1 /******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35
36 #include "e1000_api.h"
37
38
39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void e1000_release_vf(struct e1000_hw *hw);
42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48 u16 *duplex);
49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
54
55 /**
56 * e1000_init_phy_params_vf - Inits PHY params
57 * @hw: pointer to the HW structure
58 *
59 * Doesn't do much - there's no PHY available to the VF.
60 **/
e1000_init_phy_params_vf(struct e1000_hw * hw)61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62 {
63 DEBUGFUNC("e1000_init_phy_params_vf");
64 hw->phy.type = e1000_phy_vf;
65 hw->phy.ops.acquire = e1000_acquire_vf;
66 hw->phy.ops.release = e1000_release_vf;
67
68 return E1000_SUCCESS;
69 }
70
71 /**
72 * e1000_init_nvm_params_vf - Inits NVM params
73 * @hw: pointer to the HW structure
74 *
75 * Doesn't do much - there's no NVM available to the VF.
76 **/
e1000_init_nvm_params_vf(struct e1000_hw * hw)77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78 {
79 DEBUGFUNC("e1000_init_nvm_params_vf");
80 hw->nvm.type = e1000_nvm_none;
81 hw->nvm.ops.acquire = e1000_acquire_vf;
82 hw->nvm.ops.release = e1000_release_vf;
83
84 return E1000_SUCCESS;
85 }
86
87 /**
88 * e1000_init_mac_params_vf - Inits MAC params
89 * @hw: pointer to the HW structure
90 **/
e1000_init_mac_params_vf(struct e1000_hw * hw)91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92 {
93 struct e1000_mac_info *mac = &hw->mac;
94
95 DEBUGFUNC("e1000_init_mac_params_vf");
96
97 /* Set media type */
98 /*
99 * Virtual functions don't care what they're media type is as they
100 * have no direct access to the PHY, or the media. That is handled
101 * by the physical function driver.
102 */
103 hw->phy.media_type = e1000_media_type_unknown;
104
105 /* No ASF features for the VF driver */
106 mac->asf_firmware_present = FALSE;
107 /* ARC subsystem not supported */
108 mac->arc_subsystem_valid = FALSE;
109 /* Disable adaptive IFS mode so the generic funcs don't do anything */
110 mac->adaptive_ifs = FALSE;
111 /* VF's have no MTA Registers - PF feature only */
112 mac->mta_reg_count = 128;
113 /* VF's have no access to RAR entries */
114 mac->rar_entry_count = 1;
115
116 /* Function pointers */
117 /* link setup */
118 mac->ops.setup_link = e1000_setup_link_vf;
119 /* bus type/speed/width */
120 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 /* reset */
122 mac->ops.reset_hw = e1000_reset_hw_vf;
123 /* hw initialization */
124 mac->ops.init_hw = e1000_init_hw_vf;
125 /* check for link */
126 mac->ops.check_for_link = e1000_check_for_link_vf;
127 /* link info */
128 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 /* multicast address update */
130 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 /* set mac address */
132 mac->ops.rar_set = e1000_rar_set_vf;
133 /* read mac address */
134 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135
136
137 return E1000_SUCCESS;
138 }
139
140 /**
141 * e1000_init_function_pointers_vf - Inits function pointers
142 * @hw: pointer to the HW structure
143 **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145 {
146 DEBUGFUNC("e1000_init_function_pointers_vf");
147
148 hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152 }
153
154 /**
155 * e1000_acquire_vf - Acquire rights to access PHY or NVM.
156 * @hw: pointer to the HW structure
157 *
158 * There is no PHY or NVM so we want all attempts to acquire these to fail.
159 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
160 * even want any SW to attempt to use them.
161 **/
e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG * hw)162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
163 {
164 return -E1000_ERR_PHY;
165 }
166
167 /**
168 * e1000_release_vf - Release PHY or NVM
169 * @hw: pointer to the HW structure
170 *
171 * There is no PHY or NVM so we want all attempts to acquire these to fail.
172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 * even want any SW to attempt to use them.
174 **/
e1000_release_vf(struct e1000_hw E1000_UNUSEDARG * hw)175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
176 {
177 return;
178 }
179
180 /**
181 * e1000_setup_link_vf - Sets up link.
