xref: /illumos-gate/usr/src/uts/common/io/e1000api/e1000_vf.c (revision 2e837a72011f54762249b6612c2a64f171efcd43)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 
36 #include "e1000_api.h"
37 
38 
39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void e1000_release_vf(struct e1000_hw *hw);
42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48 				     u16 *duplex);
49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
54 
55 /**
56  *  e1000_init_phy_params_vf - Inits PHY params
57  *  @hw: pointer to the HW structure
58  *
59  *  Doesn't do much - there's no PHY available to the VF.
60  **/
61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62 {
63 	DEBUGFUNC("e1000_init_phy_params_vf");
64 	hw->phy.type = e1000_phy_vf;
65 	hw->phy.ops.acquire = e1000_acquire_vf;
66 	hw->phy.ops.release = e1000_release_vf;
67 
68 	return E1000_SUCCESS;
69 }
70 
71 /**
72  *  e1000_init_nvm_params_vf - Inits NVM params
73  *  @hw: pointer to the HW structure
74  *
75  *  Doesn't do much - there's no NVM available to the VF.
76  **/
77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78 {
79 	DEBUGFUNC("e1000_init_nvm_params_vf");
80 	hw->nvm.type = e1000_nvm_none;
81 	hw->nvm.ops.acquire = e1000_acquire_vf;
82 	hw->nvm.ops.release = e1000_release_vf;
83 
84 	return E1000_SUCCESS;
85 }
86 
87 /**
88  *  e1000_init_mac_params_vf - Inits MAC params
89  *  @hw: pointer to the HW structure
90  **/
91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92 {
93 	struct e1000_mac_info *mac = &hw->mac;
94 
95 	DEBUGFUNC("e1000_init_mac_params_vf");
96 
97 	/* Set media type */
98 	/*
99 	 * Virtual functions don't care what they're media type is as they
100 	 * have no direct access to the PHY, or the media.  That is handled
101 	 * by the physical function driver.
102 	 */
103 	hw->phy.media_type = e1000_media_type_unknown;
104 
105 	/* No ASF features for the VF driver */
106 	mac->asf_firmware_present = FALSE;
107 	/* ARC subsystem not supported */
108 	mac->arc_subsystem_valid = FALSE;
109 	/* Disable adaptive IFS mode so the generic funcs don't do anything */
110 	mac->adaptive_ifs = FALSE;
111 	/* VF's have no MTA Registers - PF feature only */
112 	mac->mta_reg_count = 128;
113 	/* VF's have no access to RAR entries  */
114 	mac->rar_entry_count = 1;
115 
116 	/* Function pointers */
117 	/* link setup */
118 	mac->ops.setup_link = e1000_setup_link_vf;
119 	/* bus type/speed/width */
120 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 	/* reset */
122 	mac->ops.reset_hw = e1000_reset_hw_vf;
123 	/* hw initialization */
124 	mac->ops.init_hw = e1000_init_hw_vf;
125 	/* check for link */
126 	mac->ops.check_for_link = e1000_check_for_link_vf;
127 	/* link info */
128 	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 	/* multicast address update */
130 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 	/* set mac address */
132 	mac->ops.rar_set = e1000_rar_set_vf;
133 	/* read mac address */
134 	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135 
136 
137 	return E1000_SUCCESS;
138 }
139 
140 /**
141  *  e1000_init_function_pointers_vf - Inits function pointers
142  *  @hw: pointer to the HW structure
143  **/
144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145 {
146 	DEBUGFUNC("e1000_init_function_pointers_vf");
147 
148 	hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 	hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152 }
153 
154 /**
155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
156  *  @hw: pointer to the HW structure
157  *
158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
160  *  even want any SW to attempt to use them.
161  **/
162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
163 {
164 	return -E1000_ERR_PHY;
165 }
166 
167 /**
168  *  e1000_release_vf - Release PHY or NVM
169  *  @hw: pointer to the HW structure
170  *
171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
173  *  even want any SW to attempt to use them.
174  **/
175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
176 {
177 	return;
178 }
179 
180 /**
181  *  e1000_setup_link_vf - Sets up link.
