1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2016 Joyent, Inc. 14 */ 15 16 /* 17 * Extensible Host Controller Interface (xHCI) USB Driver 18 * 19 * The xhci driver is an HCI driver for USB that bridges the gap between client 20 * device drivers and implements the actual way that we talk to devices. The 21 * xhci specification provides access to USB 3.x capable devices, as well as all 22 * prior generations. Like other host controllers, it both provides the way to 23 * talk to devices and also is treated like a hub (often called the root hub). 24 * 25 * This driver is part of the USBA (USB Architecture). It implements the HCDI 26 * (host controller device interface) end of USBA. These entry points are used 27 * by the USBA on behalf of client device drivers to access their devices. The 28 * driver also provides notifications to deal with hot plug events, which are 29 * quite common in USB. 30 * 31 * ---------------- 32 * USB Introduction 33 * ---------------- 34 * 35 * To properly understand the xhci driver and the design of the USBA HCDI 36 * interfaces it implements, it helps to have a bit of background into how USB 37 * devices are structured and understand how they work at a high-level. 38 * 39 * USB devices, like PCI devices, are broken down into different classes of 40 * device. For example, with USB you have hubs, human-input devices (keyboards, 41 * mice, etc.), mass storage, etc. Every device also has a vendor and device ID. 42 * Many client drivers bind to an entire class of device, for example, the hubd 43 * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers 44 * that bind to explicit IDs such as usbsprl (specific USB to Serial devices). 45 * 46 * USB SPEEDS AND VERSIONS 47 * 48 * USB devices are often referred to in two different ways. One way they're 49 * described is with the USB version that they conform to. In the wild, you're 50 * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also 51 * see devices referred to as 'full-', 'low-', 'high-', and 'super-' speed 52 * devices. 53 * 54 * The latter description describes the maximum theoretical speed of a given 55 * device. For example, a super-speed device theoretically caps out around 5 56 * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s. 57 * 58 * In general, each speed usually corresponds to a specific USB protocol 59 * generation. For example, all USB 3.0 devices are super-speed devices. All 60 * 'high-speed' devices are USB 2.x devices. Full-speed devices are special in 61 * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are 62 * only a USB 1.x thing, they did not jump the fire line to USB 2.x. 63 * 64 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB 65 * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it 66 * will report its version as USB 2.1, to indicate that it is actually a USB 3.x 67 * device. 68 * 69 * USB ENDPOINTS 70 * 71 * A given USB device is made up of endpoints. A request, or transfer, is made 72 * to a specific USB endpoint. These endpoints can provide different services 73 * and have different expectations around the size of the data that'll be used 74 * in a given request and the periodicity of requests. Endpoints themselves are 75 * either used to make one-shot requests, for example, making requests to a mass 76 * storage device for a given sector, or for making periodic requests where you 77 * end up polling on the endpoint, for example, polling on a USB keyboard for 78 * keystrokes. 79 * 80 * Each endpoint encodes two different pieces of information: a direction and a 81 * type. There are two different directions: IN and OUT. These refer to the 82 * general direction that data moves relative to the operating system. For 83 * example, an IN transfer transfers data in to the operating system, from the 84 * device. An OUT transfer transfers data from the operating system, out to the 85 * device. 86 * 87 * There are four different kinds of endpoints: 88 * 89 * BULK These transfers are large transfers of data to or from 90 * a device. The most common use for bulk transfers is for 91 * mass storage devices. Though they are often also used by 92 * network devices and more. Bulk endpoints do not have an 93 * explicit time component to them. They are always used 94 * for one-shot transfers. 95 * 96 * CONTROL These transfers are used to manipulate devices 97 * themselves and are used for USB protocol level 98 * operations (whether device-specific, class-specific, or 99 * generic across all of USB). Unlike other transfers, 100 * control transfers are always bi-directional and use 101 * different kinds of transfers. 102 * 103 * INTERRUPT Interrupt transfers are used for small transfers that 104 * happen infrequently, but need reasonable latency. A good 105 * example of interrupt transfers is to receive input from 106 * a USB keyboard. Interrupt-IN transfers are generally 107 * polled. Meaning that a client (device driver) opens up 108 * an interrupt-IN pipe to poll on it, and receives 109 * periodic updates whenever there is information 110 * available. However, Interrupt transfers can be used 111 * as one-shot transfers both going IN and OUT. 112 * 113 * ISOCHRONOUS These transfers are things that happen once per 114 * time-interval at a very regular rate. A good example of 115 * these transfers are for audio and video. A device may 116 * describe an interval as 10ms at which point it will read 117 * or write the next batch of data every 10ms and transform 118 * it for the user. There are no one-shot Isochronous-IN 119 * transfers. There are one-shot Isochronous-OUT transfers, 120 * but these are used by device drivers to always provide 121 * the system with sufficient data. 122 * 123 * To find out information about the endpoints, USB devices have a series of 124 * descriptors that cover different aspects of the device. For example, there 125 * are endpoint descriptors which cover the properties of endpoints such as the 126 * maximum packet size or polling interval. 127 * 128 * Descriptors exist at all levels of USB. For example, there are general 129 * descriptors for every device. The USB device descriptor is described in 130 * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure 131 * that they program the device correctly; however, they are more often used by 132 * client device drivers. There are also descriptors that exist at a class 133 * level. For example, the hub class has a class-specific descriptor which 134 * describes properties of the hub. That information is requested for and used 135 * by the hub driver. 136 * 137 * All of the different descriptors are gathered by the system and placed into a 138 * tree which USBA sometimes calls the 'Configuration Cloud'. Client device 139 * drivers gain access to this cloud and then use them to open endpoints, which 140 * are called pipes in USBA (and some revisions of the USB specification). 141 * 142 * Each pipe gives access to a specific endpoint on the device which can be used 143 * to perform transfers of a specific type and direction. For example, a mass 144 * storage device often has three different endpoints, the default control 145 * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT 146 * endpoint. The device driver ends up with three open pipes. One to the default 147 * control endpoint to configure the device, and then the other two are used to 148 * perform I/O. 149 * 150 * These routines translate more or less directly into calls to a host 151 * controller driver. A request to open a pipe takes an endpoint descriptor that 152 * describes the properties of the pipe, and the host controller driver (this 153 * driver) goes through and does any work necessary to allow the client device 154 * driver to access it. Once the pipe is open, it either makes one-shot 155 * transfers specific to the transfer type or it starts performing a periodic 156 * poll of an endpoint. 157 * 158 * All of these different actions translate into requests to the host 159 * controller. The host controller driver itself is in charge of making sure 160 * that all of the required resources for polling are allocated with a request 161 * and then proceed to give the driver's periodic callbacks. 162 * 163 * HUBS AND HOST CONTROLLERS 164 * 165 * Every device is always plugged into a hub, even if the device is itself a 166 * hub. This continues until we reach what we call the root-hub. The root-hub is 167 * special in that it is not an actual USB hub, but is integrated into the host 168 * controller and is manipulated in its own way. For example, the host 169 * controller is used to turn on and off a given port's power. This may happen 170 * over any interface, though the most common way is through PCI. 171 * 172 * In addition to the normal character device that exists for a host controller 173 * driver, as part of attaching, the host controller binds to an instance of the 174 * hubd driver. While the root-hub is a bit of a fiction, everyone models the 175 * root-hub as the same as any other hub that's plugged in. The hub kernel 176 * module doesn't know that the hub isn't a physical device that's been plugged 177 * in. The host controller driver simulates that view by taking hub requests 178 * that are made and translating them into corresponding requests that are 179 * understood by the host controller, for example, reading and writing to a 180 * memory mapped register. 181 * 182 * The hub driver polls for changes in device state using an Interrupt-IN 183 * request, which is the same as is done for the root-hub. This allows the host 184 * controller driver to not have to know about the implementation of device hot 185 * plug, merely react to requests from a hub, the same as if it were an external 186 * device. When the hub driver detects a change, it will go through the 187 * corresponding state machine and attach or detach the corresponding client 188 * device driver, depending if the device was inserted or removed. 