1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2019 Joyent, Inc. 26 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2022 Oxide Computer Company 29 */ 30 31 /* This file contains all TCP input processing functions. */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/strsun.h> 36 #include <sys/strsubr.h> 37 #include <sys/stropts.h> 38 #include <sys/strlog.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/suntpi.h> 42 #include <sys/xti_inet.h> 43 #include <sys/squeue_impl.h> 44 #include <sys/squeue.h> 45 #include <sys/tsol/tnet.h> 46 47 #include <inet/common.h> 48 #include <inet/ip.h> 49 #include <inet/tcp.h> 50 #include <inet/tcp_impl.h> 51 #include <inet/tcp_cluster.h> 52 #include <inet/proto_set.h> 53 #include <inet/ipsec_impl.h> 54 55 /* 56 * RFC7323-recommended phrasing of TSTAMP option, for easier parsing 57 */ 58 59 #ifdef _BIG_ENDIAN 60 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 61 (TCPOPT_TSTAMP << 8) | 10) 62 #else 63 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 64 (TCPOPT_NOP << 8) | TCPOPT_NOP) 65 #endif 66 67 /* 68 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 69 */ 70 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 71 72 /* 73 * Since tcp_listener is not cleared atomically with tcp_detached 74 * being cleared we need this extra bit to tell a detached connection 75 * apart from one that is in the process of being accepted. 76 */ 77 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 78 (TCP_IS_DETACHED(tcp) && \ 79 (!(tcp)->tcp_hard_binding)) 80 81 /* 82 * Steps to do when a tcp_t moves to TIME-WAIT state. 83 * 84 * This connection is done, we don't need to account for it. Decrement 85 * the listener connection counter if needed. 86 * 87 * Decrement the connection counter of the stack. Note that this counter 88 * is per CPU. So the total number of connections in a stack is the sum of all 89 * of them. Since there is no lock for handling all of them exclusively, the 90 * resulting sum is only an approximation. 91 * 92 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 93 * connection won't interfere with new ones. 94 * 95 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 96 * the timer is handled within the context of this tcp_t. When the timer 97 * fires, tcp_clean_death() is called. If upper layer closes the connection 98 * during this period, tcp_time_wait_append() will be called to add this 99 * tcp_t to the global TIME-WAIT list. Note that this means that the 100 * actual wait time in TIME-WAIT state will be longer than the 101 * tcps_time_wait_interval since the period before upper layer closes the 102 * connection is not accounted for when tcp_time_wait_append() is called. 103 * 104 * If upper layer has closed the connection, call tcp_time_wait_append() 105 * directly. 106 * 107 */ 108 #define SET_TIME_WAIT(tcps, tcp, connp) \ 109 { \ 110 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 111 if ((tcp)->tcp_listen_cnt != NULL) \ 112 TCP_DECR_LISTEN_CNT(tcp); \ 113 atomic_dec_64( \ 114 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 115 (connp)->conn_exclbind = 0; \ 116 if (!TCP_IS_DETACHED(tcp)) { \ 117 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 118 } else { \ 119 tcp_time_wait_append(tcp); \ 120 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 121 } \ 122 } 123 124 /* 125 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 126 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 127 * data, TCP will not respond with an ACK. RFC 793 requires that 128 * TCP responds with an ACK for such a bogus ACK. By not following 129 * the RFC, we prevent TCP from getting into an ACK storm if somehow 130 * an attacker successfully spoofs an acceptable segment to our 131 * peer; or when our peer is "confused." 132 */ 133 static uint32_t tcp_drop_ack_unsent_cnt = 10; 134 135 /* 136 * To protect TCP against attacker using a small window and requesting 137 * large amount of data (DoS attack by conuming memory), TCP checks the 138 * window advertised in the last ACK of the 3-way handshake. TCP uses 139 * the tcp_mss (the size of one packet) value for comparion. The window 140 * should be larger than tcp_mss. But while a sane TCP should advertise 141 * a receive window larger than or equal to 4*MSS to avoid stop and go 142 * tarrfic, not all TCP stacks do that. This is especially true when 143 * tcp_mss is a big value. 144 * 145 * To work around this issue, an additional fixed value for comparison 146 * is also used. If the advertised window is smaller than both tcp_mss 147 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 148 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 149 * smaller than 8K is considered to be OK. 150 */ 151 static uint32_t tcp_init_wnd_chk = 4096; 152 153 /* Process ICMP source quench message or not. */ 154 static boolean_t tcp_icmp_source_quench = B_FALSE; 155 156 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 157 158 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 159 ip_recv_attr_t *); 160 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 161 ip_recv_attr_t *); 162 static boolean_t tcp_drop_q0(tcp_t *); 163 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 164 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 165 ip_recv_attr_t *); 166 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 167 static void tcp_process_options(tcp_t *, tcpha_t *); 168 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 169 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 170 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 171 static void tcp_set_rto(tcp_t *, hrtime_t); 172 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 173 174 /* 175 * CC wrapper hook functions 176 */ 177 static void 178 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked, 179 uint16_t type) 180 { 181 uint32_t old_cwnd = tcp->tcp_cwnd; 182 183 tcp->tcp_ccv.bytes_this_ack = bytes_acked; 184 if (tcp->tcp_cwnd <= tcp->tcp_swnd) 185 tcp->tcp_ccv.flags |= CCF_CWND_LIMITED; 186 else 187 tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED; 188 189 if (type == CC_ACK) { 190 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 191 if (tcp->tcp_ccv.flags & CCF_RTO) 192 tcp->tcp_ccv.flags &= ~CCF_RTO; 193 194 tcp->tcp_ccv.t_bytes_acked += 195 min(tcp->tcp_ccv.bytes_this_ack, 196 tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss); 197 if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) { 198 tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd; 199 tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND; 200 } 201 } else { 202 tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND; 203 tcp->tcp_ccv.t_bytes_acked = 0; 204 } 205 } 206 207 if (CC_ALGO(tcp)->ack_received != NULL) { 208 /* 209 * The FreeBSD code where this originated had a comment "Find 210 * a way to live without this" in several places where curack 211 * got set. If they eventually dump curack from the cc 212 * variables, we'll need to adapt our code. 213 */ 214 tcp->tcp_ccv.curack = seg_ack; 215 CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type); 216 } 217 218 DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd, 219 uint32_t, tcp->tcp_cwnd); 220 } 221 222 void 223 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type) 224 { 225 uint32_t old_cwnd = tcp->tcp_cwnd; 226 uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh; 227 switch (type) { 228 case CC_NDUPACK: 229 if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) { 230 tcp->tcp_rexmit_max = tcp->tcp_snxt; 231 if (tcp->tcp_ecn_ok) { 232 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 233 tcp->tcp_cwr = B_TRUE; 234 tcp->tcp_ecn_cwr_sent = B_FALSE; 235 } 236 } 237 break; 238 case CC_ECN: 239 if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) { 240 tcp->tcp_rexmit_max = tcp->tcp_snxt; 241 if (tcp->tcp_ecn_ok) { 242 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 243 tcp->tcp_cwr = B_TRUE; 244 tcp->tcp_ecn_cwr_sent = B_FALSE; 245 } 246 } 247 break; 248 case CC_RTO: 249 tcp->tcp_ccv.flags |= CCF_RTO; 250 tcp->tcp_dupack_cnt = 0; 251 tcp->tcp_ccv.t_bytes_acked = 0; 252 /* 253 * Give up on fast recovery and congestion recovery if we were 254 * attempting either. 255 */ 256 EXIT_RECOVERY(tcp->tcp_ccv.flags); 257 if (CC_ALGO(tcp)->cong_signal == NULL) { 258 /* 259 * RFC5681 Section 3.1 260 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4) 261 */ 262 tcp->tcp_cwnd_ssthresh = max( 263 (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss, 264 2) * tcp->tcp_mss; 265 tcp->tcp_cwnd = tcp->tcp_mss; 266 } 267 268 if (tcp->tcp_ecn_ok) { 269 tcp->tcp_cwr = B_TRUE; 270 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 271 tcp->tcp_ecn_cwr_sent = B_FALSE; 272 } 273 break; 274 } 275 276 if (CC_ALGO(tcp)->cong_signal != NULL) { 277 tcp->tcp_ccv.curack = seg_ack; 278 CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type); 279 } 280 281 DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd, 282 uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh, 283 uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type); 284 } 285 286 static void 287 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack) 288 { 289 uint32_t old_cwnd = tcp->tcp_cwnd; 290 291 if (CC_ALGO(tcp)->post_recovery != NULL) { 292 tcp->tcp_ccv.curack = seg_ack; 293 CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv); 294 } 295 tcp->tcp_ccv.t_bytes_acked = 0; 296 297 DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp, 298 uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd); 299 } 300 301 /* 302 * Set the MSS associated with a particular tcp based on its current value, 303 * and a new one passed in. Observe minimums and maximums, and reset other 304 * state variables that we want to view as multiples of MSS. 305 * 306 * The value of MSS could be either increased or descreased. 307 */ 308 void 309 tcp_mss_set(tcp_t *tcp, uint32_t mss) 310 { 311 uint32_t mss_max; 312 tcp_stack_t *tcps = tcp->tcp_tcps; 313 conn_t *connp = tcp->tcp_connp; 314 315 if (connp->conn_ipversion == IPV4_VERSION) 316 mss_max = tcps->tcps_mss_max_ipv4; 317 else 318 mss_max = tcps->tcps_mss_max_ipv6; 319 320 if (mss < tcps->tcps_mss_min) 321 mss = tcps->tcps_mss_min; 322 if (mss > mss_max) 323 mss = mss_max; 324 /* 325 * Unless naglim has been set by our client to 326 * a non-mss value, force naglim to track mss. 327 * This can help to aggregate small writes. 328 */ 329 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 330 tcp->tcp_naglim = mss; 331 /* 332 * TCP should be able to buffer at least 4 MSS data for obvious 333 * performance reason. 334 */ 335 if ((mss << 2) > connp->conn_sndbuf) 336 connp->conn_sndbuf = mss << 2; 337 338 /* 339 * Set the send lowater to at least twice of MSS. 340 */ 341 if ((mss << 1) > connp->conn_sndlowat) 342 connp->conn_sndlowat = mss << 1; 343 344 /* 345 * Update tcp_cwnd according to the new value of MSS. Keep the 346 * previous ratio to preserve the transmit rate. 347 */ 348 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 349 tcp->tcp_cwnd_cnt = 0; 350 351 tcp->tcp_mss = mss; 352 (void) tcp_maxpsz_set(tcp, B_TRUE); 353 } 354 355 /* 356 * Extract option values from a tcp header. We put any found values into the 357 * tcpopt struct and return a bitmask saying which options were found. 358 */ 359 int 360 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 361 { 362 uchar_t *endp; 363 int len; 364 uint32_t mss; 365 uchar_t *up = (uchar_t *)tcpha; 366 int found = 0; 367 int32_t sack_len; 368 tcp_seq sack_begin, sack_end; 369 tcp_t *tcp; 370 371 endp = up + TCP_HDR_LENGTH(tcpha); 372 up += TCP_MIN_HEADER_LENGTH; 373 /* 374 * If timestamp option is aligned as recommended in RFC 7323 Appendix 375 * A, and is the only option, return quickly. 376 */ 377 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 378 TCPOPT_REAL_TS_LEN && 379 OK_32PTR(up) && 380 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 381 tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 382 tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 383 384 return (TCP_OPT_TSTAMP_PRESENT); 385 } 386 while (up < endp) { 387 len = endp - up; 388 switch (*up) { 389 case TCPOPT_EOL: 390 break; 391 392 case TCPOPT_NOP: 393 up++; 394 continue; 395 396 case TCPOPT_MAXSEG: 397 if (len < TCPOPT_MAXSEG_LEN || 398 up[1] != TCPOPT_MAXSEG_LEN) 399 break; 400 401 mss = BE16_TO_U16(up+2); 402 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 403 tcpopt->tcp_opt_mss = mss; 404 found |= TCP_OPT_MSS_PRESENT; 405 406 up += TCPOPT_MAXSEG_LEN; 407 continue; 408 409 case TCPOPT_WSCALE: 410 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 411 break; 412 413 if (up[2] > TCP_MAX_WINSHIFT) 414 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 415 else 416 tcpopt->tcp_opt_wscale = up[2]; 417 found |= TCP_OPT_WSCALE_PRESENT; 418 419 up += TCPOPT_WS_LEN; 420 continue; 421 422 case TCPOPT_SACK_PERMITTED: 423 if (len < TCPOPT_SACK_OK_LEN || 424 up[1] != TCPOPT_SACK_OK_LEN) 425 break; 426 found |= TCP_OPT_SACK_OK_PRESENT; 427 up += TCPOPT_SACK_OK_LEN; 428 continue; 429 430 case TCPOPT_SACK: 431 if (len <= 2 || up[1] <= 2 || len < up[1]) 432 break; 433 434 /* If TCP is not interested in SACK blks... */ 435 if ((tcp = tcpopt->tcp) == NULL) { 436 up += up[1]; 437 continue; 438 } 439 sack_len = up[1] - TCPOPT_HEADER_LEN; 440 up += TCPOPT_HEADER_LEN; 441 442 /* 443 * If the list is empty, allocate one and assume 444 * nothing is sack'ed. 445 */ 446 if (tcp->tcp_notsack_list == NULL) { 447 tcp_notsack_update(&(tcp->tcp_notsack_list), 448 tcp->tcp_suna, tcp->tcp_snxt, 449 &(tcp->tcp_num_notsack_blk), 450 &(tcp->tcp_cnt_notsack_list)); 451 452 /* 453 * Make sure tcp_notsack_list is not NULL. 454 * This happens when kmem_alloc(KM_NOSLEEP) 455 * returns NULL. 456 */ 457 if (tcp->tcp_notsack_list == NULL) { 458 up += sack_len; 459 continue; 460 } 461 tcp->tcp_fack = tcp->tcp_suna; 462 } 463 464 while (sack_len > 0) { 465 if (up + 8 > endp) { 466 up = endp; 467 break; 468 } 469 sack_begin = BE32_TO_U32(up); 470 up += 4; 471 sack_end = BE32_TO_U32(up); 472 up += 4; 473 sack_len -= 8; 474 /* 475 * Bounds checking. Make sure the SACK 476 * info is within tcp_suna and tcp_snxt. 477 * If this SACK blk is out of bound, ignore 478 * it but continue to parse the following 479 * blks. 480 */ 481 if (SEQ_LEQ(sack_end, sack_begin) || 482 SEQ_LT(sack_begin, tcp->tcp_suna) || 483 SEQ_GT(sack_end, tcp->tcp_snxt)) { 484 continue; 485 } 486 tcp_notsack_insert(&(tcp->tcp_notsack_list), 487 sack_begin, sack_end, 488 &(tcp->tcp_num_notsack_blk), 489 &(tcp->tcp_cnt_notsack_list)); 490 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 491 tcp->tcp_fack = sack_end; 492 } 493 } 494 found |= TCP_OPT_SACK_PRESENT; 495 continue; 496 497 case TCPOPT_TSTAMP: 498 if (len < TCPOPT_TSTAMP_LEN || 499 up[1] != TCPOPT_TSTAMP_LEN) 500 break; 501 502 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 503 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 504 505 found |= TCP_OPT_TSTAMP_PRESENT; 506 507 up += TCPOPT_TSTAMP_LEN; 508 continue; 509 510 default: 511 if (len <= 1 || len < (int)up[1] || up[1] == 0) 512 break; 513 up += up[1]; 514 continue; 515 } 516 break; 517 } 518 return (found); 519 } 520 521 /* 522 * Process all TCP option in SYN segment. Note that this function should 523 * be called after tcp_set_destination() is called so that the necessary info 524 * from IRE is already set in the tcp structure. 525 * 526 * This function sets up the correct tcp_mss value according to the 527 * MSS option value and our header size. It also sets up the window scale 528 * and timestamp values, and initialize SACK info blocks. But it does not 529 * change receive window size after setting the tcp_mss value. The caller 530 * should do the appropriate change. 531 */ 532 static void 533 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 534 { 535 int options; 536 tcp_opt_t tcpopt; 537 uint32_t mss_max; 538 char *tmp_tcph; 539 tcp_stack_t *tcps = tcp->tcp_tcps; 540 conn_t *connp = tcp->tcp_connp; 541 542 tcpopt.tcp = NULL; 543 options = tcp_parse_options(tcpha, &tcpopt); 544 545 /* 546 * Process MSS option. Note that MSS option value does not account 547 * for IP or TCP options. This means that it is equal to MTU - minimum 548 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 549 * IPv6. 550 */ 551 if (!(options & TCP_OPT_MSS_PRESENT)) { 552 if (connp->conn_ipversion == IPV4_VERSION) 553 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 554 else 555 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 556 } else { 557 if (connp->conn_ipversion == IPV4_VERSION) 558 mss_max = tcps->tcps_mss_max_ipv4; 559 else 560 mss_max = tcps->tcps_mss_max_ipv6; 561 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 562 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 563 else if (tcpopt.tcp_opt_mss > mss_max) 564 tcpopt.tcp_opt_mss = mss_max; 565 } 566 567 /* Process Window Scale option. */ 568 if (options & TCP_OPT_WSCALE_PRESENT) { 569 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 570 tcp->tcp_snd_ws_ok = B_TRUE; 571 } else { 572 tcp->tcp_snd_ws = B_FALSE; 573 tcp->tcp_snd_ws_ok = B_FALSE; 574 tcp->tcp_rcv_ws = B_FALSE; 575 } 576 577 /* Process Timestamp option. */ 578 if ((options & TCP_OPT_TSTAMP_PRESENT) && 579 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 580 tmp_tcph = (char *)tcp->tcp_tcpha; 581 582 tcp->tcp_snd_ts_ok = B_TRUE; 583 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 584 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 585 ASSERT(OK_32PTR(tmp_tcph)); 586 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 587 588 /* Fill in our template header with basic timestamp option. */ 589 tmp_tcph += connp->conn_ht_ulp_len; 590 tmp_tcph[0] = TCPOPT_NOP; 591 tmp_tcph[1] = TCPOPT_NOP; 592 tmp_tcph[2] = TCPOPT_TSTAMP; 593 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 594 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 595 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 596 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 597 } else { 598 tcp->tcp_snd_ts_ok = B_FALSE; 599 } 600 601 /* 602 * Process SACK options. If SACK is enabled for this connection, 603 * then allocate the SACK info structure. Note the following ways 604 * when tcp_snd_sack_ok is set to true. 605 * 606 * For active connection: in tcp_set_destination() called in 607 * tcp_connect(). 608 * 609 * For passive connection: in tcp_set_destination() called in 610 * tcp_input_listener(). 611 * 612 * That's the reason why the extra TCP_IS_DETACHED() check is there. 613 * That check makes sure that if we did not send a SACK OK option, 614 * we will not enable SACK for this connection even though the other 615 * side sends us SACK OK option. For active connection, the SACK 616 * info structure has already been allocated. So we need to free 617 * it if SACK is disabled. 618 */ 619 if ((options & TCP_OPT_SACK_OK_PRESENT) && 620 (tcp->tcp_snd_sack_ok || 621 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 622 ASSERT(tcp->tcp_num_sack_blk == 0); 623 ASSERT(tcp->tcp_notsack_list == NULL); 624 625 tcp->tcp_snd_sack_ok = B_TRUE; 626 if (tcp->tcp_snd_ts_ok) { 627 tcp->tcp_max_sack_blk = 3; 628 } else { 629 tcp->tcp_max_sack_blk = 4; 630 } 631 } else if (tcp->tcp_snd_sack_ok) { 632 /* 633 * Resetting tcp_snd_sack_ok to B_FALSE so that 634 * no SACK info will be used for this 635 * connection. This assumes that SACK usage 636 * permission is negotiated. This may need 637 * to be changed once this is clarified. 638 */ 639 ASSERT(tcp->tcp_num_sack_blk == 0); 640 ASSERT(tcp->tcp_notsack_list == NULL); 641 tcp->tcp_snd_sack_ok = B_FALSE; 642 } 643 644 /* 645 * Now we know the exact TCP/IP header length, subtract 646 * that from tcp_mss to get our side's MSS. 647 */ 648 tcp->tcp_mss -= connp->conn_ht_iphc_len; 649 650 /* 651 * Here we assume that the other side's header size will be equal to 652 * our header size. We calculate the real MSS accordingly. Need to 653 * take into additional stuffs IPsec puts in. 654 * 655 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 656 */ 657 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 658 tcp->tcp_ipsec_overhead - 659 ((connp->conn_ipversion == IPV4_VERSION ? 660 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 661 662 /* 663 * Set MSS to the smaller one of both ends of the connection. 664 * We should not have called tcp_mss_set() before, but our 665 * side of the MSS should have been set to a proper value 666 * by tcp_set_destination(). tcp_mss_set() will also set up the 667 * STREAM head parameters properly. 668 * 669 * If we have a larger-than-16-bit window but the other side 670 * didn't want to do window scale, tcp_rwnd_set() will take 671 * care of that. 672 */ 673 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 674 675 /* 676 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 677 * updated properly. 678 */ 679 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 680 681 if (tcp->tcp_cc_algo->conn_init != NULL) 682 tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv); 683 } 684 685 /* 686 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 687 * is filled, return as much as we can. The message passed in may be 688 * multi-part, chained using b_cont. "start" is the starting sequence 689 * number for this piece. 690 */ 691 static mblk_t * 692 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 693 { 694 uint32_t end, bytes; 695 mblk_t *mp1; 696 mblk_t *mp2; 697 mblk_t *next_mp; 698 uint32_t u1; 699 tcp_stack_t *tcps = tcp->tcp_tcps; 700 701 702 /* Walk through all the new pieces. */ 703 do { 704 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 705 (uintptr_t)INT_MAX); 706 end = start + (int)(mp->b_wptr - mp->b_rptr); 707 next_mp = mp->b_cont; 708 if (start == end) { 709 /* Empty. Blast it. */ 710 freeb(mp); 711 continue; 712 } 713 bytes = end - start; 714 mp->b_cont = NULL; 715 TCP_REASS_SET_SEQ(mp, start); 716 TCP_REASS_SET_END(mp, end); 717 mp1 = tcp->tcp_reass_tail; 718 if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) { 719 if (mp1 != NULL) { 720 /* 721 * New stuff is beyond the tail; link it on the 722 * end. 723 */ 724 mp1->b_cont = mp; 725 } else { 726 tcp->tcp_reass_head = mp; 727 } 728 tcp->tcp_reass_tail = mp; 729 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 730 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes); 731 tcp->tcp_cs.tcp_in_data_unorder_segs++; 732 tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes; 733 continue; 734 } 735 mp1 = tcp->tcp_reass_head; 736 u1 = TCP_REASS_SEQ(mp1); 737 /* New stuff at the front? */ 738 if (SEQ_LT(start, u1)) { 739 /* Yes... Check for overlap. */ 740 mp->b_cont = mp1; 741 tcp->tcp_reass_head = mp; 742 tcp_reass_elim_overlap(tcp, mp); 743 continue; 744 } 745 /* 746 * The new piece fits somewhere between the head and tail. 747 * We find our slot, where mp1 precedes us and mp2 trails. 