xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_input.c (revision 54819d46b24e4252ba4cdbe22d8c419c16f0d396)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2019 Joyent, Inc.
26  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2024 Oxide Computer Company
29  */
30 
31 /* This file contains all TCP input processing functions. */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <sys/strsubr.h>
37 #include <sys/stropts.h>
38 #include <sys/strlog.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/suntpi.h>
42 #include <sys/xti_inet.h>
43 #include <sys/squeue_impl.h>
44 #include <sys/squeue.h>
45 #include <sys/tsol/tnet.h>
46 
47 #include <inet/common.h>
48 #include <inet/ip.h>
49 #include <inet/tcp.h>
50 #include <inet/tcp_impl.h>
51 #include <inet/tcp_cluster.h>
52 #include <inet/proto_set.h>
53 #include <inet/ipsec_impl.h>
54 #include <inet/tcp_sig.h>
55 
56 /*
57  * RFC7323-recommended phrasing of TSTAMP option, for easier parsing
58  */
59 
60 #ifdef _BIG_ENDIAN
61 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
62 	(TCPOPT_TSTAMP << 8) | 10)
63 #else
64 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
65 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
66 #endif
67 
68 /*
69  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
70  */
71 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
72 
73 /*
74  * Since tcp_listener is not cleared atomically with tcp_detached
75  * being cleared we need this extra bit to tell a detached connection
76  * apart from one that is in the process of being accepted.
77  */
78 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
79 	(TCP_IS_DETACHED(tcp) &&	\
80 	    (!(tcp)->tcp_hard_binding))
81 
82 /*
83  * Steps to do when a tcp_t moves to TIME-WAIT state.
84  *
85  * This connection is done, we don't need to account for it.  Decrement
86  * the listener connection counter if needed.
87  *
88  * Decrement the connection counter of the stack.  Note that this counter
89  * is per CPU.  So the total number of connections in a stack is the sum of all
90  * of them.  Since there is no lock for handling all of them exclusively, the
91  * resulting sum is only an approximation.
92  *
93  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
94  * connection won't interfere with new ones.
95  *
96  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
97  * the timer is handled within the context of this tcp_t.  When the timer
98  * fires, tcp_clean_death() is called.  If upper layer closes the connection
99  * during this period, tcp_time_wait_append() will be called to add this
100  * tcp_t to the global TIME-WAIT list.  Note that this means that the
101  * actual wait time in TIME-WAIT state will be longer than the
102  * tcps_time_wait_interval since the period before upper layer closes the
103  * connection is not accounted for when tcp_time_wait_append() is called.
104  *
105  * If upper layer has closed the connection, call tcp_time_wait_append()
106  * directly.
107  *
108  */
109 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
110 {								\
111 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
112 	if ((tcp)->tcp_listen_cnt != NULL)			\
113 		TCP_DECR_LISTEN_CNT(tcp);			\
114 	atomic_dec_64(						\
115 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
116 	(connp)->conn_exclbind = 0;				\
117 	if (!TCP_IS_DETACHED(tcp)) {				\
118 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
119 	} else {						\
120 		tcp_time_wait_append(tcp);			\
121 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
122 	}							\
123 }
124 
125 /*
126  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
127  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
128  * data, TCP will not respond with an ACK.  RFC 793 requires that
129  * TCP responds with an ACK for such a bogus ACK.  By not following
130  * the RFC, we prevent TCP from getting into an ACK storm if somehow
131  * an attacker successfully spoofs an acceptable segment to our
132  * peer; or when our peer is "confused."
133  */
134 static uint32_t tcp_drop_ack_unsent_cnt = 10;
135 
136 /*
137  * To protect TCP against attacker using a small window and requesting
138  * large amount of data (DoS attack by conuming memory), TCP checks the
139  * window advertised in the last ACK of the 3-way handshake.  TCP uses
140  * the tcp_mss (the size of one packet) value for comparion.  The window
141  * should be larger than tcp_mss.  But while a sane TCP should advertise
142  * a receive window larger than or equal to 4*MSS to avoid stop and go
143  * tarrfic, not all TCP stacks do that.  This is especially true when
144  * tcp_mss is a big value.
145  *
146  * To work around this issue, an additional fixed value for comparison
147  * is also used.  If the advertised window is smaller than both tcp_mss
148  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
149  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
150  * smaller than 8K is considered to be OK.
151  */
152 static uint32_t tcp_init_wnd_chk = 4096;
153 
154 /* Process ICMP source quench message or not. */
155 static boolean_t tcp_icmp_source_quench = B_FALSE;
156 
157 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
158 
159 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
160 		    ip_recv_attr_t *);
161 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
162 		    ip_recv_attr_t *);
163 static boolean_t	tcp_drop_q0(tcp_t *);
164 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
165 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
166 		    ip_recv_attr_t *);
167 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
168 static boolean_t tcp_process_options(mblk_t *mp, tcp_t *, tcpha_t *,
169     ip_recv_attr_t *, boolean_t);
170 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
171 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
172 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
173 static void	tcp_set_rto(tcp_t *, hrtime_t);
174 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
175 
176 /*
177  * CC wrapper hook functions
178  */
179 static void
cc_ack_received(tcp_t * tcp,uint32_t seg_ack,int32_t bytes_acked,uint16_t type)180 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked,
181     uint16_t type)
182 {
183 	uint32_t old_cwnd = tcp->tcp_cwnd;
184 
185 	tcp->tcp_ccv.bytes_this_ack = bytes_acked;
186 	if (tcp->tcp_cwnd <= tcp->tcp_swnd)
187 		tcp->tcp_ccv.flags |= CCF_CWND_LIMITED;
188 	else
189 		tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED;
190 
191 	if (type == CC_ACK) {
192 		if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
193 			if (tcp->tcp_ccv.flags & CCF_RTO)
194 				tcp->tcp_ccv.flags &= ~CCF_RTO;
195 
196 			tcp->tcp_ccv.t_bytes_acked +=
197 			    min(tcp->tcp_ccv.bytes_this_ack,
198 			    tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss);
199 			if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) {
200 				tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd;
201 				tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND;
202 			}
203 		} else {
204 			tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND;
205 			tcp->tcp_ccv.t_bytes_acked = 0;
206 		}
207 	}
208 
209 	if (CC_ALGO(tcp)->ack_received != NULL) {
210 		/*
211 		 * The FreeBSD code where this originated had a comment "Find
212 		 * a way to live without this" in several places where curack
213 		 * got set.  If they eventually dump curack from the cc
214 		 * variables, we'll need to adapt our code.
215 		 */
216 		tcp->tcp_ccv.curack = seg_ack;
217 		CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type);
218 	}
219 
220 	DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd,
221 	    uint32_t, tcp->tcp_cwnd);
222 }
223 
224 void
cc_cong_signal(tcp_t * tcp,uint32_t seg_ack,uint32_t type)225 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type)
226 {
227 	uint32_t old_cwnd = tcp->tcp_cwnd;
228 	uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh;
229 	switch (type) {
230 	case CC_NDUPACK:
231 		if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) {
232 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
233 			if (tcp->tcp_ecn_ok) {
234 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
235 				tcp->tcp_cwr = B_TRUE;
236 				tcp->tcp_ecn_cwr_sent = B_FALSE;
237 			}
238 		}
239 		break;
240 	case CC_ECN:
241 		if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) {
242 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
243 			if (tcp->tcp_ecn_ok) {
244 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
245 				tcp->tcp_cwr = B_TRUE;
246 				tcp->tcp_ecn_cwr_sent = B_FALSE;
247 			}
248 		}
249 		break;
250 	case CC_RTO:
251 		tcp->tcp_ccv.flags |= CCF_RTO;
252 		tcp->tcp_dupack_cnt = 0;
253 		tcp->tcp_ccv.t_bytes_acked = 0;
254 		/*
255 		 * Give up on fast recovery and congestion recovery if we were
256 		 * attempting either.
257 		 */
258 		EXIT_RECOVERY(tcp->tcp_ccv.flags);
259 		if (CC_ALGO(tcp)->cong_signal == NULL) {
260 			/*
261 			 * RFC5681 Section 3.1
262 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
263 			 */
264 			tcp->tcp_cwnd_ssthresh = max(
265 			    (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss,
266 			    2) * tcp->tcp_mss;
267 			tcp->tcp_cwnd = tcp->tcp_mss;
268 		}
269 
270 		if (tcp->tcp_ecn_ok) {
271 			tcp->tcp_cwr = B_TRUE;
272 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
273 			tcp->tcp_ecn_cwr_sent = B_FALSE;
274 		}
275 		break;
276 	}
277 
278 	if (CC_ALGO(tcp)->cong_signal != NULL) {
279 		tcp->tcp_ccv.curack = seg_ack;
280 		CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type);
281 	}
282 
283 	DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd,
284 	    uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh,
285 	    uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type);
286 }
287 
288 static void
cc_post_recovery(tcp_t * tcp,uint32_t seg_ack)289 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack)
290 {
291 	uint32_t old_cwnd = tcp->tcp_cwnd;
292 
293 	if (CC_ALGO(tcp)->post_recovery != NULL) {
294 		tcp->tcp_ccv.curack = seg_ack;
295 		CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv);
296 	}
297 	tcp->tcp_ccv.t_bytes_acked = 0;
298 
299 	DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp,
300 	    uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd);
301 }
302 
303 /*
304  * Set the MSS associated with a particular tcp based on its current value,
305  * and a new one passed in. Observe minimums and maximums, and reset other
306  * state variables that we want to view as multiples of MSS.
307  *
308  * The value of MSS could be either increased or descreased.
309  */
310 void
tcp_mss_set(tcp_t * tcp,uint32_t mss)311 tcp_mss_set(tcp_t *tcp, uint32_t mss)
312 {
313 	uint32_t	mss_max;
314 	tcp_stack_t	*tcps = tcp->tcp_tcps;
315 	conn_t		*connp = tcp->tcp_connp;
316 
317 	if (connp->conn_ipversion == IPV4_VERSION)
318 		mss_max = tcps->tcps_mss_max_ipv4;
319 	else
320 		mss_max = tcps->tcps_mss_max_ipv6;
321 
322 	if (mss < tcps->tcps_mss_min)
323 		mss = tcps->tcps_mss_min;
324 	if (mss > mss_max)
325 		mss = mss_max;
326 	/*
327 	 * Unless naglim has been set by our client to
328 	 * a non-mss value, force naglim to track mss.
329 	 * This can help to aggregate small writes.
330 	 */
331 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
332 		tcp->tcp_naglim = mss;
333 	/*
334 	 * TCP should be able to buffer at least 4 MSS data for obvious
335 	 * performance reason.
336 	 */
337 	if ((mss << 2) > connp->conn_sndbuf)
338 		connp->conn_sndbuf = mss << 2;
339 
340 	/*
341 	 * Set the send lowater to at least twice of MSS.
342 	 */
343 	if ((mss << 1) > connp->conn_sndlowat)
344 		connp->conn_sndlowat = mss << 1;
345 
346 	/*
347 	 * Update tcp_cwnd according to the new value of MSS. Keep the
348 	 * previous ratio to preserve the transmit rate.
349 	 */
350 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
351 	tcp->tcp_cwnd_cnt = 0;
352 
353 	tcp->tcp_mss = mss;
354 	(void) tcp_maxpsz_set(tcp, B_TRUE);
355 }
356 
357 /*
358  * Extract option values from a tcp header.  We put any found values into the
359  * tcpopt struct and return a bitmask saying which options were found.
360  */
361 int
tcp_parse_options(tcpha_t * tcpha,tcp_opt_t * tcpopt)362 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
363 {
364 	uchar_t		*endp;
365 	int		len;
366 	uint32_t	mss;
367 	uchar_t		*up = (uchar_t *)tcpha;
368 	int		found = 0;
369 	int32_t		sack_len;
370 	tcp_seq		sack_begin, sack_end;
371 	tcp_t		*tcp;
372 
373 	endp = up + TCP_HDR_LENGTH(tcpha);
374 	up += TCP_MIN_HEADER_LENGTH;
375 	/*
376 	 * If timestamp option is aligned as recommended in RFC 7323 Appendix
377 	 * A, and is the only option, return quickly.
378 	 */
379 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
380 	    TCPOPT_REAL_TS_LEN &&
381 	    OK_32PTR(up) &&
382 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
383 		tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4));
384 		tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
385 
386 		return (TCP_OPT_TSTAMP_PRESENT);
387 	}
388 	while (up < endp) {
389 		len = endp - up;
390 		switch (*up) {
391 		case TCPOPT_EOL:
392 			break;
393 
394 		case TCPOPT_NOP:
395 			up++;
396 			continue;
397 
398 		case TCPOPT_MAXSEG:
399 			if (len < TCPOPT_MAXSEG_LEN ||
400 			    up[1] != TCPOPT_MAXSEG_LEN)
401 				break;
402 
403 			mss = BE16_TO_U16(up+2);
404 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
405 			tcpopt->tcp_opt_mss = mss;
406 			found |= TCP_OPT_MSS_PRESENT;
407 
408 			up += TCPOPT_MAXSEG_LEN;
409 			continue;
410 
411 		case TCPOPT_WSCALE:
412 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
413 				break;
414 
415 			if (up[2] > TCP_MAX_WINSHIFT)
416 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
417 			else
418 				tcpopt->tcp_opt_wscale = up[2];
419 			found |= TCP_OPT_WSCALE_PRESENT;
420 
421 			up += TCPOPT_WS_LEN;
422 			continue;
423 
424 		case TCPOPT_SACK_PERMITTED:
425 			if (len < TCPOPT_SACK_OK_LEN ||
426 			    up[1] != TCPOPT_SACK_OK_LEN)
427 				break;
428 			found |= TCP_OPT_SACK_OK_PRESENT;
429 			up += TCPOPT_SACK_OK_LEN;
430 			continue;
431 
432 		case TCPOPT_SACK:
433 			if (len <= 2 || up[1] <= 2 || len < up[1])
434 				break;
435 
436 			/* If TCP is not interested in SACK blks... */
437 			if ((tcp = tcpopt->tcp) == NULL) {
438 				up += up[1];
439 				continue;
440 			}
441 			sack_len = up[1] - TCPOPT_HEADER_LEN;
442 			up += TCPOPT_HEADER_LEN;
443 
444 			/*
445 			 * If the list is empty, allocate one and assume
446 			 * nothing is sack'ed.
447 			 */
448 			if (tcp->tcp_notsack_list == NULL) {
449 				tcp_notsack_update(&(tcp->tcp_notsack_list),
450 				    tcp->tcp_suna, tcp->tcp_snxt,
451 				    &(tcp->tcp_num_notsack_blk),
452 				    &(tcp->tcp_cnt_notsack_list));
453 
454 				/*
455 				 * Make sure tcp_notsack_list is not NULL.
456 				 * This happens when kmem_alloc(KM_NOSLEEP)
457 				 * returns NULL.
458 				 */
459 				if (tcp->tcp_notsack_list == NULL) {
460 					up += sack_len;
461 					continue;
462 				}
463 				tcp->tcp_fack = tcp->tcp_suna;
464 			}
465 
466 			while (sack_len > 0) {
467 				if (up + 8 > endp) {
468 					up = endp;
469 					break;
470 				}
471 				sack_begin = BE32_TO_U32(up);
472 				up += 4;
473 				sack_end = BE32_TO_U32(up);
474 				up += 4;
475 				sack_len -= 8;
476 				/*
477 				 * Bounds checking.  Make sure the SACK
478 				 * info is within tcp_suna and tcp_snxt.
479 				 * If this SACK blk is out of bound, ignore
480 				 * it but continue to parse the following
481 				 * blks.
482 				 */
483 				if (SEQ_LEQ(sack_end, sack_begin) ||
484 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
485 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
486 					continue;
487 				}
488 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
489 				    sack_begin, sack_end,
490 				    &(tcp->tcp_num_notsack_blk),
491 				    &(tcp->tcp_cnt_notsack_list));
492 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
493 					tcp->tcp_fack = sack_end;
494 				}
495 			}
496 			found |= TCP_OPT_SACK_PRESENT;
497 			continue;
498 
499 		case TCPOPT_TSTAMP:
500 			if (len < TCPOPT_TSTAMP_LEN ||
501 			    up[1] != TCPOPT_TSTAMP_LEN)
502 				break;
503 
504 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
505 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
506 
507 			found |= TCP_OPT_TSTAMP_PRESENT;
508 
509 			up += TCPOPT_TSTAMP_LEN;
510 			continue;
511 
512 		case TCPOPT_MD5:
513 			if (len < TCPOPT_MD5_LEN || up[1] != TCPOPT_MD5_LEN)
514 				break;
515 
516 			bcopy(up + 2, tcpopt->tcp_opt_sig,
517 			    sizeof (tcpopt->tcp_opt_sig));
518 
519 			found |= TCP_OPT_SIG_PRESENT;
520 			up += TCPOPT_MD5_LEN;
521 			continue;
522 
523 		default:
524 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
525 				break;
526 			up += up[1];
527 			continue;
528 		}
529 		break;
530 	}
531 	return (found);
532 }
533 
534 /*
535  * Process all TCP option in SYN segment.  Note that this function should
536  * be called after tcp_set_destination() is called so that the necessary info
537  * from IRE is already set in the tcp structure.
538  *
539  * This function sets up the correct tcp_mss value according to the
540  * MSS option value and our header size.  It also sets up the window scale
541  * and timestamp values, and initialize SACK info blocks.  But it does not
542  * change receive window size after setting the tcp_mss value.  The caller
543  * should do the appropriate change.
544  */
545 static boolean_t
tcp_process_options(mblk_t * mp,tcp_t * tcp,tcpha_t * tcpha,ip_recv_attr_t * ira,boolean_t incoming)546 tcp_process_options(mblk_t *mp, tcp_t *tcp, tcpha_t *tcpha, ip_recv_attr_t *ira,
547     boolean_t incoming)
548 {
549 	int options;
550 	tcp_opt_t tcpopt;
551 	uint32_t mss_max;
552 	char *tmp_tcph;
553 	tcp_stack_t	*tcps = tcp->tcp_tcps;
554 	conn_t		*connp = tcp->tcp_connp;
555 
556 	tcpopt.tcp = NULL;
557 	options = tcp_parse_options(tcpha, &tcpopt);
558 
559 	if (tcp->tcp_md5sig) {
560 		if ((options & TCP_OPT_SIG_PRESENT)) {
561 			if (!tcpsig_verify(mp->b_cont, tcp, tcpha, ira,
562 			    tcpopt.tcp_opt_sig)) {
563 				return (B_FALSE);
564 			}
565 		} else if (incoming) {
566 
567 			/*
568 			 * This is a SYN packet for a listener which has the
569 			 * TCP_MD5SIG option enabled, but the incoming SYN did
570 			 * not contain a signature. If there is a configured SA
571 			 * for this connection we must silently drop the
572 			 * incoming packet. Otherwise we will gracefully
573 			 * degrade to a connection without the option enabled.
574 			 */
575 			if (tcpsig_sa_exists(tcp, true, NULL)) {
576 				TCP_STAT(tcp->tcp_tcps, tcp_sig_no_option);
577 				return (B_FALSE);
578 			}
579 			TCP_STAT(tcp->tcp_tcps, tcp_sig_degraded);
580 			tcp->tcp_md5sig = 0;
581 		} else {
582 			TCP_STAT(tcp->tcp_tcps, tcp_sig_no_option);
583 			return (B_FALSE);
584 		}
585 	}
586 
587 	/*
588 	 * Process MSS option.  Note that MSS option value does not account
589 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
590 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
591 	 * IPv6.
592 	 */
593 	if (!(options & TCP_OPT_MSS_PRESENT)) {
594 		if (connp->conn_ipversion == IPV4_VERSION)
595 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
596 		else
597 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
598 	} else {
599 		if (connp->conn_ipversion == IPV4_VERSION)
600 			mss_max = tcps->tcps_mss_max_ipv4;
601 		else
602 			mss_max = tcps->tcps_mss_max_ipv6;
603 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
604 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
605 		else if (tcpopt.tcp_opt_mss > mss_max)
606 			tcpopt.tcp_opt_mss = mss_max;
607 	}
608 
609 	/* Process Window Scale option. */
610 	if (options & TCP_OPT_WSCALE_PRESENT) {
611 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
612 		tcp->tcp_snd_ws_ok = B_TRUE;
613 	} else {
614 		tcp->tcp_snd_ws = B_FALSE;
615 		tcp->tcp_snd_ws_ok = B_FALSE;
616 		tcp->tcp_rcv_ws = B_FALSE;
617 	}
618 
619 	/* Process Timestamp option. */
620 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
621 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
622 		tmp_tcph = (char *)tcp->tcp_tcpha;
623 
624 		tcp->tcp_snd_ts_ok = B_TRUE;
625 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
626 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
627 		ASSERT(OK_32PTR(tmp_tcph));
628 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
629 
630 		/* Fill in our template header with basic timestamp option. */
631 		tmp_tcph += connp->conn_ht_ulp_len;
632 		tmp_tcph[0] = TCPOPT_NOP;
633 		tmp_tcph[1] = TCPOPT_NOP;
634 		tmp_tcph[2] = TCPOPT_TSTAMP;
635 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
636 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
637 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
638 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
639 	} else {
640 		tcp->tcp_snd_ts_ok = B_FALSE;
641 	}
642 
643 	/*
644 	 * Process SACK options.  If SACK is enabled for this connection,
645 	 * then allocate the SACK info structure.  Note the following ways
646 	 * when tcp_snd_sack_ok is set to true.
647 	 *
648 	 * For active connection: in tcp_set_destination() called in
649 	 * tcp_connect().
650 	 *
651 	 * For passive connection: in tcp_set_destination() called in
652 	 * tcp_input_listener().
653 	 *
654 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
655 	 * That check makes sure that if we did not send a SACK OK option,
656 	 * we will not enable SACK for this connection even though the other
657 	 * side sends us SACK OK option.  For active connection, the SACK
658 	 * info structure has already been allocated.  So we need to free
659 	 * it if SACK is disabled.
660 	 */
661 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
662 	    (tcp->tcp_snd_sack_ok ||
663 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
664 		ASSERT(tcp->tcp_num_sack_blk == 0);
665 		ASSERT(tcp->tcp_notsack_list == NULL);
666 
667 		tcp->tcp_snd_sack_ok = B_TRUE;
668 		if (tcp->tcp_snd_ts_ok) {
669 			tcp->tcp_max_sack_blk = 3;
670 		} else {
671 			tcp->tcp_max_sack_blk = 4;
672 		}
673 	} else if (tcp->tcp_snd_sack_ok) {
674 		/*
675 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
676 		 * no SACK info will be used for this
677 		 * connection.  This assumes that SACK usage
678 		 * permission is negotiated.  This may need
679 		 * to be changed once this is clarified.
680 		 */
681 		ASSERT(tcp->tcp_num_sack_blk == 0);
682 		ASSERT(tcp->tcp_notsack_list == NULL);
683 		tcp->tcp_snd_sack_ok = B_FALSE;
684 	}
685 
686 	/*
687 	 * Now we know the exact TCP/IP header length, subtract
688 	 * that from tcp_mss to get our side's MSS.
689 	 */
690 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
691 
692 	/*
693 	 * Here we assume that the other side's header size will be equal to
694 	 * our header size.  We calculate the real MSS accordingly.  Need to
695 	 * take into additional stuffs IPsec puts in.
696 	 *
697 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
698 	 */
699 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
700 	    tcp->tcp_ipsec_overhead -
701 	    ((connp->conn_ipversion == IPV4_VERSION ?
702 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
703 
704 	/*
705 	 * Set MSS to the smaller one of both ends of the connection.
706 	 * We should not have called tcp_mss_set() before, but our
707 	 * side of the MSS should have been set to a proper value
708 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
709 	 * STREAM head parameters properly.
710 	 *
711 	 * If we have a larger-than-16-bit window but the other side
712 	 * didn't want to do window scale, tcp_rwnd_set() will take
713 	 * care of that.
714 	 */
715 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
716 
717 	/*
718 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
719 	 * updated properly.
720 	 */
721 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
722 
723 	if (tcp->tcp_cc_algo->conn_init != NULL)
724 		tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv);
725 
726 	return (B_TRUE);
727 }
728 
729 /*
730  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
731  * is filled, return as much as we can.  The message passed in may be
732  * multi-part, chained using b_cont.  "start" is the starting sequence
733  * number for this piece.
734  */
735 static mblk_t *
tcp_reass(tcp_t * tcp,mblk_t * mp,uint32_t start)736 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
737 {
738 	uint32_t	end, bytes;
739 	mblk_t		*mp1;
740 	mblk_t		*mp2;
741 	mblk_t		*next_mp;
742 	uint32_t	u1;
743 	tcp_stack_t	*tcps = tcp->tcp_tcps;
744 
745 
746 	/* Walk through all the new pieces. */
747 	do {
748 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
749 		    (uintptr_t)INT_MAX);
750 		end = start + (int)(mp->b_wptr - mp->b_rptr);
751 		next_mp = mp->b_cont;
752 		if (start == end) {
753 			/* Empty.  Blast it. */
754 			freeb(mp);
755 			continue;
756 		}
757 		bytes = end - start;
758 		mp->b_cont = NULL;
759 		TCP_REASS_SET_SEQ(mp, start);
760 		TCP_REASS_SET_END(mp, end);
761 		mp1 = tcp->tcp_reass_tail;
762 		if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) {
763 			if (mp1 != NULL) {
764 				/*
765 				 * New stuff is beyond the tail; link it on the
766 				 * end.
767 				 */
768 				mp1->b_cont = mp;
769 			} else {
770 				tcp->tcp_reass_head = mp;
771 			}
772 			tcp->tcp_reass_tail = mp;
773 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
774 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes);
775 			tcp->tcp_cs.tcp_in_data_unorder_segs++;
776 			tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes;
777 			continue;
778 		}
779 		mp1 = tcp->tcp_reass_head;
780 		u1 = TCP_REASS_SEQ(mp1);
781 		/* New stuff at the front? */
782 		if (SEQ_LT(start, u1)) {
783 			/* Yes... Check for overlap. */
784 			mp->b_cont = mp1;
785 			tcp->tcp_reass_head = mp;
786 			tcp_reass_elim_overlap(tcp, mp);
787 			continue;
788 		}
789 		/*
790 		 * The new piece fits somewhere between the head and tail.