189 * 190 * We detect the changes for the Interrupt-IN primarily based on the port state 191 * change events that are delivered to the event ring. Whenever any event is 192 * fired, we use this to update the hub driver about _all_ ports with 193 * outstanding events. This more closely matches how a hub is supposed to behave 194 * and leaves things less likely for the hub driver to end up without clearing a 195 * flag on a port. 196 * 197 * PACKET SIZES AND BURSTING 198 * 199 * A given USB endpoint has an explicit packet size and a number of packets that 200 * can be sent per time interval. These concepts are abstracted away from client 201 * device drives usually, though they sometimes inform the upper bounds of what 202 * a device can perform. 203 * 204 * The host controller uses this information to transform arbitrary transfer 205 * requests into USB protocol packets. One of the nice things about the host 206 * controllers is that they abstract away all of the signaling and semantics of 207 * the actual USB protocols, allowing for life to be slightly easier in the 208 * operating system. 209 * 210 * That said, if the host controller is not programmed correctly, these can end 211 * up causing transaction errors and other problems in response to the data that 212 * the host controller is trying to send or receive. 213 * 214 * ------------ 215 * Organization 216 * ------------ 217 * 218 * The driver is made up of the following files. Many of these have their own 219 * theory statements to describe what they do. Here, we touch on each of the 220 * purpose of each of these files. 221 * 222 * xhci_command.c: This file contains the logic to issue commands to the 223 * controller as well as the actual functions that the 224 * other parts of the driver use to cause those commands. 225 * 226 * xhci_context.c: This file manages various data structures used by the 227 * controller to manage the controller's and device's 228 * context data structures. See more in the xHCI Overview 229 * and General Design for more information. 230 * 231 * xhci_dma.c: This manages the allocation of DMA memory and DMA 232 * attributes for controller, whether memory is for a 233 * transfer or something else. This file also deals with 234 * all the logic of getting data in and out of DMA buffers. 235 * 236 * xhci_endpoint.c: This manages all of the logic of handling endpoints or 237 * pipes. It deals with endpoint configuration, I/O 238 * scheduling, timeouts, and callbacks to USBA. 239 * 240 * xhci_event.c: This manages callbacks from the hardware to the driver. 241 * This covers command completion notifications and I/O 242 * notifications. 243 * 244 * xhci_hub.c: This manages the virtual root-hub. It basically 245 * implements and translates all of the USB level requests 246 * into xhci specific implements. It also contains the 247 * functions to register this hub with USBA. 248 * 249 * xhci_intr.c: This manages the underlying interrupt allocation, 250 * interrupt moderation, and interrupt routines. 251 * 252 * xhci_quirks.c: This manages information about buggy hardware that's 253 * been collected and experienced primarily from other 254 * systems. 255 * 256 * xhci_ring.c: This manages the abstraction of a ring in xhci, which is 257 * the primary of communication between the driver and the 258 * hardware, whether for the controller or a device. 259 * 260 * xhci_usba.c: This implements all of the HCDI functions required by 261 * USBA. This is the main entry point that drivers and the 262 * kernel frameworks will reach to start any operation. 263 * Many functions here will end up in the command and 264 * endpoint code. 265 * 266 * xhci.c: This provides the main kernel DDI interfaces and 267 * performs device initialization. 268 * 269 * xhci.h: This is the primary header file which defines 270 * illumos-specific data structures and constants to manage 271 * the system. 272 * 273 * xhcireg.h: This header file defines all of the register offsets, 274 * masks, and related macros. It also contains all of the 275 * constants that are used in various structures as defined 276 * by the specification, such as command offsets, etc. 277 * 278 * xhci_ioctl.h: This contains a few private ioctls that are used by a 279 * private debugging command. These are private. 280 * 281 * cmd/xhci/xhci_portsc: This is a private utility that can be useful for 282 * debugging xhci state. It is the only consumer of 283 * xhci_ioctl.h and the private ioctls. 284 * 285 * ---------------------------------- 286 * xHCI Overview and Structure Layout 287 * ---------------------------------- 288 * 289 * The design and structure of this driver follows from the way that the xHCI 290 * specification tells us that we have to work with hardware. First we'll give a 291 * rough summary of how that works, though the xHCI 1.1 specification should be 292 * referenced when going through this. 293 * 294 * There are three primary parts of the hardware -- registers, contexts, and 295 * rings. The registers are memory mapped registers that come in four sets, 296 * though all are found within the first BAR. These are used to program and 297 * control the hardware and aspects of the devices. Beyond more traditional 298 * device programming there are two primary sets of registers that are 299 * important: 300 * 301 * o Port Status and Control Registers (XHCI_PORTSC) 302 * o Doorbell Array (XHCI_DOORBELL) 303 * 304 * The port status and control registers are used to get and manipulate the 305 * status of a given device. For example, turning on and off the power to it. 306 * The Doorbell Array is used to kick off I/O operations and start the 307 * processing of an I/O ring. 308 * 309 * The contexts are data structures that represent various pieces of information 310 * in the controller. These contexts are generally filled out by the driver and 311 * then acknowledged and consumed by the hardware. There are controller-wide 312 * contexts (mostly managed in xhci_context.c) that are used to point to the 313 * contexts that exist for each device in the system. The primary context is 314 * called the Device Context Base Address Array (DCBAA). 315 * 316 * Each device in the system is allocated a 'slot', which is used to index into 317 * the DCBAA. Slots are assigned based on issuing commands to the controller. 318 * There are a fixed number of slots that determine the maximum number of 319 * devices that can end up being supported in the system. Note this includes all 320 * the devices plugged into the USB device tree, not just devices plugged into 321 * ports on the chassis. 322 * 323 * For each device, there is a context structure that describes properties of 324 * the device. For example, what speed is the device, is it a hub, etc. The 325 * context has slots for the device and for each endpoint on the device. As 326 * endpoints are enabled, their context information which describes things like 327 * the maximum packet size, is filled in and enabled. The mapping between these 328 * contexts look like: 329 * 330 * 331 * DCBAA 332 * +--------+ Device Context 333 * | Slot 0 |------------------>+--------------+ 334 * +--------+ | Slot Context | 335 * | ... | +--------------+ +----------+ 336 * +--------+ +------+ | Endpoint 0 |------>| I/O Ring | 337 * | Slot n |-->| NULL | | Context (Bi) | +----------+ 338 * +--------+ +------+ +--------------+ 339 * | Endpoint 1 | 340 * | Context (Out)| 341 * +--------------+ 342 * | Endpoint 1 | 343 * | Context (In) | 344 * +--------------+ 345 * | ... | 346 * +--------------+ 347 * | Endpoint 15 | 348 * | Context (In) | 349 * +--------------+ 350 * 351 * These contexts are always owned by the controller, though we can read them 352 * after various operations complete. Commands that toggle device state use a 353 * specific input context, which is a variant of the device context. The only 354 * difference is that it has an input context structure ahead of it to say which 355 * sections of the device context should be evaluated. 356 * 357 * Each active endpoint points us to an I/O ring, which leads us to the third 358 * main data structure that's used by the device: rings. Rings are made up of 359 * transfer request blocks (TRBs), which are joined together to form a given 360 * transfer description (TD) which represents a single I/O request. 361 * 362 * These rings are used to issue I/O to individual endpoints, to issue commands 363 * to the controller, and to receive notification of changes and completions. 364 * Issued commands go on the special ring called the command ring while the 365 * change and completion notifications go on the event ring. More details are 366 * available in xhci_ring.c. Each of these structures is represented by an 367 * xhci_ring_t. 368 * 369 * Each ring can be made up of one or more disjoint regions of DMA; however, we 370 * only use a single one. This also impacts some additional registers and 371 * structures that exist. The event ring has an indirection table called the 372 * Event Ring Segment Table (ERST). Each entry in the table (a segment) 373 * describes a chunk of the event ring. 374 * 375 * One other thing worth calling out is the scratchpad. The scratchpad is a way 376 * for the controller to be given arbitrary memory by the OS that it can use. 377 * There are two parts to the scratchpad. The first part is an array whose 378 * entries contain pointers to the actual addresses for the pages. The second 379 * part that we allocate are the actual pages themselves. 380 * 381 * ----------------------------- 382 * Endpoint State and Management 383 * ----------------------------- 384 * 385 * Endpoint management is one of the key parts to the xhci driver as every 386 * endpoint is a pipe that a device driver uses, so they are our primary 387 * currency. Endpoints are enabled and disabled when the client device drivers 388 * open and close a pipe. When an endpoint is enabled, we have to fill in an 389 * endpoint's context structure with information about the endpoint. These 390 * basically tell the controller important properties which it uses to ensure 391 * that there is adequate bandwidth for the device. 