182  *  @hw: pointer to the HW structure
183  *
184  *  Virtual functions cannot change link.
185  **/
186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
187 {
188 	DEBUGFUNC("e1000_setup_link_vf");
189 
190 	return E1000_SUCCESS;
191 }
192 
193 /**
194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
195  *  @hw: pointer to the HW structure
196  *
197  *  Virtual functions are not really on their own bus.
198  **/
199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200 {
201 	struct e1000_bus_info *bus = &hw->bus;
202 
203 	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204 
205 	/* Do not set type PCI-E because we don't want disable master to run */
206 	bus->type = e1000_bus_type_reserved;
207 	bus->speed = e1000_bus_speed_2500;
208 
209 	return 0;
210 }
211 
212 /**
213  *  e1000_get_link_up_info_vf - Gets link info.
214  *  @hw: pointer to the HW structure
215  *  @speed: pointer to 16 bit value to store link speed.
216  *  @duplex: pointer to 16 bit value to store duplex.
217  *
218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
219  *  the status register's data which is often stale and inaccurate.
220  **/
221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222 				     u16 *duplex)
223 {
224 	s32 status;
225 
226 	DEBUGFUNC("e1000_get_link_up_info_vf");
227 
228 	status = E1000_READ_REG(hw, E1000_STATUS);
229 	if (status & E1000_STATUS_SPEED_1000) {
230 		*speed = SPEED_1000;
231 		DEBUGOUT("1000 Mbs, ");
232 	} else if (status & E1000_STATUS_SPEED_100) {
233 		*speed = SPEED_100;
234 		DEBUGOUT("100 Mbs, ");
235 	} else {
236 		*speed = SPEED_10;
237 		DEBUGOUT("10 Mbs, ");
238 	}
239 
240 	if (status & E1000_STATUS_FD) {
241 		*duplex = FULL_DUPLEX;
242 		DEBUGOUT("Full Duplex\n");
243 	} else {
244 		*duplex = HALF_DUPLEX;
245 		DEBUGOUT("Half Duplex\n");
246 	}
247 
248 	return E1000_SUCCESS;
249 }
250 
251 /**
252  *  e1000_reset_hw_vf - Resets the HW
253  *  @hw: pointer to the HW structure
254  *
255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256  *  This is all the reset we can perform on a VF.
257  **/
258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259 {
260 	struct e1000_mbx_info *mbx = &hw->mbx;
261 	u32 timeout = E1000_VF_INIT_TIMEOUT;
262 	s32 ret_val = -E1000_ERR_MAC_INIT;
263 	u32 ctrl, msgbuf[3];
264 	u8 *addr = (u8 *)(&msgbuf[1]);
265 
266 	DEBUGFUNC("e1000_reset_hw_vf");
267 
268 	DEBUGOUT("Issuing a function level reset to MAC\n");
269 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271 
272 	/* we cannot reset while the RSTI / RSTD bits are asserted */
273 	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 		timeout--;
275 		usec_delay(5);
276 	}
277 
278 	if (timeout) {
279 		/* mailbox timeout can now become active */
280 		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281 
282 		msgbuf[0] = E1000_VF_RESET;
283 		mbx->ops.write_posted(hw, msgbuf, 1, 0);
284 
285 		msec_delay(10);
286 
287 		/* set our "perm_addr" based on info provided by PF */
288 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 		if (!ret_val) {
290 			if (msgbuf[0] == (E1000_VF_RESET |
291 			    E1000_VT_MSGTYPE_ACK))
292 				memcpy(hw->mac.perm_addr, addr, 6);
293 			else
294 				ret_val = -E1000_ERR_MAC_INIT;
295 		}
296 	}
297 
298 	return ret_val;
299 }
300 
301 /**
302  *  e1000_init_hw_vf - Inits the HW
303  *  @hw: pointer to the HW structure
304  *
305  *  Not much to do here except clear the PF Reset indication if there is one.
