1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2019 Joyent, Inc. 26 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 27 */ 28 29 /* This file contains all TCP input processing functions. */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/squeue_impl.h> 42 #include <sys/squeue.h> 43 #include <sys/tsol/tnet.h> 44 45 #include <inet/common.h> 46 #include <inet/ip.h> 47 #include <inet/tcp.h> 48 #include <inet/tcp_impl.h> 49 #include <inet/tcp_cluster.h> 50 #include <inet/proto_set.h> 51 #include <inet/ipsec_impl.h> 52 53 /* 54 * RFC7323-recommended phrasing of TSTAMP option, for easier parsing 55 */ 56 57 #ifdef _BIG_ENDIAN 58 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 59 (TCPOPT_TSTAMP << 8) | 10) 60 #else 61 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 62 (TCPOPT_NOP << 8) | TCPOPT_NOP) 63 #endif 64 65 /* 66 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 67 */ 68 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 69 70 /* 71 * Since tcp_listener is not cleared atomically with tcp_detached 72 * being cleared we need this extra bit to tell a detached connection 73 * apart from one that is in the process of being accepted. 74 */ 75 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 76 (TCP_IS_DETACHED(tcp) && \ 77 (!(tcp)->tcp_hard_binding)) 78 79 /* 80 * Steps to do when a tcp_t moves to TIME-WAIT state. 81 * 82 * This connection is done, we don't need to account for it. Decrement 83 * the listener connection counter if needed. 84 * 85 * Decrement the connection counter of the stack. Note that this counter 86 * is per CPU. So the total number of connections in a stack is the sum of all 87 * of them. Since there is no lock for handling all of them exclusively, the 88 * resulting sum is only an approximation. 89 * 90 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 91 * connection won't interfere with new ones. 92 * 93 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 94 * the timer is handled within the context of this tcp_t. When the timer 95 * fires, tcp_clean_death() is called. If upper layer closes the connection 96 * during this period, tcp_time_wait_append() will be called to add this 97 * tcp_t to the global TIME-WAIT list. Note that this means that the 98 * actual wait time in TIME-WAIT state will be longer than the 99 * tcps_time_wait_interval since the period before upper layer closes the 100 * connection is not accounted for when tcp_time_wait_append() is called. 101 * 102 * If upper layer has closed the connection, call tcp_time_wait_append() 103 * directly. 104 * 105 */ 106 #define SET_TIME_WAIT(tcps, tcp, connp) \ 107 { \ 108 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 109 if ((tcp)->tcp_listen_cnt != NULL) \ 110 TCP_DECR_LISTEN_CNT(tcp); \ 111 atomic_dec_64( \ 112 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 113 (connp)->conn_exclbind = 0; \ 114 if (!TCP_IS_DETACHED(tcp)) { \ 115 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 116 } else { \ 117 tcp_time_wait_append(tcp); \ 118 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 119 } \ 120 } 121 122 /* 123 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 124 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 125 * data, TCP will not respond with an ACK. RFC 793 requires that 126 * TCP responds with an ACK for such a bogus ACK. By not following 127 * the RFC, we prevent TCP from getting into an ACK storm if somehow 128 * an attacker successfully spoofs an acceptable segment to our 129 * peer; or when our peer is "confused." 130 */ 131 static uint32_t tcp_drop_ack_unsent_cnt = 10; 132 133 /* 134 * To protect TCP against attacker using a small window and requesting 135 * large amount of data (DoS attack by conuming memory), TCP checks the 136 * window advertised in the last ACK of the 3-way handshake. TCP uses 137 * the tcp_mss (the size of one packet) value for comparion. The window 138 * should be larger than tcp_mss. But while a sane TCP should advertise 139 * a receive window larger than or equal to 4*MSS to avoid stop and go 140 * tarrfic, not all TCP stacks do that. This is especially true when 141 * tcp_mss is a big value. 