748 */ 749 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 750 u1 = TCP_REASS_SEQ(mp2); 751 if (SEQ_LEQ(start, u1)) 752 break; 753 } 754 /* Link ourselves in */ 755 mp->b_cont = mp2; 756 mp1->b_cont = mp; 757 758 /* Trim overlap with following mblk(s) first */ 759 tcp_reass_elim_overlap(tcp, mp); 760 761 /* Trim overlap with preceding mblk */ 762 tcp_reass_elim_overlap(tcp, mp1); 763 764 } while (start = end, mp = next_mp); 765 mp1 = tcp->tcp_reass_head; 766 /* Anything ready to go? */ 767 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 768 return (NULL); 769 /* Eat what we can off the queue */ 770 for (;;) { 771 mp = mp1->b_cont; 772 end = TCP_REASS_END(mp1); 773 TCP_REASS_SET_SEQ(mp1, 0); 774 TCP_REASS_SET_END(mp1, 0); 775 if (!mp) { 776 tcp->tcp_reass_tail = NULL; 777 break; 778 } 779 if (end != TCP_REASS_SEQ(mp)) { 780 mp1->b_cont = NULL; 781 break; 782 } 783 mp1 = mp; 784 } 785 mp1 = tcp->tcp_reass_head; 786 tcp->tcp_reass_head = mp; 787 return (mp1); 788 } 789 790 /* Eliminate any overlap that mp may have over later mblks */ 791 static void 792 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 793 { 794 uint32_t end; 795 mblk_t *mp1; 796 uint32_t u1; 797 tcp_stack_t *tcps = tcp->tcp_tcps; 798 799 end = TCP_REASS_END(mp); 800 while ((mp1 = mp->b_cont) != NULL) { 801 u1 = TCP_REASS_SEQ(mp1); 802 if (!SEQ_GT(end, u1)) 803 break; 804 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 805 mp->b_wptr -= end - u1; 806 TCP_REASS_SET_END(mp, u1); 807 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 808 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 809 end - u1); 810 break; 811 } 812 mp->b_cont = mp1->b_cont; 813 TCP_REASS_SET_SEQ(mp1, 0); 814 TCP_REASS_SET_END(mp1, 0); 815 freeb(mp1); 816 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 817 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 818 } 819 if (!mp1) 820 tcp->tcp_reass_tail = mp; 821 } 822 823 /* 824 * This function does PAWS protection check, per RFC 7323 section 5. Requires 825 * that timestamp options are already processed into tcpoptp. Returns B_TRUE if 826 * the segment passes the PAWS test, else returns B_FALSE. 827 */ 828 boolean_t 829 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp) 830 { 831 if (TSTMP_LT(tcpoptp->tcp_opt_ts_val, 832 tcp->tcp_ts_recent)) { 833 if (LBOLT_FASTPATH64 < 834 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 835 /* This segment is not acceptable. */ 836 return (B_FALSE); 837 } else { 838 /* 839 * Connection has been idle for 840 * too long. Reset the timestamp 841 */ 842 tcp->tcp_ts_recent = 843 tcpoptp->tcp_opt_ts_val; 844 } 845 } 846 return (B_TRUE); 847 } 848 849 /* 850 * Defense for the SYN attack - 851 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 852 * one from the list of droppable eagers. This list is a subset of q0. 853 * see comments before the definition of MAKE_DROPPABLE(). 854 * 2. Don't drop a SYN request before its first timeout. This gives every 855 * request at least til the first timeout to complete its 3-way handshake. 856 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 857 * requests currently on the queue that has timed out. This will be used 858 * as an indicator of whether an attack is under way, so that appropriate 859 * actions can be taken. (It's incremented in tcp_timer() and decremented 860 * either when eager goes into ESTABLISHED, or gets freed up.) 861 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 862 * # of timeout drops back to <= q0len/32 => SYN alert off 863 */ 864 static boolean_t 865 tcp_drop_q0(tcp_t *tcp) 866 { 867 tcp_t *eager; 868 mblk_t *mp; 869 tcp_stack_t *tcps = tcp->tcp_tcps; 870 871 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 872 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 873 874 /* Pick oldest eager from the list of droppable eagers */ 875 eager = tcp->tcp_eager_prev_drop_q0; 876 877 /* If list is empty. return B_FALSE */ 878 if (eager == tcp) { 879 return (B_FALSE); 880 } 881 882 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 883 if ((mp = allocb(0, BPRI_HI)) == NULL) 884 return (B_FALSE); 885 886 /* 887 * Take this eager out from the list of droppable eagers since we are 888 * going to drop it. 889 */ 890 MAKE_UNDROPPABLE(eager); 891 892 if (tcp->tcp_connp->conn_debug) { 893 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 894 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 895 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 896 tcp->tcp_conn_req_cnt_q0, 897 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 898 } 899 900 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 901 902 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 903 CONN_INC_REF(eager->tcp_connp); 904 905 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 906 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 907 SQ_FILL, SQTAG_TCP_DROP_Q0); 908 909 return (B_TRUE); 910 } 911 912 /* 913 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 914 */ 915 static mblk_t * 916 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 917 ip_recv_attr_t *ira) 918 { 919 tcp_t *ltcp = lconnp->conn_tcp; 920 tcp_t *tcp = connp->conn_tcp; 921 mblk_t *tpi_mp; 922 ipha_t *ipha; 923 ip6_t *ip6h; 924 sin6_t sin6; 925 uint_t ifindex = ira->ira_ruifindex; 926 tcp_stack_t *tcps = tcp->tcp_tcps; 927 928 if (ira->ira_flags & IRAF_IS_IPV4) { 929 ipha = (ipha_t *)mp->b_rptr; 930 931 connp->conn_ipversion = IPV4_VERSION; 932 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 933 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 934 connp->conn_saddr_v6 = connp->conn_laddr_v6; 935 936 sin6 = sin6_null; 937 sin6.sin6_addr = connp->conn_faddr_v6; 938 sin6.sin6_port = connp->conn_fport; 939 sin6.sin6_family = AF_INET6; 940 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 941 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 942 943 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 944 sin6_t sin6d; 945 946 sin6d = sin6_null; 947 sin6d.sin6_addr = connp->conn_laddr_v6; 948 sin6d.sin6_port = connp->conn_lport; 949 sin6d.sin6_family = AF_INET; 950 tpi_mp = mi_tpi_extconn_ind(NULL, 951 (char *)&sin6d, sizeof (sin6_t), 952 (char *)&tcp, 953 (t_scalar_t)sizeof (intptr_t), 954 (char *)&sin6d, sizeof (sin6_t), 955 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 956 } else { 957 tpi_mp = mi_tpi_conn_ind(NULL, 958 (char *)&sin6, sizeof (sin6_t), 959 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 960 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 961 } 962 } else { 963 ip6h = (ip6_t *)mp->b_rptr; 964 965 connp->conn_ipversion = IPV6_VERSION; 966 connp->conn_laddr_v6 = ip6h->ip6_dst; 967 connp->conn_faddr_v6 = ip6h->ip6_src; 968 connp->conn_saddr_v6 = connp->conn_laddr_v6; 969 970 sin6 = sin6_null; 971 sin6.sin6_addr = connp->conn_faddr_v6; 972 sin6.sin6_port = connp->conn_fport; 973 sin6.sin6_family = AF_INET6; 974 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 975 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 976 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 977 978 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 979 /* Pass up the scope_id of remote addr */ 980 sin6.sin6_scope_id = ifindex; 981 } else { 982 sin6.sin6_scope_id = 0; 983 } 984 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 985 sin6_t sin6d; 986 987 sin6d = sin6_null; 988 sin6.sin6_addr = connp->conn_laddr_v6; 989 sin6d.sin6_port = connp->conn_lport; 990 sin6d.sin6_family = AF_INET6; 991 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 992 sin6d.sin6_scope_id = ifindex; 993 994 tpi_mp = mi_tpi_extconn_ind(NULL, 995 (char *)&sin6d, sizeof (sin6_t), 996 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 997 (char *)&sin6d, sizeof (sin6_t), 998 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 999 } else { 1000 tpi_mp = mi_tpi_conn_ind(NULL, 1001 (char *)&sin6, sizeof (sin6_t), 1002 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1003 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1004 } 1005 } 1006 1007 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 1008 return (tpi_mp); 1009 } 1010 1011 /* Handle a SYN on an AF_INET socket */ 1012 static mblk_t * 1013 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 1014 ip_recv_attr_t *ira) 1015 { 1016 tcp_t *ltcp = lconnp->conn_tcp; 1017 tcp_t *tcp = connp->conn_tcp; 1018 sin_t sin; 1019 mblk_t *tpi_mp = NULL; 1020 tcp_stack_t *tcps = tcp->tcp_tcps; 1021 ipha_t *ipha; 1022 1023 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 1024 ipha = (ipha_t *)mp->b_rptr; 1025 1026 connp->conn_ipversion = IPV4_VERSION; 1027 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 1028 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 1029 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1030 1031 sin = sin_null; 1032 sin.sin_addr.s_addr = connp->conn_faddr_v4; 1033 sin.sin_port = connp->conn_fport; 1034 sin.sin_family = AF_INET; 1035 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 1036 sin_t sind; 1037 1038 sind = sin_null; 1039 sind.sin_addr.s_addr = connp->conn_laddr_v4; 1040 sind.sin_port = connp->conn_lport; 1041 sind.sin_family = AF_INET; 1042 tpi_mp = mi_tpi_extconn_ind(NULL, 1043 (char *)&sind, sizeof (sin_t), (char *)&tcp, 1044 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 1045 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1046 } else { 1047 tpi_mp = mi_tpi_conn_ind(NULL, 1048 (char *)&sin, sizeof (sin_t), 1049 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1050 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1051 } 1052 1053 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 1054 return (tpi_mp); 1055 } 1056 1057 /* 1058 * Called via squeue to get on to eager's perimeter. It sends a 1059 * TH_RST if eager is in the fanout table. The listener wants the 1060 * eager to disappear either by means of tcp_eager_blowoff() or 1061 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 1062 * called (via squeue) if the eager cannot be inserted in the 1063 * fanout table in tcp_input_listener(). 1064 */ 1065 /* ARGSUSED */ 1066 void 1067 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1068 { 1069 conn_t *econnp = (conn_t *)arg; 1070 tcp_t *eager = econnp->conn_tcp; 1071 tcp_t *listener = eager->tcp_listener; 1072 1073 /* 1074 * We could be called because listener is closing. Since 1075 * the eager was using listener's queue's, we avoid 1076 * using the listeners queues from now on. 1077 */ 1078 ASSERT(eager->tcp_detached); 1079 econnp->conn_rq = NULL; 1080 econnp->conn_wq = NULL; 1081 1082 /* 1083 * An eager's conn_fanout will be NULL if it's a duplicate 1084 * for an existing 4-tuples in the conn fanout table. 1085 * We don't want to send an RST out in such case. 1086 */ 1087 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1088 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1089 eager, eager->tcp_snxt, 0, TH_RST); 1090 } 1091 1092 /* We are here because listener wants this eager gone */ 1093 if (listener != NULL) { 1094 mutex_enter(&listener->tcp_eager_lock); 1095 tcp_eager_unlink(eager); 1096 if (eager->tcp_tconnind_started) { 1097 /* 1098 * The eager has sent a conn_ind up to the 1099 * listener but listener decides to close 1100 * instead. We need to drop the extra ref 1101 * placed on eager in tcp_input_data() before 1102 * sending the conn_ind to listener. 1103 */ 1104 CONN_DEC_REF(econnp); 1105 } 1106 mutex_exit(&listener->tcp_eager_lock); 1107 CONN_DEC_REF(listener->tcp_connp); 1108 } 1109 1110 if (eager->tcp_state != TCPS_CLOSED) 1111 tcp_close_detached(eager); 1112 } 1113 1114 /* 1115 * Reset any eager connection hanging off this listener marked 1116 * with 'seqnum' and then reclaim it's resources. 1117 */ 1118 boolean_t 1119 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1120 { 1121 tcp_t *eager; 1122 mblk_t *mp; 1123 1124 eager = listener; 1125 mutex_enter(&listener->tcp_eager_lock); 1126 do { 1127 eager = eager->tcp_eager_next_q; 1128 if (eager == NULL) { 1129 mutex_exit(&listener->tcp_eager_lock); 1130 return (B_FALSE); 1131 } 1132 } while (eager->tcp_conn_req_seqnum != seqnum); 1133 1134 if (eager->tcp_closemp_used) { 1135 mutex_exit(&listener->tcp_eager_lock); 1136 return (B_TRUE); 1137 } 1138 eager->tcp_closemp_used = B_TRUE; 1139 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1140 CONN_INC_REF(eager->tcp_connp); 1141 mutex_exit(&listener->tcp_eager_lock); 1142 mp = &eager->tcp_closemp; 1143 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1144 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1145 return (B_TRUE); 1146 } 1147 1148 /* 1149 * Reset any eager connection hanging off this listener 1150 * and then reclaim it's resources. 1151 */ 1152 void 1153 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1154 { 1155 tcp_t *eager; 1156 mblk_t *mp; 1157 tcp_stack_t *tcps = listener->tcp_tcps; 1158 1159 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1160 1161 if (!q0_only) { 1162 /* First cleanup q */ 1163 TCP_STAT(tcps, tcp_eager_blowoff_q); 1164 eager = listener->tcp_eager_next_q; 1165 while (eager != NULL) { 1166 if (!eager->tcp_closemp_used) { 1167 eager->tcp_closemp_used = B_TRUE; 1168 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1169 CONN_INC_REF(eager->tcp_connp); 1170 mp = &eager->tcp_closemp; 1171 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1172 tcp_eager_kill, eager->tcp_connp, NULL, 1173 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1174 } 1175 eager = eager->tcp_eager_next_q; 1176 } 1177 } 1178 /* Then cleanup q0 */ 1179 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1180 eager = listener->tcp_eager_next_q0; 1181 while (eager != listener) { 1182 if (!eager->tcp_closemp_used) { 1183 eager->tcp_closemp_used = B_TRUE; 1184 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1185 CONN_INC_REF(eager->tcp_connp); 1186 mp = &eager->tcp_closemp; 1187 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1188 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1189 SQTAG_TCP_EAGER_CLEANUP_Q0); 1190 } 1191 eager = eager->tcp_eager_next_q0; 1192 } 1193 } 1194 1195 /* 1196 * If we are an eager connection hanging off a listener that hasn't 1197 * formally accepted the connection yet, get off its list and blow off 1198 * any data that we have accumulated. 1199 */ 1200 void 1201 tcp_eager_unlink(tcp_t *tcp) 1202 { 1203 tcp_t *listener = tcp->tcp_listener; 1204 1205 ASSERT(listener != NULL); 1206 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1207 if (tcp->tcp_eager_next_q0 != NULL) { 1208 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1209 1210 /* Remove the eager tcp from q0 */ 1211 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1212 tcp->tcp_eager_prev_q0; 1213 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1214 tcp->tcp_eager_next_q0; 1215 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1216 listener->tcp_conn_req_cnt_q0--; 1217 1218 tcp->tcp_eager_next_q0 = NULL; 1219 tcp->tcp_eager_prev_q0 = NULL; 1220 1221 /* 1222 * Take the eager out, if it is in the list of droppable 1223 * eagers. 1224 */ 1225 MAKE_UNDROPPABLE(tcp); 1226 1227 if (tcp->tcp_syn_rcvd_timeout != 0) { 1228 /* we have timed out before */ 1229 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1230 listener->tcp_syn_rcvd_timeout--; 1231 } 1232 } else { 1233 tcp_t **tcpp = &listener->tcp_eager_next_q; 1234 tcp_t *prev = NULL; 1235 1236 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1237 if (tcpp[0] == tcp) { 1238 if (listener->tcp_eager_last_q == tcp) { 1239 /* 1240 * If we are unlinking the last 1241 * element on the list, adjust 1242 * tail pointer. Set tail pointer 1243 * to nil when list is empty. 1244 */ 1245 ASSERT(tcp->tcp_eager_next_q == NULL); 1246 if (listener->tcp_eager_last_q == 1247 listener->tcp_eager_next_q) { 1248 listener->tcp_eager_last_q = 1249 NULL; 1250 } else { 1251 /* 1252 * We won't get here if there 1253 * is only one eager in the 1254 * list. 1255 */ 1256 ASSERT(prev != NULL); 1257 listener->tcp_eager_last_q = 1258 prev; 1259 } 1260 } 1261 tcpp[0] = tcp->tcp_eager_next_q; 1262 tcp->tcp_eager_next_q = NULL; 1263 tcp->tcp_eager_last_q = NULL; 1264 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1265 listener->tcp_conn_req_cnt_q--; 1266 break; 1267 } 1268 prev = tcpp[0]; 1269 } 1270 } 1271 tcp->tcp_listener = NULL; 1272 } 1273 1274 /* BEGIN CSTYLED */ 1275 /* 1276 * 1277 * The sockfs ACCEPT path: 1278 * ======================= 1279 * 1280 * The eager is now established in its own perimeter as soon as SYN is 1281 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1282 * completes the accept processing on the acceptor STREAM. The sending 1283 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1284 * listener but a TLI/XTI listener completes the accept processing 1285 * on the listener perimeter. 1286 * 1287 * Common control flow for 3 way handshake: 1288 * ---------------------------------------- 1289 * 1290 * incoming SYN (listener perimeter) -> tcp_input_listener() 1291 * 1292 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1293 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1294 * 1295 * Sockfs ACCEPT Path: 1296 * ------------------- 1297 * 1298 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1299 * as STREAM entry point) 1300 * 1301 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1302 * 1303 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1304 * association (we are not behind eager's squeue but sockfs is protecting us 1305 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1306 * is changed to point at tcp_wput(). 1307 * 1308 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1309 * listener (done on listener's perimeter). 1310 * 1311 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1312 * accept. 1313 * 1314 * TLI/XTI client ACCEPT path: 1315 * --------------------------- 1316 * 1317 * soaccept() sends T_CONN_RES on the listener STREAM. 1318 * 1319 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1320 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1321 * 1322 * Locks: 1323 * ====== 1324 * 1325 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1326 * and listeners->tcp_eager_next_q. 1327 * 1328 * Referencing: 1329 * ============ 1330 * 1331 * 1) We start out in tcp_input_listener by eager placing a ref on 1332 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1333 * 1334 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1335 * doing so we place a ref on the eager. This ref is finally dropped at the 1336 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1337 * reference is dropped by the squeue framework. 1338 * 1339 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1340 * 1341 * The reference must be released by the same entity that added the reference 1342 * In the above scheme, the eager is the entity that adds and releases the 1343 * references. Note that tcp_accept_finish executes in the squeue of the eager 1344 * (albeit after it is attached to the acceptor stream). Though 1. executes 1345 * in the listener's squeue, the eager is nascent at this point and the 1346 * reference can be considered to have been added on behalf of the eager. 1347 * 1348 * Eager getting a Reset or listener closing: 1349 * ========================================== 1350 * 1351 * Once the listener and eager are linked, the listener never does the unlink. 1352 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1353 * a message on all eager perimeter. The eager then does the unlink, clears 1354 * any pointers to the listener's queue and drops the reference to the 1355 * listener. The listener waits in tcp_close outside the squeue until its 1356 * refcount has dropped to 1. This ensures that the listener has waited for 1357 * all eagers to clear their association with the listener. 1358 * 1359 * Similarly, if eager decides to go away, it can unlink itself and close. 1360 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1361 * the reference to eager is still valid because of the extra ref we put 1362 * in tcp_send_conn_ind. 1363 * 1364 * Listener can always locate the eager under the protection 1365 * of the listener->tcp_eager_lock, and then do a refhold 1366 * on the eager during the accept processing. 1367 * 1368 * The acceptor stream accesses the eager in the accept processing 1369 * based on the ref placed on eager before sending T_conn_ind. 1370 * The only entity that can negate this refhold is a listener close 1371 * which is mutually exclusive with an active acceptor stream. 1372 * 1373 * Eager's reference on the listener 1374 * =================================== 1375 * 1376 * If the accept happens (even on a closed eager) the eager drops its 1377 * reference on the listener at the start of tcp_accept_finish. If the 1378 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1379 * the reference is dropped in tcp_closei_local. If the listener closes, 1380 * the reference is dropped in tcp_eager_kill. In all cases the reference 1381 * is dropped while executing in the eager's context (squeue). 1382 */ 1383 /* END CSTYLED */ 1384 1385 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1386 1387 /* 1388 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1389 * tcp_input_data will not see any packets for listeners since the listener 1390 * has conn_recv set to tcp_input_listener. 1391 */ 1392 /* ARGSUSED */ 1393 static void 1394 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1395 { 1396 tcpha_t *tcpha; 1397 uint32_t seg_seq; 1398 tcp_t *eager; 1399 int err; 1400 conn_t *econnp = NULL; 1401 squeue_t *new_sqp; 1402 mblk_t *mp1; 1403 uint_t ip_hdr_len; 1404 conn_t *lconnp = (conn_t *)arg; 1405 tcp_t *listener = lconnp->conn_tcp; 1406 tcp_stack_t *tcps = listener->tcp_tcps; 1407 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1408 uint_t flags; 1409 mblk_t *tpi_mp; 1410 uint_t ifindex = ira->ira_ruifindex; 1411 boolean_t tlc_set = B_FALSE; 1412 1413 ip_hdr_len = ira->ira_ip_hdr_length; 1414 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1415 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1416 1417 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1418 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1419 __dtrace_tcp_tcph_t *, tcpha); 1420 1421 if (!(flags & TH_SYN)) { 1422 if ((flags & TH_RST) || (flags & TH_URG)) { 1423 freemsg(mp); 1424 return; 1425 } 1426 if (flags & TH_ACK) { 1427 /* Note this executes in listener's squeue */ 1428 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1429 return; 1430 } 1431 1432 freemsg(mp); 1433 return; 1434 } 1435 1436 if (listener->tcp_state != TCPS_LISTEN) 1437 goto error2; 1438 1439 ASSERT(IPCL_IS_BOUND(lconnp)); 1440 1441 mutex_enter(&listener->tcp_eager_lock); 1442 1443 /* 1444 * The system is under memory pressure, so we need to do our part 1445 * to relieve the pressure. So we only accept new request if there 1446 * is nothing waiting to be accepted or waiting to complete the 3-way 1447 * handshake. This means that busy listener will not get too many 1448 * new requests which they cannot handle in time while non-busy 1449 * listener is still functioning properly. 1450 */ 1451 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1452 listener->tcp_conn_req_cnt_q0 > 0)) { 1453 mutex_exit(&listener->tcp_eager_lock); 1454 TCP_STAT(tcps, tcp_listen_mem_drop); 1455 goto error2; 1456 } 1457 1458 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1459 mutex_exit(&listener->tcp_eager_lock); 1460 TCP_STAT(tcps, tcp_listendrop); 1461 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1462 if (lconnp->conn_debug) { 1463 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1464 "tcp_input_listener: listen backlog (max=%d) " 1465 "overflow (%d pending) on %s", 1466 listener->tcp_conn_req_max, 1467 listener->tcp_conn_req_cnt_q, 1468 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1469 } 1470 goto error2; 1471 } 1472 1473 if (listener->tcp_conn_req_cnt_q0 >= 1474 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1475 /* 1476 * Q0 is full. Drop a pending half-open req from the queue 1477 * to make room for the new SYN req. Also mark the time we 1478 * drop a SYN. 1479 * 1480 * A more aggressive defense against SYN attack will 1481 * be to set the "tcp_syn_defense" flag now. 1482 */ 1483 TCP_STAT(tcps, tcp_listendropq0); 1484 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1485 if (!tcp_drop_q0(listener)) { 1486 mutex_exit(&listener->tcp_eager_lock); 1487 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1488 if (lconnp->conn_debug) { 1489 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1490 "tcp_input_listener: listen half-open " 1491 "queue (max=%d) full (%d pending) on %s", 1492 tcps->tcps_conn_req_max_q0, 1493 listener->tcp_conn_req_cnt_q0, 1494 tcp_display(listener, NULL, 1495 DISP_PORT_ONLY)); 1496 } 1497 goto error2; 1498 } 1499 } 1500 1501 /* 1502 * Enforce the limit set on the number of connections per listener. 