392 * 393 * Each endpoint has its own ring as described in the previous section. We place 394 * TRBs (transfer request blocks) onto a given ring to request I/O be performed. 395 * Responses are placed on the event ring, in other words, the rings associated 396 * with an endpoint are purely for producing I/O. 397 * 398 * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3. 399 * These states generally correspond with the state of the endpoint to process 400 * I/O and handle timeouts. The driver basically follows a similar state machine 401 * as described there. There are some deviations. For example, what they 402 * describe as 'running' we break into both the Idle and Running states below. 403 * We also have a notion of timed out and quiescing. The following image 404 * summarizes the states and transitions: 405 * 406 * +------+ +-----------+ 407 * | Idle |---------*--------------------->| Running |<-+ 408 * +------+ . I/O queued on +-----------+ | 409 * ^ ring and timeout | | | | 410 * | scheduled. | | | | 411 * | | | | | 412 * +-----*---------------------------------+ | | | 413 * | . No I/Os remain | | | 414 * | | | | 415 * | +------*------------------+ | | 416 * | | . Timeout | | 417 * | | fires for | | 418 * | | I/O | | 419 * | v v | 420 * | +-----------+ +--------+ | 421 * | | Timed Out | | Halted | | 422 * | +-----------+ +--------+ | 423 * | | | | 424 * | | +-----------+ | | 425 * | +-->| Quiescing |<----------+ | 426 * | +-----------+ | 427 * | No TRBs. | . TRBs | 428 * | remain . | . Remain | 429 * +----------*----<------+-------->-------*-----------+ 430 * 431 * Normally, a given endpoint will oscillate between having TRBs scheduled and 432 * not. Every time a new I/O is added to the endpoint, we'll ring the doorbell, 433 * making sure that we're processing the ring, presuming that the endpoint isn't 434 * in one of the error states. 435 * 436 * To detect device hangs, we have an active timeout(9F) per active endpoint 437 * that ticks at a one second rate while we still have TRBs outstanding on an 438 * endpoint. Once all outstanding TRBs have been processed, the timeout will 439 * stop itself and there will be no active checking until the endpoint has I/O 440 * scheduled on it again. 441 * 442 * There are two primary ways that things can go wrong on the endpoint. We can 443 * either have a timeout or an event that transitions the endpoint to the Halted 444 * state. In the halted state, we need to issue explicit commands to reset the 445 * endpoint before removing the I/O. 446 * 447 * The way we handle both a timeout and a halted condition is similar, but the 448 * way they are triggered is different. When we detect a halted condition, we 449 * don't immediately clean it up, and wait for the client device driver (or USBA 450 * on its behalf) to issue a pipe reset. When we detect a timeout, we 451 * immediately take action (assuming no other action is ongoing). 452 * 453 * In both cases, we quiesce the device, which takes care of dealing with taking 454 * the endpoint from whatever state it may be in and taking the appropriate 455 * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing 456 * leaves the device stopped, which allows us to update the ring's pointer and 457 * remove any TRBs that are causing problems. 458 * 459 * As part of all this, we ensure that we can only be quiescing the device from 460 * a given path at a time. Any requests to schedule I/O during this time will 461 * generally fail. 462 * 463 * The following image describes the state machine for the timeout logic. It 464 * ties into the image above. 465 * 466 * +----------+ +---------+ 467 * | Disabled |-----*--------------------->| Enabled |<--+ 468 * +----------+ . TRBs scheduled +---------+ *. 1 sec timer 469 * ^ and no active | | | | fires and 470 * | timer. | | | | another 471 * | | | +--+--+ quiesce, in 472 * | | | | a bad state, 473 * +------*------------------------------+ | ^ or decrement 474 * | . 1 sec timer | | I/O timeout 475 * | fires and | | 476 * | no TRBs or | +--------------+ 477 * | endpoint shutdown | | 478 * | *. . timer counter | 479 * ^ | reaches zero | 480 * | v | 481 * | +--------------+ | 482 * +-------------*---------------<--| Quiesce ring |->---*-------+ 483 * . No more | and fail I/O | . restart 484 * I/Os +--------------+ timer as 485 * more I/Os 486 * 487 * As we described above, when there are active TRBs and I/Os, a 1 second 488 * timeout(9F) will be active. Each second, we decrement a counter on the 489 * current, active I/O until either a new I/O takes the head, or the counter 490 * reaches zero. If the counter reaches zero, then we go through, quiesce the 491 * ring, and then clean things up. 492 * 493 * ------------------ 494 * Periodic Endpoints 495 * ------------------ 496 * 497 * It's worth calling out periodic endpoints explicitly, as they operate 498 * somewhat differently. Periodic endpoints are limited to Interrupt-IN and 499 * Isochronous-IN. The USBA often uses the term polling for these. That's 500 * because the client only needs to make a single API call; however, they'll 501 * receive multiple callbacks until either an error occurs or polling is 502 * requested to be terminated. 503 * 504 * When we have one of these periodic requests, we end up always rescheduling 505 * I/O requests, as well as, having a specific number of pre-existing I/O 506 * requests to cover the periodic needs, in case of latency spikes. Normally, 507 * when replying to a request, we use the request handle that we were given. 508 * However, when we have a periodic request, we're required to duplicate the 509 * handle before giving them data. 510 * 511 * However, the duplication is a bit tricky. For everything that was duplicated, 512 * the framework expects us to submit data. Because of that we, don't duplicate 513 * them until they are needed. This minimizes the likelihood that we have 514 * outstanding requests to deal with when we encounter a fatal polling failure. 515 * 516 * Most of the polling setup logic happens in xhci_usba.c in 517 * xhci_hcdi_periodic_init(). The consumption and duplication is handled in 518 * xhci_endpoint.c. 519 * 520 * ---------------- 521 * Structure Layout 522 * ---------------- 523 * 524 * The following images relate the core data structures. The primary structure 525 * in the system is the xhci_t. This is the per-controller data structure that 526 * exists for each instance of the driver. From there, each device in the system 527 * is represented by an xhci_device_t and each endpoint is represented by an 528 * xhci_endpoint_t. For each client that opens a given endpoint, there is an 529 * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the 530 * system. 531 * 532 * +------------------------+ 533 * | Per-Controller | 534 * | Structure | 535 * | xhci_t | 536 * | | 537 * | uint_t ---+--> Capability regs offset 538 * | uint_t ---+--> Operational regs offset 539 * | uint_t ---+--> Runtime regs offset 540 * | uint_t ---+--> Doorbell regs offset 541 * | xhci_state_flags_t ---+--> Device state flags 542 * | xhci_quirks_t ---+--> Device quirk flags 543 * | xhci_capability_t ---+--> Controller capability structure 544 * | xhci_dcbaa_t ---+----------------------------------+ 545 * | xhci_scratchpad_t ---+---------+ | 546 * | xhci_command_ing_t ---+------+ | v 547 * | xhci_event_ring_t ---+----+ | | +---------------------+ 548 * | xhci_usba_t ---+--+ | | | | Device Context | 549 * +------------------------+ | | | | | Base Address | 550 * | | | | | Array Structure | 551 * | | | | | xhci_dcbaa_t | 552 * +-------------------------------+ | | | | | 553 * | +-------------------------------+ | | DCBAA KVA <-+-- uint64_t * | 554 * | | +----------------------------+ | DMA Buffer <-+-- xhci_dma_buffer_t | 555 * | | v | +---------------------+ 556 * | | +--------------------------+ +-----------------------+ 557 * | | | Event Ring | | 558 * | | | Management | | 559 * | | | xhci_event_ring_t | v 560 * | | | | Event Ring +----------------------+ 561 * | | | xhci_event_segment_t * --|-> Segment VA | Scratchpad (Extra | 562 * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. | Controller Memory) | 563 * | | | xhci_ring_t --|--+ | xhci_scratchpad_t | 564 * | | +--------------------------+ | Scratchpad | | 565 * | | | Base Array KVA <-+- uint64_t * | 566 * | +------------+ | Array DMA Buf. <-+- xhci_dma_buffer_t | 567 * | v | Scratchpad DMA <-+- xhci_dma_buffer_t * | 568 * | +---------------------------+ | Buffer per page +----------------------+ 569 * | | Command Ring | | 570 * | | xhci_command_ring_t | +------------------------------+ 571 * | | | | 572 * | | xhci_ring_t --+-> Command Ring --->------------+ 573 * | | list_t --+-> Command List v 574 * | | timeout_id_t --+-> Timeout State +---------------------+ 575 * | | xhci_command_ring_state_t +-> State Flags | I/O Ring | 576 * | +---------------------------+ | xhci_ring_t | 577 * | | | 578 * | Ring DMA Buf. <-+-- xhci_dma_buffer_t | 579 * | Ring Length <-+-- uint_t | 580 * | Ring Entry KVA <-+-- xhci_trb_t * | 581 * | +---------------------------+ Ring Head <-+-- uint_t | 582 * +--->| USBA State | Ring Tail <-+-- uint_t | 583 * | xhci_usba_t | Ring Cycle <-+-- uint_t | 584 * | | +---------------------+ 585 * | usba_hcdi_ops_t * -+-> USBA Ops Vector ^ 586 * | usb_dev_dscr_t -+-> USB Virtual Device Descriptor | 587 * | usb_ss_hub_descr_t -+-> USB Virtual Hub Descriptor | 588 * | usba_pipe_handle_data_t * +-> Interrupt polling client | 589 * | usb_intr_req_t -+-> Interrupt polling request | 590 * | uint32_t --+-> Interrupt polling device mask | 591 * | list_t --+-> Pipe List (Active Users) | 592 * | list_t --+-------------------+ | 593 * +---------------------------+ | ^ 594 * | | 595 * v | 596 * +-------------------------------+ +---------------+ | 597 * | USB Device |------------>| USB Device |--> ... | 598 * | xhci_device_t | | xhci_device_t | | 599 * | | +---------------+ | 600 * | usb_port_t --+-> USB Port plugged into | 601 * | uint8_t --+-> Slot Number | 602 * | boolean_t --+-> Address Assigned | 603 * | usba_device_t * --+-> USBA Device State | 604 * | xhci_dma_buffer_t --+-> Input Context DMA Buffer | 605 * | xhci_input_context_t * --+-> Input Context KVA | 606 * | xhci_slot_contex_t * --+-> Input Slot Context KVA | 607 * | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA | 608 * | xhci_dma_buffer_t --+-> Output Context DMA Buffer | 609 * | xhci_slot_context_t * --+-> Output Slot Context KVA ^ 610 * | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA | 611 * | xhci_endpoint_t *[] --+-> Endpoint Tracking ---+ | 612 * +-------------------------------+ | | 613 * | | 614 * v | 615 * +------------------------------+ +-----------------+ | 616 * | Endpoint Data |----------->| Endpoint Data |--> ... | 617 * | xhci_endpoint_t | | xhci_endpoint_t | | 618 * | | +-----------------+ | 619 * | int --+-> Endpoint Number | 620 * | int --+-> Endpoint Type | 621 * | xhci_endpoint_state_t --+-> Endpoint State | 622 * | timeout_id_t --+-> Endpoint Timeout State | 623 * | usba_pipe_handle_data_t * --+-> USBA Client Handle | 624 * | xhci_ring_t --+-> Endpoint I/O Ring -------->--------+ 625 * | list_t --+-> Transfer List --------+ 626 * +------------------------------+ | 627 * v 628 * +-------------------------+ +--------------------+ 629 * | Transfer Structure |----------------->| Transfer Structure |-> ... 