791 		 * We find our slot, where mp1 precedes us and mp2 trails.
792 		 */
793 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
794 			u1 = TCP_REASS_SEQ(mp2);
795 			if (SEQ_LEQ(start, u1))
796 				break;
797 		}
798 		/* Link ourselves in */
799 		mp->b_cont = mp2;
800 		mp1->b_cont = mp;
801 
802 		/* Trim overlap with following mblk(s) first */
803 		tcp_reass_elim_overlap(tcp, mp);
804 
805 		/* Trim overlap with preceding mblk */
806 		tcp_reass_elim_overlap(tcp, mp1);
807 
808 	} while (start = end, mp = next_mp);
809 	mp1 = tcp->tcp_reass_head;
810 	/* Anything ready to go? */
811 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
812 		return (NULL);
813 	/* Eat what we can off the queue */
814 	for (;;) {
815 		mp = mp1->b_cont;
816 		end = TCP_REASS_END(mp1);
817 		TCP_REASS_SET_SEQ(mp1, 0);
818 		TCP_REASS_SET_END(mp1, 0);
819 		if (!mp) {
820 			tcp->tcp_reass_tail = NULL;
821 			break;
822 		}
823 		if (end != TCP_REASS_SEQ(mp)) {
824 			mp1->b_cont = NULL;
825 			break;
826 		}
827 		mp1 = mp;
828 	}
829 	mp1 = tcp->tcp_reass_head;
830 	tcp->tcp_reass_head = mp;
831 	return (mp1);
832 }
833 
834 /* Eliminate any overlap that mp may have over later mblks */
835 static void
tcp_reass_elim_overlap(tcp_t * tcp,mblk_t * mp)836 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
837 {
838 	uint32_t	end;
839 	mblk_t		*mp1;
840 	uint32_t	u1;
841 	tcp_stack_t	*tcps = tcp->tcp_tcps;
842 
843 	end = TCP_REASS_END(mp);
844 	while ((mp1 = mp->b_cont) != NULL) {
845 		u1 = TCP_REASS_SEQ(mp1);
846 		if (!SEQ_GT(end, u1))
847 			break;
848 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
849 			mp->b_wptr -= end - u1;
850 			TCP_REASS_SET_END(mp, u1);
851 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
852 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
853 			    end - u1);
854 			break;
855 		}
856 		mp->b_cont = mp1->b_cont;
857 		TCP_REASS_SET_SEQ(mp1, 0);
858 		TCP_REASS_SET_END(mp1, 0);
859 		freeb(mp1);
860 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
861 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
862 	}
863 	if (!mp1)
864 		tcp->tcp_reass_tail = mp;
865 }
866 
867 /*
868  * This function does PAWS protection check, per RFC 7323 section 5. Requires
869  * that timestamp options are already processed into tcpoptp. Returns B_TRUE if
870  * the segment passes the PAWS test, else returns B_FALSE.
871  */
872 boolean_t
tcp_paws_check(tcp_t * tcp,const tcp_opt_t * tcpoptp)873 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp)
874 {
875 	if (TSTMP_LT(tcpoptp->tcp_opt_ts_val,
876 	    tcp->tcp_ts_recent)) {
877 		if (LBOLT_FASTPATH64 <
878 		    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
879 			/* This segment is not acceptable. */
880 			return (B_FALSE);
881 		} else {
882 			/*
883 			 * Connection has been idle for
884 			 * too long.  Reset the timestamp
885 			 */
886 			tcp->tcp_ts_recent =
887 			    tcpoptp->tcp_opt_ts_val;
888 		}
889 	}
890 	return (B_TRUE);
891 }
892 
893 /*
894  * Defense for the SYN attack -
895  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
896  *    one from the list of droppable eagers. This list is a subset of q0.
897  *    see comments before the definition of MAKE_DROPPABLE().
898  * 2. Don't drop a SYN request before its first timeout. This gives every
899  *    request at least til the first timeout to complete its 3-way handshake.
900  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
901  *    requests currently on the queue that has timed out. This will be used
902  *    as an indicator of whether an attack is under way, so that appropriate
903  *    actions can be taken. (It's incremented in tcp_timer() and decremented
904  *    either when eager goes into ESTABLISHED, or gets freed up.)
905  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
906  *    # of timeout drops back to <= q0len/32 => SYN alert off
907  */
908 static boolean_t
tcp_drop_q0(tcp_t * tcp)909 tcp_drop_q0(tcp_t *tcp)
910 {
911 	tcp_t	*eager;
912 	mblk_t	*mp;
913 	tcp_stack_t	*tcps = tcp->tcp_tcps;
914 
915 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
916 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
917 
918 	/* Pick oldest eager from the list of droppable eagers */
919 	eager = tcp->tcp_eager_prev_drop_q0;
920 
921 	/* If list is empty. return B_FALSE */
922 	if (eager == tcp) {
923 		return (B_FALSE);
924 	}
925 
926 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
927 	if ((mp = allocb(0, BPRI_HI)) == NULL)
928 		return (B_FALSE);
929 
930 	/*
931 	 * Take this eager out from the list of droppable eagers since we are
932 	 * going to drop it.
933 	 */
934 	MAKE_UNDROPPABLE(eager);
935 
936 	if (tcp->tcp_connp->conn_debug) {
937 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
938 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
939 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
940 		    tcp->tcp_conn_req_cnt_q0,
941 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
942 	}
943 
944 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
945 
946 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
947 	CONN_INC_REF(eager->tcp_connp);
948 
949 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
950 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
951 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
952 
953 	return (B_TRUE);
954 }
955 
956 /*
957  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
958  */
959 static mblk_t *
tcp_conn_create_v6(conn_t * lconnp,conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira)960 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
961     ip_recv_attr_t *ira)
962 {
963 	tcp_t		*ltcp = lconnp->conn_tcp;
964 	tcp_t		*tcp = connp->conn_tcp;
965 	mblk_t		*tpi_mp;
966 	ipha_t		*ipha;
967 	ip6_t		*ip6h;
968 	sin6_t		sin6;
969 	uint_t		ifindex = ira->ira_ruifindex;
970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
971 
972 	if (ira->ira_flags & IRAF_IS_IPV4) {
973 		ipha = (ipha_t *)mp->b_rptr;
974 
975 		connp->conn_ipversion = IPV4_VERSION;
976 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
977 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
978 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
979 
980 		sin6 = sin6_null;
981 		sin6.sin6_addr = connp->conn_faddr_v6;
982 		sin6.sin6_port = connp->conn_fport;
983 		sin6.sin6_family = AF_INET6;
984 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
985 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
986 
987 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
988 			sin6_t	sin6d;
989 
990 			sin6d = sin6_null;
991 			sin6d.sin6_addr = connp->conn_laddr_v6;
992 			sin6d.sin6_port = connp->conn_lport;
993 			sin6d.sin6_family = AF_INET;
994 			tpi_mp = mi_tpi_extconn_ind(NULL,
995 			    (char *)&sin6d, sizeof (sin6_t),
996 			    (char *)&tcp,
997 			    (t_scalar_t)sizeof (intptr_t),
998 			    (char *)&sin6d, sizeof (sin6_t),
999 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1000 		} else {
1001 			tpi_mp = mi_tpi_conn_ind(NULL,
1002 			    (char *)&sin6, sizeof (sin6_t),
1003 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1004 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1005 		}
1006 	} else {
1007 		ip6h = (ip6_t *)mp->b_rptr;
1008 
1009 		connp->conn_ipversion = IPV6_VERSION;
1010 		connp->conn_laddr_v6 = ip6h->ip6_dst;
1011 		connp->conn_faddr_v6 = ip6h->ip6_src;
1012 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1013 
1014 		sin6 = sin6_null;
1015 		sin6.sin6_addr = connp->conn_faddr_v6;
1016 		sin6.sin6_port = connp->conn_fport;
1017 		sin6.sin6_family = AF_INET6;
1018 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
1019 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
1020 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
1021 
1022 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
1023 			/* Pass up the scope_id of remote addr */
1024 			sin6.sin6_scope_id = ifindex;
1025 		} else {
1026 			sin6.sin6_scope_id = 0;
1027 		}
1028 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
1029 			sin6_t	sin6d;
1030 
1031 			sin6d = sin6_null;
1032 			sin6.sin6_addr = connp->conn_laddr_v6;
1033 			sin6d.sin6_port = connp->conn_lport;
1034 			sin6d.sin6_family = AF_INET6;
1035 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
1036 				sin6d.sin6_scope_id = ifindex;
1037 
1038 			tpi_mp = mi_tpi_extconn_ind(NULL,
1039 			    (char *)&sin6d, sizeof (sin6_t),
1040 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1041 			    (char *)&sin6d, sizeof (sin6_t),
1042 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1043 		} else {
1044 			tpi_mp = mi_tpi_conn_ind(NULL,
1045 			    (char *)&sin6, sizeof (sin6_t),
1046 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1047 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1048 		}
1049 	}
1050 
1051 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
1052 	return (tpi_mp);
1053 }
1054 
1055 /* Handle a SYN on an AF_INET socket */
1056 static mblk_t *
tcp_conn_create_v4(conn_t * lconnp,conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira)1057 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
1058     ip_recv_attr_t *ira)
1059 {
1060 	tcp_t		*ltcp = lconnp->conn_tcp;
1061 	tcp_t		*tcp = connp->conn_tcp;
1062 	sin_t		sin;
1063 	mblk_t		*tpi_mp = NULL;
1064 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1065 	ipha_t		*ipha;
1066 
1067 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
1068 	ipha = (ipha_t *)mp->b_rptr;
1069 
1070 	connp->conn_ipversion = IPV4_VERSION;
1071 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
1072 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
1073 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
1074 
1075 	sin = sin_null;
1076 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
1077 	sin.sin_port = connp->conn_fport;
1078 	sin.sin_family = AF_INET;
1079 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
1080 		sin_t	sind;
1081 
1082 		sind = sin_null;
1083 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
1084 		sind.sin_port = connp->conn_lport;
1085 		sind.sin_family = AF_INET;
1086 		tpi_mp = mi_tpi_extconn_ind(NULL,
1087 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
1088 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
1089 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1090 	} else {
1091 		tpi_mp = mi_tpi_conn_ind(NULL,
1092 		    (char *)&sin, sizeof (sin_t),
1093 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1094 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1095 	}
1096 
1097 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
1098 	return (tpi_mp);
1099 }
1100 
1101 /*
1102  * Called via squeue to get on to eager's perimeter. It sends a
1103  * TH_RST if eager is in the fanout table. The listener wants the
1104  * eager to disappear either by means of tcp_eager_blowoff() or
1105  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
1106  * called (via squeue) if the eager cannot be inserted in the
1107  * fanout table in tcp_input_listener().
1108  */
1109 /* ARGSUSED */
1110 void
tcp_eager_kill(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)1111 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1112 {
1113 	conn_t	*econnp = (conn_t *)arg;
1114 	tcp_t	*eager = econnp->conn_tcp;
1115 	tcp_t	*listener = eager->tcp_listener;
1116 
1117 	/*
1118 	 * We could be called because listener is closing. Since
1119 	 * the eager was using listener's queue's, we avoid
1120 	 * using the listeners queues from now on.
1121 	 */
1122 	ASSERT(eager->tcp_detached);
1123 	econnp->conn_rq = NULL;
1124 	econnp->conn_wq = NULL;
1125 
1126 	/*
1127 	 * An eager's conn_fanout will be NULL if it's a duplicate
1128 	 * for an existing 4-tuples in the conn fanout table.
1129 	 * We don't want to send an RST out in such case.
1130 	 */
1131 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1132 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1133 		    eager, eager->tcp_snxt, 0, TH_RST);
1134 	}
1135 
1136 	/* We are here because listener wants this eager gone */
1137 	if (listener != NULL) {
1138 		mutex_enter(&listener->tcp_eager_lock);
1139 		tcp_eager_unlink(eager);
1140 		if (eager->tcp_tconnind_started) {
1141 			/*
1142 			 * The eager has sent a conn_ind up to the
1143 			 * listener but listener decides to close
1144 			 * instead. We need to drop the extra ref
1145 			 * placed on eager in tcp_input_data() before
1146 			 * sending the conn_ind to listener.
1147 			 */
1148 			CONN_DEC_REF(econnp);
1149 		}
1150 		mutex_exit(&listener->tcp_eager_lock);
1151 		CONN_DEC_REF(listener->tcp_connp);
1152 	}
1153 
1154 	if (eager->tcp_state != TCPS_CLOSED)
1155 		tcp_close_detached(eager);
1156 }
1157 
1158 /*
1159  * Reset any eager connection hanging off this listener marked
1160  * with 'seqnum' and then reclaim it's resources.
1161  */
1162 boolean_t
tcp_eager_blowoff(tcp_t * listener,t_scalar_t seqnum)1163 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1164 {
1165 	tcp_t	*eager;
1166 	mblk_t	*mp;
1167 
1168 	eager = listener;
1169 	mutex_enter(&listener->tcp_eager_lock);
1170 	do {
1171 		eager = eager->tcp_eager_next_q;
1172 		if (eager == NULL) {
1173 			mutex_exit(&listener->tcp_eager_lock);
1174 			return (B_FALSE);
1175 		}
1176 	} while (eager->tcp_conn_req_seqnum != seqnum);
1177 
1178 	if (eager->tcp_closemp_used) {
1179 		mutex_exit(&listener->tcp_eager_lock);
1180 		return (B_TRUE);
1181 	}
1182 	eager->tcp_closemp_used = B_TRUE;
1183 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1184 	CONN_INC_REF(eager->tcp_connp);
1185 	mutex_exit(&listener->tcp_eager_lock);
1186 	mp = &eager->tcp_closemp;
1187 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1188 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1189 	return (B_TRUE);
1190 }
1191 
1192 /*
1193  * Reset any eager connection hanging off this listener
1194  * and then reclaim it's resources.
1195  */
1196 void
tcp_eager_cleanup(tcp_t * listener,boolean_t q0_only)1197 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1198 {
1199 	tcp_t	*eager;
1200 	mblk_t	*mp;
1201 	tcp_stack_t	*tcps = listener->tcp_tcps;
1202 
1203 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1204 
1205 	if (!q0_only) {
1206 		/* First cleanup q */
1207 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1208 		eager = listener->tcp_eager_next_q;
1209 		while (eager != NULL) {
1210 			if (!eager->tcp_closemp_used) {
1211 				eager->tcp_closemp_used = B_TRUE;
1212 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1213 				CONN_INC_REF(eager->tcp_connp);
1214 				mp = &eager->tcp_closemp;
1215 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1216 				    tcp_eager_kill, eager->tcp_connp, NULL,
1217 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1218 			}
1219 			eager = eager->tcp_eager_next_q;
1220 		}
1221 	}
1222 	/* Then cleanup q0 */
1223 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1224 	eager = listener->tcp_eager_next_q0;
1225 	while (eager != listener) {
1226 		if (!eager->tcp_closemp_used) {
1227 			eager->tcp_closemp_used = B_TRUE;
1228 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1229 			CONN_INC_REF(eager->tcp_connp);
1230 			mp = &eager->tcp_closemp;
1231 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1232 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1233 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1234 		}
1235 		eager = eager->tcp_eager_next_q0;
1236 	}
1237 }
1238 
1239 /*
1240  * If we are an eager connection hanging off a listener that hasn't
1241  * formally accepted the connection yet, get off its list and blow off
1242  * any data that we have accumulated.
1243  */
1244 void
tcp_eager_unlink(tcp_t * tcp)1245 tcp_eager_unlink(tcp_t *tcp)
1246 {
1247 	tcp_t	*listener = tcp->tcp_listener;
1248 
1249 	ASSERT(listener != NULL);
1250 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1251 	if (tcp->tcp_eager_next_q0 != NULL) {
1252 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1253 
1254 		/* Remove the eager tcp from q0 */
1255 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1256 		    tcp->tcp_eager_prev_q0;
1257 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1258 		    tcp->tcp_eager_next_q0;
1259 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1260 		listener->tcp_conn_req_cnt_q0--;
1261 
1262 		tcp->tcp_eager_next_q0 = NULL;
1263 		tcp->tcp_eager_prev_q0 = NULL;
1264 
1265 		/*
1266 		 * Take the eager out, if it is in the list of droppable
1267 		 * eagers.
1268 		 */
1269 		MAKE_UNDROPPABLE(tcp);
1270 
1271 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1272 			/* we have timed out before */
1273 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1274 			listener->tcp_syn_rcvd_timeout--;
1275 		}
1276 	} else {
1277 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1278 		tcp_t	*prev = NULL;
1279 
1280 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1281 			if (tcpp[0] == tcp) {
1282 				if (listener->tcp_eager_last_q == tcp) {
1283 					/*
1284 					 * If we are unlinking the last
1285 					 * element on the list, adjust
1286 					 * tail pointer. Set tail pointer
1287 					 * to nil when list is empty.
1288 					 */
1289 					ASSERT(tcp->tcp_eager_next_q == NULL);
1290 					if (listener->tcp_eager_last_q ==
1291 					    listener->tcp_eager_next_q) {
1292 						listener->tcp_eager_last_q =
1293 						    NULL;
1294 					} else {
1295 						/*
1296 						 * We won't get here if there
1297 						 * is only one eager in the
1298 						 * list.
1299 						 */
1300 						ASSERT(prev != NULL);
1301 						listener->tcp_eager_last_q =
1302 						    prev;
1303 					}
1304 				}
1305 				tcpp[0] = tcp->tcp_eager_next_q;
1306 				tcp->tcp_eager_next_q = NULL;
1307 				tcp->tcp_eager_last_q = NULL;
1308 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1309 				listener->tcp_conn_req_cnt_q--;
1310 				break;
1311 			}
1312 			prev = tcpp[0];
1313 		}
1314 	}
1315 	tcp->tcp_listener = NULL;
1316 }
1317 
1318 /* BEGIN CSTYLED */
1319 /*
1320  *
1321  * The sockfs ACCEPT path:
1322  * =======================
1323  *
1324  * The eager is now established in its own perimeter as soon as SYN is
1325  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1326  * completes the accept processing on the acceptor STREAM. The sending
1327  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1328  * listener but a TLI/XTI listener completes the accept processing
1329  * on the listener perimeter.
1330  *
1331  * Common control flow for 3 way handshake:
1332  * ----------------------------------------
1333  *
1334  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1335  *
1336  * incoming SYN-ACK-ACK (eager perim)	-> tcp_input_data()
1337  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1338  *
1339  * Sockfs ACCEPT Path:
1340  * -------------------
1341  *
1342  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1343  * as STREAM entry point)
1344  *
1345  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1346  *
1347  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1348  * association (we are not behind eager's squeue but sockfs is protecting us
1349  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1350  * is changed to point at tcp_wput().
1351  *
1352  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1353  * listener (done on listener's perimeter).
1354  *
1355  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1356  * accept.
1357  *
1358  * TLI/XTI client ACCEPT path:
1359  * ---------------------------
1360  *
1361  * soaccept() sends T_CONN_RES on the listener STREAM.
1362  *
1363  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1364  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1365  *
1366  * Locks:
1367  * ======
1368  *
1369  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1370  * and listeners->tcp_eager_next_q.
1371  *
1372  * Referencing:
1373  * ============
1374  *
1375  * 1) We start out in tcp_input_listener by eager placing a ref on
1376  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1377  *
1378  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1379  * doing so we place a ref on the eager. This ref is finally dropped at the
1380  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1381  * reference is dropped by the squeue framework.
1382  *
1383  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1384  *
1385  * The reference must be released by the same entity that added the reference
1386  * In the above scheme, the eager is the entity that adds and releases the
1387  * references. Note that tcp_accept_finish executes in the squeue of the eager
1388  * (albeit after it is attached to the acceptor stream). Though 1. executes
1389  * in the listener's squeue, the eager is nascent at this point and the
1390  * reference can be considered to have been added on behalf of the eager.
1391  *
1392  * Eager getting a Reset or listener closing:
1393  * ==========================================
1394  *
1395  * Once the listener and eager are linked, the listener never does the unlink.
1396  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1397  * a message on all eager perimeter. The eager then does the unlink, clears
1398  * any pointers to the listener's queue and drops the reference to the
1399  * listener. The listener waits in tcp_close outside the squeue until its
1400  * refcount has dropped to 1. This ensures that the listener has waited for
1401  * all eagers to clear their association with the listener.
1402  *
1403  * Similarly, if eager decides to go away, it can unlink itself and close.
1404  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1405  * the reference to eager is still valid because of the extra ref we put
1406  * in tcp_send_conn_ind.
1407  *
1408  * Listener can always locate the eager under the protection
1409  * of the listener->tcp_eager_lock, and then do a refhold
1410  * on the eager during the accept processing.
1411  *
1412  * The acceptor stream accesses the eager in the accept processing
1413  * based on the ref placed on eager before sending T_conn_ind.
1414  * The only entity that can negate this refhold is a listener close
1415  * which is mutually exclusive with an active acceptor stream.
1416  *
1417  * Eager's reference on the listener
1418  * ===================================
1419  *
1420  * If the accept happens (even on a closed eager) the eager drops its
1421  * reference on the listener at the start of tcp_accept_finish. If the
1422  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1423  * the reference is dropped in tcp_closei_local. If the listener closes,
1424  * the reference is dropped in tcp_eager_kill. In all cases the reference
1425  * is dropped while executing in the eager's context (squeue).
1426  */
1427 /* END CSTYLED */
1428 
1429 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1430 
1431 /*
1432  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1433  * tcp_input_data will not see any packets for listeners since the listener
1434  * has conn_recv set to tcp_input_listener.
1435  */
1436 /* ARGSUSED */
1437 static void
tcp_input_listener(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1438 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1439 {
1440 	tcpha_t		*tcpha;
1441 	uint32_t	seg_seq;
1442 	tcp_t		*eager;
1443 	int		err;
1444 	conn_t		*econnp = NULL;
1445 	squeue_t	*new_sqp;
1446 	mblk_t		*mp1;
1447 	uint_t		ip_hdr_len;
1448 	conn_t		*lconnp = (conn_t *)arg;
1449 	tcp_t		*listener = lconnp->conn_tcp;
1450 	tcp_stack_t	*tcps = listener->tcp_tcps;
1451 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1452 	uint_t		flags;
1453 	mblk_t		*tpi_mp;
1454 	uint_t		ifindex = ira->ira_ruifindex;
1455 	boolean_t	tlc_set = B_FALSE;
1456 
1457 	ip_hdr_len = ira->ira_ip_hdr_length;
1458 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1459 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1460 
1461 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1462 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1463 	    __dtrace_tcp_tcph_t *, tcpha);
1464 
1465 	if (!(flags & TH_SYN)) {
1466 		if ((flags & TH_RST) || (flags & TH_URG)) {
1467 			freemsg(mp);
1468 			return;
1469 		}
1470 		if (flags & TH_ACK) {
1471 			/* Note this executes in listener's squeue */
1472 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1473 			return;
1474 		}
1475 
1476 		freemsg(mp);
1477 		return;
1478 	}
1479 
1480 	if (listener->tcp_state != TCPS_LISTEN)
1481 		goto error2;
1482 
1483 	ASSERT(IPCL_IS_BOUND(lconnp));
1484 
1485 	mutex_enter(&listener->tcp_eager_lock);
1486 
1487 	/*
1488 	 * The system is under memory pressure, so we need to do our part
1489 	 * to relieve the pressure.  So we only accept new request if there
1490 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1491 	 * handshake.  This means that busy listener will not get too many
1492 	 * new requests which they cannot handle in time while non-busy
1493 	 * listener is still functioning properly.
1494 	 */
1495 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1496 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1497 		mutex_exit(&listener->tcp_eager_lock);
1498 		TCP_STAT(tcps, tcp_listen_mem_drop);
1499 		goto error2;
1500 	}
1501 
1502 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1503 		mutex_exit(&listener->tcp_eager_lock);
1504 		TCP_STAT(tcps, tcp_listendrop);
1505 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1506 		if (lconnp->conn_debug) {
1507 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1508 			    "tcp_input_listener: listen backlog (max=%d) "
1509 			    "overflow (%d pending) on %s",
1510 			    listener->tcp_conn_req_max,
1511 			    listener->tcp_conn_req_cnt_q,
1512 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1513 		}
1514 		goto error2;
1515 	}
1516 
1517 	if (listener->tcp_conn_req_cnt_q0 >=
1518 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1519 		/*
1520 		 * Q0 is full. Drop a pending half-open req from the queue
1521 		 * to make room for the new SYN req. Also mark the time we
1522 		 * drop a SYN.
1523 		 *
1524 		 * A more aggressive defense against SYN attack will
1525 		 * be to set the "tcp_syn_defense" flag now.
1526 		 */
1527 		TCP_STAT(tcps, tcp_listendropq0);
1528 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1529 		if (!tcp_drop_q0(listener)) {
1530 			mutex_exit(&listener->tcp_eager_lock);
1531 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1532 			if (lconnp->conn_debug) {
1533 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1534 				    "tcp_input_listener: listen half-open "
1535 				    "queue (max=%d) full (%d pending) on %s",
1536 				    tcps->tcps_conn_req_max_q0,
1537 				    listener->tcp_conn_req_cnt_q0,
1538 				    tcp_display(listener, NULL,
1539 				    DISP_PORT_ONLY));
1540 			}
1541 			goto error2;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Enforce the limit set on the number of connections per listener.
1547 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1548 	 * for comparison.
1549 	 */
1550 	if (listener->tcp_listen_cnt != NULL) {
1551 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1552 		int64_t now;
1553 
1554 		if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) {
1555 			mutex_exit(&listener->tcp_eager_lock);
1556 			now = ddi_get_lbolt64();
1557 			atomic_dec_32(&tlc->tlc_cnt);
1558 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1559 			tlc->tlc_drop++;
1560 			if (now - tlc->tlc_report_time >
1561 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1562 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1563 				    "Listener (port %d) connection max (%u) "
1564 				    "reached: %u attempts dropped total\n",
1565 				    ntohs(listener->tcp_connp->conn_lport),
1566 				    tlc->tlc_max, tlc->tlc_drop);
1567 				tlc->tlc_report_time = now;
1568 			}
1569 			goto error2;
1570 		}
1571 		tlc_set = B_TRUE;
1572 	}
1573 
1574 	mutex_exit(&listener->tcp_eager_lock);
1575 
1576 	/*
1577 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1578 	 * or based on the ring (for packets from GLD). Otherwise it is
1579 	 * set based on lbolt i.e., a somewhat random number.