1503 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1504 * for comparison. 1505 */ 1506 if (listener->tcp_listen_cnt != NULL) { 1507 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1508 int64_t now; 1509 1510 if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) { 1511 mutex_exit(&listener->tcp_eager_lock); 1512 now = ddi_get_lbolt64(); 1513 atomic_dec_32(&tlc->tlc_cnt); 1514 TCP_STAT(tcps, tcp_listen_cnt_drop); 1515 tlc->tlc_drop++; 1516 if (now - tlc->tlc_report_time > 1517 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1518 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1519 "Listener (port %d) connection max (%u) " 1520 "reached: %u attempts dropped total\n", 1521 ntohs(listener->tcp_connp->conn_lport), 1522 tlc->tlc_max, tlc->tlc_drop); 1523 tlc->tlc_report_time = now; 1524 } 1525 goto error2; 1526 } 1527 tlc_set = B_TRUE; 1528 } 1529 1530 mutex_exit(&listener->tcp_eager_lock); 1531 1532 /* 1533 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1534 * or based on the ring (for packets from GLD). Otherwise it is 1535 * set based on lbolt i.e., a somewhat random number. 1536 */ 1537 ASSERT(ira->ira_sqp != NULL); 1538 new_sqp = ira->ira_sqp; 1539 1540 econnp = tcp_get_conn(arg2, tcps); 1541 if (econnp == NULL) 1542 goto error2; 1543 1544 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1545 econnp->conn_sqp = new_sqp; 1546 econnp->conn_initial_sqp = new_sqp; 1547 econnp->conn_ixa->ixa_sqp = new_sqp; 1548 1549 econnp->conn_fport = tcpha->tha_lport; 1550 econnp->conn_lport = tcpha->tha_fport; 1551 1552 err = conn_inherit_parent(lconnp, econnp); 1553 if (err != 0) 1554 goto error3; 1555 1556 /* We already know the laddr of the new connection is ours */ 1557 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1558 1559 ASSERT(OK_32PTR(mp->b_rptr)); 1560 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1561 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1562 1563 if (lconnp->conn_family == AF_INET) { 1564 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1565 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1566 } else { 1567 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1568 } 1569 1570 if (tpi_mp == NULL) 1571 goto error3; 1572 1573 eager = econnp->conn_tcp; 1574 eager->tcp_detached = B_TRUE; 1575 SOCK_CONNID_INIT(eager->tcp_connid); 1576 1577 /* 1578 * Initialize the eager's tcp_t and inherit some parameters from 1579 * the listener. 1580 */ 1581 tcp_init_values(eager, listener); 1582 1583 ASSERT((econnp->conn_ixa->ixa_flags & 1584 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1585 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1586 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1587 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1588 1589 if (!tcps->tcps_dev_flow_ctl) 1590 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1591 1592 /* Prepare for diffing against previous packets */ 1593 eager->tcp_recvifindex = 0; 1594 eager->tcp_recvhops = 0xffffffffU; 1595 1596 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1597 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1598 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1599 econnp->conn_incoming_ifindex = ifindex; 1600 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1601 econnp->conn_ixa->ixa_scopeid = ifindex; 1602 } 1603 } 1604 1605 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1606 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1607 tcps->tcps_rev_src_routes) { 1608 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1609 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1610 1611 /* Source routing option copyover (reverse it) */ 1612 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1613 if (err != 0) { 1614 freemsg(tpi_mp); 1615 goto error3; 1616 } 1617 ip_pkt_source_route_reverse_v4(ipp); 1618 } 1619 1620 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1621 ASSERT(!eager->tcp_tconnind_started); 1622 /* 1623 * If the SYN came with a credential, it's a loopback packet or a 1624 * labeled packet; attach the credential to the TPI message. 1625 */ 1626 if (ira->ira_cred != NULL) 1627 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1628 1629 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1630 ASSERT(eager->tcp_ordrel_mp == NULL); 1631 1632 /* Inherit the listener's non-STREAMS flag */ 1633 if (IPCL_IS_NONSTR(lconnp)) { 1634 econnp->conn_flags |= IPCL_NONSTR; 1635 /* All non-STREAMS tcp_ts are sockets */ 1636 eager->tcp_issocket = B_TRUE; 1637 } else { 1638 /* 1639 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1640 * at close time, we will always have that to send up. 1641 * Otherwise, we need to do special handling in case the 1642 * allocation fails at that time. 1643 */ 1644 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1645 goto error3; 1646 } 1647 /* 1648 * Now that the IP addresses and ports are setup in econnp we 1649 * can do the IPsec policy work. 1650 */ 1651 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1652 if (lconnp->conn_policy != NULL) { 1653 /* 1654 * Inherit the policy from the listener; use 1655 * actions from ira 1656 */ 1657 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1658 CONN_DEC_REF(econnp); 1659 freemsg(mp); 1660 goto error3; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * tcp_set_destination() may set tcp_rwnd according to the route 1667 * metrics. If it does not, the eager's receive window will be set 1668 * to the listener's receive window later in this function. 1669 */ 1670 eager->tcp_rwnd = 0; 1671 1672 if (is_system_labeled()) { 1673 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1674 1675 ASSERT(ira->ira_tsl != NULL); 1676 /* Discard any old label */ 1677 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1678 ASSERT(ixa->ixa_tsl != NULL); 1679 label_rele(ixa->ixa_tsl); 1680 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1681 ixa->ixa_tsl = NULL; 1682 } 1683 if ((lconnp->conn_mlp_type != mlptSingle || 1684 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1685 ira->ira_tsl != NULL) { 1686 /* 1687 * If this is an MLP connection or a MAC-Exempt 1688 * connection with an unlabeled node, packets are to be 1689 * exchanged using the security label of the received 1690 * SYN packet instead of the server application's label. 1691 * tsol_check_dest called from ip_set_destination 1692 * might later update TSF_UNLABELED by replacing 1693 * ixa_tsl with a new label. 1694 */ 1695 label_hold(ira->ira_tsl); 1696 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1697 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1698 econnp, ts_label_t *, ixa->ixa_tsl) 1699 } else { 1700 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1701 DTRACE_PROBE2(syn_accept, conn_t *, 1702 econnp, ts_label_t *, ixa->ixa_tsl) 1703 } 1704 /* 1705 * conn_connect() called from tcp_set_destination will verify 1706 * the destination is allowed to receive packets at the 1707 * security label of the SYN-ACK we are generating. As part of 1708 * that, tsol_check_dest() may create a new effective label for 1709 * this connection. 1710 * Finally conn_connect() will call conn_update_label. 1711 * All that remains for TCP to do is to call 1712 * conn_build_hdr_template which is done as part of 1713 * tcp_set_destination. 1714 */ 1715 } 1716 1717 /* 1718 * Since we will clear tcp_listener before we clear tcp_detached 1719 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1720 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1721 */ 1722 eager->tcp_hard_binding = B_TRUE; 1723 1724 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1725 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1726 1727 CL_INET_CONNECT(econnp, B_FALSE, err); 1728 if (err != 0) { 1729 tcp_bind_hash_remove(eager); 1730 goto error3; 1731 } 1732 1733 SOCK_CONNID_BUMP(eager->tcp_connid); 1734 1735 /* 1736 * Adapt our mss, ttl, ... based on the remote address. 1737 */ 1738 1739 if (tcp_set_destination(eager) != 0) { 1740 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1741 /* Undo the bind_hash_insert */ 1742 tcp_bind_hash_remove(eager); 1743 goto error3; 1744 } 1745 1746 /* Process all TCP options. */ 1747 tcp_process_options(eager, tcpha); 1748 1749 /* Is the other end ECN capable? */ 1750 if (tcps->tcps_ecn_permitted >= 1 && 1751 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1752 eager->tcp_ecn_ok = B_TRUE; 1753 } 1754 1755 /* 1756 * The listener's conn_rcvbuf should be the default window size or a 1757 * window size changed via SO_RCVBUF option. First round up the 1758 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1759 * scale option value if needed. Call tcp_rwnd_set() to finish the 1760 * setting. 1761 * 1762 * Note if there is a rpipe metric associated with the remote host, 1763 * we should not inherit receive window size from listener. 1764 */ 1765 eager->tcp_rwnd = MSS_ROUNDUP( 1766 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1767 eager->tcp_rwnd), eager->tcp_mss); 1768 if (eager->tcp_snd_ws_ok) 1769 tcp_set_ws_value(eager); 1770 /* 1771 * Note that this is the only place tcp_rwnd_set() is called for 1772 * accepting a connection. We need to call it here instead of 1773 * after the 3-way handshake because we need to tell the other 1774 * side our rwnd in the SYN-ACK segment. 1775 */ 1776 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1777 1778 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1779 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1780 1781 ASSERT(econnp->conn_rcvbuf != 0 && 1782 econnp->conn_rcvbuf == eager->tcp_rwnd); 1783 1784 /* Put a ref on the listener for the eager. */ 1785 CONN_INC_REF(lconnp); 1786 mutex_enter(&listener->tcp_eager_lock); 1787 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1788 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1789 listener->tcp_eager_next_q0 = eager; 1790 eager->tcp_eager_prev_q0 = listener; 1791 1792 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1793 eager->tcp_listener = listener; 1794 eager->tcp_saved_listener = listener; 1795 1796 /* 1797 * Set tcp_listen_cnt so that when the connection is done, the counter 1798 * is decremented. 1799 */ 1800 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1801 1802 /* 1803 * Tag this detached tcp vector for later retrieval 1804 * by our listener client in tcp_accept(). 1805 */ 1806 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1807 listener->tcp_conn_req_cnt_q0++; 1808 if (++listener->tcp_conn_req_seqnum == -1) { 1809 /* 1810 * -1 is "special" and defined in TPI as something 1811 * that should never be used in T_CONN_IND 1812 */ 1813 ++listener->tcp_conn_req_seqnum; 1814 } 1815 mutex_exit(&listener->tcp_eager_lock); 1816 1817 if (listener->tcp_syn_defense) { 1818 /* Don't drop the SYN that comes from a good IP source */ 1819 ipaddr_t *addr_cache; 1820 1821 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1822 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1823 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1824 eager->tcp_dontdrop = B_TRUE; 1825 } 1826 } 1827 1828 /* 1829 * We need to insert the eager in its own perimeter but as soon 1830 * as we do that, we expose the eager to the classifier and 1831 * should not touch any field outside the eager's perimeter. 1832 * So do all the work necessary before inserting the eager 1833 * in its own perimeter. Be optimistic that conn_connect() 1834 * will succeed but undo everything if it fails. 1835 */ 1836 seg_seq = ntohl(tcpha->tha_seq); 1837 eager->tcp_irs = seg_seq; 1838 eager->tcp_rack = seg_seq; 1839 eager->tcp_rnxt = seg_seq + 1; 1840 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1841 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1842 eager->tcp_state = TCPS_SYN_RCVD; 1843 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1844 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1845 int32_t, TCPS_LISTEN); 1846 1847 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1848 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1849 if (mp1 == NULL) { 1850 /* 1851 * Increment the ref count as we are going to 1852 * enqueueing an mp in squeue 1853 */ 1854 CONN_INC_REF(econnp); 1855 goto error; 1856 } 1857 1858 /* 1859 * We need to start the rto timer. In normal case, we start 1860 * the timer after sending the packet on the wire (or at 1861 * least believing that packet was sent by waiting for 1862 * conn_ip_output() to return). Since this is the first packet 1863 * being sent on the wire for the eager, our initial tcp_rto 1864 * is at least tcp_rexmit_interval_min which is a fairly 1865 * large value to allow the algorithm to adjust slowly to large 1866 * fluctuations of RTT during first few transmissions. 1867 * 1868 * Starting the timer first and then sending the packet in this 1869 * case shouldn't make much difference since tcp_rexmit_interval_min 1870 * is of the order of several 100ms and starting the timer 1871 * first and then sending the packet will result in difference 1872 * of few micro seconds. 1873 * 1874 * Without this optimization, we are forced to hold the fanout 1875 * lock across the ipcl_bind_insert() and sending the packet 1876 * so that we don't race against an incoming packet (maybe RST) 1877 * for this eager. 1878 * 1879 * It is necessary to acquire an extra reference on the eager 1880 * at this point and hold it until after tcp_send_data() to 1881 * ensure against an eager close race. 1882 */ 1883 1884 CONN_INC_REF(econnp); 1885 1886 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1887 1888 /* 1889 * Insert the eager in its own perimeter now. We are ready to deal 1890 * with any packets on eager. 1891 */ 1892 if (ipcl_conn_insert(econnp) != 0) 1893 goto error; 1894 1895 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1896 freemsg(mp); 1897 /* 1898 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1899 * only used by one thread at a time. 1900 */ 1901 if (econnp->conn_sqp == lconnp->conn_sqp) { 1902 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1903 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1904 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1905 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1906 (void) conn_ip_output(mp1, econnp->conn_ixa); 1907 CONN_DEC_REF(econnp); 1908 } else { 1909 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1910 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1911 } 1912 return; 1913 error: 1914 freemsg(mp1); 1915 eager->tcp_closemp_used = B_TRUE; 1916 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1917 mp1 = &eager->tcp_closemp; 1918 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1919 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1920 1921 /* 1922 * If a connection already exists, send the mp to that connections so 1923 * that it can be appropriately dealt with. 1924 */ 1925 ipst = tcps->tcps_netstack->netstack_ip; 1926 1927 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1928 if (!IPCL_IS_CONNECTED(econnp)) { 1929 /* 1930 * Something bad happened. ipcl_conn_insert() 1931 * failed because a connection already existed 1932 * in connected hash but we can't find it 1933 * anymore (someone blew it away). Just 1934 * free this message and hopefully remote 1935 * will retransmit at which time the SYN can be 1936 * treated as a new connection or dealth with 1937 * a TH_RST if a connection already exists. 1938 */ 1939 CONN_DEC_REF(econnp); 1940 freemsg(mp); 1941 } else { 1942 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1943 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1944 } 1945 } else { 1946 /* Nobody wants this packet */ 1947 freemsg(mp); 1948 } 1949 return; 1950 error3: 1951 CONN_DEC_REF(econnp); 1952 error2: 1953 freemsg(mp); 1954 if (tlc_set) 1955 atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt); 1956 } 1957 1958 /* 1959 * In an ideal case of vertical partition in NUMA architecture, its 1960 * beneficial to have the listener and all the incoming connections 1961 * tied to the same squeue. The other constraint is that incoming 1962 * connections should be tied to the squeue attached to interrupted 1963 * CPU for obvious locality reason so this leaves the listener to 1964 * be tied to the same squeue. Our only problem is that when listener 1965 * is binding, the CPU that will get interrupted by the NIC whose 1966 * IP address the listener is binding to is not even known. So 1967 * the code below allows us to change that binding at the time the 1968 * CPU is interrupted by virtue of incoming connection's squeue. 1969 * 1970 * This is usefull only in case of a listener bound to a specific IP 1971 * address. For other kind of listeners, they get bound the 1972 * very first time and there is no attempt to rebind them. 1973 */ 1974 void 1975 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1976 ip_recv_attr_t *ira) 1977 { 1978 conn_t *connp = (conn_t *)arg; 1979 squeue_t *sqp = (squeue_t *)arg2; 1980 squeue_t *new_sqp; 1981 uint32_t conn_flags; 1982 1983 /* 1984 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1985 * or based on the ring (for packets from GLD). Otherwise it is 1986 * set based on lbolt i.e., a somewhat random number. 1987 */ 1988 ASSERT(ira->ira_sqp != NULL); 1989 new_sqp = ira->ira_sqp; 1990 1991 if (connp->conn_fanout == NULL) 1992 goto done; 1993 1994 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1995 mutex_enter(&connp->conn_fanout->connf_lock); 1996 mutex_enter(&connp->conn_lock); 1997 /* 1998 * No one from read or write side can access us now 1999 * except for already queued packets on this squeue. 2000 * But since we haven't changed the squeue yet, they 2001 * can't execute. If they are processed after we have 2002 * changed the squeue, they are sent back to the 2003 * correct squeue down below. 2004 * But a listner close can race with processing of 2005 * incoming SYN. If incoming SYN processing changes 2006 * the squeue then the listener close which is waiting 2007 * to enter the squeue would operate on the wrong 2008 * squeue. Hence we don't change the squeue here unless 2009 * the refcount is exactly the minimum refcount. The 2010 * minimum refcount of 4 is counted as - 1 each for 2011 * TCP and IP, 1 for being in the classifier hash, and 2012 * 1 for the mblk being processed. 2013 */ 2014 2015 if (connp->conn_ref != 4 || 2016 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 2017 mutex_exit(&connp->conn_lock); 2018 mutex_exit(&connp->conn_fanout->connf_lock); 2019 goto done; 2020 } 2021 if (connp->conn_sqp != new_sqp) { 2022 while (connp->conn_sqp != new_sqp) 2023 (void) atomic_cas_ptr(&connp->conn_sqp, sqp, 2024 new_sqp); 2025 /* No special MT issues for outbound ixa_sqp hint */ 2026 connp->conn_ixa->ixa_sqp = new_sqp; 2027 } 2028 2029 do { 2030 conn_flags = connp->conn_flags; 2031 conn_flags |= IPCL_FULLY_BOUND; 2032 (void) atomic_cas_32(&connp->conn_flags, 2033 connp->conn_flags, conn_flags); 2034 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 2035 2036 mutex_exit(&connp->conn_fanout->connf_lock); 2037 mutex_exit(&connp->conn_lock); 2038 2039 /* 2040 * Assume we have picked a good squeue for the listener. Make 2041 * subsequent SYNs not try to change the squeue. 2042 */ 2043 connp->conn_recv = tcp_input_listener; 2044 } 2045 2046 done: 2047 if (connp->conn_sqp != sqp) { 2048 CONN_INC_REF(connp); 2049 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 2050 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 2051 } else { 2052 tcp_input_listener(connp, mp, sqp, ira); 2053 } 2054 } 2055 2056 /* 2057 * Send up all messages queued on tcp_rcv_list. 2058 */ 2059 uint_t 2060 tcp_rcv_drain(tcp_t *tcp) 2061 { 2062 mblk_t *mp; 2063 uint_t ret = 0; 2064 #ifdef DEBUG 2065 uint_t cnt = 0; 2066 #endif 2067 queue_t *q = tcp->tcp_connp->conn_rq; 2068 2069 /* Can't drain on an eager connection */ 2070 if (tcp->tcp_listener != NULL) 2071 return (ret); 2072 2073 /* Can't be a non-STREAMS connection */ 2074 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 2075 2076 /* No need for the push timer now. */ 2077 if (tcp->tcp_push_tid != 0) { 2078 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2079 tcp->tcp_push_tid = 0; 2080 } 2081 2082 /* 2083 * Handle two cases here: we are currently fused or we were 2084 * previously fused and have some urgent data to be delivered 2085 * upstream. The latter happens because we either ran out of 2086 * memory or were detached and therefore sending the SIGURG was 2087 * deferred until this point. In either case we pass control 2088 * over to tcp_fuse_rcv_drain() since it may need to complete 2089 * some work. 2090 */ 2091 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2092 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2093 &tcp->tcp_fused_sigurg_mp)) 2094 return (ret); 2095 } 2096 2097 while ((mp = tcp->tcp_rcv_list) != NULL) { 2098 tcp->tcp_rcv_list = mp->b_next; 2099 mp->b_next = NULL; 2100 #ifdef DEBUG 2101 cnt += msgdsize(mp); 2102 #endif 2103 putnext(q, mp); 2104 } 2105 #ifdef DEBUG 2106 ASSERT(cnt == tcp->tcp_rcv_cnt); 2107 #endif 2108 tcp->tcp_rcv_last_head = NULL; 2109 tcp->tcp_rcv_last_tail = NULL; 2110 tcp->tcp_rcv_cnt = 0; 2111 2112 if (canputnext(q)) 2113 return (tcp_rwnd_reopen(tcp)); 2114 2115 return (ret); 2116 } 2117 2118 /* 2119 * Queue data on tcp_rcv_list which is a b_next chain. 2120 * tcp_rcv_last_head/tail is the last element of this chain. 2121 * Each element of the chain is a b_cont chain. 2122 * 2123 * M_DATA messages are added to the current element. 2124 * Other messages are added as new (b_next) elements. 2125 */ 2126 void 2127 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2128 { 2129 ASSERT(seg_len == msgdsize(mp)); 2130 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2131 2132 if (is_system_labeled()) { 2133 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2134 /* 2135 * Provide for protocols above TCP such as RPC. NOPID leaves 2136 * db_cpid unchanged. 2137 * The cred could have already been set. 2138 */ 2139 if (cr != NULL) 2140 mblk_setcred(mp, cr, NOPID); 2141 } 2142 2143 if (tcp->tcp_rcv_list == NULL) { 2144 ASSERT(tcp->tcp_rcv_last_head == NULL); 2145 tcp->tcp_rcv_list = mp; 2146 tcp->tcp_rcv_last_head = mp; 2147 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2148 tcp->tcp_rcv_last_tail->b_cont = mp; 2149 } else { 2150 tcp->tcp_rcv_last_head->b_next = mp; 2151 tcp->tcp_rcv_last_head = mp; 2152 } 2153 2154 while (mp->b_cont) 2155 mp = mp->b_cont; 2156 2157 tcp->tcp_rcv_last_tail = mp; 2158 tcp->tcp_rcv_cnt += seg_len; 2159 tcp->tcp_rwnd -= seg_len; 2160 } 2161 2162 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2163 mblk_t * 2164 tcp_ack_mp(tcp_t *tcp) 2165 { 2166 uint32_t seq_no; 2167 tcp_stack_t *tcps = tcp->tcp_tcps; 2168 conn_t *connp = tcp->tcp_connp; 2169 2170 /* 2171 * There are a few cases to be considered while setting the sequence no. 2172 * Essentially, we can come here while processing an unacceptable pkt 2173 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2174 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2175 * If we are here for a zero window probe, stick with suna. In all 2176 * other cases, we check if suna + swnd encompasses snxt and set 2177 * the sequence number to snxt, if so. If snxt falls outside the 2178 * window (the receiver probably shrunk its window), we will go with 2179 * suna + swnd, otherwise the sequence no will be unacceptable to the 2180 * receiver. 