dn_mperm; 1647 if (*mp_head == NULL) { 1648 *mp_head = mp; 1649 } else { 1650 mp->mp_next = *mp_head; 1651 *mp_head = mp; 1652 } 1653 } 1654 } 1655 replaced: 1656 if (freemp) { 1657 if (moddebug & MODDEBUG_MINORPERM) { 1658 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1659 drvname, freemp->mp_minorname, 1660 freemp->mp_mode & 0777, 1661 freemp->mp_uid, freemp->mp_gid); 1662 } 1663 free_mperm(freemp); 1664 } 1665 if (moddebug & MODDEBUG_MINORPERM) { 1666 cmn_err(CE_CONT, "> %s %s 0%o %d %d\n", 1667 drvname, mp->mp_minorname, mp->mp_mode & 0777, 1668 mp->mp_uid, mp->mp_gid); 1669 } 1670 UNLOCK_DEV_OPS(&dnp->dn_lock); 1671 } 1672 1673 1674 static int 1675 process_minorperm(int cmd, nvlist_t *nvl) 1676 { 1677 char *minor; 1678 major_t major; 1679 mperm_t *mp; 1680 nvpair_t *nvp; 1681 char *name; 1682 int is_clone; 1683 major_t minmaj; 1684 1685 ASSERT(cmd == MODLOADMINORPERM || 1686 cmd == MODADDMINORPERM || cmd == MODREMMINORPERM); 1687 1688 nvp = NULL; 1689 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 1690 name = nvpair_name(nvp); 1691 1692 is_clone = 0; 1693 (void) nvpair_value_string(nvp, &minor); 1694 major = ddi_name_to_major(name); 1695 if (major != (major_t)-1) { 1696 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 1697 if (minor == NULL || strlen(minor) == 0) { 1698 if (moddebug & MODDEBUG_MINORPERM) { 1699 cmn_err(CE_CONT, MP_EMPTY_MINOR, name); 1700 } 1701 minor = "*"; 1702 } 1703 1704 /* 1705 * The minor name of a node using the clone 1706 * driver must be the driver name. To avoid 1707 * multiple searches, we map entries in the form 1708 * clone:<driver> to <driver>:*. This also allows us 1709 * to filter out some of the litter in /etc/minor_perm. 1710 * Minor perm alias entries where the name is not 1711 * the driver kept on the clone list itself. 1712 * This all seems very fragile as a driver could 1713 * be introduced with an existing alias name. 1714 */ 1715 if (strcmp(name, "clone") == 0) { 1716 minmaj = ddi_name_to_major(minor); 1717 if (minmaj != (major_t)-1) { 1718 if (moddebug & MODDEBUG_MINORPERM) { 1719 cmn_err(CE_CONT, 1720 "mapping %s:%s to %s:*\n", 1721 name, minor, minor); 1722 } 1723 major = minmaj; 1724 name = minor; 1725 minor = "*"; 1726 is_clone = 1; 1727 } 1728 } 1729 1730 if (mp) { 1731 mp->mp_minorname = 1732 i_ddi_strdup(minor, KM_SLEEP); 1733 } 1734 } else { 1735 mp = NULL; 1736 if (moddebug & MODDEBUG_MINORPERM) { 1737 cmn_err(CE_CONT, MP_NO_DRV_ERR, name); 1738 } 1739 } 1740 1741 /* mode */ 1742 nvp = nvlist_next_nvpair(nvl, nvp); 1743 ASSERT(strcmp(nvpair_name(nvp), "mode") == 0); 1744 if (mp) 1745 (void) nvpair_value_int32(nvp, (int *)&mp->mp_mode); 1746 /* uid */ 1747 nvp = nvlist_next_nvpair(nvl, nvp); 1748 ASSERT(strcmp(nvpair_name(nvp), "uid") == 0); 1749 if (mp) 1750 (void) nvpair_value_uint32(nvp, &mp->mp_uid); 1751 /* gid */ 1752 nvp = nvlist_next_nvpair(nvl, nvp); 1753 ASSERT(strcmp(nvpair_name(nvp), "gid") == 0); 1754 if (mp) { 1755 (void) nvpair_value_uint32(nvp, &mp->mp_gid); 1756 1757 if (cmd == MODREMMINORPERM) { 1758 rem_minorperm(major, name, mp, is_clone); 1759 free_mperm(mp); 1760 } else { 1761 add_minorperm(major, name, mp, is_clone); 1762 } 1763 } 1764 } 1765 1766 if (cmd == MODLOADMINORPERM) 1767 minorperm_loaded = 1; 1768 1769 /* 1770 * Reset permissions of cached dv_nodes 1771 */ 1772 (void) devfs_reset_perm(DV_RESET_PERM); 1773 1774 return (0); 1775 } 1776 1777 static int 1778 modctl_minorperm(int cmd, char *usrbuf, size_t buflen) 1779 { 1780 int error; 1781 nvlist_t *nvl; 1782 char *buf = kmem_alloc(buflen, KM_SLEEP); 1783 1784 if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) { 1785 kmem_free(buf, buflen); 1786 return (error); 1787 } 1788 1789 error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP); 1790 kmem_free(buf, buflen); 1791 if (error) 1792 return (error); 1793 1794 error = process_minorperm(cmd, nvl); 1795 nvlist_free(nvl); 1796 return (error); 1797 } 1798 1799 struct walk_args { 1800 char *wa_drvname; 1801 list_t wa_pathlist; 1802 }; 1803 1804 struct path_elem { 1805 char *pe_dir; 1806 char *pe_nodename; 1807 list_node_t pe_node; 1808 int pe_dirlen; 1809 }; 1810 1811 /*ARGSUSED*/ 1812 static int 1813 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg) 1814 { 1815 struct walk_args *wargs = (struct walk_args *)arg; 1816 struct path_elem *pe; 1817 char *nodename; 1818 1819 /* 1820 * Search may be restricted to a single driver in the case of rem_drv 1821 */ 1822 if (wargs->wa_drvname && 1823 strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0) 1824 return (INST_WALK_CONTINUE); 1825 1826 pe = kmem_zalloc(sizeof (*pe), KM_SLEEP); 1827 pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP); 1828 pe->pe_dirlen = strlen(pe->pe_dir) + 1; 1829 ASSERT(strrchr(pe->pe_dir, '/') != NULL); 1830 nodename = strrchr(pe->pe_dir, '/'); 1831 *nodename++ = 0; 1832 pe->pe_nodename = nodename; 1833 list_insert_tail(&wargs->wa_pathlist, pe); 1834 1835 return (INST_WALK_CONTINUE); 1836 } 1837 1838 /* 1839 * /devices attribute nodes clean-up optionally performed 1840 * when removing a driver (rem_drv -C). 1841 * 1842 * Removing attribute nodes allows a machine to be reprovisioned 1843 * without the side-effect of inadvertently picking up stale 1844 * device node ownership or permissions. 1845 * 1846 * Preserving attributes (not performing cleanup) allows devices 1847 * attribute changes to be preserved across upgrades, as 1848 * upgrade rather heavy-handedly does a rem_drv/add_drv cycle. 1849 */ 1850 static int 1851 modctl_remdrv_cleanup(const char *u_drvname) 1852 { 1853 struct walk_args *wargs; 1854 struct path_elem *pe; 1855 char *drvname; 1856 int err, rval = 0; 1857 1858 drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP); 1859 if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) { 1860 kmem_free(drvname, MAXMODCONFNAME); 1861 return (err); 1862 } 1863 1864 /* 1865 * First go through the instance database. For each 1866 * instance of a device bound to the driver being 1867 * removed, remove any underlying devfs attribute nodes. 1868 * 1869 * This is a two-step process. First we go through 1870 * the instance data itself, constructing a list of 1871 * the nodes discovered. The second step is then 1872 * to find and remove any devfs attribute nodes 1873 * for the instances discovered in the first step. 1874 * The two-step process avoids any difficulties 1875 * which could arise by holding the instance data 1876 * lock with simultaneous devfs operations. 1877 */ 1878 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP); 1879 1880 wargs->wa_drvname = drvname; 1881 list_create(&wargs->wa_pathlist, 1882 sizeof (struct path_elem), offsetof(struct path_elem, pe_node)); 1883 1884 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs); 1885 1886 for (pe = list_head(&wargs->wa_pathlist); pe != NULL; 1887 pe = list_next(&wargs->wa_pathlist, pe)) { 1888 err = devfs_remdrv_cleanup((const char *)pe->pe_dir, 1889 (const char *)pe->pe_nodename); 1890 if (rval == 0) 1891 rval = err; 1892 } 1893 1894 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) { 1895 list_remove(&wargs->wa_pathlist, pe); 1896 kmem_free(pe->pe_dir, pe->pe_dirlen); 1897 kmem_free(pe, sizeof (*pe)); 1898 } 1899 kmem_free(wargs, sizeof (*wargs)); 1900 1901 /* 1902 * Pseudo nodes aren't recorded in the instance database 1903 * so any such nodes need to be handled separately. 1904 */ 1905 err = devfs_remdrv_cleanup("pseudo", (const char *)drvname); 1906 if (rval == 0) 1907 rval = err; 1908 1909 kmem_free(drvname, MAXMODCONFNAME); 1910 return (rval); 1911 } 1912 1913 /* 1914 * Perform a cleanup of non-existent /devices attribute nodes, 1915 * similar to rem_drv -C, but for all drivers/devices. 1916 * This is also optional, performed as part of devfsadm -C. 1917 */ 1918 void 1919 dev_devices_cleanup() 1920 { 1921 struct walk_args *wargs; 1922 struct path_elem *pe; 1923 dev_info_t *devi; 1924 char *path; 1925 int err; 1926 1927 /* 1928 * It's expected that all drivers have been loaded and 1929 * module unloading disabled while performing cleanup. 1930 */ 1931 ASSERT(modunload_disable_count > 0); 1932 1933 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP); 1934 wargs->wa_drvname = NULL; 1935 list_create(&wargs->wa_pathlist, 1936 sizeof (struct path_elem), offsetof(struct path_elem, pe_node)); 1937 1938 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs); 1939 1940 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1941 1942 for (pe = list_head(&wargs->wa_pathlist); pe != NULL; 1943 pe = list_next(&wargs->wa_pathlist, pe)) { 1944 (void) snprintf(path, MAXPATHLEN, "%s/%s", 1945 pe->pe_dir, pe->pe_nodename); 1946 devi = e_ddi_hold_devi_by_path(path, 0); 1947 if (devi != NULL) { 1948 ddi_release_devi(devi); 1949 } else { 1950 err = devfs_remdrv_cleanup((const char *)pe->pe_dir, 1951 (const char *)pe->pe_nodename); 1952 if (err) { 1953 cmn_err(CE_CONT, 1954 "devfs: %s: clean-up error %d\n", 1955 path, err); 1956 } 1957 } 1958 } 1959 1960 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) { 1961 list_remove(&wargs->wa_pathlist, pe); 1962 kmem_free(pe->pe_dir, pe->pe_dirlen); 1963 kmem_free(pe, sizeof (*pe)); 1964 } 1965 kmem_free(wargs, sizeof (*wargs)); 1966 kmem_free(path, MAXPATHLEN); 1967 } 1968 1969 static int 1970 modctl_allocpriv(const char *name) 1971 { 1972 char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP); 1973 int error; 1974 1975 if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) { 1976 kmem_free(pstr, PRIVNAME_MAX); 1977 return (error); 1978 } 1979 error = priv_getbyname(pstr, PRIV_ALLOC); 1980 if (error < 0) 1981 error = -error; 1982 else 1983 error = 0; 1984 kmem_free(pstr, PRIVNAME_MAX); 1985 return (error); 1986 } 1987 1988 static int 1989 modctl_devexists(const char *upath, int pathlen) 1990 { 1991 char *path; 1992 int ret; 1993 1994 /* 1995 * copy in the path, including the terminating null 1996 */ 1997 pathlen++; 1998 if (pathlen <= 1 || pathlen > MAXPATHLEN) 1999 return (EINVAL); 2000 path = kmem_zalloc(pathlen + 1, KM_SLEEP); 2001 if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) { 2002 ret = sdev_modctl_devexists(path); 2003 } 2004 2005 kmem_free(path, pathlen + 1); 2006 return (ret); 2007 } 2008 2009 static int 2010 modctl_devreaddir(const char *udir, int udirlen, 2011 char *upaths, int64_t *ulensp) 2012 { 2013 char *paths = NULL; 2014 char **dirlist = NULL; 2015 char *dir; 2016 int64_t ulens; 2017 int64_t lens; 2018 int i, n; 2019 int ret = 0; 2020 char *p; 2021 int npaths; 2022 int npaths_alloc; 2023 2024 /* 2025 * If upaths is NULL then we are only computing the amount of space 2026 * needed to return the paths, with the value returned in *ulensp. If we 2027 * are copying out paths then we get the amount of space allocated by 2028 * the caller. If the actual space needed for paths is larger, or 2029 * things are changing out from under us, then we return EAGAIN. 