1 /****************************************************************************** 2 3 Copyright (c) 2001-2011, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 36 #include "e1000_api.h" 37 38 39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw); 40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); 41 static void e1000_release_vf(struct e1000_hw *hw); 42 static s32 e1000_acquire_vf(struct e1000_hw *hw); 43 static s32 e1000_setup_link_vf(struct e1000_hw *hw); 44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); 45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw); 46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 48 u16 *duplex); 49 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); 52 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 54 55 /** 56 * e1000_init_phy_params_vf - Inits PHY params 57 * @hw: pointer to the HW structure 58 * 59 * Doesn't do much - there's no PHY available to the VF. 60 **/ 61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw) 62 { 63 DEBUGFUNC("e1000_init_phy_params_vf"); 64 hw->phy.type = e1000_phy_vf; 65 hw->phy.ops.acquire = e1000_acquire_vf; 66 hw->phy.ops.release = e1000_release_vf; 67 68 return E1000_SUCCESS; 69 } 70 71 /** 72 * e1000_init_nvm_params_vf - Inits NVM params 73 * @hw: pointer to the HW structure 74 * 75 * Doesn't do much - there's no NVM available to the VF. 76 **/ 77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) 78 { 79 DEBUGFUNC("e1000_init_nvm_params_vf"); 80 hw->nvm.type = e1000_nvm_none; 81 hw->nvm.ops.acquire = e1000_acquire_vf; 82 hw->nvm.ops.release = e1000_release_vf; 83 84 return E1000_SUCCESS; 85 } 86 87 /** 88 * e1000_init_mac_params_vf - Inits MAC params 89 * @hw: pointer to the HW structure 90 **/ 91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 92 { 93 struct e1000_mac_info *mac = &hw->mac; 94 95 DEBUGFUNC("e1000_init_mac_params_vf"); 96 97 /* Set media type */ 98 /* 99 * Virtual functions don't care what they're media type is as they 100 * have no direct access to the PHY, or the media. That is handled 101 * by the physical function driver. 102 */ 103 hw->phy.media_type = e1000_media_type_unknown; 104 105 /* No ASF features for the VF driver */ 106 mac->asf_firmware_present = FALSE; 107 /* ARC subsystem not supported */ 108 mac->arc_subsystem_valid = FALSE; 109 /* Disable adaptive IFS mode so the generic funcs don't do anything */ 110 mac->adaptive_ifs = FALSE; 111 /* VF's have no MTA Registers - PF feature only */ 112 mac->mta_reg_count = 128; 113 /* VF's have no access to RAR entries */ 114 mac->rar_entry_count = 1; 115 116 /* Function pointers */ 117 /* link setup */ 118 mac->ops.setup_link = e1000_setup_link_vf; 119 /* bus type/speed/width */ 120 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; 121 /* reset */ 122 mac->ops.reset_hw = e1000_reset_hw_vf; 123 /* hw initialization */ 124 mac->ops.init_hw = e1000_init_hw_vf; 125 /* check for link */ 126 mac->ops.check_for_link = e1000_check_for_link_vf; 127 /* link info */ 128 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 129 /* multicast address update */ 130 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 131 /* set mac address */ 132 mac->ops.rar_set = e1000_rar_set_vf; 133 /* read mac address */ 134 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 135 136 137 return E1000_SUCCESS; 138 } 139 140 /** 141 * e1000_init_function_pointers_vf - Inits function pointers 142 * @hw: pointer to the HW structure 143 **/ 144 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 145 { 146 DEBUGFUNC("e1000_init_function_pointers_vf"); 147 148 hw->mac.ops.init_params = e1000_init_mac_params_vf; 149 hw->nvm.ops.init_params = e1000_init_nvm_params_vf; 150 hw->phy.ops.init_params = e1000_init_phy_params_vf; 151 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 152 } 153 154 /** 155 * e1000_acquire_vf - Acquire rights to access PHY or NVM. 156 * @hw: pointer to the HW structure 157 * 158 * There is no PHY or NVM so we want all attempts to acquire these to fail. 159 * In addition, the MAC registers to access PHY/NVM don't exist so we don't 160 * even want any SW to attempt