1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Enclosure Services Devices, SAF-TE Enclosure Routines
24 *
25 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */
28
29 #include <sys/modctl.h>
30 #include <sys/file.h>
31 #include <sys/scsi/scsi.h>
32 #include <sys/stat.h>
33 #include <sys/scsi/targets/sesio.h>
34 #include <sys/scsi/targets/ses.h>
35
36
37 static int set_objstat_sel(ses_softc_t *, ses_objarg *, int);
38 static int wrbuf16(ses_softc_t *, uchar_t, uchar_t, uchar_t, uchar_t, int);
39 static void wrslot_stat(ses_softc_t *, int);
40 static int perf_slotop(ses_softc_t *, uchar_t, uchar_t, int);
41
42 #define ALL_ENC_STAT \
43 (ENCSTAT_CRITICAL|ENCSTAT_UNRECOV|ENCSTAT_NONCRITICAL|ENCSTAT_INFO)
44
45 #define SCRATCH 64
46 #define NPSEUDO_THERM 1
47 #define NPSEUDO_ALARM 1
48 struct scfg {
49 /*
50 * Cached Configuration
51 */
52 uchar_t Nfans; /* Number of Fans */
53 uchar_t Npwr; /* Number of Power Supplies */
54 uchar_t Nslots; /* Number of Device Slots */
55 uchar_t DoorLock; /* Door Lock Installed */
56 uchar_t Ntherm; /* Number of Temperature Sensors */
57 uchar_t Nspkrs; /* Number of Speakers */
58 uchar_t Nalarm; /* Number of Alarms (at least one) */
59 /*
60 * Cached Flag Bytes for Global Status
61 */
62 uchar_t flag1;
63 uchar_t flag2;
64 /*
65 * What object index ID is where various slots start.
66 */
67 uchar_t pwroff;
68 uchar_t slotoff;
69 #define ALARM_OFFSET(cc) (cc)->slotoff - 1
70 };
71 #define FLG1_ALARM 0x1
72 #define FLG1_GLOBFAIL 0x2
73 #define FLG1_GLOBWARN 0x4
74 #define FLG1_ENCPWROFF 0x8
75 #define FLG1_ENCFANFAIL 0x10
76 #define FLG1_ENCPWRFAIL 0x20
77 #define FLG1_ENCDRVFAIL 0x40
78 #define FLG1_ENCDRVWARN 0x80
79
80 #define FLG2_LOCKDOOR 0x4
81 #define SAFTE_PRIVATE sizeof (struct scfg)
82
83 #if !defined(lint)
84 _NOTE(MUTEX_PROTECTS_DATA(scsi_device::sd_mutex, scfg))
_NOTE(DATA_READABLE_WITHOUT_LOCK (scfg::Nfans))85 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Nfans))
86 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Npwr))
87 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Nslots))
88 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::DoorLock))
89 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Ntherm))
90 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Nspkrs))
91 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::Nalarm))
92 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::flag1))
93 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::flag2))
94 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::pwroff))
95 _NOTE(DATA_READABLE_WITHOUT_LOCK(scfg::slotoff))
96 #endif
97
98 static int
99 safte_getconfig(ses_softc_t *ssc)
100 {
101 struct scfg *cfg;
102 int err;
103 Uscmd local, *lp = &local;
104 char rqbuf[SENSE_LENGTH], *sdata;
105 static char cdb[CDB_GROUP1] =
106 { SCMD_READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SCRATCH, 0 };
107
108 cfg = ssc->ses_private;
109 if (cfg == NULL)
110 return (ENXIO);
111
112 sdata = kmem_alloc(SCRATCH, KM_SLEEP);
113 if (sdata == NULL)
114 return (ENOMEM);
115
116 lp->uscsi_flags = USCSI_READ|USCSI_RQENABLE;
117 lp->uscsi_timeout = ses_io_time;
118 lp->uscsi_cdb = cdb;
119 lp->uscsi_bufaddr = sdata;
120 lp->uscsi_buflen = SCRATCH;
121 lp->uscsi_cdblen = sizeof (cdb);
122 lp->uscsi_rqbuf = rqbuf;
123 lp->uscsi_rqlen = sizeof (rqbuf);
124
125 err = ses_runcmd(ssc, lp);
126 if (err) {
127 kmem_free(sdata, SCRATCH);
128 return (err);
129 }
130
131 if ((lp->uscsi_buflen - lp->uscsi_resid) < 6) {
132 SES_LOG(ssc, CE_NOTE, "Too little data (%ld) for configuration",
133 lp->uscsi_buflen - lp->uscsi_resid);
134 kmem_free(sdata, SCRATCH);
135 return (EIO);
136 }
137 SES_LOG(ssc, SES_CE_DEBUG1, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm "
138 "%d Nspkrs %d", sdata[0], sdata[1], sdata[2], sdata[3], sdata[4],
139 sdata[5]);
140
141 mutex_enter(&ssc->ses_devp->sd_mutex);
142 cfg->Nfans = sdata[0];
143 cfg->Npwr = sdata[1];
144 cfg->Nslots = sdata[2];
145 cfg->DoorLock = sdata[3];
146 cfg->Ntherm = sdata[4];
147 cfg->Nspkrs = sdata[5];
148 cfg->Nalarm = NPSEUDO_ALARM;
149 mutex_exit(&ssc->ses_devp->sd_mutex);
150 kmem_free(sdata, SCRATCH);
151 return (0);
152 }
153
154 int
safte_softc_init(ses_softc_t * ssc,int doinit)155 safte_softc_init(ses_softc_t *ssc, int doinit)
156 {
157 int r, i;
158 struct scfg *cc;
159
160 if (doinit == 0) {
161 mutex_enter(&ssc->ses_devp->sd_mutex);
162 if (ssc->ses_nobjects) {
163 if (ssc->ses_objmap) {
164 kmem_free(ssc->ses_objmap,
165 ssc->ses_nobjects * sizeof (encobj));
166 ssc->ses_objmap = NULL;
167 }
168 ssc->ses_nobjects = 0;
169 }
170 if (ssc->ses_private) {
171 kmem_free(ssc->ses_private, SAFTE_PRIVATE);
172 ssc->ses_private = NULL;
173 }
174 mutex_exit(&ssc->ses_devp->sd_mutex);
175 return (0);
176 }
177
178 mutex_enter(&ssc->ses_devp->sd_mutex);
179 if (ssc->ses_private == NULL) {
180 ssc->ses_private = kmem_zalloc(SAFTE_PRIVATE, KM_SLEEP);
181 if (ssc->ses_private == NULL) {
182 mutex_exit(&ssc->ses_devp->sd_mutex);
183 return (ENOMEM);
184 }
185 }
186
187 ssc->ses_nobjects = 0;
188 ssc->ses_encstat = 0;
189 mutex_exit(&ssc->ses_devp->sd_mutex);
190
191 if ((r = safte_getconfig(ssc)) != 0) {
192 return (r);
193 }
194
195 /*
196 * The number of objects here, as well as that reported by the
197 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
198 * that get reported during READ_BUFFER/READ_ENC_STATUS.