2030 */ 2031 if (upaths) { 2032 if (ulensp == NULL) 2033 return (EINVAL); 2034 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 2035 return (EFAULT); 2036 } 2037 2038 /* 2039 * copyin the /dev path including terminating null 2040 */ 2041 udirlen++; 2042 if (udirlen <= 1 || udirlen > MAXPATHLEN) 2043 return (EINVAL); 2044 dir = kmem_zalloc(udirlen + 1, KM_SLEEP); 2045 if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0) 2046 goto err; 2047 2048 if ((ret = sdev_modctl_readdir(dir, &dirlist, 2049 &npaths, &npaths_alloc)) != 0) { 2050 ASSERT(dirlist == NULL); 2051 goto err; 2052 } 2053 2054 lens = 0; 2055 for (i = 0; i < npaths; i++) { 2056 lens += strlen(dirlist[i]) + 1; 2057 } 2058 lens++; /* add one for double termination */ 2059 2060 if (upaths) { 2061 if (lens > ulens) { 2062 ret = EAGAIN; 2063 goto out; 2064 } 2065 2066 paths = kmem_alloc(lens, KM_SLEEP); 2067 2068 p = paths; 2069 for (i = 0; i < npaths; i++) { 2070 n = strlen(dirlist[i]) + 1; 2071 bcopy(dirlist[i], p, n); 2072 p += n; 2073 } 2074 *p = 0; 2075 2076 if (copyout(paths, upaths, lens)) { 2077 ret = EFAULT; 2078 goto err; 2079 } 2080 } 2081 2082 out: 2083 /* copy out the amount of space needed to hold the paths */ 2084 if (copyout(&lens, ulensp, sizeof (lens))) 2085 ret = EFAULT; 2086 2087 err: 2088 if (dirlist) 2089 sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc); 2090 if (paths) 2091 kmem_free(paths, lens); 2092 kmem_free(dir, udirlen + 1); 2093 return (ret); 2094 } 2095 2096 int 2097 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2) 2098 { 2099 int error = 0; 2100 2101 switch (subcmd) { 2102 case MODDEVNAME_LOOKUPDOOR: 2103 case MODDEVNAME_DEVFSADMNODE: 2104 error = devname_filename_register(subcmd, (char *)a1); 2105 break; 2106 case MODDEVNAME_NSMAPS: 2107 error = devname_nsmaps_register((char *)a1, (size_t)a2); 2108 break; 2109 case MODDEVNAME_PROFILE: 2110 error = devname_profile_update((char *)a1, (size_t)a2); 2111 break; 2112 case MODDEVNAME_RECONFIG: 2113 i_ddi_set_reconfig(); 2114 break; 2115 case MODDEVNAME_SYSAVAIL: 2116 i_ddi_set_sysavail(); 2117 break; 2118 default: 2119 error = EINVAL; 2120 break; 2121 } 2122 2123 return (error); 2124 } 2125 2126 /*ARGSUSED5*/ 2127 int 2128 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, 2129 uintptr_t a5) 2130 { 2131 int error = EINVAL; 2132 dev_t dev; 2133 2134 if (secpolicy_modctl(CRED(), cmd) != 0) 2135 return (set_errno(EPERM)); 2136 2137 switch (cmd) { 2138 case MODLOAD: /* load a module */ 2139 error = modctl_modload((int)a1, (char *)a2, (int *)a3); 2140 break; 2141 2142 case MODUNLOAD: /* unload a module */ 2143 error = modctl_modunload((modid_t)a1); 2144 break; 2145 2146 case MODINFO: /* get module status */ 2147 error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2); 2148 break; 2149 2150 case MODRESERVED: /* get last major number in range */ 2151 error = modctl_modreserve((modid_t)a1, (int *)a2); 2152 break; 2153 2154 case MODSETMINIROOT: /* we are running in miniroot */ 2155 isminiroot = 1; 2156 error = 0; 2157 break; 2158 2159 case MODADDMAJBIND: /* read major binding file */ 2160 error = modctl_add_major((int *)a2); 2161 break; 2162 2163 case MODGETPATHLEN: /* get modpath length */ 2164 error = modctl_getmodpathlen((int *)a2); 2165 break; 2166 2167 case MODGETPATH: /* get modpath */ 2168 error = modctl_getmodpath((char *)a2); 2169 break; 2170 2171 case MODREADSYSBIND: /* read system call binding file */ 2172 error = modctl_read_sysbinding_file(); 2173 break; 2174 2175 case MODGETMAJBIND: /* get major number for named device */ 2176 error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3); 2177 break; 2178 2179 case MODGETNAME: /* get name of device given major number */ 2180 error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3); 2181 break; 2182 2183 case MODDEVT2INSTANCE: 2184 if (get_udatamodel() == DATAMODEL_NATIVE) { 2185 dev = (dev_t)a1; 2186 } 2187 #ifdef _SYSCALL32_IMPL 2188 else { 2189 dev = expldev(a1); 2190 } 2191 #endif 2192 error = modctl_devt2instance(dev, (int *)a2); 2193 break; 2194 2195 case MODSIZEOF_DEVID: /* sizeof device id of device given dev_t */ 2196 if (get_udatamodel() == DATAMODEL_NATIVE) { 2197 dev = (dev_t)a1; 2198 } 2199 #ifdef _SYSCALL32_IMPL 2200 else { 2201 dev = expldev(a1); 2202 } 2203 #endif 2204 error = modctl_sizeof_devid(dev, (uint_t *)a2); 2205 break; 2206 2207 case MODGETDEVID: /* get device id of device given dev_t */ 2208 if (get_udatamodel() == DATAMODEL_NATIVE) { 2209 dev = (dev_t)a1; 2210 } 2211 #ifdef _SYSCALL32_IMPL 2212 else { 2213 dev = expldev(a1); 2214 } 2215 #endif 2216 error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3); 2217 break; 2218 2219 case MODSIZEOF_MINORNAME: /* sizeof minor nm (dev_t,spectype) */ 2220 if (get_udatamodel() == DATAMODEL_NATIVE) { 2221 error = modctl_sizeof_minorname((dev_t)a1, (int)a2, 2222 (uint_t *)a3); 2223 } 2224 #ifdef _SYSCALL32_IMPL 2225 else { 2226 error = modctl_sizeof_minorname(expldev(a1), (int)a2, 2227 (uint_t *)a3); 2228 } 2229 2230 #endif 2231 break; 2232 2233 case MODGETMINORNAME: /* get minor name of (dev_t,spectype) */ 2234 if (get_udatamodel() == DATAMODEL_NATIVE) { 2235 error = modctl_get_minorname((dev_t)a1, (int)a2, 2236 (uint_t)a3, (char *)a4); 2237 } 2238 #ifdef _SYSCALL32_IMPL 2239 else { 2240 error = modctl_get_minorname(expldev(a1), (int)a2, 2241 (uint_t)a3, (char *)a4); 2242 } 2243 #endif 2244 break; 2245 2246 case MODGETDEVFSPATH_LEN: /* sizeof path nm of (dev_t,spectype) */ 2247 if (get_udatamodel() == DATAMODEL_NATIVE) { 2248 error = modctl_devfspath_len((dev_t)a1, (int)a2, 2249 (uint_t *)a3); 2250 } 2251 #ifdef _SYSCALL32_IMPL 2252 else { 2253 error = modctl_devfspath_len(expldev(a1), (int)a2, 2254 (uint_t *)a3); 2255 } 2256 2257 #endif 2258 break; 2259 2260 case MODGETDEVFSPATH: /* get path name of (dev_t,spec) type */ 2261 if (get_udatamodel() == DATAMODEL_NATIVE) { 2262 error = modctl_devfspath((dev_t)a1, (int)a2, 2263 (uint_t)a3, (char *)a4); 2264 } 2265 #ifdef _SYSCALL32_IMPL 2266 else { 2267 error = modctl_devfspath(expldev(a1), (int)a2, 2268 (uint_t)a3, (char *)a4); 2269 } 2270 #endif 2271 break; 2272 2273 case MODGETDEVFSPATH_MI_LEN: /* sizeof path nm of (major,instance) */ 2274 error = modctl_devfspath_mi_len((major_t)a1, (int)a2, 2275 (uint_t *)a3); 2276 break; 2277 2278 case MODGETDEVFSPATH_MI: /* get path name of (major,instance) */ 2279 error = modctl_devfspath_mi((major_t)a1, (int)a2, 2280 (uint_t)a3, (char *)a4); 2281 break; 2282 2283 2284 case MODEVENTS: 2285 error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5); 2286 break; 2287 2288 case MODGETFBNAME: /* get the framebuffer name */ 2289 error = modctl_get_fbname((char *)a1); 2290 break; 2291 2292 case MODREREADDACF: /* reread dacf rule database from given file */ 2293 error = modctl_reread_dacf((char *)a1); 2294 break; 2295 2296 case MODLOADDRVCONF: /* load driver.conf file for major */ 2297 error = modctl_load_drvconf((major_t)a1); 2298 break; 2299 2300 case MODUNLOADDRVCONF: /* unload driver.conf file for major */ 2301 error = modctl_unload_drvconf((major_t)a1); 2302 break; 2303 2304 case MODREMMAJBIND: /* remove a major binding */ 2305 error = modctl_rem_major((major_t)a1); 2306 break; 2307 2308 case MODDEVID2PATHS: /* get paths given devid */ 2309 error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2, 2310 (uint_t)a3, (size_t *)a4, (char *)a5); 2311 break; 2312 2313 case MODSETDEVPOLICY: /* establish device policy */ 2314 error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3); 2315 break; 2316 2317 case MODGETDEVPOLICY: /* get device policy */ 2318 error = devpolicy_get((int *)a1, (size_t)a2, 2319 (devplcysys_t *)a3); 2320 break; 2321 2322 case MODALLOCPRIV: 2323 error = modctl_allocpriv((const char *)a1); 2324 break; 2325 2326 case MODGETDEVPOLICYBYNAME: 2327 error = devpolicy_getbyname((size_t)a1, 2328 (devplcysys_t *)a2, (char *)a3); 2329 break; 2330 2331 case MODLOADMINORPERM: 2332 case MODADDMINORPERM: 2333 case MODREMMINORPERM: 2334 error = modctl_minorperm(cmd, (char *)a1, (size_t)a2); 2335 break; 2336 2337 case MODREMDRVCLEANUP: 2338 error = modctl_remdrv_cleanup((const char *)a1); 2339 break; 2340 2341 case MODDEVEXISTS: /* non-reconfiguring /dev lookup */ 2342 error = modctl_devexists((const char *)a1, (size_t)a2); 2343 break; 2344 2345 case MODDEVREADDIR: /* non-reconfiguring /dev readdir */ 2346 error = modctl_devreaddir((const char *)a1, (size_t)a2, 2347 (char *)a3, (int64_t *)a4); 2348 break; 2349 2350 case MODDEVNAME: 2351 error = modctl_moddevname((int)a1, a2, a3); 2352 break; 2353 2354 case MODRETIRE: /* retire device named by physpath a1 */ 2355 error = modctl_retire((char *)a1, (char *)a2, (size_t)a3); 2356 break; 2357 2358 case MODISRETIRED: /* check if a device is retired. */ 2359 error = modctl_is_retired((char *)a1, (int *)a2); 2360 break; 2361 2362 case MODUNRETIRE: /* unretire device named by physpath a1 */ 2363 error = modctl_unretire((char *)a1); 2364 break; 2365 2366 default: 2367 error = EINVAL; 2368 break; 2369 } 2370 2371 return (error ? set_errno(error) : 0); 2372 } 2373 2374 /* 2375 * Calls to kobj_load_module()() are handled off to this routine in a 2376 * separate thread. 