1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 36 #include "e1000_api.h" 37 38 39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw); 40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); 41 static void e1000_release_vf(struct e1000_hw *hw); 42 static s32 e1000_acquire_vf(struct e1000_hw *hw); 43 static s32 e1000_setup_link_vf(struct e1000_hw *hw); 44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); 45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw); 46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw); 47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 48 u16 *duplex); 49 static s32 e1000_init_hw_vf(struct e1000_hw *hw); 50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw); 51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); 52 static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); 53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *); 54 55 /** 56 * e1000_init_phy_params_vf - Inits PHY params 57 * @hw: pointer to the HW structure 58 * 59 * Doesn't do much - there's no PHY available to the VF. 60 **/ 61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw) 62 { 63 DEBUGFUNC("e1000_init_phy_params_vf"); 64 hw->phy.type = e1000_phy_vf; 65 hw->phy.ops.acquire = e1000_acquire_vf; 66 hw->phy.ops.release = e1000_release_vf; 67 68 return E1000_SUCCESS; 69 } 70 71 /** 72 * e1000_init_nvm_params_vf - Inits NVM params 73 * @hw: pointer to the HW structure 74 * 75 * Doesn't do much - there's no NVM available to the VF. 76 **/ 77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) 78 { 79 DEBUGFUNC("e1000_init_nvm_params_vf"); 80 hw->nvm.type = e1000_nvm_none; 81 hw->nvm.ops.acquire = e1000_acquire_vf; 82 hw->nvm.ops.release = e1000_release_vf; 83 84 return E1000_SUCCESS; 85 } 86 87 /** 88 * e1000_init_mac_params_vf - Inits MAC params 89 * @hw: pointer to the HW structure 90 **/ 91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) 92 { 93 struct e1000_mac_info *mac = &hw->mac; 94 95 DEBUGFUNC("e1000_init_mac_params_vf"); 96 97 /* Set media type */ 98 /* 99 * Virtual functions don't care what they're media type is as they 100 * have no direct access to the PHY, or the media. That is handled 101 * by the physical function driver. 102 */ 103 hw->phy.media_type = e1000_media_type_unknown; 104 105 /* No ASF features for the VF driver */ 106 mac->asf_firmware_present = FALSE; 107 /* ARC subsystem not supported */ 108 mac->arc_subsystem_valid = FALSE; 109 /* Disable adaptive IFS mode so the generic funcs don't do anything */ 110 mac->adaptive_ifs = FALSE; 111 /* VF's have no MTA Registers - PF feature only */ 112 mac->mta_reg_count = 128; 113 /* VF's have no access to RAR entries */ 114 mac->rar_entry_count = 1; 115 116 /* Function pointers */ 117 /* link setup */ 118 mac->ops.setup_link = e1000_setup_link_vf; 119 /* bus type/speed/width */ 120 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; 121 /* reset */ 122 mac->ops.reset_hw = e1000_reset_hw_vf; 123 /* hw initialization */ 124 mac->ops.init_hw = e1000_init_hw_vf; 125 /* check for link */ 126 mac->ops.check_for_link = e1000_check_for_link_vf; 127 /* link info */ 128 mac->ops.get_link_up_info = e1000_get_link_up_info_vf; 129 /* multicast address update */ 130 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; 131 /* set mac address */ 132 mac->ops.rar_set = e1000_rar_set_vf; 133 /* read mac address */ 134 mac->ops.read_mac_addr = e1000_read_mac_addr_vf; 135 136 137 return E1000_SUCCESS; 138 } 139 140 /** 141 * e1000_init_function_pointers_vf - Inits function pointers 142 * @hw: pointer to the HW structure 143 **/ 144 void e1000_init_function_pointers_vf(struct e1000_hw *hw) 145 { 146 DEBUGFUNC("e1000_init_function_pointers_vf"); 147 148 hw->mac.ops.init_params = e1000_init_mac_params_vf; 149 hw->nvm.ops.init_params = e1000_init_nvm_params_vf; 150 hw->phy.ops.init_params = e1000_init_phy_params_vf; 151 hw->mbx.ops.init_params = e1000_init_mbx_params_vf; 152 } 153 154 /** 155 * e1000_acquire_vf - Acquire rights to access PHY or NVM. 156 * @hw: pointer to the HW structure 157 * 158 * There is no PHY or NVM so we want all attempts to acquire these to fail. 159 * In addition, the MAC