1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2017, Joyent, Inc. 14 */ 15 16 /* 17 * Extensible Host Controller Interface (xHCI) USB Driver 18 * 19 * The xhci driver is an HCI driver for USB that bridges the gap between client 20 * device drivers and implements the actual way that we talk to devices. The 21 * xhci specification provides access to USB 3.x capable devices, as well as all 22 * prior generations. Like other host controllers, it both provides the way to 23 * talk to devices and also is treated like a hub (often called the root hub). 24 * 25 * This driver is part of the USBA (USB Architecture). It implements the HCDI 26 * (host controller device interface) end of USBA. These entry points are used 27 * by the USBA on behalf of client device drivers to access their devices. The 28 * driver also provides notifications to deal with hot plug events, which are 29 * quite common in USB. 30 * 31 * ---------------- 32 * USB Introduction 33 * ---------------- 34 * 35 * To properly understand the xhci driver and the design of the USBA HCDI 36 * interfaces it implements, it helps to have a bit of background into how USB 37 * devices are structured and understand how they work at a high-level. 38 * 39 * USB devices, like PCI devices, are broken down into different classes of 40 * device. For example, with USB you have hubs, human-input devices (keyboards, 41 * mice, etc.), mass storage, etc. Every device also has a vendor and device ID. 42 * Many client drivers bind to an entire class of device, for example, the hubd 43 * driver (to hubs) or scsa2usb (USB storage). However, there are other drivers 44 * that bind to explicit IDs such as usbsprl (specific USB to Serial devices). 45 * 46 * USB SPEEDS AND VERSIONS 47 * 48 * USB devices are often referred to in two different ways. One way they're 49 * described is with the USB version that they conform to. In the wild, you're 50 * most likely going to see USB 1.1, 2.0, 2.1, and 3.0. However, you may also 51 * see devices referred to as 'full-', 'low-', 'high-', and 'super-' speed 52 * devices. 53 * 54 * The latter description describes the maximum theoretical speed of a given 55 * device. For example, a super-speed device theoretically caps out around 5 56 * Gbit/s, whereas a low-speed device caps out at 1.5 Mbit/s. 57 * 58 * In general, each speed usually corresponds to a specific USB protocol 59 * generation. For example, all USB 3.0 devices are super-speed devices. All 60 * 'high-speed' devices are USB 2.x devices. Full-speed devices are special in 61 * that they can either be USB 1.x or USB 2.x devices. Low-speed devices are 62 * only a USB 1.x thing, they did not jump the fire line to USB 2.x. 63 * 64 * USB 3.0 devices and ports generally have the wiring for both USB 2.0 and USB 65 * 3.0. When a USB 3.x device is plugged into a USB 2.0 port or hub, then it 66 * will report its version as USB 2.1, to indicate that it is actually a USB 3.x 67 * device. 68 * 69 * USB ENDPOINTS 70 * 71 * A given USB device is made up of endpoints. A request, or transfer, is made 72 * to a specific USB endpoint. These endpoints can provide different services 73 * and have different expectations around the size of the data that'll be used 74 * in a given request and the periodicity of requests. Endpoints themselves are 75 * either used to make one-shot requests, for example, making requests to a mass 76 * storage device for a given sector, or for making periodic requests where you 77 * end up polling on the endpoint, for example, polling on a USB keyboard for 78 * keystrokes. 79 * 80 * Each endpoint encodes two different pieces of information: a direction and a 81 * type. There are two different directions: IN and OUT. These refer to the 82 * general direction that data moves relative to the operating system. For 83 * example, an IN transfer transfers data in to the operating system, from the 84 * device. An OUT transfer transfers data from the operating system, out to the 85 * device. 86 * 87 * There are four different kinds of endpoints: 88 * 89 * BULK These transfers are large transfers of data to or from 90 * a device. The most common use for bulk transfers is for 91 * mass storage devices. Though they are often also used by 92 * network devices and more. Bulk endpoints do not have an 93 * explicit time component to them. They are always used 94 * for one-shot transfers. 95 * 96 * CONTROL These transfers are used to manipulate devices 97 * themselves and are used for USB protocol level 98 * operations (whether device-specific, class-specific, or 99 * generic across all of USB). Unlike other transfers, 100 * control transfers are always bi-directional and use 101 * different kinds of transfers. 102 * 103 * INTERRUPT Interrupt transfers are used for small transfers that 104 * happen infrequently, but need reasonable latency. A good 105 * example of interrupt transfers is to receive input from 106 * a USB keyboard. Interrupt-IN transfers are generally 107 * polled. Meaning that a client (device driver) opens up 108 * an interrupt-IN pipe to poll on it, and receives 109 * periodic updates whenever there is information 110 * available. However, Interrupt transfers can be used 111 * as one-shot transfers both going IN and OUT. 112 * 113 * ISOCHRONOUS These transfers are things that happen once per 114 * time-interval at a very regular rate. A good example of 115 * these transfers are for audio and video. A device may 116 * describe an interval as 10ms at which point it will read 117 * or write the next batch of data every 10ms and transform 118 * it for the user. There are no one-shot Isochronous-IN 119 * transfers. There are one-shot Isochronous-OUT transfers, 120 * but these are used by device drivers to always provide 121 * the system with sufficient data. 122 * 123 * To find out information about the endpoints, USB devices have a series of 124 * descriptors that cover different aspects of the device. For example, there 125 * are endpoint descriptors which cover the properties of endpoints such as the 126 * maximum packet size or polling interval. 127 * 128 * Descriptors exist at all levels of USB. For example, there are general 129 * descriptors for every device. The USB device descriptor is described in 130 * usb_dev_descr(9S). Host controllers will look at these descriptors to ensure 131 * that they program the device correctly; however, they are more often used by 132 * client device drivers. There are also descriptors that exist at a class 133 * level. For example, the hub class has a class-specific descriptor which 134 * describes properties of the hub. That information is requested for and used 135 * by the hub driver. 136 * 137 * All of the different descriptors are gathered by the system and placed into a 138 * tree which USBA sometimes calls the 'Configuration Cloud'. Client device 139 * drivers gain access to this cloud and then use them to open endpoints, which 140 * are called pipes in USBA (and some revisions of the USB specification). 141 * 142 * Each pipe gives access to a specific endpoint on the device which can be used 143 * to perform transfers of a specific type and direction. For example, a mass 144 * storage device often has three different endpoints, the default control 145 * endpoint (which every device has), a Bulk-IN endpoint, and a Bulk-OUT 146 * endpoint. The device driver ends up with three open pipes. One to the default 147 * control endpoint to configure the device, and then the other two are used to 148 * perform I/O. 149 * 150 * These routines translate more or less directly into calls to a host 151 * controller driver. A request to open a pipe takes an endpoint descriptor that 152 * describes the properties of the pipe, and the host controller driver (this 153 * driver) goes through and does any work necessary to allow the client device 154 * driver to access it. Once the pipe is open, it either makes one-shot 155 * transfers specific to the transfer type or it starts performing a periodic 156 * poll of an endpoint. 157 * 158 * All of these different actions translate into requests to the host 159 * controller. The host controller driver itself is in charge of making sure 160 * that all of the required resources for polling are allocated with a request 161 * and then proceed to give the driver's periodic callbacks. 162 * 163 * HUBS AND HOST CONTROLLERS 164 * 165 * Every device is always plugged into a hub, even if the device is itself a 166 * hub. This continues until we reach what we call the root-hub. The root-hub is 167 * special in that it is not an actual USB hub, but is integrated into the host 168 * controller and is manipulated in its own way. For example, the host 169 * controller is used to turn on and off a given port's power. This may happen 170 * over any interface, though the most common way is through PCI. 171 * 172 * In addition to the normal character device that exists for a host controller 173 * driver, as part of attaching, the host controller binds to an instance of the 174 * hubd driver. While the root-hub is a bit of a fiction, everyone models the 175 * root-hub as the same as any other hub that's plugged in. The hub kernel 176 * module doesn't know that the hub isn't a physical device that's been plugged 177 * in. The host controller driver simulates that view by taking hub requests 178 * that are made and translating them into corresponding requests that are 179 * understood by the host controller, for example, reading and writing to a 180 * memory mapped register. 181 * 182 * The hub driver polls for changes in device state using an Interrupt-IN 183 * request, which is the same as is done for the root-hub. This allows the host 184 * controller driver to not have to know about the implementation of device hot 185 * plug, merely react to requests from a hub, the same as if it were an external 186 * device. When the hub driver detects a change, it will go through the 187 * corresponding state machine and attach or detach the corresponding client 188 * device driver, depending if the device was inserted or removed. 