2377 */ 2378 static void 2379 modload_thread(struct loadmt *ltp) 2380 { 2381 /* load the module and signal the creator of this thread */ 2382 kmutex_t cpr_lk; 2383 callb_cpr_t cpr_i; 2384 2385 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 2386 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload"); 2387 /* borrow the devi lock from thread which invoked us */ 2388 pm_borrow_lock(ltp->owner); 2389 ltp->retval = kobj_load_module(ltp->mp, ltp->usepath); 2390 pm_return_lock(); 2391 sema_v(<p->sema); 2392 mutex_enter(&cpr_lk); 2393 CALLB_CPR_EXIT(&cpr_i); 2394 mutex_destroy(&cpr_lk); 2395 thread_exit(); 2396 } 2397 2398 /* 2399 * load a module, adding a reference if caller specifies rmodp. If rmodp 2400 * is specified then an errno is returned, otherwise a module index is 2401 * returned (-1 on error). 2402 */ 2403 static int 2404 modrload(char *subdir, char *filename, struct modctl **rmodp) 2405 { 2406 struct modctl *modp; 2407 size_t size; 2408 char *fullname; 2409 int retval = EINVAL; 2410 int id = -1; 2411 2412 if (rmodp) 2413 *rmodp = NULL; /* avoid garbage */ 2414 2415 if (subdir != NULL) { 2416 /* 2417 * refuse / in filename to prevent "../" escapes. 2418 */ 2419 if (strchr(filename, '/') != NULL) 2420 return (rmodp ? retval : id); 2421 2422 /* 2423 * allocate enough space for <subdir>/<filename><NULL> 2424 */ 2425 size = strlen(subdir) + strlen(filename) + 2; 2426 fullname = kmem_zalloc(size, KM_SLEEP); 2427 (void) sprintf(fullname, "%s/%s", subdir, filename); 2428 } else { 2429 fullname = filename; 2430 } 2431 2432 modp = mod_hold_installed_mod(fullname, 1, &retval); 2433 if (modp != NULL) { 2434 id = modp->mod_id; 2435 if (rmodp) { 2436 /* add mod_ref and return *rmodp */ 2437 mutex_enter(&mod_lock); 2438 modp->mod_ref++; 2439 mutex_exit(&mod_lock); 2440 *rmodp = modp; 2441 } 2442 mod_release_mod(modp); 2443 CPU_STATS_ADDQ(CPU, sys, modload, 1); 2444 } 2445 2446 done: if (subdir != NULL) 2447 kmem_free(fullname, size); 2448 return (rmodp ? retval : id); 2449 } 2450 2451 /* 2452 * This is the primary kernel interface to load a module. It loads and 2453 * installs the named module. It does not hold mod_ref of the module, so 2454 * a module unload attempt can occur at any time - it is up to the 2455 * _fini/mod_remove implementation to determine if unload will succeed. 2456 */ 2457 int 2458 modload(char *subdir, char *filename) 2459 { 2460 return (modrload(subdir, filename, NULL)); 2461 } 2462 2463 /* 2464 * Load a module using a series of qualified names from most specific to least 2465 * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try: 2466 * 2467 * foo/bar.baz.1.2.3 2468 * foo/bar.baz.1.2 2469 * foo/bar.baz.1 2470 * 2471 * Return the module ID on success; -1 if no module was loaded. 2472 */ 2473 int 2474 modload_qualified(const char *subdir, const char *p1, 2475 const char *p2, const char *delim, uint_t suffv[], int suffc) 2476 { 2477 char path[MOD_MAXPATH]; 2478 size_t n, resid = sizeof (path); 2479 char *p = path; 2480 2481 char **dotv; 2482 int i, rc, id; 2483 modctl_t *mp; 2484 2485 if (p2 != NULL) 2486 n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2); 2487 else 2488 n = snprintf(p, resid, "%s/%s", subdir, p1); 2489 2490 if (n >= resid) 2491 return (-1); 2492 2493 p += n; 2494 resid -= n; 2495 dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP); 2496 2497 for (i = 0; i < suffc; i++) { 2498 dotv[i] = p; 2499 n = snprintf(p, resid, "%s%u", delim, suffv[i]); 2500 2501 if (n >= resid) { 2502 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2503 return (-1); 2504 } 2505 2506 p += n; 2507 resid -= n; 2508 } 2509 2510 dotv[suffc] = p; 2511 2512 for (i = suffc; i >= 0; i--) { 2513 dotv[i][0] = '\0'; 2514 mp = mod_hold_installed_mod(path, 1, &rc); 2515 2516 if (mp != NULL) { 2517 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2518 id = mp->mod_id; 2519 mod_release_mod(mp); 2520 return (id); 2521 } 2522 } 2523 2524 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2525 return (-1); 2526 } 2527 2528 /* 2529 * Load a module. 2530 */ 2531 int 2532 modloadonly(char *subdir, char *filename) 2533 { 2534 struct modctl *modp; 2535 char *fullname; 2536 size_t size; 2537 int id, retval; 2538 2539 if (subdir != NULL) { 2540 /* 2541 * allocate enough space for <subdir>/<filename><NULL> 2542 */ 2543 size = strlen(subdir) + strlen(filename) + 2; 2544 fullname = kmem_zalloc(size, KM_SLEEP); 2545 (void) sprintf(fullname, "%s/%s", subdir, filename); 2546 } else { 2547 fullname = filename; 2548 } 2549 2550 modp = mod_hold_loaded_mod(NULL, fullname, &retval); 2551 if (modp) { 2552 id = modp->mod_id; 2553 mod_release_mod(modp); 2554 } 2555 2556 if (subdir != NULL) 2557 kmem_free(fullname, size); 2558 2559 if (retval == 0) 2560 return (id); 2561 return (-1); 2562 } 2563 2564 /* 2565 * Try to uninstall and unload a module, removing a reference if caller 2566 * specifies rmodp. 2567 */ 2568 static int 2569 modunrload(modid_t id, struct modctl **rmodp, int unload) 2570 { 2571 struct modctl *modp; 2572 int retval; 2573 2574 if (rmodp) 2575 *rmodp = NULL; /* avoid garbage */ 2576 2577 if ((modp = mod_hold_by_id((modid_t)id)) == NULL) 2578 return (EINVAL); 2579 2580 if (rmodp) { 2581 mutex_enter(&mod_lock); 2582 modp->mod_ref--; 2583 mutex_exit(&mod_lock); 2584 *rmodp = modp; 2585 } 2586 2587 if (unload) { 2588 retval = moduninstall(modp); 2589 if (retval == 0) { 2590 mod_unload(modp); 2591 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 2592 } else if (retval == EALREADY) 2593 retval = 0; /* already unloaded, not an error */ 2594 } else 2595 retval = 0; 2596 2597 mod_release_mod(modp); 2598 return (retval); 2599 } 2600 2601 /* 2602 * Uninstall and unload a module. 2603 */ 2604 int 2605 modunload(modid_t id) 2606 { 2607 int retval; 2608 2609 /* synchronize with any active modunload_disable() */ 2610 modunload_begin(); 2611 if (ddi_root_node()) 2612 (void) devfs_clean(ddi_root_node(), NULL, 0); 2613 retval = modunrload(id, NULL, 1); 2614 modunload_end(); 2615 return (retval); 2616 } 2617 2618 /* 2619 * Return status of a loaded module. 2620 */ 2621 static int 2622 modinfo(modid_t id, struct modinfo *modinfop) 2623 { 2624 struct modctl *modp; 2625 modid_t mid; 2626 int i; 2627 2628 mid = modinfop->mi_id; 2629 if (modinfop->mi_info & MI_INFO_ALL) { 2630 while ((modp = mod_hold_next_by_id(mid++)) != NULL) { 2631 if ((modinfop->mi_info & MI_INFO_CNT) || 2632 modp->mod_installed) 2633 break; 2634 mod_release_mod(modp); 2635 } 2636 if (modp == NULL) 2637 return (EINVAL); 2638 } else { 2639 modp = mod_hold_by_id(id); 2640 if (modp == NULL) 2641 return (EINVAL); 2642 if (!(modinfop->mi_info & MI_INFO_CNT) && 2643 (modp->mod_installed == 0)) { 2644 mod_release_mod(modp); 2645 return (EINVAL); 2646 } 2647 } 2648 2649 modinfop->mi_rev = 0; 2650 modinfop->mi_state = 0; 2651 for (i = 0; i < MODMAXLINK; i++) { 2652 modinfop->mi_msinfo[i].msi_p0 = -1; 2653 modinfop->mi_msinfo[i].msi_linkinfo[0] = 0; 2654 } 2655 if (modp->mod_loaded) { 2656 modinfop->mi_state = MI_LOADED; 2657 kobj_getmodinfo(modp->mod_mp, modinfop); 2658 } 2659 if (modp->mod_installed) { 2660 modinfop->mi_state |= MI_INSTALLED; 2661 2662 (void) mod_getinfo(modp, modinfop); 2663 } 2664 2665 modinfop->mi_id = modp->mod_id; 2666 modinfop->mi_loadcnt = modp->mod_loadcnt; 2667 (void) strcpy(modinfop->mi_name, modp->mod_modname); 2668 2669 mod_release_mod(modp); 2670 return (0); 2671 } 2672 2673 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s"; 2674 static char no_err[] = "No error function for weak stub %s"; 2675 2676 /* 2677 * used by the stubs themselves to load and hold a module. 2678 * Returns 0 if the module is successfully held; 2679 * the stub needs to call mod_release_stub(). 2680 * -1 if the stub should just call the err_fcn. 2681 * Note that this code is stretched out so that we avoid subroutine calls 2682 * and optimize for the most likely case. That is, the case where the 2683 * module is loaded and installed and not held. In that case we just inc 2684 * the mod_ref count and continue. 2685 */ 2686 int 2687 mod_hold_stub(struct mod_stub_info *stub) 2688 { 2689 struct modctl *mp; 2690 struct mod_modinfo *mip; 2691 2692 mip = stub->mods_modinfo; 2693 2694 mutex_enter(&mod_lock); 2695 2696 /* we do mod_hold_by_modctl inline for speed */ 2697 2698 mod_check_again: 2699 if ((mp = mip->mp) != NULL) { 2700 if (mp->mod_busy == 0) { 2701 if (mp->mod_installed) { 2702 /* increment the reference count */ 2703 mp->mod_ref++; 2704 ASSERT(mp->mod_ref && mp->mod_installed); 2705 mutex_exit(&mod_lock); 2706 return (0); 2707 } else { 2708 mp->mod_busy = 1; 2709 mp->mod_inprogress_thread = 2710 (curthread == NULL ? 2711 (kthread_id_t)-1 : curthread); 2712 } 2713 } else { 2714 /* 2715 * wait one time and then go see if someone 2716 * else has resolved the stub (set mip->mp). 2717 */ 2718 if (mod_hold_by_modctl(mp, 2719 MOD_WAIT_ONCE | MOD_LOCK_HELD)) 2720 goto mod_check_again; 2721 2722 /* 2723 * what we have now may have been unloaded!, in 2724 * that case, mip->mp will be NULL, we'll hit this 2725 * module and load again.. 2726 */ 2727 cmn_err(CE_PANIC, "mod_hold_stub should have blocked"); 2728 } 2729 mutex_exit(&mod_lock); 2730 } else { 2731 /* first time we've hit this module */ 2732 mutex_exit(&mod_lock); 2733 mp = mod_hold_by_name(mip->modm_module_name); 2734 mip->mp = mp; 2735 } 2736 2737 /* 2738 * If we are here, it means that the following conditions 2739 * are satisfied. 2740 * 2741 * mip->mp != NULL 2742 * this thread has set the mp->mod_busy = 1 2743 * mp->mod_installed = 0 2744 * 2745 */ 2746 ASSERT(mp != NULL); 2747 ASSERT(mp->mod_busy == 1); 2748 2749 if (mp->mod_installed == 0) { 2750 /* Module not loaded, if weak stub don't load it */ 2751 if (stub->mods_flag & MODS_WEAK) { 2752 if (stub->mods_errfcn == NULL) { 2753 mod_release_mod(mp); 2754 cmn_err(CE_PANIC, no_err, 2755 mip->modm_module_name); 2756 } 2757 } else { 2758 /* Not a weak stub so load the module */ 2759 2760 if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) { 2761 /* 2762 * If mod_load() was successful 2763 * and modinstall() failed, then 2764 * unload the module. 