registers to access PHY/NVM don't exist so we don't 160 * even want any SW to attempt to use them. 161 **/ 162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw) 163 { 164 return -E1000_ERR_PHY; 165 } 166 167 /** 168 * e1000_release_vf - Release PHY or NVM 169 * @hw: pointer to the HW structure 170 * 171 * There is no PHY or NVM so we want all attempts to acquire these to fail. 172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't 173 * even want any SW to attempt to use them. 174 **/ 175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw) 176 { 177 return; 178 } 179 180 /** 181 * e1000_setup_link_vf - Sets up link. 182 * @hw: pointer to the HW structure 183 * 184 * Virtual functions cannot change link. 185 **/ 186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw) 187 { 188 DEBUGFUNC("e1000_setup_link_vf"); 189 190 return E1000_SUCCESS; 191 } 192 193 /** 194 * e1000_get_bus_info_pcie_vf - Gets the bus info. 195 * @hw: pointer to the HW structure 196 * 197 * Virtual functions are not really on their own bus. 198 **/ 199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) 200 { 201 struct e1000_bus_info *bus = &hw->bus; 202 203 DEBUGFUNC("e1000_get_bus_info_pcie_vf"); 204 205 /* Do not set type PCI-E because we don't want disable master to run */ 206 bus->type = e1000_bus_type_reserved; 207 bus->speed = e1000_bus_speed_2500; 208 209 return 0; 210 } 211 212 /** 213 * e1000_get_link_up_info_vf - Gets link info. 214 * @hw: pointer to the HW structure 215 * @speed: pointer to 16 bit value to store link speed. 216 * @duplex: pointer to 16 bit value to store duplex. 217 * 218 * Since we cannot read the PHY and get accurate link info, we must rely upon 219 * the status register's data which is often stale and inaccurate. 220 **/ 221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, 222 u16 *duplex) 223 { 224 s32 status; 225 226 DEBUGFUNC("e1000_get_link_up_info_vf"); 227 228 status = E1000_READ_REG(hw, E1000_STATUS); 229 if (status & E1000_STATUS_SPEED_1000) { 230 *speed = SPEED_1000; 231 DEBUGOUT("1000 Mbs, "); 232 } else if (status & E1000_STATUS_SPEED_100) { 233 *speed = SPEED_100; 234 DEBUGOUT("100 Mbs, "); 235 } else { 236 *speed = SPEED_10; 237 DEBUGOUT("10 Mbs, "); 238 } 239 240 if (status & E1000_STATUS_FD) { 241 *duplex = FULL_DUPLEX; 242 DEBUGOUT("Full Duplex\n"); 243 } else { 244 *duplex = HALF_DUPLEX; 245 DEBUGOUT("Half Duplex\n"); 246 } 247 248 return E1000_SUCCESS; 249 } 250 251 /** 252 * e1000_reset_hw_vf - Resets the HW 253 * @hw: pointer to the HW structure 254 * 255 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. 256 * This is all the reset we can perform on a VF. 257 **/ 258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw) 259 { 260 struct e1000_mbx_info *mbx = &hw->mbx; 261 u32 timeout = E1000_VF_INIT_TIMEOUT; 262 s32 ret_val = -E1000_ERR_MAC_INIT; 263 u32 ctrl, msgbuf[3]; 264 u8 *addr = (u8 *)(&msgbuf[1]); 265 266 DEBUGFUNC("e1000_reset_hw_vf"); 267 268 DEBUGOUT("Issuing a function level reset to MAC\n"); 269 ctrl = E1000_READ_REG(hw, E1000_CTRL); 270 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 271 272 /* we cannot reset while the RSTI / RSTD bits are asserted */ 273 while (!mbx->ops.check_for_rst(hw, 0) && timeout) { 274 timeout--; 275 usec_delay(5); 276 } 277 278 if (timeout) { 279 /* mailbox timeout can now become active */ 280 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; 281 282 msgbuf[0] = E1000_VF_RESET; 283 mbx->ops.write_posted(hw, msgbuf, 1, 0); 284 285 msec_delay(10); 286 287 /* set our "perm_addr" based on info provided by PF */ 288 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); 289 if (!ret_val) { 290 if (msgbuf[0] == (E1000_VF_RESET | 291 E1000_VT_MSGTYPE_ACK)) 292 memcpy(hw->mac.perm_addr, addr, 6); 293 else 294 ret_val = -E1000_ERR_MAC_INIT; 295 } 296 } 297 298 return ret_val; 299 } 300 301 /** 302 * e1000_init_hw_vf - Inits the HW 303 * @hw: pointer to the HW structure 304 * 305 * Not much to do here except clear the PF Reset indication if there is one. 306 **/ 307 static s32 e1000_init_hw_vf(struct e1000_hw *hw) 308 { 309 DEBUGFUNC("e1000_init_hw_vf"); 310 311 /* attempt to set and restore our mac address */ 312 e1000_rar_set_vf(hw, hw->mac.addr, 0); 313 314 return E1000_SUCCESS; 315 } 316 317 /** 318 * e1000_rar_set_vf - set device MAC address 319 * @hw: pointer to the HW structure 320 * @addr: pointer to the receive address 321 * @index receive address array register 322 **/ 323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, 324 u32 E1000_UNUSEDARG index) 325 { 326 struct e1000_mbx_info *mbx = &hw->mbx; 327 u32 msgbuf[3]; 328 u8 *msg_addr = (u8 *)(&msgbuf[1]); 329 s32 ret_val; 330 331 memset(msgbuf, 0, 12); 332 msgbuf[0] = E1000_VF_SET_MAC_ADDR; 333 memcpy(msg_addr, addr, 6); 334 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); 335 336 if (!ret_val) 337 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); 338 339 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; 340 341 /* if nacked the address was rejected, use "perm_addr" */ 342 if (!ret_val && 343 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) 344 e1000_read_mac_addr_vf(hw); 345 346 return E1000_SUCCESS; 347 } 348 349 /** 350 * e1000_hash_mc_addr_vf - Generate a multicast hash value 351 * @hw: pointer to the HW structure 352 * @mc_addr: pointer to a multicast address 353 * 354 * Generates a multicast address hash value which is used to determine 355 * the multicast filter table array address and new table value. 356 **/ 357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) 358 { 359 u32 hash_value, hash_mask; 360 u8 bit_shift = 0; 361 362 DEBUGFUNC("e1000_hash_mc_addr_generic"); 363 364 /* Register count multiplied by bits per register */ 365 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 366 367 /* 368 * The bit_shift is the number of left-shifts 369 * where 0xFF would still fall within the hash mask. 370 */ 371 while (hash_mask >> bit_shift != 0xFF) 372 bit_shift++; 373 374 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 375 (((u16) mc_addr[5]) << bit_shift))); 376 377 return hash_value; 378 } 379 380 static void e1000_write_msg_read_ack(struct e1000_hw *hw, 381 u32 *msg, u16 size) 382 { 383 struct e1000_mbx_info *mbx = &hw->mbx; 384 u32 retmsg[E1000_VFMAILBOX_SIZE]; 385 s32 retval = mbx->ops.write_posted(hw, msg, size, 0); 386 387 if (!retval) 388 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); 389 } 390 391 /** 392 * e1000_update_mc_addr_list_vf - Update Multicast addresses 393 * @hw: pointer to the HW structure 394 * @mc_addr_list: array of multicast addresses to program 395 * @mc_addr_count: number of multicast addresses to program 396 * 397 * Updates the Multicast Table Array. 398 * The caller must have a packed mc_addr_list of multicast addresses. 399 **/ 400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, 401 u8 *mc_addr_list, u32 mc_addr_count) 402 { 403 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 404 u16 *hash_list = (u16 *)&msgbuf[1]; 405 u32 hash_value; 406 u32 i; 407 408 DEBUGFUNC("e1000_update_mc_addr_list_vf"); 409 410 /* Each entry in the list uses 1 16 bit word. We have 30 411 * 16 bit words available in our HW msg buffer (minus 1 for the 412 * msg type). That's 30 hash values if we pack 'em right. If 413 * there are more than 30 MC addresses to add then punt the 414 * extras for now and then add code to handle more than 30 later. 415 * It would be unusual for a server to request that many multi-cast 416 * addresses except for in large enterprise network environments. 417 */ 418 419 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); 420 421 if (mc_addr_count > 30) { 422 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; 423 mc_addr_count = 30; 424 } 425 426 msgbuf[0] = E1000_VF_SET_MULTICAST; 427 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; 428 429 for (i = 0; i < mc_addr_count; i++) { 430 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); 431 DEBUGOUT1("Hash value = 0x%03X\n", hash_value); 432 hash_list[i] = hash_value & 0x0FFF; 433 mc_addr_list += ETH_ADDR_LEN; 434 } 435 436 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); 437 } 438 439 /** 440 * e1000_vfta_set_vf - Set/Unset vlan filter table address 441 * @hw: pointer to the HW structure 442 * @vid: determines the vfta register and bit to set/unset 443 * @set: if TRUE