2181 */ 2182 if (tcp->tcp_zero_win_probe) { 2183 seq_no = tcp->tcp_suna; 2184 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2185 ASSERT(tcp->tcp_swnd == 0); 2186 seq_no = tcp->tcp_snxt; 2187 } else { 2188 seq_no = SEQ_GT(tcp->tcp_snxt, 2189 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2190 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2191 } 2192 2193 if (tcp->tcp_valid_bits) { 2194 /* 2195 * For the complex case where we have to send some 2196 * controls (FIN or SYN), let tcp_xmit_mp do it. 2197 */ 2198 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2199 NULL, B_FALSE)); 2200 } else { 2201 /* Generate a simple ACK */ 2202 int data_length; 2203 uchar_t *rptr; 2204 tcpha_t *tcpha; 2205 mblk_t *mp1; 2206 int32_t total_hdr_len; 2207 int32_t tcp_hdr_len; 2208 int32_t num_sack_blk = 0; 2209 int32_t sack_opt_len; 2210 ip_xmit_attr_t *ixa = connp->conn_ixa; 2211 2212 /* 2213 * Allocate space for TCP + IP headers 2214 * and link-level header 2215 */ 2216 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2217 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2218 tcp->tcp_num_sack_blk); 2219 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2220 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2221 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2222 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2223 } else { 2224 total_hdr_len = connp->conn_ht_iphc_len; 2225 tcp_hdr_len = connp->conn_ht_ulp_len; 2226 } 2227 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2228 if (!mp1) 2229 return (NULL); 2230 2231 /* Update the latest receive window size in TCP header. */ 2232 tcp->tcp_tcpha->tha_win = 2233 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2234 /* copy in prototype TCP + IP header */ 2235 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2236 mp1->b_rptr = rptr; 2237 mp1->b_wptr = rptr + total_hdr_len; 2238 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2239 2240 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2241 2242 /* Set the TCP sequence number. */ 2243 tcpha->tha_seq = htonl(seq_no); 2244 2245 /* Set up the TCP flag field. */ 2246 tcpha->tha_flags = (uchar_t)TH_ACK; 2247 if (tcp->tcp_ecn_echo_on) 2248 tcpha->tha_flags |= TH_ECE; 2249 2250 tcp->tcp_rack = tcp->tcp_rnxt; 2251 tcp->tcp_rack_cnt = 0; 2252 2253 /* fill in timestamp option if in use */ 2254 if (tcp->tcp_snd_ts_ok) { 2255 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2256 2257 U32_TO_BE32(llbolt, 2258 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2259 U32_TO_BE32(tcp->tcp_ts_recent, 2260 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2261 } 2262 2263 /* Fill in SACK options */ 2264 if (num_sack_blk > 0) { 2265 uchar_t *wptr = (uchar_t *)tcpha + 2266 connp->conn_ht_ulp_len; 2267 sack_blk_t *tmp; 2268 int32_t i; 2269 2270 wptr[0] = TCPOPT_NOP; 2271 wptr[1] = TCPOPT_NOP; 2272 wptr[2] = TCPOPT_SACK; 2273 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2274 sizeof (sack_blk_t); 2275 wptr += TCPOPT_REAL_SACK_LEN; 2276 2277 tmp = tcp->tcp_sack_list; 2278 for (i = 0; i < num_sack_blk; i++) { 2279 U32_TO_BE32(tmp[i].begin, wptr); 2280 wptr += sizeof (tcp_seq); 2281 U32_TO_BE32(tmp[i].end, wptr); 2282 wptr += sizeof (tcp_seq); 2283 } 2284 tcpha->tha_offset_and_reserved += 2285 ((num_sack_blk * 2 + 1) << 4); 2286 } 2287 2288 ixa->ixa_pktlen = total_hdr_len; 2289 2290 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2291 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2292 } else { 2293 ip6_t *ip6 = (ip6_t *)rptr; 2294 2295 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2296 } 2297 2298 /* 2299 * Prime pump for checksum calculation in IP. Include the 2300 * adjustment for a source route if any. 2301 */ 2302 data_length = tcp_hdr_len + connp->conn_sum; 2303 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2304 tcpha->tha_sum = htons(data_length); 2305 2306 if (tcp->tcp_ip_forward_progress) { 2307 tcp->tcp_ip_forward_progress = B_FALSE; 2308 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2309 } else { 2310 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2311 } 2312 return (mp1); 2313 } 2314 } 2315 2316 /* 2317 * Dummy socket upcalls for if/when the conn_t gets detached from a 2318 * direct-callback sonode via a user-driven close(). Easy to catch with 2319 * DTrace FBT, and should be mostly harmless. 2320 */ 2321 2322 /* ARGSUSED */ 2323 static sock_upper_handle_t 2324 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y, 2325 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored) 2326 { 2327 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2328 return (NULL); 2329 } 2330 2331 /* ARGSUSED */ 2332 static void 2333 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr, 2334 pid_t pid) 2335 { 2336 ASSERT(x == NULL); 2337 /* Normally we'd crhold(cr) and attach it to socket state. */ 2338 /* LINTED */ 2339 } 2340 2341 /* ARGSUSED */ 2342 static int 2343 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah) 2344 { 2345 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2346 return (-1); 2347 } 2348 2349 /* ARGSUSED */ 2350 static void 2351 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah) 2352 { 2353 ASSERT(x == NULL); 2354 /* We really want this one to be a harmless NOP for now. */ 2355 /* LINTED */ 2356 } 2357 2358 /* ARGSUSED */ 2359 static ssize_t 2360 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags, 2361 int *error, boolean_t *push) 2362 { 2363 ASSERT(x == NULL); 2364 2365 /* 2366 * Consume the message, set ESHUTDOWN, and return an error. 2367 * Nobody's home! 2368 */ 2369 freemsg(mp); 2370 *error = ESHUTDOWN; 2371 return (-1); 2372 } 2373 2374 /* ARGSUSED */ 2375 static void 2376 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y) 2377 { 2378 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2379 } 2380 2381 /* ARGSUSED */ 2382 static void 2383 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y) 2384 { 2385 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2386 } 2387 2388 /* ARGSUSED */ 2389 static void 2390 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len) 2391 { 2392 ASSERT(x == NULL); 2393 /* Otherwise, this would signal socket state about OOB data. */ 2394 } 2395 2396 /* ARGSUSED */ 2397 static void 2398 tcp_dummy_set_error(sock_upper_handle_t x, int err) 2399 { 2400 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2401 } 2402 2403 /* ARGSUSED */ 2404 static void 2405 tcp_dummy_onearg(sock_upper_handle_t x) 2406 { 2407 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2408 } 2409 2410 static sock_upcalls_t tcp_dummy_upcalls = { 2411 tcp_dummy_newconn, 2412 tcp_dummy_connected, 2413 tcp_dummy_disconnected, 2414 tcp_dummy_opctl, 2415 tcp_dummy_recv, 2416 tcp_dummy_set_proto_props, 2417 tcp_dummy_txq_full, 2418 tcp_dummy_signal_oob, 2419 tcp_dummy_onearg, 2420 tcp_dummy_set_error, 2421 tcp_dummy_onearg 2422 }; 2423 2424 /* 2425 * Handle M_DATA messages from IP. Its called directly from IP via 2426 * squeue for received IP packets. 2427 * 2428 * The first argument is always the connp/tcp to which the mp belongs. 2429 * There are no exceptions to this rule. The caller has already put 2430 * a reference on this connp/tcp and once tcp_input_data() returns, 2431 * the squeue will do the refrele. 2432 * 2433 * The TH_SYN for the listener directly go to tcp_input_listener via 2434 * squeue. ICMP errors go directly to tcp_icmp_input(). 2435 * 2436 * sqp: NULL = recursive, sqp != NULL means called from squeue 2437 */ 2438 void 2439 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2440 { 2441 int32_t bytes_acked; 2442 int32_t gap; 2443 mblk_t *mp1; 2444 uint_t flags; 2445 uint32_t new_swnd = 0; 2446 uchar_t *iphdr; 2447 uchar_t *rptr; 2448 int32_t rgap; 2449 uint32_t seg_ack; 2450 int seg_len; 2451 uint_t ip_hdr_len; 2452 uint32_t seg_seq; 2453 tcpha_t *tcpha; 2454 int urp; 2455 tcp_opt_t tcpopt; 2456 ip_pkt_t ipp; 2457 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2458 uint32_t cwnd; 2459 int mss; 2460 conn_t *connp = (conn_t *)arg; 2461 squeue_t *sqp = (squeue_t *)arg2; 2462 tcp_t *tcp = connp->conn_tcp; 2463 tcp_stack_t *tcps = tcp->tcp_tcps; 2464 sock_upcalls_t *sockupcalls; 2465 2466 /* 2467 * RST from fused tcp loopback peer should trigger an unfuse. 2468 */ 2469 if (tcp->tcp_fused) { 2470 TCP_STAT(tcps, tcp_fusion_aborted); 2471 tcp_unfuse(tcp); 2472 } 2473 2474 mss = 0; 2475 iphdr = mp->b_rptr; 2476 rptr = mp->b_rptr; 2477 ASSERT(OK_32PTR(rptr)); 2478 2479 ip_hdr_len = ira->ira_ip_hdr_length; 2480 if (connp->conn_recv_ancillary.crb_all != 0) { 2481 /* 2482 * Record packet information in the ip_pkt_t 2483 */ 2484 ipp.ipp_fields = 0; 2485 if (ira->ira_flags & IRAF_IS_IPV4) { 2486 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2487 B_FALSE); 2488 } else { 2489 uint8_t nexthdrp; 2490 2491 /* 2492 * IPv6 packets can only be received by applications 2493 * that are prepared to receive IPv6 addresses. 2494 * The IP fanout must ensure this. 2495 */ 2496 ASSERT(connp->conn_family == AF_INET6); 2497 2498 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2499 &nexthdrp); 2500 ASSERT(nexthdrp == IPPROTO_TCP); 2501 2502 /* Could have caused a pullup? */ 2503 iphdr = mp->b_rptr; 2504 rptr = mp->b_rptr; 2505 } 2506 } 2507 ASSERT(DB_TYPE(mp) == M_DATA); 2508 ASSERT(mp->b_next == NULL); 2509 2510 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2511 seg_seq = ntohl(tcpha->tha_seq); 2512 seg_ack = ntohl(tcpha->tha_ack); 2513 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2514 seg_len = (int)(mp->b_wptr - rptr) - 2515 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2516 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2517 do { 2518 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2519 (uintptr_t)INT_MAX); 2520 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2521 } while ((mp1 = mp1->b_cont) != NULL && 2522 mp1->b_datap->db_type == M_DATA); 2523 } 2524 2525 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2526 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2527 __dtrace_tcp_tcph_t *, tcpha); 2528 2529 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2530 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2531 seg_len, tcpha, ira); 2532 return; 2533 } 2534 2535 if (sqp != NULL) { 2536 /* 2537 * This is the correct place to update tcp_last_recv_time. Note 2538 * that it is also updated for tcp structure that belongs to 2539 * global and listener queues which do not really need updating. 2540 * But that should not cause any harm. And it is updated for 2541 * all kinds of incoming segments, not only for data segments. 2542 */ 2543 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2544 } 2545 2546 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2547 2548 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 2549 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2550 2551 if ((flags & TH_URG) && sqp != NULL) { 2552 /* 2553 * TCP can't handle urgent pointers that arrive before 2554 * the connection has been accept()ed since it can't 2555 * buffer OOB data. Discard segment if this happens. 2556 * 2557 * We can't just rely on a non-null tcp_listener to indicate 2558 * that the accept() has completed since unlinking of the 2559 * eager and completion of the accept are not atomic. 2560 * tcp_detached, when it is not set (B_FALSE) indicates 2561 * that the accept() has completed. 2562 * 2563 * Nor can it reassemble urgent pointers, so discard 2564 * if it's not the next segment expected. 2565 * 2566 * Otherwise, collapse chain into one mblk (discard if 2567 * that fails). This makes sure the headers, retransmitted 2568 * data, and new data all are in the same mblk. 2569 */ 2570 ASSERT(mp != NULL); 2571 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2572 freemsg(mp); 2573 return; 2574 } 2575 /* Update pointers into message */ 2576 iphdr = rptr = mp->b_rptr; 2577 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2578 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2579 /* 2580 * Since we can't handle any data with this urgent 2581 * pointer that is out of sequence, we expunge 2582 * the data. This allows us to still register 2583 * the urgent mark and generate the M_PCSIG, 2584 * which we can do. 2585 */ 2586 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2587 seg_len = 0; 2588 } 2589 } 2590 2591 sockupcalls = connp->conn_upcalls; 2592 /* A conn_t may have belonged to a now-closed socket. Be careful. */ 2593 if (sockupcalls == NULL) 2594 sockupcalls = &tcp_dummy_upcalls; 2595 2596 switch (tcp->tcp_state) { 2597 case TCPS_SYN_SENT: 2598 if (connp->conn_final_sqp == NULL && 2599 tcp_outbound_squeue_switch && sqp != NULL) { 2600 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2601 connp->conn_final_sqp = sqp; 2602 if (connp->conn_final_sqp != connp->conn_sqp) { 2603 DTRACE_PROBE1(conn__final__sqp__switch, 2604 conn_t *, connp); 2605 CONN_INC_REF(connp); 2606 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2607 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2608 tcp_input_data, connp, ira, ip_squeue_flag, 2609 SQTAG_CONNECT_FINISH); 2610 return; 2611 } 2612 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2613 } 2614 if (flags & TH_ACK) { 2615 /* 2616 * Note that our stack cannot send data before a 2617 * connection is established, therefore the 2618 * following check is valid. Otherwise, it has 2619 * to be changed. 2620 */ 2621 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2622 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2623 freemsg(mp); 2624 if (flags & TH_RST) 2625 return; 2626 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2627 tcp, seg_ack, 0, TH_RST); 2628 return; 2629 } 2630 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2631 } 2632 if (flags & TH_RST) { 2633 if (flags & TH_ACK) { 2634 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2635 ip_xmit_attr_t *, connp->conn_ixa, 2636 void_ip_t *, iphdr, tcp_t *, tcp, 2637 tcph_t *, tcpha); 2638 (void) tcp_clean_death(tcp, ECONNREFUSED); 2639 } 2640 freemsg(mp); 2641 return; 2642 } 2643 if (!(flags & TH_SYN)) { 2644 freemsg(mp); 2645 return; 2646 } 2647 2648 /* Process all TCP options. */ 2649 tcp_process_options(tcp, tcpha); 2650 /* 2651 * The following changes our rwnd to be a multiple of the 2652 * MIN(peer MSS, our MSS) for performance reason. 2653 */ 2654 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2655 tcp->tcp_mss)); 2656 2657 /* Is the other end ECN capable? */ 2658 if (tcp->tcp_ecn_ok) { 2659 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2660 tcp->tcp_ecn_ok = B_FALSE; 2661 } 2662 } 2663 /* 2664 * Clear ECN flags because it may interfere with later 2665 * processing. 2666 */ 2667 flags &= ~(TH_ECE|TH_CWR); 2668 2669 tcp->tcp_irs = seg_seq; 2670 tcp->tcp_rack = seg_seq; 2671 tcp->tcp_rnxt = seg_seq + 1; 2672 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2673 if (!TCP_IS_DETACHED(tcp)) { 2674 /* Allocate room for SACK options if needed. */ 2675 connp->conn_wroff = connp->conn_ht_iphc_len; 2676 if (tcp->tcp_snd_sack_ok) 2677 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2678 if (!tcp->tcp_loopback) 2679 connp->conn_wroff += tcps->tcps_wroff_xtra; 2680 2681 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2682 connp->conn_wroff); 2683 } 2684 if (flags & TH_ACK) { 2685 /* 2686 * If we can't get the confirmation upstream, pretend 2687 * we didn't even see this one. 2688 * 2689 * XXX: how can we pretend we didn't see it if we 2690 * have updated rnxt et. al. 2691 * 2692 * For loopback we defer sending up the T_CONN_CON 2693 * until after some checks below. 2694 */ 2695 mp1 = NULL; 2696 /* 2697 * tcp_sendmsg() checks tcp_state without entering 2698 * the squeue so tcp_state should be updated before 2699 * sending up connection confirmation. Probe the 2700 * state change below when we are sure the connection 2701 * confirmation has been sent. 2702 */ 2703 tcp->tcp_state = TCPS_ESTABLISHED; 2704 if (!tcp_conn_con(tcp, iphdr, mp, 2705 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2706 tcp->tcp_state = TCPS_SYN_SENT; 2707 freemsg(mp); 2708 return; 2709 } 2710 TCPS_CONN_INC(tcps); 2711 /* SYN was acked - making progress */ 2712 tcp->tcp_ip_forward_progress = B_TRUE; 2713 2714 /* One for the SYN */ 2715 tcp->tcp_suna = tcp->tcp_iss + 1; 2716 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2717 2718 /* 2719 * If SYN was retransmitted, need to reset all 2720 * retransmission info. This is because this 2721 * segment will be treated as a dup ACK. 2722 */ 2723 if (tcp->tcp_rexmit) { 2724 tcp->tcp_rexmit = B_FALSE; 2725 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2726 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2727 tcp->tcp_ms_we_have_waited = 0; 2728 2729 /* 2730 * Set tcp_cwnd back to 1 MSS, per 2731 * recommendation from 2732 * draft-floyd-incr-init-win-01.txt, 2733 * Increasing TCP's Initial Window. 2734 */ 2735 DTRACE_PROBE3(cwnd__retransmitted__syn, 2736 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 2737 uint32_t, tcp->tcp_mss); 2738 tcp->tcp_cwnd = tcp->tcp_mss; 2739 } 2740 2741 tcp->tcp_swl1 = seg_seq; 2742 tcp->tcp_swl2 = seg_ack; 2743 2744 new_swnd = ntohs(tcpha->tha_win); 2745 tcp->tcp_swnd = new_swnd; 2746 if (new_swnd > tcp->tcp_max_swnd) 2747 tcp->tcp_max_swnd = new_swnd; 2748 2749 /* 2750 * Always send the three-way handshake ack immediately 2751 * in order to make the connection complete as soon as 2752 * possible on the accepting host. 2753 */ 2754 flags |= TH_ACK_NEEDED; 2755 2756 /* 2757 * Trace connect-established here. 2758 */ 2759 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2760 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2761 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2762 2763 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2764 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2765 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2766 void, NULL, int32_t, TCPS_SYN_SENT); 2767 2768 /* 2769 * Special case for loopback. At this point we have 2770 * received SYN-ACK from the remote endpoint. In 2771 * order to ensure that both endpoints reach the 2772 * fused state prior to any data exchange, the final 2773 * ACK needs to be sent before we indicate T_CONN_CON 2774 * to the module upstream. 2775 */ 2776 if (tcp->tcp_loopback) { 2777 mblk_t *ack_mp; 2778 2779 ASSERT(!tcp->tcp_unfusable); 2780 ASSERT(mp1 != NULL); 2781 /* 2782 * For loopback, we always get a pure SYN-ACK 2783 * and only need to send back the final ACK 2784 * with no data (this is because the other 2785 * tcp is ours and we don't do T/TCP). This 2786 * final ACK triggers the passive side to 2787 * perform fusion in ESTABLISHED state. 2788 */ 2789 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2790 if (tcp->tcp_ack_tid != 0) { 2791 (void) TCP_TIMER_CANCEL(tcp, 2792 tcp->tcp_ack_tid); 2793 tcp->tcp_ack_tid = 0; 2794 } 2795 tcp_send_data(tcp, ack_mp); 2796 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 2797 TCPS_BUMP_MIB(tcps, tcpOutAck); 2798 2799 if (!IPCL_IS_NONSTR(connp)) { 2800 /* Send up T_CONN_CON */ 2801 if (ira->ira_cred != NULL) { 2802 mblk_setcred(mp1, 2803 ira->ira_cred, 2804 ira->ira_cpid); 2805 } 2806 putnext(connp->conn_rq, mp1); 2807 } else { 2808 (*sockupcalls->su_connected) 2809 (connp->conn_upper_handle, 2810 tcp->tcp_connid, 2811 ira->ira_cred, 2812 ira->ira_cpid); 2813 freemsg(mp1); 2814 } 2815 2816 freemsg(mp); 2817 return; 2818 } 2819 /* 2820 * Forget fusion; we need to handle more 2821 * complex cases below. Send the deferred 2822 * T_CONN_CON message upstream and proceed 2823 * as usual. Mark this tcp as not capable 2824 * of fusion. 2825 */ 2826 TCP_STAT(tcps, tcp_fusion_unfusable); 2827 tcp->tcp_unfusable = B_TRUE; 2828 if (!IPCL_IS_NONSTR(connp)) { 2829 if (ira->ira_cred != NULL) { 2830 mblk_setcred(mp1, ira->ira_cred, 2831 ira->ira_cpid); 2832 } 2833 putnext(connp->conn_rq, mp1); 2834 } else { 2835 (*sockupcalls->su_connected) 2836 (connp->conn_upper_handle, 2837 tcp->tcp_connid, ira->ira_cred, 2838 ira->ira_cpid); 2839 freemsg(mp1); 2840 } 2841 } 2842 2843 /* 2844 * Check to see if there is data to be sent. If 2845 * yes, set the transmit flag. Then check to see 2846 * if received data processing needs to be done. 2847 * If not, go straight to xmit_check. This short 2848 * cut is OK as we don't support T/TCP. 2849 */ 2850 if (tcp->tcp_unsent) 2851 flags |= TH_XMIT_NEEDED; 2852 2853 if (seg_len == 0 && !(flags & TH_URG)) { 2854 freemsg(mp); 2855 goto xmit_check; 2856 } 2857 2858 flags &= ~TH_SYN; 2859 seg_seq++; 2860 break; 2861 } 2862 tcp->tcp_state = TCPS_SYN_RCVD; 2863 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2864 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2865 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2866 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2867 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2868 if (mp1 != NULL) { 2869 tcp_send_data(tcp, mp1); 2870 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2871 } 2872 freemsg(mp); 2873 return; 2874 case TCPS_SYN_RCVD: 2875 if (flags & TH_ACK) { 2876 uint32_t pinit_wnd; 2877 2878 /* 2879 * In this state, a SYN|ACK packet is either bogus 2880 * because the other side must be ACKing our SYN which 2881 * indicates it has seen the ACK for their SYN and 2882 * shouldn't retransmit it or we're crossing SYNs 2883 * on active open. 2884 */ 2885 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2886 freemsg(mp); 2887 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2888 tcp, seg_ack, 0, TH_RST); 2889 return; 2890 } 2891 /* 2892 * NOTE: RFC 793 pg. 72 says this should be 2893 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2894 * but that would mean we have an ack that ignored 2895 * our SYN. 2896 */ 2897 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2898 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2899 freemsg(mp); 2900 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2901 tcp, seg_ack, 0, TH_RST); 2902 return; 2903 } 2904 /* 2905 * No sane TCP stack will send such a small window 2906 * without receiving any data. Just drop this invalid 2907 * ACK. We also shorten the abort timeout in case 2908 * this is an attack. 2909 */ 2910 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2911 if (pinit_wnd < tcp->tcp_mss && 2912 pinit_wnd < tcp_init_wnd_chk) { 2913 freemsg(mp); 2914 TCP_STAT(tcps, tcp_zwin_ack_syn); 2915 tcp->tcp_second_ctimer_threshold = 2916 tcp_early_abort * SECONDS; 2917 return; 2918 } 2919 } 2920 break; 2921 case TCPS_LISTEN: 2922 /* 2923 * Only a TLI listener can come through this path when a 2924 * acceptor is going back to be a listener and a packet 2925 * for the acceptor hits the classifier. For a socket 2926 * listener, this can never happen because a listener 2927 * can never accept connection on itself and hence a 2928 * socket acceptor can not go back to being a listener. 2929 */ 2930 ASSERT(!TCP_IS_SOCKET(tcp)); 2931 /*FALLTHRU*/ 2932 case TCPS_CLOSED: 2933 case TCPS_BOUND: { 2934 conn_t *new_connp; 2935 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2936 2937 /* 2938 * Don't accept any input on a closed tcp as this TCP logically 2939 * does not exist on the system. Don't proceed further with 2940 * this TCP. For instance, this packet could trigger another 2941 * close of this tcp which would be disastrous for tcp_refcnt. 2942 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2943 * be called at most once on a TCP. In this case we need to 2944 * refeed the packet into the classifier and figure out where 2945 * the packet should go. 2946 */ 2947 new_connp = ipcl_classify(mp, ira, ipst); 2948 if (new_connp != NULL) { 2949 /* Drops ref on new_connp */ 2950 tcp_reinput(new_connp, mp, ira, ipst); 2951 return; 2952 } 2953 /* We failed to classify. For now just drop the packet */ 2954 freemsg(mp); 2955 return; 2956 } 2957 case TCPS_IDLE: 2958 /* 2959 * Handle the case where the tcp_clean_death() has happened 2960 * on a connection (application hasn't closed yet) but a packet 2961 * was already queued on squeue before tcp_clean_death() 2962 * was processed. Calling tcp_clean_death() twice on same 2963 * connection can result in weird behaviour. 