189 * 190 * We detect the changes for the Interrupt-IN primarily based on the port state 191 * change events that are delivered to the event ring. Whenever any event is 192 * fired, we use this to update the hub driver about _all_ ports with 193 * outstanding events. This more closely matches how a hub is supposed to behave 194 * and leaves things less likely for the hub driver to end up without clearing a 195 * flag on a port. 196 * 197 * PACKET SIZES AND BURSTING 198 * 199 * A given USB endpoint has an explicit packet size and a number of packets that 200 * can be sent per time interval. These concepts are abstracted away from client 201 * device drives usually, though they sometimes inform the upper bounds of what 202 * a device can perform. 203 * 204 * The host controller uses this information to transform arbitrary transfer 205 * requests into USB protocol packets. One of the nice things about the host 206 * controllers is that they abstract away all of the signaling and semantics of 207 * the actual USB protocols, allowing for life to be slightly easier in the 208 * operating system. 209 * 210 * That said, if the host controller is not programmed correctly, these can end 211 * up causing transaction errors and other problems in response to the data that 212 * the host controller is trying to send or receive. 213 * 214 * ------------ 215 * Organization 216 * ------------ 217 * 218 * The driver is made up of the following files. Many of these have their own 219 * theory statements to describe what they do. Here, we touch on each of the 220 * purpose of each of these files. 221 * 222 * xhci_command.c: This file contains the logic to issue commands to the 223 * controller as well as the actual functions that the 224 * other parts of the driver use to cause those commands. 225 * 226 * xhci_context.c: This file manages various data structures used by the 227 * controller to manage the controller's and device's 228 * context data structures. See more in the xHCI Overview 229 * and General Design for more information. 230 * 231 * xhci_dma.c: This manages the allocation of DMA memory and DMA 232 * attributes for controller, whether memory is for a 233 * transfer or something else. This file also deals with 234 * all the logic of getting data in and out of DMA buffers. 235 * 236 * xhci_endpoint.c: This manages all of the logic of handling endpoints or 237 * pipes. It deals with endpoint configuration, I/O 238 * scheduling, timeouts, and callbacks to USBA. 239 * 240 * xhci_event.c: This manages callbacks from the hardware to the driver. 241 * This covers command completion notifications and I/O 242 * notifications. 243 * 244 * xhci_hub.c: This manages the virtual root-hub. It basically 245 * implements and translates all of the USB level requests 246 * into xhci specific implements. It also contains the 247 * functions to register this hub with USBA. 248 * 249 * xhci_intr.c: This manages the underlying interrupt allocation, 250 * interrupt moderation, and interrupt routines. 251 * 252 * xhci_quirks.c: This manages information about buggy hardware that's 253 * been collected and experienced primarily from other 254 * systems. 255 * 256 * xhci_ring.c: This manages the abstraction of a ring in xhci, which is 257 * the primary of communication between the driver and the 258 * hardware, whether for the controller or a device. 259 * 260 * xhci_usba.c: This implements all of the HCDI functions required by 261 * USBA. This is the main entry point that drivers and the 262 * kernel frameworks will reach to start any operation. 263 * Many functions here will end up in the command and 264 * endpoint code. 265 * 266 * xhci.c: This provides the main kernel DDI interfaces and 267 * performs device initialization. 268 * 269 * xhci.h: This is the primary header file which defines 270 * illumos-specific data structures and constants to manage 271 * the system. 272 * 273 * xhcireg.h: This header file defines all of the register offsets, 274 * masks, and related macros. It also contains all of the 275 * constants that are used in various structures as defined 276 * by the specification, such as command offsets, etc. 277 * 278 * xhci_ioctl.h: This contains a few private ioctls that are used by a 279 * private debugging command. These are private. 280 * 281 * cmd/xhci/xhci_portsc: This is a private utility that can be useful for 282 * debugging xhci state. It is the only consumer of 283 * xhci_ioctl.h and the private ioctls. 284 * 285 * ---------------------------------- 286 * xHCI Overview and Structure Layout 287 * ---------------------------------- 288 * 289 * The design and structure of this driver follows from the way that the xHCI 290 * specification tells us that we have to work with hardware. First we'll give a 291 * rough summary of how that works, though the xHCI 1.1 specification should be 292 * referenced when going through this. 293 * 294 * There are three primary parts of the hardware -- registers, contexts, and 295 * rings. The registers are memory mapped registers that come in four sets, 296 * though all are found within the first BAR. These are used to program and 297 * control the hardware and aspects of the devices. Beyond more traditional 298 * device programming there are two primary sets of registers that are 299 * important: 300 * 301 * o Port Status and Control Registers (XHCI_PORTSC) 302 * o Doorbell Array (XHCI_DOORBELL) 303 * 304 * The port status and control registers are used to get and manipulate the 305 * status of a given device. For example, turning on and off the power to it. 306 * The Doorbell Array is used to kick off I/O operations and start the 307 * processing of an I/O ring. 308 * 309 * The contexts are data structures that represent various pieces of information 310 * in the controller. These contexts are generally filled out by the driver and 311 * then acknowledged and consumed by the hardware. There are controller-wide 312 * contexts (mostly managed in xhci_context.c) that are used to point to the 313 * contexts that exist for each device in the system. The primary context is 314 * called the Device Context Base Address Array (DCBAA). 315 * 316 * Each device in the system is allocated a 'slot', which is used to index into 317 * the DCBAA. Slots are assigned based on issuing commands to the controller. 318 * There are a fixed number of slots that determine the maximum number of 319 * devices that can end up being supported in the system. Note this includes all 320 * the devices plugged into the USB device tree, not just devices plugged into 321 * ports on the chassis. 322 * 323 * For each device, there is a context structure that describes properties of 324 * the device. For example, what speed is the device, is it a hub, etc. The 325 * context has slots for the device and for each endpoint on the device. As 326 * endpoints are enabled, their context information which describes things like 327 * the maximum packet size, is filled in and enabled. The mapping between these 328 * contexts look like: 329 * 330 * 331 * DCBAA 332 * +--------+ Device Context 333 * | Slot 0 |------------------>+--------------+ 334 * +--------+ | Slot Context | 335 * | ... | +--------------+ +----------+ 336 * +--------+ +------+ | Endpoint 0 |------>| I/O Ring | 337 * | Slot n |-->| NULL | | Context (Bi) | +----------+ 338 * +--------+ +------+ +--------------+ 339 * | Endpoint 1 | 340 * | Context (Out)| 341 * +--------------+ 342 * | Endpoint 1 | 343 * | Context (In) | 344 * +--------------+ 345 * | ... | 346 * +--------------+ 347 * | Endpoint 15 | 348 * | Context (In) | 349 * +--------------+ 350 * 351 * These contexts are always owned by the controller, though we can read them 352 * after various operations complete. Commands that toggle device state use a 353 * specific input context, which is a variant of the device context. The only 354 * difference is that it has an input context structure ahead of it to say which 355 * sections of the device context should be evaluated. 356 * 357 * Each active endpoint points us to an I/O ring, which leads us to the third 358 * main data structure that's used by the device: rings. Rings are made up of 359 * transfer request blocks (TRBs), which are joined together to form a given 360 * transfer description (TD) which represents a single I/O request. 361 * 362 * These rings are used to issue I/O to individual endpoints, to issue commands 363 * to the controller, and to receive notification of changes and completions. 364 * Issued commands go on the special ring called the command ring while the 365 * change and completion notifications go on the event ring. More details are 366 * available in xhci_ring.c. Each of these structures is represented by an 367 * xhci_ring_t. 368 * 369 * Each ring can be made up of one or more disjoint regions of DMA; however, we 370 * only use a single one. This also impacts some additional registers and 371 * structures that exist. The event ring has an indirection table called the 372 * Event Ring Segment Table (ERST). Each entry in the table (a segment) 373 * describes a chunk of the event ring. 374 * 375 * One other thing worth calling out is the scratchpad. The scratchpad is a way 376 * for the controller to be given arbitrary memory by the OS that it can use. 377 * There are two parts to the scratchpad. The first part is an array whose 378 * entries contain pointers to the actual addresses for the pages. The second 379 * part that we allocate are the actual pages themselves. 380 * 381 * ----------------------------- 382 * Endpoint State and Management 383 * ----------------------------- 384 * 385 * Endpoint management is one of the key parts to the xhci driver as every 386 * endpoint is a pipe that a device driver uses, so they are our primary 387 * currency. Endpoints are enabled and disabled when the client device drivers 388 * open and close a pipe. When an endpoint is enabled, we have to fill in an 389 * endpoint's context structure with information about the endpoint. These 390 * basically tell the controller important properties which it uses to ensure 391 * that there is adequate bandwidth for the device. 