1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright (c) 2019, Joyent, Inc.
14 * Copyright 2022 Oxide Computer Company
15 */
16
17 /*
18 * Extensible Host Controller Interface (xHCI) USB Driver
19 *
20 * The xhci driver is an HCI driver for USB that bridges the gap between client
21 * device drivers and implements the actual way that we talk to devices. The
22 * xhci specification provides access to USB 3.x capable devices, as well as all
23 * prior generations. Like other host controllers, it both provides the way to
24 * talk to devices and also is treated like a hub (often called the root hub).
25 *
26 * This driver is part of the USBA (USB Architecture). It implements the HCDI
27 * (host controller device interface) end of USBA. These entry points are used
28 * by the USBA on behalf of client device drivers to access their devices. The
29 * driver also provides notifications to deal with hot plug events, which are
30 * quite common in USB.
31 *
32 * ----------------
33 * USB Introduction
34 * ----------------
35 *
36 * To properly understand the xhci driver and the design of the USBA HCDI
37 * interfaces it implements, it helps to have a bit of background into how USB
38 * devices are structured and understand how they work at a high-level.
39 *
40 * USB devices, like PCI devices, are broken down into different classes of
41 * device. For example, with USB you have hubs, human-input devices (keyboards,
42 * mice, etc.), mass storage, etc. Every device also has a vendor and device ID.
43 * Many client drivers bind to an entire class of device, for example, the hubd
44 * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers
45 * that bind to explicit IDs such as usbsprl (specific USB to Serial devices).
46 *
47 * USB SPEEDS AND VERSIONS
48 *
49 * USB devices are often referred to in two different ways. One way they're
50 * described is with the USB version that they conform to. In the wild, you're
51 * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also
52 * see devices referred to as 'full-', 'low-', 'high-', and 'super-' speed
53 * devices.
54 *
55 * The latter description describes the maximum theoretical speed of a given
56 * device. For example, a super-speed device theoretically caps out around 5
57 * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s.
58 *
59 * In general, each speed usually corresponds to a specific USB protocol
60 * generation. For example, all USB 3.0 devices are super-speed devices. All
61 * 'high-speed' devices are USB 2.x devices. Full-speed devices are special in
62 * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are
63 * only a USB 1.x thing, they did not jump the fire line to USB 2.x.
64 *
65 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB
66 * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it
67 * will report its version as USB 2.1, to indicate that it is actually a USB 3.x
68 * device.
69 *
70 * USB ENDPOINTS
71 *
72 * A given USB device is made up of endpoints. A request, or transfer, is made
73 * to a specific USB endpoint. These endpoints can provide different services
74 * and have different expectations around the size of the data that'll be used
75 * in a given request and the periodicity of requests. Endpoints themselves are
76 * either used to make one-shot requests, for example, making requests to a mass
77 * storage device for a given sector, or for making periodic requests where you
78 * end up polling on the endpoint, for example, polling on a USB keyboard for
79 * keystrokes.
80 *
81 * Each endpoint encodes two different pieces of information: a direction and a
82 * type. There are two different directions: IN and OUT. These refer to the
83 * general direction that data moves relative to the operating system. For
84 * example, an IN transfer transfers data in to the operating system, from the
85 * device. An OUT transfer transfers data from the operating system, out to the
86 * device.
87 *
88 * There are four different kinds of endpoints:
89 *
90 * BULK These transfers are large transfers of data to or from
91 * a device. The most common use for bulk transfers is for
92 * mass storage devices. Though they are often also used by
93 * network devices and more. Bulk endpoints do not have an
94 * explicit time component to them. They are always used
95 * for one-shot transfers.
96 *
97 * CONTROL These transfers are used to manipulate devices
98 * themselves and are used for USB protocol level
99 * operations (whether device-specific, class-specific, or
100 * generic across all of USB). Unlike other transfers,
101 * control transfers are always bi-directional and use
102 * different kinds of transfers.
103 *
104 * INTERRUPT Interrupt transfers are used for small transfers that
105 * happen infrequently, but need reasonable latency. A good
106 * example of interrupt transfers is to receive input from
107 * a USB keyboard. Interrupt-IN transfers are generally
108 * polled. Meaning that a client (device driver) opens up
109 * an interrupt-IN pipe to poll on it, and receives
110 * periodic updates whenever there is information
111 * available. However, Interrupt transfers can be used
112 * as one-shot transfers both going IN and OUT.
113 *
114 * ISOCHRONOUS These transfers are things that happen once per
115 * time-interval at a very regular rate. A good example of
116 * these transfers are for audio and video. A device may
117 * describe an interval as 10ms at which point it will read
118 * or write the next batch of data every 10ms and transform
119 * it for the user. There are no one-shot Isochronous-IN
120 * transfers. There are one-shot Isochronous-OUT transfers,
121 * but these are used by device drivers to always provide
122 * the system with sufficient data.
123 *
124 * To find out information about the endpoints, USB devices have a series of
125 * descriptors that cover different aspects of the device. For example, there
126 * are endpoint descriptors which cover the properties of endpoints such as the
127 * maximum packet size or polling interval.
128 *
129 * Descriptors exist at all levels of USB. For example, there are general
130 * descriptors for every device. The USB device descriptor is described in
131 * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure
132 * that they program the device correctly; however, they are more often used by
133 * client device drivers. There are also descriptors that exist at a class
134 * level. For example, the hub class has a class-specific descriptor which
135 * describes properties of the hub. That information is requested for and used
136 * by the hub driver.
137 *
138 * All of the different descriptors are gathered by the system and placed into a
139 * tree which USBA sometimes calls the 'Configuration Cloud'. Client device
140 * drivers gain access to this cloud and then use them to open endpoints, which
141 * are called pipes in USBA (and some revisions of the USB specification).
142 *
143 * Each pipe gives access to a specific endpoint on the device which can be used
144 * to perform transfers of a specific type and direction. For example, a mass
145 * storage device often has three different endpoints, the default control
146 * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT
147 * endpoint. The device driver ends up with three open pipes. One to the default
148 * control endpoint to configure the device, and then the other two are used to
149 * perform I/O.
150 *
151 * These routines translate more or less directly into calls to a host
152 * controller driver. A request to open a pipe takes an endpoint descriptor that
153 * describes the properties of the pipe, and the host controller driver (this
154 * driver) goes through and does any work necessary to allow the client device
155 * driver to access it. Once the pipe is open, it either makes one-shot
156 * transfers specific to the transfer type or it starts performing a periodic
157 * poll of an endpoint.
158 *
159 * All of these different actions translate into requests to the host
160 * controller. The host controller driver itself is in charge of making sure
161 * that all of the required resources for polling are allocated with a request
162 * and then proceed to give the driver's periodic callbacks.
163 *
164 * HUBS AND HOST CONTROLLERS
165 *
166 * Every device is always plugged into a hub, even if the device is itself a
167 * hub. This continues until we reach what we call the root-hub. The root-hub is
168 * special in that it is not an actual USB hub, but is integrated into the host
169 * controller and is manipulated in its own way. For example, the host
170 * controller is used to turn on and off a given port's power. This may happen
171 * over any interface, though the most common way is through PCI.
172 *
173 * In addition to the normal character device that exists for a host controller
174 * driver, as part of attaching, the host controller binds to an instance of the
175 * hubd driver. While the root-hub is a bit of a fiction, everyone models the
176 * root-hub as the same as any other hub that's plugged in. The hub kernel
177 * module doesn't know that the hub isn't a physical device that's been plugged
178 * in. The host controller driver simulates that view by taking hub requests
179 * that are made and translating them into corresponding requests that are
180 * understood by the host controller, for example, reading and writing to a
181 * memory mapped register.
182 *
183 * The hub driver polls for changes in device state using an Interrupt-IN
184 * request, which is the same as is done for the root-hub. This allows the host
185 * controller driver to not have to know about the implementation of device hot
186 * plug, merely react to requests from a hub, the same as if it were an external
187 * device. When the hub driver detects a change, it will go through the
188 * corresponding state machine and attach or detach the corresponding client
189 * device driver, depending if the device was inserted or removed.
190 *
191 * We detect the changes for the Interrupt-IN primarily based on the port state
192 * change events that are delivered to the event ring. Whenever any event is
193 * fired, we use this to update the hub driver about _all_ ports with
194 * outstanding events. This more closely matches how a hub is supposed to behave
195 * and leaves things less likely for the hub driver to end up without clearing a
196 * flag on a port.
197 *
198 * PACKET SIZES AND BURSTING
199 *
200 * A given USB endpoint has an explicit packet size and a number of packets that
201 * can be sent per time interval. These concepts are abstracted away from client
202 * device drives usually, though they sometimes inform the upper bounds of what
203 * a device can perform.
204 *
205 * The host controller uses this information to transform arbitrary transfer
206 * requests into USB protocol packets. One of the nice things about the host
207 * controllers is that they abstract away all of the signaling and semantics of
208 * the actual USB protocols, allowing for life to be slightly easier in the
209 * operating system.
210 *
211 * That said, if the host controller is not programmed correctly, these can end
212 * up causing transaction errors and other problems in response to the data that
213 * the host controller is trying to send or receive.
214 *
215 * ------------
216 * Organization
217 * ------------
218 *
219 * The driver is made up of the following files. Many of these have their own
220 * theory statements to describe what they do. Here, we touch on each of the
221 * purpose of each of these files.
222 *
223 * xhci_command.c: This file contains the logic to issue commands to the
224 * controller as well as the actual functions that the
225 * other parts of the driver use to cause those commands.
226 *
227 * xhci_context.c: This file manages various data structures used by the
228 * controller to manage the controller's and device's
229 * context data structures. See more in the xHCI Overview
230 * and General Design for more information.
231 *
232 * xhci_dma.c: This manages the allocation of DMA memory and DMA
233 * attributes for controller, whether memory is for a
234 * transfer or something else. This file also deals with
235 * all the logic of getting data in and out of DMA buffers.
236 *
237 * xhci_endpoint.c: This manages all of the logic of handling endpoints or
238 * pipes. It deals with endpoint configuration, I/O
239 * scheduling, timeouts, and callbacks to USBA.
240 *
241 * xhci_event.c: This manages callbacks from the hardware to the driver.
242 * This covers command completion notifications and I/O
243 * notifications.
244 *
245 * xhci_hub.c: This manages the virtual root-hub. It basically
246 * implements and translates all of the USB level requests
247 * into xhci specific implements. It also contains the
248 * functions to register this hub with USBA.
249 *
250 * xhci_intr.c: This manages the underlying interrupt allocation,
251 * interrupt moderation, and interrupt routines.
252 *
253 * xhci_quirks.c: This manages information about buggy hardware that's
254 * been collected and experienced primarily from other
255 * systems.
256 *
257 * xhci_ring.c: This manages the abstraction of a ring in xhci, which is
258 * the primary of communication between the driver and the
259 * hardware, whether for the controller or a device.
260 *
261 * xhci_usba.c: This implements all of the HCDI functions required by
262 * USBA. This is the main entry point that drivers and the
263 * kernel frameworks will reach to start any operation.
264 * Many functions here will end up in the command and
265 * endpoint code.
266 *
267 * xhci.c: This provides the main kernel DDI interfaces and
268 * performs device initialization.
269 *
270 * xhci_polled.c: This provides the polled I/O functions that the
271 * kernel debugger can use.