1580 	 */
1581 	ASSERT(ira->ira_sqp != NULL);
1582 	new_sqp = ira->ira_sqp;
1583 
1584 	econnp = tcp_get_conn(arg2, tcps);
1585 	if (econnp == NULL)
1586 		goto error2;
1587 
1588 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1589 	econnp->conn_sqp = new_sqp;
1590 	econnp->conn_initial_sqp = new_sqp;
1591 	econnp->conn_ixa->ixa_sqp = new_sqp;
1592 
1593 	econnp->conn_fport = tcpha->tha_lport;
1594 	econnp->conn_lport = tcpha->tha_fport;
1595 
1596 	err = conn_inherit_parent(lconnp, econnp);
1597 	if (err != 0)
1598 		goto error3;
1599 
1600 	/* We already know the laddr of the new connection is ours */
1601 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1602 
1603 	ASSERT(OK_32PTR(mp->b_rptr));
1604 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1605 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1606 
1607 	if (lconnp->conn_family == AF_INET) {
1608 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1609 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1610 	} else {
1611 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1612 	}
1613 
1614 	if (tpi_mp == NULL)
1615 		goto error3;
1616 
1617 	eager = econnp->conn_tcp;
1618 	eager->tcp_detached = B_TRUE;
1619 	SOCK_CONNID_INIT(eager->tcp_connid);
1620 
1621 	/*
1622 	 * Initialize the eager's tcp_t and inherit some parameters from
1623 	 * the listener.
1624 	 */
1625 	tcp_init_values(eager, listener);
1626 
1627 	ASSERT((econnp->conn_ixa->ixa_flags &
1628 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1629 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1630 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1631 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1632 
1633 	if (!tcps->tcps_dev_flow_ctl)
1634 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1635 
1636 	/* Prepare for diffing against previous packets */
1637 	eager->tcp_recvifindex = 0;
1638 	eager->tcp_recvhops = 0xffffffffU;
1639 
1640 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1641 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1642 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1643 			econnp->conn_incoming_ifindex = ifindex;
1644 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1645 			econnp->conn_ixa->ixa_scopeid = ifindex;
1646 		}
1647 	}
1648 
1649 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1650 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1651 	    tcps->tcps_rev_src_routes) {
1652 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1653 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1654 
1655 		/* Source routing option copyover (reverse it) */
1656 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1657 		if (err != 0) {
1658 			freemsg(tpi_mp);
1659 			goto error3;
1660 		}
1661 		ip_pkt_source_route_reverse_v4(ipp);
1662 	}
1663 
1664 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1665 	ASSERT(!eager->tcp_tconnind_started);
1666 	/*
1667 	 * If the SYN came with a credential, it's a loopback packet or a
1668 	 * labeled packet; attach the credential to the TPI message.
1669 	 */
1670 	if (ira->ira_cred != NULL)
1671 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1672 
1673 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1674 	ASSERT(eager->tcp_ordrel_mp == NULL);
1675 
1676 	/* Inherit the listener's non-STREAMS flag */
1677 	if (IPCL_IS_NONSTR(lconnp)) {
1678 		econnp->conn_flags |= IPCL_NONSTR;
1679 		/* All non-STREAMS tcp_ts are sockets */
1680 		eager->tcp_issocket = B_TRUE;
1681 	} else {
1682 		/*
1683 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1684 		 * at close time, we will always have that to send up.
1685 		 * Otherwise, we need to do special handling in case the
1686 		 * allocation fails at that time.
1687 		 */
1688 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1689 			goto error3;
1690 	}
1691 	/*
1692 	 * Now that the IP addresses and ports are setup in econnp we
1693 	 * can do the IPsec policy work.
1694 	 */
1695 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1696 		if (lconnp->conn_policy != NULL) {
1697 			/*
1698 			 * Inherit the policy from the listener; use
1699 			 * actions from ira
1700 			 */
1701 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1702 				CONN_DEC_REF(econnp);
1703 				freemsg(mp);
1704 				goto error3;
1705 			}
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * tcp_set_destination() may set tcp_rwnd according to the route
1711 	 * metrics. If it does not, the eager's receive window will be set
1712 	 * to the listener's receive window later in this function.
1713 	 */
1714 	eager->tcp_rwnd = 0;
1715 
1716 	if (is_system_labeled()) {
1717 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1718 
1719 		ASSERT(ira->ira_tsl != NULL);
1720 		/* Discard any old label */
1721 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1722 			ASSERT(ixa->ixa_tsl != NULL);
1723 			label_rele(ixa->ixa_tsl);
1724 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1725 			ixa->ixa_tsl = NULL;
1726 		}
1727 		if ((lconnp->conn_mlp_type != mlptSingle ||
1728 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1729 		    ira->ira_tsl != NULL) {
1730 			/*
1731 			 * If this is an MLP connection or a MAC-Exempt
1732 			 * connection with an unlabeled node, packets are to be
1733 			 * exchanged using the security label of the received
1734 			 * SYN packet instead of the server application's label.
1735 			 * tsol_check_dest called from ip_set_destination
1736 			 * might later update TSF_UNLABELED by replacing
1737 			 * ixa_tsl with a new label.
1738 			 */
1739 			label_hold(ira->ira_tsl);
1740 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1741 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1742 			    econnp, ts_label_t *, ixa->ixa_tsl)
1743 		} else {
1744 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1745 			DTRACE_PROBE2(syn_accept, conn_t *,
1746 			    econnp, ts_label_t *, ixa->ixa_tsl)
1747 		}
1748 		/*
1749 		 * conn_connect() called from tcp_set_destination will verify
1750 		 * the destination is allowed to receive packets at the
1751 		 * security label of the SYN-ACK we are generating. As part of
1752 		 * that, tsol_check_dest() may create a new effective label for
1753 		 * this connection.
1754 		 * Finally conn_connect() will call conn_update_label.
1755 		 * All that remains for TCP to do is to call
1756 		 * conn_build_hdr_template which is done as part of
1757 		 * tcp_set_destination.
1758 		 */
1759 	}
1760 
1761 	/*
1762 	 * Since we will clear tcp_listener before we clear tcp_detached
1763 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1764 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1765 	 */
1766 	eager->tcp_hard_binding = B_TRUE;
1767 
1768 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1769 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1770 
1771 	CL_INET_CONNECT(econnp, B_FALSE, err);
1772 	if (err != 0) {
1773 		tcp_bind_hash_remove(eager);
1774 		goto error3;
1775 	}
1776 
1777 	SOCK_CONNID_BUMP(eager->tcp_connid);
1778 
1779 	/*
1780 	 * Adapt our mss, ttl, ... based on the remote address.
1781 	 */
1782 
1783 	if (tcp_set_destination(eager) != 0) {
1784 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1785 		/* Undo the bind_hash_insert */
1786 		tcp_bind_hash_remove(eager);
1787 		goto error3;
1788 	}
1789 
1790 	/* Process all TCP options. */
1791 	if (!tcp_process_options(mp, eager, tcpha, ira, B_TRUE)) {
1792 		tcp_bind_hash_remove(eager);
1793 		goto error3;
1794 	}
1795 
1796 	/* Is the other end ECN capable? */
1797 	if (tcps->tcps_ecn_permitted >= 1 &&
1798 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1799 		eager->tcp_ecn_ok = B_TRUE;
1800 	}
1801 
1802 	/*
1803 	 * The listener's conn_rcvbuf should be the default window size or a
1804 	 * window size changed via SO_RCVBUF option. First round up the
1805 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1806 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1807 	 * setting.
1808 	 *
1809 	 * Note if there is a rpipe metric associated with the remote host,
1810 	 * we should not inherit receive window size from listener.
1811 	 */
1812 	eager->tcp_rwnd = MSS_ROUNDUP(
1813 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1814 	    eager->tcp_rwnd), eager->tcp_mss);
1815 	if (eager->tcp_snd_ws_ok)
1816 		tcp_set_ws_value(eager);
1817 	/*
1818 	 * Note that this is the only place tcp_rwnd_set() is called for
1819 	 * accepting a connection.  We need to call it here instead of
1820 	 * after the 3-way handshake because we need to tell the other
1821 	 * side our rwnd in the SYN-ACK segment.
1822 	 */
1823 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1824 
1825 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1826 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1827 
1828 	ASSERT(econnp->conn_rcvbuf != 0 &&
1829 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1830 
1831 	/* Put a ref on the listener for the eager. */
1832 	CONN_INC_REF(lconnp);
1833 	mutex_enter(&listener->tcp_eager_lock);
1834 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1835 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1836 	listener->tcp_eager_next_q0 = eager;
1837 	eager->tcp_eager_prev_q0 = listener;
1838 
1839 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1840 	eager->tcp_listener = listener;
1841 	eager->tcp_saved_listener = listener;
1842 
1843 	/*
1844 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1845 	 * is decremented.
1846 	 */
1847 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1848 
1849 	/*
1850 	 * Tag this detached tcp vector for later retrieval
1851 	 * by our listener client in tcp_accept().
1852 	 */
1853 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1854 	listener->tcp_conn_req_cnt_q0++;
1855 	if (++listener->tcp_conn_req_seqnum == -1) {
1856 		/*
1857 		 * -1 is "special" and defined in TPI as something
1858 		 * that should never be used in T_CONN_IND
1859 		 */
1860 		++listener->tcp_conn_req_seqnum;
1861 	}
1862 	mutex_exit(&listener->tcp_eager_lock);
1863 
1864 	if (listener->tcp_syn_defense) {
1865 		/* Don't drop the SYN that comes from a good IP source */
1866 		ipaddr_t *addr_cache;
1867 
1868 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1869 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1870 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1871 			eager->tcp_dontdrop = B_TRUE;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * We need to insert the eager in its own perimeter but as soon
1877 	 * as we do that, we expose the eager to the classifier and
1878 	 * should not touch any field outside the eager's perimeter.
1879 	 * So do all the work necessary before inserting the eager
1880 	 * in its own perimeter. Be optimistic that conn_connect()
1881 	 * will succeed but undo everything if it fails.
1882 	 */
1883 	seg_seq = ntohl(tcpha->tha_seq);
1884 	eager->tcp_irs = seg_seq;
1885 	eager->tcp_rack = seg_seq;
1886 	eager->tcp_rnxt = seg_seq + 1;
1887 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1888 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1889 	eager->tcp_state = TCPS_SYN_RCVD;
1890 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1891 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1892 	    int32_t, TCPS_LISTEN);
1893 
1894 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1895 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1896 	if (mp1 == NULL) {
1897 		/*
1898 		 * Increment the ref count as we are going to
1899 		 * enqueueing an mp in squeue
1900 		 */
1901 		CONN_INC_REF(econnp);
1902 		goto error;
1903 	}
1904 
1905 	/*
1906 	 * We need to start the rto timer. In normal case, we start
1907 	 * the timer after sending the packet on the wire (or at
1908 	 * least believing that packet was sent by waiting for
1909 	 * conn_ip_output() to return). Since this is the first packet
1910 	 * being sent on the wire for the eager, our initial tcp_rto
1911 	 * is at least tcp_rexmit_interval_min which is a fairly
1912 	 * large value to allow the algorithm to adjust slowly to large
1913 	 * fluctuations of RTT during first few transmissions.
1914 	 *
1915 	 * Starting the timer first and then sending the packet in this
1916 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1917 	 * is of the order of several 100ms and starting the timer
1918 	 * first and then sending the packet will result in difference
1919 	 * of few micro seconds.
1920 	 *
1921 	 * Without this optimization, we are forced to hold the fanout
1922 	 * lock across the ipcl_bind_insert() and sending the packet
1923 	 * so that we don't race against an incoming packet (maybe RST)
1924 	 * for this eager.
1925 	 *
1926 	 * It is necessary to acquire an extra reference on the eager
1927 	 * at this point and hold it until after tcp_send_data() to
1928 	 * ensure against an eager close race.
1929 	 */
1930 
1931 	CONN_INC_REF(econnp);
1932 
1933 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1934 
1935 	/*
1936 	 * Insert the eager in its own perimeter now. We are ready to deal
1937 	 * with any packets on eager.
1938 	 */
1939 	if (ipcl_conn_insert(econnp) != 0)
1940 		goto error;
1941 
1942 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1943 	freemsg(mp);
1944 	/*
1945 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1946 	 * only used by one thread at a time.
1947 	 */
1948 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1949 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1950 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1951 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1952 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1953 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1954 		CONN_DEC_REF(econnp);
1955 	} else {
1956 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1957 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1958 	}
1959 	return;
1960 error:
1961 	freemsg(mp1);
1962 	eager->tcp_closemp_used = B_TRUE;
1963 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1964 	mp1 = &eager->tcp_closemp;
1965 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1966 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1967 
1968 	/*
1969 	 * If a connection already exists, send the mp to that connections so
1970 	 * that it can be appropriately dealt with.
1971 	 */
1972 	ipst = tcps->tcps_netstack->netstack_ip;
1973 
1974 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1975 		if (!IPCL_IS_CONNECTED(econnp)) {
1976 			/*
1977 			 * Something bad happened. ipcl_conn_insert()
1978 			 * failed because a connection already existed
1979 			 * in connected hash but we can't find it
1980 			 * anymore (someone blew it away). Just
1981 			 * free this message and hopefully remote
1982 			 * will retransmit at which time the SYN can be
1983 			 * treated as a new connection or dealth with
1984 			 * a TH_RST if a connection already exists.
1985 			 */
1986 			CONN_DEC_REF(econnp);
1987 			freemsg(mp);
1988 		} else {
1989 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1990 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1991 		}
1992 	} else {
1993 		/* Nobody wants this packet */
1994 		freemsg(mp);
1995 	}
1996 	return;
1997 error3:
1998 	CONN_DEC_REF(econnp);
1999 error2:
2000 	freemsg(mp);
2001 	if (tlc_set)
2002 		atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt);
2003 }
2004 
2005 /*
2006  * In an ideal case of vertical partition in NUMA architecture, its
2007  * beneficial to have the listener and all the incoming connections
2008  * tied to the same squeue. The other constraint is that incoming
2009  * connections should be tied to the squeue attached to interrupted
2010  * CPU for obvious locality reason so this leaves the listener to
2011  * be tied to the same squeue. Our only problem is that when listener
2012  * is binding, the CPU that will get interrupted by the NIC whose
2013  * IP address the listener is binding to is not even known. So
2014  * the code below allows us to change that binding at the time the
2015  * CPU is interrupted by virtue of incoming connection's squeue.
2016  *
2017  * This is usefull only in case of a listener bound to a specific IP
2018  * address. For other kind of listeners, they get bound the
2019  * very first time and there is no attempt to rebind them.
2020  */
2021 void
tcp_input_listener_unbound(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)2022 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
2023     ip_recv_attr_t *ira)
2024 {
2025 	conn_t		*connp = (conn_t *)arg;
2026 	squeue_t	*sqp = (squeue_t *)arg2;
2027 	squeue_t	*new_sqp;
2028 	uint32_t	conn_flags;
2029 
2030 	/*
2031 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
2032 	 * or based on the ring (for packets from GLD). Otherwise it is
2033 	 * set based on lbolt i.e., a somewhat random number.
2034 	 */
2035 	ASSERT(ira->ira_sqp != NULL);
2036 	new_sqp = ira->ira_sqp;
2037 
2038 	if (connp->conn_fanout == NULL)
2039 		goto done;
2040 
2041 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
2042 		mutex_enter(&connp->conn_fanout->connf_lock);
2043 		mutex_enter(&connp->conn_lock);
2044 		/*
2045 		 * No one from read or write side can access us now
2046 		 * except for already queued packets on this squeue.
2047 		 * But since we haven't changed the squeue yet, they
2048 		 * can't execute. If they are processed after we have
2049 		 * changed the squeue, they are sent back to the
2050 		 * correct squeue down below.
2051 		 * But a listner close can race with processing of
2052 		 * incoming SYN. If incoming SYN processing changes
2053 		 * the squeue then the listener close which is waiting
2054 		 * to enter the squeue would operate on the wrong
2055 		 * squeue. Hence we don't change the squeue here unless
2056 		 * the refcount is exactly the minimum refcount. The
2057 		 * minimum refcount of 4 is counted as - 1 each for
2058 		 * TCP and IP, 1 for being in the classifier hash, and
2059 		 * 1 for the mblk being processed.
2060 		 */
2061 
2062 		if (connp->conn_ref != 4 ||
2063 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
2064 			mutex_exit(&connp->conn_lock);
2065 			mutex_exit(&connp->conn_fanout->connf_lock);
2066 			goto done;
2067 		}
2068 		if (connp->conn_sqp != new_sqp) {
2069 			while (connp->conn_sqp != new_sqp)
2070 				(void) atomic_cas_ptr(&connp->conn_sqp, sqp,
2071 				    new_sqp);
2072 			/* No special MT issues for outbound ixa_sqp hint */
2073 			connp->conn_ixa->ixa_sqp = new_sqp;
2074 		}
2075 
2076 		do {
2077 			conn_flags = connp->conn_flags;
2078 			conn_flags |= IPCL_FULLY_BOUND;
2079 			(void) atomic_cas_32(&connp->conn_flags,
2080 			    connp->conn_flags, conn_flags);
2081 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
2082 
2083 		mutex_exit(&connp->conn_fanout->connf_lock);
2084 		mutex_exit(&connp->conn_lock);
2085 
2086 		/*
2087 		 * Assume we have picked a good squeue for the listener. Make
2088 		 * subsequent SYNs not try to change the squeue.
2089 		 */
2090 		connp->conn_recv = tcp_input_listener;
2091 	}
2092 
2093 done:
2094 	if (connp->conn_sqp != sqp) {
2095 		CONN_INC_REF(connp);
2096 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
2097 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
2098 	} else {
2099 		tcp_input_listener(connp, mp, sqp, ira);
2100 	}
2101 }
2102 
2103 /*
2104  * Send up all messages queued on tcp_rcv_list.
2105  */
2106 uint_t
tcp_rcv_drain(tcp_t * tcp)2107 tcp_rcv_drain(tcp_t *tcp)
2108 {
2109 	mblk_t *mp;
2110 	uint_t ret = 0;
2111 #ifdef DEBUG
2112 	uint_t cnt = 0;
2113 #endif
2114 	queue_t	*q = tcp->tcp_connp->conn_rq;
2115 
2116 	/* Can't drain on an eager connection */
2117 	if (tcp->tcp_listener != NULL)
2118 		return (ret);
2119 
2120 	/* Can't be a non-STREAMS connection */
2121 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
2122 
2123 	/* No need for the push timer now. */
2124 	if (tcp->tcp_push_tid != 0) {
2125 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
2126 		tcp->tcp_push_tid = 0;
2127 	}
2128 
2129 	/*
2130 	 * Handle two cases here: we are currently fused or we were
2131 	 * previously fused and have some urgent data to be delivered
2132 	 * upstream.  The latter happens because we either ran out of
2133 	 * memory or were detached and therefore sending the SIGURG was
2134 	 * deferred until this point.  In either case we pass control
2135 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2136 	 * some work.
2137 	 */
2138 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2139 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2140 		    &tcp->tcp_fused_sigurg_mp))
2141 			return (ret);
2142 	}
2143 
2144 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2145 		tcp->tcp_rcv_list = mp->b_next;
2146 		mp->b_next = NULL;
2147 #ifdef DEBUG
2148 		cnt += msgdsize(mp);
2149 #endif
2150 		putnext(q, mp);
2151 	}
2152 #ifdef DEBUG
2153 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2154 #endif
2155 	tcp->tcp_rcv_last_head = NULL;
2156 	tcp->tcp_rcv_last_tail = NULL;
2157 	tcp->tcp_rcv_cnt = 0;
2158 
2159 	if (canputnext(q))
2160 		return (tcp_rwnd_reopen(tcp));
2161 
2162 	return (ret);
2163 }
2164 
2165 /*
2166  * Queue data on tcp_rcv_list which is a b_next chain.
2167  * tcp_rcv_last_head/tail is the last element of this chain.
2168  * Each element of the chain is a b_cont chain.
2169  *
2170  * M_DATA messages are added to the current element.
2171  * Other messages are added as new (b_next) elements.
2172  */
2173 void
tcp_rcv_enqueue(tcp_t * tcp,mblk_t * mp,uint_t seg_len,cred_t * cr)2174 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2175 {
2176 	ASSERT(seg_len == msgdsize(mp));
2177 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2178 
2179 	if (is_system_labeled()) {
2180 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2181 		/*
2182 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2183 		 * db_cpid unchanged.
2184 		 * The cred could have already been set.
2185 		 */
2186 		if (cr != NULL)
2187 			mblk_setcred(mp, cr, NOPID);
2188 	}
2189 
2190 	if (tcp->tcp_rcv_list == NULL) {
2191 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2192 		tcp->tcp_rcv_list = mp;
2193 		tcp->tcp_rcv_last_head = mp;
2194 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2195 		tcp->tcp_rcv_last_tail->b_cont = mp;
2196 	} else {
2197 		tcp->tcp_rcv_last_head->b_next = mp;
2198 		tcp->tcp_rcv_last_head = mp;
2199 	}
2200 
2201 	while (mp->b_cont)
2202 		mp = mp->b_cont;
2203 
2204 	tcp->tcp_rcv_last_tail = mp;
2205 	tcp->tcp_rcv_cnt += seg_len;
2206 	tcp->tcp_rwnd -= seg_len;
2207 }
2208 
2209 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2210 mblk_t *
tcp_ack_mp(tcp_t * tcp)2211 tcp_ack_mp(tcp_t *tcp)
2212 {
2213 	uint32_t	seq_no;
2214 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2215 	conn_t		*connp = tcp->tcp_connp;
2216 
2217 	/*
2218 	 * There are a few cases to be considered while setting the sequence no.
2219 	 * Essentially, we can come here while processing an unacceptable pkt
2220 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2221 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2222 	 * If we are here for a zero window probe, stick with suna. In all
2223 	 * other cases, we check if suna + swnd encompasses snxt and set
2224 	 * the sequence number to snxt, if so. If snxt falls outside the
2225 	 * window (the receiver probably shrunk its window), we will go with
2226 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2227 	 * receiver.
2228 	 */
2229 	if (tcp->tcp_zero_win_probe) {
2230 		seq_no = tcp->tcp_suna;
2231 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2232 		ASSERT(tcp->tcp_swnd == 0);
2233 		seq_no = tcp->tcp_snxt;
2234 	} else {
2235 		seq_no = SEQ_GT(tcp->tcp_snxt,
2236 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2237 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2238 	}
2239 
2240 	if (tcp->tcp_valid_bits || tcp->tcp_md5sig) {
2241 		/*
2242 		 * For the complex cases where we have to send some
2243 		 * controls (FIN or SYN), or add an MD5 signature
2244 		 * option, let tcp_xmit_mp do it.
2245 		 */
2246 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2247 		    NULL, B_FALSE));
2248 	} else {
2249 		/* Generate a simple ACK */
2250 		int	data_length;
2251 		uchar_t	*rptr;
2252 		tcpha_t	*tcpha;
2253 		mblk_t	*mp1;
2254 		int32_t	total_hdr_len;
2255 		int32_t	tcp_hdr_len;
2256 		int32_t	num_sack_blk = 0;
2257 		int32_t sack_opt_len;
2258 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2259 
2260 		/*
2261 		 * Allocate space for TCP + IP headers
2262 		 * and link-level header
2263 		 */
2264 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2265 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2266 			    tcp->tcp_num_sack_blk);
2267 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2268 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2269 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2270 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2271 		} else {
2272 			total_hdr_len = connp->conn_ht_iphc_len;
2273 			tcp_hdr_len = connp->conn_ht_ulp_len;
2274 		}
2275 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2276 		if (!mp1)
2277 			return (NULL);
2278 
2279 		/* Update the latest receive window size in TCP header. */
2280 		tcp->tcp_tcpha->tha_win =
2281 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2282 		/* copy in prototype TCP + IP header */
2283 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2284 		mp1->b_rptr = rptr;
2285 		mp1->b_wptr = rptr + total_hdr_len;
2286 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2287 
2288 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2289 
2290 		/* Set the TCP sequence number. */
2291 		tcpha->tha_seq = htonl(seq_no);
2292 
2293 		/* Set up the TCP flag field. */
2294 		tcpha->tha_flags = (uchar_t)TH_ACK;
2295 		if (tcp->tcp_ecn_echo_on)
2296 			tcpha->tha_flags |= TH_ECE;
2297 
2298 		tcp->tcp_rack = tcp->tcp_rnxt;
2299 		tcp->tcp_rack_cnt = 0;
2300 
2301 		/* fill in timestamp option if in use */
2302 		if (tcp->tcp_snd_ts_ok) {
2303 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2304 
2305 			U32_TO_BE32(llbolt,
2306 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2307 			U32_TO_BE32(tcp->tcp_ts_recent,
2308 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2309 		}
2310 
2311 		/* Fill in SACK options */
2312 		if (num_sack_blk > 0) {
2313 			uchar_t *wptr = (uchar_t *)tcpha +
2314 			    connp->conn_ht_ulp_len;
2315 			sack_blk_t *tmp;
2316 			int32_t	i;
2317 
2318 			wptr[0] = TCPOPT_NOP;
2319 			wptr[1] = TCPOPT_NOP;
2320 			wptr[2] = TCPOPT_SACK;
2321 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2322 			    sizeof (sack_blk_t);
2323 			wptr += TCPOPT_REAL_SACK_LEN;
2324 
2325 			tmp = tcp->tcp_sack_list;
2326 			for (i = 0; i < num_sack_blk; i++) {
2327 				U32_TO_BE32(tmp[i].begin, wptr);
2328 				wptr += sizeof (tcp_seq);
2329 				U32_TO_BE32(tmp[i].end, wptr);
2330 				wptr += sizeof (tcp_seq);
2331 			}
2332 			tcpha->tha_offset_and_reserved +=
2333 			    ((num_sack_blk * 2 + 1) << 4);
2334 		}
2335 
2336 		ixa->ixa_pktlen = total_hdr_len;
2337 
2338 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2339 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2340 		} else {
2341 			ip6_t *ip6 = (ip6_t *)rptr;
2342 
2343 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2344 		}
2345 
2346 		/*
2347 		 * Prime pump for checksum calculation in IP.  Include the
2348 		 * adjustment for a source route if any.