182 * @hw: pointer to the HW structure
183 *
184 * Virtual functions cannot change link.
185 **/
e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG * hw)186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
187 {
188 DEBUGFUNC("e1000_setup_link_vf");
189
190 return E1000_SUCCESS;
191 }
192
193 /**
194 * e1000_get_bus_info_pcie_vf - Gets the bus info.
195 * @hw: pointer to the HW structure
196 *
197 * Virtual functions are not really on their own bus.
198 **/
e1000_get_bus_info_pcie_vf(struct e1000_hw * hw)199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200 {
201 struct e1000_bus_info *bus = &hw->bus;
202
203 DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204
205 /* Do not set type PCI-E because we don't want disable master to run */
206 bus->type = e1000_bus_type_reserved;
207 bus->speed = e1000_bus_speed_2500;
208
209 return 0;
210 }
211
212 /**
213 * e1000_get_link_up_info_vf - Gets link info.
214 * @hw: pointer to the HW structure
215 * @speed: pointer to 16 bit value to store link speed.
216 * @duplex: pointer to 16 bit value to store duplex.
217 *
218 * Since we cannot read the PHY and get accurate link info, we must rely upon
219 * the status register's data which is often stale and inaccurate.
220 **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222 u16 *duplex)
223 {
224 s32 status;
225
226 DEBUGFUNC("e1000_get_link_up_info_vf");
227
228 status = E1000_READ_REG(hw, E1000_STATUS);
229 if (status & E1000_STATUS_SPEED_1000) {
230 *speed = SPEED_1000;
231 DEBUGOUT("1000 Mbs, ");
232 } else if (status & E1000_STATUS_SPEED_100) {
233 *speed = SPEED_100;
234 DEBUGOUT("100 Mbs, ");
235 } else {
236 *speed = SPEED_10;
237 DEBUGOUT("10 Mbs, ");
238 }
239
240 if (status & E1000_STATUS_FD) {
241 *duplex = FULL_DUPLEX;
242 DEBUGOUT("Full Duplex\n");
243 } else {
244 *duplex = HALF_DUPLEX;
245 DEBUGOUT("Half Duplex\n");
246 }
247
248 return E1000_SUCCESS;
249 }
250
251 /**
252 * e1000_reset_hw_vf - Resets the HW
253 * @hw: pointer to the HW structure
254 *
255 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256 * This is all the reset we can perform on a VF.
257 **/
e1000_reset_hw_vf(struct e1000_hw * hw)258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259 {
260 struct e1000_mbx_info *mbx = &hw->mbx;
261 u32 timeout = E1000_VF_INIT_TIMEOUT;
262 s32 ret_val = -E1000_ERR_MAC_INIT;
263 u32 ctrl, msgbuf[3];
264 u8 *addr = (u8 *)(&msgbuf[1]);
265
266 DEBUGFUNC("e1000_reset_hw_vf");
267
268 DEBUGOUT("Issuing a function level reset to MAC\n");
269 ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271
272 /* we cannot reset while the RSTI / RSTD bits are asserted */
273 while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 timeout--;
275 usec_delay(5);
276 }
277
278 if (timeout) {
279 /* mailbox timeout can now become active */
280 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281
282 msgbuf[0] = E1000_VF_RESET;
283 mbx->ops.write_posted(hw, msgbuf, 1, 0);
284
285 msec_delay(10);
286
287 /* set our "perm_addr" based on info provided by PF */
288 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 if (!ret_val) {
290 if (msgbuf[0] == (E1000_VF_RESET |
291 E1000_VT_MSGTYPE_ACK))
292 memcpy(hw->mac.perm_addr, addr, 6);
293 else
294 ret_val = -E1000_ERR_MAC_INIT;
295 }
296 }
297
298 return ret_val;
299 }
300
301 /**
302 * e1000_init_hw_vf - Inits the HW
303 * @hw: pointer to the HW structure
304 *
305 * Not much to do here except clear the PF Reset indication if there is one.