2765 */ 2766 if (mp->mod_loaded) 2767 mod_unload(mp); 2768 2769 mod_release_mod(mp); 2770 if (stub->mods_errfcn == NULL) { 2771 cmn_err(CE_PANIC, mod_stub_err, 2772 mip->modm_module_name); 2773 } else { 2774 return (-1); 2775 } 2776 } 2777 } 2778 } 2779 2780 /* 2781 * At this point module is held and loaded. Release 2782 * the mod_busy and mod_inprogress_thread before 2783 * returning. We actually call mod_release() here so 2784 * that if another stub wants to access this module, 2785 * it can do so. mod_ref is incremented before mod_release() 2786 * is called to prevent someone else from snatching the 2787 * module from this thread. 2788 */ 2789 mutex_enter(&mod_lock); 2790 mp->mod_ref++; 2791 ASSERT(mp->mod_ref && 2792 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2793 mod_release(mp); 2794 mutex_exit(&mod_lock); 2795 return (0); 2796 } 2797 2798 void 2799 mod_release_stub(struct mod_stub_info *stub) 2800 { 2801 struct modctl *mp = stub->mods_modinfo->mp; 2802 2803 /* inline mod_release_mod */ 2804 mutex_enter(&mod_lock); 2805 ASSERT(mp->mod_ref && 2806 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2807 mp->mod_ref--; 2808 if (mp->mod_want) { 2809 mp->mod_want = 0; 2810 cv_broadcast(&mod_cv); 2811 } 2812 mutex_exit(&mod_lock); 2813 } 2814 2815 static struct modctl * 2816 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status) 2817 { 2818 struct modctl *modp; 2819 int retval; 2820 2821 /* 2822 * Hold the module. 2823 */ 2824 modp = mod_hold_by_name_requisite(dep, filename); 2825 if (modp) { 2826 retval = mod_load(modp, 1); 2827 if (retval != 0) { 2828 mod_release_mod(modp); 2829 modp = NULL; 2830 } 2831 *status = retval; 2832 } else { 2833 *status = ENOSPC; 2834 } 2835 2836 /* 2837 * if dep is not NULL, clear the module dependency information. 2838 * This information is set in mod_hold_by_name_common(). 2839 */ 2840 if (dep != NULL && dep->mod_requisite_loading != NULL) { 2841 ASSERT(dep->mod_busy); 2842 dep->mod_requisite_loading = NULL; 2843 } 2844 2845 return (modp); 2846 } 2847 2848 /* 2849 * hold, load, and install the named module 2850 */ 2851 static struct modctl * 2852 mod_hold_installed_mod(char *name, int usepath, int *r) 2853 { 2854 struct modctl *modp; 2855 int retval; 2856 2857 /* 2858 * Verify that that module in question actually exists on disk 2859 * before allocation of module structure by mod_hold_by_name. 2860 */ 2861 if (modrootloaded && swaploaded) { 2862 if (!kobj_path_exists(name, usepath)) { 2863 *r = ENOENT; 2864 return (NULL); 2865 } 2866 } 2867 2868 /* 2869 * Hold the module. 2870 */ 2871 modp = mod_hold_by_name(name); 2872 if (modp) { 2873 retval = mod_load(modp, usepath); 2874 if (retval != 0) { 2875 mod_release_mod(modp); 2876 modp = NULL; 2877 *r = retval; 2878 } else { 2879 if ((*r = modinstall(modp)) != 0) { 2880 /* 2881 * We loaded it, but failed to _init() it. 2882 * Be kind to developers -- force it 2883 * out of memory now so that the next 2884 * attempt to use the module will cause 2885 * a reload. See 1093793. 2886 */ 2887 mod_unload(modp); 2888 mod_release_mod(modp); 2889 modp = NULL; 2890 } 2891 } 2892 } else { 2893 *r = ENOSPC; 2894 } 2895 return (modp); 2896 } 2897 2898 static char mod_excl_msg[] = 2899 "module %s(%s) is EXCLUDED and will not be loaded\n"; 2900 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n"; 2901 2902 /* 2903 * This routine is needed for dependencies. Users specify dependencies 2904 * by declaring a character array initialized to filenames of dependents. 2905 * So the code that handles dependents deals with filenames (and not 2906 * module names) because that's all it has. We load by filename and once 2907 * we've loaded a file we can get the module name. 2908 * Unfortunately there isn't a single unified filename/modulename namespace. 2909 * C'est la vie. 2910 * 2911 * We allow the name being looked up to be prepended by an optional 2912 * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs") 2913 */ 2914 struct modctl * 2915 mod_find_by_filename(char *subdir, char *filename) 2916 { 2917 struct modctl *mp; 2918 size_t sublen; 2919 2920 ASSERT(!MUTEX_HELD(&mod_lock)); 2921 if (subdir != NULL) 2922 sublen = strlen(subdir); 2923 else 2924 sublen = 0; 2925 2926 mutex_enter(&mod_lock); 2927 mp = &modules; 2928 do { 2929 if (sublen) { 2930 char *mod_filename = mp->mod_filename; 2931 2932 if (strncmp(subdir, mod_filename, sublen) == 0 && 2933 mod_filename[sublen] == '/' && 2934 strcmp(filename, &mod_filename[sublen + 1]) == 0) { 2935 mutex_exit(&mod_lock); 2936 return (mp); 2937 } 2938 } else if (strcmp(filename, mp->mod_filename) == 0) { 2939 mutex_exit(&mod_lock); 2940 return (mp); 2941 } 2942 } while ((mp = mp->mod_next) != &modules); 2943 mutex_exit(&mod_lock); 2944 return (NULL); 2945 } 2946 2947 /* 2948 * Check for circular dependencies. This is called from do_dependents() 2949 * in kobj.c. If we are the thread already loading this module, then 2950 * we're trying to load a dependent that we're already loading which 2951 * means the user specified circular dependencies. 2952 */ 2953 static int 2954 mod_circdep(struct modctl *modp) 2955 { 2956 struct modctl *rmod; 2957 2958 ASSERT(MUTEX_HELD(&mod_lock)); 2959 2960 /* 2961 * Check the mod_inprogress_thread first. 2962 * mod_inprogress_thread is used in mod_hold_stub() 2963 * directly to improve performance. 2964 */ 2965 if (modp->mod_inprogress_thread == curthread) 2966 return (1); 2967 2968 /* 2969 * Check the module circular dependencies. 2970 */ 2971 for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) { 2972 /* 2973 * Check if there is a module circular dependency. 2974 */ 2975 if (rmod->mod_requisite_loading == modp) 2976 return (1); 2977 } 2978 return (0); 2979 } 2980 2981 static int 2982 mod_getinfo(struct modctl *modp, struct modinfo *modinfop) 2983 { 2984 int (*func)(struct modinfo *); 2985 int retval; 2986 2987 ASSERT(modp->mod_busy); 2988 2989 /* primary modules don't do getinfo */ 2990 if (modp->mod_prim) 2991 return (0); 2992 2993 func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info"); 2994 2995 if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) { 2996 cmn_err(CE_WARN, "_info() not defined properly in %s", 2997 modp->mod_filename); 2998 /* 2999 * The semantics of mod_info(9F) are that 0 is failure 3000 * and non-zero is success. 3001 */ 3002 retval = 0; 3003 } else 3004 retval = (*func)(modinfop); /* call _info() function */ 3005 3006 if (moddebug & MODDEBUG_USERDEBUG) 3007 printf("Returned from _info, retval = %x\n", retval); 3008 3009 return (retval); 3010 } 3011 3012 static void 3013 modadd(struct modctl *mp) 3014 { 3015 ASSERT(MUTEX_HELD(&mod_lock)); 3016 3017 mp->mod_id = last_module_id++; 3018 mp->mod_next = &modules; 3019 mp->mod_prev = modules.mod_prev; 3020 modules.mod_prev->mod_next = mp; 3021 modules.mod_prev = mp; 3022 } 3023 3024 /*ARGSUSED*/ 3025 static struct modctl * 3026 allocate_modp(const char *filename, const char *modname) 3027 { 3028 struct modctl *mp; 3029 3030 mp = kobj_zalloc(sizeof (*mp), KM_SLEEP); 3031 mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP); 3032 (void) strcpy(mp->mod_modname, modname); 3033 return (mp); 3034 } 3035 3036 /* 3037 * Get the value of a symbol. This is a wrapper routine that 3038 * calls kobj_getsymvalue(). kobj_getsymvalue() may go away but this 3039 * wrapper will prevent callers from noticing. 3040 */ 3041 uintptr_t 3042 modgetsymvalue(char *name, int kernelonly) 3043 { 3044 return (kobj_getsymvalue(name, kernelonly)); 3045 } 3046 3047 /* 3048 * Get the symbol nearest an address. This is a wrapper routine that 3049 * calls kobj_getsymname(). kobj_getsymname() may go away but this 3050 * wrapper will prevent callers from noticing. 3051 */ 3052 char * 3053 modgetsymname(uintptr_t value, ulong_t *offset) 3054 { 3055 return (kobj_getsymname(value, offset)); 3056 } 3057 3058 /* 3059 * Lookup a symbol in a specified module. These are wrapper routines that 3060 * call kobj_lookup(). kobj_lookup() may go away but these wrappers will 3061 * prevent callers from noticing. 3062 */ 3063 uintptr_t 3064 modlookup(const char *modname, const char *symname) 3065 { 3066 struct modctl *modp; 3067 uintptr_t val; 3068 3069 if ((modp = mod_hold_by_name(modname)) == NULL) 3070 return (0); 3071 val = kobj_lookup(modp->mod_mp, symname); 3072 mod_release_mod(modp); 3073 return (val); 3074 } 3075 3076 uintptr_t 3077 modlookup_by_modctl(modctl_t *modp, const char *symname) 3078 { 3079 ASSERT(modp->mod_ref > 0 || modp->mod_busy); 3080 3081 return (kobj_lookup(modp->mod_mp, symname)); 3082 } 3083 3084 /* 3085 * Ask the user for the name of the system file and the default path 3086 * for modules. 3087 */ 3088 void 3089 mod_askparams() 3090 { 3091 static char s0[64]; 3092 intptr_t fd; 3093 3094 if ((fd = kobj_open(systemfile)) != -1L) 3095 kobj_close(fd); 3096 else 3097 systemfile = NULL; 3098 3099 /*CONSTANTCONDITION*/ 3100 while (1) { 3101 printf("Name of system file [%s]: ", 3102 systemfile ? systemfile : "/dev/null"); 3103 3104 console_gets(s0, sizeof (s0)); 3105 3106 if (s0[0] == '\0') 3107 break; 3108 else if (strcmp(s0, "/dev/null") == 0) { 3109 systemfile = NULL; 3110 break; 3111 } else { 3112 if ((fd = kobj_open(s0)) != -1L) { 3113 kobj_close(fd); 3114 systemfile = s0; 3115 break; 3116 } 3117 } 3118 printf("can't find file %s\n", s0); 3119 } 3120 } 3121 3122 static char loading_msg[] = "loading '%s' id %d\n"; 3123 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n"; 3124 3125 /* 3126 * Common code for loading a module (but not installing it). 3127 * Handoff the task of module loading to a seperate thread 3128 * with a large stack if possible, since this code may recurse a few times. 3129 * Return zero if there are no errors or an errno value. 