to use them. 161 **/ 162 static s32 e1000_acquire_vf(struct e1000_hw *hw) 163 { 164 return -E1000_ERR_PHY; 165 } 166 167 /** 168 * e1000_release_vf - Release PHY or NVM 169 * @hw: pointer to the HW structure 170 * 171 * There is no PHY or NVM so we want all attempts to acquire these to fail. 172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't 173 * even want any SW to attempt to use them. 174 **/ 175 static void e1000_release_vf(struct e1000_hw *hw) 176 { 177 return; 178 } 179 180 /** 181 * e1000_setup_link_vf - Sets up link. 182 * @hw: pointer to the HW structure 183 * 184 * Virtual functions cannot change link. 185 **/ 186 static s32 e1000_setup_link_vf(struct e1000_hw *hw) 187 { 188 DEBUGFUNC("e1000_setup_link_vf"); 189 190 return E1000_SUCCESS; 191 } 192 193 /** 194 * e1000_get_bus_info_pcie_vf - Gets the bus info. 195 * @hw: pointer to the HW structure 196 * 197 * Virtual functions are not really on their own bus. 198 **/ 199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) 200 { 201 struct e1000_bus_info *bus = &hw->bus; 202 203 DEBUGFUNC("e1000_get_bus_info_pcie_vf"); 204 205 /* Do not set type PCI-E because we don't want disable master to run */ 206 bus->type = e1000_bus_type_reserved; 207 bus->speed = e1000_bus_speed_2500; 208 209 return 0; 210 } 211 212 /** 213 * e1000_get_link_up_info_vf - Gets link info. 214 * @hw: pointer to the HW structure 215 * @speed: pointer to 16 bit value to store link speed. 216 * @duplex: pointer to 16 bit value to store duplex. 217 * 218 * Since we cannot read the PHY and get accurate link info, we must rely upon 219 * the status register's data which is often stale and inaccurate. 220 **/ 221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 222 u16 *duplex) 223 { 224 s32 status; 225 226 DEBUGFUNC("e1000_get_link_up_info_vf"); 227 228 status = E1000_READ_REG(hw, E1000_STATUS); 229 if (status & E1000_STATUS_SPEED_1000) { 230 *speed = SPEED_1000; 231 DEBUGOUT("1000 Mbs, "); 232 } else if (status & E1000_STATUS_SPEED_100) { 233 *speed = SPEED_100; 234 DEBUGOUT("100 Mbs, "); 235 } else { 236 *speed = SPEED_10; 237 DEBUGOUT("10 Mbs, "); 238 } 239 240 if (status & E1000_STATUS_FD) { 241 *duplex = FULL_DUPLEX; 242 DEBUGOUT("Full Duplex\n"); 243 } else { 244 *duplex = HALF_DUPLEX; 245 DEBUGOUT("Half Duplex\n"); 246 } 247 248 return E1000_SUCCESS; 249 } 250 251 /** 252 * e1000_reset_hw_vf - Resets the HW 253 * @hw: pointer to the HW structure 254 * 255 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 256 * This is all the reset we can perform on a VF. 257 **/ 258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 259 { 260 struct e1000_mbx_info *mbx = &hw->mbx; 261 u32 timeout = E1000_VF_INIT_TIMEOUT; 262 s32 ret_val = -E1000_ERR_MAC_INIT; 263 u32 ctrl, msgbuf[3]; 264 u8 *addr = (u8 *)(&msgbuf[1]); 265 266 DEBUGFUNC("e1000_reset_hw_vf"); 267 268 DEBUGOUT("Issuing a function level reset to MAC\n"); 269 ctrl = E1000_READ_REG(hw, E1000_CTRL); 270 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 271 272 /* we cannot reset while the RSTI / RSTD bits are asserted */ 273 while (!mbx->ops.check_for_rst(hw, 0) && timeout) { 274 timeout--; 275 usec_delay(5); 276 } 277 278 if (timeout) { 279 /* mailbox timeout can now become active */ 280 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 281 282 msgbuf[0] = E1000_VF_RESET; 283 mbx->ops.write_posted(hw, msgbuf, 1, 0); 284 285 msec_delay(10); 286 287 /* set our "perm_addr" based on info provided by PF */ 288 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); 289 if (!ret_val) { 290 if (msgbuf[0] == (E1000_VF_RESET | 291 E1000_VT_MSGTYPE_ACK)) 292 memcpy(hw->mac.perm_addr, addr, 6); 293 else 294 ret_val = -E1000_ERR_MAC_INIT; 295 } 296 } 297 298 return ret_val; 299 } 300 301 /** 302 * e1000_init_hw_vf - Inits the HW 303 * @hw: pointer to the HW structure 304 * 305 * Not much to do here except clear the PF Reset indication if there is one. 306 **/ 307 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 308 { 309 DEBUGFUNC("e1000_init_hw_vf"); 310 311 /* attempt to set and restore our mac address */ 312 e1000_rar_set_vf(hw, hw->mac.addr, 0); 313 