392 * 393 * Each endpoint has its own ring as described in the previous section. We place 394 * TRBs (transfer request blocks) onto a given ring to request I/O be performed. 395 * Responses are placed on the event ring, in other words, the rings associated 396 * with an endpoint are purely for producing I/O. 397 * 398 * Endpoints have a defined state machine as described in xHCI 1.1 / 4.8.3. 399 * These states generally correspond with the state of the endpoint to process 400 * I/O and handle timeouts. The driver basically follows a similar state machine 401 * as described there. There are some deviations. For example, what they 402 * describe as 'running' we break into both the Idle and Running states below. 403 * We also have a notion of timed out and quiescing. The following image 404 * summarizes the states and transitions: 405 * 406 * +------+ +-----------+ 407 * | Idle |---------*--------------------->| Running |<-+ 408 * +------+ . I/O queued on +-----------+ | 409 * ^ ring and timeout | | | | 410 * | scheduled. | | | | 411 * | | | | | 412 * +-----*---------------------------------+ | | | 413 * | . No I/Os remain | | | 414 * | | | | 415 * | +------*------------------+ | | 416 * | | . Timeout | | 417 * | | fires for | | 418 * | | I/O | | 419 * | v v | 420 * | +-----------+ +--------+ | 421 * | | Timed Out | | Halted | | 422 * | +-----------+ +--------+ | 423 * | | | | 424 * | | +-----------+ | | 425 * | +-->| Quiescing |<----------+ | 426 * | +-----------+ | 427 * | No TRBs. | . TRBs | 428 * | remain . | . Remain | 429 * +----------*----<------+-------->-------*-----------+ 430 * 431 * Normally, a given endpoint will oscillate between having TRBs scheduled and 432 * not. Every time a new I/O is added to the endpoint, we'll ring the doorbell, 433 * making sure that we're processing the ring, presuming that the endpoint isn't 434 * in one of the error states. 435 * 436 * To detect device hangs, we have an active timeout(9F) per active endpoint 437 * that ticks at a one second rate while we still have TRBs outstanding on an 438 * endpoint. Once all outstanding TRBs have been processed, the timeout will 439 * stop itself and there will be no active checking until the endpoint has I/O 440 * scheduled on it again. 441 * 442 * There are two primary ways that things can go wrong on the endpoint. We can 443 * either have a timeout or an event that transitions the endpoint to the Halted 444 * state. In the halted state, we need to issue explicit commands to reset the 445 * endpoint before removing the I/O. 446 * 447 * The way we handle both a timeout and a halted condition is similar, but the 448 * way they are triggered is different. When we detect a halted condition, we 449 * don't immediately clean it up, and wait for the client device driver (or USBA 450 * on its behalf) to issue a pipe reset. When we detect a timeout, we 451 * immediately take action (assuming no other action is ongoing). 452 * 453 * In both cases, we quiesce the device, which takes care of dealing with taking 454 * the endpoint from whatever state it may be in and taking the appropriate 455 * actions based on the state machine in xHCI 1.1 / 4.8.3. The end of quiescing 456 * leaves the device stopped, which allows us to update the ring's pointer and 457 * remove any TRBs that are causing problems. 458 * 459 * As part of all this, we ensure that we can only be quiescing the device from 460 * a given path at a time. Any requests to schedule I/O during this time will 461 * generally fail. 462 * 463 * The following image describes the state machine for the timeout logic. It 464 * ties into the image above. 465 * 466 * +----------+ +---------+ 467 * | Disabled |-----*--------------------->| Enabled |<--+ 468 * +----------+ . TRBs scheduled +---------+ *. 1 sec timer 469 * ^ and no active | | | | fires and 470 * | timer. | | | | another 471 * | | | +--+--+ quiesce, in 472 * | | | | a bad state, 473 * +------*------------------------------+ | ^ or decrement 474 * | . 1 sec timer | | I/O timeout 475 * | fires and | | 476 * | no TRBs or | +--------------+ 477 * | endpoint shutdown | | 478 * | *. . timer counter | 479 * ^ | reaches zero | 480 * | v | 481 * | +--------------+ | 482 * +-------------*---------------<--| Quiesce ring |->---*-------+ 483 * . No more | and fail I/O | . restart 484 * I/Os +--------------+ timer as 485 * more I/Os 486 * 487 * As we described above, when there are active TRBs and I/Os, a 1 second 488 * timeout(9F) will be active. Each second, we decrement a counter on the 489 * current, active I/O until either a new I/O takes the head, or the counter 490 * reaches zero. If the counter reaches zero, then we go through, quiesce the 491 * ring, and then clean things up. 492 * 493 * ------------------ 494 * Periodic Endpoints 495 * ------------------ 496 * 497 * It's worth calling out periodic endpoints explicitly, as they operate 498 * somewhat differently. Periodic endpoints are limited to Interrupt-IN and 499 * Isochronous-IN. The USBA often uses the term polling for these. That's 500 * because the client only needs to make a single API call; however, they'll 501 * receive multiple callbacks until either an error occurs or polling is 502 * requested to be terminated. 503 * 504 * When we have one of these periodic requests, we end up always rescheduling 505 * I/O requests, as well as, having a specific number of pre-existing I/O 506 * requests to cover the periodic needs, in case of latency spikes. Normally, 507 * when replying to a request, we use the request handle that we were given. 508 * However, when we have a periodic request, we're required to duplicate the 509 * handle before giving them data. 510 * 511 * However, the duplication is a bit tricky. For everything that was duplicated, 512 * the framework expects us to submit data. Because of that we, don't duplicate 513 * them until they are needed. This minimizes the likelihood that we have 514 * outstanding requests to deal with when we encounter a fatal polling failure. 515 * 516 * Most of the polling setup logic happens in xhci_usba.c in 517 * xhci_hcdi_periodic_init(). The consumption and duplication is handled in 518 * xhci_endpoint.c. 519 * 520 * ---------------- 521 * Structure Layout 522 * ---------------- 523 * 524 * The following images relate the core data structures. The primary structure 525 * in the system is the xhci_t. This is the per-controller data structure that 526 * exists for each instance of the driver. From there, each device in the system 527 * is represented by an xhci_device_t and each endpoint is represented by an 528 * xhci_endpoint_t. For each client that opens a given endpoint, there is an 529 * xhci_pipe_t. For each I/O related ring, there is an xhci_ring_t in the 530 * system. 531 * 532 * +------------------------+ 533 * | Per-Controller | 534 * | Structure | 535 * | xhci_t | 536 * | | 537 * | uint_t ---+--> Capability regs offset 538 * | uint_t ---+--> Operational regs offset 539 * | uint_t ---+--> Runtime regs offset 540 * | uint_t ---+--> Doorbell regs offset 541 * | xhci_state_flags_t ---+--> Device state flags 542 * | xhci_quirks_t ---+--> Device quirk flags 543 * | xhci_capability_t ---+--> Controller capability structure 544 * | xhci_dcbaa_t ---+----------------------------------+ 545 * | xhci_scratchpad_t ---+---------+ | 546 * | xhci_command_ing_t ---+------+ | v 547 * | xhci_event_ring_t ---+----+ | | +---------------------+ 548 * | xhci_usba_t ---+--+ | | | | Device Context | 549 * +------------------------+ | | | | | Base Address | 550 * | | | | | Array Structure | 551 * | | | | | xhci_dcbaa_t | 552 * +-------------------------------+ | | | | | 553 * | +-------------------------------+ | | DCBAA KVA <-+-- uint64_t * | 554 * | | +----------------------------+ | DMA Buffer <-+-- xhci_dma_buffer_t | 555 * | | v | +---------------------+ 556 * | | +--------------------------+ +-----------------------+ 557 * | | | Event Ring | | 558 * | | | Management | | 559 * | | | xhci_event_ring_t | v 560 * | | | | Event Ring +----------------------+ 561 * | | | xhci_event_segment_t * --|-> Segment VA | Scratchpad (Extra | 562 * | | | xhci_dma_buffer_t --|-> Segment DMA Buf. | Controller Memory) | 563 * | | | xhci_ring_t --|--+ | xhci_scratchpad_t | 564 * | | +--------------------------+ | Scratchpad | | 565 * | | | Base Array KVA <-+- uint64_t * | 566 * | +------------+ | Array DMA Buf. <-+- xhci_dma_buffer_t | 567 * | v | Scratchpad DMA <-+- xhci_dma_buffer_t * | 568 * | +---------------------------+ | Buffer per page +----------------------+ 569 * | | Command Ring | | 570 * | | xhci_command_ring_t | +------------------------------+ 571 * | | | | 572 * | | xhci_ring_t --+-> Command Ring --->------------+ 573 * | | list_t --+-> Command List v 574 * | | timeout_id_t --+-> Timeout State +---------------------+ 575 * | | xhci_command_ring_state_t +-> State Flags | I/O Ring | 576 * | +---------------------------+ | xhci_ring_t | 577 * | | | 578 * | Ring DMA Buf. <-+-- xhci_dma_buffer_t | 579 * | Ring Length <-+-- uint_t | 580 * | Ring Entry KVA <-+-- xhci_trb_t * | 581 * | +---------------------------+ Ring Head <-+-- uint_t | 582 * +--->| USBA State | Ring Tail <-+-- uint_t | 583 * | xhci_usba_t | Ring Cycle <-+-- uint_t | 584 * | | +---------------------+ 585 * | usba_hcdi_ops_t * -+-> USBA Ops Vector ^ 586 * | usb_dev_dscr_t -+-> USB Virtual Device Descriptor | 587 * | usb_ss_hub_descr_t -+-> USB Virtual Hub Descriptor | 588 * | usba_pipe_handle_data_t * +-> Interrupt polling client | 589 * | usb_intr_req_t -+-> Interrupt polling request | 590 * | uint32_t --+-> Interrupt polling device mask | 591 * | list_t --+-> Pipe List (Active Users) | 592 * | list_t --+-------------------+ | 593 * +---------------------------+ | ^ 594 * | | 595 * v | 596 * +-------------------------------+ +---------------+ | 597 * | USB Device |------------>| USB Device |--> ... | 598 * | xhci_device_t | | xhci_device_t | | 599 * | | +---------------+ | 600 * | usb_port_t --+-> USB Port plugged into | 601 * | uint8_t --+-> Slot Number | 602 * | boolean_t --+-> Address Assigned | 603 * | usba_device_t * --+-> USBA Device State | 604 * | xhci_dma_buffer_t --+-> Input Context DMA Buffer | 605 * | xhci_input_context_t * --+-> Input Context KVA | 606 * | xhci_slot_contex_t * --+-> Input Slot Context KVA | 607 * | xhci_endpoint_context_t *[] --+-> Input Endpoint Context KVA | 608 * | xhci_dma_buffer_t --+-> Output Context DMA Buffer | 609 * | xhci_slot_context_t * --+-> Output Slot Context KVA ^ 610 * | xhci_endpoint_context_t *[] --+-> Output Endpoint Context KVA | 611 * | xhci_endpoint_t *[] --+-> Endpoint Tracking ---+ | 612 * +-------------------------------+ | | 613 * | | 614 * v | 615 * +------------------------------+ +-----------------+ | 616 * | Endpoint Data |----------->| Endpoint Data |--> ... | 617 * | xhci_endpoint_t | | xhci_endpoint_t | | 618 * | | +-----------------+ | 619 * | int --+-> Endpoint Number | 620 * | int --+-> Endpoint Type | 621 * | xhci_endpoint_state_t --+-> Endpoint State | 622 * | timeout_id_t --+-> Endpoint Timeout State | 623 * | usba_pipe_handle_data_t * --+-> USBA Client Handle | 624 * | xhci_ring_t --+-> Endpoint I/O Ring -------->--------+ 625 * | list_t --+-> Transfer List --------+ 626 * +------------------------------+ | 627 * v 628 * +-------------------------+ +--------------------+ 629 * | Transfer Structure |----------------->| Transfer Structure |-> ... 