2349 		 */
2350 		data_length = tcp_hdr_len + connp->conn_sum;
2351 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2352 		tcpha->tha_sum = htons(data_length);
2353 
2354 		if (tcp->tcp_ip_forward_progress) {
2355 			tcp->tcp_ip_forward_progress = B_FALSE;
2356 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2357 		} else {
2358 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2359 		}
2360 		return (mp1);
2361 	}
2362 }
2363 
2364 /*
2365  * Dummy socket upcalls for if/when the conn_t gets detached from a
2366  * direct-callback sonode via a user-driven close().  Easy to catch with
2367  * DTrace FBT, and should be mostly harmless.
2368  */
2369 
2370 /* ARGSUSED */
2371 static sock_upper_handle_t
tcp_dummy_newconn(sock_upper_handle_t x,sock_lower_handle_t y,sock_downcalls_t * z,cred_t * cr,pid_t pid,sock_upcalls_t ** ignored)2372 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2373     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2374 {
2375 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2376 	return (NULL);
2377 }
2378 
2379 /* ARGSUSED */
2380 static void
tcp_dummy_connected(sock_upper_handle_t x,sock_connid_t y,cred_t * cr,pid_t pid)2381 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2382     pid_t pid)
2383 {
2384 	ASSERT(x == NULL);
2385 	/* Normally we'd crhold(cr) and attach it to socket state. */
2386 	/* LINTED */
2387 }
2388 
2389 /* ARGSUSED */
2390 static int
tcp_dummy_disconnected(sock_upper_handle_t x,sock_connid_t y,int blah)2391 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2392 {
2393 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2394 	return (-1);
2395 }
2396 
2397 /* ARGSUSED */
2398 static void
tcp_dummy_opctl(sock_upper_handle_t x,sock_opctl_action_t y,uintptr_t blah)2399 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2400 {
2401 	ASSERT(x == NULL);
2402 	/* We really want this one to be a harmless NOP for now. */
2403 	/* LINTED */
2404 }
2405 
2406 /* ARGSUSED */
2407 static ssize_t
tcp_dummy_recv(sock_upper_handle_t x,mblk_t * mp,size_t len,int flags,int * error,boolean_t * push)2408 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2409     int *error, boolean_t *push)
2410 {
2411 	ASSERT(x == NULL);
2412 
2413 	/*
2414 	 * Consume the message, set ESHUTDOWN, and return an error.
2415 	 * Nobody's home!
2416 	 */
2417 	freemsg(mp);
2418 	*error = ESHUTDOWN;
2419 	return (-1);
2420 }
2421 
2422 /* ARGSUSED */
2423 static void
tcp_dummy_set_proto_props(sock_upper_handle_t x,struct sock_proto_props * y)2424 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2425 {
2426 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2427 }
2428 
2429 /* ARGSUSED */
2430 static void
tcp_dummy_txq_full(sock_upper_handle_t x,boolean_t y)2431 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2432 {
2433 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2434 }
2435 
2436 /* ARGSUSED */
2437 static void
tcp_dummy_signal_oob(sock_upper_handle_t x,ssize_t len)2438 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2439 {
2440 	ASSERT(x == NULL);
2441 	/* Otherwise, this would signal socket state about OOB data. */
2442 }
2443 
2444 /* ARGSUSED */
2445 static void
tcp_dummy_set_error(sock_upper_handle_t x,int err)2446 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2447 {
2448 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2449 }
2450 
2451 /* ARGSUSED */
2452 static void
tcp_dummy_onearg(sock_upper_handle_t x)2453 tcp_dummy_onearg(sock_upper_handle_t x)
2454 {
2455 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2456 }
2457 
2458 static sock_upcalls_t tcp_dummy_upcalls = {
2459 	tcp_dummy_newconn,
2460 	tcp_dummy_connected,
2461 	tcp_dummy_disconnected,
2462 	tcp_dummy_opctl,
2463 	tcp_dummy_recv,
2464 	tcp_dummy_set_proto_props,
2465 	tcp_dummy_txq_full,
2466 	tcp_dummy_signal_oob,
2467 	tcp_dummy_onearg,
2468 	tcp_dummy_set_error,
2469 	tcp_dummy_onearg
2470 };
2471 
2472 /*
2473  * Handle M_DATA messages from IP. Its called directly from IP via
2474  * squeue for received IP packets.
2475  *
2476  * The first argument is always the connp/tcp to which the mp belongs.
2477  * There are no exceptions to this rule. The caller has already put
2478  * a reference on this connp/tcp and once tcp_input_data() returns,
2479  * the squeue will do the refrele.
2480  *
2481  * The TH_SYN for the listener directly go to tcp_input_listener via
2482  * squeue. ICMP errors go directly to tcp_icmp_input().
2483  *
2484  * sqp: NULL = recursive, sqp != NULL means called from squeue
2485  */
2486 void
tcp_input_data(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)2487 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2488 {
2489 	int32_t		bytes_acked;
2490 	int32_t		gap;
2491 	mblk_t		*mp1;
2492 	uint_t		flags;
2493 	uint32_t	new_swnd = 0;
2494 	uchar_t		*iphdr;
2495 	uchar_t		*rptr;
2496 	int32_t		rgap;
2497 	uint32_t	seg_ack;
2498 	int		seg_len;
2499 	uint_t		ip_hdr_len;
2500 	uint32_t	seg_seq;
2501 	tcpha_t		*tcpha;
2502 	int		urp;
2503 	tcp_opt_t	tcpopt;
2504 	ip_pkt_t	ipp;
2505 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2506 	uint32_t	cwnd;
2507 	int		mss;
2508 	conn_t		*connp = (conn_t *)arg;
2509 	squeue_t	*sqp = (squeue_t *)arg2;
2510 	tcp_t		*tcp = connp->conn_tcp;
2511 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2512 	sock_upcalls_t	*sockupcalls;
2513 
2514 	/*
2515 	 * RST from fused tcp loopback peer should trigger an unfuse.
2516 	 */
2517 	if (tcp->tcp_fused) {
2518 		TCP_STAT(tcps, tcp_fusion_aborted);
2519 		tcp_unfuse(tcp);
2520 	}
2521 
2522 	mss = 0;
2523 	iphdr = mp->b_rptr;
2524 	rptr = mp->b_rptr;
2525 	ASSERT(OK_32PTR(rptr));
2526 
2527 	ip_hdr_len = ira->ira_ip_hdr_length;
2528 	if (connp->conn_recv_ancillary.crb_all != 0) {
2529 		/*
2530 		 * Record packet information in the ip_pkt_t
2531 		 */
2532 		ipp.ipp_fields = 0;
2533 		if (ira->ira_flags & IRAF_IS_IPV4) {
2534 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2535 			    B_FALSE);
2536 		} else {
2537 			uint8_t nexthdrp;
2538 
2539 			/*
2540 			 * IPv6 packets can only be received by applications
2541 			 * that are prepared to receive IPv6 addresses.
2542 			 * The IP fanout must ensure this.
2543 			 */
2544 			ASSERT(connp->conn_family == AF_INET6);
2545 
2546 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2547 			    &nexthdrp);
2548 			ASSERT(nexthdrp == IPPROTO_TCP);
2549 
2550 			/* Could have caused a pullup? */
2551 			iphdr = mp->b_rptr;
2552 			rptr = mp->b_rptr;
2553 		}
2554 	}
2555 	ASSERT(DB_TYPE(mp) == M_DATA);
2556 	ASSERT(mp->b_next == NULL);
2557 
2558 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2559 	seg_seq = ntohl(tcpha->tha_seq);
2560 	seg_ack = ntohl(tcpha->tha_ack);
2561 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2562 	seg_len = (int)(mp->b_wptr - rptr) -
2563 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2564 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2565 		do {
2566 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2567 			    (uintptr_t)INT_MAX);
2568 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2569 		} while ((mp1 = mp1->b_cont) != NULL &&
2570 		    mp1->b_datap->db_type == M_DATA);
2571 	}
2572 
2573 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2574 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2575 	    __dtrace_tcp_tcph_t *, tcpha);
2576 
2577 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2578 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2579 		    seg_len, tcpha, ira);
2580 		return;
2581 	}
2582 
2583 	if (sqp != NULL) {
2584 		/*
2585 		 * This is the correct place to update tcp_last_recv_time. Note
2586 		 * that it is also updated for tcp structure that belongs to
2587 		 * global and listener queues which do not really need updating.
2588 		 * But that should not cause any harm.  And it is updated for
2589 		 * all kinds of incoming segments, not only for data segments.
2590 		 */
2591 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2592 	}
2593 
2594 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2595 
2596 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
2597 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2598 
2599 	if ((flags & TH_URG) && sqp != NULL) {
2600 		/*
2601 		 * TCP can't handle urgent pointers that arrive before
2602 		 * the connection has been accept()ed since it can't
2603 		 * buffer OOB data.  Discard segment if this happens.
2604 		 *
2605 		 * We can't just rely on a non-null tcp_listener to indicate
2606 		 * that the accept() has completed since unlinking of the
2607 		 * eager and completion of the accept are not atomic.
2608 		 * tcp_detached, when it is not set (B_FALSE) indicates
2609 		 * that the accept() has completed.
2610 		 *
2611 		 * Nor can it reassemble urgent pointers, so discard
2612 		 * if it's not the next segment expected.
2613 		 *
2614 		 * Otherwise, collapse chain into one mblk (discard if
2615 		 * that fails).  This makes sure the headers, retransmitted
2616 		 * data, and new data all are in the same mblk.
2617 		 */
2618 		ASSERT(mp != NULL);
2619 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2620 			freemsg(mp);
2621 			return;
2622 		}
2623 		/* Update pointers into message */
2624 		iphdr = rptr = mp->b_rptr;
2625 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2626 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2627 			/*
2628 			 * Since we can't handle any data with this urgent
2629 			 * pointer that is out of sequence, we expunge
2630 			 * the data.  This allows us to still register
2631 			 * the urgent mark and generate the M_PCSIG,
2632 			 * which we can do.
2633 			 */
2634 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2635 			seg_len = 0;
2636 		}
2637 	}
2638 
2639 	sockupcalls = connp->conn_upcalls;
2640 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2641 	if (sockupcalls == NULL)
2642 		sockupcalls = &tcp_dummy_upcalls;
2643 
2644 	switch (tcp->tcp_state) {
2645 	case TCPS_SYN_SENT:
2646 		if (connp->conn_final_sqp == NULL &&
2647 		    tcp_outbound_squeue_switch && sqp != NULL) {
2648 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2649 			connp->conn_final_sqp = sqp;
2650 			if (connp->conn_final_sqp != connp->conn_sqp) {
2651 				DTRACE_PROBE1(conn__final__sqp__switch,
2652 				    conn_t *, connp);
2653 				CONN_INC_REF(connp);
2654 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2655 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2656 				    tcp_input_data, connp, ira, ip_squeue_flag,
2657 				    SQTAG_CONNECT_FINISH);
2658 				return;
2659 			}
2660 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2661 		}
2662 		if (flags & TH_ACK) {
2663 			/*
2664 			 * Note that our stack cannot send data before a
2665 			 * connection is established, therefore the
2666 			 * following check is valid.  Otherwise, it has
2667 			 * to be changed.
2668 			 */
2669 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2670 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2671 				freemsg(mp);
2672 				if (flags & TH_RST)
2673 					return;
2674 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2675 				    tcp, seg_ack, 0, TH_RST);
2676 				return;
2677 			}
2678 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2679 		}
2680 		if (flags & TH_RST) {
2681 			if (flags & TH_ACK) {
2682 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2683 				    ip_xmit_attr_t *, connp->conn_ixa,
2684 				    void_ip_t *, iphdr, tcp_t *, tcp,
2685 				    tcph_t *, tcpha);
2686 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2687 			}
2688 			freemsg(mp);
2689 			return;
2690 		}
2691 		if (!(flags & TH_SYN)) {
2692 			freemsg(mp);
2693 			return;
2694 		}
2695 
2696 		/* Process all TCP options. */
2697 		if (!tcp_process_options(mp, tcp, tcpha, ira, B_FALSE)) {
2698 			freemsg(mp);
2699 			return;
2700 		}
2701 
2702 		/*
2703 		 * The following changes our rwnd to be a multiple of the
2704 		 * MIN(peer MSS, our MSS) for performance reason.
2705 		 */
2706 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2707 		    tcp->tcp_mss));
2708 
2709 		/* Is the other end ECN capable? */
2710 		if (tcp->tcp_ecn_ok) {
2711 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2712 				tcp->tcp_ecn_ok = B_FALSE;
2713 			}
2714 		}
2715 		/*
2716 		 * Clear ECN flags because it may interfere with later
2717 		 * processing.
2718 		 */
2719 		flags &= ~(TH_ECE|TH_CWR);
2720 
2721 		tcp->tcp_irs = seg_seq;
2722 		tcp->tcp_rack = seg_seq;
2723 		tcp->tcp_rnxt = seg_seq + 1;
2724 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2725 		if (!TCP_IS_DETACHED(tcp)) {
2726 			/* Allocate room for SACK options if needed. */
2727 			connp->conn_wroff = connp->conn_ht_iphc_len;
2728 			if (tcp->tcp_snd_sack_ok)
2729 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2730 			if (!tcp->tcp_loopback)
2731 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2732 
2733 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2734 			    connp->conn_wroff);
2735 		}
2736 		if (flags & TH_ACK) {
2737 			/*
2738 			 * If we can't get the confirmation upstream, pretend
2739 			 * we didn't even see this one.
2740 			 *
2741 			 * XXX: how can we pretend we didn't see it if we
2742 			 * have updated rnxt et. al.
2743 			 *
2744 			 * For loopback we defer sending up the T_CONN_CON
2745 			 * until after some checks below.
2746 			 */
2747 			mp1 = NULL;
2748 			/*
2749 			 * tcp_sendmsg() checks tcp_state without entering
2750 			 * the squeue so tcp_state should be updated before
2751 			 * sending up connection confirmation.  Probe the
2752 			 * state change below when we are sure the connection
2753 			 * confirmation has been sent.
2754 			 */
2755 			tcp->tcp_state = TCPS_ESTABLISHED;
2756 			if (!tcp_conn_con(tcp, iphdr, mp,
2757 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2758 				tcp->tcp_state = TCPS_SYN_SENT;
2759 				freemsg(mp);
2760 				return;
2761 			}
2762 			TCPS_CONN_INC(tcps);
2763 			/* SYN was acked - making progress */
2764 			tcp->tcp_ip_forward_progress = B_TRUE;
2765 
2766 			/* One for the SYN */
2767 			tcp->tcp_suna = tcp->tcp_iss + 1;
2768 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2769 
2770 			/*
2771 			 * If SYN was retransmitted, need to reset all
2772 			 * retransmission info.  This is because this
2773 			 * segment will be treated as a dup ACK.
2774 			 */
2775 			if (tcp->tcp_rexmit) {
2776 				tcp->tcp_rexmit = B_FALSE;
2777 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2778 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2779 				tcp->tcp_ms_we_have_waited = 0;
2780 
2781 				/*
2782 				 * Set tcp_cwnd back to 1 MSS, per
2783 				 * recommendation from
2784 				 * draft-floyd-incr-init-win-01.txt,
2785 				 * Increasing TCP's Initial Window.
2786 				 */
2787 				DTRACE_PROBE3(cwnd__retransmitted__syn,
2788 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
2789 				    uint32_t, tcp->tcp_mss);
2790 				tcp->tcp_cwnd = tcp->tcp_mss;
2791 			}
2792 
2793 			tcp->tcp_swl1 = seg_seq;
2794 			tcp->tcp_swl2 = seg_ack;
2795 
2796 			new_swnd = ntohs(tcpha->tha_win);
2797 			tcp->tcp_swnd = new_swnd;
2798 			if (new_swnd > tcp->tcp_max_swnd)
2799 				tcp->tcp_max_swnd = new_swnd;
2800 
2801 			/*
2802 			 * Always send the three-way handshake ack immediately
2803 			 * in order to make the connection complete as soon as
2804 			 * possible on the accepting host.
2805 			 */
2806 			flags |= TH_ACK_NEEDED;
2807 
2808 			/*
2809 			 * Trace connect-established here.
2810 			 */
2811 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2812 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2813 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2814 
2815 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2816 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2817 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2818 			    void, NULL, int32_t, TCPS_SYN_SENT);
2819 
2820 			/*
2821 			 * Special case for loopback.  At this point we have
2822 			 * received SYN-ACK from the remote endpoint.  In
2823 			 * order to ensure that both endpoints reach the
2824 			 * fused state prior to any data exchange, the final
2825 			 * ACK needs to be sent before we indicate T_CONN_CON
2826 			 * to the module upstream.
2827 			 */
2828 			if (tcp->tcp_loopback) {
2829 				mblk_t *ack_mp;
2830 
2831 				ASSERT(!tcp->tcp_unfusable);
2832 				ASSERT(mp1 != NULL);
2833 				/*
2834 				 * For loopback, we always get a pure SYN-ACK
2835 				 * and only need to send back the final ACK
2836 				 * with no data (this is because the other
2837 				 * tcp is ours and we don't do T/TCP).  This
2838 				 * final ACK triggers the passive side to
2839 				 * perform fusion in ESTABLISHED state.
2840 				 */
2841 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2842 					if (tcp->tcp_ack_tid != 0) {
2843 						(void) TCP_TIMER_CANCEL(tcp,
2844 						    tcp->tcp_ack_tid);
2845 						tcp->tcp_ack_tid = 0;
2846 					}
2847 					tcp_send_data(tcp, ack_mp);
2848 					TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
2849 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2850 
2851 					if (!IPCL_IS_NONSTR(connp)) {
2852 						/* Send up T_CONN_CON */
2853 						if (ira->ira_cred != NULL) {
2854 							mblk_setcred(mp1,
2855 							    ira->ira_cred,
2856 							    ira->ira_cpid);
2857 						}
2858 						putnext(connp->conn_rq, mp1);
2859 					} else {
2860 						(*sockupcalls->su_connected)
2861 						    (connp->conn_upper_handle,
2862 						    tcp->tcp_connid,
2863 						    ira->ira_cred,
2864 						    ira->ira_cpid);
2865 						freemsg(mp1);
2866 					}
2867 
2868 					freemsg(mp);
2869 					return;
2870 				}
2871 				/*
2872 				 * Forget fusion; we need to handle more
2873 				 * complex cases below.  Send the deferred
2874 				 * T_CONN_CON message upstream and proceed
2875 				 * as usual.  Mark this tcp as not capable
2876 				 * of fusion.
2877 				 */
2878 				TCP_STAT(tcps, tcp_fusion_unfusable);
2879 				tcp->tcp_unfusable = B_TRUE;
2880 				if (!IPCL_IS_NONSTR(connp)) {
2881 					if (ira->ira_cred != NULL) {
2882 						mblk_setcred(mp1, ira->ira_cred,
2883 						    ira->ira_cpid);
2884 					}
2885 					putnext(connp->conn_rq, mp1);
2886 				} else {
2887 					(*sockupcalls->su_connected)
2888 					    (connp->conn_upper_handle,
2889 					    tcp->tcp_connid, ira->ira_cred,
2890 					    ira->ira_cpid);
2891 					freemsg(mp1);
2892 				}
2893 			}
2894 
2895 			/*
2896 			 * Check to see if there is data to be sent.  If
2897 			 * yes, set the transmit flag.  Then check to see
2898 			 * if received data processing needs to be done.
2899 			 * If not, go straight to xmit_check.  This short
2900 			 * cut is OK as we don't support T/TCP.
2901 			 */
2902 			if (tcp->tcp_unsent)
2903 				flags |= TH_XMIT_NEEDED;
2904 
2905 			if (seg_len == 0 && !(flags & TH_URG)) {
2906 				freemsg(mp);
2907 				goto xmit_check;
2908 			}
2909 
2910 			flags &= ~TH_SYN;
2911 			seg_seq++;
2912 			break;
2913 		}
2914 		tcp->tcp_state = TCPS_SYN_RCVD;
2915 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2916 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2917 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2918 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2919 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2920 		if (mp1 != NULL) {
2921 			tcp_send_data(tcp, mp1);
2922 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2923 		}
2924 		freemsg(mp);
2925 		return;
2926 	case TCPS_SYN_RCVD:
2927 		if (flags & TH_ACK) {
2928 			uint32_t pinit_wnd;
2929 
2930 			/*
2931 			 * In this state, a SYN|ACK packet is either bogus
2932 			 * because the other side must be ACKing our SYN which
2933 			 * indicates it has seen the ACK for their SYN and
2934 			 * shouldn't retransmit it or we're crossing SYNs
2935 			 * on active open.
2936 			 */
2937 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2938 				freemsg(mp);
2939 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2940 				    tcp, seg_ack, 0, TH_RST);
2941 				return;
2942 			}
2943 			/*
2944 			 * NOTE: RFC 793 pg. 72 says this should be
2945 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2946 			 * but that would mean we have an ack that ignored
2947 			 * our SYN.
2948 			 */
2949 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2950 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2951 				freemsg(mp);
2952 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2953 				    tcp, seg_ack, 0, TH_RST);
2954 				return;
2955 			}
2956 			/*
2957 			 * No sane TCP stack will send such a small window
2958 			 * without receiving any data.  Just drop this invalid
2959 			 * ACK.  We also shorten the abort timeout in case
2960 			 * this is an attack.
2961 			 */
2962 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2963 			if (pinit_wnd < tcp->tcp_mss &&
2964 			    pinit_wnd < tcp_init_wnd_chk) {
2965 				freemsg(mp);
2966 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2967 				tcp->tcp_second_ctimer_threshold =
2968 				    tcp_early_abort * SECONDS;
2969 				return;
2970 			}
2971 		}
2972 		break;
2973 	case TCPS_LISTEN:
2974 		/*
2975 		 * Only a TLI listener can come through this path when a
2976 		 * acceptor is going back to be a listener and a packet
2977 		 * for the acceptor hits the classifier. For a socket
2978 		 * listener, this can never happen because a listener
2979 		 * can never accept connection on itself and hence a
2980 		 * socket acceptor can not go back to being a listener.
2981 		 */
2982 		ASSERT(!TCP_IS_SOCKET(tcp));
2983 		/*FALLTHRU*/
2984 	case TCPS_CLOSED:
2985 	case TCPS_BOUND: {
2986 		conn_t	*new_connp;
2987 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2988 
2989 		/*
2990 		 * Don't accept any input on a closed tcp as this TCP logically
2991 		 * does not exist on the system. Don't proceed further with
2992 		 * this TCP. For instance, this packet could trigger another
2993 		 * close of this tcp which would be disastrous for tcp_refcnt.
2994 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2995 		 * be called at most once on a TCP. In this case we need to
2996 		 * refeed the packet into the classifier and figure out where
2997 		 * the packet should go.
2998 		 */
2999 		new_connp = ipcl_classify(mp, ira, ipst);
3000 		if (new_connp != NULL) {
3001 			/* Drops ref on new_connp */
3002 			tcp_reinput(new_connp, mp, ira, ipst);
3003 			return;
3004 		}
3005 		/* We failed to classify. For now just drop the packet */
3006 		freemsg(mp);
3007 		return;
3008 	}
3009 	case TCPS_IDLE:
3010 		/*
3011 		 * Handle the case where the tcp_clean_death() has happened
3012 		 * on a connection (application hasn't closed yet) but a packet
3013 		 * was already queued on squeue before tcp_clean_death()
3014 		 * was processed. Calling tcp_clean_death() twice on same
3015 		 * connection can result in weird behaviour.
3016 		 */
3017 		freemsg(mp);
3018 		return;
3019 	default:
3020 		break;
3021 	}
3022 
3023 	/*
3024 	 * Already on the correct queue/perimeter.
3025 	 * If this is a detached connection and not an eager
3026 	 * connection hanging off a listener then new data
3027 	 * (past the FIN) will cause a reset.
3028 	 * We do a special check here where it
3029 	 * is out of the main line, rather than check
3030 	 * if we are detached every time we see new
3031 	 * data down below.
3032 	 */
3033 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
3034 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
3035 		TCPS_BUMP_MIB(tcps, tcpInClosed);
3036 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
3037 		freemsg(mp);
3038 		tcp_xmit_ctl("new data when detached", tcp,
3039 		    tcp->tcp_snxt, 0, TH_RST);
3040 		(void) tcp_clean_death(tcp, EPROTO);
3041 		return;
3042 	}
3043 
3044 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
3045 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
3046 	new_swnd = ntohs(tcpha->tha_win) <<
3047 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
3048 
3049 	/*
3050 	 * We are interested in three TCP options: timestamps (if negotiated),
3051 	 * SACK (if negotiated) and MD5. Skip option parsing if none of these
3052 	 * is enabled/negotiated.
3053 	 */
3054 	if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok || tcp->tcp_md5sig) {
3055 		int options;
3056 
3057 		if (tcp->tcp_snd_sack_ok)
3058 			tcpopt.tcp = tcp;
3059 		else
3060 			tcpopt.tcp = NULL;
3061 
3062 		options = tcp_parse_options(tcpha, &tcpopt);
3063 
3064 		if (tcp->tcp_md5sig) {
3065 			if ((options & TCP_OPT_SIG_PRESENT) == 0) {
3066 				TCP_STAT(tcp->tcp_tcps, tcp_sig_no_option);
3067 				freemsg(mp);
3068 				return;
3069 			}
3070 			if (!tcpsig_verify(mp, tcp, tcpha, ira,
3071 			    tcpopt.tcp_opt_sig)) {
3072 				freemsg(mp);
3073 				return;
3074 			}
3075 		}
3076 		/*
3077 		 * RST segments must not be subject to PAWS and are not
3078 		 * required to have timestamps.
3079 		 * We do not drop keepalive segments without
3080 		 * timestamps, to maintain compatibility with legacy TCP stacks.