630 * | xhci_transfer_t | | xhci_transfer_t | 631 * | | +--------------------+ 632 * | xhci_dma_buffer_t --+-> I/O DMA Buffer 633 * | uint_t --+-> Number of TRBs 634 * | uint_t --+-> Short transfer data 635 * | uint_t --+-> Timeout seconds remaining 636 * | usb_cr_t --+-> USB Transfer return value 637 * | boolean_t --+-> Data direction 638 * | xhci_trb_t * --+-> Host-order transfer requests for I/O 639 * | usb_isoc_pkt_descr_t * -+-> Isochronous only response data 640 * | usb_opaque_t --+-> USBA Request Handle 641 * +-------------------------+ 642 * 643 * ------------- 644 * Lock Ordering 645 * ------------- 646 * 647 * There are three different tiers of locks that exist in the driver. First, 648 * there is a lock for each controller: xhci_t`xhci_lock. This protects all the 649 * data for that instance of the controller. If there are multiple instances of 650 * the xHCI controller in the system, each one is independent and protected 651 * separately. The two do not share any data. 652 * 653 * From there, there are two other, specific locks in the system: 654 * 655 * o xhci_command_ring_t`xcr_lock 656 * o xhci_device_t`xd_imtx 657 * 658 * There is only one xcr_lock per controller, like the xhci_lock. It protects 659 * the state of the command ring. However, there is on xd_imtx per device. 660 * Recall that each device is scoped to a given controller. This protects the 661 * input slot context for a given device. 662 * 663 * There are a few important rules to keep in mind here that are true 664 * universally throughout the driver: 665 * 666 * 1) Always grab the xhci_t`xhci_lock, before grabbing any of the other locks. 667 * 2) A given xhci_device_t`xd_imtx, must be taken before grabbing the 668 * xhci_command_ring_t`xcr_lock. 669 * 3) A given thread can only hold one of the given xhci_device_t`xd_imtx locks 670 * at a given time. In other words, we should never be manipulating the input 671 * context of two different devices at once. 672 * 4) It is safe to hold the xhci_device_t`xd_imtx while tearing down the 673 * endpoint timer. Conversely, the endpoint specific logic should never enter 674 * this lock. 675 * 676 * -------------------- 677 * Relationship to EHCI 678 * -------------------- 679 * 680 * On some Intel chipsets, a given physical port on the system may be routed to 681 * one of the EHCI or xHCI controllers. This association can be dynamically 682 * changed by writing to platform specific registers as handled by the quirk 683 * logic in xhci_quirk.c. 684 * 685 * As these ports may support USB 3.x speeds, we always route all such ports to 686 * the xHCI controller, when supported. In addition, to minimize disruptions 687 * from devices being enumerated and attached to the EHCI driver and then 688 * disappearing, we generally attempt to load the xHCI controller before the 689 * EHCI controller. This logic is not done in the driver; however, it is done in 690 * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the 691 * function consconfig_load_drivres(). 692 * 693 * ----------- 694 * Future Work 695 * ----------- 696 * 697 * The primary future work in this driver spans two different, but related 698 * areas. The first area is around controller resets and how they tie into FM. 699 * Presently, we do not have a good way to handle controllers coming and going 700 * in the broader USB stack or properly reconfigure the device after a reset. 701 * Secondly, we don't handle the suspend and resume of devices and drivers. 702 */ 703 704 #include <sys/param.h> 705 #include <sys/modctl.h> 706 #include <sys/conf.h> 707 #include <sys/devops.h> 708 #include <sys/ddi.h> 709 #include <sys/sunddi.h> 710 #include <sys/cmn_err.h> 711 #include <sys/ddifm.h> 712 #include <sys/pci.h> 713 #include <sys/class.h> 714 #include <sys/policy.h> 715 716 #include <sys/usb/hcd/xhci/xhci.h> 717 #include <sys/usb/hcd/xhci/xhci_ioctl.h> 718 719 /* 720 * We want to use the first BAR to access its registers. The regs[] array is 721 * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1] 722 * will always be the first BAR. 723 */ 724 #define XHCI_REG_NUMBER 1 725 726 /* 727 * This task queue exists as a global taskq that is used for resetting the 728 * device in the face of FM or runtime errors. Each instance of the device 729 * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we 730 * know that we should always be able to dispatch such an event. 731 */ 732 static taskq_t *xhci_taskq; 733 734 /* 735 * Global soft state for per-instance data. Note that we must use the soft state 736 * routines and cannot use the ddi_set_driver_private() routines. The USB 737 * framework presumes that it can use the dip's private data. 738 */ 739 void *xhci_soft_state; 740 741 /* 742 * This is the time in us that we wait after a controller resets before we 743 * consider reading any register. There are some controllers that want at least 744 * 1 ms, therefore we default to 10 ms. 745 */ 746 clock_t xhci_reset_delay = 10000; 747 748 void 749 xhci_error(xhci_t *xhcip, const char *fmt, ...) 750 { 751 va_list ap; 752 753 va_start(ap, fmt); 754 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 755 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap); 756 } else { 757 vcmn_err(CE_WARN, fmt, ap); 758 } 759 va_end(ap); 760 } 761 762 void 763 xhci_log(xhci_t *xhcip, const char *fmt, ...) 764 { 765 va_list ap; 766 767 va_start(ap, fmt); 768 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 769 vdev_err(xhcip->xhci_dip, CE_NOTE, fmt, ap); 770 } else { 771 vcmn_err(CE_NOTE, fmt, ap); 772 } 773 va_end(ap); 774 } 775 776 /* 777 * USBA is in charge of creating device nodes for us. USBA explicitly ORs in the 778 * constant HUBD_IS_ROOT_HUB, so we have to undo that when we're looking at 779 * things here. A simple bitwise-and will take care of this. And hey, it could 780 * always be more complex, USBA could clone! 781 */ 782 static dev_info_t * 783 xhci_get_dip(dev_t dev) 784 { 785 xhci_t *xhcip; 786 int instance = getminor(dev) & ~HUBD_IS_ROOT_HUB; 787 788 xhcip = ddi_get_soft_state(xhci_soft_state, instance); 789 if (xhcip != NULL) 790 return (xhcip->xhci_dip); 791 return (NULL); 792 } 793 794 uint8_t 795 xhci_get8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 796 { 797 uintptr_t addr, roff; 798 799 switch (rtt) { 800 case XHCI_R_CAP: 801 roff = xhcip->xhci_regs_capoff; 802 break; 803 case XHCI_R_OPER: 804 roff = xhcip->xhci_regs_operoff; 805 break; 806 case XHCI_R_RUN: 807 roff = xhcip->xhci_regs_runoff; 808 break; 809 case XHCI_R_DOOR: 810 roff = xhcip->xhci_regs_dooroff; 811 break; 812 default: 813 panic("called %s with bad reg type: %d", __func__, rtt); 814 } 815 ASSERT(roff != PCI_EINVAL32); 816 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 817 818 return (ddi_get8(xhcip->xhci_regs_handle, (void *)addr)); 819 } 820 821 uint16_t 822 xhci_get16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 823 { 824 uintptr_t addr, roff; 825 826 switch (rtt) { 827 case XHCI_R_CAP: 828 roff = xhcip->xhci_regs_capoff; 829 break; 830 case XHCI_R_OPER: 831 roff = xhcip->xhci_regs_operoff; 832 break; 833 case XHCI_R_RUN: 834 roff = xhcip->xhci_regs_runoff; 835 break; 836 case XHCI_R_DOOR: 837 roff = xhcip->xhci_regs_dooroff; 838 break; 839 default: 840 panic("called %s with bad reg type: %d", __func__, rtt); 841 } 842 ASSERT(roff != PCI_EINVAL32); 843 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 844 845 return (ddi_get16(xhcip->xhci_regs_handle, (void *)addr)); 846 } 847 848 uint32_t 849 xhci_get32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 850 { 851 uintptr_t addr, roff; 852 853 switch (rtt) { 854 case XHCI_R_CAP: 855 roff = xhcip->xhci_regs_capoff; 856 break; 857 case XHCI_R_OPER: 858 roff = xhcip->xhci_regs_operoff; 859 break; 860 case XHCI_R_RUN: 861 roff = xhcip->xhci_regs_runoff; 862 break; 863 case XHCI_R_DOOR: 864 roff = xhcip->xhci_regs_dooroff; 865 break; 866 default: 867 panic("called %s with bad reg type: %d", __func__, rtt); 868 } 869 ASSERT(roff != PCI_EINVAL32); 870 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 871 872 return (ddi_get32(xhcip->xhci_regs_handle, (void *)addr)); 873 } 874 875 uint64_t 876 xhci_get64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 877 { 878 uintptr_t addr, roff; 879 880 switch (rtt) { 881 case XHCI_R_CAP: 882 roff = xhcip->xhci_regs_capoff; 883 break; 884 case XHCI_R_OPER: 885 roff = xhcip->xhci_regs_operoff; 886 break; 887 case XHCI_R_RUN: 888 roff = xhcip->xhci_regs_runoff; 889 break; 890 case XHCI_R_DOOR: 891 roff = xhcip->xhci_regs_dooroff; 892 break; 893 default: 894 panic("called %s with bad reg type: %d", __func__, rtt); 