306 **/
e1000_init_hw_vf(struct e1000_hw * hw)307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308 {
309 DEBUGFUNC("e1000_init_hw_vf");
310
311 /* attempt to set and restore our mac address */
312 e1000_rar_set_vf(hw, hw->mac.addr, 0);
313
314 return E1000_SUCCESS;
315 }
316
317 /**
318 * e1000_rar_set_vf - set device MAC address
319 * @hw: pointer to the HW structure
320 * @addr: pointer to the receive address
321 * @index receive address array register
322 **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 E1000_UNUSEDARG index)323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
324 u32 E1000_UNUSEDARG index)
325 {
326 struct e1000_mbx_info *mbx = &hw->mbx;
327 u32 msgbuf[3];
328 u8 *msg_addr = (u8 *)(&msgbuf[1]);
329 s32 ret_val;
330
331 memset(msgbuf, 0, 12);
332 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
333 memcpy(msg_addr, addr, 6);
334 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
335
336 if (!ret_val)
337 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
338
339 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
340
341 /* if nacked the address was rejected, use "perm_addr" */
342 if (!ret_val &&
343 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
344 e1000_read_mac_addr_vf(hw);
345
346 return E1000_SUCCESS;
347 }
348
349 /**
350 * e1000_hash_mc_addr_vf - Generate a multicast hash value
351 * @hw: pointer to the HW structure
352 * @mc_addr: pointer to a multicast address
353 *
354 * Generates a multicast address hash value which is used to determine
355 * the multicast filter table array address and new table value.
356 **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
358 {
359 u32 hash_value, hash_mask;
360 u8 bit_shift = 0;
361
362 DEBUGFUNC("e1000_hash_mc_addr_generic");
363
364 /* Register count multiplied by bits per register */
365 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
366
367 /*
368 * The bit_shift is the number of left-shifts
369 * where 0xFF would still fall within the hash mask.
370 */
371 while (hash_mask >> bit_shift != 0xFF)
372 bit_shift++;
373
374 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375 (((u16) mc_addr[5]) << bit_shift)));
376
377 return hash_value;
378 }
379
e1000_write_msg_read_ack(struct e1000_hw * hw,u32 * msg,u16 size)380 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
381 u32 *msg, u16 size)
382 {
383 struct e1000_mbx_info *mbx = &hw->mbx;
384 u32 retmsg[E1000_VFMAILBOX_SIZE];
385 s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
386
387 if (!retval)
388 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
389 }
390
391 /**
392 * e1000_update_mc_addr_list_vf - Update Multicast addresses
393 * @hw: pointer to the HW structure
394 * @mc_addr_list: array of multicast addresses to program
395 * @mc_addr_count: number of multicast addresses to program
396 *
397 * Updates the Multicast Table Array.
398 * The caller must have a packed mc_addr_list of multicast addresses.
399 **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
401 u8 *mc_addr_list, u32 mc_addr_count)
402 {
403 u32 msgbuf[E1000_VFMAILBOX_SIZE];
404 u16 *hash_list = (u16 *)&msgbuf[1];
405 u32 hash_value;
406 u32 i;
407
408 DEBUGFUNC("e1000_update_mc_addr_list_vf");
409
410 /* Each entry in the list uses 1 16 bit word. We have 30
411 * 16 bit words available in our HW msg buffer (minus 1 for the
412 * msg type). That's 30 hash values if we pack 'em right. If
413 * there are more than 30 MC addresses to add then punt the
414 * extras for now and then add code to handle more than 30 later.
415 * It would be unusual for a server to request that many multi-cast
416 * addresses except for in large enterprise network environments.