199 */
200 mutex_enter(&ssc->ses_devp->sd_mutex);
201 cc = ssc->ses_private;
202 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
203 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
204 ssc->ses_objmap = (encobj *)
205 kmem_zalloc(ssc->ses_nobjects * sizeof (encobj), KM_SLEEP);
206 mutex_exit(&ssc->ses_devp->sd_mutex);
207 if (ssc->ses_objmap == NULL)
208 return (ENOMEM);
209 r = 0;
210 /*
211 * Note that this is all arranged for the convenience
212 * in later fetches of status.
213 */
214 mutex_enter(&ssc->ses_devp->sd_mutex);
215 for (i = 0; i < cc->Nfans; i++)
216 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
217 cc->pwroff = (uchar_t)r;
218 for (i = 0; i < cc->Npwr; i++)
219 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
220 for (i = 0; i < cc->DoorLock; i++)
221 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
222 for (i = 0; i < cc->Nspkrs; i++)
223 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
224 for (i = 0; i < cc->Ntherm; i++)
225 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
226 for (i = 0; i < NPSEUDO_THERM; i++)
227 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
228 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
229 cc->slotoff = (uchar_t)r;
230 for (i = 0; i < cc->Nslots; i++)
231 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
232 mutex_exit(&ssc->ses_devp->sd_mutex);
233 return (0);
234 }
235
236 int
safte_init_enc(ses_softc_t * ssc)237 safte_init_enc(ses_softc_t *ssc)
238 {
239 int err;
240 Uscmd local, *lp = &local;
241 char rqbuf[SENSE_LENGTH], *sdata;
242 static char cdb0[CDB_GROUP1] = { SCMD_SDIAG };
243 static char cdb[CDB_GROUP1] =
244 { SCMD_WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SCRATCH, 0 };
245
246 sdata = kmem_alloc(SCRATCH, KM_SLEEP);
247 lp->uscsi_flags = USCSI_RQENABLE;
248 lp->uscsi_timeout = ses_io_time;
249 lp->uscsi_cdb = cdb0;
250 lp->uscsi_bufaddr = NULL;
251 lp->uscsi_buflen = 0;
252 lp->uscsi_cdblen = sizeof (cdb0);
253 lp->uscsi_rqbuf = rqbuf;
254 lp->uscsi_rqlen = sizeof (rqbuf);
255 err = ses_runcmd(ssc, lp);
256 if (err) {
257 kmem_free(sdata, SCRATCH);
258 return (err);
259 }
260
261 lp->uscsi_flags = USCSI_WRITE|USCSI_RQENABLE;
262 lp->uscsi_timeout = ses_io_time;
263 lp->uscsi_cdb = cdb;
264 lp->uscsi_bufaddr = sdata;
265 lp->uscsi_buflen = SCRATCH;
266 lp->uscsi_cdblen = sizeof (cdb);
267 lp->uscsi_rqbuf = rqbuf;
268 lp->uscsi_rqlen = sizeof (rqbuf);
269 bzero(&sdata[1], 15);
270 sdata[0] = SAFTE_WT_GLOBAL;
271 err = ses_runcmd(ssc, lp);
272 kmem_free(sdata, SCRATCH);
273 return (err);
274 }
275
276
277 static char *toolittle = "Too Little Data Returned (%d) at line %d";
278 #define BAIL(r, x, k, l, m, n) \
279 if (r >= x) { \
280 SES_LOG(ssc, CE_NOTE, toolittle, x, __LINE__); \
281 kmem_free(k, l); \
282 kmem_free(m, n); \
283 return (EIO); \
284 }
285
286 static int
safte_rdstat(ses_softc_t * ssc,int slpflg)287 safte_rdstat(ses_softc_t *ssc, int slpflg)
288 {
289 int err, oid, r, i, hiwater, nitems;
290 ushort_t tempflags;
291 size_t buflen;
292 uchar_t status, oencstat;
293 Uscmd local, *lp = &local;
294 struct scfg *cc = ssc->ses_private;
295 char rqbuf[SENSE_LENGTH], *sdata;
296 char cdb[CDB_GROUP1];
297 int *driveids, id_size = cc->Nslots * sizeof (int);
298
299 driveids = kmem_alloc(id_size, slpflg);
300 if (driveids == NULL) {
301 return (ENOMEM);
302 }
303
304 /*
305 * The number of bytes of data we need to get is
306 * Nfans + Npwr + Nslots + Nspkrs + Ntherm + nochoice
307 * (nochoice = 1 doorlock + 1 spkr + 2 pseudo therms + 10 extra)
308 * the extra are simply for good luck.