895 } 896 ASSERT(roff != PCI_EINVAL32); 897 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 898 899 return (ddi_get64(xhcip->xhci_regs_handle, (void *)addr)); 900 } 901 902 void 903 xhci_put8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint8_t val) 904 { 905 uintptr_t addr, roff; 906 907 switch (rtt) { 908 case XHCI_R_CAP: 909 roff = xhcip->xhci_regs_capoff; 910 break; 911 case XHCI_R_OPER: 912 roff = xhcip->xhci_regs_operoff; 913 break; 914 case XHCI_R_RUN: 915 roff = xhcip->xhci_regs_runoff; 916 break; 917 case XHCI_R_DOOR: 918 roff = xhcip->xhci_regs_dooroff; 919 break; 920 default: 921 panic("called %s with bad reg type: %d", __func__, rtt); 922 } 923 ASSERT(roff != PCI_EINVAL32); 924 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 925 926 ddi_put8(xhcip->xhci_regs_handle, (void *)addr, val); 927 } 928 929 void 930 xhci_put16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint16_t val) 931 { 932 uintptr_t addr, roff; 933 934 switch (rtt) { 935 case XHCI_R_CAP: 936 roff = xhcip->xhci_regs_capoff; 937 break; 938 case XHCI_R_OPER: 939 roff = xhcip->xhci_regs_operoff; 940 break; 941 case XHCI_R_RUN: 942 roff = xhcip->xhci_regs_runoff; 943 break; 944 case XHCI_R_DOOR: 945 roff = xhcip->xhci_regs_dooroff; 946 break; 947 default: 948 panic("called %s with bad reg type: %d", __func__, rtt); 949 } 950 ASSERT(roff != PCI_EINVAL32); 951 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 952 953 ddi_put16(xhcip->xhci_regs_handle, (void *)addr, val); 954 } 955 956 void 957 xhci_put32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint32_t val) 958 { 959 uintptr_t addr, roff; 960 961 switch (rtt) { 962 case XHCI_R_CAP: 963 roff = xhcip->xhci_regs_capoff; 964 break; 965 case XHCI_R_OPER: 966 roff = xhcip->xhci_regs_operoff; 967 break; 968 case XHCI_R_RUN: 969 roff = xhcip->xhci_regs_runoff; 970 break; 971 case XHCI_R_DOOR: 972 roff = xhcip->xhci_regs_dooroff; 973 break; 974 default: 975 panic("called %s with bad reg type: %d", __func__, rtt); 976 } 977 ASSERT(roff != PCI_EINVAL32); 978 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 979 980 ddi_put32(xhcip->xhci_regs_handle, (void *)addr, val); 981 } 982 983 void 984 xhci_put64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint64_t val) 985 { 986 uintptr_t addr, roff; 987 988 switch (rtt) { 989 case XHCI_R_CAP: 990 roff = xhcip->xhci_regs_capoff; 991 break; 992 case XHCI_R_OPER: 993 roff = xhcip->xhci_regs_operoff; 994 break; 995 case XHCI_R_RUN: 996 roff = xhcip->xhci_regs_runoff; 997 break; 998 case XHCI_R_DOOR: 999 roff = xhcip->xhci_regs_dooroff; 1000 break; 1001 default: 1002 panic("called %s with bad reg type: %d", __func__, rtt); 1003 } 1004 ASSERT(roff != PCI_EINVAL32); 1005 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 1006 1007 ddi_put64(xhcip->xhci_regs_handle, (void *)addr, val); 1008 } 1009 1010 int 1011 xhci_check_regs_acc(xhci_t *xhcip) 1012 { 1013 ddi_fm_error_t de; 1014 1015 /* 1016 * Treat the case where we can't check as fine so we can treat the code 1017 * more simply. 1018 */ 1019 if (!DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) 1020 return (DDI_FM_OK); 1021 1022 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION); 1023 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION); 1024 return (de.fme_status); 1025 } 1026 1027 /* 1028 * As a leaf PCIe driver, we just post the ereport and continue on. 1029 */ 1030 /* ARGSUSED */ 1031 static int 1032 xhci_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 1033 { 1034 pci_ereport_post(dip, err, NULL); 1035 return (err->fme_status); 1036 } 1037 1038 static void 1039 xhci_fm_fini(xhci_t *xhcip) 1040 { 1041 if (xhcip->xhci_fm_caps == 0) 1042 return; 1043 1044 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1045 ddi_fm_handler_unregister(xhcip->xhci_dip); 1046 1047 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1048 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1049 pci_ereport_teardown(xhcip->xhci_dip); 1050 1051 ddi_fm_fini(xhcip->xhci_dip); 1052 } 1053 1054 static void 1055 xhci_fm_init(xhci_t *xhcip) 1056 { 1057 ddi_iblock_cookie_t iblk; 1058 int def = DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1059 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE; 1060 1061 xhcip->xhci_fm_caps = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 1062 DDI_PROP_DONTPASS, "fm_capable", def); 1063 1064 if (xhcip->xhci_fm_caps < 0) { 1065 xhcip->xhci_fm_caps = 0; 1066 } else if (xhcip->xhci_fm_caps & ~def) { 1067 xhcip->xhci_fm_caps &= def; 1068 } 1069 1070 if (xhcip->xhci_fm_caps == 0) 1071 return; 1072 1073 ddi_fm_init(xhcip->xhci_dip, &xhcip->xhci_fm_caps, &iblk); 1074 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1075 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1076 pci_ereport_setup(xhcip->xhci_dip); 1077 } 1078 1079 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1080 ddi_fm_handler_register(xhcip->xhci_dip, 1081 xhci_fm_error_cb, xhcip); 1082 } 1083 } 1084 1085 static int 1086 xhci_reg_poll(xhci_t *xhcip, xhci_reg_type_t rt, int reg, uint32_t mask, 1087 uint32_t targ, uint_t tries, int delay_ms) 1088 { 1089 uint_t i; 1090 1091 for (i = 0; i < tries; i++) { 1092 uint32_t val = xhci_get32(xhcip, rt, reg); 1093 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1094 ddi_fm_service_impact(xhcip->xhci_dip, 1095 DDI_SERVICE_LOST); 1096 return (EIO); 1097 } 1098 1099 if ((val & mask) == targ) 1100 return (0); 1101 1102 delay(drv_usectohz(delay_ms * 1000)); 1103 } 1104 return (ETIMEDOUT); 1105 } 1106 1107 static boolean_t 1108 xhci_regs_map(xhci_t *xhcip) 1109 { 1110 off_t memsize; 1111 int ret; 1112 ddi_device_acc_attr_t da; 1113 1114 if (ddi_dev_regsize(xhcip->xhci_dip, XHCI_REG_NUMBER, &memsize) != 1115 DDI_SUCCESS) { 1116 xhci_error(xhcip, "failed to get register set size"); 1117 return (B_FALSE); 1118 } 1119 1120 bzero(&da, sizeof (ddi_device_acc_attr_t)); 1121 da.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1122 da.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 1123 da.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1124 if (DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) { 1125 da.devacc_attr_access = DDI_FLAGERR_ACC; 1126 } else { 1127 da.devacc_attr_access = DDI_DEFAULT_ACC; 1128 } 1129 1130 ret = ddi_regs_map_setup(xhcip->xhci_dip, XHCI_REG_NUMBER, 1131 &xhcip->xhci_regs_base, 0, memsize, &da, &xhcip->xhci_regs_handle); 1132 1133 if (ret != DDI_SUCCESS) { 1134 xhci_error(xhcip, "failed to map device registers: %d", ret); 1135 return (B_FALSE); 1136 } 1137 1138 return (B_TRUE); 1139 } 1140 1141 static boolean_t 1142 xhci_regs_init(xhci_t *xhcip) 1143 { 1144 /* 1145 * The capabilities always begin at offset zero. 1146 */ 1147 xhcip->xhci_regs_capoff = 0; 1148 xhcip->xhci_regs_operoff = xhci_get8(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH); 1149 xhcip->xhci_regs_runoff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_RTSOFF); 1150 xhcip->xhci_regs_runoff &= ~0x1f; 1151 xhcip->xhci_regs_dooroff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_DBOFF); 1152 xhcip->xhci_regs_dooroff &= ~0x3; 1153 1154 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1155 xhci_error(xhcip, "failed to initialize controller register " 1156 "offsets: encountered FM register error"); 1157 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1158 return (B_FALSE); 1159 } 1160 1161 return (B_TRUE); 1162 } 1163 1164 /* 1165 * Read various parameters from PCI configuration space and from the Capability 1166 * registers that we'll need to register the device. We cache all of the 1167 * Capability registers. 1168 */ 1169 static boolean_t 1170 xhci_read_params(xhci_t *xhcip) 1171 { 1172 uint8_t usb; 1173 uint16_t vers; 1174 uint32_t struc1, struc2, struc3, cap1, cap2, pgsz; 1175 uint32_t psize, pbit; 1176 xhci_capability_t *xcap; 1177 unsigned long ps; 1178 1179 usb = pci_config_get8(xhcip->xhci_cfg_handle, PCI_XHCI_USBREV); 1180 vers = xhci_get16(xhcip, XHCI_R_CAP, XHCI_HCIVERSION); 1181 struc1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS1); 1182 struc2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS2); 1183 struc3 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS3); 1184 cap1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS1); 1185 cap2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS2); 1186 pgsz = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PAGESIZE); 1187 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1188 xhci_error(xhcip, "failed to read controller parameters: " 1189 "encountered FM register error"); 1190 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1191 return (B_FALSE); 1192 } 1193 1194 xcap = &xhcip->xhci_caps; 1195 xcap->xcap_usb_vers = usb; 1196 xcap->xcap_hci_vers = vers; 1197 xcap->xcap_max_slots = XHCI_HCS1_DEVSLOT_MAX(struc1); 1198 xcap->xcap_max_intrs = XHCI_HCS1_IRQ_MAX(struc1); 1199 xcap->xcap_max_ports = XHCI_HCS1_N_PORTS(struc1); 1200 if (xcap->xcap_max_ports > MAX_PORTS) { 1201 xhci_error(xhcip, "Root hub has %d ports, but system only " 1202 "supports %d, limiting to %d\n", xcap->xcap_max_ports, 1203 MAX_PORTS, MAX_PORTS); 1204 xcap->xcap_max_ports = MAX_PORTS; 1205 } 1206 1207 xcap->xcap_ist_micro = XHCI_HCS2_IST_MICRO(struc2); 1208 xcap->xcap_ist = XHCI_HCS2_IST(struc2); 1209 xcap->xcap_max_esrt = XHCI_HCS2_ERST_MAX(struc2); 1210 xcap->xcap_scratch_restore = XHCI_HCS2_SPR(struc2); 1211 xcap->xcap_max_scratch = XHCI_HCS2_SPB_MAX(struc2); 1212 1213 xcap->xcap_u1_lat = XHCI_HCS3_U1_DEL(struc3); 1214 xcap->xcap_u2_lat = XHCI_HCS3_U2_DEL(struc3); 1215 1216 xcap->xcap_flags = XHCI_HCC1_FLAGS_MASK(cap1); 1217 xcap->xcap_max_psa = XHCI_HCC1_PSA_SZ_MAX(cap1); 1218 xcap->xcap_xecp_off = XHCI_HCC1_XECP(cap1); 1219 xcap->xcap_flags2 = XHCI_HCC2_FLAGS_MASK(cap2); 1220 1221 /* 1222 * We don't have documentation for what changed from before xHCI 0.96, 1223 * so we just refuse to support versions before 0.96. We also will 1224 * ignore anything with a major version greater than 1. 