2964 */ 2965 freemsg(mp); 2966 return; 2967 default: 2968 break; 2969 } 2970 2971 /* 2972 * Already on the correct queue/perimeter. 2973 * If this is a detached connection and not an eager 2974 * connection hanging off a listener then new data 2975 * (past the FIN) will cause a reset. 2976 * We do a special check here where it 2977 * is out of the main line, rather than check 2978 * if we are detached every time we see new 2979 * data down below. 2980 */ 2981 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2982 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2983 TCPS_BUMP_MIB(tcps, tcpInClosed); 2984 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2985 freemsg(mp); 2986 tcp_xmit_ctl("new data when detached", tcp, 2987 tcp->tcp_snxt, 0, TH_RST); 2988 (void) tcp_clean_death(tcp, EPROTO); 2989 return; 2990 } 2991 2992 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2993 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2994 new_swnd = ntohs(tcpha->tha_win) << 2995 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2996 2997 /* 2998 * We are interested in two TCP options: timestamps (if negotiated) and 2999 * SACK (if negotiated). Skip option parsing if neither is negotiated. 3000 */ 3001 if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) { 3002 int options; 3003 if (tcp->tcp_snd_sack_ok) 3004 tcpopt.tcp = tcp; 3005 else 3006 tcpopt.tcp = NULL; 3007 options = tcp_parse_options(tcpha, &tcpopt); 3008 /* 3009 * RST segments must not be subject to PAWS and are not 3010 * required to have timestamps. 3011 * We do not drop keepalive segments without 3012 * timestamps, to maintain compatibility with legacy TCP stacks. 3013 */ 3014 boolean_t keepalive = (seg_len == 0 || seg_len == 1) && 3015 (seg_seq + 1 == tcp->tcp_rnxt); 3016 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) { 3017 /* 3018 * Per RFC 7323 section 3.2., silently drop non-RST 3019 * segments without expected TSopt. This is a 'SHOULD' 3020 * requirement. 3021 * We accept keepalives without TSopt to maintain 3022 * interoperability with tcp implementations that omit 3023 * the TSopt on these. Keepalive data is discarded, so 3024 * there is no risk corrupting data by accepting these. 3025 */ 3026 if (!(options & TCP_OPT_TSTAMP_PRESENT)) { 3027 /* 3028 * Leave a breadcrumb for people to detect this 3029 * behavior. 3030 */ 3031 DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp); 3032 freemsg(mp); 3033 return; 3034 } 3035 3036 if (!tcp_paws_check(tcp, &tcpopt)) { 3037 /* 3038 * This segment is not acceptable. 3039 * Drop it and send back an ACK. 3040 */ 3041 freemsg(mp); 3042 flags |= TH_ACK_NEEDED; 3043 goto ack_check; 3044 } 3045 } 3046 } 3047 try_again:; 3048 mss = tcp->tcp_mss; 3049 gap = seg_seq - tcp->tcp_rnxt; 3050 rgap = tcp->tcp_rwnd - (gap + seg_len); 3051 /* 3052 * gap is the amount of sequence space between what we expect to see 3053 * and what we got for seg_seq. A positive value for gap means 3054 * something got lost. A negative value means we got some old stuff. 3055 */ 3056 if (gap < 0) { 3057 /* Old stuff present. Is the SYN in there? */ 3058 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 3059 (seg_len != 0)) { 3060 flags &= ~TH_SYN; 3061 seg_seq++; 3062 urp--; 3063 /* Recompute the gaps after noting the SYN. */ 3064 goto try_again; 3065 } 3066 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 3067 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 3068 (seg_len > -gap ? -gap : seg_len)); 3069 /* Remove the old stuff from seg_len. */ 3070 seg_len += gap; 3071 /* 3072 * Anything left? 3073 * Make sure to check for unack'd FIN when rest of data 3074 * has been previously ack'd. 3075 */ 3076 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 3077 /* 3078 * Resets are only valid if they lie within our offered 3079 * window. If the RST bit is set, we just ignore this 3080 * segment. 3081 */ 3082 if (flags & TH_RST) { 3083 freemsg(mp); 3084 return; 3085 } 3086 3087 /* 3088 * The arriving of dup data packets indicate that we 3089 * may have postponed an ack for too long, or the other 3090 * side's RTT estimate is out of shape. Start acking 3091 * more often. 3092 */ 3093 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 3094 tcp->tcp_rack_cnt >= 1 && 3095 tcp->tcp_rack_abs_max > 2) { 3096 tcp->tcp_rack_abs_max--; 3097 } 3098 tcp->tcp_rack_cur_max = 1; 3099 3100 /* 3101 * This segment is "unacceptable". None of its 3102 * sequence space lies within our advertized window. 3103 * 3104 * Adjust seg_len to the original value for tracing. 3105 */ 3106 seg_len -= gap; 3107 if (connp->conn_debug) { 3108 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3109 "tcp_rput: unacceptable, gap %d, rgap %d, " 3110 "flags 0x%x, seg_seq %u, seg_ack %u, " 3111 "seg_len %d, rnxt %u, snxt %u, %s", 3112 gap, rgap, flags, seg_seq, seg_ack, 3113 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 3114 tcp_display(tcp, NULL, 3115 DISP_ADDR_AND_PORT)); 3116 } 3117 3118 /* 3119 * Arrange to send an ACK in response to the 3120 * unacceptable segment per RFC 793 page 69. There 3121 * is only one small difference between ours and the 3122 * acceptability test in the RFC - we accept ACK-only 3123 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 3124 * will be generated. 3125 * 3126 * Note that we have to ACK an ACK-only packet at least 3127 * for stacks that send 0-length keep-alives with 3128 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 3129 * section 4.2.3.6. As long as we don't ever generate 3130 * an unacceptable packet in response to an incoming 3131 * packet that is unacceptable, it should not cause 3132 * "ACK wars". 3133 */ 3134 flags |= TH_ACK_NEEDED; 3135 3136 /* 3137 * Continue processing this segment in order to use the 3138 * ACK information it contains, but skip all other 3139 * sequence-number processing. Processing the ACK 3140 * information is necessary in order to 3141 * re-synchronize connections that may have lost 3142 * synchronization. 3143 * 3144 * We clear seg_len and flag fields related to 3145 * sequence number processing as they are not 3146 * to be trusted for an unacceptable segment. 3147 */ 3148 seg_len = 0; 3149 flags &= ~(TH_SYN | TH_FIN | TH_URG); 3150 goto process_ack; 3151 } 3152 3153 /* Fix seg_seq, and chew the gap off the front. */ 3154 seg_seq = tcp->tcp_rnxt; 3155 urp += gap; 3156 do { 3157 mblk_t *mp2; 3158 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3159 (uintptr_t)UINT_MAX); 3160 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 3161 if (gap > 0) { 3162 mp->b_rptr = mp->b_wptr - gap; 3163 break; 3164 } 3165 mp2 = mp; 3166 mp = mp->b_cont; 3167 freeb(mp2); 3168 } while (gap < 0); 3169 /* 3170 * If the urgent data has already been acknowledged, we 3171 * should ignore TH_URG below 3172 */ 3173 if (urp < 0) 3174 flags &= ~TH_URG; 3175 } 3176 /* 3177 * rgap is the amount of stuff received out of window. A negative 3178 * value is the amount out of window. 3179 */ 3180 if (rgap < 0) { 3181 mblk_t *mp2; 3182 3183 if (tcp->tcp_rwnd == 0) { 3184 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 3185 tcp->tcp_cs.tcp_in_zwnd_probes++; 3186 } else { 3187 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 3188 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 3189 } 3190 3191 /* 3192 * seg_len does not include the FIN, so if more than 3193 * just the FIN is out of window, we act like we don't 3194 * see it. (If just the FIN is out of window, rgap 3195 * will be zero and we will go ahead and acknowledge 3196 * the FIN.) 3197 */ 3198 flags &= ~TH_FIN; 3199 3200 /* Fix seg_len and make sure there is something left. */ 3201 seg_len += rgap; 3202 if (seg_len <= 0) { 3203 /* 3204 * Resets are only valid if they lie within our offered 3205 * window. If the RST bit is set, we just ignore this 3206 * segment. 3207 */ 3208 if (flags & TH_RST) { 3209 freemsg(mp); 3210 return; 3211 } 3212 3213 /* Per RFC 793, we need to send back an ACK. */ 3214 flags |= TH_ACK_NEEDED; 3215 3216 /* 3217 * Send SIGURG as soon as possible i.e. even 3218 * if the TH_URG was delivered in a window probe 3219 * packet (which will be unacceptable). 3220 * 3221 * We generate a signal if none has been generated 3222 * for this connection or if this is a new urgent 3223 * byte. Also send a zero-length "unmarked" message 3224 * to inform SIOCATMARK that this is not the mark. 3225 * 3226 * tcp_urp_last_valid is cleared when the T_exdata_ind 3227 * is sent up. This plus the check for old data 3228 * (gap >= 0) handles the wraparound of the sequence 3229 * number space without having to always track the 3230 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3231 * this max in its rcv_up variable). 3232 * 3233 * This prevents duplicate SIGURGS due to a "late" 3234 * zero-window probe when the T_EXDATA_IND has already 3235 * been sent up. 3236 */ 3237 if ((flags & TH_URG) && 3238 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3239 tcp->tcp_urp_last))) { 3240 if (IPCL_IS_NONSTR(connp)) { 3241 if (!TCP_IS_DETACHED(tcp)) { 3242 (*sockupcalls->su_signal_oob) 3243 (connp->conn_upper_handle, 3244 urp); 3245 } 3246 } else { 3247 mp1 = allocb(0, BPRI_MED); 3248 if (mp1 == NULL) { 3249 freemsg(mp); 3250 return; 3251 } 3252 if (!TCP_IS_DETACHED(tcp) && 3253 !putnextctl1(connp->conn_rq, 3254 M_PCSIG, SIGURG)) { 3255 /* Try again on the rexmit. */ 3256 freemsg(mp1); 3257 freemsg(mp); 3258 return; 3259 } 3260 /* 3261 * If the next byte would be the mark 3262 * then mark with MARKNEXT else mark 3263 * with NOTMARKNEXT. 3264 */ 3265 if (gap == 0 && urp == 0) 3266 mp1->b_flag |= MSGMARKNEXT; 3267 else 3268 mp1->b_flag |= MSGNOTMARKNEXT; 3269 freemsg(tcp->tcp_urp_mark_mp); 3270 tcp->tcp_urp_mark_mp = mp1; 3271 flags |= TH_SEND_URP_MARK; 3272 } 3273 tcp->tcp_urp_last_valid = B_TRUE; 3274 tcp->tcp_urp_last = urp + seg_seq; 3275 } 3276 /* 3277 * If this is a zero window probe, continue to 3278 * process the ACK part. But we need to set seg_len 3279 * to 0 to avoid data processing. Otherwise just 3280 * drop the segment and send back an ACK. 3281 */ 3282 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3283 flags &= ~(TH_SYN | TH_URG); 3284 seg_len = 0; 3285 goto process_ack; 3286 } else { 3287 freemsg(mp); 3288 goto ack_check; 3289 } 3290 } 3291 /* Pitch out of window stuff off the end. */ 3292 rgap = seg_len; 3293 mp2 = mp; 3294 do { 3295 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3296 (uintptr_t)INT_MAX); 3297 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3298 if (rgap < 0) { 3299 mp2->b_wptr += rgap; 3300 if ((mp1 = mp2->b_cont) != NULL) { 3301 mp2->b_cont = NULL; 3302 freemsg(mp1); 3303 } 3304 break; 3305 } 3306 } while ((mp2 = mp2->b_cont) != NULL); 3307 } 3308 ok:; 3309 /* 3310 * TCP should check ECN info for segments inside the window only. 3311 * Therefore the check should be done here. 3312 */ 3313 if (tcp->tcp_ecn_ok) { 3314 if (flags & TH_CWR) { 3315 tcp->tcp_ecn_echo_on = B_FALSE; 3316 } 3317 /* 3318 * Note that both ECN_CE and CWR can be set in the 3319 * same segment. In this case, we once again turn 3320 * on ECN_ECHO. 3321 */ 3322 if (connp->conn_ipversion == IPV4_VERSION) { 3323 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3324 3325 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3326 tcp->tcp_ecn_echo_on = B_TRUE; 3327 } 3328 } else { 3329 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3330 3331 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3332 htonl(IPH_ECN_CE << 20)) { 3333 tcp->tcp_ecn_echo_on = B_TRUE; 3334 } 3335 } 3336 } 3337 3338 /* 3339 * Check whether we can update tcp_ts_recent. This test is from RFC 3340 * 7323, section 5.3. 3341 */ 3342 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && 3343 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3344 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3345 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3346 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3347 } 3348 3349 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3350 /* 3351 * FIN in an out of order segment. We record this in 3352 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3353 * Clear the FIN so that any check on FIN flag will fail. 3354 * Remember that FIN also counts in the sequence number 3355 * space. So we need to ack out of order FIN only segments. 3356 */ 3357 if (flags & TH_FIN) { 3358 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3359 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3360 flags &= ~TH_FIN; 3361 flags |= TH_ACK_NEEDED; 3362 } 3363 if (seg_len > 0) { 3364 /* Fill in the SACK blk list. */ 3365 if (tcp->tcp_snd_sack_ok) { 3366 tcp_sack_insert(tcp->tcp_sack_list, 3367 seg_seq, seg_seq + seg_len, 3368 &(tcp->tcp_num_sack_blk)); 3369 } 3370 3371 /* 3372 * Attempt reassembly and see if we have something 3373 * ready to go. 3374 */ 3375 mp = tcp_reass(tcp, mp, seg_seq); 3376 /* Always ack out of order packets */ 3377 flags |= TH_ACK_NEEDED | TH_PUSH; 3378 if (mp) { 3379 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3380 (uintptr_t)INT_MAX); 3381 seg_len = mp->b_cont ? msgdsize(mp) : 3382 (int)(mp->b_wptr - mp->b_rptr); 3383 seg_seq = tcp->tcp_rnxt; 3384 /* 3385 * A gap is filled and the seq num and len 3386 * of the gap match that of a previously 3387 * received FIN, put the FIN flag back in. 3388 */ 3389 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3390 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3391 flags |= TH_FIN; 3392 tcp->tcp_valid_bits &= 3393 ~TCP_OFO_FIN_VALID; 3394 } 3395 if (tcp->tcp_reass_tid != 0) { 3396 (void) TCP_TIMER_CANCEL(tcp, 3397 tcp->tcp_reass_tid); 3398 /* 3399 * Restart the timer if there is still 3400 * data in the reassembly queue. 3401 */ 3402 if (tcp->tcp_reass_head != NULL) { 3403 tcp->tcp_reass_tid = TCP_TIMER( 3404 tcp, tcp_reass_timer, 3405 tcps->tcps_reass_timeout); 3406 } else { 3407 tcp->tcp_reass_tid = 0; 3408 } 3409 } 3410 } else { 3411 /* 3412 * Keep going even with NULL mp. 3413 * There may be a useful ACK or something else 3414 * we don't want to miss. 3415 * 3416 * But TCP should not perform fast retransmit 3417 * because of the ack number. TCP uses 3418 * seg_len == 0 to determine if it is a pure 3419 * ACK. And this is not a pure ACK. 3420 */ 3421 seg_len = 0; 3422 ofo_seg = B_TRUE; 3423 3424 if (tcps->tcps_reass_timeout != 0 && 3425 tcp->tcp_reass_tid == 0) { 3426 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3427 tcp_reass_timer, 3428 tcps->tcps_reass_timeout); 3429 } 3430 } 3431 } 3432 } else if (seg_len > 0) { 3433 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3434 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3435 tcp->tcp_cs.tcp_in_data_inorder_segs++; 3436 tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len; 3437 3438 /* 3439 * If an out of order FIN was received before, and the seq 3440 * num and len of the new segment match that of the FIN, 3441 * put the FIN flag back in. 3442 */ 3443 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3444 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3445 flags |= TH_FIN; 3446 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3447 } 3448 } 3449 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3450 if (flags & TH_RST) { 3451 freemsg(mp); 3452 switch (tcp->tcp_state) { 3453 case TCPS_SYN_RCVD: 3454 (void) tcp_clean_death(tcp, ECONNREFUSED); 3455 break; 3456 case TCPS_ESTABLISHED: 3457 case TCPS_FIN_WAIT_1: 3458 case TCPS_FIN_WAIT_2: 3459 case TCPS_CLOSE_WAIT: 3460 (void) tcp_clean_death(tcp, ECONNRESET); 3461 break; 3462 case TCPS_CLOSING: 3463 case TCPS_LAST_ACK: 3464 (void) tcp_clean_death(tcp, 0); 3465 break; 3466 default: 3467 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3468 (void) tcp_clean_death(tcp, ENXIO); 3469 break; 3470 } 3471 return; 3472 } 3473 if (flags & TH_SYN) { 3474 /* 3475 * See RFC 793, Page 71 3476 * 3477 * The seq number must be in the window as it should 3478 * be "fixed" above. If it is outside window, it should 3479 * be already rejected. Note that we allow seg_seq to be 3480 * rnxt + rwnd because we want to accept 0 window probe. 3481 */ 3482 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3483 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3484 freemsg(mp); 3485 /* 3486 * If the ACK flag is not set, just use our snxt as the 3487 * seq number of the RST segment. 3488 */ 3489 if (!(flags & TH_ACK)) { 3490 seg_ack = tcp->tcp_snxt; 3491 } 3492 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3493 TH_RST|TH_ACK); 3494 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3495 (void) tcp_clean_death(tcp, ECONNRESET); 3496 return; 3497 } 3498 /* 3499 * urp could be -1 when the urp field in the packet is 0 3500 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3501 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3502 */ 3503 if ((flags & TH_URG) && urp >= 0) { 3504 if (!tcp->tcp_urp_last_valid || 3505 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3506 /* 3507 * Non-STREAMS sockets handle the urgent data a litte 3508 * differently from STREAMS based sockets. There is no 3509 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3510 * flags to keep SIOCATMARK happy. Instead a 3511 * su_signal_oob upcall is made to update the mark. 3512 * Neither is a T_EXDATA_IND mblk needed to be 3513 * prepended to the urgent data. The urgent data is 3514 * delivered using the su_recv upcall, where we set 3515 * the MSG_OOB flag to indicate that it is urg data. 3516 * 3517 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3518 * are used by non-STREAMS sockets. 3519 */ 3520 if (IPCL_IS_NONSTR(connp)) { 3521 if (!TCP_IS_DETACHED(tcp)) { 3522 (*sockupcalls->su_signal_oob) 3523 (connp->conn_upper_handle, urp); 3524 } 3525 } else { 3526 /* 3527 * If we haven't generated the signal yet for 3528 * this urgent pointer value, do it now. Also, 3529 * send up a zero-length M_DATA indicating 3530 * whether or not this is the mark. The latter 3531 * is not needed when a T_EXDATA_IND is sent up. 3532 * However, if there are allocation failures 3533 * this code relies on the sender retransmitting 3534 * and the socket code for determining the mark 3535 * should not block waiting for the peer to 3536 * transmit. Thus, for simplicity we always 3537 * send up the mark indication. 3538 */ 3539 mp1 = allocb(0, BPRI_MED); 3540 if (mp1 == NULL) { 3541 freemsg(mp); 3542 return; 3543 } 3544 if (!TCP_IS_DETACHED(tcp) && 3545 !putnextctl1(connp->conn_rq, M_PCSIG, 3546 SIGURG)) { 3547 /* Try again on the rexmit. */ 3548 freemsg(mp1); 3549 freemsg(mp); 3550 return; 3551 } 3552 /* 3553 * Mark with NOTMARKNEXT for now. 3554 * The code below will change this to MARKNEXT 3555 * if we are at the mark. 3556 * 3557 * If there are allocation failures (e.g. in 3558 * dupmsg below) the next time tcp_input_data 3559 * sees the urgent segment it will send up the 3560 * MSGMARKNEXT message. 3561 */ 3562 mp1->b_flag |= MSGNOTMARKNEXT; 3563 freemsg(tcp->tcp_urp_mark_mp); 3564 tcp->tcp_urp_mark_mp = mp1; 3565 flags |= TH_SEND_URP_MARK; 3566 #ifdef DEBUG 3567 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3568 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3569 "last %x, %s", 3570 seg_seq, urp, tcp->tcp_urp_last, 3571 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3572 #endif /* DEBUG */ 3573 } 3574 tcp->tcp_urp_last_valid = B_TRUE; 3575 tcp->tcp_urp_last = urp + seg_seq; 3576 } else if (tcp->tcp_urp_mark_mp != NULL) { 3577 /* 3578 * An allocation failure prevented the previous 3579 * tcp_input_data from sending up the allocated 3580 * MSG*MARKNEXT message - send it up this time 3581 * around. 3582 */ 3583 flags |= TH_SEND_URP_MARK; 3584 } 3585 3586 /* 3587 * If the urgent byte is in this segment, make sure that it is 3588 * all by itself. This makes it much easier to deal with the 3589 * possibility of an allocation failure on the T_exdata_ind. 3590 * Note that seg_len is the number of bytes in the segment, and 3591 * urp is the offset into the segment of the urgent byte. 3592 * urp < seg_len means that the urgent byte is in this segment. 3593 */ 3594 if (urp < seg_len) { 3595 if (seg_len != 1) { 3596 uint32_t tmp_rnxt; 3597 /* 3598 * Break it up and feed it back in. 3599 * Re-attach the IP header. 3600 */ 3601 mp->b_rptr = iphdr; 3602 if (urp > 0) { 3603 /* 3604 * There is stuff before the urgent 3605 * byte. 3606 */ 3607 mp1 = dupmsg(mp); 3608 if (!mp1) { 3609 /* 3610 * Trim from urgent byte on. 3611 * The rest will come back. 3612 */ 3613 (void) adjmsg(mp, 3614 urp - seg_len); 3615 tcp_input_data(connp, 3616 mp, NULL, ira); 3617 return; 3618 } 3619 (void) adjmsg(mp1, urp - seg_len); 3620 /* Feed this piece back in. */ 3621 tmp_rnxt = tcp->tcp_rnxt; 3622 tcp_input_data(connp, mp1, NULL, ira); 3623 /* 3624 * If the data passed back in was not 3625 * processed (ie: bad ACK) sending 3626 * the remainder back in will cause a 3627 * loop. In this case, drop the 3628 * packet and let the sender try 3629 * sending a good packet. 3630 */ 3631 if (tmp_rnxt == tcp->tcp_rnxt) { 3632 freemsg(mp); 3633 return; 3634 } 3635 } 3636 if (urp != seg_len - 1) { 3637 uint32_t tmp_rnxt; 3638 /* 3639 * There is stuff after the urgent 3640 * byte. 3641 */ 3642 mp1 = dupmsg(mp); 3643 if (!mp1) { 3644 /* 3645 * Trim everything beyond the 3646 * urgent byte. The rest will 3647 * come back. 3648 */ 3649 (void) adjmsg(mp, 3650 urp + 1 - seg_len); 3651 tcp_input_data(connp, 3652 mp, NULL, ira); 3653 return; 3654 } 3655 (void) adjmsg(mp1, urp + 1 - seg_len); 3656 tmp_rnxt = tcp->tcp_rnxt; 3657 tcp_input_data(connp, mp1, NULL, ira); 3658 /* 3659 * If the data passed back in was not 3660 * processed (ie: bad ACK) sending 3661 * the remainder back in will cause a 3662 * loop. In this case, drop the 3663 * packet and let the sender try 3664 * sending a good packet. 3665 */ 3666 if (tmp_rnxt == tcp->tcp_rnxt) { 3667 freemsg(mp); 3668 return; 3669 } 3670 } 3671 tcp_input_data(connp, mp, NULL, ira); 3672 return; 3673 } 3674 /* 3675 * This segment contains only the urgent byte. We 3676 * have to allocate the T_exdata_ind, if we can. 3677 */ 3678 if (IPCL_IS_NONSTR(connp)) { 3679 int error; 3680 3681 (*sockupcalls->su_recv) 3682 (connp->conn_upper_handle, mp, seg_len, 3683 MSG_OOB, &error, NULL); 3684 /* 3685 * We should never be in middle of a 3686 * fallback, the squeue guarantees that. 3687 */ 3688 ASSERT(error != EOPNOTSUPP); 3689 mp = NULL; 3690 goto update_ack; 3691 } else if (!tcp->tcp_urp_mp) { 3692 struct T_exdata_ind *tei; 3693 mp1 = allocb(sizeof (struct T_exdata_ind), 3694 BPRI_MED); 3695 if (!mp1) { 3696 /* 3697 * Sigh... It'll be back. 3698 * Generate any MSG*MARK message now. 3699 */ 3700 freemsg(mp); 3701 seg_len = 0; 3702 if (flags & TH_SEND_URP_MARK) { 3703 3704 3705 ASSERT(tcp->tcp_urp_mark_mp); 3706 tcp->tcp_urp_mark_mp->b_flag &= 3707 ~MSGNOTMARKNEXT; 3708 tcp->tcp_urp_mark_mp->b_flag |= 3709 MSGMARKNEXT; 3710 } 3711 goto ack_check; 3712 } 3713 mp1->b_datap->db_type = M_PROTO; 3714 tei = (struct T_exdata_ind *)mp1->b_rptr; 3715 tei->PRIM_type = T_EXDATA_IND; 3716 tei->MORE_flag = 0; 3717 mp1->b_wptr = (uchar_t *)&tei[1]; 3718 tcp->tcp_urp_mp = mp1; 3719 #ifdef DEBUG 3720 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3721 "tcp_rput: allocated exdata_ind %s", 3722 tcp_display(tcp, NULL, 3723 DISP_PORT_ONLY)); 3724 #endif /* DEBUG */ 3725 /* 3726 * There is no need to send a separate MSG*MARK 3727 * message since the T_EXDATA_IND will be sent 3728 * now. 3729 */ 3730 flags &= ~TH_SEND_URP_MARK; 3731 freemsg(tcp->tcp_urp_mark_mp); 3732 tcp->tcp_urp_mark_mp = NULL; 3733 } 3734 /* 3735 * Now we are all set. On the next putnext upstream, 3736 * tcp_urp_mp will be non-NULL and will get prepended 3737 * to what has to be this piece containing the urgent 3738 * byte. If for any reason we abort this segment below, 3739 * if it comes back, we will have this ready, or it 3740 * will get blown off in close. 