309 */
310 buflen = cc->Nfans + cc->Npwr + cc->Nslots + cc->Nspkrs;
311 buflen += cc->Ntherm + 14;
312
313 /*
314 * Towards the end of this function this buffer is reused.
315 * Thus we need to make sure that we have allocated enough
316 * memory retrieving buffer 1 & 4.
317 * buffer 1 -> element status & drive id
318 * buffer 4 -> drive status & drive command history.
319 * buffer 4 uses 4 bytes per drive bay.
320 */
321
322 if (buflen < cc->Nslots * 4) {
323 buflen = cc->Nslots * 4;
324 }
325
326 if (ssc->ses_nobjects > buflen)
327 buflen = ssc->ses_nobjects;
328
329 if (buflen > 0xffff) {
330 cmn_err(CE_WARN, "Illogical SCSI data");
331 return (EIO);
332 }
333
334 sdata = kmem_alloc(buflen, slpflg);
335 if (sdata == NULL) {
336 kmem_free(driveids, id_size);
337 return (ENOMEM);
338 }
339
340 cdb[0] = SCMD_READ_BUFFER;
341 cdb[1] = 1;
342 cdb[2] = SAFTE_RD_RDESTS;
343 cdb[3] = 0;
344 cdb[4] = 0;
345 cdb[5] = 0;
346 cdb[6] = 0;
347 cdb[7] = (buflen >> 8) & 0xff;
348 cdb[8] = buflen & 0xff;
349 cdb[9] = 0;
350 lp->uscsi_flags = USCSI_READ|USCSI_RQENABLE;
351 lp->uscsi_timeout = ses_io_time;
352 lp->uscsi_cdb = cdb;
353 lp->uscsi_bufaddr = sdata;
354 lp->uscsi_buflen = buflen;
355 lp->uscsi_cdblen = sizeof (cdb);
356 lp->uscsi_rqbuf = rqbuf;
357 lp->uscsi_rqlen = sizeof (rqbuf);
358
359 err = ses_runcmd(ssc, lp);
360 if (err) {
361 kmem_free(sdata, buflen);
362 kmem_free(driveids, id_size);
363 return (err);
364 }
365
366 hiwater = lp->uscsi_buflen - lp->uscsi_resid;
367
368 /*
369 * invalidate all status bits.
370 */
371 mutex_enter(&ssc->ses_devp->sd_mutex);
372 for (i = 0; i < ssc->ses_nobjects; i++)
373 ssc->ses_objmap[i].svalid = 0;
374 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
375 ssc->ses_encstat = 0;
376 mutex_exit(&ssc->ses_devp->sd_mutex);
377
378 /*
379 * Now parse returned buffer.
380 * If we didn't get enough data back,
381 * that's considered a fatal error.
382 */
383 oid = r = 0;
384
385 for (nitems = i = 0; i < cc->Nfans; i++) {
386 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
387 /*
388 * 0 = Fan Operational
389 * 1 = Fan is malfunctioning
390 * 2 = Fan is not present
391 * 0x80 = Unknown or Not Reportable Status
392 */
393 mutex_enter(&ssc->ses_devp->sd_mutex);
394 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
395 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
396 switch ((uchar_t)sdata[r]) {
397 case 0:
398 nitems++;
399 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
400 /*
401 * We could get fancier and cache
402 * fan speeds that we have set, but
403 * that isn't done now.
404 */
405 ssc->ses_objmap[oid].encstat[3] = 7;
406 break;
407
408 case 1:
409 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
410 /*
411 * FAIL and FAN STOPPED synthesized
412 */
413 ssc->ses_objmap[oid].encstat[3] = 0x40;
414 /*
415 * Enclosure marked with CRITICAL error
416 * if only one fan or no thermometers,
417 * else NONCRIT error set.
418 */
419 if (cc->Nfans == 1 || cc->Ntherm == 0)
420 ssc->ses_encstat |= ENCSTAT_CRITICAL;
421 else
422 ssc->ses_encstat |= ENCSTAT_NONCRITICAL;
423 break;
424 case 2:
425 ssc->ses_objmap[oid].encstat[0] = SESSTAT_NOTINSTALLED;
426 ssc->ses_objmap[oid].encstat[3] = 0;
427 if (cc->Nfans == 1)
428 ssc->ses_encstat |= ENCSTAT_CRITICAL;
429 else
430 ssc->ses_encstat |= ENCSTAT_NONCRITICAL;
431 break;
432 case 0x80:
433 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNKNOWN;
434 ssc->ses_objmap[oid].encstat[3] = 0;
435 ssc->ses_encstat |= ENCSTAT_INFO;
436 break;
437 default:
438 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
439 SES_LOG(ssc, CE_NOTE, "unknown fan%d status 0x%x",
440 i, sdata[r] & 0xff);
441 break;
442 }
443 ssc->ses_objmap[oid++].svalid = 1;
444 mutex_exit(&ssc->ses_devp->sd_mutex);
445 r++;
446 }
447 mutex_enter(&ssc->ses_devp->sd_mutex);
448 /*
449 * No matter how you cut it, no cooling elements when there
450 * should be some there is critical.