314 return E1000_SUCCESS; 315 } 316 317 /** 318 * e1000_rar_set_vf - set device MAC address 319 * @hw: pointer to the HW structure 320 * @addr: pointer to the receive address 321 * @index receive address array register 322 **/ 323 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index) 324 { 325 struct e1000_mbx_info *mbx = &hw->mbx; 326 u32 msgbuf[3]; 327 u8 *msg_addr = (u8 *)(&msgbuf[1]); 328 s32 ret_val; 329 330 memset(msgbuf, 0, 12); 331 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 332 memcpy(msg_addr, addr, 6); 333 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); 334 335 if (!ret_val) 336 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); 337 338 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 339 340 /* if nacked the address was rejected, use "perm_addr" */ 341 if (!ret_val && 342 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 343 e1000_read_mac_addr_vf(hw); 344 } 345 346 /** 347 * e1000_hash_mc_addr_vf - Generate a multicast hash value 348 * @hw: pointer to the HW structure 349 * @mc_addr: pointer to a multicast address 350 * 351 * Generates a multicast address hash value which is used to determine 352 * the multicast filter table array address and new table value. 353 **/ 354 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 355 { 356 u32 hash_value, hash_mask; 357 u8 bit_shift = 0; 358 359 DEBUGFUNC("e1000_hash_mc_addr_generic"); 360 361 /* Register count multiplied by bits per register */ 362 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 363 364 /* 365 * The bit_shift is the number of left-shifts 366 * where 0xFF would still fall within the hash mask. 367 */ 368 while (hash_mask >> bit_shift != 0xFF) 369 bit_shift++; 370 371 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 372 (((u16) mc_addr[5]) << bit_shift))); 373 374 return hash_value; 375 } 376 377 static void e1000_write_msg_read_ack(struct e1000_hw *hw, 378 u32 *msg, u16 size) 379 { 380 struct e1000_mbx_info *mbx = &hw->mbx; 381 u32 retmsg[E1000_VFMAILBOX_SIZE]; 382 s32 retval = mbx->ops.write_posted(hw, msg, size, 0); 383 384 if (!retval) 385 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); 386 } 387 388 /** 389 * e1000_update_mc_addr_list_vf - Update Multicast addresses 390 * @hw: pointer to the HW structure 391 * @mc_addr_list: array of multicast addresses to program 392 * @mc_addr_count: number of multicast addresses to program 393 * 394 * Updates the Multicast Table Array. 395 * The caller must have a packed mc_addr_list of multicast addresses. 396 **/ 397 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 398 u8 *mc_addr_list, u32 mc_addr_count) 399 { 400 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 401 u16 *hash_list = (u16 *)&msgbuf[1]; 402 u32 hash_value; 403 u32 i; 404 405 DEBUGFUNC("e1000_update_mc_addr_list_vf"); 406 407 /* Each entry in the list uses 1 16 bit word. We have 30 408 * 16 bit words available in our HW msg buffer (minus 1 for the 409 * msg type). That's 30 hash values if we pack 'em right. If 410 * there are more than 30 MC addresses to add then punt the 411 * extras for now and then add code to handle more than 30 later. 412 * It would be unusual for a server to request that many multi-cast 413 * addresses except for in large enterprise network environments. 414 */ 415 416 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); 417 418 if (mc_addr_count > 30) { 419 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; 420 mc_addr_count = 30; 421 } 422 423 msgbuf[0] = E1000_VF_SET_MULTICAST; 424 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; 425 426 for (i = 0; i < mc_addr_count; i++) { 427 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 428 DEBUGOUT1("Hash value = 0x%03X\n", hash_value); 429 hash_list[i] = hash_value & 0x0FFF; 430 mc_addr_list += ETH_ADDR_LEN; 431 } 432 433 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); 434 } 435 436 /** 437 * e1000_vfta_set_vf - Set/Unset vlan filter table address 438 * @hw: pointer to the HW structure 439 * @vid: determines the vfta register and bit to set/unset 440 * @set: if TRUE then set bit, else clear bit 441 **/ 442 