3130 */ 3131 static int 3132 mod_load(struct modctl *mp, int usepath) 3133 { 3134 int retval; 3135 struct modinfo *modinfop = NULL; 3136 struct loadmt lt; 3137 3138 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3139 ASSERT(mp->mod_busy); 3140 3141 if (mp->mod_loaded) 3142 return (0); 3143 3144 if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 || 3145 mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) { 3146 if (moddebug & MODDEBUG_LOADMSG) { 3147 printf(mod_excl_msg, mp->mod_filename, 3148 mp->mod_modname); 3149 } 3150 return (ENXIO); 3151 } 3152 if (moddebug & MODDEBUG_LOADMSG2) 3153 printf(loading_msg, mp->mod_filename, mp->mod_id); 3154 3155 if (curthread != &t0) { 3156 lt.mp = mp; 3157 lt.usepath = usepath; 3158 lt.owner = curthread; 3159 sema_init(<.sema, 0, NULL, SEMA_DEFAULT, NULL); 3160 3161 /* create thread to hand of call to */ 3162 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3163 modload_thread, <, 0, &p0, TS_RUN, maxclsyspri); 3164 3165 /* wait for thread to complete kobj_load_module */ 3166 sema_p(<.sema); 3167 3168 sema_destroy(<.sema); 3169 retval = lt.retval; 3170 } else 3171 retval = kobj_load_module(mp, usepath); 3172 3173 if (mp->mod_mp) { 3174 ASSERT(retval == 0); 3175 mp->mod_loaded = 1; 3176 mp->mod_loadcnt++; 3177 if (moddebug & MODDEBUG_LOADMSG) { 3178 printf(load_msg, mp->mod_filename, mp->mod_id, 3179 (void *)((struct module *)mp->mod_mp)->text, 3180 (void *)((struct module *)mp->mod_mp)->data, 3181 ((struct module *)mp->mod_mp)->text_size, 3182 ((struct module *)mp->mod_mp)->data_size); 3183 } 3184 3185 /* 3186 * XXX - There should be a better way to get this. 3187 */ 3188 modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP); 3189 modinfop->mi_info = MI_INFO_LINKAGE; 3190 if (mod_getinfo(mp, modinfop) == 0) 3191 mp->mod_linkage = NULL; 3192 else { 3193 mp->mod_linkage = (void *)modinfop->mi_base; 3194 ASSERT(mp->mod_linkage->ml_rev == MODREV_1); 3195 } 3196 3197 /* 3198 * DCS: bootstrapping code. If the driver is loaded 3199 * before root mount, it is assumed that the driver 3200 * may be used before mounting root. In order to 3201 * access mappings of global to local minor no.'s 3202 * during installation/open of the driver, we load 3203 * them into memory here while the BOP_interfaces 3204 * are still up. 3205 */ 3206 if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) { 3207 retval = clboot_modload(mp); 3208 } 3209 3210 kmem_free(modinfop, sizeof (struct modinfo)); 3211 (void) mod_sysctl(SYS_SET_MVAR, (void *)mp); 3212 retval = install_stubs_by_name(mp, mp->mod_modname); 3213 3214 /* 3215 * Now that the module is loaded, we need to give DTrace 3216 * a chance to notify its providers. This is done via 3217 * the dtrace_modload function pointer. 3218 */ 3219 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3220 struct modctl *dmp = mod_hold_by_name("dtrace"); 3221 3222 if (dmp != NULL && dtrace_modload != NULL) 3223 (*dtrace_modload)(mp); 3224 3225 mod_release_mod(dmp); 3226 } 3227 3228 } else { 3229 /* 3230 * If load failed then we need to release any requisites 3231 * that we had established. 3232 */ 3233 ASSERT(retval); 3234 mod_release_requisites(mp); 3235 3236 if (moddebug & MODDEBUG_ERRMSG) 3237 printf("error loading '%s', error %d\n", 3238 mp->mod_filename, retval); 3239 } 3240 return (retval); 3241 } 3242 3243 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n"; 3244 3245 static void 3246 mod_unload(struct modctl *mp) 3247 { 3248 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3249 ASSERT(mp->mod_busy); 3250 ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) && 3251 ((mp->mod_prim == 0) && (mp->mod_ref >= 0))); 3252 3253 if (moddebug & MODDEBUG_LOADMSG) 3254 printf(unload_msg, mp->mod_modname, 3255 mp->mod_id, mp->mod_loadcnt); 3256 3257 /* 3258 * If mod_ref is not zero, it means some modules might still refer 3259 * to this module. Then you can't unload this module right now. 3260 * Instead, set 1 to mod_delay_unload to notify the system of 3261 * unloading this module later when it's not required any more. 3262 */ 3263 if (mp->mod_ref > 0) { 3264 mp->mod_delay_unload = 1; 3265 if (moddebug & MODDEBUG_LOADMSG2) { 3266 printf("module %s not unloaded," 3267 " non-zero reference count (%d)", 3268 mp->mod_modname, mp->mod_ref); 3269 } 3270 return; 3271 } 3272 3273 if (((mp->mod_loaded == 0) || mp->mod_installed) || 3274 (mp->mod_ref || mp->mod_prim)) { 3275 /* 3276 * A DEBUG kernel would ASSERT panic above, the code is broken 3277 * if we get this warning. 3278 */ 3279 cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d", 3280 mp->mod_filename, mp->mod_installed, mp->mod_loaded, 3281 mp->mod_ref); 3282 return; 3283 } 3284 3285 /* reset stub functions to call the binder again */ 3286 reset_stubs(mp); 3287 3288 /* 3289 * mark module as unloaded before the modctl structure is freed. 3290 * This is required not to reuse the modctl structure before 3291 * the module is marked as unloaded. 3292 */ 3293 mp->mod_loaded = 0; 3294 mp->mod_linkage = NULL; 3295 3296 /* free the memory */ 3297 kobj_unload_module(mp); 3298 3299 if (mp->mod_delay_unload) { 3300 mp->mod_delay_unload = 0; 3301 if (moddebug & MODDEBUG_LOADMSG2) { 3302 printf("deferred unload of module %s" 3303 " (id %d) successful", 3304 mp->mod_modname, mp->mod_id); 3305 } 3306 } 3307 3308 /* release hold on requisites */ 3309 mod_release_requisites(mp); 3310 3311 /* 3312 * Now that the module is gone, we need to give DTrace a chance to 3313 * remove any probes that it may have had in the module. This is 3314 * done via the dtrace_modunload function pointer. 3315 */ 3316 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3317 struct modctl *dmp = mod_hold_by_name("dtrace"); 3318 3319 if (dmp != NULL && dtrace_modunload != NULL) 3320 (*dtrace_modunload)(mp); 3321 3322 mod_release_mod(dmp); 3323 } 3324 } 3325 3326 static int 3327 modinstall(struct modctl *mp) 3328 { 3329 int val; 3330 int (*func)(void); 3331 3332 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3333 ASSERT(mp->mod_busy && mp->mod_loaded); 3334 3335 if (mp->mod_installed) 3336 return (0); 3337 /* 3338 * If mod_delay_unload is on, it means the system chose the deferred 3339 * unload for this module. Then you can't install this module until 3340 * it's unloaded from the system. 3341 */ 3342 if (mp->mod_delay_unload) 3343 return (ENXIO); 3344 3345 if (moddebug & MODDEBUG_LOADMSG) 3346 printf("installing %s, module id %d.\n", 3347 mp->mod_modname, mp->mod_id); 3348 3349 ASSERT(mp->mod_mp != NULL); 3350 if (mod_install_requisites(mp) != 0) { 3351 /* 3352 * Note that we can't call mod_unload(mp) here since 3353 * if modinstall() was called by mod_install_requisites(), 3354 * we won't be able to hold the dependent modules 3355 * (otherwise there would be a deadlock). 3356 */ 3357 return (ENXIO); 3358 } 3359 3360 if (moddebug & MODDEBUG_ERRMSG) { 3361 printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n", 3362 mp->mod_filename, mp->mod_id, 3363 (void *)((struct module *)mp->mod_mp)->text, 3364 (void *)((struct module *)mp->mod_mp)->data, 3365 ((struct module *)mp->mod_mp)->text_size, 3366 ((struct module *)mp->mod_mp)->data_size); 3367 } 3368 3369 func = (int (*)())kobj_lookup(mp->mod_mp, "_init"); 3370 3371 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3372 cmn_err(CE_WARN, "_init() not defined properly in %s", 3373 mp->mod_filename); 3374 return (EFAULT); 3375 } 3376 3377 if (moddebug & MODDEBUG_USERDEBUG) { 3378 printf("breakpoint before calling %s:_init()\n", 3379 mp->mod_modname); 3380 if (DEBUGGER_PRESENT) 3381 debug_enter("_init"); 3382 } 3383 3384 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3385 ASSERT(mp->mod_busy && mp->mod_loaded); 3386 val = (*func)(); /* call _init */ 3387 3388 if (moddebug & MODDEBUG_USERDEBUG) 3389 printf("Returned from _init, val = %x\n", val); 3390 3391 if (val == 0) { 3392 /* 3393 * Set the MODS_INSTALLED flag to enable this module 3394 * being called now. 3395 */ 3396 install_stubs(mp); 3397 mp->mod_installed = 1; 3398 } else if (moddebug & MODDEBUG_ERRMSG) 3399 printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val); 3400 3401 return (val); 3402 } 3403 3404 int detach_driver_unconfig = 0; 3405 3406 static int 3407 detach_driver(char *name) 3408 { 3409 major_t major; 3410 int error; 3411 3412 /* 3413 * If being called from mod_uninstall_all() then the appropriate 3414 * driver detaches (leaf only) have already been done. 3415 */ 3416 if (mod_in_autounload()) 3417 return (0); 3418 3419 major = ddi_name_to_major(name); 3420 if (major == (major_t)-1) 3421 return (0); 3422 3423 error = ndi_devi_unconfig_driver(ddi_root_node(), 3424 NDI_DETACH_DRIVER | detach_driver_unconfig, major); 3425 return (error == NDI_SUCCESS ? 0 : -1); 3426 } 3427 3428 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n"; 3429 3430 static int 3431 moduninstall(struct modctl *mp) 3432 { 3433 int status = 0; 3434 int (*func)(void); 3435 3436 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3437 ASSERT(mp->mod_busy); 3438 3439 /* 3440 * Verify that we need to do something and can uninstall the module. 3441 * 3442 * If we should not uninstall the module or if the module is not in 3443 * the correct state to start an uninstall we return EBUSY to prevent 3444 * us from progressing to mod_unload. If the module has already been 3445 * uninstalled and unloaded we return EALREADY. 3446 */ 3447 if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0) 3448 return (EBUSY); 3449 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) 3450 return (EALREADY); 3451 3452 /* 3453 * To avoid devinfo / module deadlock we must release this module 3454 * prior to initiating the detach_driver, otherwise the detach_driver 3455 * might deadlock on a devinfo node held by another thread 3456 * coming top down and involving the module we have locked. 3457 * 3458 * When we regrab the module we must reverify that it is OK 3459 * to proceed with the uninstall operation. 