3081 		 */
3082 		boolean_t keepalive = (seg_len == 0 || seg_len == 1) &&
3083 		    (seg_seq + 1 == tcp->tcp_rnxt);
3084 		if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) {
3085 			/*
3086 			 * Per RFC 7323 section 3.2., silently drop non-RST
3087 			 * segments without expected TSopt. This is a 'SHOULD'
3088 			 * requirement.
3089 			 * We accept keepalives without TSopt to maintain
3090 			 * interoperability with tcp implementations that omit
3091 			 * the TSopt on these. Keepalive data is discarded, so
3092 			 * there is no risk corrupting data by accepting these.
3093 			 */
3094 			if (!(options & TCP_OPT_TSTAMP_PRESENT)) {
3095 				/*
3096 				 * Leave a breadcrumb for people to detect this
3097 				 * behavior.
3098 				 */
3099 				DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp);
3100 				freemsg(mp);
3101 				return;
3102 			}
3103 
3104 			if (!tcp_paws_check(tcp, &tcpopt)) {
3105 				/*
3106 				 * This segment is not acceptable.
3107 				 * Drop it and send back an ACK.
3108 				 */
3109 				freemsg(mp);
3110 				flags |= TH_ACK_NEEDED;
3111 				goto ack_check;
3112 			}
3113 		}
3114 	}
3115 try_again:;
3116 	mss = tcp->tcp_mss;
3117 	gap = seg_seq - tcp->tcp_rnxt;
3118 	rgap = tcp->tcp_rwnd - (gap + seg_len);
3119 	/*
3120 	 * gap is the amount of sequence space between what we expect to see
3121 	 * and what we got for seg_seq.  A positive value for gap means
3122 	 * something got lost.  A negative value means we got some old stuff.
3123 	 */
3124 	if (gap < 0) {
3125 		/* Old stuff present.  Is the SYN in there? */
3126 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
3127 		    (seg_len != 0)) {
3128 			flags &= ~TH_SYN;
3129 			seg_seq++;
3130 			urp--;
3131 			/* Recompute the gaps after noting the SYN. */
3132 			goto try_again;
3133 		}
3134 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
3135 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
3136 		    (seg_len > -gap ? -gap : seg_len));
3137 		/* Remove the old stuff from seg_len. */
3138 		seg_len += gap;
3139 		/*
3140 		 * Anything left?
3141 		 * Make sure to check for unack'd FIN when rest of data
3142 		 * has been previously ack'd.
3143 		 */
3144 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
3145 			/*
3146 			 * Resets are only valid if they lie within our offered
3147 			 * window.  If the RST bit is set, we just ignore this
3148 			 * segment.
3149 			 */
3150 			if (flags & TH_RST) {
3151 				freemsg(mp);
3152 				return;
3153 			}
3154 
3155 			/*
3156 			 * The arriving of dup data packets indicate that we
3157 			 * may have postponed an ack for too long, or the other
3158 			 * side's RTT estimate is out of shape. Start acking
3159 			 * more often.
3160 			 */
3161 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
3162 			    tcp->tcp_rack_cnt >= 1 &&
3163 			    tcp->tcp_rack_abs_max > 2) {
3164 				tcp->tcp_rack_abs_max--;
3165 			}
3166 			tcp->tcp_rack_cur_max = 1;
3167 
3168 			/*
3169 			 * This segment is "unacceptable".  None of its
3170 			 * sequence space lies within our advertized window.
3171 			 *
3172 			 * Adjust seg_len to the original value for tracing.
3173 			 */
3174 			seg_len -= gap;
3175 			if (connp->conn_debug) {
3176 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3177 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
3178 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
3179 				    "seg_len %d, rnxt %u, snxt %u, %s",
3180 				    gap, rgap, flags, seg_seq, seg_ack,
3181 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3182 				    tcp_display(tcp, NULL,
3183 				    DISP_ADDR_AND_PORT));
3184 			}
3185 
3186 			/*
3187 			 * Arrange to send an ACK in response to the
3188 			 * unacceptable segment per RFC 793 page 69. There
3189 			 * is only one small difference between ours and the
3190 			 * acceptability test in the RFC - we accept ACK-only
3191 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3192 			 * will be generated.
3193 			 *
3194 			 * Note that we have to ACK an ACK-only packet at least
3195 			 * for stacks that send 0-length keep-alives with
3196 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3197 			 * section 4.2.3.6. As long as we don't ever generate
3198 			 * an unacceptable packet in response to an incoming
3199 			 * packet that is unacceptable, it should not cause
3200 			 * "ACK wars".
3201 			 */
3202 			flags |= TH_ACK_NEEDED;
3203 
3204 			/*
3205 			 * Continue processing this segment in order to use the
3206 			 * ACK information it contains, but skip all other
3207 			 * sequence-number processing.	Processing the ACK
3208 			 * information is necessary in order to
3209 			 * re-synchronize connections that may have lost
3210 			 * synchronization.
3211 			 *
3212 			 * We clear seg_len and flag fields related to
3213 			 * sequence number processing as they are not
3214 			 * to be trusted for an unacceptable segment.
3215 			 */
3216 			seg_len = 0;
3217 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3218 			goto process_ack;
3219 		}
3220 
3221 		/* Fix seg_seq, and chew the gap off the front. */
3222 		seg_seq = tcp->tcp_rnxt;
3223 		urp += gap;
3224 		do {
3225 			mblk_t	*mp2;
3226 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3227 			    (uintptr_t)UINT_MAX);
3228 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3229 			if (gap > 0) {
3230 				mp->b_rptr = mp->b_wptr - gap;
3231 				break;
3232 			}
3233 			mp2 = mp;
3234 			mp = mp->b_cont;
3235 			freeb(mp2);
3236 		} while (gap < 0);
3237 		/*
3238 		 * If the urgent data has already been acknowledged, we
3239 		 * should ignore TH_URG below
3240 		 */
3241 		if (urp < 0)
3242 			flags &= ~TH_URG;
3243 	}
3244 	/*
3245 	 * rgap is the amount of stuff received out of window.  A negative
3246 	 * value is the amount out of window.
3247 	 */
3248 	if (rgap < 0) {
3249 		mblk_t	*mp2;
3250 
3251 		if (tcp->tcp_rwnd == 0) {
3252 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3253 			tcp->tcp_cs.tcp_in_zwnd_probes++;
3254 		} else {
3255 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3256 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3257 		}
3258 
3259 		/*
3260 		 * seg_len does not include the FIN, so if more than
3261 		 * just the FIN is out of window, we act like we don't
3262 		 * see it.  (If just the FIN is out of window, rgap
3263 		 * will be zero and we will go ahead and acknowledge
3264 		 * the FIN.)
3265 		 */
3266 		flags &= ~TH_FIN;
3267 
3268 		/* Fix seg_len and make sure there is something left. */
3269 		seg_len += rgap;
3270 		if (seg_len <= 0) {
3271 			/*
3272 			 * Resets are only valid if they lie within our offered
3273 			 * window.  If the RST bit is set, we just ignore this
3274 			 * segment.
3275 			 */
3276 			if (flags & TH_RST) {
3277 				freemsg(mp);
3278 				return;
3279 			}
3280 
3281 			/* Per RFC 793, we need to send back an ACK. */
3282 			flags |= TH_ACK_NEEDED;
3283 
3284 			/*
3285 			 * Send SIGURG as soon as possible i.e. even
3286 			 * if the TH_URG was delivered in a window probe
3287 			 * packet (which will be unacceptable).
3288 			 *
3289 			 * We generate a signal if none has been generated
3290 			 * for this connection or if this is a new urgent
3291 			 * byte. Also send a zero-length "unmarked" message
3292 			 * to inform SIOCATMARK that this is not the mark.
3293 			 *
3294 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3295 			 * is sent up. This plus the check for old data
3296 			 * (gap >= 0) handles the wraparound of the sequence
3297 			 * number space without having to always track the
3298 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3299 			 * this max in its rcv_up variable).
3300 			 *
3301 			 * This prevents duplicate SIGURGS due to a "late"
3302 			 * zero-window probe when the T_EXDATA_IND has already
3303 			 * been sent up.
3304 			 */
3305 			if ((flags & TH_URG) &&
3306 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3307 			    tcp->tcp_urp_last))) {
3308 				if (IPCL_IS_NONSTR(connp)) {
3309 					if (!TCP_IS_DETACHED(tcp)) {
3310 						(*sockupcalls->su_signal_oob)
3311 						    (connp->conn_upper_handle,
3312 						    urp);
3313 					}
3314 				} else {
3315 					mp1 = allocb(0, BPRI_MED);
3316 					if (mp1 == NULL) {
3317 						freemsg(mp);
3318 						return;
3319 					}
3320 					if (!TCP_IS_DETACHED(tcp) &&
3321 					    !putnextctl1(connp->conn_rq,
3322 					    M_PCSIG, SIGURG)) {
3323 						/* Try again on the rexmit. */
3324 						freemsg(mp1);
3325 						freemsg(mp);
3326 						return;
3327 					}
3328 					/*
3329 					 * If the next byte would be the mark
3330 					 * then mark with MARKNEXT else mark
3331 					 * with NOTMARKNEXT.
3332 					 */
3333 					if (gap == 0 && urp == 0)
3334 						mp1->b_flag |= MSGMARKNEXT;
3335 					else
3336 						mp1->b_flag |= MSGNOTMARKNEXT;
3337 					freemsg(tcp->tcp_urp_mark_mp);
3338 					tcp->tcp_urp_mark_mp = mp1;
3339 					flags |= TH_SEND_URP_MARK;
3340 				}
3341 				tcp->tcp_urp_last_valid = B_TRUE;
3342 				tcp->tcp_urp_last = urp + seg_seq;
3343 			}
3344 			/*
3345 			 * If this is a zero window probe, continue to
3346 			 * process the ACK part.  But we need to set seg_len
3347 			 * to 0 to avoid data processing.  Otherwise just
3348 			 * drop the segment and send back an ACK.
3349 			 */
3350 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3351 				flags &= ~(TH_SYN | TH_URG);
3352 				seg_len = 0;
3353 				goto process_ack;
3354 			} else {
3355 				freemsg(mp);
3356 				goto ack_check;
3357 			}
3358 		}
3359 		/* Pitch out of window stuff off the end. */
3360 		rgap = seg_len;
3361 		mp2 = mp;
3362 		do {
3363 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3364 			    (uintptr_t)INT_MAX);
3365 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3366 			if (rgap < 0) {
3367 				mp2->b_wptr += rgap;
3368 				if ((mp1 = mp2->b_cont) != NULL) {
3369 					mp2->b_cont = NULL;
3370 					freemsg(mp1);
3371 				}
3372 				break;
3373 			}
3374 		} while ((mp2 = mp2->b_cont) != NULL);
3375 	}
3376 ok:;
3377 	/*
3378 	 * TCP should check ECN info for segments inside the window only.
3379 	 * Therefore the check should be done here.
3380 	 */
3381 	if (tcp->tcp_ecn_ok) {
3382 		if (flags & TH_CWR) {
3383 			tcp->tcp_ecn_echo_on = B_FALSE;
3384 		}
3385 		/*
3386 		 * Note that both ECN_CE and CWR can be set in the
3387 		 * same segment.  In this case, we once again turn
3388 		 * on ECN_ECHO.
3389 		 */
3390 		if (connp->conn_ipversion == IPV4_VERSION) {
3391 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3392 
3393 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3394 				tcp->tcp_ecn_echo_on = B_TRUE;
3395 			}
3396 		} else {
3397 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3398 
3399 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3400 			    htonl(IPH_ECN_CE << 20)) {
3401 				tcp->tcp_ecn_echo_on = B_TRUE;
3402 			}
3403 		}
3404 	}
3405 
3406 	/*
3407 	 * Check whether we can update tcp_ts_recent. This test is from RFC
3408 	 * 7323, section 5.3.
3409 	 */
3410 	if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) &&
3411 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3412 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3413 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3414 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3415 	}
3416 
3417 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3418 		/*
3419 		 * FIN in an out of order segment.  We record this in
3420 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3421 		 * Clear the FIN so that any check on FIN flag will fail.
3422 		 * Remember that FIN also counts in the sequence number
3423 		 * space.  So we need to ack out of order FIN only segments.
3424 		 */
3425 		if (flags & TH_FIN) {
3426 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3427 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3428 			flags &= ~TH_FIN;
3429 			flags |= TH_ACK_NEEDED;
3430 		}
3431 		if (seg_len > 0) {
3432 			/* Fill in the SACK blk list. */
3433 			if (tcp->tcp_snd_sack_ok) {
3434 				tcp_sack_insert(tcp->tcp_sack_list,
3435 				    seg_seq, seg_seq + seg_len,
3436 				    &(tcp->tcp_num_sack_blk));
3437 			}
3438 
3439 			/*
3440 			 * Attempt reassembly and see if we have something
3441 			 * ready to go.
3442 			 */
3443 			mp = tcp_reass(tcp, mp, seg_seq);
3444 			/* Always ack out of order packets */
3445 			flags |= TH_ACK_NEEDED | TH_PUSH;
3446 			if (mp) {
3447 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3448 				    (uintptr_t)INT_MAX);
3449 				seg_len = mp->b_cont ? msgdsize(mp) :
3450 				    (int)(mp->b_wptr - mp->b_rptr);
3451 				seg_seq = tcp->tcp_rnxt;
3452 				/*
3453 				 * A gap is filled and the seq num and len
3454 				 * of the gap match that of a previously
3455 				 * received FIN, put the FIN flag back in.
3456 				 */
3457 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3458 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3459 					flags |= TH_FIN;
3460 					tcp->tcp_valid_bits &=
3461 					    ~TCP_OFO_FIN_VALID;
3462 				}
3463 				if (tcp->tcp_reass_tid != 0) {
3464 					(void) TCP_TIMER_CANCEL(tcp,
3465 					    tcp->tcp_reass_tid);
3466 					/*
3467 					 * Restart the timer if there is still
3468 					 * data in the reassembly queue.
3469 					 */
3470 					if (tcp->tcp_reass_head != NULL) {
3471 						tcp->tcp_reass_tid = TCP_TIMER(
3472 						    tcp, tcp_reass_timer,
3473 						    tcps->tcps_reass_timeout);
3474 					} else {
3475 						tcp->tcp_reass_tid = 0;
3476 					}
3477 				}
3478 			} else {
3479 				/*
3480 				 * Keep going even with NULL mp.
3481 				 * There may be a useful ACK or something else
3482 				 * we don't want to miss.
3483 				 *
3484 				 * But TCP should not perform fast retransmit
3485 				 * because of the ack number.  TCP uses
3486 				 * seg_len == 0 to determine if it is a pure
3487 				 * ACK.  And this is not a pure ACK.
3488 				 */
3489 				seg_len = 0;
3490 				ofo_seg = B_TRUE;
3491 
3492 				if (tcps->tcps_reass_timeout != 0 &&
3493 				    tcp->tcp_reass_tid == 0) {
3494 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3495 					    tcp_reass_timer,
3496 					    tcps->tcps_reass_timeout);
3497 				}
3498 			}
3499 		}
3500 	} else if (seg_len > 0) {
3501 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3502 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3503 		tcp->tcp_cs.tcp_in_data_inorder_segs++;
3504 		tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len;
3505 
3506 		/*
3507 		 * If an out of order FIN was received before, and the seq
3508 		 * num and len of the new segment match that of the FIN,
3509 		 * put the FIN flag back in.
3510 		 */
3511 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3512 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3513 			flags |= TH_FIN;
3514 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3515 		}
3516 	}
3517 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3518 	if (flags & TH_RST) {
3519 		freemsg(mp);
3520 		switch (tcp->tcp_state) {
3521 		case TCPS_SYN_RCVD:
3522 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3523 			break;
3524 		case TCPS_ESTABLISHED:
3525 		case TCPS_FIN_WAIT_1:
3526 		case TCPS_FIN_WAIT_2:
3527 		case TCPS_CLOSE_WAIT:
3528 			(void) tcp_clean_death(tcp, ECONNRESET);
3529 			break;
3530 		case TCPS_CLOSING:
3531 		case TCPS_LAST_ACK:
3532 			(void) tcp_clean_death(tcp, 0);
3533 			break;
3534 		default:
3535 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3536 			(void) tcp_clean_death(tcp, ENXIO);
3537 			break;
3538 		}
3539 		return;
3540 	}
3541 	if (flags & TH_SYN) {
3542 		/*
3543 		 * See RFC 793, Page 71
3544 		 *
3545 		 * The seq number must be in the window as it should
3546 		 * be "fixed" above.  If it is outside window, it should
3547 		 * be already rejected.  Note that we allow seg_seq to be
3548 		 * rnxt + rwnd because we want to accept 0 window probe.
3549 		 */
3550 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3551 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3552 		freemsg(mp);
3553 		/*
3554 		 * If the ACK flag is not set, just use our snxt as the
3555 		 * seq number of the RST segment.
3556 		 */
3557 		if (!(flags & TH_ACK)) {
3558 			seg_ack = tcp->tcp_snxt;
3559 		}
3560 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3561 		    TH_RST|TH_ACK);
3562 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3563 		(void) tcp_clean_death(tcp, ECONNRESET);
3564 		return;
3565 	}
3566 	/*
3567 	 * urp could be -1 when the urp field in the packet is 0
3568 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3569 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3570 	 */
3571 	if ((flags & TH_URG) && urp >= 0) {
3572 		if (!tcp->tcp_urp_last_valid ||
3573 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3574 			/*
3575 			 * Non-STREAMS sockets handle the urgent data a litte
3576 			 * differently from STREAMS based sockets. There is no
3577 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3578 			 * flags to keep SIOCATMARK happy. Instead a
3579 			 * su_signal_oob upcall is made to update the mark.
3580 			 * Neither is a T_EXDATA_IND mblk needed to be
3581 			 * prepended to the urgent data. The urgent data is
3582 			 * delivered using the su_recv upcall, where we set
3583 			 * the MSG_OOB flag to indicate that it is urg data.
3584 			 *
3585 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3586 			 * are used by non-STREAMS sockets.
3587 			 */
3588 			if (IPCL_IS_NONSTR(connp)) {
3589 				if (!TCP_IS_DETACHED(tcp)) {
3590 					(*sockupcalls->su_signal_oob)
3591 					    (connp->conn_upper_handle, urp);
3592 				}
3593 			} else {
3594 				/*
3595 				 * If we haven't generated the signal yet for
3596 				 * this urgent pointer value, do it now.  Also,
3597 				 * send up a zero-length M_DATA indicating
3598 				 * whether or not this is the mark. The latter
3599 				 * is not needed when a T_EXDATA_IND is sent up.
3600 				 * However, if there are allocation failures
3601 				 * this code relies on the sender retransmitting
3602 				 * and the socket code for determining the mark
3603 				 * should not block waiting for the peer to
3604 				 * transmit. Thus, for simplicity we always
3605 				 * send up the mark indication.
3606 				 */
3607 				mp1 = allocb(0, BPRI_MED);
3608 				if (mp1 == NULL) {
3609 					freemsg(mp);
3610 					return;
3611 				}
3612 				if (!TCP_IS_DETACHED(tcp) &&
3613 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3614 				    SIGURG)) {
3615 					/* Try again on the rexmit. */
3616 					freemsg(mp1);
3617 					freemsg(mp);
3618 					return;
3619 				}
3620 				/*
3621 				 * Mark with NOTMARKNEXT for now.
3622 				 * The code below will change this to MARKNEXT
3623 				 * if we are at the mark.
3624 				 *
3625 				 * If there are allocation failures (e.g. in
3626 				 * dupmsg below) the next time tcp_input_data
3627 				 * sees the urgent segment it will send up the
3628 				 * MSGMARKNEXT message.
3629 				 */
3630 				mp1->b_flag |= MSGNOTMARKNEXT;
3631 				freemsg(tcp->tcp_urp_mark_mp);
3632 				tcp->tcp_urp_mark_mp = mp1;
3633 				flags |= TH_SEND_URP_MARK;
3634 #ifdef DEBUG
3635 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3636 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3637 				    "last %x, %s",
3638 				    seg_seq, urp, tcp->tcp_urp_last,
3639 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3640 #endif /* DEBUG */
3641 			}
3642 			tcp->tcp_urp_last_valid = B_TRUE;
3643 			tcp->tcp_urp_last = urp + seg_seq;
3644 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3645 			/*
3646 			 * An allocation failure prevented the previous
3647 			 * tcp_input_data from sending up the allocated
3648 			 * MSG*MARKNEXT message - send it up this time
3649 			 * around.
3650 			 */
3651 			flags |= TH_SEND_URP_MARK;
3652 		}
3653 
3654 		/*
3655 		 * If the urgent byte is in this segment, make sure that it is
3656 		 * all by itself.  This makes it much easier to deal with the
3657 		 * possibility of an allocation failure on the T_exdata_ind.
3658 		 * Note that seg_len is the number of bytes in the segment, and
3659 		 * urp is the offset into the segment of the urgent byte.
3660 		 * urp < seg_len means that the urgent byte is in this segment.
3661 		 */
3662 		if (urp < seg_len) {
3663 			if (seg_len != 1) {
3664 				uint32_t  tmp_rnxt;
3665 				/*
3666 				 * Break it up and feed it back in.
3667 				 * Re-attach the IP header.
3668 				 */
3669 				mp->b_rptr = iphdr;
3670 				if (urp > 0) {
3671 					/*
3672 					 * There is stuff before the urgent
3673 					 * byte.
3674 					 */
3675 					mp1 = dupmsg(mp);
3676 					if (!mp1) {
3677 						/*
3678 						 * Trim from urgent byte on.
3679 						 * The rest will come back.
3680 						 */
3681 						(void) adjmsg(mp,
3682 						    urp - seg_len);
3683 						tcp_input_data(connp,
3684 						    mp, NULL, ira);
3685 						return;
3686 					}
3687 					(void) adjmsg(mp1, urp - seg_len);
3688 					/* Feed this piece back in. */
3689 					tmp_rnxt = tcp->tcp_rnxt;
3690 					tcp_input_data(connp, mp1, NULL, ira);
3691 					/*
3692 					 * If the data passed back in was not
3693 					 * processed (ie: bad ACK) sending
3694 					 * the remainder back in will cause a
3695 					 * loop. In this case, drop the
3696 					 * packet and let the sender try
3697 					 * sending a good packet.
3698 					 */
3699 					if (tmp_rnxt == tcp->tcp_rnxt) {
3700 						freemsg(mp);
3701 						return;
3702 					}
3703 				}
3704 				if (urp != seg_len - 1) {
3705 					uint32_t  tmp_rnxt;
3706 					/*
3707 					 * There is stuff after the urgent
3708 					 * byte.
3709 					 */
3710 					mp1 = dupmsg(mp);
3711 					if (!mp1) {
3712 						/*
3713 						 * Trim everything beyond the
3714 						 * urgent byte.  The rest will
3715 						 * come back.
3716 						 */
3717 						(void) adjmsg(mp,
3718 						    urp + 1 - seg_len);
3719 						tcp_input_data(connp,
3720 						    mp, NULL, ira);
3721 						return;
3722 					}
3723 					(void) adjmsg(mp1, urp + 1 - seg_len);
3724 					tmp_rnxt = tcp->tcp_rnxt;
3725 					tcp_input_data(connp, mp1, NULL, ira);
3726 					/*
3727 					 * If the data passed back in was not
3728 					 * processed (ie: bad ACK) sending
3729 					 * the remainder back in will cause a
3730 					 * loop. In this case, drop the
3731 					 * packet and let the sender try
3732 					 * sending a good packet.
3733 					 */
3734 					if (tmp_rnxt == tcp->tcp_rnxt) {
3735 						freemsg(mp);
3736 						return;
3737 					}
3738 				}
3739 				tcp_input_data(connp, mp, NULL, ira);
3740 				return;
3741 			}
3742 			/*
3743 			 * This segment contains only the urgent byte.  We
3744 			 * have to allocate the T_exdata_ind, if we can.
3745 			 */
3746 			if (IPCL_IS_NONSTR(connp)) {
3747 				int error;
3748 
3749 				(*sockupcalls->su_recv)
3750 				    (connp->conn_upper_handle, mp, seg_len,
3751 				    MSG_OOB, &error, NULL);
3752 				/*
3753 				 * We should never be in middle of a
3754 				 * fallback, the squeue guarantees that.
3755 				 */
3756 				ASSERT(error != EOPNOTSUPP);
3757 				mp = NULL;
3758 				goto update_ack;
3759 			} else if (!tcp->tcp_urp_mp) {
3760 				struct T_exdata_ind *tei;
3761 				mp1 = allocb(sizeof (struct T_exdata_ind),
3762 				    BPRI_MED);
3763 				if (!mp1) {
3764 					/*
3765 					 * Sigh... It'll be back.
3766 					 * Generate any MSG*MARK message now.
3767 					 */
3768 					freemsg(mp);
3769 					seg_len = 0;
3770 					if (flags & TH_SEND_URP_MARK) {
3771 
3772 
3773 						ASSERT(tcp->tcp_urp_mark_mp);
3774 						tcp->tcp_urp_mark_mp->b_flag &=
3775 						    ~MSGNOTMARKNEXT;
3776 						tcp->tcp_urp_mark_mp->b_flag |=
3777 						    MSGMARKNEXT;
3778 					}
3779 					goto ack_check;
3780 				}
3781 				mp1->b_datap->db_type = M_PROTO;
3782 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3783 				tei->PRIM_type = T_EXDATA_IND;
3784 				tei->MORE_flag = 0;
3785 				mp1->b_wptr = (uchar_t *)&tei[1];
3786 				tcp->tcp_urp_mp = mp1;
3787 #ifdef DEBUG
3788 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3789 				    "tcp_rput: allocated exdata_ind %s",
3790 				    tcp_display(tcp, NULL,
3791 				    DISP_PORT_ONLY));
3792 #endif /* DEBUG */
3793 				/*
3794 				 * There is no need to send a separate MSG*MARK
3795 				 * message since the T_EXDATA_IND will be sent
3796 				 * now.
3797 				 */
3798 				flags &= ~TH_SEND_URP_MARK;
3799 				freemsg(tcp->tcp_urp_mark_mp);
3800 				tcp->tcp_urp_mark_mp = NULL;
3801 			}
3802 			/*
3803 			 * Now we are all set.  On the next putnext upstream,
3804 			 * tcp_urp_mp will be non-NULL and will get prepended
3805 			 * to what has to be this piece containing the urgent
3806 			 * byte.  If for any reason we abort this segment below,
3807 			 * if it comes back, we will have this ready, or it
3808 			 * will get blown off in close.