272 *
273 * xhci.h: This is the primary header file which defines
274 * illumos-specific data structures and constants to manage
275 * the system.
276 *
277 * xhcireg.h: This header file defines all of the register offsets,
278 * masks, and related macros. It also contains all of the
279 * constants that are used in various structures as defined
280 * by the specification, such as command offsets, etc.
281 *
282 * xhci_ioctl.h: This contains a few private ioctls that are used by a
283 * private debugging command. These are private.
284 *
285 * cmd/xhci/xhci_portsc: This is a private utility that can be useful for
286 * debugging xhci state. It is the only consumer of
287 * xhci_ioctl.h and the private ioctls.
288 *
289 * ----------------------------------
290 * xHCI Overview and Structure Layout
291 * ----------------------------------
292 *
293 * The design and structure of this driver follows from the way that the xHCI
294 * specification tells us that we have to work with hardware. First we'll give a
295 * rough summary of how that works, though the xHCI 1.1 specification should be
296 * referenced when going through this.
297 *
298 * There are three primary parts of the hardware -- registers, contexts, and
299 * rings. The registers are memory mapped registers that come in four sets,
300 * though all are found within the first BAR. These are used to program and
301 * control the hardware and aspects of the devices. Beyond more traditional
302 * device programming there are two primary sets of registers that are
303 * important:
304 *
305 * o Port Status and Control Registers (XHCI_PORTSC)
306 * o Doorbell Array (XHCI_DOORBELL)
307 *
308 * The port status and control registers are used to get and manipulate the
309 * status of a given device. For example, turning on and off the power to it.
310 * The Doorbell Array is used to kick off I/O operations and start the
311 * processing of an I/O ring.
312 *
313 * The contexts are data structures that represent various pieces of information
314 * in the controller. These contexts are generally filled out by the driver and
315 * then acknowledged and consumed by the hardware. There are controller-wide
316 * contexts (mostly managed in xhci_context.c) that are used to point to the
317 * contexts that exist for each device in the system. The primary context is
318 * called the Device Context Base Address Array (DCBAA).
319 *
320 * Each device in the system is allocated a 'slot', which is used to index into
321 * the DCBAA. Slots are assigned based on issuing commands to the controller.
322 * There are a fixed number of slots that determine the maximum number of
323 * devices that can end up being supported in the system. Note this includes all
324 * the devices plugged into the USB device tree, not just devices plugged into
325 * ports on the chassis.
326 *
327 * For each device, there is a context structure that describes properties of
328 * the device. For example, what speed is the device, is it a hub, etc. The
329 * context has slots for the device and for each endpoint on the device. As
330 * endpoints are enabled, their context information which describes things like
331 * the maximum packet size, is filled in and enabled. The mapping between these
332 * contexts look like:
333 *
334 *
335 * DCBAA
336 * +--------+ Device Context
337 * | Slot 0 |------------------>+--------------+
338 * +--------+ | Slot Context |
339 * | ... | +--------------+ +----------+
340 * +--------+ +------+ | Endpoint 0 |------>| I/O Ring |
341 * | Slot n |-->| NULL | | Context (Bi) | +----------+
342 * +--------+ +------+ +--------------+
343 * | Endpoint 1 |
344 * | Context (Out)|
345 * +--------------+
346 * | Endpoint 1 |
347 * | Context (In) |
348 * +--------------+
349 * | ... |
350 * +--------------+
351 * | Endpoint 15 |
352 * | Context (In) |
353 * +--------------+
354 *
355 * These contexts are always owned by the controller, though we can read them
356 * after various operations complete. Commands that toggle device state use a
357 * specific input context, which is a variant of the device context. The only
358 * difference is that it has an input context structure ahead of it to say which
359 * sections of the device context should be evaluated.
360 *
361 * Each active endpoint points us to an I/O ring, which leads us to the third
362 * main data structure that's used by the device: rings. Rings are made up of
363 * transfer request blocks (TRBs), which are joined together to form a given
364 * transfer description (TD) which represents a single I/O request.
365 *
366 * These rings are used to issue I/O to individual endpoints, to issue commands
367 * to the controller, and to receive notification of changes and completions.
368 * Issued commands go on the special ring called the command ring while the
369 * change and completion notifications go on the event ring. More details are
370 * available in xhci_ring.c. Each of these structures is represented by an
371 * xhci_ring_t.
372 *
373 * Each ring can be made up of one or more disjoint regions of DMA; however, we
374 * only use a single one. This also impacts some additional registers and
375 * structures that exist. The event ring has an indirection table called the
376 * Event Ring Segment Table (ERST). Each entry in the table (a segment)
377 * describes a chunk of the event ring.
378 *
379 * One other thing worth calling out is the scratchpad. The scratchpad is a way
380 * for the controller to be given arbitrary memory by the OS that it can use.
381 * There are two parts to the scratchpad. The first part is an array whose
382 * entries contain pointers to the actual addresses for the pages. The second
383 * part that we allocate are the actual pages themselves.
384 *
385 * -----------------------------
386 * Endpoint State and Management
387 * -----------------------------
388 *
389 * Endpoint management is one of the key parts to the xhci driver as every
390 * endpoint is a pipe that a device driver uses, so they are our primary
391 * currency. An endpoint is enabled when the client device driver opens the
392 * associated pipe for the first time. When an endpoint is enabled, we have to
393 * fill in an endpoint's context structure with information about the endpoint.
394 * These basically tell the controller important properties which it uses to
395 * ensure that there is adequate bandwidth for the device.
396 *
397 * If the client device closes the pipe again we explicitly stop the endpoint,
398 * moving it to the Halted state, and take ownership of any transfers
399 * previously submitted to the ring but which have not yet completed. A client
400 * may open and close a pipe several times -- ugen(4D) in particular is known
401 * for this -- and we will stop and start the ring accordingly.
402 *
403 * It is tempting to fully unconfigure an endpoint when a pipe is closed, but
404 * some host controllers appear to exhibit undefined behaviour each time the
405 * endpoint is re-enabled this way; e.g., silently dropped transfers. As such,
406 * we wait until the whole device is being torn down to disable all previously
407 * enabled endpoints at once, as part of disabling the device slot.
408 *
409 * Each endpoint has its own ring as described in the previous section. We place
410 * TRBs (transfer request blocks) onto a given ring to request I/O be performed.
411 * Responses are placed on the event ring, in other words, the rings associated
412 * with an endpoint are purely for producing I/O.
413 *
414 * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3.
415 * These states generally correspond with the state of the endpoint to process
416 * I/O and handle timeouts. The driver basically follows a similar state machine
417 * as described there. There are some deviations. For example, what they
418 * describe as 'running' we break into both the Idle and Running states below.
419 * We also have a notion of timed out and quiescing. The following image
420 * summarizes the states and transitions:
421 *
422 * +------+ +-----------+
423 * | Idle |---------*--------------------->| Running |<-+
424 * +------+ . I/O queued on +-----------+ |
425 * ^ ring and timeout | | | |
426 * | scheduled. | | | |
427 * | | | | |
428 * +-----*---------------------------------+ | | |
429 * | . No I/Os remain | | |
430 * | | | |
431 * | +------*------------------+ | |
432 * | | . Timeout | |
433 * | | fires for | |
434 * | | I/O | |
435 * | v v |
436 * | +-----------+ +--------+ |
437 * | | Timed Out | | Halted | |
438 * | +-----------+ +--------+ |
439 * | | | |
440 * | | +-----------+ | |
441 * | +-->| Quiescing |<----------+ |
442 * | +-----------+ |
443 * | No TRBs. | . TRBs |
444 * | remain . | . Remain |
445 * +----------*----<------+-------->-------*-----------+
446 *
447 * Normally, a given endpoint will oscillate between having TRBs scheduled and
448 * not. Every time a new I/O is added to the endpoint, we'll ring the doorbell,
449 * making sure that we're processing the ring, presuming that the endpoint isn't
450 * in one of the error states.
451 *
452 * To detect device hangs, we have an active timeout(9F) per active endpoint
453 * that ticks at a one second rate while we still have TRBs outstanding on an
454 * endpoint. Once all outstanding TRBs have been processed, the timeout will
455 * stop itself and there will be no active checking until the endpoint has I/O
456 * scheduled on it again.
457 *
458 * There are two primary ways that things can go wrong on the endpoint. We can
459 * either have a timeout or an event that transitions the endpoint to the Halted
460 * state. In the halted state, we need to issue explicit commands to reset the
461 * endpoint before removing the I/O.
462 *
463 * The way we handle both a timeout and a halted condition is similar, but the
464 * way they are triggered is different. When we detect a halted condition, we
465 * don't immediately clean it up, and wait for the client device driver (or USBA
466 * on its behalf) to issue a pipe reset. When we detect a timeout, we
467 * immediately take action (assuming no other action is ongoing).
468 *
469 * In both cases, we quiesce the device, which takes care of dealing with taking
470 * the endpoint from whatever state it may be in and taking the appropriate
471 * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing
472 * leaves the device stopped, which allows us to update the ring's pointer and
473 * remove any TRBs that are causing problems.
474 *
475 * As part of all this, we ensure that we can only be quiescing the device from
476 * a given path at a time. Any requests to schedule I/O during this time will
477 * generally fail.
478 *
479 * The following image describes the state machine for the timeout logic. It
480 * ties into the image above.
481 *
482 * +----------+ +---------+
483 * | Disabled |-----*--------------------->| Enabled |<--+
484 * +----------+ . TRBs scheduled +---------+ *. 1 sec timer
485 * ^ and no active | | | | fires and
486 * | timer. | | | | another
487 * | | | +--+--+ quiesce, in
488 * | | | | a bad state,
489 * +------*------------------------------+ | ^ or decrement
490 * | . 1 sec timer | | I/O timeout
491 * | fires and | |
492 * | no TRBs or | +--------------+
493 * | endpoint shutdown | |
494 * | *. . timer counter |
495 * ^ | reaches zero |
496 * | v |
497 * | +--------------+ |
498 * +-------------*---------------<--| Quiesce ring |->---*-------+
499 * . No more | and fail I/O | . restart
500 * I/Os +--------------+ timer as
501 * more I/Os
502 *
503 * As we described above, when there are active TRBs and I/Os, a 1 second
504 * timeout(9F) will be active. Each second, we decrement a counter on the
505 * current, active I/O until either a new I/O takes the head, or the counter
506 * reaches zero. If the counter reaches zero, then we go through, quiesce the
507 * ring, and then clean things up.
508 *
509 * ------------------
510 * Periodic Endpoints
511 * ------------------
512 *
513 * It's worth calling out periodic endpoints explicitly, as they operate
514 * somewhat differently. Periodic endpoints are limited to Interrupt-IN and
515 * Isochronous-IN. The USBA often uses the term polling for these. That's
516 * because the client only needs to make a single API call; however, they'll
517 * receive multiple callbacks until either an error occurs or polling is
518 * requested to be terminated.
519 *
520 * When we have one of these periodic requests, we end up always rescheduling
521 * I/O requests, as well as, having a specific number of pre-existing I/O
522 * requests to cover the periodic needs, in case of latency spikes. Normally,
523 * when replying to a request, we use the request handle that we were given.
524 * However, when we have a periodic request, we're required to duplicate the
525 * handle before giving them data.