451 */
452 if (cc->Nfans && nitems == 0) {
453 ssc->ses_encstat |= ENCSTAT_CRITICAL;
454 }
455 mutex_exit(&ssc->ses_devp->sd_mutex);
456
457
458 for (i = 0; i < cc->Npwr; i++) {
459 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
460 mutex_enter(&ssc->ses_devp->sd_mutex);
461 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
462 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
463 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
464 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
465 switch ((uchar_t)sdata[r]) {
466 case 0x00: /* pws operational and on */
467 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
468 break;
469 case 0x01: /* pws operational and off */
470 ssc->ses_objmap[oid].encstat[3] = 0x10;
471 ssc->ses_objmap[oid].encstat[0] = SESSTAT_NOTAVAIL;
472 ssc->ses_encstat |= ENCSTAT_INFO;
473 break;
474 case 0x10: /* pws is malfunctioning and commanded on */
475 ssc->ses_objmap[oid].encstat[3] = 0x61;
476 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
477 if (cc->Npwr < 2)
478 ssc->ses_encstat |= ENCSTAT_CRITICAL;
479 else
480 ssc->ses_encstat |= ENCSTAT_NONCRITICAL;
481 break;
482
483 case 0x11: /* pws is malfunctioning and commanded off */
484 ssc->ses_objmap[oid].encstat[3] = 0x51;
485 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
486 if (cc->Npwr < 2)
487 ssc->ses_encstat |= ENCSTAT_CRITICAL;
488 else
489 ssc->ses_encstat |= ENCSTAT_NONCRITICAL;
490 break;
491 case 0x20: /* pws is not present */
492 ssc->ses_objmap[oid].encstat[0] = SESSTAT_NOTINSTALLED;
493 ssc->ses_objmap[oid].encstat[3] = 0;
494 if (cc->Npwr < 2)
495 ssc->ses_encstat |= ENCSTAT_CRITICAL;
496 else
497 ssc->ses_encstat |= ENCSTAT_INFO;
498 break;
499 case 0x21: /* pws is present */
500 break;
501 case 0x80: /* Unknown or Not Reportable Status */
502 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNKNOWN;
503 ssc->ses_objmap[oid].encstat[3] = 0;
504 ssc->ses_encstat |= ENCSTAT_INFO;
505 break;
506 default:
507 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
508 SES_LOG(ssc, CE_NOTE, "unknown pwr%d status 0x%x",
509 i, sdata[r] & 0xff);
510 break;
511 }
512 ssc->ses_objmap[oid++].svalid = 1;
513 mutex_exit(&ssc->ses_devp->sd_mutex);
514 r++;
515 }
516
517 /*
518 * Now I am going to save the target id's for the end of
519 * the function. (when I build the drive objects)
520 * that is when I will be getting the drive status from buffer 4
521 */
522
523 for (i = 0; i < cc->Nslots; i++) {
524 driveids[i] = sdata[r++];
525 }
526
527
528
529 /*
530 * We always have doorlock status, no matter what,
531 * but we only save the status if we have one.
532 */
533 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
534 if (cc->DoorLock) {
535 /*
536 * 0 = Door Locked
537 * 1 = Door Unlocked, or no Lock Installed
538 * 0x80 = Unknown or Not Reportable Status
539 */
540 mutex_enter(&ssc->ses_devp->sd_mutex);
541 ssc->ses_objmap[oid].encstat[1] = 0;
542 ssc->ses_objmap[oid].encstat[2] = 0;
543 switch ((uchar_t)sdata[r]) {
544 case 0:
545 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
546 ssc->ses_objmap[oid].encstat[3] = 0;
547 break;
548 case 1:
549 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
550 ssc->ses_objmap[oid].encstat[3] = 1;
551 break;
552 case 0x80:
553 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNKNOWN;
554 ssc->ses_objmap[oid].encstat[3] = 0;
555 ssc->ses_encstat |= ENCSTAT_INFO;
556 break;
557 default:
558 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
559 SES_LOG(ssc, CE_NOTE, "unknown lock status 0x%x",
560 sdata[r] & 0xff);
561 break;
562 }
563 ssc->ses_objmap[oid++].svalid = 1;
564 mutex_exit(&ssc->ses_devp->sd_mutex);
565 }
566 r++;
567
568 /*
569 * We always have speaker status, no matter what,
570 * but we only save the status if we have one.
571 */
572 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
573 if (cc->Nspkrs) {
574 mutex_enter(&ssc->ses_devp->sd_mutex);
575 ssc->ses_objmap[oid].encstat[1] = 0;
576 ssc->ses_objmap[oid].encstat[2] = 0;
577 if (sdata[r] == 1) {
578 /*
579 * We need to cache tone urgency indicators.
580 * Someday.
581 */
582 ssc->ses_objmap[oid].encstat[0] = SESSTAT_NONCRIT;
583 ssc->ses_objmap[oid].encstat[3] = 0x8;
584 ssc->ses_encstat |= ENCSTAT_NONCRITICAL;
585 } else if (sdata[r] == 0) {
586 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
587 ssc->ses_objmap[oid].encstat[3] = 0;
588 } else {
589 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
590 ssc->ses_objmap[oid].encstat[3] = 0;
591 SES_LOG(ssc, CE_NOTE, "unknown spkr status 0x%x",
592 sdata[r] & 0xff);
593 }
594 ssc->ses_objmap[oid++].svalid = 1;
595 mutex_exit(&ssc->ses_devp->sd_mutex);
596 }
597 r++;
598
599 for (i = 0; i < cc->Ntherm; i++) {
600 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
601 /*
602 * Status is a range from -10 to 245 deg Celsius,
603 * which we need to normalize to -20 to -235 according
604 * to the latest SCSI spec.