630 * | xhci_transfer_t | | xhci_transfer_t | 631 * | | +--------------------+ 632 * | xhci_dma_buffer_t --+-> I/O DMA Buffer 633 * | uint_t --+-> Number of TRBs 634 * | uint_t --+-> Short transfer data 635 * | uint_t --+-> Timeout seconds remaining 636 * | usb_cr_t --+-> USB Transfer return value 637 * | boolean_t --+-> Data direction 638 * | xhci_trb_t * --+-> Host-order transfer requests for I/O 639 * | usb_isoc_pkt_descr_t * -+-> Isochronous only response data 640 * | usb_opaque_t --+-> USBA Request Handle 641 * +-------------------------+ 642 * 643 * ------------- 644 * Lock Ordering 645 * ------------- 646 * 647 * There are three different tiers of locks that exist in the driver. First, 648 * there is a lock for each controller: xhci_t`xhci_lock. This protects all the 649 * data for that instance of the controller. If there are multiple instances of 650 * the xHCI controller in the system, each one is independent and protected 651 * separately. The two do not share any data. 652 * 653 * From there, there are two other, specific locks in the system: 654 * 655 * o xhci_command_ring_t`xcr_lock 656 * o xhci_device_t`xd_imtx 657 * 658 * There is only one xcr_lock per controller, like the xhci_lock. It protects 659 * the state of the command ring. However, there is on xd_imtx per device. 660 * Recall that each device is scoped to a given controller. This protects the 661 * input slot context for a given device. 662 * 663 * There are a few important rules to keep in mind here that are true 664 * universally throughout the driver: 665 * 666 * 1) Always grab the xhci_t`xhci_lock, before grabbing any of the other locks. 667 * 2) A given xhci_device_t`xd_imtx, must be taken before grabbing the 668 * xhci_command_ring_t`xcr_lock. 669 * 3) A given thread can only hold one of the given xhci_device_t`xd_imtx locks 670 * at a given time. In other words, we should never be manipulating the input 671 * context of two different devices at once. 672 * 4) It is safe to hold the xhci_device_t`xd_imtx while tearing down the 673 * endpoint timer. Conversely, the endpoint specific logic should never enter 674 * this lock. 675 * 676 * -------------------- 677 * Relationship to EHCI 678 * -------------------- 679 * 680 * On some Intel chipsets, a given physical port on the system may be routed to 681 * one of the EHCI or xHCI controllers. This association can be dynamically 682 * changed by writing to platform specific registers as handled by the quirk 683 * logic in xhci_quirk.c. 684 * 685 * As these ports may support USB 3.x speeds, we always route all such ports to 686 * the xHCI controller, when supported. In addition, to minimize disruptions 687 * from devices being enumerated and attached to the EHCI driver and then 688 * disappearing, we generally attempt to load the xHCI controller before the 689 * EHCI controller. This logic is not done in the driver; however, it is done in 690 * other parts of the kernel like in uts/common/io/consconfig_dacf.c in the 691 * function consconfig_load_drivres(). 692 * 693 * ----------- 694 * Future Work 695 * ----------- 696 * 697 * The primary future work in this driver spans two different, but related 698 * areas. The first area is around controller resets and how they tie into FM. 699 * Presently, we do not have a good way to handle controllers coming and going 700 * in the broader USB stack or properly reconfigure the device after a reset. 701 * Secondly, we don't handle the suspend and resume of devices and drivers. 702 */ 703 704 #include <sys/param.h> 705 #include <sys/modctl.h> 706 #include <sys/conf.h> 707 #include <sys/devops.h> 708 #include <sys/ddi.h> 709 #include <sys/sunddi.h> 710 #include <sys/cmn_err.h> 711 #include <sys/ddifm.h> 712 #include <sys/pci.h> 713 #include <sys/class.h> 714 #include <sys/policy.h> 715 716 #include <sys/usb/hcd/xhci/xhci.h> 717 #include <sys/usb/hcd/xhci/xhci_ioctl.h> 718 719 /* 720 * We want to use the first BAR to access its registers. The regs[] array is 721 * ordered based on the rules for the PCI supplement to IEEE 1275. So regs[1] 722 * will always be the first BAR. 723 */ 724 #define XHCI_REG_NUMBER 1 725 726 /* 727 * This task queue exists as a global taskq that is used for resetting the 728 * device in the face of FM or runtime errors. Each instance of the device 729 * (xhci_t) happens to have a single taskq_dispatch_ent already allocated so we 730 * know that we should always be able to dispatch such an event. 731 */ 732 static taskq_t *xhci_taskq; 733 734 /* 735 * Global soft state for per-instance data. Note that we must use the soft state 736 * routines and cannot use the ddi_set_driver_private() routines. The USB 737 * framework presumes that it can use the dip's private data. 738 */ 739 void *xhci_soft_state; 740 741 /* 742 * This is the time in us that we wait after a controller resets before we 743 * consider reading any register. There are some controllers that want at least 744 * 1 ms, therefore we default to 10 ms. 745 */ 746 clock_t xhci_reset_delay = 10000; 747 748 void 749 xhci_error(xhci_t *xhcip, const char *fmt, ...) 750 { 751 va_list ap; 752 753 va_start(ap, fmt); 754 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 755 vdev_err(xhcip->xhci_dip, CE_WARN, fmt, ap); 756 } else { 757 vcmn_err(CE_WARN, fmt, ap); 758 } 759 va_end(ap); 760 } 761 762 void 763 xhci_log(xhci_t *xhcip, const char *fmt, ...) 764 { 765 va_list ap; 766 767 va_start(ap, fmt); 768 if (xhcip != NULL && xhcip->xhci_dip != NULL) { 769 vdev_err(xhcip->xhci_dip, CE_NOTE, fmt, ap); 770 } else { 771 vcmn_err(CE_NOTE, fmt, ap); 772 } 773 va_end(ap); 774 } 775 776 /* 777 * USBA is in charge of creating device nodes for us. USBA explicitly ORs in the 778 * constant HUBD_IS_ROOT_HUB, so we have to undo that when we're looking at 779 * things here. A simple bitwise-and will take care of this. And hey, it could 780 * always be more complex, USBA could clone! 781 */ 782 static dev_info_t * 783 xhci_get_dip(dev_t dev) 784 { 785 xhci_t *xhcip; 786 int instance = getminor(dev) & ~HUBD_IS_ROOT_HUB; 787 788 xhcip = ddi_get_soft_state(xhci_soft_state, instance); 789 if (xhcip != NULL) 790 return (xhcip->xhci_dip); 791 return (NULL); 792 } 793 794 uint8_t 795 xhci_get8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 796 { 797 uintptr_t addr, roff; 798 799 switch (rtt) { 800 case XHCI_R_CAP: 801 roff = xhcip->xhci_regs_capoff; 802 break; 803 case XHCI_R_OPER: 804 roff = xhcip->xhci_regs_operoff; 805 break; 806 case XHCI_R_RUN: 807 roff = xhcip->xhci_regs_runoff; 808 break; 809 case XHCI_R_DOOR: 810 roff = xhcip->xhci_regs_dooroff; 811 break; 812 default: 813 panic("called %s with bad reg type: %d", __func__, rtt); 814 } 815 ASSERT(roff != PCI_EINVAL32); 816 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 817 818 return (ddi_get8(xhcip->xhci_regs_handle, (void *)addr)); 819 } 820 821 uint16_t 822 xhci_get16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 823 { 824 uintptr_t addr, roff; 825 826 switch (rtt) { 827 case XHCI_R_CAP: 828 roff = xhcip->xhci_regs_capoff; 829 break; 830 case XHCI_R_OPER: 831 roff = xhcip->xhci_regs_operoff; 832 break; 833 case XHCI_R_RUN: 834 roff = xhcip->xhci_regs_runoff; 835 break; 836 case XHCI_R_DOOR: 837 roff = xhcip->xhci_regs_dooroff; 838 break; 839 default: 840 panic("called %s with bad reg type: %d", __func__, rtt); 841 } 842 ASSERT(roff != PCI_EINVAL32); 843 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 844 845 return (ddi_get16(xhcip->xhci_regs_handle, (void *)addr)); 846 } 847 848 uint32_t 849 xhci_get32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 850 { 851 uintptr_t addr, roff; 852 853 switch (rtt) { 854 case XHCI_R_CAP: 855 roff = xhcip->xhci_regs_capoff; 856 break; 857 case XHCI_R_OPER: 858 roff = xhcip->xhci_regs_operoff; 859 break; 860 case XHCI_R_RUN: 861 roff = xhcip->xhci_regs_runoff; 862 break; 863 case XHCI_R_DOOR: 864 roff = xhcip->xhci_regs_dooroff; 865 break; 866 default: 867 panic("called %s with bad reg type: %d", __func__, rtt); 868 } 869 ASSERT(roff != PCI_EINVAL32); 870 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 871 872 return (ddi_get32(xhcip->xhci_regs_handle, (void *)addr)); 873 } 874 875 uint64_t 876 xhci_get64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off) 877 { 878 uintptr_t addr, roff; 879 880 switch (rtt) { 881 case XHCI_R_CAP: 882 roff = xhcip->xhci_regs_capoff; 883 break; 884 case XHCI_R_OPER: 885 roff = xhcip->xhci_regs_operoff; 886 break; 887 case XHCI_R_RUN: 888 roff = xhcip->xhci_regs_runoff; 889 break; 890 case XHCI_R_DOOR: 891 roff = xhcip->xhci_regs_dooroff; 892 break; 893 default: 894 panic("called %s with bad reg type: %d", __func__, rtt); 