526 *
527 * However, the duplication is a bit tricky. For everything that was duplicated,
528 * the framework expects us to submit data. Because of that we, don't duplicate
529 * them until they are needed. This minimizes the likelihood that we have
530 * outstanding requests to deal with when we encounter a fatal polling failure.
531 *
532 * Most of the polling setup logic happens in xhci_usba.c in
533 * xhci_hcdi_periodic_init(). The consumption and duplication is handled in
534 * xhci_endpoint.c.
535 *
536 * ----------------
537 * Structure Layout
538 * ----------------
539 *
540 * The following images relate the core data structures. The primary structure
541 * in the system is the xhci_t. This is the per-controller data structure that
542 * exists for each instance of the driver. From there, each device in the system
543 * is represented by an xhci_device_t and each endpoint is represented by an
544 * xhci_endpoint_t. For each client that opens a given endpoint, there is an
545 * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the
546 * system.
547 *
548 * +------------------------+
549 * | Per-Controller |
550 * | Structure |
551 * | xhci_t |
552 * | |
553 * | uint_t ---+--> Capability regs offset
554 * | uint_t ---+--> Operational regs offset
555 * | uint_t ---+--> Runtime regs offset
556 * | uint_t ---+--> Doorbell regs offset
557 * | xhci_state_flags_t ---+--> Device state flags
558 * | xhci_quirks_t ---+--> Device quirk flags
559 * | xhci_capability_t ---+--> Controller capability structure
560 * | xhci_dcbaa_t ---+----------------------------------+
561 * | xhci_scratchpad_t ---+---------+ |
562 * | xhci_command_ing_t ---+------+ | v
563 * | xhci_event_ring_t ---+----+ | | +---------------------+
564 * | xhci_usba_t ---+--+ | | | | Device Context |
565 * +------------------------+ | | | | | Base Address |
566 * | | | | | Array Structure |
567 * | | | | | xhci_dcbaa_t |
568 * +-------------------------------+ | | | | |
569 * | +-------------------------------+ | | DCBAA KVA <-+-- uint64_t * |
570 * | | +----------------------------+ | DMA Buffer <-+-- xhci_dma_buffer_t |
571 * | | v | +---------------------+
572 * | | +--------------------------+ +-----------------------+
573 * | | | Event Ring | |
574 * | | | Management | |
575 * | | | xhci_event_ring_t | v
576 * | | | | Event Ring +----------------------+
577 * | | | xhci_event_segment_t * --|-> Segment VA | Scratchpad (Extra |
578 * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. | Controller Memory) |
579 * | | | xhci_ring_t --|--+ | xhci_scratchpad_t |
580 * | | +--------------------------+ | Scratchpad | |
581 * | | | Base Array KVA <-+- uint64_t * |
582 * | +------------+ | Array DMA Buf. <-+- xhci_dma_buffer_t |
583 * | v | Scratchpad DMA <-+- xhci_dma_buffer_t * |
584 * | +---------------------------+ | Buffer per page +----------------------+
585 * | | Command Ring | |
586 * | | xhci_command_ring_t | +------------------------------+
587 * | | | |
588 * | | xhci_ring_t --+-> Command Ring --->------------+
589 * | | list_t --+-> Command List v
590 * | | timeout_id_t --+-> Timeout State +---------------------+
591 * | | xhci_command_ring_state_t +-> State Flags | I/O Ring |
592 * | +---------------------------+ | xhci_ring_t |
593 * | | |
594 * | Ring DMA Buf. <-+-- xhci_dma_buffer_t |
595 * | Ring Length <-+-- uint_t |
596 * | Ring Entry KVA <-+-- xhci_trb_t * |
597 * | +---------------------------+ Ring Head <-+-- uint_t |
598 * +--->| USBA State | Ring Tail <-+-- uint_t |
599 * | xhci_usba_t | Ring Cycle <-+-- uint_t |
600 * | | +---------------------+
601 * | usba_hcdi_ops_t * -+-> USBA Ops Vector ^
602 * | usb_dev_dscr_t -+-> USB Virtual Device Descriptor |
603 * | usb_ss_hub_descr_t -+-> USB Virtual Hub Descriptor |
604 * | usba_pipe_handle_data_t * +-> Interrupt polling client |
605 * | usb_intr_req_t -+-> Interrupt polling request |
606 * | uint32_t --+-> Interrupt polling device mask |
607 * | list_t --+-> Pipe List (Active Users) |
608 * | list_t --+-------------------+ |
609 * +---------------------------+ | ^
610 * | |
611 * v |
612 * +-------------------------------+ +---------------+ |
613 * | USB Device |------------>| USB Device |--> ... |
614 * | xhci_device_t | | xhci_device_t | |
615 * | | +---------------+ |
616 * | usb_port_t --+-> USB Port plugged into |
617 * | uint8_t --+-> Slot Number |
618 * | boolean_t --+-> Address Assigned |
619 * | usba_device_t * --+-> USBA Device State |
620 * | xhci_dma_buffer_t --+-> Input Context DMA Buffer |
621 * | xhci_input_context_t * --+-> Input Context KVA |
622 * | xhci_slot_contex_t * --+-> Input Slot Context KVA |
623 * | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA |
624 * | xhci_dma_buffer_t --+-> Output Context DMA Buffer |
625 * | xhci_slot_context_t * --+-> Output Slot Context KVA ^
626 * | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA |
627 * | xhci_endpoint_t *[] --+-> Endpoint Tracking ---+ |
628 * +-------------------------------+ | |
629 * | |
630 * v |
631 * +------------------------------+ +-----------------+ |
632 * | Endpoint Data |----------->| Endpoint Data |--> ... |
633 * | xhci_endpoint_t | | xhci_endpoint_t | |
634 * | | +-----------------+ |
635 * | int --+-> Endpoint Number |
636 * | int --+-> Endpoint Type |
637 * | xhci_endpoint_state_t --+-> Endpoint State |
638 * | timeout_id_t --+-> Endpoint Timeout State |
639 * | usba_pipe_handle_data_t * --+-> USBA Client Handle |
640 * | xhci_ring_t --+-> Endpoint I/O Ring -------->--------+
641 * | list_t --+-> Transfer List --------+
642 * +------------------------------+ |
643 * v
644 * +-------------------------+ +--------------------+
645 * | Transfer Structure |----------------->| Transfer Structure |-> ...
646 * | xhci_transfer_t | | xhci_transfer_t |
647 * | | +--------------------+
648 * | xhci_dma_buffer_t --+-> I/O DMA Buffer
649 * | uint_t --+-> Number of TRBs
650 * | uint_t --+-> Short transfer data
651 * | uint_t --+-> Timeout seconds remaining
652 * | usb_cr_t --+-> USB Transfer return value
653 * | boolean_t --+-> Data direction
654 * | xhci_trb_t * --+-> Host-order transfer requests for I/O
655 * | usb_isoc_pkt_descr_t * -+-> Isochronous only response data
656 * | usb_opaque_t --+-> USBA Request Handle
657 * +-------------------------+
658 *
659 * -------------
660 * Lock Ordering
661 * -------------
662 *
663 * There are three different tiers of locks that exist in the driver. First,
664 * there is a lock for each controller: xhci_t`xhci_lock. This protects all the
665 * data for that instance of the controller. If there are multiple instances of
666 * the xHCI controller in the system, each one is independent and protected
667 * separately. The two do not share any data.
668 *
669 * From there, there are two other, specific locks in the system:
670 *
671 * o xhci_command_ring_t`xcr_lock
672 * o xhci_device_t`xd_imtx
673 *
674 * There is only one xcr_lock per controller, like the xhci_lock. It protects
675 * the state of the command ring. However, there is on xd_imtx per device.
676 * Recall that each device is scoped to a given controller. This protects the
677 * input slot context for a given device.
678 *
679 * There are a few important rules to keep in mind here that are true
680 * universally throughout the driver:
681 *
682 * 1) Always grab the xhci_t`xhci_lock, before grabbing any of the other locks.
683 * 2) A given xhci_device_t`xd_imtx, must be taken before grabbing the
684 * xhci_command_ring_t`xcr_lock.
685 * 3) A given thread can only hold one of the given xhci_device_t`xd_imtx locks
686 * at a given time. In other words, we should never be manipulating the input
687 * context of two different devices at once.
688 * 4) It is safe to hold the xhci_device_t`xd_imtx while tearing down the
689 * endpoint timer. Conversely, the endpoint specific logic should never enter
690 * this lock.
691 *
692 * ----------
693 * Polled I/O
694 * ----------
695 *
696 * There is limited support for polled I/O in this driver for use by
697 * the kernel debugger. The driver currently only supports input from
698 * interrupt endpoints which is good enough for USB HID keyboard devices.
699 * Input from bulk endpoints and output are not supported which prevents
700 * using a serial console over USB for kernel debugging.
701 *
702 * --------------------
703 * Relationship to EHCI
704 * --------------------
705 *
706 * On some Intel chipsets, a given physical port on the system may be routed to
707 * one of the EHCI or xHCI controllers. This association can be dynamically
708 * changed by writing to platform specific registers as handled by the quirk
709 * logic in xhci_quirk.c.
710 *
711 * As these ports may support USB 3.x speeds, we always route all such ports to
712 * the xHCI controller, when supported. In addition, to minimize disruptions
713 * from devices being enumerated and attached to the EHCI driver and then
714 * disappearing, we generally attempt to load the xHCI controller before the
715 * EHCI controller. This logic is not done in the driver; however, it is done in
716 * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the
717 * function consconfig_load_drivers().
718 *
719 * -----------
720 * Future Work
721 * -----------
722 *
723 * The primary future work in this driver spans two different, but related
724 * areas. The first area is around controller resets and how they tie into FM.
725 * Presently, we do not have a good way to handle controllers coming and going
726 * in the broader USB stack or properly reconfigure the device after a reset.
727 * Secondly, we don't handle the suspend and resume of devices and drivers.
728 */
729
730 #include <sys/param.h>
731 #include <sys/modctl.h>
732 #include <sys/conf.h>
733 #include <sys/devops.h>
734 #include <sys/ddi.h>
735 #include <sys/sunddi.h>
736 #include <sys/cmn_err.h>
737 #include <sys/ddifm.h>
738 #include <sys/pci.h>
739 #include <sys/class.h>
740 #include <sys/policy.h>
741
742 #include <sys/usb/hcd/xhci/xhci.h>
743 #include <sys/usb/hcd/xhci/xhci_ioctl.h>
744
745 /*
746 * We want to use the first BAR to access its registers. The regs[] array is
747 * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1]
748 * will always be the first BAR.
749 */
750 #define XHCI_REG_NUMBER 1
751
752 /*
753 * This task queue exists as a global taskq that is used for resetting the
754 * device in the face of FM or runtime errors. Each instance of the device
755 * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we
756 * know that we should always be able to dispatch such an event.
757 */
758 static taskq_t *xhci_taskq;
759
760 /*
761 * Global soft state for per-instance data. Note that we must use the soft state
762 * routines and cannot use the ddi_set_driver_private() routines. The USB
763 * framework presumes that it can use the dip's private data.
764 */
765 void *xhci_soft_state;
766
767 /*
768 * This is the time in us that we wait after a controller resets before we
769 * consider reading any register. There are some controllers that want at least
770 * 1 ms, therefore we default to 10 ms.