605 */
606 mutex_enter(&ssc->ses_devp->sd_mutex);
607 ssc->ses_objmap[oid].encstat[1] = 0;
608 ssc->ses_objmap[oid].encstat[2] =
609 ((unsigned int) sdata[r]) - 10;
610 if (sdata[r] < 20) {
611 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
612 /*
613 * Set 'under temperature' failure.
614 */
615 ssc->ses_objmap[oid].encstat[3] = 2;
616 ssc->ses_encstat |= ENCSTAT_CRITICAL;
617 } else if (sdata[r] > 30) {
618 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
619 /*
620 * Set 'over temperature' failure.
621 */
622 ssc->ses_objmap[oid].encstat[3] = 8;
623 ssc->ses_encstat |= ENCSTAT_CRITICAL;
624 } else {
625 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
626 }
627 ssc->ses_objmap[oid++].svalid = 1;
628 mutex_exit(&ssc->ses_devp->sd_mutex);
629 r++;
630 }
631
632 /*
633 * Now, for "pseudo" thermometers, we have two bytes
634 * of information in enclosure status- 16 bits. Actually,
635 * the MSB is a single TEMP ALERT flag indicating whether
636 * any other bits are set, but, thanks to fuzzy thinking,
637 * in the SAF-TE spec, this can also be set even if no
638 * other bits are set, thus making this really another
639 * binary temperature sensor.
640 */
641
642 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
643 tempflags = sdata[r++];
644 BAIL(r, hiwater, sdata, buflen, driveids, id_size);
645 tempflags |= (tempflags << 8) | sdata[r++];
646 mutex_enter(&ssc->ses_devp->sd_mutex);
647
648 #if NPSEUDO_THERM == 1
649 ssc->ses_objmap[oid].encstat[1] = 0;
650 if (tempflags) {
651 /* Set 'over temperature' failure. */
652 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
653 ssc->ses_objmap[oid].encstat[3] = 8;
654 ssc->ses_encstat |= ENCSTAT_CRITICAL;
655 } else {
656 /* Set 'nominal' temperature. */
657 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
658 }
659 ssc->ses_objmap[oid++].svalid = 1;
660
661 #else /* NPSEUDO_THERM == 1 */
662 for (i = 0; i < NPSEUDO_THERM; i++) {
663 ssc->ses_objmap[oid].encstat[1] = 0;
664 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
665 ssc->ses_objmap[oid].encstat[0] = SESSTAT_CRIT;
666 /* ssc->ses_objmap[oid].encstat[2] = 0; */
667
668 /*
669 * Set 'over temperature' failure.
670 */
671 ssc->ses_objmap[oid].encstat[3] = 8;
672 ssc->ses_encstat |= ENCSTAT_CRITICAL;
673 } else {
674 /*
675 * Set 'nominal' temperature.
676 */
677 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
678 /* ssc->ses_objmap[oid].encstat[2] = 0; */
679 }
680 ssc->ses_objmap[oid++].svalid = 1;
681 }
682 #endif /* NPSEUDO_THERM == 1 */
683
684
685 /*
686 * Get alarm status.
687 */
688 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
689 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
690 ssc->ses_objmap[oid++].svalid = 1;
691 mutex_exit(&ssc->ses_devp->sd_mutex);
692
693 /*
694 * Now get drive slot status
695 */
696 cdb[2] = SAFTE_RD_RDDSTS;
697 err = ses_runcmd(ssc, lp);
698 if (err) {
699 kmem_free(sdata, buflen);
700 kmem_free(driveids, id_size);
701 return (err);
702 }
703 hiwater = lp->uscsi_buflen - lp->uscsi_resid;
704 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
705 BAIL(r+3, hiwater, sdata, buflen, driveids, id_size);
706 mutex_enter(&ssc->ses_devp->sd_mutex);
707 ssc->ses_objmap[oid].encstat[0] = SESSTAT_UNSUPPORTED;
708 ssc->ses_objmap[oid].encstat[1] = (uchar_t)driveids[i];
709 ssc->ses_objmap[oid].encstat[2] = 0;
710 ssc->ses_objmap[oid].encstat[3] = 0;
711 status = sdata[r+3];
712 if ((status & 0x1) == 0) { /* no device */
713 ssc->ses_objmap[oid].encstat[0] = SESSTAT_NOTINSTALLED;
714 } else {
715 ssc->ses_objmap[oid].encstat[0] = SESSTAT_OK;
716 }
717 if (status & 0x2) {
718 ssc->ses_objmap[oid].encstat[2] = 0x8;
719 }
720 if ((status & 0x4) == 0) {
721 ssc->ses_objmap[oid].encstat[3] = 0x10;
722 }
723 ssc->ses_objmap[oid++].svalid = 1;
724 mutex_exit(&ssc->ses_devp->sd_mutex);
725 }
726 mutex_enter(&ssc->ses_devp->sd_mutex);
727 /* see comment below about sticky enclosure status */
728 ssc->ses_encstat |= ENCI_SVALID | oencstat;
729 mutex_exit(&ssc->ses_devp->sd_mutex);
730 kmem_free(sdata, buflen);
731 kmem_free(driveids, id_size);
732 return (0);
733 }
734
735 int
safte_get_encstat(ses_softc_t * ssc,int slpflg)736 safte_get_encstat(ses_softc_t *ssc, int slpflg)
737 {
738 return (safte_rdstat(ssc, slpflg));
739 }
740
741 int
safte_set_encstat(ses_softc_t * ssc,uchar_t encstat,int slpflg)742 safte_set_encstat(ses_softc_t *ssc, uchar_t encstat, int slpflg)
743 {
744 struct scfg *cc = ssc->ses_private;
745 if (cc == NULL)
746 return (0);
747 mutex_enter(&ssc->ses_devp->sd_mutex);
748 /*
749 * Since SAF-TE devices aren't necessarily sticky in terms
750 * of state, make our soft copy of enclosure status 'sticky'-
751 * that is, things set in enclosure status stay set (as implied
752 * by conditions set in reading object status) until cleared.