895 } 896 ASSERT(roff != PCI_EINVAL32); 897 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 898 899 return (ddi_get64(xhcip->xhci_regs_handle, (void *)addr)); 900 } 901 902 void 903 xhci_put8(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint8_t val) 904 { 905 uintptr_t addr, roff; 906 907 switch (rtt) { 908 case XHCI_R_CAP: 909 roff = xhcip->xhci_regs_capoff; 910 break; 911 case XHCI_R_OPER: 912 roff = xhcip->xhci_regs_operoff; 913 break; 914 case XHCI_R_RUN: 915 roff = xhcip->xhci_regs_runoff; 916 break; 917 case XHCI_R_DOOR: 918 roff = xhcip->xhci_regs_dooroff; 919 break; 920 default: 921 panic("called %s with bad reg type: %d", __func__, rtt); 922 } 923 ASSERT(roff != PCI_EINVAL32); 924 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 925 926 ddi_put8(xhcip->xhci_regs_handle, (void *)addr, val); 927 } 928 929 void 930 xhci_put16(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint16_t val) 931 { 932 uintptr_t addr, roff; 933 934 switch (rtt) { 935 case XHCI_R_CAP: 936 roff = xhcip->xhci_regs_capoff; 937 break; 938 case XHCI_R_OPER: 939 roff = xhcip->xhci_regs_operoff; 940 break; 941 case XHCI_R_RUN: 942 roff = xhcip->xhci_regs_runoff; 943 break; 944 case XHCI_R_DOOR: 945 roff = xhcip->xhci_regs_dooroff; 946 break; 947 default: 948 panic("called %s with bad reg type: %d", __func__, rtt); 949 } 950 ASSERT(roff != PCI_EINVAL32); 951 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 952 953 ddi_put16(xhcip->xhci_regs_handle, (void *)addr, val); 954 } 955 956 void 957 xhci_put32(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint32_t val) 958 { 959 uintptr_t addr, roff; 960 961 switch (rtt) { 962 case XHCI_R_CAP: 963 roff = xhcip->xhci_regs_capoff; 964 break; 965 case XHCI_R_OPER: 966 roff = xhcip->xhci_regs_operoff; 967 break; 968 case XHCI_R_RUN: 969 roff = xhcip->xhci_regs_runoff; 970 break; 971 case XHCI_R_DOOR: 972 roff = xhcip->xhci_regs_dooroff; 973 break; 974 default: 975 panic("called %s with bad reg type: %d", __func__, rtt); 976 } 977 ASSERT(roff != PCI_EINVAL32); 978 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 979 980 ddi_put32(xhcip->xhci_regs_handle, (void *)addr, val); 981 } 982 983 void 984 xhci_put64(xhci_t *xhcip, xhci_reg_type_t rtt, uintptr_t off, uint64_t val) 985 { 986 uintptr_t addr, roff; 987 988 switch (rtt) { 989 case XHCI_R_CAP: 990 roff = xhcip->xhci_regs_capoff; 991 break; 992 case XHCI_R_OPER: 993 roff = xhcip->xhci_regs_operoff; 994 break; 995 case XHCI_R_RUN: 996 roff = xhcip->xhci_regs_runoff; 997 break; 998 case XHCI_R_DOOR: 999 roff = xhcip->xhci_regs_dooroff; 1000 break; 1001 default: 1002 panic("called %s with bad reg type: %d", __func__, rtt); 1003 } 1004 ASSERT(roff != PCI_EINVAL32); 1005 addr = roff + off + (uintptr_t)xhcip->xhci_regs_base; 1006 1007 ddi_put64(xhcip->xhci_regs_handle, (void *)addr, val); 1008 } 1009 1010 int 1011 xhci_check_regs_acc(xhci_t *xhcip) 1012 { 1013 ddi_fm_error_t de; 1014 1015 /* 1016 * Treat the case where we can't check as fine so we can treat the code 1017 * more simply. 1018 */ 1019 if (!DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) 1020 return (DDI_FM_OK); 1021 1022 ddi_fm_acc_err_get(xhcip->xhci_regs_handle, &de, DDI_FME_VERSION); 1023 ddi_fm_acc_err_clear(xhcip->xhci_regs_handle, DDI_FME_VERSION); 1024 return (de.fme_status); 1025 } 1026 1027 /* 1028 * As a leaf PCIe driver, we just post the ereport and continue on. 1029 */ 1030 /* ARGSUSED */ 1031 static int 1032 xhci_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 1033 { 1034 pci_ereport_post(dip, err, NULL); 1035 return (err->fme_status); 1036 } 1037 1038 static void 1039 xhci_fm_fini(xhci_t *xhcip) 1040 { 1041 if (xhcip->xhci_fm_caps == 0) 1042 return; 1043 1044 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1045 ddi_fm_handler_unregister(xhcip->xhci_dip); 1046 1047 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1048 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) 1049 pci_ereport_teardown(xhcip->xhci_dip); 1050 1051 ddi_fm_fini(xhcip->xhci_dip); 1052 } 1053 1054 static void 1055 xhci_fm_init(xhci_t *xhcip) 1056 { 1057 ddi_iblock_cookie_t iblk; 1058 int def = DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1059 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE; 1060 1061 xhcip->xhci_fm_caps = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 1062 DDI_PROP_DONTPASS, "fm_capable", def); 1063 1064 if (xhcip->xhci_fm_caps < 0) { 1065 xhcip->xhci_fm_caps = 0; 1066 } else if (xhcip->xhci_fm_caps & ~def) { 1067 xhcip->xhci_fm_caps &= def; 1068 } 1069 1070 if (xhcip->xhci_fm_caps == 0) 1071 return; 1072 1073 ddi_fm_init(xhcip->xhci_dip, &xhcip->xhci_fm_caps, &iblk); 1074 if (DDI_FM_EREPORT_CAP(xhcip->xhci_fm_caps) || 1075 DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1076 pci_ereport_setup(xhcip->xhci_dip); 1077 } 1078 1079 if (DDI_FM_ERRCB_CAP(xhcip->xhci_fm_caps)) { 1080 ddi_fm_handler_register(xhcip->xhci_dip, 1081 xhci_fm_error_cb, xhcip); 1082 } 1083 } 1084 1085 static int 1086 xhci_reg_poll(xhci_t *xhcip, xhci_reg_type_t rt, int reg, uint32_t mask, 1087 uint32_t targ, uint_t tries, int delay_ms) 1088 { 1089 uint_t i; 1090 1091 for (i = 0; i < tries; i++) { 1092 uint32_t val = xhci_get32(xhcip, rt, reg); 1093 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1094 ddi_fm_service_impact(xhcip->xhci_dip, 1095 DDI_SERVICE_LOST); 1096 return (EIO); 1097 } 1098 1099 if ((val & mask) == targ) 1100 return (0); 1101 1102 delay(drv_usectohz(delay_ms * 1000)); 1103 } 1104 return (ETIMEDOUT); 1105 } 1106 1107 static boolean_t 1108 xhci_regs_map(xhci_t *xhcip) 1109 { 1110 off_t memsize; 1111 int ret; 1112 ddi_device_acc_attr_t da; 1113 1114 if (ddi_dev_regsize(xhcip->xhci_dip, XHCI_REG_NUMBER, &memsize) != 1115 DDI_SUCCESS) { 1116 xhci_error(xhcip, "failed to get register set size"); 1117 return (B_FALSE); 1118 } 1119 1120 bzero(&da, sizeof (ddi_device_acc_attr_t)); 1121 da.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1122 da.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 1123 da.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1124 if (DDI_FM_ACC_ERR_CAP(xhcip->xhci_fm_caps)) { 1125 da.devacc_attr_access = DDI_FLAGERR_ACC; 1126 } else { 1127 da.devacc_attr_access = DDI_DEFAULT_ACC; 1128 } 1129 1130 ret = ddi_regs_map_setup(xhcip->xhci_dip, XHCI_REG_NUMBER, 1131 &xhcip->xhci_regs_base, 0, memsize, &da, &xhcip->xhci_regs_handle); 1132 1133 if (ret != DDI_SUCCESS) { 1134 xhci_error(xhcip, "failed to map device registers: %d", ret); 1135 return (B_FALSE); 1136 } 1137 1138 return (B_TRUE); 1139 } 1140 1141 static boolean_t 1142 xhci_regs_init(xhci_t *xhcip) 1143 { 1144 /* 1145 * The capabilities always begin at offset zero. 1146 */ 1147 xhcip->xhci_regs_capoff = 0; 1148 xhcip->xhci_regs_operoff = xhci_get8(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH); 1149 xhcip->xhci_regs_runoff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_RTSOFF); 1150 xhcip->xhci_regs_runoff &= ~0x1f; 1151 xhcip->xhci_regs_dooroff = xhci_get32(xhcip, XHCI_R_CAP, XHCI_DBOFF); 1152 xhcip->xhci_regs_dooroff &= ~0x3; 1153 1154 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1155 xhci_error(xhcip, "failed to initialize controller register " 1156 "offsets: encountered FM register error"); 1157 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1158 return (B_FALSE); 1159 } 1160 1161 return (B_TRUE); 1162 } 1163 1164 /* 1165 * Read various parameters from PCI configuration space and from the Capability 1166 * registers that we'll need to register the device. We cache all of the 1167 * Capability registers. 1168 */ 1169 static boolean_t 1170 xhci_read_params(xhci_t *xhcip) 1171 { 1172 uint8_t usb; 1173 uint16_t vers; 1174 uint32_t struc1, struc2, struc3, cap1, cap2, pgsz; 1175 uint32_t psize, pbit, capreg; 1176 xhci_capability_t *xcap; 1177 unsigned long ps; 1178 1179 /* 1180 * While it's tempting to do a 16-bit read at offset 0x2, unfortunately, 1181 * a few emulated systems don't support reading at offset 0x2 for the 1182 * version. Instead we need to read the caplength register and get the 1183 * upper two bytes. 1184 */ 1185 capreg = xhci_get32(xhcip, XHCI_R_CAP, XHCI_CAPLENGTH); 1186 vers = XHCI_VERSION_MASK(capreg); 1187 usb = pci_config_get8(xhcip->xhci_cfg_handle, PCI_XHCI_USBREV); 1188 struc1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS1); 1189 struc2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS2); 1190 struc3 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCSPARAMS3); 1191 cap1 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS1); 1192 cap2 = xhci_get32(xhcip, XHCI_R_CAP, XHCI_HCCPARAMS2); 1193 pgsz = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PAGESIZE); 1194 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1195 xhci_error(xhcip, "failed to read controller parameters: " 1196 "encountered FM register error"); 1197 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1198 return (B_FALSE); 1199 } 1200 1201 xcap = &xhcip->xhci_caps; 1202 xcap->xcap_usb_vers = usb; 1203 xcap->xcap_hci_vers = vers; 1204 xcap->xcap_max_slots = XHCI_HCS1_DEVSLOT_MAX(struc1); 1205 xcap->xcap_max_intrs = XHCI_HCS1_IRQ_MAX(struc1); 1206 xcap->xcap_max_ports = XHCI_HCS1_N_PORTS(struc1); 1207 if (xcap->xcap_max_ports > MAX_PORTS) { 1208 xhci_error(xhcip, "Root hub has %d ports, but system only " 1209 "supports %d, limiting to %d\n", xcap->xcap_max_ports, 1210 MAX_PORTS, MAX_PORTS); 1211 xcap->xcap_max_ports = MAX_PORTS; 1212 } 1213 1214 xcap->xcap_ist_micro = XHCI_HCS2_IST_MICRO(struc2); 1215 xcap->xcap_ist = XHCI_HCS2_IST(struc2); 1216 xcap->xcap_max_esrt = XHCI_HCS2_ERST_MAX(struc2); 1217 xcap->xcap_scratch_restore = XHCI_HCS2_SPR(struc2); 1218 xcap->xcap_max_scratch = XHCI_HCS2_SPB_MAX(struc2); 1219 1220 xcap->xcap_u1_lat = XHCI_HCS3_U1_DEL(struc3); 1221 xcap->xcap_u2_lat = XHCI_HCS3_U2_DEL(struc3); 1222 1223 xcap->xcap_flags = XHCI_HCC1_FLAGS_MASK(cap1); 1224 xcap->xcap_max_psa = XHCI_HCC1_PSA_SZ_MAX(cap1); 1225 xcap->xcap_xecp_off = XHCI_HCC1_XECP(cap1); 1226 xcap->xcap_flags2 = XHCI_HCC2_FLAGS_MASK(cap2); 1227 1228 /* 1229 * We don't have documentation for what changed from before xHCI 0.96, 1230 * so we just refuse to support versions before 0.96. We also will 1231 * ignore anything with a major version greater than 1. 