306  **/
307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308 {
309 	DEBUGFUNC("e1000_init_hw_vf");
310 
311 	/* attempt to set and restore our mac address */
312 	e1000_rar_set_vf(hw, hw->mac.addr, 0);
313 
314 	return E1000_SUCCESS;
315 }
316 
317 /**
318  *  e1000_rar_set_vf - set device MAC address
319  *  @hw: pointer to the HW structure
320  *  @addr: pointer to the receive address
321  *  @index receive address array register
322  **/
323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
324 			     u32 E1000_UNUSEDARG index)
325 {
326 	struct e1000_mbx_info *mbx = &hw->mbx;
327 	u32 msgbuf[3];
328 	u8 *msg_addr = (u8 *)(&msgbuf[1]);
329 	s32 ret_val;
330 
331 	memset(msgbuf, 0, 12);
332 	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
333 	memcpy(msg_addr, addr, 6);
334 	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
335 
336 	if (!ret_val)
337 		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
338 
339 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
340 
341 	/* if nacked the address was rejected, use "perm_addr" */
342 	if (!ret_val &&
343 	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
344 		e1000_read_mac_addr_vf(hw);
345 
346 	return E1000_SUCCESS;
347 }
348 
349 /**
350  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
351  *  @hw: pointer to the HW structure
352  *  @mc_addr: pointer to a multicast address
353  *
354  *  Generates a multicast address hash value which is used to determine
355  *  the multicast filter table array address and new table value.
356  **/
357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
358 {
359 	u32 hash_value, hash_mask;
360 	u8 bit_shift = 0;
361 
362 	DEBUGFUNC("e1000_hash_mc_addr_generic");
363 
364 	/* Register count multiplied by bits per register */
365 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
366 
367 	/*
368 	 * The bit_shift is the number of left-shifts
369 	 * where 0xFF would still fall within the hash mask.
370 	 */
371 	while (hash_mask >> bit_shift != 0xFF)
372 		bit_shift++;
373 
374 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375 				  (((u16) mc_addr[5]) << bit_shift)));
376 
377 	return hash_value;
378 }
379 
380 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
381 				     u32 *msg, u16 size)
382 {
383 	struct e1000_mbx_info *mbx = &hw->mbx;
384 	u32 retmsg[E1000_VFMAILBOX_SIZE];
385 	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
386 
387 	if (!retval)
388 		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
389 }
390 
391 /**
392  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
393  *  @hw: pointer to the HW structure
394  *  @mc_addr_list: array of multicast addresses to program
395  *  @mc_addr_count: number of multicast addresses to program
396  *
397  *  Updates the Multicast Table Array.
398  *  The caller must have a packed mc_addr_list of multicast addresses.
399  **/
400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
401 				  u8 *mc_addr_list, u32 mc_addr_count)
402 {
403 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
404 	u16 *hash_list = (u16 *)&msgbuf[1];
405 	u32 hash_value;
406 	u32 i;
407 
408 	DEBUGFUNC("e1000_update_mc_addr_list_vf");
409 
410 	/* Each entry in the list uses 1 16 bit word.  We have 30
411 	 * 16 bit words available in our HW msg buffer (minus 1 for the
412 	 * msg type).  That's 30 hash values if we pack 'em right.  If
413 	 * there are more than 30 MC addresses to add then punt the
414 	 * extras for now and then add code to handle more than 30 later.
415 	 * It would be unusual for a server to request that many multi-cast
416 	 * addresses except for in large enterprise network environments.