753 */
754 ssc->ses_encstat &= ~ALL_ENC_STAT;
755 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
756 ssc->ses_encstat |= ENCI_SVALID;
757 cc->flag1 &= ~(FLG1_ALARM|FLG1_GLOBFAIL|FLG1_GLOBWARN);
758 if ((encstat & (ENCSTAT_CRITICAL|ENCSTAT_UNRECOV)) != 0) {
759 cc->flag1 |= FLG1_ALARM|FLG1_GLOBFAIL;
760 } else if ((encstat & ENCSTAT_NONCRITICAL) != 0) {
761 cc->flag1 |= FLG1_GLOBWARN;
762 }
763 mutex_exit(&ssc->ses_devp->sd_mutex);
764 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
765 }
766
767 int
safte_get_objstat(ses_softc_t * ssc,ses_objarg * obp,int slpflg)768 safte_get_objstat(ses_softc_t *ssc, ses_objarg *obp, int slpflg)
769 {
770 int i = (int)obp->obj_id;
771
772 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
773 (ssc->ses_objmap[i].svalid) == 0) {
774 int r = safte_rdstat(ssc, slpflg);
775 if (r)
776 return (r);
777 }
778 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
779 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
780 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
781 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
782 return (0);
783 }
784
785
786 int
safte_set_objstat(ses_softc_t * ssc,ses_objarg * obp,int slp)787 safte_set_objstat(ses_softc_t *ssc, ses_objarg *obp, int slp)
788 {
789 int idx, err;
790 encobj *ep;
791 struct scfg *cc;
792
793
794 SES_LOG(ssc, SES_CE_DEBUG2, "safte_set_objstat(%d): %x %x %x %x",
795 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
796 obp->cstat[3]);
797
798 /*
799 * If this is clear, we don't do diddly.
800 */
801 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
802 return (0);
803 }
804
805 err = 0;
806 /*
807 * Check to see if the common bits are set and do them first.
808 */
809 if (obp->cstat[0] & ~SESCTL_CSEL) {
810 err = set_objstat_sel(ssc, obp, slp);
811 if (err)
812 return (err);
813 }
814
815 cc = ssc->ses_private;
816 if (cc == NULL)
817 return (0);
818
819 idx = (int)obp->obj_id;
820 ep = &ssc->ses_objmap[idx];
821
822 switch (ep->enctype) {
823 case SESTYP_DEVICE:
824 {
825 uchar_t slotop = 0;
826 /*
827 * XXX: I should probably cache the previous state
828 * XXX: of SESCTL_DEVOFF so that when it goes from
829 * XXX: true to false I can then set PREPARE FOR OPERATION
830 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
831 */
832 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
833 slotop |= 0x2;
834 }
835 if (obp->cstat[2] & SESCTL_RQSID) {
836 slotop |= 0x4;
837 }
838 err = perf_slotop(ssc, (uchar_t)idx - (uchar_t)cc->slotoff,
839 slotop, slp);
840 if (err)
841 return (err);
842 mutex_enter(&ssc->ses_devp->sd_mutex);
843 if (obp->cstat[3] & SESCTL_RQSFLT) {
844 ep->priv |= 0x2;
845 } else {
846 ep->priv &= ~0x2;
847 }
848 if (ep->priv & 0xc6) {
849 ep->priv &= ~0x1;
850 } else {
851 ep->priv |= 0x1; /* no errors */
852 }
853 mutex_exit(&ssc->ses_devp->sd_mutex);
854 wrslot_stat(ssc, slp);
855 break;
856 }
857 case SESTYP_POWER:
858 mutex_enter(&ssc->ses_devp->sd_mutex);
859 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
860 cc->flag1 |= FLG1_ENCPWRFAIL;
861 } else {
862 cc->flag1 &= ~FLG1_ENCPWRFAIL;
863 }
864 mutex_exit(&ssc->ses_devp->sd_mutex);
865 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
866 cc->flag2, 0, slp);
867 if (err)
868 return (err);
869 if (obp->cstat[3] & SESCTL_RQSTON) {
870 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
871 idx - cc->pwroff, 0, 0, slp);
872 } else {
873 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
874 idx - cc->pwroff, 0, 1, slp);
875 }
876 break;
877 case SESTYP_FAN:
878 mutex_enter(&ssc->ses_devp->sd_mutex);
879 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
880 cc->flag1 |= FLG1_ENCFANFAIL;
881 } else {
882 cc->flag1 &= ~FLG1_ENCFANFAIL;
883 }
884 mutex_exit(&ssc->ses_devp->sd_mutex);
885 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
886 cc->flag2, 0, slp);
887 if (err)
888 return (err);