1232 */ 1233 if (xcap->xcap_hci_vers < 0x96 || xcap->xcap_hci_vers >= 0x200) { 1234 xhci_error(xhcip, "Encountered unsupported xHCI version 0.%2x", 1235 xcap->xcap_hci_vers); 1236 return (B_FALSE); 1237 } 1238 1239 /* 1240 * Determine the smallest size page that the controller supports and 1241 * make sure that it matches our pagesize. We basically check here for 1242 * the presence of 4k and 8k pages. The basis of the pagesize is used 1243 * extensively throughout the code and specification. While we could 1244 * support other page sizes here, given that we don't support systems 1245 * with it at this time, it doesn't make much sense. 1246 */ 1247 ps = PAGESIZE; 1248 if (ps == 0x1000) { 1249 pbit = XHCI_PAGESIZE_4K; 1250 psize = 0x1000; 1251 } else if (ps == 0x2000) { 1252 pbit = XHCI_PAGESIZE_8K; 1253 psize = 0x2000; 1254 } else { 1255 xhci_error(xhcip, "Encountered host page size that the driver " 1256 "doesn't know how to handle: %lx\n", ps); 1257 return (B_FALSE); 1258 } 1259 1260 if (!(pgsz & pbit)) { 1261 xhci_error(xhcip, "Encountered controller that didn't support " 1262 "the host page size (%d), supports: %x", psize, pgsz); 1263 return (B_FALSE); 1264 } 1265 xcap->xcap_pagesize = psize; 1266 1267 return (B_TRUE); 1268 } 1269 1270 /* 1271 * Apply known workarounds and issues. These reports come from other 1272 * Operating Systems and have been collected over time. 1273 */ 1274 static boolean_t 1275 xhci_identify(xhci_t *xhcip) 1276 { 1277 xhci_quirks_populate(xhcip); 1278 1279 if (xhcip->xhci_quirks & XHCI_QUIRK_NO_MSI) { 1280 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED; 1281 } else { 1282 xhcip->xhci_caps.xcap_intr_types = DDI_INTR_TYPE_FIXED | 1283 DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX; 1284 } 1285 1286 if (xhcip->xhci_quirks & XHCI_QUIRK_32_ONLY) { 1287 xhcip->xhci_caps.xcap_flags &= ~XCAP_AC64; 1288 } 1289 1290 return (B_TRUE); 1291 } 1292 1293 static boolean_t 1294 xhci_alloc_intr_handle(xhci_t *xhcip, int type) 1295 { 1296 int ret; 1297 1298 /* 1299 * Normally a well-behaving driver would more carefully request an 1300 * amount of interrupts based on the number available, etc. But since we 1301 * only actually want a single interrupt, we're just going to go ahead 1302 * and ask for a single interrupt. 1303 */ 1304 ret = ddi_intr_alloc(xhcip->xhci_dip, &xhcip->xhci_intr_hdl, type, 0, 1305 XHCI_NINTR, &xhcip->xhci_intr_num, DDI_INTR_ALLOC_NORMAL); 1306 if (ret != DDI_SUCCESS) { 1307 xhci_log(xhcip, "!failed to allocate interrupts of type %d: %d", 1308 type, ret); 1309 return (B_FALSE); 1310 } 1311 xhcip->xhci_intr_type = type; 1312 1313 return (B_TRUE); 1314 } 1315 1316 static boolean_t 1317 xhci_alloc_intrs(xhci_t *xhcip) 1318 { 1319 int intr_types, ret; 1320 1321 if (XHCI_NINTR > xhcip->xhci_caps.xcap_max_intrs) { 1322 xhci_error(xhcip, "controller does not support the minimum " 1323 "number of interrupts required (%d), supports %d", 1324 XHCI_NINTR, xhcip->xhci_caps.xcap_max_intrs); 1325 return (B_FALSE); 1326 } 1327 1328 if ((ret = ddi_intr_get_supported_types(xhcip->xhci_dip, 1329 &intr_types)) != DDI_SUCCESS) { 1330 xhci_error(xhcip, "failed to get supported interrupt types: " 1331 "%d", ret); 1332 return (B_FALSE); 1333 } 1334 1335 /* 1336 * Mask off interrupt types we've already ruled out due to quirks or 1337 * other reasons. 1338 */ 1339 intr_types &= xhcip->xhci_caps.xcap_intr_types; 1340 if (intr_types & DDI_INTR_TYPE_MSIX) { 1341 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSIX)) 1342 return (B_TRUE); 1343 } 1344 1345 if (intr_types & DDI_INTR_TYPE_MSI) { 1346 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_MSI)) 1347 return (B_TRUE); 1348 } 1349 1350 if (intr_types & DDI_INTR_TYPE_FIXED) { 1351 if (xhci_alloc_intr_handle(xhcip, DDI_INTR_TYPE_FIXED)) 1352 return (B_TRUE); 1353 } 1354 1355 xhci_error(xhcip, "failed to allocate an interrupt, supported types: " 1356 "0x%x", intr_types); 1357 return (B_FALSE); 1358 } 1359 1360 static boolean_t 1361 xhci_add_intr_handler(xhci_t *xhcip) 1362 { 1363 int ret; 1364 1365 if ((ret = ddi_intr_get_pri(xhcip->xhci_intr_hdl, 1366 &xhcip->xhci_intr_pri)) != DDI_SUCCESS) { 1367 xhci_error(xhcip, "failed to get interrupt priority: %d", ret); 1368 return (B_FALSE); 1369 } 1370 1371 if ((ret = ddi_intr_get_cap(xhcip->xhci_intr_hdl, 1372 &xhcip->xhci_intr_caps)) != DDI_SUCCESS) { 1373 xhci_error(xhcip, "failed to get interrupt capabilities: %d", 1374 ret); 1375 return (B_FALSE); 1376 } 1377 1378 if ((ret = ddi_intr_add_handler(xhcip->xhci_intr_hdl, xhci_intr, xhcip, 1379 (uintptr_t)0)) != DDI_SUCCESS) { 1380 xhci_error(xhcip, "failed to add interrupt handler: %d", ret); 1381 return (B_FALSE); 1382 } 1383 return (B_TRUE); 1384 } 1385 1386 /* 1387 * Find a capability with an identifier whose value is 'id'. The 'init' argument 1388 * gives us the offset to start searching at. See xHCI 1.1 / 7 for more 1389 * information. This is more or less exactly like PCI capabilities. 1390 */ 1391 static boolean_t 1392 xhci_find_ext_cap(xhci_t *xhcip, uint32_t id, uint32_t init, uint32_t *outp) 1393 { 1394 uint32_t off; 1395 uint8_t next = 0; 1396 1397 /* 1398 * If we have no offset, we're done. 1399 */ 1400 if (xhcip->xhci_caps.xcap_xecp_off == 0) 1401 return (B_FALSE); 1402 1403 off = xhcip->xhci_caps.xcap_xecp_off << 2; 1404 do { 1405 uint32_t cap_hdr; 1406 1407 off += next << 2; 1408 cap_hdr = xhci_get32(xhcip, XHCI_R_CAP, off); 1409 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1410 xhci_error(xhcip, "failed to read xhci extended " 1411 "capabilities at offset 0x%x: encountered FM " 1412 "register error", off); 1413 ddi_fm_service_impact(xhcip->xhci_dip, 1414 DDI_SERVICE_LOST); 1415 break; 1416 } 1417 1418 if (cap_hdr == PCI_EINVAL32) 1419 break; 1420 if (XHCI_XECP_ID(cap_hdr) == id && 1421 (init == UINT32_MAX || off > init)) { 1422 *outp = off; 1423 return (B_TRUE); 1424 } 1425 next = XHCI_XECP_NEXT(cap_hdr); 1426 /* 1427 * Watch out for overflow if we somehow end up with a more than 1428 * 2 GiB space. 1429 */ 1430 if (next << 2 > (INT32_MAX - off)) 1431 return (B_FALSE); 1432 } while (next != 0); 1433 1434 return (B_FALSE); 1435 } 1436 1437 /* 1438 * For mostly information purposes, we'd like to walk to augment the devinfo 1439 * tree with the number of ports that support USB 2 and USB 3. Note though that 1440 * these ports may be overlapping. Many ports can support both USB 2 and USB 3 1441 * and are wired up to the same physical port, even though they show up as 1442 * separate 'ports' in the xhci sense. 1443 */ 1444 static boolean_t 1445 xhci_port_count(xhci_t *xhcip) 1446 { 1447 uint_t nusb2 = 0, nusb3 = 0; 1448 uint32_t off = UINT32_MAX; 1449 1450 while (xhci_find_ext_cap(xhcip, XHCI_ID_PROTOCOLS, off, &off) == 1451 B_TRUE) { 1452 uint32_t rvers, rport; 1453 1454 /* 1455 * See xHCI 1.1 / 7.2 for the format of this. The first uint32_t 1456 * has version information while the third uint32_t has the port 1457 * count. 1458 */ 1459 rvers = xhci_get32(xhcip, XHCI_R_CAP, off); 1460 rport = xhci_get32(xhcip, XHCI_R_CAP, off + 8); 1461 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1462 xhci_error(xhcip, "failed to read xhci port counts: " 1463 "encountered fatal FM register error"); 1464 ddi_fm_service_impact(xhcip->xhci_dip, 1465 DDI_SERVICE_LOST); 1466 return (B_FALSE); 1467 } 1468 1469 rvers = XHCI_XECP_PROT_MAJOR(rvers); 1470 rport = XHCI_XECP_PROT_PCOUNT(rport); 1471 1472 if (rvers == 3) { 1473 nusb3 += rport; 1474 } else if (rvers <= 2) { 1475 nusb2 += rport; 1476 } else { 1477 xhci_error(xhcip, "encountered port capabilities with " 1478 "unknown major USB version: %d\n", rvers); 1479 } 1480 } 1481 1482 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1483 "usb2-capable-ports", nusb2); 1484 (void) ddi_prop_update_int(DDI_DEV_T_NONE, xhcip->xhci_dip, 1485 "usb3-capable-ports", nusb3); 1486 1487 return (B_TRUE); 1488 } 1489 1490 /* 1491 * Take over control from the BIOS or other firmware, if applicable. 1492 */ 1493 static boolean_t 1494 xhci_controller_takeover(xhci_t *xhcip) 1495 { 1496 int ret; 1497 uint32_t val, off; 1498 1499 /* 1500 * If we can't find the legacy capability, then there's nothing to do. 1501 */ 1502 if (xhci_find_ext_cap(xhcip, XHCI_ID_USB_LEGACY, UINT32_MAX, &off) == 1503 B_FALSE) 1504 return (B_TRUE); 1505 val = xhci_get32(xhcip, XHCI_R_CAP, off); 1506 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1507 xhci_error(xhcip, "failed to read BIOS take over registers: " 1508 "encountered fatal FM register error"); 1509 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1510 return (B_FALSE); 1511 } 1512 1513 if (val & XHCI_BIOS_OWNED) { 1514 val |= XHCI_OS_OWNED; 1515 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1516 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1517 xhci_error(xhcip, "failed to write BIOS take over " 1518 "registers: encountered fatal FM register error"); 1519 ddi_fm_service_impact(xhcip->xhci_dip, 1520 DDI_SERVICE_LOST); 1521 return (B_FALSE); 1522 } 1523 1524 /* 1525 * Wait up to 5 seconds for things to change. While this number 1526 * isn't specified in the xHCI spec, it seems to be the de facto 1527 * value that various systems are using today. We'll use a 10ms 1528 * interval to check. 