3809 			 */
3810 		} else if (urp == seg_len) {
3811 			/*
3812 			 * The urgent byte is the next byte after this sequence
3813 			 * number. If this endpoint is non-STREAMS, then there
3814 			 * is nothing to do here since the socket has already
3815 			 * been notified about the urg pointer by the
3816 			 * su_signal_oob call above.
3817 			 *
3818 			 * In case of STREAMS, some more work might be needed.
3819 			 * If there is data it is marked with MSGMARKNEXT and
3820 			 * and any tcp_urp_mark_mp is discarded since it is not
3821 			 * needed. Otherwise, if the code above just allocated
3822 			 * a zero-length tcp_urp_mark_mp message, that message
3823 			 * is tagged with MSGMARKNEXT. Sending up these
3824 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3825 			 * even though the T_EXDATA_IND will not be sent up
3826 			 * until the urgent byte arrives.
3827 			 */
3828 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3829 				if (seg_len != 0) {
3830 					flags |= TH_MARKNEXT_NEEDED;
3831 					freemsg(tcp->tcp_urp_mark_mp);
3832 					tcp->tcp_urp_mark_mp = NULL;
3833 					flags &= ~TH_SEND_URP_MARK;
3834 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3835 					flags |= TH_SEND_URP_MARK;
3836 					tcp->tcp_urp_mark_mp->b_flag &=
3837 					    ~MSGNOTMARKNEXT;
3838 					tcp->tcp_urp_mark_mp->b_flag |=
3839 					    MSGMARKNEXT;
3840 				}
3841 			}
3842 #ifdef DEBUG
3843 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3844 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3845 			    seg_len, flags,
3846 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3847 #endif /* DEBUG */
3848 		}
3849 #ifdef DEBUG
3850 		else {
3851 			/* Data left until we hit mark */
3852 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3853 			    "tcp_rput: URP %d bytes left, %s",
3854 			    urp - seg_len, tcp_display(tcp, NULL,
3855 			    DISP_PORT_ONLY));
3856 		}
3857 #endif /* DEBUG */
3858 	}
3859 
3860 process_ack:
3861 	if (!(flags & TH_ACK)) {
3862 		freemsg(mp);
3863 		goto xmit_check;
3864 	}
3865 	}
3866 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3867 
3868 	if (bytes_acked > 0)
3869 		tcp->tcp_ip_forward_progress = B_TRUE;
3870 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3871 		/*
3872 		 * tcp_sendmsg() checks tcp_state without entering
3873 		 * the squeue so tcp_state should be updated before
3874 		 * sending up a connection confirmation or a new
3875 		 * connection indication.
3876 		 */
3877 		tcp->tcp_state = TCPS_ESTABLISHED;
3878 
3879 		/*
3880 		 * We are seeing the final ack in the three way
3881 		 * hand shake of a active open'ed connection
3882 		 * so we must send up a T_CONN_CON
3883 		 */
3884 		if (tcp->tcp_active_open) {
3885 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3886 				freemsg(mp);
3887 				tcp->tcp_state = TCPS_SYN_RCVD;
3888 				return;
3889 			}
3890 			/*
3891 			 * Don't fuse the loopback endpoints for
3892 			 * simultaneous active opens.
3893 			 */
3894 			if (tcp->tcp_loopback) {
3895 				TCP_STAT(tcps, tcp_fusion_unfusable);
3896 				tcp->tcp_unfusable = B_TRUE;
3897 			}
3898 			/*
3899 			 * For simultaneous active open, trace receipt of final
3900 			 * ACK as tcp:::connect-established.
3901 			 */
3902 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3903 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3904 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3905 		} else if (IPCL_IS_NONSTR(connp)) {
3906 			/*
3907 			 * 3-way handshake has completed, so notify socket
3908 			 * of the new connection.
3909 			 *
3910 			 * We are here means eager is fine but it can
3911 			 * get a TH_RST at any point between now and till
3912 			 * accept completes and disappear. We need to
3913 			 * ensure that reference to eager is valid after
3914 			 * we get out of eager's perimeter. So we do
3915 			 * an extra refhold.
3916 			 */
3917 			CONN_INC_REF(connp);
3918 
3919 			if (!tcp_newconn_notify(tcp, ira)) {
3920 				/*
3921 				 * The state-change probe for SYN_RCVD ->
3922 				 * ESTABLISHED has not fired yet. We reset
3923 				 * the state to SYN_RCVD so that future
3924 				 * state-change probes report correct state
3925 				 * transistions.
3926 				 */
3927 				tcp->tcp_state = TCPS_SYN_RCVD;
3928 				freemsg(mp);
3929 				/* notification did not go up, so drop ref */
3930 				CONN_DEC_REF(connp);
3931 				/* ... and close the eager */
3932 				ASSERT(TCP_IS_DETACHED(tcp));
3933 				(void) tcp_close_detached(tcp);
3934 				return;
3935 			}
3936 			/*
3937 			 * tcp_newconn_notify() changes conn_upcalls and
3938 			 * connp->conn_upper_handle.  Fix things now, in case
3939 			 * there's data attached to this ack.
3940 			 */
3941 			if (connp->conn_upcalls != NULL)
3942 				sockupcalls = connp->conn_upcalls;
3943 			/*
3944 			 * For passive open, trace receipt of final ACK as
3945 			 * tcp:::accept-established.
3946 			 */
3947 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3948 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3949 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3950 		} else {
3951 			/*
3952 			 * 3-way handshake complete - this is a STREAMS based
3953 			 * socket, so pass up the T_CONN_IND.
3954 			 */
3955 			tcp_t	*listener = tcp->tcp_listener;
3956 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3957 
3958 			tcp->tcp_tconnind_started = B_TRUE;
3959 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3960 			ASSERT(mp != NULL);
3961 			/*
3962 			 * We are here means eager is fine but it can
3963 			 * get a TH_RST at any point between now and till
3964 			 * accept completes and disappear. We need to
3965 			 * ensure that reference to eager is valid after
3966 			 * we get out of eager's perimeter. So we do
3967 			 * an extra refhold.
3968 			 */
3969 			CONN_INC_REF(connp);
3970 
3971 			/*
3972 			 * The listener also exists because of the refhold
3973 			 * done in tcp_input_listener. Its possible that it
3974 			 * might have closed. We will check that once we
3975 			 * get inside listeners context.
3976 			 */
3977 			CONN_INC_REF(listener->tcp_connp);
3978 			if (listener->tcp_connp->conn_sqp ==
3979 			    connp->conn_sqp) {
3980 				/*
3981 				 * We optimize by not calling an SQUEUE_ENTER
3982 				 * on the listener since we know that the
3983 				 * listener and eager squeues are the same.
3984 				 * We are able to make this check safely only
3985 				 * because neither the eager nor the listener
3986 				 * can change its squeue. Only an active connect
3987 				 * can change its squeue
3988 				 */
3989 				tcp_send_conn_ind(listener->tcp_connp, mp,
3990 				    listener->tcp_connp->conn_sqp);
3991 				CONN_DEC_REF(listener->tcp_connp);
3992 			} else if (!tcp->tcp_loopback) {
3993 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3994 				    mp, tcp_send_conn_ind,
3995 				    listener->tcp_connp, NULL, SQ_FILL,
3996 				    SQTAG_TCP_CONN_IND);
3997 			} else {
3998 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3999 				    mp, tcp_send_conn_ind,
4000 				    listener->tcp_connp, NULL, SQ_NODRAIN,
4001 				    SQTAG_TCP_CONN_IND);
4002 			}
4003 			/*
4004 			 * For passive open, trace receipt of final ACK as
4005 			 * tcp:::accept-established.
4006 			 */
4007 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
4008 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
4009 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
4010 		}
4011 		TCPS_CONN_INC(tcps);
4012 
4013 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
4014 		bytes_acked--;
4015 		/* SYN was acked - making progress */
4016 		tcp->tcp_ip_forward_progress = B_TRUE;
4017 
4018 		/*
4019 		 * If SYN was retransmitted, need to reset all
4020 		 * retransmission info as this segment will be
4021 		 * treated as a dup ACK.
4022 		 */
4023 		if (tcp->tcp_rexmit) {
4024 			tcp->tcp_rexmit = B_FALSE;
4025 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4026 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
4027 			tcp->tcp_ms_we_have_waited = 0;
4028 			DTRACE_PROBE3(cwnd__retransmitted__syn,
4029 			    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4030 			    uint32_t, tcp->tcp_mss);
4031 			tcp->tcp_cwnd = mss;
4032 		}
4033 
4034 		/*
4035 		 * We set the send window to zero here.
4036 		 * This is needed if there is data to be
4037 		 * processed already on the queue.
4038 		 * Later (at swnd_update label), the
4039 		 * "new_swnd > tcp_swnd" condition is satisfied
4040 		 * the XMIT_NEEDED flag is set in the current
4041 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
4042 		 * called if there is already data on queue in
4043 		 * this state.
4044 		 */
4045 		tcp->tcp_swnd = 0;
4046 
4047 		if (new_swnd > tcp->tcp_max_swnd)
4048 			tcp->tcp_max_swnd = new_swnd;
4049 		tcp->tcp_swl1 = seg_seq;
4050 		tcp->tcp_swl2 = seg_ack;
4051 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
4052 
4053 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
4054 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4055 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4056 		    int32_t, TCPS_SYN_RCVD);
4057 
4058 		/* Fuse when both sides are in ESTABLISHED state */
4059 		if (tcp->tcp_loopback && do_tcp_fusion)
4060 			tcp_fuse(tcp, iphdr, tcpha);
4061 
4062 	}
4063 	/* This code follows 4.4BSD-Lite2 mostly. */
4064 	if (bytes_acked < 0)
4065 		goto est;
4066 
4067 	/*
4068 	 * If TCP is ECN capable and the congestion experience bit is
4069 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
4070 	 * done once per window (or more loosely, per RTT).
4071 	 */
4072 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
4073 		tcp->tcp_cwr = B_FALSE;
4074 	if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) {
4075 		cc_cong_signal(tcp, seg_ack, CC_ECN);
4076 		/*
4077 		 * If the cwnd is 0, use the timer to clock out
4078 		 * new segments.  This is required by the ECN spec.
4079 		 */
4080 		if (tcp->tcp_cwnd == 0)
4081 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4082 		tcp->tcp_cwr = B_TRUE;
4083 		/*
4084 		 * This marks the end of the current window of in
4085 		 * flight data.  That is why we don't use
4086 		 * tcp_suna + tcp_swnd.  Only data in flight can
4087 		 * provide ECN info.
4088 		 */
4089 		tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4090 	}
4091 
4092 	mp1 = tcp->tcp_xmit_head;
4093 	if (bytes_acked == 0) {
4094 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
4095 			int dupack_cnt;
4096 
4097 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
4098 			/*
4099 			 * Fast retransmit.  When we have seen exactly three
4100 			 * identical ACKs while we have unacked data
4101 			 * outstanding we take it as a hint that our peer
4102 			 * dropped something.
4103 			 *
4104 			 * If TCP is retransmitting, don't do fast retransmit.
4105 			 */
4106 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
4107 			    ! tcp->tcp_rexmit) {
4108 				/* Do Limited Transmit */
4109 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
4110 				    tcps->tcps_dupack_fast_retransmit) {
4111 					cc_ack_received(tcp, seg_ack,
4112 					    bytes_acked, CC_DUPACK);
4113 					/*
4114 					 * RFC 3042
4115 					 *
4116 					 * What we need to do is temporarily
4117 					 * increase tcp_cwnd so that new
4118 					 * data can be sent if it is allowed
4119 					 * by the receive window (tcp_rwnd).
4120 					 * tcp_wput_data() will take care of
4121 					 * the rest.
4122 					 *
4123 					 * If the connection is SACK capable,
4124 					 * only do limited xmit when there
4125 					 * is SACK info.
4126 					 *
4127 					 * Note how tcp_cwnd is incremented.
4128 					 * The first dup ACK will increase
4129 					 * it by 1 MSS.  The second dup ACK
4130 					 * will increase it by 2 MSS.  This
4131 					 * means that only 1 new segment will
4132 					 * be sent for each dup ACK.
4133 					 */
4134 					if (tcp->tcp_unsent > 0 &&
4135 					    (!tcp->tcp_snd_sack_ok ||
4136 					    (tcp->tcp_snd_sack_ok &&
4137 					    tcp->tcp_notsack_list != NULL))) {
4138 						tcp->tcp_cwnd += mss <<
4139 						    (tcp->tcp_dupack_cnt - 1);
4140 						flags |= TH_LIMIT_XMIT;
4141 					}
4142 				} else if (dupack_cnt ==
4143 				    tcps->tcps_dupack_fast_retransmit) {
4144 
4145 				/*
4146 				 * If we have reduced tcp_ssthresh
4147 				 * because of ECN, do not reduce it again
4148 				 * unless it is already one window of data
4149 				 * away.  After one window of data, tcp_cwr
4150 				 * should then be cleared.  Note that
4151 				 * for non ECN capable connection, tcp_cwr
4152 				 * should always be false.
4153 				 *
4154 				 * Adjust cwnd since the duplicate
4155 				 * ack indicates that a packet was
4156 				 * dropped (due to congestion.)
4157 				 */
4158 				if (!tcp->tcp_cwr) {
4159 					cc_cong_signal(tcp, seg_ack,
4160 					    CC_NDUPACK);
4161 					cc_ack_received(tcp, seg_ack,
4162 					    bytes_acked, CC_DUPACK);
4163 				}
4164 				if (tcp->tcp_ecn_ok) {
4165 					tcp->tcp_cwr = B_TRUE;
4166 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4167 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4168 				}
4169 
4170 				/*
4171 				 * We do Hoe's algorithm.  Refer to her
4172 				 * paper "Improving the Start-up Behavior
4173 				 * of a Congestion Control Scheme for TCP,"
4174 				 * appeared in SIGCOMM'96.
4175 				 *
4176 				 * Save highest seq no we have sent so far.
4177 				 * Be careful about the invisible FIN byte.
4178 				 */
4179 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4180 				    (tcp->tcp_unsent == 0)) {
4181 					tcp->tcp_rexmit_max = tcp->tcp_fss;
4182 				} else {
4183 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4184 				}
4185 
4186 				/*
4187 				 * For SACK:
4188 				 * Calculate tcp_pipe, which is the
4189 				 * estimated number of bytes in
4190 				 * network.
4191 				 *
4192 				 * tcp_fack is the highest sack'ed seq num
4193 				 * TCP has received.
4194 				 *
4195 				 * tcp_pipe is explained in the above quoted
4196 				 * Fall and Floyd's paper.  tcp_fack is
4197 				 * explained in Mathis and Mahdavi's
4198 				 * "Forward Acknowledgment: Refining TCP
4199 				 * Congestion Control" in SIGCOMM '96.
4200 				 */
4201 				if (tcp->tcp_snd_sack_ok) {
4202 					if (tcp->tcp_notsack_list != NULL) {
4203 						tcp->tcp_pipe = tcp->tcp_snxt -
4204 						    tcp->tcp_fack;
4205 						tcp->tcp_sack_snxt = seg_ack;
4206 						flags |= TH_NEED_SACK_REXMIT;
4207 					} else {
4208 						/*
4209 						 * Always initialize tcp_pipe
4210 						 * even though we don't have
4211 						 * any SACK info.  If later
4212 						 * we get SACK info and
4213 						 * tcp_pipe is not initialized,
4214 						 * funny things will happen.
4215 						 */
4216 						tcp->tcp_pipe =
4217 						    tcp->tcp_cwnd_ssthresh;
4218 					}
4219 				} else {
4220 					flags |= TH_REXMIT_NEEDED;
4221 				} /* tcp_snd_sack_ok */
4222 
4223 				} else {
4224 					cc_ack_received(tcp, seg_ack,
4225 					    bytes_acked, CC_DUPACK);
4226 					/*
4227 					 * Here we perform congestion
4228 					 * avoidance, but NOT slow start.
4229 					 * This is known as the Fast
4230 					 * Recovery Algorithm.
4231 					 */
4232 					if (tcp->tcp_snd_sack_ok &&
4233 					    tcp->tcp_notsack_list != NULL) {
4234 						flags |= TH_NEED_SACK_REXMIT;
4235 						tcp->tcp_pipe -= mss;
4236 						if (tcp->tcp_pipe < 0)
4237 							tcp->tcp_pipe = 0;
4238 					} else {
4239 					/*
4240 					 * We know that one more packet has
4241 					 * left the pipe thus we can update
4242 					 * cwnd.
4243 					 */
4244 					cwnd = tcp->tcp_cwnd + mss;
4245 					if (cwnd > tcp->tcp_cwnd_max)
4246 						cwnd = tcp->tcp_cwnd_max;
4247 					DTRACE_PROBE3(cwnd__fast__recovery,
4248 					    tcp_t *, tcp,
4249 					    uint32_t, tcp->tcp_cwnd,
4250 					    uint32_t, cwnd);
4251 					tcp->tcp_cwnd = cwnd;
4252 					if (tcp->tcp_unsent > 0)
4253 						flags |= TH_XMIT_NEEDED;
4254 					}
4255 				}
4256 			}
4257 		} else if (tcp->tcp_zero_win_probe) {
4258 			/*
4259 			 * If the window has opened, need to arrange
4260 			 * to send additional data.
4261 			 */
4262 			if (new_swnd != 0) {
4263 				/* tcp_suna != tcp_snxt */
4264 				/* Packet contains a window update */
4265 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4266 				tcp->tcp_zero_win_probe = 0;
4267 				tcp->tcp_timer_backoff = 0;
4268 				tcp->tcp_ms_we_have_waited = 0;
4269 
4270 				/*
4271 				 * Transmit starting with tcp_suna since
4272 				 * the one byte probe is not ack'ed.
4273 				 * If TCP has sent more than one identical
4274 				 * probe, tcp_rexmit will be set.  That means
4275 				 * tcp_ss_rexmit() will send out the one
4276 				 * byte along with new data.  Otherwise,
4277 				 * fake the retransmission.
4278 				 */
4279 				flags |= TH_XMIT_NEEDED;
4280 				if (!tcp->tcp_rexmit) {
4281 					tcp->tcp_rexmit = B_TRUE;
4282 					tcp->tcp_dupack_cnt = 0;
4283 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4284 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4285 				}
4286 			}
4287 		}
4288 		goto swnd_update;
4289 	}
4290 
4291 	/*
4292 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4293 	 * If the ACK value acks something that we have not yet sent, it might
4294 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4295 	 * other side.
4296 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4297 	 * state is handled above, so we can always just drop the segment and
4298 	 * send an ACK here.
4299 	 *
4300 	 * In the case where the peer shrinks the window, we see the new window
4301 	 * update, but all the data sent previously is queued up by the peer.
4302 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4303 	 * number, which was already sent, and within window, is recorded.
4304 	 * tcp_snxt is then updated.
4305 	 *
4306 	 * If the window has previously shrunk, and an ACK for data not yet
4307 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4308 	 * the ACK is for data within the window at the time the window was
4309 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4310 	 * the sequence number ACK'ed.
4311 	 *
4312 	 * If the ACK covers all the data sent at the time the window was
4313 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4314 	 *
4315 	 * Should we send ACKs in response to ACK only segments?
4316 	 */
4317 
4318 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4319 		if ((tcp->tcp_is_wnd_shrnk) &&
4320 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4321 			uint32_t data_acked_ahead_snxt;
4322 
4323 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4324 			tcp_update_xmit_tail(tcp, seg_ack);
4325 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4326 		} else {
4327 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4328 			/* drop the received segment */
4329 			freemsg(mp);
4330 
4331 			/*
4332 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4333 			 * greater than 0, check if the number of such
4334 			 * bogus ACks is greater than that count.  If yes,
4335 			 * don't send back any ACK.  This prevents TCP from
4336 			 * getting into an ACK storm if somehow an attacker
4337 			 * successfully spoofs an acceptable segment to our
4338 			 * peer.  If this continues (count > 2 X threshold),
4339 			 * we should abort this connection.
4340 			 */
4341 			if (tcp_drop_ack_unsent_cnt > 0 &&
4342 			    ++tcp->tcp_in_ack_unsent >
4343 			    tcp_drop_ack_unsent_cnt) {
4344 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4345 				if (tcp->tcp_in_ack_unsent > 2 *
4346 				    tcp_drop_ack_unsent_cnt) {
4347 					(void) tcp_clean_death(tcp, EPROTO);
4348 				}
4349 				return;
4350 			}
4351 			mp = tcp_ack_mp(tcp);
4352 			if (mp != NULL) {
4353 				TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
4354 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4355 				tcp_send_data(tcp, mp);
4356 			}
4357 			return;
4358 		}
4359 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4360 	    tcp->tcp_snxt_shrunk)) {
4361 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4362 	}
4363 
4364 	/*
4365 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4366 	 * blocks that are covered by this ACK.
4367 	 */
4368 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4369 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4370 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4371 	}
4372 
4373 	/*
4374 	 * If we got an ACK after fast retransmit, check to see
4375 	 * if it is a partial ACK.  If it is not and the congestion
4376 	 * window was inflated to account for the other side's
4377 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4378 	 */
4379 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4380 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4381 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4382 			tcp->tcp_dupack_cnt = 0;
4383 
4384 			cc_post_recovery(tcp, seg_ack);
4385 
4386 			tcp->tcp_rexmit_max = seg_ack;
4387 
4388 			/*
4389 			 * Remove all notsack info to avoid confusion with
4390 			 * the next fast retrasnmit/recovery phase.
4391 			 */
4392 			if (tcp->tcp_snd_sack_ok) {
4393 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4394 				    tcp);
4395 			}
4396 		} else {
4397 			if (tcp->tcp_snd_sack_ok &&
4398 			    tcp->tcp_notsack_list != NULL) {
4399 				flags |= TH_NEED_SACK_REXMIT;
4400 				tcp->tcp_pipe -= mss;
4401 				if (tcp->tcp_pipe < 0)
4402 					tcp->tcp_pipe = 0;
4403 			} else {
4404 				/*
4405 				 * Hoe's algorithm:
4406 				 *
4407 				 * Retransmit the unack'ed segment and
4408 				 * restart fast recovery.  Note that we
4409 				 * need to scale back tcp_cwnd to the
4410 				 * original value when we started fast
4411 				 * recovery.  This is to prevent overly
4412 				 * aggressive behaviour in sending new
4413 				 * segments.
4414 				 */
4415 				cwnd = tcp->tcp_cwnd_ssthresh +
4416 				    tcps->tcps_dupack_fast_retransmit * mss;
4417 				DTRACE_PROBE3(cwnd__fast__retransmit__part__ack,
4418 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4419 				    uint32_t, cwnd);
4420 				tcp->tcp_cwnd = cwnd;
4421 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4422 				flags |= TH_REXMIT_NEEDED;
4423 			}
4424 		}
4425 	} else {
4426 		tcp->tcp_dupack_cnt = 0;
4427 		if (tcp->tcp_rexmit) {
4428 			/*
4429 			 * TCP is retranmitting.  If the ACK ack's all
4430 			 * outstanding data, update tcp_rexmit_max and
4431 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4432 			 * to the correct value.
4433 			 *
4434 			 * Note that SEQ_LEQ() is used.  This is to avoid
4435 			 * unnecessary fast retransmit caused by dup ACKs
4436 			 * received when TCP does slow start retransmission
4437 			 * after a time out.  During this phase, TCP may
4438 			 * send out segments which are already received.
4439 			 * This causes dup ACKs to be sent back.
4440 			 */
4441 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4442 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4443 					tcp->tcp_rexmit_nxt = seg_ack;
4444 				}
4445 				if (seg_ack != tcp->tcp_rexmit_max) {
4446 					flags |= TH_XMIT_NEEDED;
4447 				}
4448 			} else {
4449 				tcp->tcp_rexmit = B_FALSE;
4450 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4451 			}
4452 			tcp->tcp_ms_we_have_waited = 0;
4453 		}
4454 	}
4455 
4456 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4457 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4458 	tcp->tcp_suna = seg_ack;
4459 	if (tcp->tcp_zero_win_probe != 0) {
4460 		tcp->tcp_zero_win_probe = 0;
4461 		tcp->tcp_timer_backoff = 0;
4462 	}
4463 
4464 	/*
4465 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4466 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4467 	 * will not reach here.
4468 	 */
4469 	if (mp1 == NULL) {
4470 		goto fin_acked;
4471 	}
4472 
4473 	/*
4474 	 * Update the congestion window.
4475 	 *
4476 	 * If TCP is not ECN capable or TCP is ECN capable but the
4477 	 * congestion experience bit is not set, increase the tcp_cwnd as
4478 	 * usual.
4479 	 */
4480 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4481 		if (IN_RECOVERY(tcp->tcp_ccv.flags)) {
4482 			EXIT_RECOVERY(tcp->tcp_ccv.flags);
4483 		}
4484 		cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK);
4485 	}
4486 
4487 	/* See if the latest urgent data has been acknowledged */
4488 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4489 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4490 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4491 
4492 	/*
4493 	 * Update the RTT estimates. Note that we don't use the TCP
4494 	 * timestamp option to calculate RTT even if one is present. This is
4495 	 * because the timestamp option's resolution (CPU tick) is
4496 	 * too coarse to measure modern datacenter networks' microsecond
4497 	 * latencies. The timestamp field's resolution is limited by its
4498 	 * 4-byte width (see RFC1323), and since we always store a
4499 	 * high-resolution nanosecond presision timestamp along with the data,
4500 	 * there is no point to ever using the timestamp option.
4501 	 */
4502 	if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4503 		/*
4504 		 * An ACK sequence we haven't seen before, so get the RTT
4505 		 * and update the RTO. But first check if the timestamp is
4506 		 * valid to use.