3460 */ 3461 mod_release_mod(mp); 3462 status = detach_driver(mp->mod_modname); 3463 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 3464 3465 /* check detach status and reverify state with lock */ 3466 mutex_enter(&mod_lock); 3467 if ((status != 0) || mp->mod_prim || mp->mod_ref) { 3468 mutex_exit(&mod_lock); 3469 return (EBUSY); 3470 } 3471 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) { 3472 mutex_exit(&mod_lock); 3473 return (EALREADY); 3474 } 3475 mutex_exit(&mod_lock); 3476 3477 if (moddebug & MODDEBUG_LOADMSG2) 3478 printf("uninstalling %s\n", mp->mod_modname); 3479 3480 /* 3481 * lookup _fini, return EBUSY if not defined. 3482 * 3483 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in 3484 * detach(9E) - it allows bufctl addresses to be resolved. 3485 */ 3486 func = (int (*)())kobj_lookup(mp->mod_mp, "_fini"); 3487 if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) || 3488 (moddebug & MODDEBUG_FINI_EBUSY)) 3489 return (EBUSY); 3490 3491 /* verify that _fini is in this module */ 3492 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3493 cmn_err(CE_WARN, "_fini() not defined properly in %s", 3494 mp->mod_filename); 3495 return (EFAULT); 3496 } 3497 3498 /* call _fini() */ 3499 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3500 ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed); 3501 3502 status = (*func)(); 3503 3504 if (status == 0) { 3505 /* _fini returned success, the module is no longer installed */ 3506 if (moddebug & MODDEBUG_LOADMSG) 3507 printf("uninstalled %s\n", mp->mod_modname); 3508 3509 /* 3510 * Even though we only set mod_installed to zero here, a zero 3511 * return value means we are commited to a code path were 3512 * mod_loaded will also end up as zero - we have no other 3513 * way to get the module data and bss back to the pre _init 3514 * state except a reload. To ensure this, after return, 3515 * mod_busy must stay set until mod_loaded is cleared. 3516 */ 3517 mp->mod_installed = 0; 3518 3519 /* 3520 * Clear the MODS_INSTALLED flag not to call functions 3521 * in the module directly from now on. 3522 */ 3523 uninstall_stubs(mp); 3524 } else { 3525 if (moddebug & MODDEBUG_USERDEBUG) 3526 printf(finiret_msg, mp->mod_filename, status); 3527 /* 3528 * By definition _fini is only allowed to return EBUSY or the 3529 * result of mod_remove (EBUSY or EINVAL). In the off chance 3530 * that a driver returns EALREADY we convert this to EINVAL 3531 * since to our caller EALREADY means module was already 3532 * removed. 3533 */ 3534 if (status == EALREADY) 3535 status = EINVAL; 3536 } 3537 3538 return (status); 3539 } 3540 3541 /* 3542 * Uninstall all modules. 3543 */ 3544 static void 3545 mod_uninstall_all(void) 3546 { 3547 struct modctl *mp; 3548 modid_t modid = 0; 3549 3550 /* synchronize with any active modunload_disable() */ 3551 modunload_begin(); 3552 3553 /* mark this thread as doing autounloading */ 3554 (void) tsd_set(mod_autounload_key, (void *)1); 3555 3556 (void) devfs_clean(ddi_root_node(), NULL, 0); 3557 (void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH); 3558 3559 while ((mp = mod_hold_next_by_id(modid)) != NULL) { 3560 modid = mp->mod_id; 3561 /* 3562 * Skip modules with the MOD_NOAUTOUNLOAD flag set 3563 */ 3564 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3565 mod_release_mod(mp); 3566 continue; 3567 } 3568 3569 if (moduninstall(mp) == 0) { 3570 mod_unload(mp); 3571 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3572 } 3573 mod_release_mod(mp); 3574 } 3575 3576 (void) tsd_set(mod_autounload_key, NULL); 3577 modunload_end(); 3578 } 3579 3580 /* wait for unloads that have begun before registering disable */ 3581 void 3582 modunload_disable(void) 3583 { 3584 mutex_enter(&modunload_wait_mutex); 3585 while (modunload_active_count) { 3586 modunload_wait++; 3587 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3588 modunload_wait--; 3589 } 3590 modunload_disable_count++; 3591 mutex_exit(&modunload_wait_mutex); 3592 } 3593 3594 /* mark end of disable and signal waiters */ 3595 void 3596 modunload_enable(void) 3597 { 3598 mutex_enter(&modunload_wait_mutex); 3599 modunload_disable_count--; 3600 if ((modunload_disable_count == 0) && modunload_wait) 3601 cv_broadcast(&modunload_wait_cv); 3602 mutex_exit(&modunload_wait_mutex); 3603 } 3604 3605 /* wait for disables to complete before begining unload */ 3606 void 3607 modunload_begin() 3608 { 3609 mutex_enter(&modunload_wait_mutex); 3610 while (modunload_disable_count) { 3611 modunload_wait++; 3612 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3613 modunload_wait--; 3614 } 3615 modunload_active_count++; 3616 mutex_exit(&modunload_wait_mutex); 3617 } 3618 3619 /* mark end of unload and signal waiters */ 3620 void 3621 modunload_end() 3622 { 3623 mutex_enter(&modunload_wait_mutex); 3624 modunload_active_count--; 3625 if ((modunload_active_count == 0) && modunload_wait) 3626 cv_broadcast(&modunload_wait_cv); 3627 mutex_exit(&modunload_wait_mutex); 3628 } 3629 3630 void 3631 mod_uninstall_daemon(void) 3632 { 3633 callb_cpr_t cprinfo; 3634 clock_t ticks = 0; 3635 3636 mod_aul_thread = curthread; 3637 3638 CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud"); 3639 for (;;) { 3640 mutex_enter(&mod_uninstall_lock); 3641 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3642 /* 3643 * In DEBUG kernels, unheld drivers are uninstalled periodically 3644 * every mod_uninstall_interval seconds. Periodic uninstall can 3645 * be disabled by setting mod_uninstall_interval to 0 which is 3646 * the default for a non-DEBUG kernel. 3647 */ 3648 if (mod_uninstall_interval) { 3649 ticks = ddi_get_lbolt() + 3650 drv_usectohz(mod_uninstall_interval * 1000000); 3651 (void) cv_timedwait(&mod_uninstall_cv, 3652 &mod_uninstall_lock, ticks); 3653 } else { 3654 cv_wait(&mod_uninstall_cv, &mod_uninstall_lock); 3655 } 3656 /* 3657 * The whole daemon is safe for CPR except we don't want 3658 * the daemon to run if FREEZE is issued and this daemon 3659 * wakes up from the cv_wait above. In this case, it'll be 3660 * blocked in CALLB_CPR_SAFE_END until THAW is issued. 3661 * 3662 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that 3663 * mod_uninstall_lock is used to protect cprinfo and 3664 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when 3665 * called. 3666 */ 3667 CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock); 3668 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3669 mutex_exit(&mod_uninstall_lock); 3670 if ((modunload_disable_count == 0) && 3671 ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) { 3672 mod_uninstall_all(); 3673 } 3674 } 3675 } 3676 3677 /* 3678 * Unload all uninstalled modules. 3679 */ 3680 void 3681 modreap(void) 3682 { 3683 mutex_enter(&mod_uninstall_lock); 3684 cv_broadcast(&mod_uninstall_cv); 3685 mutex_exit(&mod_uninstall_lock); 3686 } 3687 3688 /* 3689 * Hold the specified module. This is the module holding primitive. 3690 * 3691 * If MOD_LOCK_HELD then the caller already holds the mod_lock. 3692 * 3693 * Return values: 3694 * 0 ==> the module is held 3695 * 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs 3696 * to determine how to retry. 3697 */ 3698 int 3699 mod_hold_by_modctl(struct modctl *mp, int f) 3700 { 3701 ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) && 3702 ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) != 3703 (MOD_WAIT_ONCE | MOD_WAIT_FOREVER))); 3704 ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) && 3705 ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) != 3706 (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD))); 3707 ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock)); 3708 3709 if (f & MOD_LOCK_NOT_HELD) 3710 mutex_enter(&mod_lock); 3711 3712 while (mp->mod_busy) { 3713 mp->mod_want = 1; 3714 cv_wait(&mod_cv, &mod_lock); 3715 /* 3716 * Module may be unloaded by daemon. 3717 * Nevertheless, modctl structure is still in linked list 3718 * (i.e., off &modules), not freed! 3719 * Caller is not supposed to assume "mp" is valid, but there 3720 * is no reasonable way to detect this but using 3721 * mp->mod_modinfo->mp == NULL check (follow the back pointer) 3722 * (or similar check depending on calling context) 3723 * DON'T free modctl structure, it will be very very 3724 * problematic. 3725 */ 3726 if (f & MOD_WAIT_ONCE) { 3727 if (f & MOD_LOCK_NOT_HELD) 3728 mutex_exit(&mod_lock); 3729 return (1); /* caller decides how to retry */ 3730 } 3731 } 3732 3733 mp->mod_busy = 1; 3734 mp->mod_inprogress_thread = 3735 (curthread == NULL ? (kthread_id_t)-1 : curthread); 3736 3737 if (f & MOD_LOCK_NOT_HELD) 3738 mutex_exit(&mod_lock); 3739 return (0); 3740 } 3741 3742 static struct modctl * 3743 mod_hold_by_name_common(struct modctl *dep, const char *filename) 3744 { 3745 const char *modname; 3746 struct modctl *mp; 3747 char *curname, *newname; 3748 int found = 0; 3749 3750 mutex_enter(&mod_lock); 3751 3752 if ((modname = strrchr(filename, '/')) == NULL) 3753 modname = filename; 3754 else 3755 modname++; 3756 3757 mp = &modules; 3758 do { 3759 if (strcmp(modname, mp->mod_modname) == 0) { 3760 found = 1; 3761 break; 3762 } 3763 } while ((mp = mp->mod_next) != &modules); 3764 3765 if (found == 0) { 3766 mp = allocate_modp(filename, modname); 3767 modadd(mp); 3768 } 3769 3770 /* 3771 * if dep is not NULL, set the mp in mod_requisite_loading for 3772 * the module circular dependency check. This field is used in 3773 * mod_circdep(), but it's cleard in mod_hold_loaded_mod(). 