1529 */ 1530 ret = xhci_reg_poll(xhcip, XHCI_R_CAP, off, 1531 XHCI_BIOS_OWNED | XHCI_OS_OWNED, XHCI_OS_OWNED, 500, 10); 1532 if (ret == EIO) 1533 return (B_FALSE); 1534 if (ret == ETIMEDOUT) { 1535 xhci_log(xhcip, "!timed out waiting for firmware to " 1536 "hand off, taking over"); 1537 val &= ~XHCI_BIOS_OWNED; 1538 xhci_put32(xhcip, XHCI_R_CAP, off, val); 1539 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1540 xhci_error(xhcip, "failed to write forced " 1541 "takeover: encountered fatal FM register " 1542 "error"); 1543 ddi_fm_service_impact(xhcip->xhci_dip, 1544 DDI_SERVICE_LOST); 1545 return (B_FALSE); 1546 } 1547 } 1548 } 1549 1550 val = xhci_get32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS); 1551 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1552 xhci_error(xhcip, "failed to read legacy control registers: " 1553 "encountered fatal FM register error"); 1554 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1555 return (B_FALSE); 1556 } 1557 val &= XHCI_XECP_SMI_MASK; 1558 val |= XHCI_XECP_CLEAR_SMI; 1559 xhci_put32(xhcip, XHCI_R_CAP, off + XHCI_XECP_LEGCTLSTS, val); 1560 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1561 xhci_error(xhcip, "failed to write legacy control registers: " 1562 "encountered fatal FM register error"); 1563 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1564 return (B_FALSE); 1565 } 1566 1567 return (B_TRUE); 1568 } 1569 1570 static int 1571 xhci_controller_stop(xhci_t *xhcip) 1572 { 1573 uint32_t cmdreg; 1574 1575 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1576 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1577 xhci_error(xhcip, "failed to read USB Command register: " 1578 "encountered fatal FM register error"); 1579 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1580 return (EIO); 1581 } 1582 1583 cmdreg &= ~(XHCI_CMD_RS | XHCI_CMD_INTE); 1584 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1585 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1586 xhci_error(xhcip, "failed to write USB Command register: " 1587 "encountered fatal FM register error"); 1588 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1589 return (EIO); 1590 } 1591 1592 /* 1593 * Wait up to 50ms for this to occur. The specification says that this 1594 * should stop within 16ms, but we give ourselves a bit more time just 1595 * in case. 1596 */ 1597 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, XHCI_STS_HCH, 1598 XHCI_STS_HCH, 50, 10)); 1599 } 1600 1601 static int 1602 xhci_controller_reset(xhci_t *xhcip) 1603 { 1604 int ret; 1605 uint32_t cmdreg; 1606 1607 cmdreg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1608 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1609 xhci_error(xhcip, "failed to read USB Command register for " 1610 "reset: encountered fatal FM register error"); 1611 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1612 return (EIO); 1613 } 1614 1615 cmdreg |= XHCI_CMD_HCRST; 1616 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, cmdreg); 1617 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1618 xhci_error(xhcip, "failed to write USB Command register for " 1619 "reset: encountered fatal FM register error"); 1620 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1621 return (EIO); 1622 } 1623 1624 /* 1625 * Some controllers apparently don't want to be touched for at least 1ms 1626 * after we initiate the reset. Therefore give all controllers this 1627 * moment to breathe. 1628 */ 1629 delay(drv_usectohz(xhci_reset_delay)); 1630 1631 /* 1632 * To tell that the reset has completed we first verify that the reset 1633 * has finished and that the USBCMD register no longer has the reset bit 1634 * asserted. However, once that's done we have to go verify that CNR 1635 * (Controller Not Ready) is no longer asserted. 1636 */ 1637 if ((ret = xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBCMD, 1638 XHCI_CMD_HCRST, 0, 500, 10)) != 0) 1639 return (ret); 1640 1641 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1642 XHCI_STS_CNR, 0, 500, 10)); 1643 } 1644 1645 /* 1646 * Take care of all the required initialization before we can actually enable 1647 * the controller. This means that we need to: 1648 * 1649 * o Program the maximum number of slots 1650 * o Program the DCBAAP and allocate the scratchpad 1651 * o Program the Command Ring 1652 * o Initialize the Event Ring 1653 * o Enable interrupts (set imod) 1654 */ 1655 static int 1656 xhci_controller_configure(xhci_t *xhcip) 1657 { 1658 int ret; 1659 uint32_t config; 1660 1661 config = xhci_get32(xhcip, XHCI_R_OPER, XHCI_CONFIG); 1662 config &= ~XHCI_CONFIG_SLOTS_MASK; 1663 config |= xhcip->xhci_caps.xcap_max_slots; 1664 xhci_put32(xhcip, XHCI_R_OPER, XHCI_CONFIG, config); 1665 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1666 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1667 return (EIO); 1668 } 1669 1670 if ((ret = xhci_context_init(xhcip)) != 0) { 1671 const char *reason; 1672 if (ret == EIO) { 1673 reason = "fatal FM I/O error occurred"; 1674 } else if (ret == ENOMEM) { 1675 reason = "unable to allocate DMA memory"; 1676 } else { 1677 reason = "unexpected error occurred"; 1678 } 1679 1680 xhci_error(xhcip, "failed to initialize xhci context " 1681 "registers: %s (%d)", reason, ret); 1682 return (ret); 1683 } 1684 1685 if ((ret = xhci_command_ring_init(xhcip)) != 0) { 1686 xhci_error(xhcip, "failed to initialize commands: %d", ret); 1687 return (ret); 1688 } 1689 1690 if ((ret = xhci_event_init(xhcip)) != 0) { 1691 xhci_error(xhcip, "failed to initialize events: %d", ret); 1692 return (ret); 1693 } 1694 1695 if ((ret = xhci_intr_conf(xhcip)) != 0) { 1696 xhci_error(xhcip, "failed to configure interrupts: %d", ret); 1697 return (ret); 1698 } 1699 1700 return (0); 1701 } 1702 1703 static int 1704 xhci_controller_start(xhci_t *xhcip) 1705 { 1706 uint32_t reg; 1707 1708 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_USBCMD); 1709 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1710 xhci_error(xhcip, "failed to read USB Command register for " 1711 "start: encountered fatal FM register error"); 1712 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1713 return (EIO); 1714 } 1715 1716 reg |= XHCI_CMD_RS; 1717 xhci_put32(xhcip, XHCI_R_OPER, XHCI_USBCMD, reg); 1718 if (xhci_check_regs_acc(xhcip) != DDI_FM_OK) { 1719 xhci_error(xhcip, "failed to write USB Command register for " 1720 "start: encountered fatal FM register error"); 1721 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1722 return (EIO); 1723 } 1724 1725 return (xhci_reg_poll(xhcip, XHCI_R_OPER, XHCI_USBSTS, 1726 XHCI_STS_HCH, 0, 500, 10)); 1727 } 1728 1729 /* ARGSUSED */ 1730 static void 1731 xhci_reset_task(void *arg) 1732 { 1733 /* 1734 * Longer term, we'd like to properly perform a controller reset. 1735 * However, that requires a bit more assistance from USBA to work 1736 * properly and tear down devices. In the meantime, we panic. 1737 */ 1738 panic("XHCI runtime reset required"); 1739 } 1740 1741 /* 1742 * This function is called when we've detected a fatal FM condition that has 1743 * resulted in a loss of service and we need to force a reset of the controller 1744 * as a whole. Only one such reset may be ongoing at a time. 1745 */ 1746 void 1747 xhci_fm_runtime_reset(xhci_t *xhcip) 1748 { 1749 boolean_t locked = B_FALSE; 1750 1751 if (mutex_owned(&xhcip->xhci_lock)) { 1752 locked = B_TRUE; 1753 } else { 1754 mutex_enter(&xhcip->xhci_lock); 1755 } 1756 1757 /* 1758 * If we're already in the error state than a reset is already ongoing 1759 * and there is nothing for us to do here. 1760 */ 1761 if (xhcip->xhci_state & XHCI_S_ERROR) { 1762 goto out; 1763 } 1764 1765 xhcip->xhci_state |= XHCI_S_ERROR; 1766 ddi_fm_service_impact(xhcip->xhci_dip, DDI_SERVICE_LOST); 1767 taskq_dispatch_ent(xhci_taskq, xhci_reset_task, xhcip, 0, 1768 &xhcip->xhci_tqe); 1769 out: 1770 if (!locked) { 1771 mutex_exit(&xhcip->xhci_lock); 1772 } 1773 } 1774 1775 static int 1776 xhci_ioctl_portsc(xhci_t *xhcip, intptr_t arg) 1777 { 1778 int i; 1779 xhci_ioctl_portsc_t xhi; 1780 1781 bzero(&xhi, sizeof (xhci_ioctl_portsc_t)); 1782 xhi.xhi_nports = xhcip->xhci_caps.xcap_max_ports; 1783 for (i = 1; i <= xhcip->xhci_caps.xcap_max_ports; i++) { 1784 xhi.xhi_portsc[i] = xhci_get32(xhcip, XHCI_R_OPER, 1785 XHCI_PORTSC(i)); 1786 } 1787 1788 if (ddi_copyout(&xhi, (void *)(uintptr_t)arg, sizeof (xhi), 0) != 0) 1789 return (EFAULT); 1790 1791 return (0); 1792 } 1793 1794 static int 1795 xhci_ioctl_clear(xhci_t *xhcip, intptr_t arg) 1796 { 1797 uint32_t reg; 1798 xhci_ioctl_clear_t xic; 1799 1800 if (ddi_copyin((const void *)(uintptr_t)arg, &xic, sizeof (xic), 1801 0) != 0) 1802 return (EFAULT); 1803 1804 if (xic.xic_port == 0 || xic.xic_port > 1805 xhcip->xhci_caps.xcap_max_ports) 1806 return (EINVAL); 1807 1808 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port)); 1809 reg &= ~XHCI_PS_CLEAR; 1810 reg |= XHCI_PS_CSC | XHCI_PS_PEC | XHCI_PS_WRC | XHCI_PS_OCC | 1811 XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC; 1812 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xic.xic_port), reg); 1813 1814 return (0); 1815 } 1816 1817 static int 1818 xhci_ioctl_setpls(xhci_t *xhcip, intptr_t arg) 1819 { 1820 uint32_t reg; 1821 xhci_ioctl_setpls_t xis; 1822 1823 if (ddi_copyin((const void *)(uintptr_t)arg, &xis, sizeof (xis), 1824 0) != 0) 1825 return (EFAULT); 1826 1827 if (xis.xis_port == 0 || xis.xis_port > 1828 xhcip->xhci_caps.xcap_max_ports) 1829 return (EINVAL); 1830 1831 if (xis.xis_pls & ~0xf) 1832 return (EINVAL); 1833 1834 reg = xhci_get32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port)); 1835 reg &= ~XHCI_PS_CLEAR; 1836 reg |= XHCI_PS_PLS_SET(xis.xis_pls); 1837 reg |= XHCI_PS_LWS; 1838 xhci_put32(xhcip, XHCI_R_OPER, XHCI_PORTSC(xis.xis_port), reg); 1839 1840 return (0); 1841 } 1842 1843 static int 1844 xhci_open(dev_t *devp, int flags, int otyp, cred_t *credp) 1845 { 1846 dev_info_t *dip = xhci_get_dip(*devp); 1847 1848 return (usba_hubdi_open(dip, devp, flags, otyp, credp)); 1849 } 1850 1851 static int 1852 xhci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1853 int *rvalp) 1854 { 1855 dev_info_t *dip = xhci_get_dip(dev); 1856 1857 if (cmd == XHCI_IOCTL_PORTSC || 1858 cmd == XHCI_IOCTL_CLEAR || 1859 cmd == XHCI_IOCTL_SETPLS) { 1860 xhci_t *xhcip = ddi_get_soft_state(xhci_soft_state, 1861 getminor(dev) & ~HUBD_IS_ROOT_HUB); 1862 1863 if (secpolicy_xhci(credp) != 0 || 1864 crgetzoneid(credp) != GLOBAL_ZONEID) 1865 return (EPERM); 1866 1867 if (mode & FKIOCTL) 1868 return (ENOTSUP); 1869 1870 if (!