1225 */ 1226 if (xcap->xcap_hci_vers < 0x96 || xcap->xcap_hci_vers >= 0x200) { 1227 xhci_error(xhcip, "Encountered unsupported xHCI version 0.%2x", 1228 xcap->xcap_hci_vers); 1229 return (B_FALSE); 1230 } 1231 1232 /* 1233 * Determine the smallest size page that the controller supports and 1234 * make sure that it matches our pagesize. We basically check here for 1235 * the presence of 4k and 8k pages. The basis of the pagesize is used 1236 * extensively throughout the code and specification. While we could 1237 * support other page sizes here, given that we don't support systems 1238 * with it at this time, it doesn't make much sense. 1239 */ 1240 ps = PAGESIZE; 1241 if (ps == 0x1000) { 1242 pbit = XHCI_PAGESIZE_4K; 1243 psize = 0x1000; 1244 } else if (ps == 0x2000) { 1245 pbit = XHCI_PAGESIZE_8K; 1246 psize = 0x2000; 1247 } else { 1248 xhci_error(xhcip, "Encountered host page size that the driver " 1249 "doesn't know how to handle: %lx\n", ps); 1250 return (B_FALSE); 1251 } 1252 1253 if (!(pgsz & pbit)) { 1254 xhci_error(xhcip, "Encountered controller that didn't support " 1255 "the host page size (%d), supports: %x", psize, pgsz); 1256 return (B_FALSE); 1257 } 1258 xcap->xcap_pagesize = psize; 1259 1260 return (B_TRUE); 1261 } 1262 1263 /* 1264 * Apply known workarounds and issues. These reports come from other 1265 * Operating Systems and have been collected over time. 1266 */ 1267 static boolean_t 1268 xhci_identify(xhci_t *xhcip) 1269 { 1270 xhci_quirks_populate(xhcip); 1271 1272 if (xhcip->xhci_quirks & XHCI_QUIRK_NO_MSI) { 1273 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED; 1274 } else { 1275 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED | 1276 DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX; 1277 } 1278 1279 if (xhcip->xhci_quirks & XHCI_QUIRK_32_ONLY) { 1280 xhcip->xhci_caps.xcap_flags &= ~XCAP_AC64; 1281 } 1282 1283 return (B_TRUE); 1284 } 1285 1286 static boolean_t 1287 xhci_alloc_intr_handle(xhci_t *xhcip, int type) 1288 { 1289 int ret; 1290 1291 /* 1292 * Normally a well-behaving driver would more carefully request an 1293 * amount of interrupts based on the number available, etc. But since we 1294 * only actually want a single interrupt, we're just going to go ahead 1295 * and ask for a single interrupt. 1296 */ 1297 ret = ddi_intr_alloc(xhcip->xhci_dip, &xhcip->xhci_intr_hdl, type, 0, 1298 XHCI_NINTR, &xhcip->xhci_intr_num, DDI_INTR_ALLOC_NORMAL); 1299 if (ret != DDI_SUCCESS) { 1300 xhci_log(xhcip, "!failed to allocate interrupts of type %d: %d", 1301 type, ret); 1302 return (B_FALSE); 1303 } 1304 xhcip->xhci_intr_type = type; 1305 1306 return (B_TRUE); 1307 } 1308 1309 static boolean_t 1310 xhci_alloc_intrs(xhci_t *xhcip) 1311 { 1312 int intr_types, ret; 1313 1314 if (XHCI_NINTR > xhcip->xhci_caps.xcap_max_intrs) { 1315 xhci_error(xhcip, "controller does not support the minimum " 1316 "number of interrupts required (%d), supports %d", 1317 XHCI_NINTR, xhcip->xhci_caps.xcap_max_intrs); 1318 return (B_FALSE); 1319 } 1320 1321 if ((ret = ddi_intr_get_supported_types(xhcip->xhci_dip, 1322 &intr_types)) != DDI_SUCCESS) { 1323 xhci_error(xhcip, "failed to get supported interrupt types: " 1324 "%d", ret); 1325 return (B_FALSE); 1326 } 1327 1328 /* 1329 * Mask off interrupt types we've already ruled out due to quirks or 1330 * other reasons. 1331 */ 1332 intr_types &= xhcip->xhci_caps.xcap_intr_types; 1333 if (intr_types & DDI_INTR_TYPE_MSIX) { 1334 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSIX)) 1335 return (B_TRUE); 1336 } 1337 1338 if (intr_types & DDI_INTR_TYPE_MSI) { 1339 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSI)) 1340 return (B_TRUE); 1341 } 1342 1343 if (intr_types & DDI_INTR_TYPE_FIXED) { 1344 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_FIXED)) 1345 return (B_TRUE); 1346 } 1347 1348 xhci_error(xhcip, "failed to allocate an interrupt, supported types: " 1349 "0x%x", intr_types); 1350 return (B_FALSE); 1351 } 1352 1353 static boolean_t 1354 xhci_add_intr_handler(xhci_t *xhcip) 1355 { 1356 int ret; 1357 1358 if ((ret = ddi_intr_get_pri(xhcip->xhci_intr_hdl, 1359 &xhcip->xhci_intr_pri)) != DDI_SUCCESS) { 1360 xhci_error(xhcip, "failed to get interrupt priority: %d", ret); 1361 return (B_FALSE); 1362 } 1363 1364 if ((ret = ddi_intr_get_cap(xhcip->xhci_intr_hdl, 1365 &xhcip->xhci_intr_caps)) != DDI_SUCCESS) { 1366 xhci_error(xhcip, "failed to get interrupt capabilities: %d", 1367 ret); 1368 return (B_FALSE); 1369 } 1370 1371 if ((ret = ddi_intr_add_handler(xhcip->xhci_intr_hdl, xhci_intr, xhcip, 1372 (uintptr_t)0)) != DDI_SUCCESS) { 1373 xhci_error(xhcip, "failed to add interrupt handler: %d", ret); 1374 return (B_FALSE); 1375 } 1376 return (B_TRUE); 1377 } 1378 1379 /* 1380 * Find a capability with an identifier whose value is 'id'. The 'init' argument 1381 * gives us the offset to start searching at. See xHCI 1.1 / 7 for more 1382 * information. This is more or less exactly like PCI capabilities. 1383 */ 1384 static boolean_t 1385 xhci_find_ext_cap(xhci_t *xhcip, uint32_t id, uint32_t init, uint32_t *outp) 1386 { 1387 uint32_t off; 1388 uint8_t next = 0; 1389 1390 /* 1391 * If we have no offset, we're done. 1392 */ 1393 if (xhcip->xhci_caps.xcap_xecp_off == 0) 1394 return (B_FALSE); 1395 1396 off = xhcip->xhci_caps.xcap_xecp_off << 2; 1397 do { 1398 uint32_t cap_hdr; 1399 1400 off += next << 2; 1401 cap_hdr = xhci_get32(xhcip, XHCI_R_CAP, off); 1402 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1403 xhci_error(xhcip, "failed to read xhci extended " 1404 "capabilities at offset 0x%x: encountered FM " 1405 "register error", off); 1406 ddi_fm_service_impact(xhcip->xhci_dip, 1407 DDI_SERVICE_LOST); 1408 break; 1409 } 1410 1411 if (cap_hdr == PCI_EINVAL32) 1412 break; 1413 if (XHCI_XECP_ID(cap_hdr) == id && 1414 (init == UINT32_MAX || off > init)) { 1415 *outp = off; 1416 return (B_TRUE); 1417 } 1418 next = XHCI_XECP_NEXT(cap_hdr); 1419 /* 1420 * Watch out for overflow if we somehow end up with a more than 1421 * 2 GiB space. 1422 */ 1423 if (next << 2 > (INT32_MAX - off)) 1424 return (B_FALSE); 1425 } while (next != 0); 1426 1427 return (B_FALSE); 1428 } 1429 1430 /* 1431 * For mostly information purposes, we'd like to walk to augment the devinfo 1432 * tree with the number of ports that support USB 2 and USB 3. Note though that 1433 * these ports may be overlapping. Many ports can support both USB 2 and USB 3 1434 * and are wired up to the same physical port, even though they show up as 1435 * separate 'ports' in the xhci sense. 1436 */ 1437 static boolean_t 1438 xhci_port_count(xhci_t *xhcip) 1439 { 1440 uint_t nusb2 = 0, nusb3 = 0; 1441 uint32_t off = UINT32_MAX; 1442 1443 while (xhci_find_ext_cap(xhcip, XHCI_ID_PROTOCOLS, off, &off) == 1444 B_TRUE) { 1445 uint32_t rvers, rport; 1446 1447 /* 1448 * See xHCI 1.1 / 7.2 for the format of this. The first uint32_t 1449 * has version information while the third uint32_t has the port 1450 * count. 1451 */ 1452 rvers = xhci_get32(xhcip, XHCI_R_CAP, off); 1453 rport = xhci_get32(xhcip, XHCI_R_CAP, off + 8); 1454 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1455 xhci_error(xhcip, "failed to read xhci port counts: " 1456 "encountered fatal FM register error"); 1457 ddi_fm_service_impact(xhcip->xhci_dip, 1458 DDI_SERVICE_LOST); 1459 return (B_FALSE); 1460 } 1461 1462 rvers = XHCI_XECP_PROT_MAJOR(rvers); 1463 rport = XHCI_XECP_PROT_PCOUNT(rport); 1464 1465 if (rvers == 3) { 1466 nusb3 += rport; 1467 } else if (rvers <= 2) { 1468 nusb2 += rport; 1469 } else { 1470 xhci_error(xhcip, "encountered port capabilities with " 1471 "unknown major USB version: %d\n", rvers); 1472 } 1473 } 1474 1475 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1476 "usb2-capable-ports", nusb2); 1477 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1478 "usb3-capable-ports", nusb3); 1479 1480 return (B_TRUE); 1481 } 1482 1483 /* 1484 * Take over control from the BIOS or other firmware, if applicable. 1485 */ 1486 static boolean_t 1487 xhci_controller_takeover(xhci_t *xhcip) 1488 { 1489 int ret; 1490 uint32_t val, off; 1491 1492 /* 1493 * If we can't find the legacy capability, then there's nothing to do. 1494 */ 1495 if (xhci_find_ext_cap(xhcip, XHCI_ID_USB_LEGACY, UINT32_MAX, &off) == 1496 B_FALSE) 1497 return (B_TRUE); 1498 val = xhci_get32(xhcip, XHCI_R_CAP, off); 1499 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1500 xhci_error(xhcip, "failed to read BIOS take over registers: " 1501 "encountered fatal FM register error"); 1502 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1503 return (B_FALSE); 1504 } 1505 1506 if (val & XHCI_BIOS_OWNED) { 1507 val |= XHCI_OS_OWNED; 1508 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1509 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1510 xhci_error(xhcip, "failed to write BIOS take over " 1511 "registers: encountered fatal FM register error"); 1512 ddi_fm_service_impact(xhcip->xhci_dip, 1513 DDI_SERVICE_LOST); 1514 return (B_FALSE); 1515 } 1516 1517 /* 1518 * Wait up to 5 seconds for things to change. While this number 1519 * isn't specified in the xHCI spec, it seems to be the de facto 1520 * value that various systems are using today. We'll use a 10ms 1521 * interval to check. 