4507 		 */
4508 		if ((mp1->b_next != NULL) &&
4509 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) {
4510 			tcp_set_rto(tcp, gethrtime() -
4511 			    (hrtime_t)(intptr_t)mp1->b_prev);
4512 		} else {
4513 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4514 		}
4515 
4516 		/* Remeber the last sequence to be ACKed */
4517 		tcp->tcp_csuna = seg_ack;
4518 		if (tcp->tcp_set_timer == 1) {
4519 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4520 			tcp->tcp_set_timer = 0;
4521 		}
4522 	} else {
4523 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4524 	}
4525 
4526 	/* Eat acknowledged bytes off the xmit queue. */
4527 	for (;;) {
4528 		mblk_t	*mp2;
4529 		uchar_t	*wptr;
4530 
4531 		wptr = mp1->b_wptr;
4532 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4533 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4534 		if (bytes_acked < 0) {
4535 			mp1->b_rptr = wptr + bytes_acked;
4536 			/*
4537 			 * Set a new timestamp if all the bytes timed by the
4538 			 * old timestamp have been ack'ed.
4539 			 */
4540 			if (SEQ_GT(seg_ack,
4541 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4542 				mp1->b_prev =
4543 				    (mblk_t *)(intptr_t)gethrtime();
4544 				mp1->b_next = NULL;
4545 			}
4546 			break;
4547 		}
4548 		mp1->b_next = NULL;
4549 		mp1->b_prev = NULL;
4550 		mp2 = mp1;
4551 		mp1 = mp1->b_cont;
4552 
4553 		/*
4554 		 * This notification is required for some zero-copy
4555 		 * clients to maintain a copy semantic. After the data
4556 		 * is ack'ed, client is safe to modify or reuse the buffer.
4557 		 */
4558 		if (tcp->tcp_snd_zcopy_aware &&
4559 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4560 			tcp_zcopy_notify(tcp);
4561 		freeb(mp2);
4562 		if (bytes_acked == 0) {
4563 			if (mp1 == NULL) {
4564 				/* Everything is ack'ed, clear the tail. */
4565 				tcp->tcp_xmit_tail = NULL;
4566 				/*
4567 				 * Cancel the timer unless we are still
4568 				 * waiting for an ACK for the FIN packet.
4569 				 */
4570 				if (tcp->tcp_timer_tid != 0 &&
4571 				    tcp->tcp_snxt == tcp->tcp_suna) {
4572 					(void) TCP_TIMER_CANCEL(tcp,
4573 					    tcp->tcp_timer_tid);
4574 					tcp->tcp_timer_tid = 0;
4575 				}
4576 				goto pre_swnd_update;
4577 			}
4578 			if (mp2 != tcp->tcp_xmit_tail)
4579 				break;
4580 			tcp->tcp_xmit_tail = mp1;
4581 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4582 			    (uintptr_t)INT_MAX);
4583 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4584 			    mp1->b_rptr);
4585 			break;
4586 		}
4587 		if (mp1 == NULL) {
4588 			/*
4589 			 * More was acked but there is nothing more
4590 			 * outstanding.  This means that the FIN was
4591 			 * just acked or that we're talking to a clown.
4592 			 */
4593 fin_acked:
4594 			ASSERT(tcp->tcp_fin_sent);
4595 			tcp->tcp_xmit_tail = NULL;
4596 			if (tcp->tcp_fin_sent) {
4597 				/* FIN was acked - making progress */
4598 				if (!tcp->tcp_fin_acked)
4599 					tcp->tcp_ip_forward_progress = B_TRUE;
4600 				tcp->tcp_fin_acked = B_TRUE;
4601 				if (tcp->tcp_linger_tid != 0 &&
4602 				    TCP_TIMER_CANCEL(tcp,
4603 				    tcp->tcp_linger_tid) >= 0) {
4604 					tcp_stop_lingering(tcp);
4605 					freemsg(mp);
4606 					mp = NULL;
4607 				}
4608 			} else {
4609 				/*
4610 				 * We should never get here because
4611 				 * we have already checked that the
4612 				 * number of bytes ack'ed should be
4613 				 * smaller than or equal to what we
4614 				 * have sent so far (it is the
4615 				 * acceptability check of the ACK).
4616 				 * We can only get here if the send
4617 				 * queue is corrupted.
4618 				 *
4619 				 * Terminate the connection and
4620 				 * panic the system.  It is better
4621 				 * for us to panic instead of
4622 				 * continuing to avoid other disaster.
4623 				 */
4624 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4625 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4626 				panic("Memory corruption "
4627 				    "detected for connection %s.",
4628 				    tcp_display(tcp, NULL,
4629 				    DISP_ADDR_AND_PORT));
4630 				/*NOTREACHED*/
4631 			}
4632 			goto pre_swnd_update;
4633 		}
4634 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4635 	}
4636 	if (tcp->tcp_unsent) {
4637 		flags |= TH_XMIT_NEEDED;
4638 	}
4639 pre_swnd_update:
4640 	tcp->tcp_xmit_head = mp1;
4641 swnd_update:
4642 	/*
4643 	 * The following check is different from most other implementations.
4644 	 * For bi-directional transfer, when segments are dropped, the
4645 	 * "normal" check will not accept a window update in those
4646 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4647 	 * segments which are outside receiver's window.  As TCP accepts
4648 	 * the ack in those retransmitted segments, if the window update in
4649 	 * the same segment is not accepted, TCP will incorrectly calculates
4650 	 * that it can send more segments.  This can create a deadlock
4651 	 * with the receiver if its window becomes zero.
4652 	 */
4653 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4654 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4655 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4656 		/*
4657 		 * The criteria for update is:
4658 		 *
4659 		 * 1. the segment acknowledges some data.  Or
4660 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4661 		 * 3. the segment is not old and the advertised window is
4662 		 * larger than the previous advertised window.
4663 		 */
4664 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4665 			flags |= TH_XMIT_NEEDED;
4666 		tcp->tcp_swnd = new_swnd;
4667 		if (new_swnd > tcp->tcp_max_swnd)
4668 			tcp->tcp_max_swnd = new_swnd;
4669 		tcp->tcp_swl1 = seg_seq;
4670 		tcp->tcp_swl2 = seg_ack;
4671 	}
4672 est:
4673 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4674 
4675 		switch (tcp->tcp_state) {
4676 		case TCPS_FIN_WAIT_1:
4677 			if (tcp->tcp_fin_acked) {
4678 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4679 				DTRACE_TCP6(state__change, void, NULL,
4680 				    ip_xmit_attr_t *, connp->conn_ixa,
4681 				    void, NULL, tcp_t *, tcp, void, NULL,
4682 				    int32_t, TCPS_FIN_WAIT_1);
4683 				/*
4684 				 * We implement the non-standard BSD/SunOS
4685 				 * FIN_WAIT_2 flushing algorithm.
4686 				 * If there is no user attached to this
4687 				 * TCP endpoint, then this TCP struct
4688 				 * could hang around forever in FIN_WAIT_2
4689 				 * state if the peer forgets to send us
4690 				 * a FIN.  To prevent this, we wait only
4691 				 * 2*MSL (a convenient time value) for
4692 				 * the FIN to arrive.  If it doesn't show up,
4693 				 * we flush the TCP endpoint.  This algorithm,
4694 				 * though a violation of RFC-793, has worked
4695 				 * for over 10 years in BSD systems.
4696 				 * Note: SunOS 4.x waits 675 seconds before
4697 				 * flushing the FIN_WAIT_2 connection.
4698 				 */
4699 				TCP_TIMER_RESTART(tcp,
4700 				    tcp->tcp_fin_wait_2_flush_interval);
4701 			}
4702 			break;
4703 		case TCPS_FIN_WAIT_2:
4704 			break;	/* Shutdown hook? */
4705 		case TCPS_LAST_ACK:
4706 			freemsg(mp);
4707 			if (tcp->tcp_fin_acked) {
4708 				(void) tcp_clean_death(tcp, 0);
4709 				return;
4710 			}
4711 			goto xmit_check;
4712 		case TCPS_CLOSING:
4713 			if (tcp->tcp_fin_acked) {
4714 				SET_TIME_WAIT(tcps, tcp, connp);
4715 				DTRACE_TCP6(state__change, void, NULL,
4716 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4717 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4718 				    TCPS_CLOSING);
4719 			}
4720 			/*FALLTHRU*/
4721 		case TCPS_CLOSE_WAIT:
4722 			freemsg(mp);
4723 			goto xmit_check;
4724 		default:
4725 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4726 			break;
4727 		}
4728 	}
4729 	if (flags & TH_FIN) {
4730 		/* Make sure we ack the fin */
4731 		flags |= TH_ACK_NEEDED;
4732 		if (!tcp->tcp_fin_rcvd) {
4733 			tcp->tcp_fin_rcvd = B_TRUE;
4734 			tcp->tcp_rnxt++;
4735 			tcpha = tcp->tcp_tcpha;
4736 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4737 
4738 			/*
4739 			 * Generate the ordrel_ind at the end unless the
4740 			 * conn is detached or it is a STREAMS based eager.
4741 			 * In the eager case we defer the notification until
4742 			 * tcp_accept_finish has run.
4743 			 */
4744 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4745 			    (tcp->tcp_listener == NULL &&
4746 			    !tcp->tcp_hard_binding)))
4747 				flags |= TH_ORDREL_NEEDED;
4748 			switch (tcp->tcp_state) {
4749 			case TCPS_SYN_RCVD:
4750 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4751 				DTRACE_TCP6(state__change, void, NULL,
4752 				    ip_xmit_attr_t *, connp->conn_ixa,
4753 				    void, NULL, tcp_t *, tcp, void, NULL,
4754 				    int32_t, TCPS_SYN_RCVD);
4755 				/* Keepalive? */
4756 				break;
4757 			case TCPS_ESTABLISHED:
4758 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4759 				DTRACE_TCP6(state__change, void, NULL,
4760 				    ip_xmit_attr_t *, connp->conn_ixa,
4761 				    void, NULL, tcp_t *, tcp, void, NULL,
4762 				    int32_t, TCPS_ESTABLISHED);
4763 				/* Keepalive? */
4764 				break;
4765 			case TCPS_FIN_WAIT_1:
4766 				if (!tcp->tcp_fin_acked) {
4767 					tcp->tcp_state = TCPS_CLOSING;
4768 					DTRACE_TCP6(state__change, void, NULL,
4769 					    ip_xmit_attr_t *, connp->conn_ixa,
4770 					    void, NULL, tcp_t *, tcp, void,
4771 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4772 					break;
4773 				}
4774 				/* FALLTHRU */
4775 			case TCPS_FIN_WAIT_2:
4776 				SET_TIME_WAIT(tcps, tcp, connp);
4777 				DTRACE_TCP6(state__change, void, NULL,
4778 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4779 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4780 				    TCPS_FIN_WAIT_2);
4781 				if (seg_len) {
4782 					/*
4783 					 * implies data piggybacked on FIN.
4784 					 * break to handle data.
4785 					 */
4786 					break;
4787 				}
4788 				freemsg(mp);
4789 				goto ack_check;
4790 			}
4791 		}
4792 	}
4793 	if (mp == NULL)
4794 		goto xmit_check;
4795 	if (seg_len == 0) {
4796 		freemsg(mp);
4797 		goto xmit_check;
4798 	}
4799 	if (mp->b_rptr == mp->b_wptr) {
4800 		/*
4801 		 * The header has been consumed, so we remove the
4802 		 * zero-length mblk here.
4803 		 */
4804 		mp1 = mp;
4805 		mp = mp->b_cont;
4806 		freeb(mp1);
4807 	}
4808 update_ack:
4809 	tcpha = tcp->tcp_tcpha;
4810 	tcp->tcp_rack_cnt++;
4811 	{
4812 		uint32_t cur_max;
4813 
4814 		cur_max = tcp->tcp_rack_cur_max;
4815 		if (tcp->tcp_rack_cnt >= cur_max) {
4816 			/*
4817 			 * We have more unacked data than we should - send
4818 			 * an ACK now.
4819 			 */
4820 			flags |= TH_ACK_NEEDED;
4821 			cur_max++;
4822 			if (cur_max > tcp->tcp_rack_abs_max)
4823 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4824 			else
4825 				tcp->tcp_rack_cur_max = cur_max;
4826 		} else if (tcp->tcp_quickack) {
4827 			/* The executable asked that we ack each packet */
4828 			flags |= TH_ACK_NEEDED;
4829 		} else if (TCP_IS_DETACHED(tcp)) {
4830 			/* We don't have an ACK timer for detached TCP. */
4831 			flags |= TH_ACK_NEEDED;
4832 		} else if (seg_len < mss) {
4833 			/*
4834 			 * If we get a segment that is less than an mss, and we
4835 			 * already have unacknowledged data, and the amount
4836 			 * unacknowledged is not a multiple of mss, then we
4837 			 * better generate an ACK now.  Otherwise, this may be
4838 			 * the tail piece of a transaction, and we would rather
4839 			 * wait for the response.
4840 			 */
4841 			uint32_t udif;
4842 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4843 			    (uintptr_t)INT_MAX);
4844 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4845 			if (udif && (udif % mss))
4846 				flags |= TH_ACK_NEEDED;
4847 			else
4848 				flags |= TH_ACK_TIMER_NEEDED;
4849 		} else {
4850 			/* Start delayed ack timer */
4851 			flags |= TH_ACK_TIMER_NEEDED;
4852 		}
4853 	}
4854 	tcp->tcp_rnxt += seg_len;
4855 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4856 
4857 	if (mp == NULL)
4858 		goto xmit_check;
4859 
4860 	/* Update SACK list */
4861 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4862 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4863 		    &(tcp->tcp_num_sack_blk));
4864 	}
4865 
4866 	if (tcp->tcp_urp_mp) {
4867 		tcp->tcp_urp_mp->b_cont = mp;
4868 		mp = tcp->tcp_urp_mp;
4869 		tcp->tcp_urp_mp = NULL;
4870 		/* Ready for a new signal. */
4871 		tcp->tcp_urp_last_valid = B_FALSE;
4872 #ifdef DEBUG
4873 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4874 		    "tcp_rput: sending exdata_ind %s",
4875 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4876 #endif /* DEBUG */
4877 	}
4878 
4879 	/*
4880 	 * Check for ancillary data changes compared to last segment.
4881 	 */
4882 	if (connp->conn_recv_ancillary.crb_all != 0) {
4883 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4884 		if (mp == NULL)
4885 			return;
4886 	}
4887 
4888 	if (IPCL_IS_NONSTR(connp)) {
4889 		/*
4890 		 * Non-STREAMS socket
4891 		 */
4892 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4893 		int error;
4894 
4895 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4896 		    mp, seg_len, 0, &error, &push) <= 0) {
4897 			/*
4898 			 * We should never be in middle of a
4899 			 * fallback, the squeue guarantees that.
4900 			 */
4901 			ASSERT(error != EOPNOTSUPP);
4902 			if (error == ENOSPC)
4903 				tcp->tcp_rwnd -= seg_len;
4904 		} else if (push) {
4905 			/* PUSH bit set and sockfs is not flow controlled */
4906 			flags |= tcp_rwnd_reopen(tcp);
4907 		}
4908 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4909 		/*
4910 		 * Side queue inbound data until the accept happens.
4911 		 * tcp_accept/tcp_rput drains this when the accept happens.
4912 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4913 		 * T_EXDATA_IND) it is queued on b_next.
4914 		 * XXX Make urgent data use this. Requires:
4915 		 *	Removing tcp_listener check for TH_URG
4916 		 *	Making M_PCPROTO and MARK messages skip the eager case
4917 		 */
4918 
4919 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4920 	} else {
4921 		/* Active STREAMS socket */
4922 		if (mp->b_datap->db_type != M_DATA ||
4923 		    (flags & TH_MARKNEXT_NEEDED)) {
4924 			if (tcp->tcp_rcv_list != NULL) {
4925 				flags |= tcp_rcv_drain(tcp);
4926 			}
4927 			ASSERT(tcp->tcp_rcv_list == NULL ||
4928 			    tcp->tcp_fused_sigurg);
4929 
4930 			if (flags & TH_MARKNEXT_NEEDED) {
4931 #ifdef DEBUG
4932 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4933 				    "tcp_rput: sending MSGMARKNEXT %s",
4934 				    tcp_display(tcp, NULL,
4935 				    DISP_PORT_ONLY));
4936 #endif /* DEBUG */
4937 				mp->b_flag |= MSGMARKNEXT;
4938 				flags &= ~TH_MARKNEXT_NEEDED;
4939 			}
4940 
4941 			if (is_system_labeled())
4942 				tcp_setcred_data(mp, ira);
4943 
4944 			putnext(connp->conn_rq, mp);
4945 			if (!canputnext(connp->conn_rq))
4946 				tcp->tcp_rwnd -= seg_len;
4947 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4948 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4949 			if (tcp->tcp_rcv_list != NULL) {
4950 				/*
4951 				 * Enqueue the new segment first and then
4952 				 * call tcp_rcv_drain() to send all data
4953 				 * up.  The other way to do this is to
4954 				 * send all queued data up and then call
4955 				 * putnext() to send the new segment up.
4956 				 * This way can remove the else part later
4957 				 * on.
4958 				 *
4959 				 * We don't do this to avoid one more call to
4960 				 * canputnext() as tcp_rcv_drain() needs to
4961 				 * call canputnext().
4962 				 */
4963 				tcp_rcv_enqueue(tcp, mp, seg_len,
4964 				    ira->ira_cred);
4965 				flags |= tcp_rcv_drain(tcp);
4966 			} else {
4967 				if (is_system_labeled())
4968 					tcp_setcred_data(mp, ira);
4969 
4970 				putnext(connp->conn_rq, mp);
4971 				if (!canputnext(connp->conn_rq))
4972 					tcp->tcp_rwnd -= seg_len;
4973 			}
4974 		} else {
4975 			/*
4976 			 * Enqueue all packets when processing an mblk
4977 			 * from the co queue and also enqueue normal packets.
4978 			 */
4979 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4980 		}
4981 		/*
4982 		 * Make sure the timer is running if we have data waiting
4983 		 * for a push bit. This provides resiliency against
4984 		 * implementations that do not correctly generate push bits.
4985 		 */
4986 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4987 			/*
4988 			 * The connection may be closed at this point, so don't
4989 			 * do anything for a detached tcp.
4990 			 */
4991 			if (!TCP_IS_DETACHED(tcp))
4992 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4993 				    tcp_push_timer,
4994 				    tcps->tcps_push_timer_interval);
4995 		}
4996 	}
4997 
4998 xmit_check:
4999 	/* Is there anything left to do? */
5000 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5001 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
5002 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
5003 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
5004 		goto done;
5005 
5006 	/* Any transmit work to do and a non-zero window? */
5007 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
5008 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
5009 		if (flags & TH_REXMIT_NEEDED) {
5010 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
5011 
5012 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
5013 			if (snd_size > mss)
5014 				snd_size = mss;
5015 			if (snd_size > tcp->tcp_swnd)
5016 				snd_size = tcp->tcp_swnd;
5017 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
5018 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
5019 			    B_TRUE);
5020 
5021 			if (mp1 != NULL) {
5022 				tcp->tcp_xmit_head->b_prev =
5023 				    (mblk_t *)(intptr_t)gethrtime();
5024 				tcp->tcp_csuna = tcp->tcp_snxt;
5025 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
5026 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
5027 				    snd_size);
5028 				tcp->tcp_cs.tcp_out_retrans_segs++;
5029 				tcp->tcp_cs.tcp_out_retrans_bytes += snd_size;
5030 				tcp_send_data(tcp, mp1);
5031 			}
5032 		}
5033 		if (flags & TH_NEED_SACK_REXMIT) {
5034 			tcp_sack_rexmit(tcp, &flags);
5035 		}
5036 		/*
5037 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
5038 		 * out new segment.  Note that tcp_rexmit should not be
5039 		 * set, otherwise TH_LIMIT_XMIT should not be set.
5040 		 */
5041 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
5042 			if (!tcp->tcp_rexmit) {
5043 				tcp_wput_data(tcp, NULL, B_FALSE);
5044 			} else {
5045 				tcp_ss_rexmit(tcp);
5046 			}
5047 		}
5048 		/*
5049 		 * Adjust tcp_cwnd back to normal value after sending
5050 		 * new data segments.
5051 		 */
5052 		if (flags & TH_LIMIT_XMIT) {
5053 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
5054 			/*
5055 			 * This will restart the timer.  Restarting the
5056 			 * timer is used to avoid a timeout before the
5057 			 * limited transmitted segment's ACK gets back.
5058 			 */
5059 			if (tcp->tcp_xmit_head != NULL) {
5060 				tcp->tcp_xmit_head->b_prev =
5061 				    (mblk_t *)(intptr_t)gethrtime();
5062 			}
5063 		}
5064 
5065 		/* Anything more to do? */
5066 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
5067 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
5068 			goto done;
5069 	}
5070 ack_check:
5071 	if (flags & TH_SEND_URP_MARK) {
5072 		ASSERT(tcp->tcp_urp_mark_mp);
5073 		ASSERT(!IPCL_IS_NONSTR(connp));
5074 		/*
5075 		 * Send up any queued data and then send the mark message
5076 		 */
5077 		if (tcp->tcp_rcv_list != NULL) {
5078 			flags |= tcp_rcv_drain(tcp);
5079 
5080 		}
5081 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5082 		mp1 = tcp->tcp_urp_mark_mp;
5083 		tcp->tcp_urp_mark_mp = NULL;
5084 		if (is_system_labeled())
5085 			tcp_setcred_data(mp1, ira);
5086 
5087 		putnext(connp->conn_rq, mp1);
5088 #ifdef DEBUG
5089 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
5090 		    "tcp_rput: sending zero-length %s %s",
5091 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
5092 		    "MSGNOTMARKNEXT"),
5093 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5094 #endif /* DEBUG */
5095 		flags &= ~TH_SEND_URP_MARK;
5096 	}
5097 	if (flags & TH_ACK_NEEDED) {
5098 		/*
5099 		 * Time to send an ack for some reason.
5100 		 */
5101 		mp1 = tcp_ack_mp(tcp);
5102 
5103 		if (mp1 != NULL) {
5104 			tcp_send_data(tcp, mp1);
5105 			TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
5106 			TCPS_BUMP_MIB(tcps, tcpOutAck);
5107 		}
5108 		if (tcp->tcp_ack_tid != 0) {
5109 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
5110 			tcp->tcp_ack_tid = 0;
5111 		}
5112 	}
5113 	if (flags & TH_ACK_TIMER_NEEDED) {
5114 		/*
5115 		 * Arrange for deferred ACK or push wait timeout.
5116 		 * Start timer if it is not already running.
5117 		 */
5118 		if (tcp->tcp_ack_tid == 0) {
5119 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
5120 			    tcp->tcp_localnet ?
5121 			    tcps->tcps_local_dack_interval :
5122 			    tcps->tcps_deferred_ack_interval);
5123 		}
5124 	}
5125 	if (flags & TH_ORDREL_NEEDED) {
5126 		/*
5127 		 * Notify upper layer about an orderly release. If this is
5128 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
5129 		 * we send up an ordrel_ind, unless this is an eager, in which
5130 		 * case the ordrel will be sent when tcp_accept_finish runs.
5131 		 * Note that for non-STREAMS we make an upcall even if it is an
5132 		 * eager, because we have an upper handle to send it to.
5133 		 */
5134 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
5135 		ASSERT(!tcp->tcp_detached);
5136 
5137 		if (IPCL_IS_NONSTR(connp)) {
5138 			ASSERT(tcp->tcp_ordrel_mp == NULL);
5139 			tcp->tcp_ordrel_done = B_TRUE;
5140 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
5141 			    SOCK_OPCTL_SHUT_RECV, 0);
5142 			goto done;
5143 		}
5144 
5145 		if (tcp->tcp_rcv_list != NULL) {
5146 			/*
5147 			 * Push any mblk(s) enqueued from co processing.
5148 			 */
5149 			flags |= tcp_rcv_drain(tcp);
5150 		}
5151 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5152 
5153 		mp1 = tcp->tcp_ordrel_mp;
5154 		tcp->tcp_ordrel_mp = NULL;
5155 		tcp->tcp_ordrel_done = B_TRUE;
5156 		putnext(connp->conn_rq, mp1);
5157 	}
5158 done:
5159 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5160 }
5161 
5162 /*
5163  * Attach ancillary data to a received TCP segments for the
5164  * ancillary pieces requested by the application that are
5165  * different than they were in the previous data segment.
5166  *
5167  * Save the "current" values once memory allocation is ok so that
5168  * when memory allocation fails we can just wait for the next data segment.
5169  */
5170 static mblk_t *
tcp_input_add_ancillary(tcp_t * tcp,mblk_t * mp,ip_pkt_t * ipp,ip_recv_attr_t * ira)5171 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5172     ip_recv_attr_t *ira)
5173 {
5174 	struct T_optdata_ind *todi;
5175 	int optlen;
5176 	uchar_t *optptr;
5177 	struct T_opthdr *toh;
5178 	crb_t addflag;	/* Which pieces to add */
5179 	mblk_t *mp1;
5180 	conn_t	*connp = tcp->tcp_connp;
5181 
5182 	optlen = 0;
5183 	addflag.crb_all = 0;
5184 
5185 	/* If app asked for TOS and it has changed ... */
5186 	if (connp->conn_recv_ancillary.crb_recvtos &&
5187 	    ipp->ipp_type_of_service != tcp->tcp_recvtos &&
5188 	    (ira->ira_flags & IRAF_IS_IPV4)) {
5189 		optlen += sizeof (struct T_opthdr) +
5190 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5191 		addflag.crb_recvtos = 1;
5192 	}
5193 	/* If app asked for pktinfo and the index has changed ... */
5194 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5195 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5196 		optlen += sizeof (struct T_opthdr) +
5197 		    sizeof (struct in6_pktinfo);
5198 		addflag.crb_ip_recvpktinfo = 1;
5199 	}
5200 	/* If app asked for hoplimit and it has changed ... */
5201 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5202 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5203 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5204 		addflag.crb_ipv6_recvhoplimit = 1;
5205 	}
5206 	/* If app asked for tclass and it has changed ... */
5207 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5208 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5209 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5210 		addflag.crb_ipv6_recvtclass = 1;
5211 	}
5212 
5213 	/*
5214 	 * If app asked for hop-by-hop headers and it has changed ...
5215 	 * For security labels, note that (1) security labels can't change on
5216 	 * a connected socket at all, (2) we're connected to at most one peer,
5217 	 * (3) if anything changes, then it must be some other extra option.