(mode & FWRITE)) 1871 return (EBADF); 1872 1873 if (cmd == XHCI_IOCTL_PORTSC) 1874 return (xhci_ioctl_portsc(xhcip, arg)); 1875 else if (cmd == XHCI_IOCTL_CLEAR) 1876 return (xhci_ioctl_clear(xhcip, arg)); 1877 else 1878 return (xhci_ioctl_setpls(xhcip, arg)); 1879 } 1880 1881 return (usba_hubdi_ioctl(dip, dev, cmd, arg, mode, credp, rvalp)); 1882 } 1883 1884 static int 1885 xhci_close(dev_t dev, int flag, int otyp, cred_t *credp) 1886 { 1887 dev_info_t *dip = xhci_get_dip(dev); 1888 1889 return (usba_hubdi_close(dip, dev, flag, otyp, credp)); 1890 } 1891 1892 /* 1893 * We try to clean up everything that we can. The only thing that we let stop us 1894 * at this time is a failure to remove the root hub, which is realistically the 1895 * equivalent of our EBUSY case. 1896 */ 1897 static int 1898 xhci_cleanup(xhci_t *xhcip) 1899 { 1900 int ret, inst; 1901 1902 if (xhcip->xhci_seq & XHCI_ATTACH_ROOT_HUB) { 1903 if ((ret = xhci_root_hub_fini(xhcip)) != 0) 1904 return (ret); 1905 } 1906 1907 if (xhcip->xhci_seq & XHCI_ATTACH_USBA) { 1908 xhci_hcd_fini(xhcip); 1909 } 1910 1911 if (xhcip->xhci_seq & XHCI_ATTACH_STARTED) { 1912 mutex_enter(&xhcip->xhci_lock); 1913 while (xhcip->xhci_state & XHCI_S_ERROR) 1914 cv_wait(&xhcip->xhci_statecv, &xhcip->xhci_lock); 1915 mutex_exit(&xhcip->xhci_lock); 1916 1917 (void) xhci_controller_stop(xhcip); 1918 } 1919 1920 /* 1921 * Always release the context, command, and event data. They handle the 1922 * fact that they me be in an arbitrary state or unallocated. 1923 */ 1924 xhci_event_fini(xhcip); 1925 xhci_command_ring_fini(xhcip); 1926 xhci_context_fini(xhcip); 1927 1928 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ENABLE) { 1929 (void) xhci_ddi_intr_disable(xhcip); 1930 } 1931 1932 if (xhcip->xhci_seq & XHCI_ATTACH_SYNCH) { 1933 cv_destroy(&xhcip->xhci_statecv); 1934 mutex_destroy(&xhcip->xhci_lock); 1935 } 1936 1937 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ADD) { 1938 if ((ret = ddi_intr_remove_handler(xhcip->xhci_intr_hdl)) != 1939 DDI_SUCCESS) { 1940 xhci_error(xhcip, "failed to remove interrupt " 1941 "handler: %d", ret); 1942 } 1943 } 1944 1945 if (xhcip->xhci_seq & XHCI_ATTACH_INTR_ALLOC) { 1946 if ((ret = ddi_intr_free(xhcip->xhci_intr_hdl)) != 1947 DDI_SUCCESS) { 1948 xhci_error(xhcip, "failed to free interrupts: %d", ret); 1949 } 1950 } 1951 1952 if (xhcip->xhci_seq & XHCI_ATTACH_REGS_MAP) { 1953 ddi_regs_map_free(&xhcip->xhci_regs_handle); 1954 xhcip->xhci_regs_handle = NULL; 1955 } 1956 1957 if (xhcip->xhci_seq & XHCI_ATTACH_PCI_CONFIG) { 1958 pci_config_teardown(&xhcip->xhci_cfg_handle); 1959 xhcip->xhci_cfg_handle = NULL; 1960 } 1961 1962 if (xhcip->xhci_seq & XHCI_ATTACH_FM) { 1963 xhci_fm_fini(xhcip); 1964 xhcip->xhci_fm_caps = 0; 1965 } 1966 1967 inst = ddi_get_instance(xhcip->xhci_dip); 1968 xhcip->xhci_dip = NULL; 1969 ddi_soft_state_free(xhci_soft_state, inst); 1970 1971 return (DDI_SUCCESS); 1972 } 1973 1974 static int 1975 xhci_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1976 { 1977 int ret, inst, route; 1978 xhci_t *xhcip; 1979 1980 if (cmd != DDI_ATTACH) 1981 return (DDI_FAILURE); 1982 1983 inst = ddi_get_instance(dip); 1984 if (ddi_soft_state_zalloc(xhci_soft_state, inst) != 0) 1985 return (DDI_FAILURE); 1986 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 1987 xhcip->xhci_dip = dip; 1988 1989 xhcip->xhci_regs_capoff = PCI_EINVAL32; 1990 xhcip->xhci_regs_operoff = PCI_EINVAL32; 1991 xhcip->xhci_regs_runoff = PCI_EINVAL32; 1992 xhcip->xhci_regs_dooroff = PCI_EINVAL32; 1993 1994 xhci_fm_init(xhcip); 1995 xhcip->xhci_seq |= XHCI_ATTACH_FM; 1996 1997 if (pci_config_setup(xhcip->xhci_dip, &xhcip->xhci_cfg_handle) != 1998 DDI_SUCCESS) { 1999 goto err; 2000 } 2001 xhcip->xhci_seq |= XHCI_ATTACH_PCI_CONFIG; 2002 xhcip->xhci_vendor_id = pci_config_get16(xhcip->xhci_cfg_handle, 2003 PCI_CONF_VENID); 2004 xhcip->xhci_device_id = pci_config_get16(xhcip->xhci_cfg_handle, 2005 PCI_CONF_DEVID); 2006 2007 if (xhci_regs_map(xhcip) == B_FALSE) { 2008 goto err; 2009 } 2010 2011 xhcip->xhci_seq |= XHCI_ATTACH_REGS_MAP; 2012 2013 if (xhci_regs_init(xhcip) == B_FALSE) 2014 goto err; 2015 2016 if (xhci_read_params(xhcip) == B_FALSE) 2017 goto err; 2018 2019 if (xhci_identify(xhcip) == B_FALSE) 2020 goto err; 2021 2022 if (xhci_alloc_intrs(xhcip) == B_FALSE) 2023 goto err; 2024 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ALLOC; 2025 2026 if (xhci_add_intr_handler(xhcip) == B_FALSE) 2027 goto err; 2028 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ADD; 2029 2030 mutex_init(&xhcip->xhci_lock, NULL, MUTEX_DRIVER, 2031 (void *)(uintptr_t)xhcip->xhci_intr_pri); 2032 cv_init(&xhcip->xhci_statecv, NULL, CV_DRIVER, NULL); 2033 xhcip->xhci_seq |= XHCI_ATTACH_SYNCH; 2034 2035 if (xhci_port_count(xhcip) == B_FALSE) 2036 goto err; 2037 2038 if (xhci_controller_takeover(xhcip) == B_FALSE) 2039 goto err; 2040 2041 /* 2042 * We don't enable interrupts until after we take over the controller 2043 * from the BIOS. We've observed cases where this can cause spurious 2044 * interrupts. 2045 */ 2046 if (xhci_ddi_intr_enable(xhcip) == B_FALSE) 2047 goto err; 2048 xhcip->xhci_seq |= XHCI_ATTACH_INTR_ENABLE; 2049 2050 if ((ret = xhci_controller_stop(xhcip)) != 0) { 2051 xhci_error(xhcip, "failed to stop controller: %s", 2052 ret == EIO ? "encountered FM register error" : 2053 "timed out while waiting for controller"); 2054 goto err; 2055 } 2056 2057 if ((ret = xhci_controller_reset(xhcip)) != 0) { 2058 xhci_error(xhcip, "failed to reset controller: %s", 2059 ret == EIO ? "encountered FM register error" : 2060 "timed out while waiting for controller"); 2061 goto err; 2062 } 2063 2064 if ((ret = xhci_controller_configure(xhcip)) != 0) { 2065 xhci_error(xhcip, "failed to configure controller: %d", ret); 2066 goto err; 2067 } 2068 2069 /* 2070 * Some systems support having ports routed to both an ehci and xhci 2071 * controller. If we support it and the user hasn't requested otherwise 2072 * via a driver.conf tuning, we reroute it now. 2073 */ 2074 route = ddi_prop_get_int(DDI_DEV_T_ANY, xhcip->xhci_dip, 2075 DDI_PROP_DONTPASS, "xhci-reroute", XHCI_PROP_REROUTE_DEFAULT); 2076 if (route != XHCI_PROP_REROUTE_DISABLE && 2077 (xhcip->xhci_quirks & XHCI_QUIRK_INTC_EHCI)) 2078 (void) xhci_reroute_intel(xhcip); 2079 2080 if ((ret = xhci_controller_start(xhcip)) != 0) { 2081 xhci_log(xhcip, "failed to reset controller: %s", 2082 ret == EIO ? "encountered FM register error" : 2083 "timed out while waiting for controller"); 2084 goto err; 2085 } 2086 xhcip->xhci_seq |= XHCI_ATTACH_STARTED; 2087 2088 /* 2089 * Finally, register ourselves with the USB framework itself. 2090 */ 2091 if ((ret = xhci_hcd_init(xhcip)) != 0) { 2092 xhci_error(xhcip, "failed to register hcd with usba"); 2093 goto err; 2094 } 2095 xhcip->xhci_seq |= XHCI_ATTACH_USBA; 2096 2097 if ((ret = xhci_root_hub_init(xhcip)) != 0) { 2098 xhci_error(xhcip, "failed to load the root hub driver"); 2099 goto err; 2100 } 2101 xhcip->xhci_seq |= XHCI_ATTACH_ROOT_HUB; 2102 2103 return (DDI_SUCCESS); 2104 2105 err: 2106 (void) xhci_cleanup(xhcip); 2107 return (DDI_FAILURE); 2108 } 2109 2110 static int 2111 xhci_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2112 { 2113 xhci_t *xhcip; 2114 2115 if (cmd != DDI_DETACH) 2116 return (DDI_FAILURE); 2117 2118 xhcip = ddi_get_soft_state(xhci_soft_state, ddi_get_instance(dip)); 2119 if (xhcip == NULL) { 2120 dev_err(dip, CE_WARN, "detach called without soft state!"); 2121 return (DDI_FAILURE); 2122 } 2123 2124 return (xhci_cleanup(xhcip)); 2125 } 2126 2127 /* ARGSUSED */ 2128 static int 2129 xhci_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **outp) 2130 { 2131 dev_t dev; 2132 int inst; 2133 2134 switch (cmd) { 2135 case DDI_INFO_DEVT2DEVINFO: 2136 dev = (dev_t)arg; 2137 *outp = xhci_get_dip(dev); 2138 if (*outp == NULL) 2139 return (DDI_FAILURE); 2140 break; 2141 case DDI_INFO_DEVT2INSTANCE: 2142 dev = (dev_t)arg; 2143 inst = getminor(dev) & ~HUBD_IS_ROOT_HUB; 2144 *outp = (void *)(uintptr_t)inst; 2145 break; 2146 default: 2147 return (DDI_FAILURE); 2148 } 2149 2150 return (DDI_SUCCESS); 2151 } 2152 2153 static struct cb_ops xhci_cb_ops = { 2154 xhci_open, /* cb_open */ 2155 xhci_close, /* cb_close */ 2156 nodev, /* cb_strategy */ 2157 nodev, /* cb_print */ 2158 nodev, /* cb_dump */ 2159 nodev, /* cb_read */ 2160 nodev, /* cb_write */ 2161 xhci_ioctl, /* cb_ioctl */ 2162 nodev, /* cb_devmap */ 2163 nodev, /* cb_mmap */ 2164 nodev, /* cb_segmap */ 2165 nochpoll, /* cb_chpoll */ 2166 ddi_prop_op, /* cb_prop_op */ 2167 NULL, /* cb_stream */ 2168 D_MP | D_HOTPLUG, /* cb_flag */ 2169 CB_REV, /* cb_rev */ 2170 nodev, /* cb_aread */ 2171 nodev /* cb_awrite */ 2172 }; 2173 2174 static struct dev_ops xhci_dev_ops = { 2175 DEVO_REV, /* devo_rev */ 2176 0, /* devo_refcnt */ 2177 xhci_getinfo, /* devo_getinfo */ 2178 nulldev, /* devo_identify */ 2179 nulldev, /* devo_probe */ 2180 xhci_attach, /* devo_attach */ 2181 xhci_detach, /* devo_detach */ 2182 nodev, /* devo_reset */ 2183 &xhci_cb_ops, /* devo_cb_ops */ 2184 &usba_hubdi_busops, /* devo_bus_ops */ 2185 usba_hubdi_root_hub_power, /* devo_power */ 2186 ddi_quiesce_not_supported /* devo_quiesce */ 2187 }; 2188 2189 static struct modldrv xhci_modldrv = { 2190 &mod_driverops, 2191 "USB xHCI Driver", 2192 &xhci_dev_ops 2193 }; 2194 2195 static struct modlinkage xhci_modlinkage = { 2196 MODREV_1, 2197 &xhci_modldrv, 2198 NULL 2199 }; 2200 2201 int 2202 _init(void) 2203 { 2204 int ret; 2205 2206 if ((ret = ddi_soft_state_init(&xhci_soft_state, sizeof (xhci_t), 2207 0)) != 0) { 2208 return (ret); 2209 } 2210 2211 xhci_taskq = taskq_create("xhci_taskq", 1, minclsyspri, 0, 0, 0); 2212 if (xhci_taskq == NULL) { 2213 ddi_soft_state_fini(&xhci_soft_state); 2214 return (ENOMEM); 2215 } 2216 2217 if ((ret = mod_install(&xhci_modlinkage)) != 0) { 2218 taskq_destroy(xhci_taskq); 2219 xhci_taskq = NULL; 2220 } 2221 2222 return (ret); 2223 } 2224 2225 int 2226 _info(struct modinfo *modinfop) 2227 { 2228 return (mod_info(&xhci_modlinkage, modinfop)); 2229 } 2230 2231 int 2232 _fini(void) 2233 { 2234 int ret; 2235 2236 if ((ret = mod_remove(&xhci_modlinkage)) != 0) 2237 return (ret); 2238 2239 if (xhci_taskq != NULL) { 2240 taskq_destroy(xhci_taskq); 2241 xhci_taskq = NULL; 2242 } 2243 2244 ddi_soft_state_fini(&xhci_soft_state); 2245 2246 return (0); 2247 } 2248