771 */
772 clock_t xhci_reset_delay = 10000;
773
774 void
xhci_error(xhci_t * xhcip,const char * fmt,...)775 xhci_error(xhci_t *xhcip, const char *fmt, ...)
776 {
777 va_list ap;
778
779 va_start(ap, fmt);
780 if (xhcip != NULL && xhcip->xhci_dip != NULL) {
781 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap);
782 } else {
783 vcmn_err(CE_WARN, fmt, ap);
784 }
785 va_end(ap);
786 }
787
788 void
xhci_log(xhci_t * xhcip,const char * fmt,...)789 xhci_log(xhci_t *xhcip, const char *fmt, ...)
790 {
791 va_list ap;
792
793 va_start(ap, fmt);
794 if (xhcip != NULL && xhcip->xhci_dip != NULL) {
795 vdev_err(xhcip->xhci_dip, CE_NOTE, fmt, ap);
796 } else {
797 vcmn_err(CE_NOTE, fmt, ap);
798 }
799 va_end(ap);
800 }
801
802 /*
803 * USBA is in charge of creating device nodes for us. USBA explicitly ORs in the
804 * constant HUBD_IS_ROOT_HUB, so we have to undo that when we're looking at
805 * things here. A simple bitwise-and will take care of this. And hey, it could
806 * always be more complex, USBA could clone!
807 */
808 static dev_info_t *
xhci_get_dip(dev_t dev)809 xhci_get_dip(dev_t dev)
810 {
811 xhci_t *xhcip;
812 int instance = getminor(dev) & ~HUBD_IS_ROOT_HUB;
813
814 xhcip = ddi_get_soft_state(xhci_soft_state, instance);
815 if (xhcip != NULL)
816 return (xhcip->xhci_dip);
817 return (NULL);
818 }
819
820 uint8_t
xhci_get8(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off)821 xhci_get8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off)
822 {
823 uintptr_t addr, roff;
824
825 switch (rtt) {
826 case XHCI_R_CAP:
827 roff = xhcip->xhci_regs_capoff;
828 break;
829 case XHCI_R_OPER:
830 roff = xhcip->xhci_regs_operoff;
831 break;
832 case XHCI_R_RUN:
833 roff = xhcip->xhci_regs_runoff;
834 break;
835 case XHCI_R_DOOR:
836 roff = xhcip->xhci_regs_dooroff;
837 break;
838 default:
839 panic("called %s with bad reg type: %d", __func__, rtt);
840 }
841 ASSERT(roff != PCI_EINVAL32);
842 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
843
844 return (ddi_get8(xhcip->xhci_regs_handle, (void *)addr));
845 }
846
847 uint16_t
xhci_get16(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off)848 xhci_get16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off)
849 {
850 uintptr_t addr, roff;
851
852 switch (rtt) {
853 case XHCI_R_CAP:
854 roff = xhcip->xhci_regs_capoff;
855 break;
856 case XHCI_R_OPER:
857 roff = xhcip->xhci_regs_operoff;
858 break;
859 case XHCI_R_RUN:
860 roff = xhcip->xhci_regs_runoff;
861 break;
862 case XHCI_R_DOOR:
863 roff = xhcip->xhci_regs_dooroff;
864 break;
865 default:
866 panic("called %s with bad reg type: %d", __func__, rtt);
867 }
868 ASSERT(roff != PCI_EINVAL32);
869 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
870
871 return (ddi_get16(xhcip->xhci_regs_handle, (void *)addr));
872 }
873
874 uint32_t
xhci_get32(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off)875 xhci_get32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off)
876 {
877 uintptr_t addr, roff;
878
879 switch (rtt) {
880 case XHCI_R_CAP:
881 roff = xhcip->xhci_regs_capoff;
882 break;
883 case XHCI_R_OPER:
884 roff = xhcip->xhci_regs_operoff;
885 break;
886 case XHCI_R_RUN:
887 roff = xhcip->xhci_regs_runoff;
888 break;
889 case XHCI_R_DOOR:
890 roff = xhcip->xhci_regs_dooroff;
891 break;
892 default:
893 panic("called %s with bad reg type: %d", __func__, rtt);
894 }
895 ASSERT(roff != PCI_EINVAL32);
896 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
897
898 return (ddi_get32(xhcip->xhci_regs_handle, (void *)addr));
899 }
900
901 uint64_t
xhci_get64(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off)902 xhci_get64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off)
903 {
904 uintptr_t addr, roff;
905
906 switch (rtt) {
907 case XHCI_R_CAP:
908 roff = xhcip->xhci_regs_capoff;
909 break;
910 case XHCI_R_OPER:
911 roff = xhcip->xhci_regs_operoff;
912 break;
913 case XHCI_R_RUN:
914 roff = xhcip->xhci_regs_runoff;
915 break;
916 case XHCI_R_DOOR:
917 roff = xhcip->xhci_regs_dooroff;
918 break;
919 default:
920 panic("called %s with bad reg type: %d", __func__, rtt);
921 }
922 ASSERT(roff != PCI_EINVAL32);
923 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
924
925 return (ddi_get64(xhcip->xhci_regs_handle, (void *)addr));
926 }
927
928 void
xhci_put8(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off,uint8_t val)929 xhci_put8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint8_t val)
930 {
931 uintptr_t addr, roff;
932
933 switch (rtt) {
934 case XHCI_R_CAP:
935 roff = xhcip->xhci_regs_capoff;
936 break;
937 case XHCI_R_OPER:
938 roff = xhcip->xhci_regs_operoff;
939 break;
940 case XHCI_R_RUN:
941 roff = xhcip->xhci_regs_runoff;
942 break;
943 case XHCI_R_DOOR:
944 roff = xhcip->xhci_regs_dooroff;
945 break;
946 default:
947 panic("called %s with bad reg type: %d", __func__, rtt);
948 }
949 ASSERT(roff != PCI_EINVAL32);
950 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
951
952 ddi_put8(xhcip->xhci_regs_handle, (void *)addr, val);
953 }
954
955 void
xhci_put16(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off,uint16_t val)956 xhci_put16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint16_t val)
957 {
958 uintptr_t addr, roff;
959
960 switch (rtt) {
961 case XHCI_R_CAP:
962 roff = xhcip->xhci_regs_capoff;
963 break;
964 case XHCI_R_OPER:
965 roff = xhcip->xhci_regs_operoff;
966 break;
967 case XHCI_R_RUN:
968 roff = xhcip->xhci_regs_runoff;
969 break;
970 case XHCI_R_DOOR:
971 roff = xhcip->xhci_regs_dooroff;
972 break;
973 default:
974 panic("called %s with bad reg type: %d", __func__, rtt);
975 }
976 ASSERT(roff != PCI_EINVAL32);
977 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
978
979 ddi_put16(xhcip->xhci_regs_handle, (void *)addr, val);
980 }
981
982 void
xhci_put32(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off,uint32_t val)983 xhci_put32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint32_t val)
984 {
985 uintptr_t addr, roff;
986
987 switch (rtt) {
988 case XHCI_R_CAP:
989 roff = xhcip->xhci_regs_capoff;
990 break;
991 case XHCI_R_OPER:
992 roff = xhcip->xhci_regs_operoff;
993 break;
994 case XHCI_R_RUN:
995 roff = xhcip->xhci_regs_runoff;
996 break;
997 case XHCI_R_DOOR:
998 roff = xhcip->xhci_regs_dooroff;
999 break;
1000 default:
1001 panic("called %s with bad reg type: %d", __func__, rtt);
1002 }
1003 ASSERT(roff != PCI_EINVAL32);
1004 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
1005
1006 ddi_put32(xhcip->xhci_regs_handle, (void *)addr, val);
1007 }
1008
1009 void
xhci_put64(xhci_t * xhcip,xhci_reg_type_t rtt,uintptr_t off,uint64_t val)1010 xhci_put64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint64_t val)
1011 {
1012 uintptr_t addr, roff;
1013
1014 switch (rtt) {
1015 case XHCI_R_CAP:
1016 roff = xhcip->xhci_regs_capoff;
1017 break;
1018 case XHCI_R_OPER:
1019 roff = xhcip->xhci_regs_operoff;
1020 break;
1021 case XHCI_R_RUN:
1022 roff = xhcip->xhci_regs_runoff;
1023 break;
1024 case XHCI_R_DOOR:
1025 roff = xhcip->xhci_regs_dooroff;
1026 break;
1027 default:
1028 panic("called %s with bad reg type: %d", __func__, rtt);
1029 }
1030 ASSERT(roff != PCI_EINVAL32);
1031 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base;
1032
1033 ddi_put64(xhcip->xhci_regs_handle, (void *)addr, val);
1034 }
1035
1036 int
xhci_check_regs_acc(xhci_t * xhcip)1037 xhci_check_regs_acc(xhci_t *xhcip)
1038 {
1039 ddi_fm_error_t de;
1040
1041 /*
1042 * Treat the case where we can't check as fine so we can treat the code
1043 * more simply.
1044 */
1045 if (!DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps))
1046 return (DDI_FM_OK);
1047
1048 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION);
1049 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION);
1050 return (de.fme_status);
1051 }
1052
1053 /*
1054 * As a leaf PCIe driver, we just post the ereport and continue on.
1055 */
1056 /* ARGSUSED */
1057 static int
xhci_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)1058 xhci_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
1059 {
1060 pci_ereport_post(dip, err, NULL);
1061 return (err->fme_status);
1062 }
1063
1064 static void
xhci_fm_fini(xhci_t * xhcip)1065 xhci_fm_fini(xhci_t *xhcip)
1066 {
1067 if (xhcip->xhci_fm_caps == 0)
1068 return;
1069
1070 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps))
1071 ddi_fm_handler_unregister(xhcip->xhci_dip);
1072
1073 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) ||
1074 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps))
1075 pci_ereport_teardown(xhcip->xhci_dip);
1076
1077 ddi_fm_fini(xhcip->xhci_dip);
1078 }
1079
1080 static void
xhci_fm_init(xhci_t * xhcip)1081 xhci_fm_init(xhci_t *xhcip)
1082 {
1083 ddi_iblock_cookie_t iblk;
1084 int def = DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
1085 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE;
1086
1087 xhcip->xhci_fm_caps = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip,
1088 DDI_PROP_DONTPASS, "fm_capable", def);
1089
1090 if (xhcip->xhci_fm_caps < 0) {
1091 xhcip->xhci_fm_caps = 0;
1092 } else if (xhcip->xhci_fm_caps & ~def) {
1093 xhcip->xhci_fm_caps &= def;
1094 }
1095
1096 if (xhcip->xhci_fm_caps == 0)
1097 return;
1098
1099 ddi_fm_init(xhcip->xhci_dip, &xhcip->xhci_fm_caps, &iblk);
1100 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) ||
1101 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) {
1102 pci_ereport_setup(xhcip->xhci_dip);
1103 }
1104
1105 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) {
1106 ddi_fm_handler_register(xhcip->xhci_dip,
1107 xhci_fm_error_cb, xhcip);
1108 }
1109 }
1110
1111 static int
xhci_reg_poll(xhci_t * xhcip,xhci_reg_type_t rt,int reg,uint32_t mask,uint32_t targ,uint_t tries,int delay_ms)1112 xhci_reg_poll(xhci_t *xhcip, xhci_reg_type_t rt, int reg, uint32_t mask,
1113 uint32_t targ, uint_t tries, int delay_ms)
1114 {
1115 uint_t i;
1116
1117 for (i = 0; i < tries; i++) {
1118 uint32_t val = xhci_get32(xhcip, rt, reg);
1119 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1120 ddi_fm_service_impact(xhcip->xhci_dip,
1121 DDI_SERVICE_LOST);
1122 return (EIO);
1123 }
1124
1125 if ((val & mask) == targ)
1126 return (0);
1127
1128 delay(drv_usectohz(delay_ms * 1000));
1129 }
1130 return (ETIMEDOUT);
1131 }
1132
1133 static boolean_t
xhci_regs_map(xhci_t * xhcip)1134 xhci_regs_map(xhci_t *xhcip)
1135 {
1136 off_t memsize;
1137 int ret;
1138 ddi_device_acc_attr_t da;
1139
1140 if (ddi_dev_regsize(xhcip->xhci_dip, XHCI_REG_NUMBER, &memsize) !=
1141 DDI_SUCCESS) {
1142 xhci_error(xhcip, "failed to get register set size");
1143 return (B_FALSE);
1144 }
1145
1146 bzero(&da, sizeof (ddi_device_acc_attr_t));
1147 da.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1148 da.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
1149 da.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1150 if (DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) {
1151 da.devacc_attr_access = DDI_FLAGERR_ACC;
1152 } else {
1153 da.devacc_attr_access = DDI_DEFAULT_ACC;
1154 }
1155
1156 ret = ddi_regs_map_setup(xhcip->xhci_dip, XHCI_REG_NUMBER,
1157 &xhcip->xhci_regs_base, 0, memsize, &da, &xhcip->xhci_regs_handle);
1158
1159 if (ret != DDI_SUCCESS) {
1160 xhci_error(xhcip, "failed to map device registers: %d", ret);
1161 return (B_FALSE);
1162 }
1163
1164 return (B_TRUE);
1165 }
1166
1167 static boolean_t
xhci_regs_init(xhci_t * xhcip)1168 xhci_regs_init(xhci_t *xhcip)
1169 {
1170 /*
1171 * The capabilities always begin at offset zero.