5218 	 */
5219 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5220 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5221 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5222 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5223 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5224 		addflag.crb_ipv6_recvhopopts = 1;
5225 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5226 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5227 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5228 			return (mp);
5229 	}
5230 	/* If app asked for dst headers before routing headers ... */
5231 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5232 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5233 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5234 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5235 		optlen += sizeof (struct T_opthdr) +
5236 		    ipp->ipp_rthdrdstoptslen;
5237 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5238 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5239 		    &tcp->tcp_rthdrdstoptslen,
5240 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5241 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5242 			return (mp);
5243 	}
5244 	/* If app asked for routing headers and it has changed ... */
5245 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5246 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5247 	    (ipp->ipp_fields & IPPF_RTHDR),
5248 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5249 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5250 		addflag.crb_ipv6_recvrthdr = 1;
5251 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5252 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5253 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5254 			return (mp);
5255 	}
5256 	/* If app asked for dest headers and it has changed ... */
5257 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5258 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5259 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5260 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5261 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5262 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5263 		addflag.crb_ipv6_recvdstopts = 1;
5264 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5265 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5266 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5267 			return (mp);
5268 	}
5269 
5270 	if (optlen == 0) {
5271 		/* Nothing to add */
5272 		return (mp);
5273 	}
5274 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5275 	if (mp1 == NULL) {
5276 		/*
5277 		 * Defer sending ancillary data until the next TCP segment
5278 		 * arrives.
5279 		 */
5280 		return (mp);
5281 	}
5282 	mp1->b_cont = mp;
5283 	mp = mp1;
5284 	mp->b_wptr += sizeof (*todi) + optlen;
5285 	mp->b_datap->db_type = M_PROTO;
5286 	todi = (struct T_optdata_ind *)mp->b_rptr;
5287 	todi->PRIM_type = T_OPTDATA_IND;
5288 	todi->DATA_flag = 1;	/* MORE data */
5289 	todi->OPT_length = optlen;
5290 	todi->OPT_offset = sizeof (*todi);
5291 	optptr = (uchar_t *)&todi[1];
5292 
5293 	/* If app asked for TOS and it has changed ... */
5294 	if (addflag.crb_recvtos) {
5295 		toh = (struct T_opthdr *)optptr;
5296 		toh->level = IPPROTO_IP;
5297 		toh->name = IP_RECVTOS;
5298 		toh->len = sizeof (*toh) +
5299 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5300 		toh->status = 0;
5301 		optptr += sizeof (*toh);
5302 		*(uint8_t *)optptr = ipp->ipp_type_of_service;
5303 		optptr = (uchar_t *)toh + toh->len;
5304 		ASSERT(__TPI_TOPT_ISALIGNED(optptr));
5305 		/* Save as "last" value */
5306 		tcp->tcp_recvtos = ipp->ipp_type_of_service;
5307 	}
5308 
5309 	/*
5310 	 * If app asked for pktinfo and the index has changed ...
5311 	 * Note that the local address never changes for the connection.
5312 	 */
5313 	if (addflag.crb_ip_recvpktinfo) {
5314 		struct in6_pktinfo *pkti;
5315 		uint_t ifindex;
5316 
5317 		ifindex = ira->ira_ruifindex;
5318 		toh = (struct T_opthdr *)optptr;
5319 		toh->level = IPPROTO_IPV6;
5320 		toh->name = IPV6_PKTINFO;
5321 		toh->len = sizeof (*toh) + sizeof (*pkti);
5322 		toh->status = 0;
5323 		optptr += sizeof (*toh);
5324 		pkti = (struct in6_pktinfo *)optptr;
5325 		pkti->ipi6_addr = connp->conn_laddr_v6;
5326 		pkti->ipi6_ifindex = ifindex;
5327 		optptr += sizeof (*pkti);
5328 		ASSERT(OK_32PTR(optptr));
5329 		/* Save as "last" value */
5330 		tcp->tcp_recvifindex = ifindex;
5331 	}
5332 	/* If app asked for hoplimit and it has changed ... */
5333 	if (addflag.crb_ipv6_recvhoplimit) {
5334 		toh = (struct T_opthdr *)optptr;
5335 		toh->level = IPPROTO_IPV6;
5336 		toh->name = IPV6_HOPLIMIT;
5337 		toh->len = sizeof (*toh) + sizeof (uint_t);
5338 		toh->status = 0;
5339 		optptr += sizeof (*toh);
5340 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5341 		optptr += sizeof (uint_t);
5342 		ASSERT(OK_32PTR(optptr));
5343 		/* Save as "last" value */
5344 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5345 	}
5346 	/* If app asked for tclass and it has changed ... */
5347 	if (addflag.crb_ipv6_recvtclass) {
5348 		toh = (struct T_opthdr *)optptr;
5349 		toh->level = IPPROTO_IPV6;
5350 		toh->name = IPV6_TCLASS;
5351 		toh->len = sizeof (*toh) + sizeof (uint_t);
5352 		toh->status = 0;
5353 		optptr += sizeof (*toh);
5354 		*(uint_t *)optptr = ipp->ipp_tclass;
5355 		optptr += sizeof (uint_t);
5356 		ASSERT(OK_32PTR(optptr));
5357 		/* Save as "last" value */
5358 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5359 	}
5360 	if (addflag.crb_ipv6_recvhopopts) {
5361 		toh = (struct T_opthdr *)optptr;
5362 		toh->level = IPPROTO_IPV6;
5363 		toh->name = IPV6_HOPOPTS;
5364 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5365 		toh->status = 0;
5366 		optptr += sizeof (*toh);
5367 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5368 		optptr += ipp->ipp_hopoptslen;
5369 		ASSERT(OK_32PTR(optptr));
5370 		/* Save as last value */
5371 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5372 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5373 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5374 	}
5375 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5376 		toh = (struct T_opthdr *)optptr;
5377 		toh->level = IPPROTO_IPV6;
5378 		toh->name = IPV6_RTHDRDSTOPTS;
5379 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5380 		toh->status = 0;
5381 		optptr += sizeof (*toh);
5382 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5383 		optptr += ipp->ipp_rthdrdstoptslen;
5384 		ASSERT(OK_32PTR(optptr));
5385 		/* Save as last value */
5386 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5387 		    &tcp->tcp_rthdrdstoptslen,
5388 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5389 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5390 	}
5391 	if (addflag.crb_ipv6_recvrthdr) {
5392 		toh = (struct T_opthdr *)optptr;
5393 		toh->level = IPPROTO_IPV6;
5394 		toh->name = IPV6_RTHDR;
5395 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5396 		toh->status = 0;
5397 		optptr += sizeof (*toh);
5398 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5399 		optptr += ipp->ipp_rthdrlen;
5400 		ASSERT(OK_32PTR(optptr));
5401 		/* Save as last value */
5402 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5403 		    (ipp->ipp_fields & IPPF_RTHDR),
5404 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5405 	}
5406 	if (addflag.crb_ipv6_recvdstopts) {
5407 		toh = (struct T_opthdr *)optptr;
5408 		toh->level = IPPROTO_IPV6;
5409 		toh->name = IPV6_DSTOPTS;
5410 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5411 		toh->status = 0;
5412 		optptr += sizeof (*toh);
5413 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5414 		optptr += ipp->ipp_dstoptslen;
5415 		ASSERT(OK_32PTR(optptr));
5416 		/* Save as last value */
5417 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5418 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5419 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5420 	}
5421 	ASSERT(optptr == mp->b_wptr);
5422 	return (mp);
5423 }
5424 
5425 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */
5426 #define	TCP_SD_MIN	400000000
5427 
5428 /*
5429  * Set RTO for this connection based on a new round-trip time measurement.
5430  * The formula is from Jacobson and Karels' "Congestion Avoidance and Control"
5431  * in SIGCOMM '88.  The variable names are the same as those in Appendix A.2
5432  * of that paper.
5433  *
5434  * m = new measurement
5435  * sa = smoothed RTT average (8 * average estimates).
5436  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5437  */
5438 static void
tcp_set_rto(tcp_t * tcp,hrtime_t rtt)5439 tcp_set_rto(tcp_t *tcp, hrtime_t rtt)
5440 {
5441 	hrtime_t m = rtt;
5442 	hrtime_t sa = tcp->tcp_rtt_sa;
5443 	hrtime_t sv = tcp->tcp_rtt_sd;
5444 	tcp_stack_t *tcps = tcp->tcp_tcps;
5445 
5446 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5447 	tcp->tcp_rtt_update++;
5448 	tcp->tcp_rtt_sum += m;
5449 	tcp->tcp_rtt_cnt++;
5450 
5451 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5452 	if (sa != 0) {
5453 		/*
5454 		 * Update average estimator (see section 2.3 of RFC6298):
5455 		 *	SRTT = 7/8 SRTT + 1/8 rtt
5456 		 *
5457 		 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to:
5458 		 *	tcp_rtt_sa = 7 * SRTT + rtt
5459 		 *	tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt
5460 		 *	tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt
5461 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8))
5462 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3))
5463 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3))
5464 		 *
5465 		 * (rtt - tcp_rtt_sa / 8) is simply the difference
5466 		 * between the new rtt measurement and the existing smoothed
5467 		 * RTT average. This is referred to as "Error" in subsequent
5468 		 * calculations.
5469 		 */
5470 
5471 		/* m is now Error. */
5472 		m -= sa >> 3;
5473 		if ((sa += m) <= 0) {
5474 			/*
5475 			 * Don't allow the smoothed average to be negative.
5476 			 * We use 0 to denote reinitialization of the
5477 			 * variables.
5478 			 */
5479 			sa = 1;
5480 		}
5481 
5482 		/*
5483 		 * Update deviation estimator:
5484 		 *  mdev = 3/4 mdev + 1/4 abs(Error)
5485 		 *
5486 		 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to:
5487 		 *  tcp_rtt_sd = 3 * mdev + abs(Error)
5488 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error)
5489 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error)
5490 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error)
5491 		 */
5492 		if (m < 0)
5493 			m = -m;
5494 		m -= sv >> 2;
5495 		sv += m;
5496 	} else {
5497 		/*
5498 		 * This follows BSD's implementation.  So the reinitialized
5499 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5500 		 * link is bandwidth dominated, doubling the window size
5501 		 * during slow start means doubling the RTT.  We want to be
5502 		 * more conservative when we reinitialize our estimates.  3
5503 		 * is just a convenient number.
5504 		 */
5505 		sa = m << 3;
5506 		sv = m << 1;
5507 	}
5508 	if (sv < TCP_SD_MIN) {
5509 		/*
5510 		 * Since a receiver doesn't delay its ACKs during a long run of
5511 		 * segments, sa may not have captured the effect of delayed ACK
5512 		 * timeouts on the RTT.  To make sure we always account for the
5513 		 * possible delay (and avoid the unnecessary retransmission),
5514 		 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of
5515 		 * 200ms on older SunOS/BSD systems and modern Windows systems
5516 		 * (as of 2019).  This means that the minimum possible mean
5517 		 * deviation is 100 ms.
5518 		 */
5519 		sv = TCP_SD_MIN;
5520 	}
5521 	tcp->tcp_rtt_sa = sa;
5522 	tcp->tcp_rtt_sd = sv;
5523 
5524 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
5525 
5526 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5527 	tcp->tcp_timer_backoff = 0;
5528 }
5529 
5530 /*
5531  * On a labeled system we have some protocols above TCP, such as RPC, which
5532  * appear to assume that every mblk in a chain has a db_credp.
5533  */
5534 static void
tcp_setcred_data(mblk_t * mp,ip_recv_attr_t * ira)5535 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5536 {
5537 	ASSERT(is_system_labeled());
5538 	ASSERT(ira->ira_cred != NULL);
5539 
5540 	while (mp != NULL) {
5541 		mblk_setcred(mp, ira->ira_cred, NOPID);
5542 		mp = mp->b_cont;
5543 	}
5544 }
5545 
5546 uint_t
tcp_rwnd_reopen(tcp_t * tcp)5547 tcp_rwnd_reopen(tcp_t *tcp)
5548 {
5549 	uint_t ret = 0;
5550 	uint_t thwin;
5551 	conn_t *connp = tcp->tcp_connp;
5552 
5553 	/* Learn the latest rwnd information that we sent to the other side. */
5554 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5555 	    << tcp->tcp_rcv_ws;
5556 	/* This is peer's calculated send window (our receive window). */
5557 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5558 	/*
5559 	 * Increase the receive window to max.  But we need to do receiver
5560 	 * SWS avoidance.  This means that we need to check the increase of
5561 	 * of receive window is at least 1 MSS.
5562 	 */
5563 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5564 		/*
5565 		 * If the window that the other side knows is less than max
5566 		 * deferred acks segments, send an update immediately.
5567 		 */
5568 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5569 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5570 			ret = TH_ACK_NEEDED;
5571 		}
5572 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5573 	}
5574 	return (ret);
5575 }
5576 
5577 /*
5578  * Handle a packet that has been reclassified by TCP.
5579  * This function drops the ref on connp that the caller had.
5580  */
5581 void
tcp_reinput(conn_t * connp,mblk_t * mp,ip_recv_attr_t * ira,ip_stack_t * ipst)5582 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5583 {
5584 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5585 
5586 	if (connp->conn_incoming_ifindex != 0 &&
5587 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5588 		freemsg(mp);
5589 		CONN_DEC_REF(connp);
5590 		return;
5591 	}
5592 	if (connp->conn_min_ttl != 0 && connp->conn_min_ttl > ira->ira_ttl) {
5593 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5594 		ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5595 		freemsg(mp);
5596 		CONN_DEC_REF(connp);
5597 		return;
5598 	}
5599 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5600 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5601 		ip6_t *ip6h;
5602 		ipha_t *ipha;
5603 
5604 		if (ira->ira_flags & IRAF_IS_IPV4) {
5605 			ipha = (ipha_t *)mp->b_rptr;
5606 			ip6h = NULL;
5607 		} else {
5608 			ipha = NULL;
5609 			ip6h = (ip6_t *)mp->b_rptr;
5610 		}
5611 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5612 		if (mp == NULL) {
5613 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5614 			/* Note that mp is NULL */
5615 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5616 			CONN_DEC_REF(connp);
5617 			return;
5618 		}
5619 	}
5620 
5621 	if (IPCL_IS_TCP(connp)) {
5622 		/*
5623 		 * do not drain, certain use cases can blow
5624 		 * the stack
5625 		 */
5626 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5627 		    connp->conn_recv, connp, ira,
5628 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5629 	} else {
5630 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5631 		(connp->conn_recv)(connp, mp, NULL,
5632 		    ira);
5633 		CONN_DEC_REF(connp);
5634 	}
5635 
5636 }
5637 
5638 /* ARGSUSED */
5639 static void
tcp_rsrv_input(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)5640 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5641 {
5642 	conn_t	*connp = (conn_t *)arg;
5643 	tcp_t	*tcp = connp->conn_tcp;
5644 	queue_t	*q = connp->conn_rq;
5645 
5646 	ASSERT(!IPCL_IS_NONSTR(connp));
5647 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5648 	tcp->tcp_rsrv_mp = mp;
5649 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5650 
5651 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5652 		return;
5653 	}
5654 
5655 	if (tcp->tcp_fused) {
5656 		tcp_fuse_backenable(tcp);
5657 		return;
5658 	}
5659 
5660 	if (canputnext(q)) {
5661 		/* Not flow-controlled, open rwnd */
5662 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5663 
5664 		/*
5665 		 * Send back a window update immediately if TCP is above
5666 		 * ESTABLISHED state and the increase of the rcv window
5667 		 * that the other side knows is at least 1 MSS after flow
5668 		 * control is lifted.
5669 		 */
5670 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5671 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5672 			tcp_xmit_ctl(NULL, tcp,
5673 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5674 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5675 		}
5676 	}
5677 }
5678 
5679 /*
5680  * The read side service routine is called mostly when we get back-enabled as a
5681  * result of flow control relief.  Since we don't actually queue anything in
5682  * TCP, we have no data to send out of here.  What we do is clear the receive
5683  * window, and send out a window update.
5684  */
5685 int
tcp_rsrv(queue_t * q)5686 tcp_rsrv(queue_t *q)
5687 {
5688 	conn_t		*connp = Q_TO_CONN(q);
5689 	tcp_t		*tcp = connp->conn_tcp;
5690 	mblk_t		*mp;
5691 
5692 	/* No code does a putq on the read side */
5693 	ASSERT(q->q_first == NULL);
5694 
5695 	/*
5696 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5697 	 * been run.  So just return.
5698 	 */
5699 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5700 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5701 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5702 		return (0);
5703 	}
5704 	tcp->tcp_rsrv_mp = NULL;
5705 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5706 
5707 	CONN_INC_REF(connp);
5708 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5709 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5710 	return (0);
5711 }
5712 
5713 /* At minimum we need 8 bytes in the TCP header for the lookup */
5714 #define	ICMP_MIN_TCP_HDR	8
5715 
5716 /*
5717  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5718  * passed up by IP. The message is always received on the correct tcp_t.
5719  * Assumes that IP has pulled up everything up to and including the ICMP header.
5720  */
5721 /* ARGSUSED2 */
5722 void
tcp_icmp_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)5723 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5724 {
5725 	conn_t		*connp = (conn_t *)arg1;
5726 	icmph_t		*icmph;
5727 	ipha_t		*ipha;
5728 	int		iph_hdr_length;
5729 	tcpha_t		*tcpha;
5730 	uint32_t	seg_seq;
5731 	tcp_t		*tcp = connp->conn_tcp;
5732 
5733 	/* Assume IP provides aligned packets */
5734 	ASSERT(OK_32PTR(mp->b_rptr));
5735 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5736 
5737 	/*
5738 	 * It's possible we have a closed, but not yet destroyed, TCP
5739 	 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5740 	 * in the closed state, so don't take any chances and drop the packet.
5741 	 */
5742 	if (tcp->tcp_state == TCPS_CLOSED) {
5743 		freemsg(mp);
5744 		return;
5745 	}
5746 
5747 	/*
5748 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5749 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5750 	 */
5751 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5752 		tcp_icmp_error_ipv6(tcp, mp, ira);
5753 		return;
5754 	}
5755 
5756 	/* Skip past the outer IP and ICMP headers */
5757 	iph_hdr_length = ira->ira_ip_hdr_length;
5758 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5759 	/*
5760 	 * If we don't have the correct outer IP header length
5761 	 * or if we don't have a complete inner IP header
5762 	 * drop it.
5763 	 */
5764 	if (iph_hdr_length < sizeof (ipha_t) ||
5765 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5766 noticmpv4:
5767 		freemsg(mp);
5768 		return;
5769 	}
5770 	ipha = (ipha_t *)&icmph[1];
5771 
5772 	/* Skip past the inner IP and find the ULP header */
5773 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5774 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5775 	/*
5776 	 * If we don't have the correct inner IP header length or if the ULP
5777 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5778 	 * bytes of TCP header, drop it.
5779 	 */
5780 	if (iph_hdr_length < sizeof (ipha_t) ||
5781 	    ipha->ipha_protocol != IPPROTO_TCP ||
5782 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5783 		goto noticmpv4;
5784 	}
5785 
5786 	seg_seq = ntohl(tcpha->tha_seq);
5787 	switch (icmph->icmph_type) {
5788 	case ICMP_DEST_UNREACHABLE:
5789 		switch (icmph->icmph_code) {
5790 		case ICMP_FRAGMENTATION_NEEDED:
5791 			/*
5792 			 * Update Path MTU, then try to send something out.
5793 			 */
5794 			tcp_update_pmtu(tcp, B_TRUE);
5795 			tcp_rexmit_after_error(tcp);
5796 			break;
5797 		case ICMP_PORT_UNREACHABLE:
5798 		case ICMP_PROTOCOL_UNREACHABLE:
5799 			switch (tcp->tcp_state) {
5800 			case TCPS_SYN_SENT:
5801 			case TCPS_SYN_RCVD:
5802 				/*
5803 				 * ICMP can snipe away incipient
5804 				 * TCP connections as long as
5805 				 * seq number is same as initial
5806 				 * send seq number.
5807 				 */
5808 				if (seg_seq == tcp->tcp_iss) {
5809 					(void) tcp_clean_death(tcp,
5810 					    ECONNREFUSED);
5811 				}
5812 				break;
5813 			}
5814 			break;
5815 		case ICMP_HOST_UNREACHABLE:
5816 		case ICMP_NET_UNREACHABLE:
5817 			/* Record the error in case we finally time out. */
5818 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5819 				tcp->tcp_client_errno = EHOSTUNREACH;
5820 			else
5821 				tcp->tcp_client_errno = ENETUNREACH;
5822 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5823 				if (tcp->tcp_listener != NULL &&
5824 				    tcp->tcp_listener->tcp_syn_defense) {
5825 					/*
5826 					 * Ditch the half-open connection if we
5827 					 * suspect a SYN attack is under way.
5828 					 */
5829 					(void) tcp_clean_death(tcp,
5830 					    tcp->tcp_client_errno);
5831 				}
5832 			}
5833 			break;
5834 		default:
5835 			break;
5836 		}
5837 		break;
5838 	case ICMP_SOURCE_QUENCH: {
5839 		/*
5840 		 * use a global boolean to control
5841 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5842 		 * The default is false.
5843 		 */
5844 		if (tcp_icmp_source_quench) {
5845 			/*
5846 			 * Reduce the sending rate as if we got a
5847 			 * retransmit timeout
5848 			 */
5849 			uint32_t npkt;
5850 
5851 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5852 			    tcp->tcp_mss;
5853 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5854 
5855 			DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp,
5856 			    uint32_t, tcp->tcp_cwnd,
5857 			    uint32_t, tcp->tcp_mss);
5858 			tcp->tcp_cwnd = tcp->tcp_mss;
5859 			tcp->tcp_cwnd_cnt = 0;
5860 		}
5861 		break;
5862 	}
5863 	}
5864 	freemsg(mp);
5865 }
5866 
5867 /*
5868  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5869  * error messages passed up by IP.
5870  * Assumes that IP has pulled up all the extension headers as well
5871  * as the ICMPv6 header.
5872  */
5873 static void
tcp_icmp_error_ipv6(tcp_t * tcp,mblk_t * mp,ip_recv_attr_t * ira)5874 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5875 {
5876 	icmp6_t		*icmp6;
5877 	ip6_t		*ip6h;
5878 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5879 	tcpha_t		*tcpha;
5880 	uint8_t		*nexthdrp;
5881 	uint32_t	seg_seq;
5882 
5883 	/*
5884 	 * Verify that we have a complete IP header.
5885 	 */
5886 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5887 
5888 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5889 	ip6h = (ip6_t *)&icmp6[1];
5890 	/*
5891 	 * Verify if we have a complete ICMP and inner IP header.
5892 	 */
5893 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5894 noticmpv6:
5895 		freemsg(mp);
5896 		return;
5897 	}
5898 
5899 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5900 		goto noticmpv6;
5901 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5902 	/*
5903 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5904 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5905 	 * packet.
5906 	 */
5907 	if ((*nexthdrp != IPPROTO_TCP) ||
5908 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5909 		goto noticmpv6;
5910 	}
5911 
5912 	seg_seq = ntohl(tcpha->tha_seq);
5913 	switch (icmp6->icmp6_type) {
5914 	case ICMP6_PACKET_TOO_BIG:
5915 		/*
5916 		 * Update Path MTU, then try to send something out.
5917 		 */
5918 		tcp_update_pmtu(tcp, B_TRUE);
5919 		tcp_rexmit_after_error(tcp);
5920 		break;
5921 	case ICMP6_DST_UNREACH:
5922 		switch (icmp6->icmp6_code) {
5923 		case ICMP6_DST_UNREACH_NOPORT:
5924 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5925 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5926 			    (seg_seq == tcp->tcp_iss)) {
5927 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5928 			}
5929 			break;
5930 		case ICMP6_DST_UNREACH_ADMIN:
5931 		case ICMP6_DST_UNREACH_NOROUTE:
5932 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5933 		case ICMP6_DST_UNREACH_ADDR:
5934 			/* Record the error in case we finally time out. */
5935 			tcp->tcp_client_errno = EHOSTUNREACH;
5936 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5937 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5938 			    (seg_seq == tcp->tcp_iss)) {
5939 				if (tcp->tcp_listener != NULL &&
5940 				    tcp->tcp_listener->tcp_syn_defense) {
5941 					/*
5942 					 * Ditch the half-open connection if we
5943 					 * suspect a SYN attack is under way.
5944 					 */
5945 					(void) tcp_clean_death(tcp,
5946 					    tcp->tcp_client_errno);
5947 				}
5948 			}
5949 
5950 
5951 			break;
5952 		default:
5953 			break;
5954 		}
5955 		break;
5956 	case ICMP6_PARAM_PROB:
5957 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5958 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5959 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5960 		    (uchar_t *)nexthdrp) {
5961 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5962 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5963 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5964 			}
5965 			break;
5966 		}
5967 		break;
5968 
5969 	case ICMP6_TIME_EXCEEDED:
5970 	default:
5971 		break;
5972 	}
5973 	freemsg(mp);
5974 }
5975 
5976 /*
5977  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5978  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5979  *
5980  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5981  * error messages received by IP. The message is always received on the correct
5982  * tcp_t.
5983  */
5984 /* ARGSUSED */
5985 boolean_t
tcp_verifyicmp(conn_t * connp,void * arg2,icmph_t * icmph,icmp6_t * icmp6,ip_recv_attr_t * ira)5986 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5987     ip_recv_attr_t *ira)
5988 {
5989 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5990 	uint32_t	seq = ntohl(tcpha->tha_seq);
5991 	tcp_t		*tcp = connp->conn_tcp;
5992 
5993 	/*
5994 	 * TCP sequence number contained in payload of the ICMP error message
5995 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5996 	 * the message is either a stale ICMP error, or an attack from the
5997 	 * network. Fail the verification.
5998 	 */
5999 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
6000 		return (B_FALSE);
6001 
6002 	/* For "too big" we also check the ignore flag */
6003 	if (ira->ira_flags & IRAF_IS_IPV4) {
6004 		ASSERT(icmph != NULL);
6005 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
6006 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
6007 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6008 			return (B_FALSE);
6009 	} else {
6010 		ASSERT(icmp6 != NULL);
6011 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
6012 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
6013 			return (B_FALSE);
6014 	}
6015 	return (B_TRUE);
6016 }
6017