1522 */ 1523 ret = xhci_reg_poll(xhcip, XHCI_R_CAP, off, 1524 XHCI_BIOS_OWNED | XHCI_OS_OWNED, XHCI_OS_OWNED, 500, 10); 1525 if (ret == EIO) 1526 return (B_FALSE); 1527 if (ret == ETIMEDOUT) { 1528 xhci_log(xhcip, "!timed out waiting for firmware to " 1529 "hand off, taking over"); 1530 val &= ~XHCI_BIOS_OWNED; 1531 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1532 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1533 xhci_error(xhcip, "failed to write forced " 1534 "takeover: encountered fatal FM register " 1535 "error"); 1536 ddi_fm_service_impact(xhcip->xhci_dip, 1537 DDI_SERVICE_LOST); 1538 return (B_FALSE); 1539 } 1540 } 1541 } 1542 1543 val = xhci_get32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS); 1544 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1545 xhci_error(xhcip, "failed to read legacy control registers: " 1546 "encountered fatal FM register error"); 1547 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1548 return (B_FALSE); 1549 } 1550 val &= XHCI_XECP_SMI_MASK; 1551 val |= XHCI_XECP_CLEAR_SMI; 1552 xhci_put32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS, val); 1553 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1554 xhci_error(xhcip, "failed to write legacy control registers: " 1555 "encountered fatal FM register error"); 1556 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1557 return (B_FALSE); 1558 } 1559 1560 return (B_TRUE); 1561 } 1562 1563 static int 1564 xhci_controller_stop(xhci_t *xhcip) 1565 { 1566 uint32_t cmdreg; 1567 1568 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1569 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1570 xhci_error(xhcip, "failed to read USB Command register: " 1571 "encountered fatal FM register error"); 1572 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1573 return (EIO); 1574 } 1575 1576 cmdreg &= ~(XHCI_CMD_RS | XHCI_CMD_INTE); 1577 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1578 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1579 xhci_error(xhcip, "failed to write USB Command register: " 1580 "encountered fatal FM register error"); 1581 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1582 return (EIO); 1583 } 1584 1585 /* 1586 * Wait up to 50ms for this to occur. The specification says that this 1587 * should stop within 16ms, but we give ourselves a bit more time just 1588 * in case. 1589 */ 1590 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, XHCI_STS_HCH, 1591 XHCI_STS_HCH, 50, 10)); 1592 } 1593 1594 static int 1595 xhci_controller_reset(xhci_t *xhcip) 1596 { 1597 int ret; 1598 uint32_t cmdreg; 1599 1600 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1601 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1602 xhci_error(xhcip, "failed to read USB Command register for " 1603 "reset: encountered fatal FM register error"); 1604 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1605 return (EIO); 1606 } 1607 1608 cmdreg |= XHCI_CMD_HCRST; 1609 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1610 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1611 xhci_error(xhcip, "failed to write USB Command register for " 1612 "reset: encountered fatal FM register error"); 1613 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1614 return (EIO); 1615 } 1616 1617 /* 1618 * Some controllers apparently don't want to be touched for at least 1ms 1619 * after we initiate the reset. Therefore give all controllers this 1620 * moment to breathe. 1621 */ 1622 delay(drv_usectohz(xhci_reset_delay)); 1623 1624 /* 1625 * To tell that the reset has completed we first verify that the reset 1626 * has finished and that the USBCMD register no longer has the reset bit 1627 * asserted. However, once that's done we have to go verify that CNR 1628 * (Controller Not Ready) is no longer asserted. 1629 */ 1630 if ((ret = xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBCMD, 1631 XHCI_CMD_HCRST, 0, 500, 10)) != 0) 1632 return (ret); 1633 1634 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1635 XHCI_STS_CNR, 0, 500, 10)); 1636 } 1637 1638 /* 1639 * Take care of all the required initialization before we can actually enable 1640 * the controller. This means that we need to: 1641 * 1642 * o Program the maximum number of slots 1643 * o Program the DCBAAP and allocate the scratchpad 1644 * o Program the Command Ring 1645 * o Initialize the Event Ring 1646 * o Enable interrupts (set imod) 1647 */ 1648 static int 1649 xhci_controller_configure(xhci_t *xhcip) 1650 { 1651 int ret; 1652 uint32_t config; 1653 1654 config = xhci_get32(xhcip, XHCI_R_OPER, XHCI_CONFIG); 1655 config &= ~XHCI_CONFIG_SLOTS_MASK; 1656 config |= xhcip->xhci_caps.xcap_max_slots; 1657 xhci_put32(xhcip, XHCI_R_OPER, XHCI_CONFIG, config); 1658 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1659 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1660 return (EIO); 1661 } 1662 1663 if ((ret = xhci_context_init(xhcip)) != 0) { 1664 const char *reason; 1665 if (ret == EIO) { 1666 reason = "fatal FM I/O error occurred"; 1667 } else if (ret == ENOMEM) { 1668 reason = "unable to allocate DMA memory"; 1669 } else { 1670 reason = "unexpected error occurred"; 1671 } 1672 1673 xhci_error(xhcip, "failed to initialize xhci context " 1674 "registers: %s (%d)", reason, ret); 1675 return (ret); 1676 } 1677 1678 if ((ret = xhci_command_ring_init(xhcip)) != 0) { 1679 xhci_error(xhcip, "failed to initialize commands: %d", ret); 1680 return (ret); 1681 } 1682 1683 if ((ret = xhci_event_init(xhcip)) != 0) { 1684 xhci_error(xhcip, "failed to initialize events: %d", ret); 1685 return (ret); 1686 } 1687 1688 if ((ret = xhci_intr_conf(xhcip)) != 0) { 1689 xhci_error(xhcip, "failed to configure interrupts: %d", ret); 1690 return (ret); 1691 } 1692 1693 return (0); 1694 } 1695 1696 static int 1697 xhci_controller_start(xhci_t *xhcip) 1698 { 1699 uint32_t reg; 1700 1701 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1702 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1703 xhci_error(xhcip, "failed to read USB Command register for " 1704 "start: encountered fatal FM register error"); 1705 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1706 return (EIO); 1707 } 1708 1709 reg |= XHCI_CMD_RS; 1710 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, reg); 1711 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1712 xhci_error(xhcip, "failed to write USB Command register for " 1713 "start: encountered fatal FM register error"); 1714 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1715 return (EIO); 1716 } 1717 1718 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1719 XHCI_STS_HCH, 0, 500, 10)); 1720 } 1721 1722 /* ARGSUSED */ 1723 static void 1724 xhci_reset_task(void *arg) 1725 { 1726 /* 1727 * Longer term, we'd like to properly perform a controller reset. 1728 * However, that requires a bit more assistance from USBA to work 1729 * properly and tear down devices. In the meantime, we panic. 1730 */ 1731 panic("XHCI runtime reset required"); 1732 } 1733 1734 /* 1735 * This function is called when we've detected a fatal FM condition that has 1736 * resulted in a loss of service and we need to force a reset of the controller 1737 * as a whole. Only one such reset may be ongoing at a time. 1738 */ 1739 void 1740 xhci_fm_runtime_reset(xhci_t *xhcip) 1741 { 1742 boolean_t locked = B_FALSE; 1743 1744 if (mutex_owned(&xhcip->xhci_lock)) { 1745 locked = B_TRUE; 1746 } else { 1747 mutex_enter(&xhcip->xhci_lock); 1748 } 1749 1750 /* 1751 * If we're already in the error state than a reset is already ongoing 1752 * and there is nothing for us to do here. 1753 */ 1754 if (xhcip->xhci_state & XHCI_S_ERROR) { 1755 goto out; 1756 } 1757 1758 xhcip->xhci_state |= XHCI_S_ERROR; 1759 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1760 taskq_dispatch_ent(xhci_taskq, xhci_reset_task, xhcip, 0, 1761 &xhcip->xhci_tqe); 1762 out: 1763 if (!locked) { 1764 mutex_exit(&xhcip->xhci_lock); 1765 } 1766 } 1767 1768 static int 1769 xhci_ioctl_portsc(xhci_t *xhcip, intptr_t arg) 1770 { 1771 int i; 1772 xhci_ioctl_portsc_t xhi; 1773 1774 bzero(&xhi, sizeof (xhci_ioctl_portsc_t)); 1775 xhi.xhi_nports = xhcip->xhci_caps.xcap_max_ports; 1776 for (i = 1; i <= xhcip->xhci_caps.xcap_max_ports; i++) { 1777 xhi.xhi_portsc[i] = xhci_get32(xhcip, XHCI_R_OPER, 1778 XHCI_PORTSC(i)); 1779 } 1780 1781 if (ddi_copyout(&xhi, (void *)(uintptr_t)arg, sizeof (xhi), 0) != 0) 1782 return (EFAULT); 1783 1784 return (0); 1785 } 1786 1787 static int 1788 xhci_ioctl_clear(xhci_t *xhcip, intptr_t arg) 1789 { 1790 uint32_t reg; 1791 xhci_ioctl_clear_t xic; 1792 1793 if (ddi_copyin((const void *)(uintptr_t)arg, &xic, sizeof (xic), 1794 0) != 0) 1795 return (EFAULT); 1796 1797 if (xic.xic_port == 0 || xic.xic_port > 1798 xhcip->xhci_caps.xcap_max_ports) 1799 return (EINVAL); 1800 1801 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port)); 1802 reg &= ~XHCI_PS_CLEAR; 1803 reg |= XHCI_PS_CSC | XHCI_PS_PEC | XHCI_PS_WRC | XHCI_PS_OCC | 1804 XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC; 1805 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port), reg); 1806 1807 return (0); 1808 } 1809 1810 static int 1811 xhci_ioctl_setpls(xhci_t *xhcip, intptr_t arg) 1812 { 1813 uint32_t reg; 1814 xhci_ioctl_setpls_t xis; 1815 1816 if (ddi_copyin((const void *)(uintptr_t)arg, &xis, sizeof (xis), 1817 0) != 0) 1818 return (EFAULT); 1819 1820 if (xis.xis_port == 0 || xis.xis_port > 1821 xhcip->xhci_caps.xcap_max_ports) 1822 return (EINVAL); 1823 1824 if (xis.xis_pls & ~0xf) 1825 return (EINVAL); 1826 1827 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port)); 1828 reg &= ~XHCI_PS_CLEAR; 1829 reg |= XHCI_PS_PLS_SET(xis.xis_pls); 1830 reg |= XHCI_PS_LWS; 1831 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port), reg); 1832 1833 return (0); 1834 } 1835 1836 static int 1837 xhci_open(dev_t *devp, int flags, int otyp, cred_t *credp) 1838 { 1839 dev_info_t *dip = xhci_get_dip(*devp); 1840 1841 return (usba_hubdi_open(dip, devp, flags, otyp, credp)); 1842 } 1843 1844 static int 1845 xhci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1846 int *rvalp) 1847 { 1848 dev_info_t *dip = xhci_get_dip(dev); 1849 1850 if (cmd == XHCI_IOCTL_PORTSC || 1851 cmd == XHCI_IOCTL_CLEAR || 1852 cmd == XHCI_IOCTL_SETPLS) { 1853 xhci_t *xhcip = ddi_get_soft_state(xhci_soft_state, 1854 getminor(dev) & ~HUBD_IS_ROOT_HUB); 1855 1856 if (secpolicy_xhci(credp) != 0 || 1857 crgetzoneid(credp) != GLOBAL_ZONEID) 1858 return (EPERM); 1859 1860 if (mode & FKIOCTL) 1861 return (ENOTSUP); 1862 1863 if (!