1172 */
1173 xhcip->xhci_regs_capoff = 0;
1174 xhcip->xhci_regs_operoff = xhci_get8(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH);
1175 xhcip->xhci_regs_runoff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_RTSOFF);
1176 xhcip->xhci_regs_runoff &= ~0x1f;
1177 xhcip->xhci_regs_dooroff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_DBOFF);
1178 xhcip->xhci_regs_dooroff &= ~0x3;
1179
1180 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1181 xhci_error(xhcip, "failed to initialize controller register "
1182 "offsets: encountered FM register error");
1183 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1184 return (B_FALSE);
1185 }
1186
1187 return (B_TRUE);
1188 }
1189
1190 /*
1191 * Read various parameters from PCI configuration space and from the Capability
1192 * registers that we'll need to register the device. We cache all of the
1193 * Capability registers.
1194 */
1195 static boolean_t
xhci_read_params(xhci_t * xhcip)1196 xhci_read_params(xhci_t *xhcip)
1197 {
1198 uint8_t usb;
1199 uint16_t vers;
1200 uint32_t struc1, struc2, struc3, cap1, cap2, pgsz;
1201 uint32_t psize, pbit, capreg;
1202 xhci_capability_t *xcap;
1203 unsigned long ps;
1204
1205 /*
1206 * While it's tempting to do a 16-bit read at offset 0x2, unfortunately,
1207 * a few emulated systems don't support reading at offset 0x2 for the
1208 * version. Instead we need to read the caplength register and get the
1209 * upper two bytes.
1210 */
1211 capreg = xhci_get32(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH);
1212 vers = XHCI_VERSION_MASK(capreg);
1213 usb = pci_config_get8(xhcip->xhci_cfg_handle, PCI_XHCI_USBREV);
1214 struc1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS1);
1215 struc2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS2);
1216 struc3 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS3);
1217 cap1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS1);
1218 cap2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS2);
1219 pgsz = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PAGESIZE);
1220 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1221 xhci_error(xhcip, "failed to read controller parameters: "
1222 "encountered FM register error");
1223 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1224 return (B_FALSE);
1225 }
1226
1227 xcap = &xhcip->xhci_caps;
1228 xcap->xcap_usb_vers = usb;
1229 xcap->xcap_hci_vers = vers;
1230 xcap->xcap_max_slots = XHCI_HCS1_DEVSLOT_MAX(struc1);
1231 xcap->xcap_max_intrs = XHCI_HCS1_IRQ_MAX(struc1);
1232 xcap->xcap_max_ports = XHCI_HCS1_N_PORTS(struc1);
1233 if (xcap->xcap_max_ports > MAX_PORTS) {
1234 xhci_error(xhcip, "Root hub has %d ports, but system only "
1235 "supports %d, limiting to %d\n", xcap->xcap_max_ports,
1236 MAX_PORTS, MAX_PORTS);
1237 xcap->xcap_max_ports = MAX_PORTS;
1238 }
1239
1240 xcap->xcap_ist_micro = XHCI_HCS2_IST_MICRO(struc2);
1241 xcap->xcap_ist = XHCI_HCS2_IST(struc2);
1242 xcap->xcap_max_esrt = XHCI_HCS2_ERST_MAX(struc2);
1243 xcap->xcap_scratch_restore = XHCI_HCS2_SPR(struc2);
1244 xcap->xcap_max_scratch = XHCI_HCS2_SPB_MAX(struc2);
1245
1246 xcap->xcap_u1_lat = XHCI_HCS3_U1_DEL(struc3);
1247 xcap->xcap_u2_lat = XHCI_HCS3_U2_DEL(struc3);
1248
1249 xcap->xcap_flags = XHCI_HCC1_FLAGS_MASK(cap1);
1250 xcap->xcap_max_psa = XHCI_HCC1_PSA_SZ_MAX(cap1);
1251 xcap->xcap_xecp_off = XHCI_HCC1_XECP(cap1);
1252 xcap->xcap_flags2 = XHCI_HCC2_FLAGS_MASK(cap2);
1253
1254 /*
1255 * We don't have documentation for what changed from before xHCI 0.96,
1256 * so we just refuse to support versions before 0.96. We also will
1257 * ignore anything with a major version greater than 1.
1258 */
1259 if (xcap->xcap_hci_vers < 0x96 || xcap->xcap_hci_vers >= 0x200) {
1260 xhci_error(xhcip, "Encountered unsupported xHCI version 0.%2x",
1261 xcap->xcap_hci_vers);
1262 return (B_FALSE);
1263 }
1264
1265 /*
1266 * Determine the smallest size page that the controller supports and
1267 * make sure that it matches our pagesize. We basically check here for
1268 * the presence of 4k and 8k pages. The basis of the pagesize is used
1269 * extensively throughout the code and specification. While we could
1270 * support other page sizes here, given that we don't support systems
1271 * with it at this time, it doesn't make much sense.
1272 */
1273 ps = PAGESIZE;
1274 if (ps == 0x1000) {
1275 pbit = XHCI_PAGESIZE_4K;
1276 psize = 0x1000;
1277 } else if (ps == 0x2000) {
1278 pbit = XHCI_PAGESIZE_8K;
1279 psize = 0x2000;
1280 } else {
1281 xhci_error(xhcip, "Encountered host page size that the driver "
1282 "doesn't know how to handle: %lx\n", ps);
1283 return (B_FALSE);
1284 }
1285
1286 if (!(pgsz & pbit)) {
1287 xhci_error(xhcip, "Encountered controller that didn't support "
1288 "the host page size (%d), supports: %x", psize, pgsz);
1289 return (B_FALSE);
1290 }
1291 xcap->xcap_pagesize = psize;
1292
1293 return (B_TRUE);
1294 }
1295
1296 /*
1297 * Apply known workarounds and issues. These reports come from other
1298 * Operating Systems and have been collected over time.
1299 */
1300 static boolean_t
xhci_identify(xhci_t * xhcip)1301 xhci_identify(xhci_t *xhcip)
1302 {
1303 xhci_quirks_populate(xhcip);
1304
1305 if (xhcip->xhci_quirks & XHCI_QUIRK_NO_MSI) {
1306 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED;
1307 } else {
1308 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED |
1309 DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX;
1310 }
1311
1312 if (xhcip->xhci_quirks & XHCI_QUIRK_32_ONLY) {
1313 xhcip->xhci_caps.xcap_flags &= ~XCAP_AC64;
1314 }
1315
1316 return (B_TRUE);
1317 }
1318
1319 static boolean_t
xhci_alloc_intr_handle(xhci_t * xhcip,int type)1320 xhci_alloc_intr_handle(xhci_t *xhcip, int type)
1321 {
1322 int ret;
1323
1324 /*
1325 * Normally a well-behaving driver would more carefully request an
1326 * amount of interrupts based on the number available, etc. But since we
1327 * only actually want a single interrupt, we're just going to go ahead
1328 * and ask for a single interrupt.
1329 */
1330 ret = ddi_intr_alloc(xhcip->xhci_dip, &xhcip->xhci_intr_hdl, type, 0,
1331 XHCI_NINTR, &xhcip->xhci_intr_num, DDI_INTR_ALLOC_NORMAL);
1332 if (ret != DDI_SUCCESS) {
1333 xhci_log(xhcip, "!failed to allocate interrupts of type %d: %d",
1334 type, ret);
1335 return (B_FALSE);
1336 }
1337 xhcip->xhci_intr_type = type;
1338
1339 return (B_TRUE);
1340 }
1341
1342 static boolean_t
xhci_alloc_intrs(xhci_t * xhcip)1343 xhci_alloc_intrs(xhci_t *xhcip)
1344 {
1345 int intr_types, ret;
1346
1347 if (XHCI_NINTR > xhcip->xhci_caps.xcap_max_intrs) {
1348 xhci_error(xhcip, "controller does not support the minimum "
1349 "number of interrupts required (%d), supports %d",
1350 XHCI_NINTR, xhcip->xhci_caps.xcap_max_intrs);
1351 return (B_FALSE);
1352 }
1353
1354 if ((ret = ddi_intr_get_supported_types(xhcip->xhci_dip,
1355 &intr_types)) != DDI_SUCCESS) {
1356 xhci_error(xhcip, "failed to get supported interrupt types: "
1357 "%d", ret);
1358 return (B_FALSE);
1359 }
1360
1361 /*
1362 * Mask off interrupt types we've already ruled out due to quirks or
1363 * other reasons.