3741 */ 3742 } else if (urp == seg_len) { 3743 /* 3744 * The urgent byte is the next byte after this sequence 3745 * number. If this endpoint is non-STREAMS, then there 3746 * is nothing to do here since the socket has already 3747 * been notified about the urg pointer by the 3748 * su_signal_oob call above. 3749 * 3750 * In case of STREAMS, some more work might be needed. 3751 * If there is data it is marked with MSGMARKNEXT and 3752 * and any tcp_urp_mark_mp is discarded since it is not 3753 * needed. Otherwise, if the code above just allocated 3754 * a zero-length tcp_urp_mark_mp message, that message 3755 * is tagged with MSGMARKNEXT. Sending up these 3756 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3757 * even though the T_EXDATA_IND will not be sent up 3758 * until the urgent byte arrives. 3759 */ 3760 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3761 if (seg_len != 0) { 3762 flags |= TH_MARKNEXT_NEEDED; 3763 freemsg(tcp->tcp_urp_mark_mp); 3764 tcp->tcp_urp_mark_mp = NULL; 3765 flags &= ~TH_SEND_URP_MARK; 3766 } else if (tcp->tcp_urp_mark_mp != NULL) { 3767 flags |= TH_SEND_URP_MARK; 3768 tcp->tcp_urp_mark_mp->b_flag &= 3769 ~MSGNOTMARKNEXT; 3770 tcp->tcp_urp_mark_mp->b_flag |= 3771 MSGMARKNEXT; 3772 } 3773 } 3774 #ifdef DEBUG 3775 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3776 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3777 seg_len, flags, 3778 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3779 #endif /* DEBUG */ 3780 } 3781 #ifdef DEBUG 3782 else { 3783 /* Data left until we hit mark */ 3784 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3785 "tcp_rput: URP %d bytes left, %s", 3786 urp - seg_len, tcp_display(tcp, NULL, 3787 DISP_PORT_ONLY)); 3788 } 3789 #endif /* DEBUG */ 3790 } 3791 3792 process_ack: 3793 if (!(flags & TH_ACK)) { 3794 freemsg(mp); 3795 goto xmit_check; 3796 } 3797 } 3798 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3799 3800 if (bytes_acked > 0) 3801 tcp->tcp_ip_forward_progress = B_TRUE; 3802 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3803 /* 3804 * tcp_sendmsg() checks tcp_state without entering 3805 * the squeue so tcp_state should be updated before 3806 * sending up a connection confirmation or a new 3807 * connection indication. 3808 */ 3809 tcp->tcp_state = TCPS_ESTABLISHED; 3810 3811 /* 3812 * We are seeing the final ack in the three way 3813 * hand shake of a active open'ed connection 3814 * so we must send up a T_CONN_CON 3815 */ 3816 if (tcp->tcp_active_open) { 3817 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3818 freemsg(mp); 3819 tcp->tcp_state = TCPS_SYN_RCVD; 3820 return; 3821 } 3822 /* 3823 * Don't fuse the loopback endpoints for 3824 * simultaneous active opens. 3825 */ 3826 if (tcp->tcp_loopback) { 3827 TCP_STAT(tcps, tcp_fusion_unfusable); 3828 tcp->tcp_unfusable = B_TRUE; 3829 } 3830 /* 3831 * For simultaneous active open, trace receipt of final 3832 * ACK as tcp:::connect-established. 3833 */ 3834 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3835 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3836 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3837 } else if (IPCL_IS_NONSTR(connp)) { 3838 /* 3839 * 3-way handshake has completed, so notify socket 3840 * of the new connection. 3841 * 3842 * We are here means eager is fine but it can 3843 * get a TH_RST at any point between now and till 3844 * accept completes and disappear. We need to 3845 * ensure that reference to eager is valid after 3846 * we get out of eager's perimeter. So we do 3847 * an extra refhold. 3848 */ 3849 CONN_INC_REF(connp); 3850 3851 if (!tcp_newconn_notify(tcp, ira)) { 3852 /* 3853 * The state-change probe for SYN_RCVD -> 3854 * ESTABLISHED has not fired yet. We reset 3855 * the state to SYN_RCVD so that future 3856 * state-change probes report correct state 3857 * transistions. 3858 */ 3859 tcp->tcp_state = TCPS_SYN_RCVD; 3860 freemsg(mp); 3861 /* notification did not go up, so drop ref */ 3862 CONN_DEC_REF(connp); 3863 /* ... and close the eager */ 3864 ASSERT(TCP_IS_DETACHED(tcp)); 3865 (void) tcp_close_detached(tcp); 3866 return; 3867 } 3868 /* 3869 * tcp_newconn_notify() changes conn_upcalls and 3870 * connp->conn_upper_handle. Fix things now, in case 3871 * there's data attached to this ack. 3872 */ 3873 if (connp->conn_upcalls != NULL) 3874 sockupcalls = connp->conn_upcalls; 3875 /* 3876 * For passive open, trace receipt of final ACK as 3877 * tcp:::accept-established. 3878 */ 3879 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3880 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3881 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3882 } else { 3883 /* 3884 * 3-way handshake complete - this is a STREAMS based 3885 * socket, so pass up the T_CONN_IND. 3886 */ 3887 tcp_t *listener = tcp->tcp_listener; 3888 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3889 3890 tcp->tcp_tconnind_started = B_TRUE; 3891 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3892 ASSERT(mp != NULL); 3893 /* 3894 * We are here means eager is fine but it can 3895 * get a TH_RST at any point between now and till 3896 * accept completes and disappear. We need to 3897 * ensure that reference to eager is valid after 3898 * we get out of eager's perimeter. So we do 3899 * an extra refhold. 3900 */ 3901 CONN_INC_REF(connp); 3902 3903 /* 3904 * The listener also exists because of the refhold 3905 * done in tcp_input_listener. Its possible that it 3906 * might have closed. We will check that once we 3907 * get inside listeners context. 3908 */ 3909 CONN_INC_REF(listener->tcp_connp); 3910 if (listener->tcp_connp->conn_sqp == 3911 connp->conn_sqp) { 3912 /* 3913 * We optimize by not calling an SQUEUE_ENTER 3914 * on the listener since we know that the 3915 * listener and eager squeues are the same. 3916 * We are able to make this check safely only 3917 * because neither the eager nor the listener 3918 * can change its squeue. Only an active connect 3919 * can change its squeue 3920 */ 3921 tcp_send_conn_ind(listener->tcp_connp, mp, 3922 listener->tcp_connp->conn_sqp); 3923 CONN_DEC_REF(listener->tcp_connp); 3924 } else if (!tcp->tcp_loopback) { 3925 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3926 mp, tcp_send_conn_ind, 3927 listener->tcp_connp, NULL, SQ_FILL, 3928 SQTAG_TCP_CONN_IND); 3929 } else { 3930 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3931 mp, tcp_send_conn_ind, 3932 listener->tcp_connp, NULL, SQ_NODRAIN, 3933 SQTAG_TCP_CONN_IND); 3934 } 3935 /* 3936 * For passive open, trace receipt of final ACK as 3937 * tcp:::accept-established. 3938 */ 3939 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3940 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3941 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3942 } 3943 TCPS_CONN_INC(tcps); 3944 3945 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3946 bytes_acked--; 3947 /* SYN was acked - making progress */ 3948 tcp->tcp_ip_forward_progress = B_TRUE; 3949 3950 /* 3951 * If SYN was retransmitted, need to reset all 3952 * retransmission info as this segment will be 3953 * treated as a dup ACK. 3954 */ 3955 if (tcp->tcp_rexmit) { 3956 tcp->tcp_rexmit = B_FALSE; 3957 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3958 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3959 tcp->tcp_ms_we_have_waited = 0; 3960 DTRACE_PROBE3(cwnd__retransmitted__syn, 3961 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 3962 uint32_t, tcp->tcp_mss); 3963 tcp->tcp_cwnd = mss; 3964 } 3965 3966 /* 3967 * We set the send window to zero here. 3968 * This is needed if there is data to be 3969 * processed already on the queue. 3970 * Later (at swnd_update label), the 3971 * "new_swnd > tcp_swnd" condition is satisfied 3972 * the XMIT_NEEDED flag is set in the current 3973 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3974 * called if there is already data on queue in 3975 * this state. 3976 */ 3977 tcp->tcp_swnd = 0; 3978 3979 if (new_swnd > tcp->tcp_max_swnd) 3980 tcp->tcp_max_swnd = new_swnd; 3981 tcp->tcp_swl1 = seg_seq; 3982 tcp->tcp_swl2 = seg_ack; 3983 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3984 3985 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3986 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3987 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3988 int32_t, TCPS_SYN_RCVD); 3989 3990 /* Fuse when both sides are in ESTABLISHED state */ 3991 if (tcp->tcp_loopback && do_tcp_fusion) 3992 tcp_fuse(tcp, iphdr, tcpha); 3993 3994 } 3995 /* This code follows 4.4BSD-Lite2 mostly. */ 3996 if (bytes_acked < 0) 3997 goto est; 3998 3999 /* 4000 * If TCP is ECN capable and the congestion experience bit is 4001 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 4002 * done once per window (or more loosely, per RTT). 4003 */ 4004 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 4005 tcp->tcp_cwr = B_FALSE; 4006 if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) { 4007 cc_cong_signal(tcp, seg_ack, CC_ECN); 4008 /* 4009 * If the cwnd is 0, use the timer to clock out 4010 * new segments. This is required by the ECN spec. 4011 */ 4012 if (tcp->tcp_cwnd == 0) 4013 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4014 tcp->tcp_cwr = B_TRUE; 4015 /* 4016 * This marks the end of the current window of in 4017 * flight data. That is why we don't use 4018 * tcp_suna + tcp_swnd. Only data in flight can 4019 * provide ECN info. 4020 */ 4021 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4022 } 4023 4024 mp1 = tcp->tcp_xmit_head; 4025 if (bytes_acked == 0) { 4026 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 4027 int dupack_cnt; 4028 4029 TCPS_BUMP_MIB(tcps, tcpInDupAck); 4030 /* 4031 * Fast retransmit. When we have seen exactly three 4032 * identical ACKs while we have unacked data 4033 * outstanding we take it as a hint that our peer 4034 * dropped something. 4035 * 4036 * If TCP is retransmitting, don't do fast retransmit. 4037 */ 4038 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 4039 ! tcp->tcp_rexmit) { 4040 /* Do Limited Transmit */ 4041 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 4042 tcps->tcps_dupack_fast_retransmit) { 4043 cc_ack_received(tcp, seg_ack, 4044 bytes_acked, CC_DUPACK); 4045 /* 4046 * RFC 3042 4047 * 4048 * What we need to do is temporarily 4049 * increase tcp_cwnd so that new 4050 * data can be sent if it is allowed 4051 * by the receive window (tcp_rwnd). 4052 * tcp_wput_data() will take care of 4053 * the rest. 4054 * 4055 * If the connection is SACK capable, 4056 * only do limited xmit when there 4057 * is SACK info. 4058 * 4059 * Note how tcp_cwnd is incremented. 4060 * The first dup ACK will increase 4061 * it by 1 MSS. The second dup ACK 4062 * will increase it by 2 MSS. This 4063 * means that only 1 new segment will 4064 * be sent for each dup ACK. 4065 */ 4066 if (tcp->tcp_unsent > 0 && 4067 (!tcp->tcp_snd_sack_ok || 4068 (tcp->tcp_snd_sack_ok && 4069 tcp->tcp_notsack_list != NULL))) { 4070 tcp->tcp_cwnd += mss << 4071 (tcp->tcp_dupack_cnt - 1); 4072 flags |= TH_LIMIT_XMIT; 4073 } 4074 } else if (dupack_cnt == 4075 tcps->tcps_dupack_fast_retransmit) { 4076 4077 /* 4078 * If we have reduced tcp_ssthresh 4079 * because of ECN, do not reduce it again 4080 * unless it is already one window of data 4081 * away. After one window of data, tcp_cwr 4082 * should then be cleared. Note that 4083 * for non ECN capable connection, tcp_cwr 4084 * should always be false. 4085 * 4086 * Adjust cwnd since the duplicate 4087 * ack indicates that a packet was 4088 * dropped (due to congestion.) 4089 */ 4090 if (!tcp->tcp_cwr) { 4091 cc_cong_signal(tcp, seg_ack, 4092 CC_NDUPACK); 4093 cc_ack_received(tcp, seg_ack, 4094 bytes_acked, CC_DUPACK); 4095 } 4096 if (tcp->tcp_ecn_ok) { 4097 tcp->tcp_cwr = B_TRUE; 4098 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4099 tcp->tcp_ecn_cwr_sent = B_FALSE; 4100 } 4101 4102 /* 4103 * We do Hoe's algorithm. Refer to her 4104 * paper "Improving the Start-up Behavior 4105 * of a Congestion Control Scheme for TCP," 4106 * appeared in SIGCOMM'96. 4107 * 4108 * Save highest seq no we have sent so far. 4109 * Be careful about the invisible FIN byte. 4110 */ 4111 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 4112 (tcp->tcp_unsent == 0)) { 4113 tcp->tcp_rexmit_max = tcp->tcp_fss; 4114 } else { 4115 tcp->tcp_rexmit_max = tcp->tcp_snxt; 4116 } 4117 4118 /* 4119 * For SACK: 4120 * Calculate tcp_pipe, which is the 4121 * estimated number of bytes in 4122 * network. 4123 * 4124 * tcp_fack is the highest sack'ed seq num 4125 * TCP has received. 4126 * 4127 * tcp_pipe is explained in the above quoted 4128 * Fall and Floyd's paper. tcp_fack is 4129 * explained in Mathis and Mahdavi's 4130 * "Forward Acknowledgment: Refining TCP 4131 * Congestion Control" in SIGCOMM '96. 4132 */ 4133 if (tcp->tcp_snd_sack_ok) { 4134 if (tcp->tcp_notsack_list != NULL) { 4135 tcp->tcp_pipe = tcp->tcp_snxt - 4136 tcp->tcp_fack; 4137 tcp->tcp_sack_snxt = seg_ack; 4138 flags |= TH_NEED_SACK_REXMIT; 4139 } else { 4140 /* 4141 * Always initialize tcp_pipe 4142 * even though we don't have 4143 * any SACK info. If later 4144 * we get SACK info and 4145 * tcp_pipe is not initialized, 4146 * funny things will happen. 4147 */ 4148 tcp->tcp_pipe = 4149 tcp->tcp_cwnd_ssthresh; 4150 } 4151 } else { 4152 flags |= TH_REXMIT_NEEDED; 4153 } /* tcp_snd_sack_ok */ 4154 4155 } else { 4156 cc_ack_received(tcp, seg_ack, 4157 bytes_acked, CC_DUPACK); 4158 /* 4159 * Here we perform congestion 4160 * avoidance, but NOT slow start. 4161 * This is known as the Fast 4162 * Recovery Algorithm. 4163 */ 4164 if (tcp->tcp_snd_sack_ok && 4165 tcp->tcp_notsack_list != NULL) { 4166 flags |= TH_NEED_SACK_REXMIT; 4167 tcp->tcp_pipe -= mss; 4168 if (tcp->tcp_pipe < 0) 4169 tcp->tcp_pipe = 0; 4170 } else { 4171 /* 4172 * We know that one more packet has 4173 * left the pipe thus we can update 4174 * cwnd. 4175 */ 4176 cwnd = tcp->tcp_cwnd + mss; 4177 if (cwnd > tcp->tcp_cwnd_max) 4178 cwnd = tcp->tcp_cwnd_max; 4179 DTRACE_PROBE3(cwnd__fast__recovery, 4180 tcp_t *, tcp, 4181 uint32_t, tcp->tcp_cwnd, 4182 uint32_t, cwnd); 4183 tcp->tcp_cwnd = cwnd; 4184 if (tcp->tcp_unsent > 0) 4185 flags |= TH_XMIT_NEEDED; 4186 } 4187 } 4188 } 4189 } else if (tcp->tcp_zero_win_probe) { 4190 /* 4191 * If the window has opened, need to arrange 4192 * to send additional data. 4193 */ 4194 if (new_swnd != 0) { 4195 /* tcp_suna != tcp_snxt */ 4196 /* Packet contains a window update */ 4197 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 4198 tcp->tcp_zero_win_probe = 0; 4199 tcp->tcp_timer_backoff = 0; 4200 tcp->tcp_ms_we_have_waited = 0; 4201 4202 /* 4203 * Transmit starting with tcp_suna since 4204 * the one byte probe is not ack'ed. 4205 * If TCP has sent more than one identical 4206 * probe, tcp_rexmit will be set. That means 4207 * tcp_ss_rexmit() will send out the one 4208 * byte along with new data. Otherwise, 4209 * fake the retransmission. 4210 */ 4211 flags |= TH_XMIT_NEEDED; 4212 if (!tcp->tcp_rexmit) { 4213 tcp->tcp_rexmit = B_TRUE; 4214 tcp->tcp_dupack_cnt = 0; 4215 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 4216 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 4217 } 4218 } 4219 } 4220 goto swnd_update; 4221 } 4222 4223 /* 4224 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4225 * If the ACK value acks something that we have not yet sent, it might 4226 * be an old duplicate segment. Send an ACK to re-synchronize the 4227 * other side. 4228 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4229 * state is handled above, so we can always just drop the segment and 4230 * send an ACK here. 4231 * 4232 * In the case where the peer shrinks the window, we see the new window 4233 * update, but all the data sent previously is queued up by the peer. 4234 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4235 * number, which was already sent, and within window, is recorded. 4236 * tcp_snxt is then updated. 4237 * 4238 * If the window has previously shrunk, and an ACK for data not yet 4239 * sent, according to tcp_snxt is recieved, it may still be valid. If 4240 * the ACK is for data within the window at the time the window was 4241 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4242 * the sequence number ACK'ed. 4243 * 4244 * If the ACK covers all the data sent at the time the window was 4245 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4246 * 4247 * Should we send ACKs in response to ACK only segments? 4248 */ 4249 4250 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4251 if ((tcp->tcp_is_wnd_shrnk) && 4252 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4253 uint32_t data_acked_ahead_snxt; 4254 4255 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4256 tcp_update_xmit_tail(tcp, seg_ack); 4257 tcp->tcp_unsent -= data_acked_ahead_snxt; 4258 } else { 4259 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4260 /* drop the received segment */ 4261 freemsg(mp); 4262 4263 /* 4264 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4265 * greater than 0, check if the number of such 4266 * bogus ACks is greater than that count. If yes, 4267 * don't send back any ACK. This prevents TCP from 4268 * getting into an ACK storm if somehow an attacker 4269 * successfully spoofs an acceptable segment to our 4270 * peer. If this continues (count > 2 X threshold), 4271 * we should abort this connection. 4272 */ 4273 if (tcp_drop_ack_unsent_cnt > 0 && 4274 ++tcp->tcp_in_ack_unsent > 4275 tcp_drop_ack_unsent_cnt) { 4276 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4277 if (tcp->tcp_in_ack_unsent > 2 * 4278 tcp_drop_ack_unsent_cnt) { 4279 (void) tcp_clean_death(tcp, EPROTO); 4280 } 4281 return; 4282 } 4283 mp = tcp_ack_mp(tcp); 4284 if (mp != NULL) { 4285 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 4286 TCPS_BUMP_MIB(tcps, tcpOutAck); 4287 tcp_send_data(tcp, mp); 4288 } 4289 return; 4290 } 4291 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4292 tcp->tcp_snxt_shrunk)) { 4293 tcp->tcp_is_wnd_shrnk = B_FALSE; 4294 } 4295 4296 /* 4297 * TCP gets a new ACK, update the notsack'ed list to delete those 4298 * blocks that are covered by this ACK. 4299 */ 4300 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4301 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4302 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4303 } 4304 4305 /* 4306 * If we got an ACK after fast retransmit, check to see 4307 * if it is a partial ACK. If it is not and the congestion 4308 * window was inflated to account for the other side's 4309 * cached packets, retract it. If it is, do Hoe's algorithm. 4310 */ 4311 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4312 ASSERT(tcp->tcp_rexmit == B_FALSE); 4313 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4314 tcp->tcp_dupack_cnt = 0; 4315 4316 cc_post_recovery(tcp, seg_ack); 4317 4318 tcp->tcp_rexmit_max = seg_ack; 4319 4320 /* 4321 * Remove all notsack info to avoid confusion with 4322 * the next fast retrasnmit/recovery phase. 4323 */ 4324 if (tcp->tcp_snd_sack_ok) { 4325 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4326 tcp); 4327 } 4328 } else { 4329 if (tcp->tcp_snd_sack_ok && 4330 tcp->tcp_notsack_list != NULL) { 4331 flags |= TH_NEED_SACK_REXMIT; 4332 tcp->tcp_pipe -= mss; 4333 if (tcp->tcp_pipe < 0) 4334 tcp->tcp_pipe = 0; 4335 } else { 4336 /* 4337 * Hoe's algorithm: 4338 * 4339 * Retransmit the unack'ed segment and 4340 * restart fast recovery. Note that we 4341 * need to scale back tcp_cwnd to the 4342 * original value when we started fast 4343 * recovery. This is to prevent overly 4344 * aggressive behaviour in sending new 4345 * segments. 4346 */ 4347 cwnd = tcp->tcp_cwnd_ssthresh + 4348 tcps->tcps_dupack_fast_retransmit * mss; 4349 DTRACE_PROBE3(cwnd__fast__retransmit__part__ack, 4350 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 4351 uint32_t, cwnd); 4352 tcp->tcp_cwnd = cwnd; 4353 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4354 flags |= TH_REXMIT_NEEDED; 4355 } 4356 } 4357 } else { 4358 tcp->tcp_dupack_cnt = 0; 4359 if (tcp->tcp_rexmit) { 4360 /* 4361 * TCP is retranmitting. If the ACK ack's all 4362 * outstanding data, update tcp_rexmit_max and 4363 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4364 * to the correct value. 4365 * 4366 * Note that SEQ_LEQ() is used. This is to avoid 4367 * unnecessary fast retransmit caused by dup ACKs 4368 * received when TCP does slow start retransmission 4369 * after a time out. During this phase, TCP may 4370 * send out segments which are already received. 4371 * This causes dup ACKs to be sent back. 4372 */ 4373 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4374 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4375 tcp->tcp_rexmit_nxt = seg_ack; 4376 } 4377 if (seg_ack != tcp->tcp_rexmit_max) { 4378 flags |= TH_XMIT_NEEDED; 4379 } 4380 } else { 4381 tcp->tcp_rexmit = B_FALSE; 4382 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4383 } 4384 tcp->tcp_ms_we_have_waited = 0; 4385 } 4386 } 4387 4388 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4389 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4390 tcp->tcp_suna = seg_ack; 4391 if (tcp->tcp_zero_win_probe != 0) { 4392 tcp->tcp_zero_win_probe = 0; 4393 tcp->tcp_timer_backoff = 0; 4394 } 4395 4396 /* 4397 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4398 * Note that it cannot be the SYN being ack'ed. The code flow 4399 * will not reach here. 4400 */ 4401 if (mp1 == NULL) { 4402 goto fin_acked; 4403 } 4404 4405 /* 4406 * Update the congestion window. 4407 * 4408 * If TCP is not ECN capable or TCP is ECN capable but the 4409 * congestion experience bit is not set, increase the tcp_cwnd as 4410 * usual. 4411 */ 4412 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4413 if (IN_RECOVERY(tcp->tcp_ccv.flags)) { 4414 EXIT_RECOVERY(tcp->tcp_ccv.flags); 4415 } 4416 cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK); 4417 } 4418 4419 /* See if the latest urgent data has been acknowledged */ 4420 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4421 SEQ_GT(seg_ack, tcp->tcp_urg)) 4422 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4423 4424 /* 4425 * Update the RTT estimates. Note that we don't use the TCP 4426 * timestamp option to calculate RTT even if one is present. This is 4427 * because the timestamp option's resolution (CPU tick) is 4428 * too coarse to measure modern datacenter networks' microsecond 4429 * latencies. The timestamp field's resolution is limited by its 4430 * 4-byte width (see RFC1323), and since we always store a 4431 * high-resolution nanosecond presision timestamp along with the data, 4432 * there is no point to ever using the timestamp option. 