417 */
418
419 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
420
421 if (mc_addr_count > 30) {
422 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
423 mc_addr_count = 30;
424 }
425
426 msgbuf[0] = E1000_VF_SET_MULTICAST;
427 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
428
429 for (i = 0; i < mc_addr_count; i++) {
430 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
431 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
432 hash_list[i] = hash_value & 0x0FFF;
433 mc_addr_list += ETH_ADDR_LEN;
434 }
435
436 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
437 }
438
439 /**
440 * e1000_vfta_set_vf - Set/Unset vlan filter table address
441 * @hw: pointer to the HW structure
442 * @vid: determines the vfta register and bit to set/unset
443 * @set: if TRUE then set bit, else clear bit
444 **/
e1000_vfta_set_vf(struct e1000_hw * hw,u16 vid,bool set)445 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
446 {
447 u32 msgbuf[2];
448
449 msgbuf[0] = E1000_VF_SET_VLAN;
450 msgbuf[1] = vid;
451 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
452 if (set)
453 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
454
455 e1000_write_msg_read_ack(hw, msgbuf, 2);
456 }
457
458 /** e1000_rlpml_set_vf - Set the maximum receive packet length
459 * @hw: pointer to the HW structure
460 * @max_size: value to assign to max frame size
461 **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)462 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
463 {
464 u32 msgbuf[2];
465
466 msgbuf[0] = E1000_VF_SET_LPE;
467 msgbuf[1] = max_size;
468
469 e1000_write_msg_read_ack(hw, msgbuf, 2);
470 }
471
472 /**
473 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
474 * @hw: pointer to the HW structure
475 * @uni: boolean indicating unicast promisc status
476 * @multi: boolean indicating multicast promisc status
477 **/
e1000_promisc_set_vf(struct e1000_hw * hw,enum e1000_promisc_type type)478 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
479 {
480 struct e1000_mbx_info *mbx = &hw->mbx;
481 u32 msgbuf = E1000_VF_SET_PROMISC;
482 s32 ret_val;
483
484 switch (type) {
485 case e1000_promisc_multicast:
486 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
487 break;
488 case e1000_promisc_enabled:
489 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
490 /* FALLTHROUGH */
491 case e1000_promisc_unicast:
492 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
493 /* FALLTHROUGH */
494 case e1000_promisc_disabled:
495 break;
496 default:
497 return -E1000_ERR_MAC_INIT;
498 }
499
500 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
501
502 if (!ret_val)
503 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
504
505 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
506 ret_val = -E1000_ERR_MAC_INIT;
507
508 return ret_val;
509 }
510
511 /**
512 * e1000_read_mac_addr_vf - Read device MAC address
513 * @hw: pointer to the HW structure
514 **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)515 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
516 {
517 int i;
518
519 for (i = 0; i < ETH_ADDR_LEN; i++)
520 hw->mac.addr[i] = hw->mac.perm_addr[i];
521
522 return E1000_SUCCESS;
523 }
524
525 /**
526 * e1000_check_for_link_vf - Check for link for a virtual interface
527 * @hw: pointer to the HW structure
528 *
529 * Checks to see if the underlying PF is still talking to the VF and
530 * if it is then it reports the link state to the hardware, otherwise
531 * it reports link down and returns an error.
532 **/
e1000_check_for_link_vf(struct e1000_hw * hw)533 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
534 {
535 struct e1000_mbx_info *mbx = &hw->mbx;
536 struct e1000_mac_info *mac = &hw->mac;
537 s32 ret_val = E1000_SUCCESS;
538 u32 in_msg = 0;
539
540 DEBUGFUNC("e1000_check_for_link_vf");
541
542 /*
543 * We only want to run this if there has been a rst asserted.
544 * in this case that could mean a link change, device reset,
545 * or a virtual function reset
546 */
547
548 /* If we were hit with a reset or timeout drop the link */
549 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
550 mac->get_link_status = TRUE;
551
552 if (!mac->get_link_status)
553 goto out;
554
555 /* if link status is down no point in checking to see if pf is up */
556 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
557 goto out;
558
559 /* if the read failed it could just be a mailbox collision, best wait
560 * until we are called again and don't report an error */
561 if (mbx->ops.read(hw, &in_msg, 1, 0))
562 goto out;
563
564 /* if incoming message isn't clear to send we are waiting on response */
565 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
566 /* message is not CTS and is NACK we have lost CTS status */
567 if (in_msg & E1000_VT_MSGTYPE_NACK)
568 ret_val = -E1000_ERR_MAC_INIT;
569 goto out;
570 }
571
572 /* at this point we know the PF is talking to us, check and see if
573 * we are still accepting timeout or if we had a timeout failure.
574 * if we failed then we will need to reinit */
575 if (!mbx->timeout) {
576 ret_val = -E1000_ERR_MAC_INIT;
577 goto out;
578 }
579
580 /* if we passed all the tests above then the link is up and we no
581 * longer need to check for link */
582 mac->get_link_status = FALSE;
583
584 out:
585 return ret_val;
586 }
587
588