1364 */
1365 intr_types &= xhcip->xhci_caps.xcap_intr_types;
1366 if (intr_types & DDI_INTR_TYPE_MSIX) {
1367 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSIX))
1368 return (B_TRUE);
1369 }
1370
1371 if (intr_types & DDI_INTR_TYPE_MSI) {
1372 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSI))
1373 return (B_TRUE);
1374 }
1375
1376 if (intr_types & DDI_INTR_TYPE_FIXED) {
1377 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_FIXED))
1378 return (B_TRUE);
1379 }
1380
1381 xhci_error(xhcip, "failed to allocate an interrupt, supported types: "
1382 "0x%x", intr_types);
1383 return (B_FALSE);
1384 }
1385
1386 static boolean_t
xhci_add_intr_handler(xhci_t * xhcip)1387 xhci_add_intr_handler(xhci_t *xhcip)
1388 {
1389 int ret;
1390
1391 if ((ret = ddi_intr_get_pri(xhcip->xhci_intr_hdl,
1392 &xhcip->xhci_intr_pri)) != DDI_SUCCESS) {
1393 xhci_error(xhcip, "failed to get interrupt priority: %d", ret);
1394 return (B_FALSE);
1395 }
1396
1397 if ((ret = ddi_intr_get_cap(xhcip->xhci_intr_hdl,
1398 &xhcip->xhci_intr_caps)) != DDI_SUCCESS) {
1399 xhci_error(xhcip, "failed to get interrupt capabilities: %d",
1400 ret);
1401 return (B_FALSE);
1402 }
1403
1404 if ((ret = ddi_intr_add_handler(xhcip->xhci_intr_hdl, xhci_intr, xhcip,
1405 (uintptr_t)0)) != DDI_SUCCESS) {
1406 xhci_error(xhcip, "failed to add interrupt handler: %d", ret);
1407 return (B_FALSE);
1408 }
1409 return (B_TRUE);
1410 }
1411
1412 /*
1413 * Find a capability with an identifier whose value is 'id'. The 'init' argument
1414 * gives us the offset to start searching at. See xHCI 1.1 / 7 for more
1415 * information. This is more or less exactly like PCI capabilities.
1416 */
1417 static boolean_t
xhci_find_ext_cap(xhci_t * xhcip,uint32_t id,uint32_t init,uint32_t * outp)1418 xhci_find_ext_cap(xhci_t *xhcip, uint32_t id, uint32_t init, uint32_t *outp)
1419 {
1420 uint32_t off;
1421 uint8_t next = 0;
1422
1423 /*
1424 * If we have no offset, we're done.
1425 */
1426 if (xhcip->xhci_caps.xcap_xecp_off == 0)
1427 return (B_FALSE);
1428
1429 off = xhcip->xhci_caps.xcap_xecp_off << 2;
1430 do {
1431 uint32_t cap_hdr;
1432
1433 off += next << 2;
1434 cap_hdr = xhci_get32(xhcip, XHCI_R_CAP, off);
1435 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1436 xhci_error(xhcip, "failed to read xhci extended "
1437 "capabilities at offset 0x%x: encountered FM "
1438 "register error", off);
1439 ddi_fm_service_impact(xhcip->xhci_dip,
1440 DDI_SERVICE_LOST);
1441 break;
1442 }
1443
1444 if (cap_hdr == PCI_EINVAL32)
1445 break;
1446 if (XHCI_XECP_ID(cap_hdr) == id &&
1447 (init == UINT32_MAX || off > init)) {
1448 *outp = off;
1449 return (B_TRUE);
1450 }
1451 next = XHCI_XECP_NEXT(cap_hdr);
1452 /*
1453 * Watch out for overflow if we somehow end up with a more than
1454 * 2 GiB space.
1455 */
1456 if (next << 2 > (INT32_MAX - off))
1457 return (B_FALSE);
1458 } while (next != 0);
1459
1460 return (B_FALSE);
1461 }
1462
1463 /*
1464 * For mostly information purposes, we'd like to walk to augment the devinfo
1465 * tree with the number of ports that support USB 2 and USB 3. Note though that
1466 * these ports may be overlapping. Many ports can support both USB 2 and USB 3
1467 * and are wired up to the same physical port, even though they show up as
1468 * separate 'ports' in the xhci sense.
1469 */
1470 static boolean_t
xhci_port_count(xhci_t * xhcip)1471 xhci_port_count(xhci_t *xhcip)
1472 {
1473 uint_t nusb2 = 0, fusb2 = 0;
1474 uint_t nusb30 = 0, fusb30 = 0;
1475 uint_t nusb31 = 0, fusb31 = 0;
1476 uint32_t off = UINT32_MAX;
1477
1478 while (xhci_find_ext_cap(xhcip, XHCI_ID_PROTOCOLS, off, &off) ==
1479 B_TRUE) {
1480 uint32_t rvers, rport;
1481 uint8_t maj, min, count, first;
1482
1483 /*
1484 * See xHCI 1.1 / 7.2 for the format of this. The first uint32_t
1485 * has version information while the third uint32_t has the port
1486 * count.
1487 */
1488 rvers = xhci_get32(xhcip, XHCI_R_CAP, off);
1489 rport = xhci_get32(xhcip, XHCI_R_CAP, off + 8);
1490 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1491 xhci_error(xhcip, "failed to read xhci port counts: "
1492 "encountered fatal FM register error");
1493 ddi_fm_service_impact(xhcip->xhci_dip,
1494 DDI_SERVICE_LOST);
1495 return (B_FALSE);
1496 }
1497
1498 maj = XHCI_XECP_PROT_MAJOR(rvers);
1499 min = XHCI_XECP_PROT_MINOR(rvers);
1500 count = XHCI_XECP_PROT_PCOUNT(rport);
1501 first = XHCI_XECP_PROT_FPORT(rport);
1502
1503 /*
1504 * In the wild, we've seen some systems that are using a minor
1505 * version of 0x10 and some that are using 0x01 in this field.
1506 * While the xhci spec says that we should expect it to be a
1507 * minor of 0x01 based on the xHCI 1.1 specification Table 155:
1508 * xHCI Supported Protocols. However, the USB 3.1 specification
1509 * defines the version to be 0x10 when encoded as a BCD style.
1510 * As such, handle both and hope we never get to revision 16 of
1511 * USB 3.
1512 */
1513 if (maj == 3 && (min == 0x10 || min == 0x01)) {
1514 nusb31 = count;
1515 fusb31 = first;
1516 } else if (maj == 3 && min == 0) {
1517 nusb30 = count;
1518 fusb30 = first;
1519 } else if (maj <= 2) {
1520 nusb2 = count;
1521 fusb2 = first;
1522 } else {
1523 xhci_error(xhcip, "encountered port capabilities with "
1524 "unknown USB version: %x.%x\n", maj, min);
1525 }
1526 }
1527
1528 /*
1529 * These properties are used by FMA and the USB topo module.
1530 */
1531 if (nusb2 > 0) {
1532 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1533 "usb2.0-port-count", nusb2);
1534 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1535 "usb2.0-first-port", fusb2);
1536 }
1537 if (nusb30 > 0) {
1538 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1539 "usb3.0-port-count", nusb30);
1540 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1541 "usb3.0-first-port", fusb30);
1542 }
1543
1544 if (nusb31 > 0) {
1545 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1546 "usb3.1-port-count", nusb31);
1547 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip,
1548 "usb3.1-first-port", fusb31);
1549 }
1550
1551 return (B_TRUE);
1552 }
1553
1554 /*
1555 * Take over control from the BIOS or other firmware, if applicable.
1556 */
1557 static boolean_t
xhci_controller_takeover(xhci_t * xhcip)1558 xhci_controller_takeover(xhci_t *xhcip)
1559 {
1560 int ret;
1561 uint32_t val, off;
1562
1563 /*
1564 * If we can't find the legacy capability, then there's nothing to do.
1565 */
1566 if (xhci_find_ext_cap(xhcip, XHCI_ID_USB_LEGACY, UINT32_MAX, &off) ==
1567 B_FALSE)
1568 return (B_TRUE);
1569 val = xhci_get32(xhcip, XHCI_R_CAP, off);
1570 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1571 xhci_error(xhcip, "failed to read BIOS take over registers: "
1572 "encountered fatal FM register error");
1573 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1574 return (B_FALSE);
1575 }
1576
1577 if (val & XHCI_BIOS_OWNED) {
1578 val |= XHCI_OS_OWNED;
1579 xhci_put32(xhcip, XHCI_R_CAP, off, val);
1580 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1581 xhci_error(xhcip, "failed to write BIOS take over "
1582 "registers: encountered fatal FM register error");
1583 ddi_fm_service_impact(xhcip->xhci_dip,
1584 DDI_SERVICE_LOST);
1585 return (B_FALSE);
1586 }
1587
1588 /*
1589 * Wait up to 5 seconds for things to change. While this number
1590 * isn't specified in the xHCI spec, it seems to be the de facto
1591 * value that various systems are using today. We'll use a 10ms
1592 * interval to check.
1593 */
1594 ret = xhci_reg_poll(xhcip, XHCI_R_CAP, off,
1595 XHCI_BIOS_OWNED | XHCI_OS_OWNED, XHCI_OS_OWNED, 500, 10);
1596 if (ret == EIO)
1597 return (B_FALSE);
1598 if (ret == ETIMEDOUT) {
1599 xhci_log(xhcip, "!timed out waiting for firmware to "
1600 "hand off, taking over");
1601 val &= ~XHCI_BIOS_OWNED;
1602 xhci_put32(xhcip, XHCI_R_CAP, off, val);
1603 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1604 xhci_error(xhcip, "failed to write forced "
1605 "takeover: encountered fatal FM register "
1606 "error");
1607 ddi_fm_service_impact(xhcip->xhci_dip,
1608 DDI_SERVICE_LOST);
1609 return (B_FALSE);
1610 }
1611 }
1612 }
1613
1614 val = xhci_get32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS);
1615 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1616 xhci_error(xhcip, "failed to read legacy control registers: "
1617 "encountered fatal FM register error");
1618 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1619 return (B_FALSE);
1620 }
1621 val &= XHCI_XECP_SMI_MASK;
1622 val |= XHCI_XECP_CLEAR_SMI;
1623 xhci_put32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS, val);
1624 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1625 xhci_error(xhcip, "failed to write legacy control registers: "
1626 "encountered fatal FM register error");
1627 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1628 return (B_FALSE);
1629 }
1630
1631 return (B_TRUE);
1632 }
1633
1634 static int
xhci_controller_stop(xhci_t * xhcip)1635 xhci_controller_stop(xhci_t *xhcip)
1636 {
1637 uint32_t cmdreg;
1638
1639 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD);
1640 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1641 xhci_error(xhcip, "failed to read USB Command register: "
1642 "encountered fatal FM register error");
1643 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1644 return (EIO);
1645 }
1646
1647 cmdreg &= ~(XHCI_CMD_RS | XHCI_CMD_INTE);
1648 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg);
1649 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1650 xhci_error(xhcip, "failed to write USB Command register: "
1651 "encountered fatal FM register error");
1652 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1653 return (EIO);
1654 }
1655
1656 /*
1657 * Wait up to 50ms for this to occur. The specification says that this
1658 * should stop within 16ms, but we give ourselves a bit more time just
1659 * in case.
1660 */
1661 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, XHCI_STS_HCH,
1662 XHCI_STS_HCH, 50, 10));
1663 }
1664
1665 static int
xhci_controller_reset(xhci_t * xhcip)1666 xhci_controller_reset(xhci_t *xhcip)
1667 {
1668 int ret;
1669 uint32_t cmdreg;
1670
1671 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD);
1672 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1673 xhci_error(xhcip, "failed to read USB Command register for "
1674 "reset: encountered fatal FM register error");
1675 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1676 return (EIO);
1677 }
1678
1679 cmdreg |= XHCI_CMD_HCRST;
1680 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg);
1681 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1682 xhci_error(xhcip, "failed to write USB Command register for "
1683 "reset: encountered fatal FM register error");
1684 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1685 return (EIO);
1686 }
1687
1688 /*
1689 * Some controllers apparently don't want to be touched for at least 1ms
1690 * after we initiate the reset. Therefore give all controllers this
1691 * moment to breathe.