(mode & FWRITE)) 1864 return (EBADF); 1865 1866 if (cmd == XHCI_IOCTL_PORTSC) 1867 return (xhci_ioctl_portsc(xhcip, arg)); 1868 else if (cmd == XHCI_IOCTL_CLEAR) 1869 return (xhci_ioctl_clear(xhcip, arg)); 1870 else 1871 return (xhci_ioctl_setpls(xhcip, arg)); 1872 } 1873 1874 return (usba_hubdi_ioctl(dip, dev, cmd, arg, mode, credp, rvalp)); 1875 } 1876 1877 static int 1878 xhci_close(dev_t dev, int flag, int otyp, cred_t *credp) 1879 { 1880 dev_info_t *dip = xhci_get_dip(dev); 1881 1882 return (usba_hubdi_close(dip, dev, flag, otyp, credp)); 1883 } 1884 1885 /* 1886 * We try to clean up everything that we can. The only thing that we let stop us 1887 * at this time is a failure to remove the root hub, which is realistically the 1888 * equivalent of our EBUSY case. 1889 */ 1890 static int 1891 xhci_cleanup(xhci_t *xhcip) 1892 { 1893 int ret, inst; 1894 1895 if (xhcip->xhci_seq & XHCI_ATTACH_ROOT_HUB) { 1896 if ((ret = xhci_root_hub_fini(xhcip)) != 0) 1897 return (ret); 1898 } 1899 1900 if (xhcip->xhci_seq & XHCI_ATTACH_USBA) { 1901 xhci_hcd_fini(xhcip); 1902 } 1903 1904 if (xhcip->xhci_seq & XHCI_ATTACH_STARTED) { 1905 mutex_enter(&xhcip->xhci_lock); 1906 while (xhcip->xhci_state & XHCI_S_ERROR) 1907 cv_wait(&xhcip->xhci_statecv, &xhcip->xhci_lock); 1908 mutex_exit(&xhcip->xhci_lock); 1909 1910 (void) xhci_controller_stop(xhcip); 1911 } 1912 1913 /* 1914 * Always release the context, command, and event data. They handle the 1915 * fact that they me be in an arbitrary state or unallocated. 1916 */ 1917 xhci_event_fini(xhcip); 1918 xhci_command_ring_fini(xhcip); 1919 xhci_context_fini(xhcip); 1920 1921 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ENABLE) { 1922 (void) xhci_ddi_intr_disable(xhcip); 1923 } 1924 1925 if (xhcip->xhci_seq & XHCI_ATTACH_SYNCH) { 1926 cv_destroy(&xhcip->xhci_statecv); 1927 mutex_destroy(&xhcip->xhci_lock); 1928 } 1929 1930 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ADD) { 1931 if ((ret = ddi_intr_remove_handler(xhcip->xhci_intr_hdl)) != 1932 DDI_SUCCESS) { 1933 xhci_error(xhcip, "failed to remove interrupt " 1934 "handler: %d", ret); 1935 } 1936 } 1937 1938 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ALLOC) { 1939 if ((ret = ddi_intr_free(xhcip->xhci_intr_hdl)) != 1940 DDI_SUCCESS) { 1941 xhci_error(xhcip, "failed to free interrupts: %d", ret); 1942 } 1943 } 1944 1945 if (xhcip->xhci_seq & XHCI_ATTACH_REGS_MAP) { 1946 ddi_regs_map_free(&xhcip->xhci_regs_handle); 1947 xhcip->xhci_regs_handle = NULL; 1948 } 1949 1950 if (xhcip->xhci_seq & XHCI_ATTACH_PCI_CONFIG) { 1951 pci_config_teardown(&xhcip->xhci_cfg_handle); 1952 xhcip->xhci_cfg_handle = NULL; 1953 } 1954 1955 if (xhcip->xhci_seq & XHCI_ATTACH_FM) { 1956 xhci_fm_fini(xhcip); 1957 xhcip->xhci_fm_caps = 0; 1958 } 1959 1960 inst = ddi_get_instance(xhcip->xhci_dip); 1961 xhcip->xhci_dip = NULL; 1962 ddi_soft_state_free(xhci_soft_state, inst); 1963 1964 return (DDI_SUCCESS); 1965 } 1966 1967 static int 1968 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1969 { 1970 int ret, inst, route; 1971 xhci_t *xhcip; 1972 1973 if (cmd != DDI_ATTACH) 1974 return (DDI_FAILURE); 1975 1976 inst = ddi_get_instance(dip); 1977 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0) 1978 return (DDI_FAILURE); 1979 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 1980 xhcip->xhci_dip = dip; 1981 1982 xhcip->xhci_regs_capoff = PCI_EINVAL32; 1983 xhcip->xhci_regs_operoff = PCI_EINVAL32; 1984 xhcip->xhci_regs_runoff = PCI_EINVAL32; 1985 xhcip->xhci_regs_dooroff = PCI_EINVAL32; 1986 1987 xhci_fm_init(xhcip); 1988 xhcip->xhci_seq |= XHCI_ATTACH_FM; 1989 1990 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) != 1991 DDI_SUCCESS) { 1992 goto err; 1993 } 1994 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG; 1995 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle, 1996 PCI_CONF_VENID); 1997 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle, 1998 PCI_CONF_DEVID); 1999 2000 if (xhci_regs_map(xhcip) == B_FALSE) { 2001 goto err; 2002 } 2003 2004 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP; 2005 2006 if (xhci_regs_init(xhcip) == B_FALSE) 2007 goto err; 2008 2009 if (xhci_read_params(xhcip) == B_FALSE) 2010 goto err; 2011 2012 if (xhci_identify(xhcip) == B_FALSE) 2013 goto err; 2014 2015 if (xhci_alloc_intrs(xhcip) == B_FALSE) 2016 goto err; 2017 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC; 2018 2019 if (xhci_add_intr_handler(xhcip) == B_FALSE) 2020 goto err; 2021 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD; 2022 2023 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER, 2024 (void *)(uintptr_t)xhcip->xhci_intr_pri); 2025 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL); 2026 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH; 2027 2028 if (xhci_port_count(xhcip) == B_FALSE) 2029 goto err; 2030 2031 if (xhci_controller_takeover(xhcip) == B_FALSE) 2032 goto err; 2033 2034 /* 2035 * We don't enable interrupts until after we take over the controller 2036 * from the BIOS. We've observed cases where this can cause spurious 2037 * interrupts. 2038 */ 2039 if (xhci_ddi_intr_enable(xhcip) == B_FALSE) 2040 goto err; 2041 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE; 2042 2043 if ((ret = xhci_controller_stop(xhcip)) != 0) { 2044 xhci_error(xhcip, "failed to stop controller: %s", 2045 ret == EIO ? "encountered FM register error" : 2046 "timed out while waiting for controller"); 2047 goto err; 2048 } 2049 2050 if ((ret = xhci_controller_reset(xhcip)) != 0) { 2051 xhci_error(xhcip, "failed to reset controller: %s", 2052 ret == EIO ? "encountered FM register error" : 2053 "timed out while waiting for controller"); 2054 goto err; 2055 } 2056 2057 if ((ret = xhci_controller_configure(xhcip)) != 0) { 2058 xhci_error(xhcip, "failed to configure controller: %d", ret); 2059 goto err; 2060 } 2061 2062 /* 2063 * Some systems support having ports routed to both an ehci and xhci 2064 * controller. If we support it and the user hasn't requested otherwise 2065 * via a driver.conf tuning, we reroute it now. 2066 */ 2067 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 2068 DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT); 2069 if (route != XHCI_PROP_REROUTE_DISABLE && 2070 (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI)) 2071 (void) xhci_reroute_intel(xhcip); 2072 2073 if ((ret = xhci_controller_start(xhcip)) != 0) { 2074 xhci_log(xhcip, "failed to reset controller: %s", 2075 ret == EIO ? "encountered FM register error" : 2076 "timed out while waiting for controller"); 2077 goto err; 2078 } 2079 xhcip->xhci_seq |= XHCI_ATTACH_STARTED; 2080 2081 /* 2082 * Finally, register ourselves with the USB framework itself. 2083 */ 2084 if ((ret = xhci_hcd_init(xhcip)) != 0) { 2085 xhci_error(xhcip, "failed to register hcd with usba"); 2086 goto err; 2087 } 2088 xhcip->xhci_seq |= XHCI_ATTACH_USBA; 2089 2090 if ((ret = xhci_root_hub_init(xhcip)) != 0) { 2091 xhci_error(xhcip, "failed to load the root hub driver"); 2092 goto err; 2093 } 2094 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB; 2095 2096 return (DDI_SUCCESS); 2097 2098 err: 2099 (void) xhci_cleanup(xhcip); 2100 return (DDI_FAILURE); 2101 } 2102 2103 static int 2104 xhci_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2105 { 2106 xhci_t *xhcip; 2107 2108 if (cmd != DDI_DETACH) 2109 return (DDI_FAILURE); 2110 2111 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 2112 if (xhcip == NULL) { 2113 dev_err(dip, CE_WARN, "detach called without soft state!"); 2114 return (DDI_FAILURE); 2115 } 2116 2117 return (xhci_cleanup(xhcip)); 2118 } 2119 2120 /* ARGSUSED */ 2121 static int 2122 xhci_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **outp) 2123 { 2124 dev_t dev; 2125 int inst; 2126 2127 switch (cmd) { 2128 case DDI_INFO_DEVT2DEVINFO: 2129 dev = (dev_t)arg; 2130 *outp = xhci_get_dip(dev); 2131 if (*outp == NULL) 2132 return (DDI_FAILURE); 2133 break; 2134 case DDI_INFO_DEVT2INSTANCE: 2135 dev = (dev_t)arg; 2136 inst = getminor(dev) & ~HUBD_IS_ROOT_HUB; 2137 *outp = (void *)(uintptr_t)inst; 2138 break; 2139 default: 2140 return (DDI_FAILURE); 2141 } 2142 2143 return (DDI_SUCCESS); 2144 } 2145 2146 static struct cb_ops xhci_cb_ops = { 2147 xhci_open, /* cb_open */ 2148 xhci_close, /* cb_close */ 2149 nodev, /* cb_strategy */ 2150 nodev, /* cb_print */ 2151 nodev, /* cb_dump */ 2152 nodev, /* cb_read */ 2153 nodev, /* cb_write */ 2154 xhci_ioctl, /* cb_ioctl */ 2155 nodev, /* cb_devmap */ 2156 nodev, /* cb_mmap */ 2157 nodev, /* cb_segmap */ 2158 nochpoll, /* cb_chpoll */ 2159 ddi_prop_op, /* cb_prop_op */ 2160 NULL, /* cb_stream */ 2161 D_MP | D_HOTPLUG, /* cb_flag */ 2162 CB_REV, /* cb_rev */ 2163 nodev, /* cb_aread */ 2164 nodev /* cb_awrite */ 2165 }; 2166 2167 static struct dev_ops xhci_dev_ops = { 2168 DEVO_REV, /* devo_rev */ 2169 0, /* devo_refcnt */ 2170 xhci_getinfo, /* devo_getinfo */ 2171 nulldev, /* devo_identify */ 2172 nulldev, /* devo_probe */ 2173 xhci_attach, /* devo_attach */ 2174 xhci_detach, /* devo_detach */ 2175 nodev, /* devo_reset */ 2176 &xhci_cb_ops, /* devo_cb_ops */ 2177 &usba_hubdi_busops, /* devo_bus_ops */ 2178 usba_hubdi_root_hub_power, /* devo_power */ 2179 ddi_quiesce_not_supported /* devo_quiesce */ 2180 }; 2181 2182 static struct modldrv xhci_modldrv = { 2183 &mod_driverops, 2184 "USB xHCI Driver", 2185 &xhci_dev_ops 2186 }; 2187 2188 static struct modlinkage xhci_modlinkage = { 2189 MODREV_1, 2190 &xhci_modldrv, 2191 NULL 2192 }; 2193 2194 int 2195 _init(void) 2196 { 2197 int ret; 2198 2199 if ((ret = ddi_soft_state_init(&xhci_soft_state, sizeof (xhci_t), 2200 0)) != 0) { 2201 return (ret); 2202 } 2203 2204 xhci_taskq = taskq_create("xhci_taskq", 1, minclsyspri, 0, 0, 0); 2205 if (xhci_taskq == NULL) { 2206 ddi_soft_state_fini(&xhci_soft_state); 2207 return (ENOMEM); 2208 } 2209 2210 if ((ret = mod_install(&xhci_modlinkage)) != 0) { 2211 taskq_destroy(xhci_taskq); 2212 xhci_taskq = NULL; 2213 } 2214 2215 return (ret); 2216 } 2217 2218 int 2219 _info(struct modinfo *modinfop) 2220 { 2221 return (mod_info(&xhci_modlinkage, modinfop)); 2222 } 2223 2224 int 2225 _fini(void) 2226 { 2227 int ret; 2228 2229 if ((ret = mod_remove(&xhci_modlinkage)) != 0) 2230 return (ret); 2231 2232 if (xhci_taskq != NULL) { 2233 taskq_destroy(xhci_taskq); 2234 xhci_taskq = NULL; 2235 } 2236 2237 ddi_soft_state_fini(&xhci_soft_state); 2238 2239 return (0); 2240 } 2241