417 	 */
418 
419 	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
420 
421 	if (mc_addr_count > 30) {
422 		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
423 		mc_addr_count = 30;
424 	}
425 
426 	msgbuf[0] = E1000_VF_SET_MULTICAST;
427 	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
428 
429 	for (i = 0; i < mc_addr_count; i++) {
430 		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
431 		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
432 		hash_list[i] = hash_value & 0x0FFF;
433 		mc_addr_list += ETH_ADDR_LEN;
434 	}
435 
436 	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
437 }
438 
439 /**
440  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
441  *  @hw: pointer to the HW structure
442  *  @vid: determines the vfta register and bit to set/unset
443  *  @set: if TRUE then set bit, else clear bit
444  **/
445 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
446 {
447 	u32 msgbuf[2];
448 
449 	msgbuf[0] = E1000_VF_SET_VLAN;
450 	msgbuf[1] = vid;
451 	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
452 	if (set)
453 		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
454 
455 	e1000_write_msg_read_ack(hw, msgbuf, 2);
456 }
457 
458 /** e1000_rlpml_set_vf - Set the maximum receive packet length
459  *  @hw: pointer to the HW structure
460  *  @max_size: value to assign to max frame size
461  **/
462 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
463 {
464 	u32 msgbuf[2];
465 
466 	msgbuf[0] = E1000_VF_SET_LPE;
467 	msgbuf[1] = max_size;
468 
469 	e1000_write_msg_read_ack(hw, msgbuf, 2);
470 }
471 
472 /**
473  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
474  *  @hw: pointer to the HW structure
475  *  @uni: boolean indicating unicast promisc status
476  *  @multi: boolean indicating multicast promisc status
477  **/
478 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
479 {
480 	struct e1000_mbx_info *mbx = &hw->mbx;
481 	u32 msgbuf = E1000_VF_SET_PROMISC;
482 	s32 ret_val;
483 
484 	switch (type) {
485 	case e1000_promisc_multicast:
486 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
487 		break;
488 	case e1000_promisc_enabled:
489 		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
490 		/* FALLTHROUGH */
491 	case e1000_promisc_unicast:
492 		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
493 		/* FALLTHROUGH */
494 	case e1000_promisc_disabled:
495 		break;
496 	default:
497 		return -E1000_ERR_MAC_INIT;
498 	}
499 
500 	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
501 
502 	if (!ret_val)
503 		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
504 
505 	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
506 		ret_val = -E1000_ERR_MAC_INIT;
507 
508 	return ret_val;
509 }
510 
511 /**
512  *  e1000_read_mac_addr_vf - Read device MAC address
513  *  @hw: pointer to the HW structure
514  **/
515 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
516 {
517 	int i;
518 
519 	for (i = 0; i < ETH_ADDR_LEN; i++)
520 		hw->mac.addr[i] = hw->mac.perm_addr[i];
521 
522 	return E1000_SUCCESS;
523 }
524 
525 /**
526  *  e1000_check_for_link_vf - Check for link for a virtual interface
527  *  @hw: pointer to the HW structure
528  *
529  *  Checks to see if the underlying PF is still talking to the VF and
530  *  if it is then it reports the link state to the hardware, otherwise
531  *  it reports link down and returns an error.
532  **/
533 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
534 {
535 	struct e1000_mbx_info *mbx = &hw->mbx;
536 	struct e1000_mac_info *mac = &hw->mac;
537 	s32 ret_val = E1000_SUCCESS;
538 	u32 in_msg = 0;
539 
540 	DEBUGFUNC("e1000_check_for_link_vf");
541 
542 	/*
543 	 * We only want to run this if there has been a rst asserted.
544 	 * in this case that could mean a link change, device reset,
545 	 * or a virtual function reset
546 	 */
547 
548 	/* If we were hit with a reset or timeout drop the link */
549 	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
550 		mac->get_link_status = TRUE;
551 
552 	if (!mac->get_link_status)
553 		goto out;
554 
555 	/* if link status is down no point in checking to see if pf is up */
556 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
557 		goto out;
558 
559 	/* if the read failed it could just be a mailbox collision, best wait
560 	 * until we are called again and don't report an error */
561 	if (mbx->ops.read(hw, &in_msg, 1, 0))
562 		goto out;
563 
564 	/* if incoming message isn't clear to send we are waiting on response */
565 	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
566 		/* message is not CTS and is NACK we have lost CTS status */
567 		if (in_msg & E1000_VT_MSGTYPE_NACK)
568 			ret_val = -E1000_ERR_MAC_INIT;
569 		goto out;
570 	}
571 
572 	/* at this point we know the PF is talking to us, check and see if
573 	 * we are still accepting timeout or if we had a timeout failure.
574 	 * if we failed then we will need to reinit */
575 	if (!mbx->timeout) {
576 		ret_val = -E1000_ERR_MAC_INIT;
577 		goto out;
578 	}
579 
580 	/* if we passed all the tests above then the link is up and we no
581 	 * longer need to check for link */
582 	mac->get_link_status = FALSE;
583 
584 out:
585 	return ret_val;
586 }
587 
588