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) 443 { 444 u32 msgbuf[2]; 445 446 msgbuf[0] = E1000_VF_SET_VLAN; 447 msgbuf[1] = vid; 448 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ 449 if (set) 450 msgbuf[0] |= E1000_VF_SET_VLAN_ADD; 451 452 e1000_write_msg_read_ack(hw, msgbuf, 2); 453 } 454 455 /** e1000_rlpml_set_vf - Set the maximum receive packet length 456 * @hw: pointer to the HW structure 457 * @max_size: value to assign to max frame size 458 **/ 459 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 460 { 461 u32 msgbuf[2]; 462 463 msgbuf[0] = E1000_VF_SET_LPE; 464 msgbuf[1] = max_size; 465 466 e1000_write_msg_read_ack(hw, msgbuf, 2); 467 } 468 469 /** 470 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc 471 * @hw: pointer to the HW structure 472 * @uni: boolean indicating unicast promisc status 473 * @multi: boolean indicating multicast promisc status 474 **/ 475 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) 476 { 477 struct e1000_mbx_info *mbx = &hw->mbx; 478 u32 msgbuf = E1000_VF_SET_PROMISC; 479 s32 ret_val; 480 481 switch (type) { 482 case e1000_promisc_multicast: 483 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; 484 break; 485 case e1000_promisc_enabled: 486 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; 487 case e1000_promisc_unicast: 488 msgbuf |= E1000_VF_SET_PROMISC_UNICAST; 489 case e1000_promisc_disabled: 490 break; 491 default: 492 return -E1000_ERR_MAC_INIT; 493 } 494 495 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); 496 497 if (!ret_val) 498 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); 499 500 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) 501 ret_val = -E1000_ERR_MAC_INIT; 502 503 return ret_val; 504 } 505 506 /** 507 * e1000_read_mac_addr_vf - Read device MAC address 508 * @hw: pointer to the HW structure 509 **/ 510 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 511 { 512 int i; 513 514 for (i = 0; i < ETH_ADDR_LEN; i++) 515 hw->mac.addr[i] = hw->mac.perm_addr[i]; 516 517 return E1000_SUCCESS; 518 } 519 520 /** 521 * e1000_check_for_link_vf - Check for link for a virtual interface 522 * @hw: pointer to the HW structure 523 * 524 * Checks to see if the underlying PF is still talking to the VF and 525 * if it is then it reports the link state to the hardware, otherwise 526 * it reports link down and returns an error. 527 **/ 528 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 529 { 530 struct e1000_mbx_info *mbx = &hw->mbx; 531 struct e1000_mac_info *mac = &hw->mac; 532 s32 ret_val = E1000_SUCCESS; 533 u32 in_msg = 0; 534 535 DEBUGFUNC("e1000_check_for_link_vf"); 536 537 /* 538 * We only want to run this if there has been a rst asserted. 539 * in this case that could mean a link change, device reset, 540 * or a virtual function reset 541 */ 542 543 /* If we were hit with a reset or timeout drop the link */ 544 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) 545 mac->get_link_status = TRUE; 546 547 if (!mac->get_link_status) 548 goto out; 549 550 /* if link status is down no point in checking to see if pf is up */ 551 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) 552 goto out; 553 554 /* if the read failed it could just be a mailbox collision, best wait 555 * until we are called again and don't report an error */ 556 if (mbx->ops.read(hw, &in_msg, 1, 0)) 557 goto out; 558 559 /* if incoming message isn't clear to send we are waiting on response */ 560 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 561 /* message is not CTS and is NACK we have lost CTS status */ 562 if (in_msg & E1000_VT_MSGTYPE_NACK) 563 ret_val = -E1000_ERR_MAC_INIT; 564 goto out; 565 } 566 567 /* at this point we know the PF is talking to us, check and see if 568 * we are still accepting timeout or if we had a timeout failure. 569 * if we failed then we will need to reinit */ 570 if (!mbx->timeout) { 571 ret_val = -E1000_ERR_MAC_INIT; 572 goto out; 573 } 574 575 /* if we passed all the tests above then the link is up and we no 576 * longer need to check for link */ 577 mac->get_link_status = FALSE; 578 579 out: 580 return ret_val; 581 } 582 583