889 if (obp->cstat[3] & SESCTL_RQSTON) {
890 uchar_t fsp;
891 if ((obp->cstat[3] & 0x7) == 7) {
892 fsp = 4;
893 } else if ((obp->cstat[3] & 0x7) == 6) {
894 fsp = 3;
895 } else if ((obp->cstat[3] & 0x7) == 4) {
896 fsp = 2;
897 } else {
898 fsp = 1;
899 }
900 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
901 } else {
902 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
903 }
904 break;
905 case SESTYP_DOORLOCK:
906 mutex_enter(&ssc->ses_devp->sd_mutex);
907 if (obp->cstat[3] & 0x1) {
908 cc->flag2 &= ~FLG2_LOCKDOOR;
909 } else {
910 cc->flag2 |= FLG2_LOCKDOOR;
911 }
912 mutex_exit(&ssc->ses_devp->sd_mutex);
913 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
914 cc->flag2, 0, slp);
915 break;
916 case SESTYP_ALARM:
917 /*
918 * On all nonzero but the 'muted' bit, we turn on the alarm,
919 */
920 mutex_enter(&ssc->ses_devp->sd_mutex);
921 obp->cstat[3] &= ~0xa;
922 if (obp->cstat[3] & 0x40) {
923 cc->flag2 &= ~FLG1_ALARM;
924 } else if (obp->cstat[3] != 0) {
925 cc->flag2 |= FLG1_ALARM;
926 } else {
927 cc->flag2 &= ~FLG1_ALARM;
928 }
929 ep->priv = obp->cstat[3];
930 mutex_exit(&ssc->ses_devp->sd_mutex);
931 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
932 cc->flag2, 0, slp);
933 break;
934 default:
935 break;
936 }
937 mutex_enter(&ssc->ses_devp->sd_mutex);
938 ep->svalid = 0;
939 mutex_exit(&ssc->ses_devp->sd_mutex);
940 return (0);
941 }
942
943 static int
set_objstat_sel(ses_softc_t * ssc,ses_objarg * obp,int slp)944 set_objstat_sel(ses_softc_t *ssc, ses_objarg *obp, int slp)
945 {
946 int idx;
947 encobj *ep;
948 struct scfg *cc = ssc->ses_private;
949
950 if (cc == NULL)
951 return (0);
952
953 idx = (int)obp->obj_id;
954 ep = &ssc->ses_objmap[idx];
955
956 switch (ep->enctype) {
957 case SESTYP_DEVICE:
958 mutex_enter(&ssc->ses_devp->sd_mutex);
959 if (obp->cstat[0] & SESCTL_PRDFAIL) {
960 ep->priv |= 0x40;
961 }
962 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
963 if (obp->cstat[0] & SESCTL_DISABLE) {
964 ep->priv |= 0x80;
965 /*
966 * Hmm. Try to set the 'No Drive' flag.
967 * Maybe that will count as a 'disable'.
968 */
969 }
970 if (ep->priv & 0xc6) {
971 ep->priv &= ~0x1;
972 } else {
973 ep->priv |= 0x1; /* no errors */
974 }
975 mutex_exit(&ssc->ses_devp->sd_mutex);
976 wrslot_stat(ssc, slp);
977 break;
978 case SESTYP_POWER:
979 /*
980 * Okay- the only one that makes sense here is to
981 * do the 'disable' for a power supply.
982 */
983 if (obp->cstat[0] & SESCTL_DISABLE) {
984 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
985 idx - cc->pwroff, 0, 0, slp);
986 }
987 break;
988 case SESTYP_FAN:
989 /*
990 * Okay- the only one that makes sense here is to
991 * set fan speed to zero on disable.
992 */
993 if (obp->cstat[0] & SESCTL_DISABLE) {
994 /* remember- fans are the first items, so idx works */
995 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
996 }
997 break;
998 case SESTYP_DOORLOCK:
999 /*
1000 * Well, we can 'disable' the lock.
1001 */
1002 if (obp->cstat[0] & SESCTL_DISABLE) {
1003 mutex_enter(&ssc->ses_devp->sd_mutex);
1004 cc->flag2 &= ~FLG2_LOCKDOOR;
1005 mutex_exit(&ssc->ses_devp->sd_mutex);
1006 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1007 cc->flag2, 0, slp);
1008 }
1009 break;
1010 case SESTYP_ALARM:
1011 /*
1012 * Well, we can 'disable' the alarm.
1013 */
1014 if (obp->cstat[0] & SESCTL_DISABLE) {
1015 mutex_enter(&ssc->ses_devp->sd_mutex);
1016 cc->flag2 &= ~FLG1_ALARM;
1017 ep->priv |= 0x40; /* Muted */
1018 mutex_exit(&ssc->ses_devp->sd_mutex);
1019 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1020 cc->flag2, 0, slp);
1021 }
1022 break;
1023 default:
1024 break;
1025 }
1026 mutex_enter(&ssc->ses_devp->sd_mutex);
1027 ep->svalid = 0;
1028 mutex_exit(&ssc->ses_devp->sd_mutex);
1029 return (0);
1030 }
1031
1032 /*
1033 * This function handles all of the 16 byte WRITE BUFFER commands.