4433 */ 4434 if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4435 /* 4436 * An ACK sequence we haven't seen before, so get the RTT 4437 * and update the RTO. But first check if the timestamp is 4438 * valid to use. 4439 */ 4440 if ((mp1->b_next != NULL) && 4441 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { 4442 tcp_set_rto(tcp, gethrtime() - 4443 (hrtime_t)(intptr_t)mp1->b_prev); 4444 } else { 4445 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4446 } 4447 4448 /* Remeber the last sequence to be ACKed */ 4449 tcp->tcp_csuna = seg_ack; 4450 if (tcp->tcp_set_timer == 1) { 4451 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4452 tcp->tcp_set_timer = 0; 4453 } 4454 } else { 4455 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4456 } 4457 4458 /* Eat acknowledged bytes off the xmit queue. */ 4459 for (;;) { 4460 mblk_t *mp2; 4461 uchar_t *wptr; 4462 4463 wptr = mp1->b_wptr; 4464 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4465 bytes_acked -= (int)(wptr - mp1->b_rptr); 4466 if (bytes_acked < 0) { 4467 mp1->b_rptr = wptr + bytes_acked; 4468 /* 4469 * Set a new timestamp if all the bytes timed by the 4470 * old timestamp have been ack'ed. 4471 */ 4472 if (SEQ_GT(seg_ack, 4473 (uint32_t)(uintptr_t)(mp1->b_next))) { 4474 mp1->b_prev = 4475 (mblk_t *)(intptr_t)gethrtime(); 4476 mp1->b_next = NULL; 4477 } 4478 break; 4479 } 4480 mp1->b_next = NULL; 4481 mp1->b_prev = NULL; 4482 mp2 = mp1; 4483 mp1 = mp1->b_cont; 4484 4485 /* 4486 * This notification is required for some zero-copy 4487 * clients to maintain a copy semantic. After the data 4488 * is ack'ed, client is safe to modify or reuse the buffer. 4489 */ 4490 if (tcp->tcp_snd_zcopy_aware && 4491 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4492 tcp_zcopy_notify(tcp); 4493 freeb(mp2); 4494 if (bytes_acked == 0) { 4495 if (mp1 == NULL) { 4496 /* Everything is ack'ed, clear the tail. */ 4497 tcp->tcp_xmit_tail = NULL; 4498 /* 4499 * Cancel the timer unless we are still 4500 * waiting for an ACK for the FIN packet. 4501 */ 4502 if (tcp->tcp_timer_tid != 0 && 4503 tcp->tcp_snxt == tcp->tcp_suna) { 4504 (void) TCP_TIMER_CANCEL(tcp, 4505 tcp->tcp_timer_tid); 4506 tcp->tcp_timer_tid = 0; 4507 } 4508 goto pre_swnd_update; 4509 } 4510 if (mp2 != tcp->tcp_xmit_tail) 4511 break; 4512 tcp->tcp_xmit_tail = mp1; 4513 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4514 (uintptr_t)INT_MAX); 4515 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4516 mp1->b_rptr); 4517 break; 4518 } 4519 if (mp1 == NULL) { 4520 /* 4521 * More was acked but there is nothing more 4522 * outstanding. This means that the FIN was 4523 * just acked or that we're talking to a clown. 4524 */ 4525 fin_acked: 4526 ASSERT(tcp->tcp_fin_sent); 4527 tcp->tcp_xmit_tail = NULL; 4528 if (tcp->tcp_fin_sent) { 4529 /* FIN was acked - making progress */ 4530 if (!tcp->tcp_fin_acked) 4531 tcp->tcp_ip_forward_progress = B_TRUE; 4532 tcp->tcp_fin_acked = B_TRUE; 4533 if (tcp->tcp_linger_tid != 0 && 4534 TCP_TIMER_CANCEL(tcp, 4535 tcp->tcp_linger_tid) >= 0) { 4536 tcp_stop_lingering(tcp); 4537 freemsg(mp); 4538 mp = NULL; 4539 } 4540 } else { 4541 /* 4542 * We should never get here because 4543 * we have already checked that the 4544 * number of bytes ack'ed should be 4545 * smaller than or equal to what we 4546 * have sent so far (it is the 4547 * acceptability check of the ACK). 4548 * We can only get here if the send 4549 * queue is corrupted. 4550 * 4551 * Terminate the connection and 4552 * panic the system. It is better 4553 * for us to panic instead of 4554 * continuing to avoid other disaster. 4555 */ 4556 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4557 tcp->tcp_rnxt, TH_RST|TH_ACK); 4558 panic("Memory corruption " 4559 "detected for connection %s.", 4560 tcp_display(tcp, NULL, 4561 DISP_ADDR_AND_PORT)); 4562 /*NOTREACHED*/ 4563 } 4564 goto pre_swnd_update; 4565 } 4566 ASSERT(mp2 != tcp->tcp_xmit_tail); 4567 } 4568 if (tcp->tcp_unsent) { 4569 flags |= TH_XMIT_NEEDED; 4570 } 4571 pre_swnd_update: 4572 tcp->tcp_xmit_head = mp1; 4573 swnd_update: 4574 /* 4575 * The following check is different from most other implementations. 4576 * For bi-directional transfer, when segments are dropped, the 4577 * "normal" check will not accept a window update in those 4578 * retransmitted segemnts. Failing to do that, TCP may send out 4579 * segments which are outside receiver's window. As TCP accepts 4580 * the ack in those retransmitted segments, if the window update in 4581 * the same segment is not accepted, TCP will incorrectly calculates 4582 * that it can send more segments. This can create a deadlock 4583 * with the receiver if its window becomes zero. 4584 */ 4585 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4586 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4587 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4588 /* 4589 * The criteria for update is: 4590 * 4591 * 1. the segment acknowledges some data. Or 4592 * 2. the segment is new, i.e. it has a higher seq num. Or 4593 * 3. the segment is not old and the advertised window is 4594 * larger than the previous advertised window. 4595 */ 4596 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4597 flags |= TH_XMIT_NEEDED; 4598 tcp->tcp_swnd = new_swnd; 4599 if (new_swnd > tcp->tcp_max_swnd) 4600 tcp->tcp_max_swnd = new_swnd; 4601 tcp->tcp_swl1 = seg_seq; 4602 tcp->tcp_swl2 = seg_ack; 4603 } 4604 est: 4605 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4606 4607 switch (tcp->tcp_state) { 4608 case TCPS_FIN_WAIT_1: 4609 if (tcp->tcp_fin_acked) { 4610 tcp->tcp_state = TCPS_FIN_WAIT_2; 4611 DTRACE_TCP6(state__change, void, NULL, 4612 ip_xmit_attr_t *, connp->conn_ixa, 4613 void, NULL, tcp_t *, tcp, void, NULL, 4614 int32_t, TCPS_FIN_WAIT_1); 4615 /* 4616 * We implement the non-standard BSD/SunOS 4617 * FIN_WAIT_2 flushing algorithm. 4618 * If there is no user attached to this 4619 * TCP endpoint, then this TCP struct 4620 * could hang around forever in FIN_WAIT_2 4621 * state if the peer forgets to send us 4622 * a FIN. To prevent this, we wait only 4623 * 2*MSL (a convenient time value) for 4624 * the FIN to arrive. If it doesn't show up, 4625 * we flush the TCP endpoint. This algorithm, 4626 * though a violation of RFC-793, has worked 4627 * for over 10 years in BSD systems. 4628 * Note: SunOS 4.x waits 675 seconds before 4629 * flushing the FIN_WAIT_2 connection. 4630 */ 4631 TCP_TIMER_RESTART(tcp, 4632 tcp->tcp_fin_wait_2_flush_interval); 4633 } 4634 break; 4635 case TCPS_FIN_WAIT_2: 4636 break; /* Shutdown hook? */ 4637 case TCPS_LAST_ACK: 4638 freemsg(mp); 4639 if (tcp->tcp_fin_acked) { 4640 (void) tcp_clean_death(tcp, 0); 4641 return; 4642 } 4643 goto xmit_check; 4644 case TCPS_CLOSING: 4645 if (tcp->tcp_fin_acked) { 4646 SET_TIME_WAIT(tcps, tcp, connp); 4647 DTRACE_TCP6(state__change, void, NULL, 4648 ip_xmit_attr_t *, connp->conn_ixa, void, 4649 NULL, tcp_t *, tcp, void, NULL, int32_t, 4650 TCPS_CLOSING); 4651 } 4652 /*FALLTHRU*/ 4653 case TCPS_CLOSE_WAIT: 4654 freemsg(mp); 4655 goto xmit_check; 4656 default: 4657 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4658 break; 4659 } 4660 } 4661 if (flags & TH_FIN) { 4662 /* Make sure we ack the fin */ 4663 flags |= TH_ACK_NEEDED; 4664 if (!tcp->tcp_fin_rcvd) { 4665 tcp->tcp_fin_rcvd = B_TRUE; 4666 tcp->tcp_rnxt++; 4667 tcpha = tcp->tcp_tcpha; 4668 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4669 4670 /* 4671 * Generate the ordrel_ind at the end unless the 4672 * conn is detached or it is a STREAMS based eager. 4673 * In the eager case we defer the notification until 4674 * tcp_accept_finish has run. 4675 */ 4676 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4677 (tcp->tcp_listener == NULL && 4678 !tcp->tcp_hard_binding))) 4679 flags |= TH_ORDREL_NEEDED; 4680 switch (tcp->tcp_state) { 4681 case TCPS_SYN_RCVD: 4682 tcp->tcp_state = TCPS_CLOSE_WAIT; 4683 DTRACE_TCP6(state__change, void, NULL, 4684 ip_xmit_attr_t *, connp->conn_ixa, 4685 void, NULL, tcp_t *, tcp, void, NULL, 4686 int32_t, TCPS_SYN_RCVD); 4687 /* Keepalive? */ 4688 break; 4689 case TCPS_ESTABLISHED: 4690 tcp->tcp_state = TCPS_CLOSE_WAIT; 4691 DTRACE_TCP6(state__change, void, NULL, 4692 ip_xmit_attr_t *, connp->conn_ixa, 4693 void, NULL, tcp_t *, tcp, void, NULL, 4694 int32_t, TCPS_ESTABLISHED); 4695 /* Keepalive? */ 4696 break; 4697 case TCPS_FIN_WAIT_1: 4698 if (!tcp->tcp_fin_acked) { 4699 tcp->tcp_state = TCPS_CLOSING; 4700 DTRACE_TCP6(state__change, void, NULL, 4701 ip_xmit_attr_t *, connp->conn_ixa, 4702 void, NULL, tcp_t *, tcp, void, 4703 NULL, int32_t, TCPS_FIN_WAIT_1); 4704 break; 4705 } 4706 /* FALLTHRU */ 4707 case TCPS_FIN_WAIT_2: 4708 SET_TIME_WAIT(tcps, tcp, connp); 4709 DTRACE_TCP6(state__change, void, NULL, 4710 ip_xmit_attr_t *, connp->conn_ixa, void, 4711 NULL, tcp_t *, tcp, void, NULL, int32_t, 4712 TCPS_FIN_WAIT_2); 4713 if (seg_len) { 4714 /* 4715 * implies data piggybacked on FIN. 4716 * break to handle data. 4717 */ 4718 break; 4719 } 4720 freemsg(mp); 4721 goto ack_check; 4722 } 4723 } 4724 } 4725 if (mp == NULL) 4726 goto xmit_check; 4727 if (seg_len == 0) { 4728 freemsg(mp); 4729 goto xmit_check; 4730 } 4731 if (mp->b_rptr == mp->b_wptr) { 4732 /* 4733 * The header has been consumed, so we remove the 4734 * zero-length mblk here. 4735 */ 4736 mp1 = mp; 4737 mp = mp->b_cont; 4738 freeb(mp1); 4739 } 4740 update_ack: 4741 tcpha = tcp->tcp_tcpha; 4742 tcp->tcp_rack_cnt++; 4743 { 4744 uint32_t cur_max; 4745 4746 cur_max = tcp->tcp_rack_cur_max; 4747 if (tcp->tcp_rack_cnt >= cur_max) { 4748 /* 4749 * We have more unacked data than we should - send 4750 * an ACK now. 4751 */ 4752 flags |= TH_ACK_NEEDED; 4753 cur_max++; 4754 if (cur_max > tcp->tcp_rack_abs_max) 4755 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4756 else 4757 tcp->tcp_rack_cur_max = cur_max; 4758 } else if (tcp->tcp_quickack) { 4759 /* The executable asked that we ack each packet */ 4760 flags |= TH_ACK_NEEDED; 4761 } else if (TCP_IS_DETACHED(tcp)) { 4762 /* We don't have an ACK timer for detached TCP. */ 4763 flags |= TH_ACK_NEEDED; 4764 } else if (seg_len < mss) { 4765 /* 4766 * If we get a segment that is less than an mss, and we 4767 * already have unacknowledged data, and the amount 4768 * unacknowledged is not a multiple of mss, then we 4769 * better generate an ACK now. Otherwise, this may be 4770 * the tail piece of a transaction, and we would rather 4771 * wait for the response. 4772 */ 4773 uint32_t udif; 4774 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4775 (uintptr_t)INT_MAX); 4776 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4777 if (udif && (udif % mss)) 4778 flags |= TH_ACK_NEEDED; 4779 else 4780 flags |= TH_ACK_TIMER_NEEDED; 4781 } else { 4782 /* Start delayed ack timer */ 4783 flags |= TH_ACK_TIMER_NEEDED; 4784 } 4785 } 4786 tcp->tcp_rnxt += seg_len; 4787 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4788 4789 if (mp == NULL) 4790 goto xmit_check; 4791 4792 /* Update SACK list */ 4793 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4794 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4795 &(tcp->tcp_num_sack_blk)); 4796 } 4797 4798 if (tcp->tcp_urp_mp) { 4799 tcp->tcp_urp_mp->b_cont = mp; 4800 mp = tcp->tcp_urp_mp; 4801 tcp->tcp_urp_mp = NULL; 4802 /* Ready for a new signal. */ 4803 tcp->tcp_urp_last_valid = B_FALSE; 4804 #ifdef DEBUG 4805 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4806 "tcp_rput: sending exdata_ind %s", 4807 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4808 #endif /* DEBUG */ 4809 } 4810 4811 /* 4812 * Check for ancillary data changes compared to last segment. 4813 */ 4814 if (connp->conn_recv_ancillary.crb_all != 0) { 4815 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4816 if (mp == NULL) 4817 return; 4818 } 4819 4820 if (IPCL_IS_NONSTR(connp)) { 4821 /* 4822 * Non-STREAMS socket 4823 */ 4824 boolean_t push = flags & (TH_PUSH|TH_FIN); 4825 int error; 4826 4827 if ((*sockupcalls->su_recv)(connp->conn_upper_handle, 4828 mp, seg_len, 0, &error, &push) <= 0) { 4829 /* 4830 * We should never be in middle of a 4831 * fallback, the squeue guarantees that. 4832 */ 4833 ASSERT(error != EOPNOTSUPP); 4834 if (error == ENOSPC) 4835 tcp->tcp_rwnd -= seg_len; 4836 } else if (push) { 4837 /* PUSH bit set and sockfs is not flow controlled */ 4838 flags |= tcp_rwnd_reopen(tcp); 4839 } 4840 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4841 /* 4842 * Side queue inbound data until the accept happens. 4843 * tcp_accept/tcp_rput drains this when the accept happens. 4844 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4845 * T_EXDATA_IND) it is queued on b_next. 4846 * XXX Make urgent data use this. Requires: 4847 * Removing tcp_listener check for TH_URG 4848 * Making M_PCPROTO and MARK messages skip the eager case 4849 */ 4850 4851 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4852 } else { 4853 /* Active STREAMS socket */ 4854 if (mp->b_datap->db_type != M_DATA || 4855 (flags & TH_MARKNEXT_NEEDED)) { 4856 if (tcp->tcp_rcv_list != NULL) { 4857 flags |= tcp_rcv_drain(tcp); 4858 } 4859 ASSERT(tcp->tcp_rcv_list == NULL || 4860 tcp->tcp_fused_sigurg); 4861 4862 if (flags & TH_MARKNEXT_NEEDED) { 4863 #ifdef DEBUG 4864 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4865 "tcp_rput: sending MSGMARKNEXT %s", 4866 tcp_display(tcp, NULL, 4867 DISP_PORT_ONLY)); 4868 #endif /* DEBUG */ 4869 mp->b_flag |= MSGMARKNEXT; 4870 flags &= ~TH_MARKNEXT_NEEDED; 4871 } 4872 4873 if (is_system_labeled()) 4874 tcp_setcred_data(mp, ira); 4875 4876 putnext(connp->conn_rq, mp); 4877 if (!canputnext(connp->conn_rq)) 4878 tcp->tcp_rwnd -= seg_len; 4879 } else if ((flags & (TH_PUSH|TH_FIN)) || 4880 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4881 if (tcp->tcp_rcv_list != NULL) { 4882 /* 4883 * Enqueue the new segment first and then 4884 * call tcp_rcv_drain() to send all data 4885 * up. The other way to do this is to 4886 * send all queued data up and then call 4887 * putnext() to send the new segment up. 4888 * This way can remove the else part later 4889 * on. 4890 * 4891 * We don't do this to avoid one more call to 4892 * canputnext() as tcp_rcv_drain() needs to 4893 * call canputnext(). 4894 */ 4895 tcp_rcv_enqueue(tcp, mp, seg_len, 4896 ira->ira_cred); 4897 flags |= tcp_rcv_drain(tcp); 4898 } else { 4899 if (is_system_labeled()) 4900 tcp_setcred_data(mp, ira); 4901 4902 putnext(connp->conn_rq, mp); 4903 if (!canputnext(connp->conn_rq)) 4904 tcp->tcp_rwnd -= seg_len; 4905 } 4906 } else { 4907 /* 4908 * Enqueue all packets when processing an mblk 4909 * from the co queue and also enqueue normal packets. 4910 */ 4911 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4912 } 4913 /* 4914 * Make sure the timer is running if we have data waiting 4915 * for a push bit. This provides resiliency against 4916 * implementations that do not correctly generate push bits. 4917 */ 4918 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4919 /* 4920 * The connection may be closed at this point, so don't 4921 * do anything for a detached tcp. 4922 */ 4923 if (!TCP_IS_DETACHED(tcp)) 4924 tcp->tcp_push_tid = TCP_TIMER(tcp, 4925 tcp_push_timer, 4926 tcps->tcps_push_timer_interval); 4927 } 4928 } 4929 4930 xmit_check: 4931 /* Is there anything left to do? */ 4932 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4933 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4934 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4935 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4936 goto done; 4937 4938 /* Any transmit work to do and a non-zero window? */ 4939 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4940 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4941 if (flags & TH_REXMIT_NEEDED) { 4942 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4943 4944 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4945 if (snd_size > mss) 4946 snd_size = mss; 4947 if (snd_size > tcp->tcp_swnd) 4948 snd_size = tcp->tcp_swnd; 4949 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4950 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4951 B_TRUE); 4952 4953 if (mp1 != NULL) { 4954 tcp->tcp_xmit_head->b_prev = 4955 (mblk_t *)(intptr_t)gethrtime(); 4956 tcp->tcp_csuna = tcp->tcp_snxt; 4957 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4958 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4959 snd_size); 4960 tcp->tcp_cs.tcp_out_retrans_segs++; 4961 tcp->tcp_cs.tcp_out_retrans_bytes += snd_size; 4962 tcp_send_data(tcp, mp1); 4963 } 4964 } 4965 if (flags & TH_NEED_SACK_REXMIT) { 4966 tcp_sack_rexmit(tcp, &flags); 4967 } 4968 /* 4969 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4970 * out new segment. Note that tcp_rexmit should not be 4971 * set, otherwise TH_LIMIT_XMIT should not be set. 4972 */ 4973 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4974 if (!tcp->tcp_rexmit) { 4975 tcp_wput_data(tcp, NULL, B_FALSE); 4976 } else { 4977 tcp_ss_rexmit(tcp); 4978 } 4979 } 4980 /* 4981 * Adjust tcp_cwnd back to normal value after sending 4982 * new data segments. 4983 */ 4984 if (flags & TH_LIMIT_XMIT) { 4985 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4986 /* 4987 * This will restart the timer. Restarting the 4988 * timer is used to avoid a timeout before the 4989 * limited transmitted segment's ACK gets back. 4990 */ 4991 if (tcp->tcp_xmit_head != NULL) { 4992 tcp->tcp_xmit_head->b_prev = 4993 (mblk_t *)(intptr_t)gethrtime(); 4994 } 4995 } 4996 4997 /* Anything more to do? */ 4998 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4999 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 5000 goto done; 5001 } 5002 ack_check: 5003 if (flags & TH_SEND_URP_MARK) { 5004 ASSERT(tcp->tcp_urp_mark_mp); 5005 ASSERT(!IPCL_IS_NONSTR(connp)); 5006 /* 5007 * Send up any queued data and then send the mark message 5008 */ 5009 if (tcp->tcp_rcv_list != NULL) { 5010 flags |= tcp_rcv_drain(tcp); 5011 5012 } 5013 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5014 mp1 = tcp->tcp_urp_mark_mp; 5015 tcp->tcp_urp_mark_mp = NULL; 5016 if (is_system_labeled()) 5017 tcp_setcred_data(mp1, ira); 5018 5019 putnext(connp->conn_rq, mp1); 5020 #ifdef DEBUG 5021 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 5022 "tcp_rput: sending zero-length %s %s", 5023 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 5024 "MSGNOTMARKNEXT"), 5025 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5026 #endif /* DEBUG */ 5027 flags &= ~TH_SEND_URP_MARK; 5028 } 5029 if (flags & TH_ACK_NEEDED) { 5030 /* 5031 * Time to send an ack for some reason. 5032 */ 5033 mp1 = tcp_ack_mp(tcp); 5034 5035 if (mp1 != NULL) { 5036 tcp_send_data(tcp, mp1); 5037 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 5038 TCPS_BUMP_MIB(tcps, tcpOutAck); 5039 } 5040 if (tcp->tcp_ack_tid != 0) { 5041 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 5042 tcp->tcp_ack_tid = 0; 5043 } 5044 } 5045 if (flags & TH_ACK_TIMER_NEEDED) { 5046 /* 5047 * Arrange for deferred ACK or push wait timeout. 5048 * Start timer if it is not already running. 5049 */ 5050 if (tcp->tcp_ack_tid == 0) { 5051 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 5052 tcp->tcp_localnet ? 5053 tcps->tcps_local_dack_interval : 5054 tcps->tcps_deferred_ack_interval); 5055 } 5056 } 5057 if (flags & TH_ORDREL_NEEDED) { 5058 /* 5059 * Notify upper layer about an orderly release. If this is 5060 * a non-STREAMS socket, then just make an upcall. For STREAMS 5061 * we send up an ordrel_ind, unless this is an eager, in which 5062 * case the ordrel will be sent when tcp_accept_finish runs. 5063 * Note that for non-STREAMS we make an upcall even if it is an 5064 * eager, because we have an upper handle to send it to. 5065 */ 5066 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 5067 ASSERT(!tcp->tcp_detached); 5068 5069 if (IPCL_IS_NONSTR(connp)) { 5070 ASSERT(tcp->tcp_ordrel_mp == NULL); 5071 tcp->tcp_ordrel_done = B_TRUE; 5072 (*sockupcalls->su_opctl)(connp->conn_upper_handle, 5073 SOCK_OPCTL_SHUT_RECV, 0); 5074 goto done; 5075 } 5076 5077 if (tcp->tcp_rcv_list != NULL) { 5078 /* 5079 * Push any mblk(s) enqueued from co processing. 5080 */ 5081 flags |= tcp_rcv_drain(tcp); 5082 } 5083 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5084 5085 mp1 = tcp->tcp_ordrel_mp; 5086 tcp->tcp_ordrel_mp = NULL; 5087 tcp->tcp_ordrel_done = B_TRUE; 5088 putnext(connp->conn_rq, mp1); 5089 } 5090 done: 5091 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 5092 } 5093 5094 /* 5095 * Attach ancillary data to a received TCP segments for the 5096 * ancillary pieces requested by the application that are 5097 * different than they were in the previous data segment. 5098 * 5099 * Save the "current" values once memory allocation is ok so that 5100 * when memory allocation fails we can just wait for the next data segment. 5101 */ 5102 static mblk_t * 5103 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 5104 ip_recv_attr_t *ira) 5105 { 5106 struct T_optdata_ind *todi; 5107 int optlen; 5108 uchar_t *optptr; 5109 struct T_opthdr *toh; 5110 crb_t addflag; /* Which pieces to add */ 5111 mblk_t *mp1; 5112 conn_t *connp = tcp->tcp_connp; 5113 5114 optlen = 0; 5115 addflag.crb_all = 0; 5116 5117 /* If app asked for TOS and it has changed ... */ 5118 if (connp->conn_recv_ancillary.crb_recvtos && 5119 ipp->ipp_type_of_service != tcp->tcp_recvtos && 5120 (ira->ira_flags & IRAF_IS_IPV4)) { 5121 optlen += sizeof (struct T_opthdr) + 5122 P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE); 5123 addflag.crb_recvtos = 1; 5124 } 5125 /* If app asked for pktinfo and the index has changed ... */ 5126 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 5127 ira->ira_ruifindex != tcp->tcp_recvifindex) { 5128 optlen += sizeof (struct T_opthdr) + 5129 sizeof (struct in6_pktinfo); 5130 addflag.crb_ip_recvpktinfo = 1; 5131 } 5132 /* If app asked for hoplimit and it has changed ... */ 5133 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 5134 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 5135 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5136 addflag.crb_ipv6_recvhoplimit = 1; 5137 } 5138 /* If app asked for tclass and it has changed ... */ 5139 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 5140 ipp->ipp_tclass != tcp->tcp_recvtclass) { 5141 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5142 addflag.crb_ipv6_recvtclass = 1; 5143 } 5144 5145 /* 5146 * If app asked for hop-by-hop headers and it has changed ... 5147 * For security labels, note that (1) security labels can't change on 5148 * a connected socket at all, (2) we're connected to at most one peer, 5149 * (3) if anything changes, then it must be some other extra option. 5150 */ 5151 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 5152 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 5153 (ipp->ipp_fields & IPPF_HOPOPTS), 5154 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 5155 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 5156 addflag.crb_ipv6_recvhopopts = 1; 5157 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 5158 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 5159 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 5160 return (mp); 5161 } 5162 /* If app asked for dst headers before routing headers ... */ 5163 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 5164 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 5165 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5166 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 5167 optlen += sizeof (struct T_opthdr) + 5168 ipp->ipp_rthdrdstoptslen; 5169 addflag.crb_ipv6_recvrthdrdstopts = 1; 5170 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 5171 &tcp->tcp_rthdrdstoptslen, 5172 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5173 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 5174 return (mp); 5175 } 5176 /* If app asked for routing headers and it has changed ... */ 5177 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 5178 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 5179 (ipp->ipp_fields & IPPF_RTHDR), 5180 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 5181 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 5182 addflag.crb_ipv6_recvrthdr = 1; 5183 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 5184 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 5185 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 5186 return (mp); 5187 } 5188 /* If app asked for dest headers and it has changed ... */ 5189 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 5190 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 5191 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 5192 (ipp->ipp_fields & IPPF_DSTOPTS), 5193 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 5194 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 5195 addflag.crb_ipv6_recvdstopts = 1; 5196 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 5197 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 5198 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 5199 return (mp); 5200 } 5201 5202 if (optlen == 0) { 5203 /* Nothing to add */ 5204 return (mp); 5205 } 5206 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 5207 if (mp1 == NULL) { 5208 /* 5209 * Defer sending ancillary data until the next TCP segment 5210 * arrives. 