3774 */ 3775 if (dep != NULL) { 3776 ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL); 3777 dep->mod_requisite_loading = mp; 3778 } 3779 3780 /* 3781 * If the module was held, then it must be us who has it held. 3782 */ 3783 if (mod_circdep(mp)) 3784 mp = NULL; 3785 else { 3786 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3787 3788 /* 3789 * If the name hadn't been set or has changed, allocate 3790 * space and set it. Free space used by previous name. 3791 * 3792 * Do not change the name of primary modules, for primary 3793 * modules the mod_filename was allocated in standalone mode: 3794 * it is illegal to kobj_alloc in standalone mode and kobj_free 3795 * in non-standalone mode. 3796 */ 3797 curname = mp->mod_filename; 3798 if (curname == NULL || 3799 ((mp->mod_prim == 0) && 3800 (curname != filename) && 3801 (modname != filename) && 3802 (strcmp(curname, filename) != 0))) { 3803 newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP); 3804 (void) strcpy(newname, filename); 3805 mp->mod_filename = newname; 3806 if (curname != NULL) 3807 kobj_free(curname, strlen(curname) + 1); 3808 } 3809 } 3810 3811 mutex_exit(&mod_lock); 3812 if (mp && moddebug & MODDEBUG_LOADMSG2) 3813 printf("Holding %s\n", mp->mod_filename); 3814 if (mp == NULL && moddebug & MODDEBUG_LOADMSG2) 3815 printf("circular dependency loading %s\n", filename); 3816 return (mp); 3817 } 3818 3819 static struct modctl * 3820 mod_hold_by_name_requisite(struct modctl *dep, char *filename) 3821 { 3822 return (mod_hold_by_name_common(dep, filename)); 3823 } 3824 3825 struct modctl * 3826 mod_hold_by_name(const char *filename) 3827 { 3828 return (mod_hold_by_name_common(NULL, filename)); 3829 } 3830 3831 struct modctl * 3832 mod_hold_by_id(modid_t modid) 3833 { 3834 struct modctl *mp; 3835 int found = 0; 3836 3837 mutex_enter(&mod_lock); 3838 mp = &modules; 3839 do { 3840 if (mp->mod_id == modid) { 3841 found = 1; 3842 break; 3843 } 3844 } while ((mp = mp->mod_next) != &modules); 3845 3846 if ((found == 0) || mod_circdep(mp)) 3847 mp = NULL; 3848 else 3849 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3850 3851 mutex_exit(&mod_lock); 3852 return (mp); 3853 } 3854 3855 static struct modctl * 3856 mod_hold_next_by_id(modid_t modid) 3857 { 3858 struct modctl *mp; 3859 int found = 0; 3860 3861 if (modid < -1) 3862 return (NULL); 3863 3864 mutex_enter(&mod_lock); 3865 3866 mp = &modules; 3867 do { 3868 if (mp->mod_id > modid) { 3869 found = 1; 3870 break; 3871 } 3872 } while ((mp = mp->mod_next) != &modules); 3873 3874 if ((found == 0) || mod_circdep(mp)) 3875 mp = NULL; 3876 else 3877 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3878 3879 mutex_exit(&mod_lock); 3880 return (mp); 3881 } 3882 3883 static void 3884 mod_release(struct modctl *mp) 3885 { 3886 ASSERT(MUTEX_HELD(&mod_lock)); 3887 ASSERT(mp->mod_busy); 3888 3889 mp->mod_busy = 0; 3890 mp->mod_inprogress_thread = NULL; 3891 if (mp->mod_want) { 3892 mp->mod_want = 0; 3893 cv_broadcast(&mod_cv); 3894 } 3895 } 3896 3897 void 3898 mod_release_mod(struct modctl *mp) 3899 { 3900 if (moddebug & MODDEBUG_LOADMSG2) 3901 printf("Releasing %s\n", mp->mod_filename); 3902 mutex_enter(&mod_lock); 3903 mod_release(mp); 3904 mutex_exit(&mod_lock); 3905 } 3906 3907 modid_t 3908 mod_name_to_modid(char *filename) 3909 { 3910 char *modname; 3911 struct modctl *mp; 3912 3913 mutex_enter(&mod_lock); 3914 3915 if ((modname = strrchr(filename, '/')) == NULL) 3916 modname = filename; 3917 else 3918 modname++; 3919 3920 mp = &modules; 3921 do { 3922 if (strcmp(modname, mp->mod_modname) == 0) { 3923 mutex_exit(&mod_lock); 3924 return (mp->mod_id); 3925 } 3926 } while ((mp = mp->mod_next) != &modules); 3927 3928 mutex_exit(&mod_lock); 3929 return (-1); 3930 } 3931 3932 3933 int 3934 mod_remove_by_name(char *name) 3935 { 3936 struct modctl *mp; 3937 int retval; 3938 3939 mp = mod_hold_by_name(name); 3940 3941 if (mp == NULL) 3942 return (EINVAL); 3943 3944 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3945 /* 3946 * Do not unload forceloaded modules 3947 */ 3948 mod_release_mod(mp); 3949 return (0); 3950 } 3951 3952 if ((retval = moduninstall(mp)) == 0) { 3953 mod_unload(mp); 3954 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3955 } else if (retval == EALREADY) 3956 retval = 0; /* already unloaded, not an error */ 3957 mod_release_mod(mp); 3958 return (retval); 3959 } 3960 3961 /* 3962 * Record that module "dep" is dependent on module "on_mod." 3963 */ 3964 static void 3965 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod) 3966 { 3967 struct modctl_list **pmlnp; /* previous next pointer */ 3968 struct modctl_list *mlp; 3969 struct modctl_list *new; 3970 3971 ASSERT(dependent->mod_busy && on_mod->mod_busy); 3972 mutex_enter(&mod_lock); 3973 3974 /* 3975 * Search dependent's requisite list to see if on_mod is recorded. 3976 * List is ordered by id. 3977 */ 3978 for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp; 3979 mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp) 3980 if (mlp->modl_modp->mod_id >= on_mod->mod_id) 3981 break; 3982 3983 /* Create and insert if not already recorded */ 3984 if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) { 3985 new = kobj_zalloc(sizeof (*new), KM_SLEEP); 3986 new->modl_modp = on_mod; 3987 new->modl_next = mlp; 3988 *pmlnp = new; 3989 3990 /* 3991 * Increment the mod_ref count in our new requisite module. 3992 * This is what keeps a module that has other modules 3993 * which are dependent on it from being uninstalled and 3994 * unloaded. "on_mod"'s mod_ref count decremented in 3995 * mod_release_requisites when the "dependent" module 3996 * unload is complete. "on_mod" must be loaded, but may not 3997 * yet be installed. 3998 */ 3999 on_mod->mod_ref++; 4000 ASSERT(on_mod->mod_ref && on_mod->mod_loaded); 4001 } 4002 4003 mutex_exit(&mod_lock); 4004 } 4005 4006 /* 4007 * release the hold associated with mod_make_requisite mod_ref++ 4008 * as part of unload. 4009 */ 4010 void 4011 mod_release_requisites(struct modctl *modp) 4012 { 4013 struct modctl_list *modl; 4014 struct modctl_list *next; 4015 struct modctl *req; 4016 struct modctl_list *start = NULL, *mod_garbage; 4017 4018 ASSERT(modp->mod_busy); 4019 ASSERT(!MUTEX_HELD(&mod_lock)); 4020 4021 mutex_enter(&mod_lock); /* needed for manipulation of req */ 4022 for (modl = modp->mod_requisites; modl; modl = next) { 4023 next = modl->modl_next; 4024 req = modl->modl_modp; 4025 ASSERT(req->mod_ref >= 1 && req->mod_loaded); 4026 req->mod_ref--; 4027 4028 /* 4029 * Check if the module has to be unloaded or not. 4030 */ 4031 if (req->mod_ref == 0 && req->mod_delay_unload) { 4032 struct modctl_list *new; 4033 /* 4034 * Allocate the modclt_list holding the garbage 4035 * module which should be unloaded later. 4036 */ 4037 new = kobj_zalloc(sizeof (struct modctl_list), 4038 KM_SLEEP); 4039 new->modl_modp = req; 4040 4041 if (start == NULL) 4042 mod_garbage = start = new; 4043 else { 4044 mod_garbage->modl_next = new; 4045 mod_garbage = new; 4046 } 4047 } 4048 4049 /* free the list as we go */ 4050 kobj_free(modl, sizeof (*modl)); 4051 } 4052 modp->mod_requisites = NULL; 4053 mutex_exit(&mod_lock); 4054 4055 /* 4056 * Unload the garbage modules. 4057 */ 4058 for (mod_garbage = start; mod_garbage != NULL; /* nothing */) { 4059 struct modctl_list *old = mod_garbage; 4060 struct modctl *mp = mod_garbage->modl_modp; 4061 ASSERT(mp != NULL); 4062 4063 /* 4064 * Hold this module until it's unloaded completely. 4065 */ 4066 (void) mod_hold_by_modctl(mp, 4067 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 4068 /* 4069 * Check if the module is not unloaded yet and nobody requires 4070 * the module. If it's unloaded already or somebody still 4071 * requires the module, don't unload it now. 4072 */ 4073 if (mp->mod_loaded && mp->mod_ref == 0) 4074 mod_unload(mp); 4075 ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) || 4076 (mp->mod_ref > 0)); 4077 mod_release_mod(mp); 4078 4079 mod_garbage = mod_garbage->modl_next; 4080 kobj_free(old, sizeof (struct modctl_list)); 4081 } 4082 } 4083 4084 /* 4085 * Process dependency of the module represented by "dep" on the 4086 * module named by "on." 4087 * 4088 * Called from kobj_do_dependents() to load a module "on" on which 4089 * "dep" depends. 4090 */ 4091 struct modctl * 4092 mod_load_requisite(struct modctl *dep, char *on) 4093 { 4094 struct modctl *on_mod; 4095 int retval; 4096 4097 if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) { 4098 mod_make_requisite(dep, on_mod); 4099 } else if (moddebug & MODDEBUG_ERRMSG) { 4100 printf("error processing %s on which module %s depends\n", 4101 on, dep->mod_modname); 4102 } 4103 return (on_mod); 4104 } 4105 4106 static int 4107 mod_install_requisites(struct modctl *modp) 4108 { 4109 struct modctl_list *modl; 4110 struct modctl *req; 4111 int status = 0; 4112 4113 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 4114 ASSERT(modp->mod_busy); 4115 4116 for (modl = modp->mod_requisites; modl; modl = modl->modl_next) { 4117 req = modl->modl_modp; 4118 (void) mod_hold_by_modctl(req, 4119 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 4120 status = modinstall(req); 4121 mod_release_mod(req); 4122 4123 if (status != 0) 4124 break; 4125 } 4126 return (status); 4127 } 4128 4129 /* 4130 * returns 1 if this thread is doing autounload, 0 otherwise. 