1692 */
1693 delay(drv_usectohz(xhci_reset_delay));
1694
1695 /*
1696 * To tell that the reset has completed we first verify that the reset
1697 * has finished and that the USBCMD register no longer has the reset bit
1698 * asserted. However, once that's done we have to go verify that CNR
1699 * (Controller Not Ready) is no longer asserted.
1700 */
1701 if ((ret = xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBCMD,
1702 XHCI_CMD_HCRST, 0, 500, 10)) != 0)
1703 return (ret);
1704
1705 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS,
1706 XHCI_STS_CNR, 0, 500, 10));
1707 }
1708
1709 /*
1710 * Take care of all the required initialization before we can actually enable
1711 * the controller. This means that we need to:
1712 *
1713 * o Program the maximum number of slots
1714 * o Program the DCBAAP and allocate the scratchpad
1715 * o Program the Command Ring
1716 * o Initialize the Event Ring
1717 * o Enable interrupts (set imod)
1718 */
1719 static int
xhci_controller_configure(xhci_t * xhcip)1720 xhci_controller_configure(xhci_t *xhcip)
1721 {
1722 int ret;
1723 uint32_t config;
1724
1725 config = xhci_get32(xhcip, XHCI_R_OPER, XHCI_CONFIG);
1726 config &= ~XHCI_CONFIG_SLOTS_MASK;
1727 config |= xhcip->xhci_caps.xcap_max_slots;
1728 xhci_put32(xhcip, XHCI_R_OPER, XHCI_CONFIG, config);
1729 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1730 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1731 return (EIO);
1732 }
1733
1734 if ((ret = xhci_context_init(xhcip)) != 0) {
1735 const char *reason;
1736 if (ret == EIO) {
1737 reason = "fatal FM I/O error occurred";
1738 } else if (ret == ENOMEM) {
1739 reason = "unable to allocate DMA memory";
1740 } else {
1741 reason = "unexpected error occurred";
1742 }
1743
1744 xhci_error(xhcip, "failed to initialize xhci context "
1745 "registers: %s (%d)", reason, ret);
1746 return (ret);
1747 }
1748
1749 if ((ret = xhci_command_ring_init(xhcip)) != 0) {
1750 xhci_error(xhcip, "failed to initialize commands: %d", ret);
1751 return (ret);
1752 }
1753
1754 if ((ret = xhci_event_init(xhcip)) != 0) {
1755 xhci_error(xhcip, "failed to initialize events: %d", ret);
1756 return (ret);
1757 }
1758
1759 if ((ret = xhci_intr_conf(xhcip)) != 0) {
1760 xhci_error(xhcip, "failed to configure interrupts: %d", ret);
1761 return (ret);
1762 }
1763
1764 return (0);
1765 }
1766
1767 static int
xhci_controller_start(xhci_t * xhcip)1768 xhci_controller_start(xhci_t *xhcip)
1769 {
1770 uint32_t reg;
1771
1772 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD);
1773 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1774 xhci_error(xhcip, "failed to read USB Command register for "
1775 "start: encountered fatal FM register error");
1776 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1777 return (EIO);
1778 }
1779
1780 reg |= XHCI_CMD_RS;
1781 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, reg);
1782 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) {
1783 xhci_error(xhcip, "failed to write USB Command register for "
1784 "start: encountered fatal FM register error");
1785 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1786 return (EIO);
1787 }
1788
1789 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS,
1790 XHCI_STS_HCH, 0, 500, 10));
1791 }
1792
1793 /* ARGSUSED */
1794 static void
xhci_reset_task(void * arg)1795 xhci_reset_task(void *arg)
1796 {
1797 /*
1798 * Longer term, we'd like to properly perform a controller reset.
1799 * However, that requires a bit more assistance from USBA to work
1800 * properly and tear down devices. In the meantime, we panic.
1801 */
1802 panic("XHCI runtime reset required");
1803 }
1804
1805 /*
1806 * This function is called when we've detected a fatal FM condition that has
1807 * resulted in a loss of service and we need to force a reset of the controller
1808 * as a whole. Only one such reset may be ongoing at a time.
1809 */
1810 void
xhci_fm_runtime_reset(xhci_t * xhcip)1811 xhci_fm_runtime_reset(xhci_t *xhcip)
1812 {
1813 boolean_t locked = B_FALSE;
1814
1815 if (mutex_owned(&xhcip->xhci_lock)) {
1816 locked = B_TRUE;
1817 } else {
1818 mutex_enter(&xhcip->xhci_lock);
1819 }
1820
1821 /*
1822 * If we're already in the error state than a reset is already ongoing
1823 * and there is nothing for us to do here.
1824 */
1825 if (xhcip->xhci_state & XHCI_S_ERROR) {
1826 goto out;
1827 }
1828
1829 xhcip->xhci_state |= XHCI_S_ERROR;
1830 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST);
1831 taskq_dispatch_ent(xhci_taskq, xhci_reset_task, xhcip, 0,
1832 &xhcip->xhci_tqe);
1833 out:
1834 if (!locked) {
1835 mutex_exit(&xhcip->xhci_lock);
1836 }
1837 }
1838
1839 static int
xhci_ioctl_portsc(xhci_t * xhcip,intptr_t arg)1840 xhci_ioctl_portsc(xhci_t *xhcip, intptr_t arg)
1841 {
1842 int i;
1843 xhci_ioctl_portsc_t xhi;
1844
1845 bzero(&xhi, sizeof (xhci_ioctl_portsc_t));
1846 xhi.xhi_nports = xhcip->xhci_caps.xcap_max_ports;
1847 for (i = 1; i <= xhcip->xhci_caps.xcap_max_ports; i++) {
1848 xhi.xhi_portsc[i] = xhci_get32(xhcip, XHCI_R_OPER,
1849 XHCI_PORTSC(i));
1850 }
1851
1852 if (ddi_copyout(&xhi, (void *)(uintptr_t)arg, sizeof (xhi), 0) != 0)
1853 return (EFAULT);
1854
1855 return (0);
1856 }
1857
1858 static int
xhci_ioctl_clear(xhci_t * xhcip,intptr_t arg)1859 xhci_ioctl_clear(xhci_t *xhcip, intptr_t arg)
1860 {
1861 uint32_t reg;
1862 xhci_ioctl_clear_t xic;
1863
1864 if (ddi_copyin((const void *)(uintptr_t)arg, &xic, sizeof (xic),
1865 0) != 0)
1866 return (EFAULT);
1867
1868 if (xic.xic_port == 0 || xic.xic_port >
1869 xhcip->xhci_caps.xcap_max_ports)
1870 return (EINVAL);
1871
1872 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port));
1873 reg &= ~XHCI_PS_CLEAR;
1874 reg |= XHCI_PS_CSC | XHCI_PS_PEC | XHCI_PS_WRC | XHCI_PS_OCC |
1875 XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC;
1876 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port), reg);
1877
1878 return (0);
1879 }
1880
1881 static int
xhci_ioctl_setpls(xhci_t * xhcip,intptr_t arg)1882 xhci_ioctl_setpls(xhci_t *xhcip, intptr_t arg)
1883 {
1884 uint32_t reg;
1885 xhci_ioctl_setpls_t xis;
1886
1887 if (ddi_copyin((const void *)(uintptr_t)arg, &xis, sizeof (xis),
1888 0) != 0)
1889 return (EFAULT);
1890
1891 if (xis.xis_port == 0 || xis.xis_port >
1892 xhcip->xhci_caps.xcap_max_ports)
1893 return (EINVAL);
1894
1895 if (xis.xis_pls & ~0xf)
1896 return (EINVAL);
1897
1898 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port));
1899 reg &= ~XHCI_PS_CLEAR;
1900 reg |= XHCI_PS_PLS_SET(xis.xis_pls);
1901 reg |= XHCI_PS_LWS;
1902 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port), reg);
1903
1904 return (0);
1905 }
1906
1907 static int
xhci_open(dev_t * devp,int flags,int otyp,cred_t * credp)1908 xhci_open(dev_t *devp, int flags, int otyp, cred_t *credp)
1909 {
1910 dev_info_t *dip = xhci_get_dip(*devp);
1911
1912 return (usba_hubdi_open(dip, devp, flags, otyp, credp));
1913 }
1914
1915 static int
xhci_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)1916 xhci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
1917 int *rvalp)
1918 {
1919 dev_info_t *dip = xhci_get_dip(dev);
1920
1921 if (cmd == XHCI_IOCTL_PORTSC ||
1922 cmd == XHCI_IOCTL_CLEAR ||
1923 cmd == XHCI_IOCTL_SETPLS) {
1924 xhci_t *xhcip = ddi_get_soft_state(xhci_soft_state,
1925 getminor(dev) & ~HUBD_IS_ROOT_HUB);
1926
1927 if (secpolicy_hwmanip(credp) != 0 ||
1928 crgetzoneid(credp) != GLOBAL_ZONEID)
1929 return (EPERM);
1930
1931 if (mode & FKIOCTL)
1932 return (ENOTSUP);
1933
1934 if (!(mode & FWRITE))
1935 return (EBADF);
1936
1937 if (cmd == XHCI_IOCTL_PORTSC)
1938 return (xhci_ioctl_portsc(xhcip, arg));
1939 else if (cmd == XHCI_IOCTL_CLEAR)
1940 return (xhci_ioctl_clear(xhcip, arg));
1941 else
1942 return (xhci_ioctl_setpls(xhcip, arg));
1943 }
1944
1945 return (usba_hubdi_ioctl(dip, dev, cmd, arg, mode, credp, rvalp));
1946 }
1947
1948 static int
xhci_close(dev_t dev,int flag,int otyp,cred_t * credp)1949 xhci_close(dev_t dev, int flag, int otyp, cred_t *credp)
1950 {
1951 dev_info_t *dip = xhci_get_dip(dev);
1952
1953 return (usba_hubdi_close(dip, dev, flag, otyp, credp));
1954 }
1955
1956 /*
1957 * We try to clean up everything that we can. The only thing that we let stop us
1958 * at this time is a failure to remove the root hub, which is realistically the
1959 * equivalent of our EBUSY case.
1960 */
1961 static int
xhci_cleanup(xhci_t * xhcip)1962 xhci_cleanup(xhci_t *xhcip)
1963 {
1964 int ret, inst;
1965
1966 if (xhcip->xhci_seq & XHCI_ATTACH_ROOT_HUB) {
1967 if ((ret = xhci_root_hub_fini(xhcip)) != 0)
1968 return (ret);
1969 }
1970
1971 if (xhcip->xhci_seq & XHCI_ATTACH_USBA) {
1972 xhci_hcd_fini(xhcip);
1973 }
1974
1975 if (xhcip->xhci_seq & XHCI_ATTACH_STARTED) {
1976 mutex_enter(&xhcip->xhci_lock);
1977 while (xhcip->xhci_state & XHCI_S_ERROR)
1978 cv_wait(&xhcip->xhci_statecv, &xhcip->xhci_lock);
1979 mutex_exit(&xhcip->xhci_lock);
1980
1981 (void) xhci_controller_stop(xhcip);
1982 }
1983
1984 /*
1985 * Always release the context, command, and event data. They handle the
1986 * fact that they me be in an arbitrary state or unallocated.