then set bit, else clear bit 444 **/ 445 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) 446 { 447 u32 msgbuf[2]; 448 449 msgbuf[0] = E1000_VF_SET_VLAN; 450 msgbuf[1] = vid; 451 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ 452 if (set) 453 msgbuf[0] |= E1000_VF_SET_VLAN_ADD; 454 455 e1000_write_msg_read_ack(hw, msgbuf, 2); 456 } 457 458 /** e1000_rlpml_set_vf - Set the maximum receive packet length 459 * @hw: pointer to the HW structure 460 * @max_size: value to assign to max frame size 461 **/ 462 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) 463 { 464 u32 msgbuf[2]; 465 466 msgbuf[0] = E1000_VF_SET_LPE; 467 msgbuf[1] = max_size; 468 469 e1000_write_msg_read_ack(hw, msgbuf, 2); 470 } 471 472 /** 473 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc 474 * @hw: pointer to the HW structure 475 * @uni: boolean indicating unicast promisc status 476 * @multi: boolean indicating multicast promisc status 477 **/ 478 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) 479 { 480 struct e1000_mbx_info *mbx = &hw->mbx; 481 u32 msgbuf = E1000_VF_SET_PROMISC; 482 s32 ret_val; 483 484 switch (type) { 485 case e1000_promisc_multicast: 486 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; 487 break; 488 case e1000_promisc_enabled: 489 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; 490 case e1000_promisc_unicast: 491 msgbuf |= E1000_VF_SET_PROMISC_UNICAST; 492 case e1000_promisc_disabled: 493 break; 494 default: 495 return -E1000_ERR_MAC_INIT; 496 } 497 498 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); 499 500 if (!ret_val) 501 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); 502 503 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) 504 ret_val = -E1000_ERR_MAC_INIT; 505 506 return ret_val; 507 } 508 509 /** 510 * e1000_read_mac_addr_vf - Read device MAC address 511 * @hw: pointer to the HW structure 512 **/ 513 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) 514 { 515 int i; 516 517 for (i = 0; i < ETH_ADDR_LEN; i++) 518 hw->mac.addr[i] = hw->mac.perm_addr[i]; 519 520 return E1000_SUCCESS; 521 } 522 523 /** 524 * e1000_check_for_link_vf - Check for link for a virtual interface 525 * @hw: pointer to the HW structure 526 * 527 * Checks to see if the underlying PF is still talking to the VF and 528 * if it is then it reports the link state to the hardware, otherwise 529 * it reports link down and returns an error. 530 **/ 531 static s32 e1000_check_for_link_vf(struct e1000_hw *hw) 532 { 533 struct e1000_mbx_info *mbx = &hw->mbx; 534 struct e1000_mac_info *mac = &hw->mac; 535 s32 ret_val = E1000_SUCCESS; 536 u32 in_msg = 0; 537 538 DEBUGFUNC("e1000_check_for_link_vf"); 539 540 /* 541 * We only want to run this if there has been a rst asserted. 542 * in this case that could mean a link change, device reset, 543 * or a virtual function reset 544 */ 545 546 /* If we were hit with a reset or timeout drop the link */ 547 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) 548 mac->get_link_status = TRUE; 549 550 if (!mac->get_link_status) 551 goto out; 552 553 /* if link status is down no point in checking to see if pf is up */ 554 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) 555 goto out; 556 557 /* if the read failed it could just be a mailbox collision, best wait 558 * until we are called again and don't report an error */ 559 if (mbx->ops.read(hw, &in_msg, 1, 0)) 560 goto out; 561 562 /* if incoming message isn't clear to send we are waiting on response */ 563 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { 564 /* message is not CTS and is NACK we have lost CTS status */ 565 if (in_msg & E1000_VT_MSGTYPE_NACK) 566 ret_val = -E1000_ERR_MAC_INIT; 567 goto out; 568 } 569 570 /* at this point we know the PF is talking to us, check and see if 571 * we are still accepting timeout or if we had a timeout failure. 572 * if we failed then we will need to reinit */ 573 if (!mbx->timeout) { 574 ret_val = -E1000_ERR_MAC_INIT; 575 goto out; 576 } 577 578 /* if we passed all the tests above then the link is up and we no 579 * longer need to check for link */ 580 mac->get_link_status = FALSE; 581 582 out: 583 return ret_val; 584 } 585 586