4131 * see mod_uninstall_all. 4132 */ 4133 int 4134 mod_in_autounload() 4135 { 4136 return ((int)(uintptr_t)tsd_get(mod_autounload_key)); 4137 } 4138 4139 /* 4140 * gmatch adapted from libc, stripping the wchar stuff 4141 */ 4142 #define popchar(p, c) { \ 4143 c = *p++; \ 4144 if (c == 0) { \ 4145 return (0); \ 4146 } \ 4147 } 4148 4149 int 4150 gmatch(const char *s, const char *p) 4151 { 4152 int c, sc; 4153 int ok, lc, notflag; 4154 4155 sc = *s++; 4156 c = *p++; 4157 if (c == 0) 4158 return (sc == c); /* nothing matches nothing */ 4159 4160 switch (c) { 4161 case '\\': 4162 /* skip to quoted character */ 4163 popchar(p, c); 4164 /*FALLTHRU*/ 4165 4166 default: 4167 /* straight comparison */ 4168 if (c != sc) 4169 return (0); 4170 /*FALLTHRU*/ 4171 4172 case '?': 4173 /* first char matches, move to remainder */ 4174 return (sc != '\0' ? gmatch(s, p) : 0); 4175 4176 4177 case '*': 4178 while (*p == '*') 4179 p++; 4180 4181 /* * matches everything */ 4182 if (*p == 0) 4183 return (1); 4184 4185 /* undo skip at the beginning & iterate over substrings */ 4186 --s; 4187 while (*s) { 4188 if (gmatch(s, p)) 4189 return (1); 4190 s++; 4191 } 4192 return (0); 4193 4194 case '[': 4195 /* match any char within [] */ 4196 if (sc == 0) 4197 return (0); 4198 4199 ok = lc = notflag = 0; 4200 4201 if (*p == '!') { 4202 notflag = 1; 4203 p++; 4204 } 4205 popchar(p, c); 4206 4207 do { 4208 if (c == '-' && lc && *p != ']') { 4209 /* test sc against range [c1-c2] */ 4210 popchar(p, c); 4211 if (c == '\\') { 4212 popchar(p, c); 4213 } 4214 4215 if (notflag) { 4216 /* return 0 on mismatch */ 4217 if (lc <= sc && sc <= c) 4218 return (0); 4219 ok++; 4220 } else if (lc <= sc && sc <= c) { 4221 ok++; 4222 } 4223 /* keep going, may get a match next */ 4224 } else if (c == '\\') { 4225 /* skip to quoted character */ 4226 popchar(p, c); 4227 } 4228 lc = c; 4229 if (notflag) { 4230 if (sc == lc) 4231 return (0); 4232 ok++; 4233 } else if (sc == lc) { 4234 ok++; 4235 } 4236 popchar(p, c); 4237 } while (c != ']'); 4238 4239 /* recurse on remainder of string */ 4240 return (ok ? gmatch(s, p) : 0); 4241 } 4242 /*NOTREACHED*/ 4243 } 4244 4245 4246 /* 4247 * Get default perm for device from /etc/minor_perm. Return 0 if match found. 4248 * 4249 * Pure wild-carded patterns are handled separately so the ordering of 4250 * these patterns doesn't matter. We're still dependent on ordering 4251 * however as the first matching entry is the one returned. 4252 * Not ideal but all existing examples and usage do imply this 4253 * ordering implicitly. 4254 * 4255 * Drivers using the clone driver are always good for some entertainment. 4256 * Clone nodes under pseudo have the form clone@0:<driver>. Some minor 4257 * perm entries have the form clone:<driver>, others use <driver>:* 4258 * Examples are clone:llc1 vs. llc2:*, for example. 4259 * 4260 * Minor perms in the clone:<driver> form are mapped to the drivers's 4261 * mperm list, not the clone driver, as wildcard entries for clone 4262 * reference only. In other words, a clone wildcard will match 4263 * references for clone@0:<driver> but never <driver>@<minor>. 4264 * 4265 * Additional minor perms in the standard form are also supported, 4266 * for mixed usage, ie a node with an entry clone:<driver> could 4267 * provide further entries <driver>:<minor>. 4268 * 4269 * Finally, some uses of clone use an alias as the minor name rather 4270 * than the driver name, with the alias as the minor perm entry. 4271 * This case is handled by attaching the driver to bring its 4272 * minor list into existence, then discover the alias via DDI_ALIAS. 4273 * The clone device's minor perm list can then be searched for 4274 * that alias. 4275 */ 4276 4277 static int 4278 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp) 4279 { 4280 major_t major; 4281 struct devnames *dnp; 4282 mperm_t *mp; 4283 char *alias = NULL; 4284 dev_info_t *cdevi; 4285 struct ddi_minor_data *dmd; 4286 4287 major = ddi_name_to_major(minor_name); 4288 4289 ASSERT(dip == clone_dip); 4290 ASSERT(major != (major_t)-1); 4291 4292 /* 4293 * Attach the driver named by the minor node, then 4294 * search its first instance's minor list for an 4295 * alias node. 4296 */ 4297 if (ddi_hold_installed_driver(major) == NULL) 4298 return (1); 4299 4300 dnp = &devnamesp[major]; 4301 LOCK_DEV_OPS(&dnp->dn_lock); 4302 4303 if ((cdevi = dnp->dn_head) != NULL) { 4304 mutex_enter(&DEVI(cdevi)->devi_lock); 4305 for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) { 4306 if (dmd->type == DDM_ALIAS) { 4307 alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP); 4308 break; 4309 } 4310 } 4311 mutex_exit(&DEVI(cdevi)->devi_lock); 4312 } 4313 4314 UNLOCK_DEV_OPS(&dnp->dn_lock); 4315 ddi_rele_driver(major); 4316 4317 if (alias == NULL) { 4318 if (moddebug & MODDEBUG_MINORPERM) 4319 cmn_err(CE_CONT, "dev_minorperm: " 4320 "no alias for %s\n", minor_name); 4321 return (1); 4322 } 4323 4324 major = ddi_driver_major(clone_dip); 4325 dnp = &devnamesp[major]; 4326 LOCK_DEV_OPS(&dnp->dn_lock); 4327 4328 /* 4329 * Go through the clone driver's mperm list looking 4330 * for a match for the specified alias. 4331 */ 4332 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4333 if (strcmp(alias, mp->mp_minorname) == 0) { 4334 break; 4335 } 4336 } 4337 4338 if (mp) { 4339 if (moddebug & MODDEBUG_MP_MATCH) { 4340 cmn_err(CE_CONT, 4341 "minor perm defaults: %s %s 0%o %d %d (aliased)\n", 4342 minor_name, alias, mp->mp_mode, 4343 mp->mp_uid, mp->mp_gid); 4344 } 4345 rmp->mp_uid = mp->mp_uid; 4346 rmp->mp_gid = mp->mp_gid; 4347 rmp->mp_mode = mp->mp_mode; 4348 } 4349 UNLOCK_DEV_OPS(&dnp->dn_lock); 4350 4351 kmem_free(alias, strlen(alias)+1); 4352 4353 return (mp == NULL); 4354 } 4355 4356 int 4357 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp) 4358 { 4359 major_t major; 4360 char *minor_name; 4361 struct devnames *dnp; 4362 mperm_t *mp; 4363 int is_clone = 0; 4364 4365 if (!minorperm_loaded) { 4366 if (moddebug & MODDEBUG_MINORPERM) 4367 cmn_err(CE_CONT, 4368 "%s: minor perm not yet loaded\n", name); 4369 return (1); 4370 } 4371 4372 minor_name = strchr(name, ':'); 4373 if (minor_name == NULL) 4374 return (1); 4375 minor_name++; 4376 4377 /* 4378 * If it's the clone driver, search the driver as named 4379 * by the minor. All clone minor perm entries other than 4380 * alias nodes are actually installed on the real driver's list. 4381 */ 4382 if (dip == clone_dip) { 4383 major = ddi_name_to_major(minor_name); 4384 if (major == (major_t)-1) { 4385 if (moddebug & MODDEBUG_MINORPERM) 4386 cmn_err(CE_CONT, "dev_minorperm: " 4387 "%s: no such driver\n", minor_name); 4388 return (1); 4389 } 4390 is_clone = 1; 4391 } else { 4392 major = ddi_driver_major(dip); 4393 ASSERT(major != (major_t)-1); 4394 } 4395 4396 dnp = &devnamesp[major]; 4397 LOCK_DEV_OPS(&dnp->dn_lock); 4398 4399 /* 4400 * Go through the driver's mperm list looking for 4401 * a match for the specified minor. If there's 4402 * no matching pattern, use the wild card. 4403 * Defer to the clone wild for clone if specified, 4404 * otherwise fall back to the normal form. 4405 */ 4406 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4407 if (gmatch(minor_name, mp->mp_minorname) != 0) { 4408 break; 4409 } 4410 } 4411 if (mp == NULL) { 4412 if (is_clone) 4413 mp = dnp->dn_mperm_clone; 4414 if (mp == NULL) 4415 mp = dnp->dn_mperm_wild; 4416 } 4417 4418 if (mp) { 4419 if (moddebug & MODDEBUG_MP_MATCH) { 4420 cmn_err(CE_CONT, 4421 "minor perm defaults: %s %s 0%o %d %d\n", 4422 name, mp->mp_minorname, mp->mp_mode, 4423 mp->mp_uid, mp->mp_gid); 4424 } 4425 rmp->mp_uid = mp->mp_uid; 4426 rmp->mp_gid = mp->mp_gid; 4427 rmp->mp_mode = mp->mp_mode; 4428 } 4429 UNLOCK_DEV_OPS(&dnp->dn_lock); 4430 4431 /* 4432 * If no match can be found for a clone node, 4433 * search for a possible match for an alias. 4434 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm, 4435 * with minor perm entry clone:ptmx. 4436 */ 4437 if (mp == NULL && is_clone) { 4438 return (dev_alias_minorperm(dip, minor_name, rmp)); 4439 } 4440 4441 return (mp == NULL); 4442 } 4443 4444 /* 4445 * dynamicaly reference load a dl module/library, returning handle 4446 */ 4447 /*ARGSUSED*/ 4448 ddi_modhandle_t 4449 ddi_modopen(const char *modname, int mode, int *errnop) 4450 { 4451 char *subdir; 4452 char *mod; 4453 int subdirlen; 4454 struct modctl *hmodp = NULL; 4455 int retval = EINVAL; 4456 4457 ASSERT(modname && (mode == KRTLD_MODE_FIRST)); 4458 if ((modname == NULL) || (mode != KRTLD_MODE_FIRST)) 4459 goto out; 4460 4461 /* find last '/' in modname */ 4462 mod = strrchr(modname, '/'); 4463 4464 if (mod) { 4465 /* for subdir string without modification to argument */ 4466 mod++; 4467 subdirlen = mod - modname; 4468 subdir = kmem_alloc(subdirlen, KM_SLEEP); 4469 (void) strlcpy(subdir, modname, subdirlen); 4470 } else { 4471 subdirlen = 0; 4472 subdir = "misc"; 4473 mod = (char *)modname; 4474 } 4475 4476 /* reference load with errno return value */ 4477 retval = modrload(subdir, mod, &hmodp); 4478 4479 if (subdirlen) 4480 kmem_free(subdir, subdirlen); 4481 4482 out: if (errnop) 4483 *errnop = retval; 4484 4485 if (moddebug & MODDEBUG_DDI_MOD) 4486 printf("ddi_modopen %s mode %x: %s %p %d\n", 4487 modname ? modname : "<unknown>", mode, 4488 hmodp ? hmodp->mod_filename : "<unknown>", 4489 (void *)hmodp, retval); 4490 4491 return ((ddi_modhandle_t)hmodp); 4492 } 4493 4494 /* lookup "name" in open dl module/library */ 4495 void * 4496 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop) 4497 { 4498 struct modctl *hmodp = (struct modctl *)h; 4499 void *f; 4500 int retval; 4501 4502 ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4503 if ((hmodp == NULL) || (name == NULL) || 4504 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4505 f = NULL; 4506 retval = EINVAL; 4507 } else { 4508 f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name); 4509 if (f) 4510 retval = 0; 4511 else 4512 retval = ENOTSUP; 4513 } 4514 4515 if (moddebug & MODDEBUG_DDI_MOD) 4516 printf("ddi_modsym in %s of %s: %d %p\n", 4517 hmodp ? hmodp->mod_modname : "<unknown>", 4518 name ? name : "<unknown>", retval, f); 4519 4520 if (errnop) 4521 *errnop = retval; 4522 return (f); 4523 } 4524 4525 /* dynamic (un)reference unload of an open dl module/library */ 4526 int 4527 ddi_modclose(ddi_modhandle_t h) 4528 { 4529 struct modctl *hmodp = (struct modctl *)h; 4530 struct modctl *modp = NULL; 4531 int retval; 4532 4533 ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4534 if ((hmodp == NULL) || 4535 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4536 retval = EINVAL; 4537 goto out; 4538 } 4539 4540 retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload); 4541 if (retval == EBUSY) 4542 retval = 0; /* EBUSY is not an error */ 4543 4544 if (retval == 0) { 4545 ASSERT(hmodp == modp); 4546 if (hmodp != modp) 4547 retval = EINVAL; 4548 } 4549 4550 out: if (moddebug & MODDEBUG_DDI_MOD) 4551 printf("ddi_modclose %s: %d\n", 4552 hmodp ? hmodp->mod_modname : "<unknown>", retval); 4553 4554 return (retval); 4555 } 4556