1987 */
1988 xhci_event_fini(xhcip);
1989 xhci_command_ring_fini(xhcip);
1990 xhci_context_fini(xhcip);
1991
1992 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ENABLE) {
1993 (void) xhci_ddi_intr_disable(xhcip);
1994 }
1995
1996 if (xhcip->xhci_seq & XHCI_ATTACH_SYNCH) {
1997 cv_destroy(&xhcip->xhci_statecv);
1998 mutex_destroy(&xhcip->xhci_lock);
1999 }
2000
2001 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ADD) {
2002 if ((ret = ddi_intr_remove_handler(xhcip->xhci_intr_hdl)) !=
2003 DDI_SUCCESS) {
2004 xhci_error(xhcip, "failed to remove interrupt "
2005 "handler: %d", ret);
2006 }
2007 }
2008
2009 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ALLOC) {
2010 if ((ret = ddi_intr_free(xhcip->xhci_intr_hdl)) !=
2011 DDI_SUCCESS) {
2012 xhci_error(xhcip, "failed to free interrupts: %d", ret);
2013 }
2014 }
2015
2016 if (xhcip->xhci_seq & XHCI_ATTACH_REGS_MAP) {
2017 ddi_regs_map_free(&xhcip->xhci_regs_handle);
2018 xhcip->xhci_regs_handle = NULL;
2019 }
2020
2021 if (xhcip->xhci_seq & XHCI_ATTACH_PCI_CONFIG) {
2022 pci_config_teardown(&xhcip->xhci_cfg_handle);
2023 xhcip->xhci_cfg_handle = NULL;
2024 }
2025
2026 if (xhcip->xhci_seq & XHCI_ATTACH_FM) {
2027 xhci_fm_fini(xhcip);
2028 xhcip->xhci_fm_caps = 0;
2029 }
2030
2031 inst = ddi_get_instance(xhcip->xhci_dip);
2032 xhcip->xhci_dip = NULL;
2033 ddi_soft_state_free(xhci_soft_state, inst);
2034
2035 return (DDI_SUCCESS);
2036 }
2037
2038 static int
xhci_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)2039 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2040 {
2041 int ret, inst, route;
2042 xhci_t *xhcip;
2043
2044 if (cmd != DDI_ATTACH)
2045 return (DDI_FAILURE);
2046
2047 inst = ddi_get_instance(dip);
2048 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0)
2049 return (DDI_FAILURE);
2050 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));
2051 xhcip->xhci_dip = dip;
2052
2053 xhcip->xhci_regs_capoff = PCI_EINVAL32;
2054 xhcip->xhci_regs_operoff = PCI_EINVAL32;
2055 xhcip->xhci_regs_runoff = PCI_EINVAL32;
2056 xhcip->xhci_regs_dooroff = PCI_EINVAL32;
2057
2058 xhci_fm_init(xhcip);
2059 xhcip->xhci_seq |= XHCI_ATTACH_FM;
2060
2061 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) !=
2062 DDI_SUCCESS) {
2063 goto err;
2064 }
2065 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG;
2066 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle,
2067 PCI_CONF_VENID);
2068 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle,
2069 PCI_CONF_DEVID);
2070
2071 if (xhci_regs_map(xhcip) == B_FALSE) {
2072 goto err;
2073 }
2074
2075 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP;
2076
2077 if (xhci_regs_init(xhcip) == B_FALSE)
2078 goto err;
2079
2080 if (xhci_read_params(xhcip) == B_FALSE)
2081 goto err;
2082
2083 if (xhci_identify(xhcip) == B_FALSE)
2084 goto err;
2085
2086 if (xhci_alloc_intrs(xhcip) == B_FALSE)
2087 goto err;
2088 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC;
2089
2090 if (xhci_add_intr_handler(xhcip) == B_FALSE)
2091 goto err;
2092 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD;
2093
2094 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER,
2095 (void *)(uintptr_t)xhcip->xhci_intr_pri);
2096 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL);
2097 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH;
2098
2099 if (xhci_port_count(xhcip) == B_FALSE)
2100 goto err;
2101
2102 if (xhci_controller_takeover(xhcip) == B_FALSE)
2103 goto err;
2104
2105 /*
2106 * We don't enable interrupts until after we take over the controller
2107 * from the BIOS. We've observed cases where this can cause spurious
2108 * interrupts.
2109 */
2110 if (xhci_ddi_intr_enable(xhcip) == B_FALSE)
2111 goto err;
2112 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE;
2113
2114 if ((ret = xhci_controller_stop(xhcip)) != 0) {
2115 xhci_error(xhcip, "failed to stop controller: %s",
2116 ret == EIO ? "encountered FM register error" :
2117 "timed out while waiting for controller");
2118 goto err;
2119 }
2120
2121 if ((ret = xhci_controller_reset(xhcip)) != 0) {
2122 xhci_error(xhcip, "failed to reset controller: %s",
2123 ret == EIO ? "encountered FM register error" :
2124 "timed out while waiting for controller");
2125 goto err;
2126 }
2127
2128 if ((ret = xhci_controller_configure(xhcip)) != 0) {
2129 xhci_error(xhcip, "failed to configure controller: %d", ret);
2130 goto err;
2131 }
2132
2133 /*
2134 * Some systems support having ports routed to both an ehci and xhci
2135 * controller. If we support it and the user hasn't requested otherwise
2136 * via a driver.conf tuning, we reroute it now.
2137 */
2138 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip,
2139 DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT);
2140 if (route != XHCI_PROP_REROUTE_DISABLE &&
2141 (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI))
2142 (void) xhci_reroute_intel(xhcip);
2143
2144 if ((ret = xhci_controller_start(xhcip)) != 0) {
2145 xhci_log(xhcip, "failed to reset controller: %s",
2146 ret == EIO ? "encountered FM register error" :
2147 "timed out while waiting for controller");
2148 goto err;
2149 }
2150 xhcip->xhci_seq |= XHCI_ATTACH_STARTED;
2151
2152 /*
2153 * Finally, register ourselves with the USB framework itself.
2154 */
2155 if ((ret = xhci_hcd_init(xhcip)) != 0) {
2156 xhci_error(xhcip, "failed to register hcd with usba");
2157 goto err;
2158 }
2159 xhcip->xhci_seq |= XHCI_ATTACH_USBA;
2160
2161 if ((ret = xhci_root_hub_init(xhcip)) != 0) {
2162 xhci_error(xhcip, "failed to load the root hub driver");
2163 goto err;
2164 }
2165 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB;
2166
2167 return (DDI_SUCCESS);
2168
2169 err:
2170 (void) xhci_cleanup(xhcip);
2171 return (DDI_FAILURE);
2172 }
2173
2174 static int
xhci_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)2175 xhci_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2176 {
2177 xhci_t *xhcip;
2178
2179 if (cmd != DDI_DETACH)
2180 return (DDI_FAILURE);
2181
2182 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip));
2183 if (xhcip == NULL) {
2184 dev_err(dip, CE_WARN, "detach called without soft state!");
2185 return (DDI_FAILURE);
2186 }
2187
2188 return (xhci_cleanup(xhcip));
2189 }
2190
2191 /* ARGSUSED */
2192 static int
xhci_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** outp)2193 xhci_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **outp)
2194 {
2195 dev_t dev;
2196 int inst;
2197
2198 switch (cmd) {
2199 case DDI_INFO_DEVT2DEVINFO:
2200 dev = (dev_t)arg;
2201 *outp = xhci_get_dip(dev);
2202 if (*outp == NULL)
2203 return (DDI_FAILURE);
2204 break;
2205 case DDI_INFO_DEVT2INSTANCE:
2206 dev = (dev_t)arg;
2207 inst = getminor(dev) & ~HUBD_IS_ROOT_HUB;
2208 *outp = (void *)(uintptr_t)inst;
2209 break;
2210 default:
2211 return (DDI_FAILURE);
2212 }
2213
2214 return (DDI_SUCCESS);
2215 }
2216
2217 static struct cb_ops xhci_cb_ops = {
2218 xhci_open, /* cb_open */
2219 xhci_close, /* cb_close */
2220 nodev, /* cb_strategy */
2221 nodev, /* cb_print */
2222 nodev, /* cb_dump */
2223 nodev, /* cb_read */
2224 nodev, /* cb_write */
2225 xhci_ioctl, /* cb_ioctl */
2226 nodev, /* cb_devmap */
2227 nodev, /* cb_mmap */
2228 nodev, /* cb_segmap */
2229 nochpoll, /* cb_chpoll */
2230 ddi_prop_op, /* cb_prop_op */
2231 NULL, /* cb_stream */
2232 D_MP | D_HOTPLUG, /* cb_flag */
2233 CB_REV, /* cb_rev */
2234 nodev, /* cb_aread */
2235 nodev /* cb_awrite */
2236 };
2237
2238 static struct dev_ops xhci_dev_ops = {
2239 DEVO_REV, /* devo_rev */
2240 0, /* devo_refcnt */
2241 xhci_getinfo, /* devo_getinfo */
2242 nulldev, /* devo_identify */
2243 nulldev, /* devo_probe */
2244 xhci_attach, /* devo_attach */
2245 xhci_detach, /* devo_detach */
2246 nodev, /* devo_reset */
2247 &xhci_cb_ops, /* devo_cb_ops */
2248 &usba_hubdi_busops, /* devo_bus_ops */
2249 usba_hubdi_root_hub_power, /* devo_power */
2250 ddi_quiesce_not_supported /* devo_quiesce */
2251 };
2252
2253 static struct modldrv xhci_modldrv = {
2254 &mod_driverops,
2255 "USB xHCI Driver",
2256 &xhci_dev_ops
2257 };
2258
2259 static struct modlinkage xhci_modlinkage = {
2260 MODREV_1,
2261 &xhci_modldrv,
2262 NULL
2263 };
2264
2265 int
_init(void)2266 _init(void)
2267 {
2268 int ret;
2269
2270 if ((ret = ddi_soft_state_init(&xhci_soft_state, sizeof (xhci_t),
2271 0)) != 0) {
2272 return (ret);
2273 }
2274
2275 xhci_taskq = taskq_create("xhci_taskq", 1, minclsyspri, 0, 0, 0);
2276 if (xhci_taskq == NULL) {
2277 ddi_soft_state_fini(&xhci_soft_state);
2278 return (ENOMEM);
2279 }
2280
2281 if ((ret = mod_install(&xhci_modlinkage)) != 0) {
2282 taskq_destroy(xhci_taskq);
2283 xhci_taskq = NULL;
2284 }
2285
2286 return (ret);
2287 }
2288
2289 int
_info(struct modinfo * modinfop)2290 _info(struct modinfo *modinfop)
2291 {
2292 return (mod_info(&xhci_modlinkage, modinfop));
2293 }
2294
2295 int
_fini(void)2296 _fini(void)
2297 {
2298 int ret;
2299
2300 if ((ret = mod_remove(&xhci_modlinkage)) != 0)
2301 return (ret);
2302
2303 if (xhci_taskq != NULL) {
2304 taskq_destroy(xhci_taskq);
2305 xhci_taskq = NULL;
2306 }
2307
2308 ddi_soft_state_fini(&xhci_soft_state);
2309
2310 return (0);
2311 }
2312