1034 */
1035 static int
wrbuf16(ses_softc_t * ssc,uchar_t op,uchar_t b1,uchar_t b2,uchar_t b3,int slp)1036 wrbuf16(ses_softc_t *ssc, uchar_t op, uchar_t b1, uchar_t b2,
1037 uchar_t b3, int slp)
1038 {
1039 int err;
1040 Uscmd local, *lp = &local;
1041 char rqbuf[SENSE_LENGTH], *sdata;
1042 struct scfg *cc = ssc->ses_private;
1043 static char cdb[CDB_GROUP1] =
1044 { SCMD_WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1045
1046 if (cc == NULL)
1047 return (0);
1048
1049 sdata = kmem_alloc(16, slp);
1050 if (sdata == NULL)
1051 return (ENOMEM);
1052
1053 lp->uscsi_flags = USCSI_WRITE|USCSI_RQENABLE;
1054 lp->uscsi_timeout = ses_io_time;
1055 lp->uscsi_cdb = cdb;
1056 lp->uscsi_bufaddr = sdata;
1057 lp->uscsi_buflen = SCRATCH;
1058 lp->uscsi_cdblen = sizeof (cdb);
1059 lp->uscsi_rqbuf = rqbuf;
1060 lp->uscsi_rqlen = sizeof (rqbuf);
1061
1062 sdata[0] = op;
1063 sdata[1] = b1;
1064 sdata[2] = b2;
1065 sdata[3] = b3;
1066 SES_LOG(ssc, SES_CE_DEBUG2, "saf_wrbuf16 %x %x %x %x", op, b1, b2, b3);
1067 bzero(&sdata[4], 12);
1068 err = ses_runcmd(ssc, lp);
1069 kmem_free(sdata, 16);
1070 return (err);
1071 }
1072
1073 /*
1074 * This function updates the status byte for the device slot described.
1075 *
1076 * Since this is an optional SAF-TE command, there's no point in
1077 * returning an error.
1078 */
1079 static void
wrslot_stat(ses_softc_t * ssc,int slp)1080 wrslot_stat(ses_softc_t *ssc, int slp)
1081 {
1082 int i;
1083 encobj *ep;
1084 Uscmd local, *lp = &local;
1085 char rqbuf[SENSE_LENGTH], cdb[CDB_GROUP1], *sdata;
1086 struct scfg *cc = ssc->ses_private;
1087
1088 if (cc == NULL)
1089 return;
1090
1091 SES_LOG(ssc, SES_CE_DEBUG2, "saf_wrslot");
1092 cdb[0] = SCMD_WRITE_BUFFER;
1093 cdb[1] = 1;
1094 cdb[2] = 0;
1095 cdb[3] = 0;
1096 cdb[4] = 0;
1097 cdb[5] = 0;
1098 cdb[6] = 0;
1099 cdb[7] = 0;
1100 cdb[8] = cc->Nslots * 3 + 1;
1101 cdb[9] = 0;
1102
1103 sdata = kmem_zalloc(cc->Nslots * 3 + 1, slp);
1104 if (sdata == NULL)
1105 return;
1106
1107 lp->uscsi_flags = USCSI_WRITE|USCSI_RQENABLE;
1108 lp->uscsi_timeout = ses_io_time;
1109 lp->uscsi_cdb = cdb;
1110 lp->uscsi_bufaddr = sdata;
1111 lp->uscsi_buflen = cc->Nslots * 3 + 1;
1112 lp->uscsi_cdblen = sizeof (cdb);
1113 lp->uscsi_rqbuf = rqbuf;
1114 lp->uscsi_rqlen = sizeof (rqbuf);
1115
1116 sdata[0] = SAFTE_WT_DSTAT;
1117 for (i = 0; i < cc->Nslots; i++) {
1118 ep = &ssc->ses_objmap[cc->slotoff + i];
1119 SES_LOG(ssc, SES_CE_DEBUG2, "saf_wrslot %d <- %x", i,
1120 ep->priv & 0xff);
1121 sdata[1 + (3 * i)] = ep->priv & 0xff;
1122 }
1123 (void) ses_runcmd(ssc, lp);
1124 kmem_free(sdata, cc->Nslots * 3 + 1);
1125 }
1126
1127 /*
1128 * This function issues the "PERFORM SLOT OPERATION" command.
1129 */
1130 static int
perf_slotop(ses_softc_t * ssc,uchar_t slot,uchar_t opflag,int slp)1131 perf_slotop(ses_softc_t *ssc, uchar_t slot, uchar_t opflag, int slp)
1132 {
1133 int err;
1134 Uscmd local, *lp = &local;
1135 char rqbuf[SENSE_LENGTH], *sdata;
1136 struct scfg *cc = ssc->ses_private;
1137 static char cdb[CDB_GROUP1] =
1138 { SCMD_WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SCRATCH, 0 };
1139
1140 if (cc == NULL)
1141 return (0);
1142
1143 sdata = kmem_zalloc(SCRATCH, slp);
1144 if (sdata == NULL)
1145 return (ENOMEM);
1146
1147 lp->uscsi_flags = USCSI_WRITE|USCSI_RQENABLE;
1148 lp->uscsi_timeout = ses_io_time;
1149 lp->uscsi_cdb = cdb;
1150 lp->uscsi_bufaddr = sdata;
1151 lp->uscsi_buflen = SCRATCH;
1152 lp->uscsi_cdblen = sizeof (cdb);
1153 lp->uscsi_rqbuf = rqbuf;
1154 lp->uscsi_rqlen = sizeof (rqbuf);
1155
1156 sdata[0] = SAFTE_WT_SLTOP;
1157 sdata[1] = slot;
1158 sdata[2] = opflag;
1159 SES_LOG(ssc, SES_CE_DEBUG2, "saf_slotop slot %d op %x", slot, opflag);
1160 err = ses_runcmd(ssc, lp);
1161 kmem_free(sdata, SCRATCH);
1162 return (err);
1163 }
1164
1165 /*
1166 * mode: c
1167 * Local variables:
1168 * c-indent-level: 8
1169 * c-brace-imaginary-offset: 0
1170 * c-brace-offset: -8
1171 * c-argdecl-indent: 8
1172 * c-label-offset: -8
1173 * c-continued-statement-offset: 8
1174 * c-continued-brace-offset: 0
1175 * End:
1176 */
1177