5211 */ 5212 return (mp); 5213 } 5214 mp1->b_cont = mp; 5215 mp = mp1; 5216 mp->b_wptr += sizeof (*todi) + optlen; 5217 mp->b_datap->db_type = M_PROTO; 5218 todi = (struct T_optdata_ind *)mp->b_rptr; 5219 todi->PRIM_type = T_OPTDATA_IND; 5220 todi->DATA_flag = 1; /* MORE data */ 5221 todi->OPT_length = optlen; 5222 todi->OPT_offset = sizeof (*todi); 5223 optptr = (uchar_t *)&todi[1]; 5224 5225 /* If app asked for TOS and it has changed ... */ 5226 if (addflag.crb_recvtos) { 5227 toh = (struct T_opthdr *)optptr; 5228 toh->level = IPPROTO_IP; 5229 toh->name = IP_RECVTOS; 5230 toh->len = sizeof (*toh) + 5231 P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE); 5232 toh->status = 0; 5233 optptr += sizeof (*toh); 5234 *(uint8_t *)optptr = ipp->ipp_type_of_service; 5235 optptr = (uchar_t *)toh + toh->len; 5236 ASSERT(__TPI_TOPT_ISALIGNED(optptr)); 5237 /* Save as "last" value */ 5238 tcp->tcp_recvtos = ipp->ipp_type_of_service; 5239 } 5240 5241 /* 5242 * If app asked for pktinfo and the index has changed ... 5243 * Note that the local address never changes for the connection. 5244 */ 5245 if (addflag.crb_ip_recvpktinfo) { 5246 struct in6_pktinfo *pkti; 5247 uint_t ifindex; 5248 5249 ifindex = ira->ira_ruifindex; 5250 toh = (struct T_opthdr *)optptr; 5251 toh->level = IPPROTO_IPV6; 5252 toh->name = IPV6_PKTINFO; 5253 toh->len = sizeof (*toh) + sizeof (*pkti); 5254 toh->status = 0; 5255 optptr += sizeof (*toh); 5256 pkti = (struct in6_pktinfo *)optptr; 5257 pkti->ipi6_addr = connp->conn_laddr_v6; 5258 pkti->ipi6_ifindex = ifindex; 5259 optptr += sizeof (*pkti); 5260 ASSERT(OK_32PTR(optptr)); 5261 /* Save as "last" value */ 5262 tcp->tcp_recvifindex = ifindex; 5263 } 5264 /* If app asked for hoplimit and it has changed ... */ 5265 if (addflag.crb_ipv6_recvhoplimit) { 5266 toh = (struct T_opthdr *)optptr; 5267 toh->level = IPPROTO_IPV6; 5268 toh->name = IPV6_HOPLIMIT; 5269 toh->len = sizeof (*toh) + sizeof (uint_t); 5270 toh->status = 0; 5271 optptr += sizeof (*toh); 5272 *(uint_t *)optptr = ipp->ipp_hoplimit; 5273 optptr += sizeof (uint_t); 5274 ASSERT(OK_32PTR(optptr)); 5275 /* Save as "last" value */ 5276 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5277 } 5278 /* If app asked for tclass and it has changed ... */ 5279 if (addflag.crb_ipv6_recvtclass) { 5280 toh = (struct T_opthdr *)optptr; 5281 toh->level = IPPROTO_IPV6; 5282 toh->name = IPV6_TCLASS; 5283 toh->len = sizeof (*toh) + sizeof (uint_t); 5284 toh->status = 0; 5285 optptr += sizeof (*toh); 5286 *(uint_t *)optptr = ipp->ipp_tclass; 5287 optptr += sizeof (uint_t); 5288 ASSERT(OK_32PTR(optptr)); 5289 /* Save as "last" value */ 5290 tcp->tcp_recvtclass = ipp->ipp_tclass; 5291 } 5292 if (addflag.crb_ipv6_recvhopopts) { 5293 toh = (struct T_opthdr *)optptr; 5294 toh->level = IPPROTO_IPV6; 5295 toh->name = IPV6_HOPOPTS; 5296 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5297 toh->status = 0; 5298 optptr += sizeof (*toh); 5299 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5300 optptr += ipp->ipp_hopoptslen; 5301 ASSERT(OK_32PTR(optptr)); 5302 /* Save as last value */ 5303 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5304 (ipp->ipp_fields & IPPF_HOPOPTS), 5305 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5306 } 5307 if (addflag.crb_ipv6_recvrthdrdstopts) { 5308 toh = (struct T_opthdr *)optptr; 5309 toh->level = IPPROTO_IPV6; 5310 toh->name = IPV6_RTHDRDSTOPTS; 5311 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5312 toh->status = 0; 5313 optptr += sizeof (*toh); 5314 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5315 optptr += ipp->ipp_rthdrdstoptslen; 5316 ASSERT(OK_32PTR(optptr)); 5317 /* Save as last value */ 5318 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5319 &tcp->tcp_rthdrdstoptslen, 5320 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5321 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5322 } 5323 if (addflag.crb_ipv6_recvrthdr) { 5324 toh = (struct T_opthdr *)optptr; 5325 toh->level = IPPROTO_IPV6; 5326 toh->name = IPV6_RTHDR; 5327 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5328 toh->status = 0; 5329 optptr += sizeof (*toh); 5330 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5331 optptr += ipp->ipp_rthdrlen; 5332 ASSERT(OK_32PTR(optptr)); 5333 /* Save as last value */ 5334 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5335 (ipp->ipp_fields & IPPF_RTHDR), 5336 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5337 } 5338 if (addflag.crb_ipv6_recvdstopts) { 5339 toh = (struct T_opthdr *)optptr; 5340 toh->level = IPPROTO_IPV6; 5341 toh->name = IPV6_DSTOPTS; 5342 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5343 toh->status = 0; 5344 optptr += sizeof (*toh); 5345 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5346 optptr += ipp->ipp_dstoptslen; 5347 ASSERT(OK_32PTR(optptr)); 5348 /* Save as last value */ 5349 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5350 (ipp->ipp_fields & IPPF_DSTOPTS), 5351 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5352 } 5353 ASSERT(optptr == mp->b_wptr); 5354 return (mp); 5355 } 5356 5357 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */ 5358 #define TCP_SD_MIN 400000000 5359 5360 /* 5361 * Set RTO for this connection based on a new round-trip time measurement. 5362 * The formula is from Jacobson and Karels' "Congestion Avoidance and Control" 5363 * in SIGCOMM '88. The variable names are the same as those in Appendix A.2 5364 * of that paper. 5365 * 5366 * m = new measurement 5367 * sa = smoothed RTT average (8 * average estimates). 5368 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5369 */ 5370 static void 5371 tcp_set_rto(tcp_t *tcp, hrtime_t rtt) 5372 { 5373 hrtime_t m = rtt; 5374 hrtime_t sa = tcp->tcp_rtt_sa; 5375 hrtime_t sv = tcp->tcp_rtt_sd; 5376 tcp_stack_t *tcps = tcp->tcp_tcps; 5377 5378 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5379 tcp->tcp_rtt_update++; 5380 tcp->tcp_rtt_sum += m; 5381 tcp->tcp_rtt_cnt++; 5382 5383 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5384 if (sa != 0) { 5385 /* 5386 * Update average estimator (see section 2.3 of RFC6298): 5387 * SRTT = 7/8 SRTT + 1/8 rtt 5388 * 5389 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to: 5390 * tcp_rtt_sa = 7 * SRTT + rtt 5391 * tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt 5392 * tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt 5393 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8)) 5394 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3)) 5395 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3)) 5396 * 5397 * (rtt - tcp_rtt_sa / 8) is simply the difference 5398 * between the new rtt measurement and the existing smoothed 5399 * RTT average. This is referred to as "Error" in subsequent 5400 * calculations. 5401 */ 5402 5403 /* m is now Error. */ 5404 m -= sa >> 3; 5405 if ((sa += m) <= 0) { 5406 /* 5407 * Don't allow the smoothed average to be negative. 5408 * We use 0 to denote reinitialization of the 5409 * variables. 5410 */ 5411 sa = 1; 5412 } 5413 5414 /* 5415 * Update deviation estimator: 5416 * mdev = 3/4 mdev + 1/4 abs(Error) 5417 * 5418 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to: 5419 * tcp_rtt_sd = 3 * mdev + abs(Error) 5420 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error) 5421 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error) 5422 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error) 5423 */ 5424 if (m < 0) 5425 m = -m; 5426 m -= sv >> 2; 5427 sv += m; 5428 } else { 5429 /* 5430 * This follows BSD's implementation. So the reinitialized 5431 * RTO is 3 * m. We cannot go less than 2 because if the 5432 * link is bandwidth dominated, doubling the window size 5433 * during slow start means doubling the RTT. We want to be 5434 * more conservative when we reinitialize our estimates. 3 5435 * is just a convenient number. 5436 */ 5437 sa = m << 3; 5438 sv = m << 1; 5439 } 5440 if (sv < TCP_SD_MIN) { 5441 /* 5442 * Since a receiver doesn't delay its ACKs during a long run of 5443 * segments, sa may not have captured the effect of delayed ACK 5444 * timeouts on the RTT. To make sure we always account for the 5445 * possible delay (and avoid the unnecessary retransmission), 5446 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of 5447 * 200ms on older SunOS/BSD systems and modern Windows systems 5448 * (as of 2019). This means that the minimum possible mean 5449 * deviation is 100 ms. 5450 */ 5451 sv = TCP_SD_MIN; 5452 } 5453 tcp->tcp_rtt_sa = sa; 5454 tcp->tcp_rtt_sd = sv; 5455 5456 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 5457 5458 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5459 tcp->tcp_timer_backoff = 0; 5460 } 5461 5462 /* 5463 * On a labeled system we have some protocols above TCP, such as RPC, which 5464 * appear to assume that every mblk in a chain has a db_credp. 5465 */ 5466 static void 5467 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5468 { 5469 ASSERT(is_system_labeled()); 5470 ASSERT(ira->ira_cred != NULL); 5471 5472 while (mp != NULL) { 5473 mblk_setcred(mp, ira->ira_cred, NOPID); 5474 mp = mp->b_cont; 5475 } 5476 } 5477 5478 uint_t 5479 tcp_rwnd_reopen(tcp_t *tcp) 5480 { 5481 uint_t ret = 0; 5482 uint_t thwin; 5483 conn_t *connp = tcp->tcp_connp; 5484 5485 /* Learn the latest rwnd information that we sent to the other side. */ 5486 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5487 << tcp->tcp_rcv_ws; 5488 /* This is peer's calculated send window (our receive window). */ 5489 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5490 /* 5491 * Increase the receive window to max. But we need to do receiver 5492 * SWS avoidance. This means that we need to check the increase of 5493 * of receive window is at least 1 MSS. 5494 */ 5495 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5496 /* 5497 * If the window that the other side knows is less than max 5498 * deferred acks segments, send an update immediately. 5499 */ 5500 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5501 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5502 ret = TH_ACK_NEEDED; 5503 } 5504 tcp->tcp_rwnd = connp->conn_rcvbuf; 5505 } 5506 return (ret); 5507 } 5508 5509 /* 5510 * Handle a packet that has been reclassified by TCP. 5511 * This function drops the ref on connp that the caller had. 5512 */ 5513 void 5514 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5515 { 5516 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5517 5518 if (connp->conn_incoming_ifindex != 0 && 5519 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5520 freemsg(mp); 5521 CONN_DEC_REF(connp); 5522 return; 5523 } 5524 5525 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5526 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5527 ip6_t *ip6h; 5528 ipha_t *ipha; 5529 5530 if (ira->ira_flags & IRAF_IS_IPV4) { 5531 ipha = (ipha_t *)mp->b_rptr; 5532 ip6h = NULL; 5533 } else { 5534 ipha = NULL; 5535 ip6h = (ip6_t *)mp->b_rptr; 5536 } 5537 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5538 if (mp == NULL) { 5539 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5540 /* Note that mp is NULL */ 5541 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5542 CONN_DEC_REF(connp); 5543 return; 5544 } 5545 } 5546 5547 if (IPCL_IS_TCP(connp)) { 5548 /* 5549 * do not drain, certain use cases can blow 5550 * the stack 5551 */ 5552 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5553 connp->conn_recv, connp, ira, 5554 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5555 } else { 5556 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5557 (connp->conn_recv)(connp, mp, NULL, 5558 ira); 5559 CONN_DEC_REF(connp); 5560 } 5561 5562 } 5563 5564 /* ARGSUSED */ 5565 static void 5566 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5567 { 5568 conn_t *connp = (conn_t *)arg; 5569 tcp_t *tcp = connp->conn_tcp; 5570 queue_t *q = connp->conn_rq; 5571 5572 ASSERT(!IPCL_IS_NONSTR(connp)); 5573 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5574 tcp->tcp_rsrv_mp = mp; 5575 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5576 5577 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5578 return; 5579 } 5580 5581 if (tcp->tcp_fused) { 5582 tcp_fuse_backenable(tcp); 5583 return; 5584 } 5585 5586 if (canputnext(q)) { 5587 /* Not flow-controlled, open rwnd */ 5588 tcp->tcp_rwnd = connp->conn_rcvbuf; 5589 5590 /* 5591 * Send back a window update immediately if TCP is above 5592 * ESTABLISHED state and the increase of the rcv window 5593 * that the other side knows is at least 1 MSS after flow 5594 * control is lifted. 5595 */ 5596 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5597 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5598 tcp_xmit_ctl(NULL, tcp, 5599 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5600 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5601 } 5602 } 5603 } 5604 5605 /* 5606 * The read side service routine is called mostly when we get back-enabled as a 5607 * result of flow control relief. Since we don't actually queue anything in 5608 * TCP, we have no data to send out of here. What we do is clear the receive 5609 * window, and send out a window update. 5610 */ 5611 int 5612 tcp_rsrv(queue_t *q) 5613 { 5614 conn_t *connp = Q_TO_CONN(q); 5615 tcp_t *tcp = connp->conn_tcp; 5616 mblk_t *mp; 5617 5618 /* No code does a putq on the read side */ 5619 ASSERT(q->q_first == NULL); 5620 5621 /* 5622 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5623 * been run. So just return. 5624 */ 5625 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5626 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5627 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5628 return (0); 5629 } 5630 tcp->tcp_rsrv_mp = NULL; 5631 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5632 5633 CONN_INC_REF(connp); 5634 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5635 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5636 return (0); 5637 } 5638 5639 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5640 #define ICMP_MIN_TCP_HDR 8 5641 5642 /* 5643 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5644 * passed up by IP. The message is always received on the correct tcp_t. 5645 * Assumes that IP has pulled up everything up to and including the ICMP header. 5646 */ 5647 /* ARGSUSED2 */ 5648 void 5649 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5650 { 5651 conn_t *connp = (conn_t *)arg1; 5652 icmph_t *icmph; 5653 ipha_t *ipha; 5654 int iph_hdr_length; 5655 tcpha_t *tcpha; 5656 uint32_t seg_seq; 5657 tcp_t *tcp = connp->conn_tcp; 5658 5659 /* Assume IP provides aligned packets */ 5660 ASSERT(OK_32PTR(mp->b_rptr)); 5661 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5662 5663 /* 5664 * It's possible we have a closed, but not yet destroyed, TCP 5665 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid 5666 * in the closed state, so don't take any chances and drop the packet. 5667 */ 5668 if (tcp->tcp_state == TCPS_CLOSED) { 5669 freemsg(mp); 5670 return; 5671 } 5672 5673 /* 5674 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5675 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5676 */ 5677 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5678 tcp_icmp_error_ipv6(tcp, mp, ira); 5679 return; 5680 } 5681 5682 /* Skip past the outer IP and ICMP headers */ 5683 iph_hdr_length = ira->ira_ip_hdr_length; 5684 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5685 /* 5686 * If we don't have the correct outer IP header length 5687 * or if we don't have a complete inner IP header 5688 * drop it. 5689 */ 5690 if (iph_hdr_length < sizeof (ipha_t) || 5691 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5692 noticmpv4: 5693 freemsg(mp); 5694 return; 5695 } 5696 ipha = (ipha_t *)&icmph[1]; 5697 5698 /* Skip past the inner IP and find the ULP header */ 5699 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5700 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5701 /* 5702 * If we don't have the correct inner IP header length or if the ULP 5703 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5704 * bytes of TCP header, drop it. 5705 */ 5706 if (iph_hdr_length < sizeof (ipha_t) || 5707 ipha->ipha_protocol != IPPROTO_TCP || 5708 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5709 goto noticmpv4; 5710 } 5711 5712 seg_seq = ntohl(tcpha->tha_seq); 5713 switch (icmph->icmph_type) { 5714 case ICMP_DEST_UNREACHABLE: 5715 switch (icmph->icmph_code) { 5716 case ICMP_FRAGMENTATION_NEEDED: 5717 /* 5718 * Update Path MTU, then try to send something out. 5719 */ 5720 tcp_update_pmtu(tcp, B_TRUE); 5721 tcp_rexmit_after_error(tcp); 5722 break; 5723 case ICMP_PORT_UNREACHABLE: 5724 case ICMP_PROTOCOL_UNREACHABLE: 5725 switch (tcp->tcp_state) { 5726 case TCPS_SYN_SENT: 5727 case TCPS_SYN_RCVD: 5728 /* 5729 * ICMP can snipe away incipient 5730 * TCP connections as long as 5731 * seq number is same as initial 5732 * send seq number. 5733 */ 5734 if (seg_seq == tcp->tcp_iss) { 5735 (void) tcp_clean_death(tcp, 5736 ECONNREFUSED); 5737 } 5738 break; 5739 } 5740 break; 5741 case ICMP_HOST_UNREACHABLE: 5742 case ICMP_NET_UNREACHABLE: 5743 /* Record the error in case we finally time out. */ 5744 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5745 tcp->tcp_client_errno = EHOSTUNREACH; 5746 else 5747 tcp->tcp_client_errno = ENETUNREACH; 5748 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5749 if (tcp->tcp_listener != NULL && 5750 tcp->tcp_listener->tcp_syn_defense) { 5751 /* 5752 * Ditch the half-open connection if we 5753 * suspect a SYN attack is under way. 5754 */ 5755 (void) tcp_clean_death(tcp, 5756 tcp->tcp_client_errno); 5757 } 5758 } 5759 break; 5760 default: 5761 break; 5762 } 5763 break; 5764 case ICMP_SOURCE_QUENCH: { 5765 /* 5766 * use a global boolean to control 5767 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5768 * The default is false. 5769 */ 5770 if (tcp_icmp_source_quench) { 5771 /* 5772 * Reduce the sending rate as if we got a 5773 * retransmit timeout 5774 */ 5775 uint32_t npkt; 5776 5777 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5778 tcp->tcp_mss; 5779 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5780 5781 DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp, 5782 uint32_t, tcp->tcp_cwnd, 5783 uint32_t, tcp->tcp_mss); 5784 tcp->tcp_cwnd = tcp->tcp_mss; 5785 tcp->tcp_cwnd_cnt = 0; 5786 } 5787 break; 5788 } 5789 } 5790 freemsg(mp); 5791 } 5792 5793 /* 5794 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5795 * error messages passed up by IP. 5796 * Assumes that IP has pulled up all the extension headers as well 5797 * as the ICMPv6 header. 5798 */ 5799 static void 5800 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5801 { 5802 icmp6_t *icmp6; 5803 ip6_t *ip6h; 5804 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5805 tcpha_t *tcpha; 5806 uint8_t *nexthdrp; 5807 uint32_t seg_seq; 5808 5809 /* 5810 * Verify that we have a complete IP header. 5811 */ 5812 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5813 5814 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5815 ip6h = (ip6_t *)&icmp6[1]; 5816 /* 5817 * Verify if we have a complete ICMP and inner IP header. 5818 */ 5819 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5820 noticmpv6: 5821 freemsg(mp); 5822 return; 5823 } 5824 5825 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5826 goto noticmpv6; 5827 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5828 /* 5829 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5830 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5831 * packet. 5832 */ 5833 if ((*nexthdrp != IPPROTO_TCP) || 5834 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5835 goto noticmpv6; 5836 } 5837 5838 seg_seq = ntohl(tcpha->tha_seq); 5839 switch (icmp6->icmp6_type) { 5840 case ICMP6_PACKET_TOO_BIG: 5841 /* 5842 * Update Path MTU, then try to send something out. 5843 */ 5844 tcp_update_pmtu(tcp, B_TRUE); 5845 tcp_rexmit_after_error(tcp); 5846 break; 5847 case ICMP6_DST_UNREACH: 5848 switch (icmp6->icmp6_code) { 5849 case ICMP6_DST_UNREACH_NOPORT: 5850 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5851 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5852 (seg_seq == tcp->tcp_iss)) { 5853 (void) tcp_clean_death(tcp, ECONNREFUSED); 5854 } 5855 break; 5856 case ICMP6_DST_UNREACH_ADMIN: 5857 case ICMP6_DST_UNREACH_NOROUTE: 5858 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5859 case ICMP6_DST_UNREACH_ADDR: 5860 /* Record the error in case we finally time out. */ 5861 tcp->tcp_client_errno = EHOSTUNREACH; 5862 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5863 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5864 (seg_seq == tcp->tcp_iss)) { 5865 if (tcp->tcp_listener != NULL && 5866 tcp->tcp_listener->tcp_syn_defense) { 5867 /* 5868 * Ditch the half-open connection if we 5869 * suspect a SYN attack is under way. 5870 */ 5871 (void) tcp_clean_death(tcp, 5872 tcp->tcp_client_errno); 5873 } 5874 } 5875 5876 5877 break; 5878 default: 5879 break; 5880 } 5881 break; 5882 case ICMP6_PARAM_PROB: 5883 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5884 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5885 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5886 (uchar_t *)nexthdrp) { 5887 if (tcp->tcp_state == TCPS_SYN_SENT || 5888 tcp->tcp_state == TCPS_SYN_RCVD) { 5889 (void) tcp_clean_death(tcp, ECONNREFUSED); 5890 } 5891 break; 5892 } 5893 break; 5894 5895 case ICMP6_TIME_EXCEEDED: 5896 default: 5897 break; 5898 } 5899 freemsg(mp); 5900 } 5901 5902 /* 5903 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5904 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5905 * 5906 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5907 * error messages received by IP. The message is always received on the correct 5908 * tcp_t. 5909 */ 5910 /* ARGSUSED */ 5911 boolean_t 5912 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5913 ip_recv_attr_t *ira) 5914 { 5915 tcpha_t *tcpha = (tcpha_t *)arg2; 5916 uint32_t seq = ntohl(tcpha->tha_seq); 5917 tcp_t *tcp = connp->conn_tcp; 5918 5919 /* 5920 * TCP sequence number contained in payload of the ICMP error message 5921 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5922 * the message is either a stale ICMP error, or an attack from the 5923 * network. Fail the verification. 5924 */ 5925 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5926 return (B_FALSE); 5927 5928 /* For "too big" we also check the ignore flag */ 5929 if (ira->ira_flags & IRAF_IS_IPV4) { 5930 ASSERT(icmph != NULL); 5931 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5932 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5933 tcp->tcp_tcps->tcps_ignore_path_mtu) 5934 return (B_FALSE); 5935 } else { 5936 ASSERT(icmp6 != NULL); 5937 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5938 tcp->tcp_tcps->tcps_ignore_path_mtu) 5939 return (B_FALSE); 5940 } 5941 return (B_TRUE); 5942 } 5943