142 * 143 * To work around this issue, an additional fixed value for comparison 144 * is also used. If the advertised window is smaller than both tcp_mss 145 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 146 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 147 * smaller than 8K is considered to be OK. 148 */ 149 static uint32_t tcp_init_wnd_chk = 4096; 150 151 /* Process ICMP source quench message or not. */ 152 static boolean_t tcp_icmp_source_quench = B_FALSE; 153 154 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 155 156 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 157 ip_recv_attr_t *); 158 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 159 ip_recv_attr_t *); 160 static boolean_t tcp_drop_q0(tcp_t *); 161 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 162 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 163 ip_recv_attr_t *); 164 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 165 static void tcp_process_options(tcp_t *, tcpha_t *); 166 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 167 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 168 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 169 static void tcp_set_rto(tcp_t *, hrtime_t); 170 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 171 172 /* 173 * CC wrapper hook functions 174 */ 175 static void 176 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked, 177 uint16_t type) 178 { 179 uint32_t old_cwnd = tcp->tcp_cwnd; 180 181 tcp->tcp_ccv.bytes_this_ack = bytes_acked; 182 if (tcp->tcp_cwnd <= tcp->tcp_swnd) 183 tcp->tcp_ccv.flags |= CCF_CWND_LIMITED; 184 else 185 tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED; 186 187 if (type == CC_ACK) { 188 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 189 if (tcp->tcp_ccv.flags & CCF_RTO) 190 tcp->tcp_ccv.flags &= ~CCF_RTO; 191 192 tcp->tcp_ccv.t_bytes_acked += 193 min(tcp->tcp_ccv.bytes_this_ack, 194 tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss); 195 if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) { 196 tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd; 197 tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND; 198 } 199 } else { 200 tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND; 201 tcp->tcp_ccv.t_bytes_acked = 0; 202 } 203 } 204 205 if (CC_ALGO(tcp)->ack_received != NULL) { 206 /* 207 * The FreeBSD code where this originated had a comment "Find 208 * a way to live without this" in several places where curack 209 * got set. If they eventually dump curack from the cc 210 * variables, we'll need to adapt our code. 211 */ 212 tcp->tcp_ccv.curack = seg_ack; 213 CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type); 214 } 215 216 DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd, 217 uint32_t, tcp->tcp_cwnd); 218 } 219 220 void 221 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type) 222 { 223 uint32_t old_cwnd = tcp->tcp_cwnd; 224 uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh; 225 switch (type) { 226 case CC_NDUPACK: 227 if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) { 228 tcp->tcp_rexmit_max = tcp->tcp_snxt; 229 if (tcp->tcp_ecn_ok) { 230 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 231 tcp->tcp_cwr = B_TRUE; 232 tcp->tcp_ecn_cwr_sent = B_FALSE; 233 } 234 } 235 break; 236 case CC_ECN: 237 if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) { 238 tcp->tcp_rexmit_max = tcp->tcp_snxt; 239 if (tcp->tcp_ecn_ok) { 240 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 241 tcp->tcp_cwr = B_TRUE; 242 tcp->tcp_ecn_cwr_sent = B_FALSE; 243 } 244 } 245 break; 246 case CC_RTO: 247 tcp->tcp_ccv.flags |= CCF_RTO; 248 tcp->tcp_dupack_cnt = 0; 249 tcp->tcp_ccv.t_bytes_acked = 0; 250 /* 251 * Give up on fast recovery and congestion recovery if we were 252 * attempting either. 253 */ 254 EXIT_RECOVERY(tcp->tcp_ccv.flags); 255 if (CC_ALGO(tcp)->cong_signal == NULL) { 256 /* 257 * RFC5681 Section 3.1 258 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4) 259 */ 260 tcp->tcp_cwnd_ssthresh = max( 261 (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss, 262 2) * tcp->tcp_mss; 263 tcp->tcp_cwnd = tcp->tcp_mss; 264 } 265 266 if (tcp->tcp_ecn_ok) { 267 tcp->tcp_cwr = B_TRUE; 268 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 269 tcp->tcp_ecn_cwr_sent = B_FALSE; 270 } 271 break; 272 } 273 274 if (CC_ALGO(tcp)->cong_signal != NULL) { 275 tcp->tcp_ccv.curack = seg_ack; 276 CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type); 277 } 278 279 DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd, 280 uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh, 281 uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type); 282 } 283 284 static void 285 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack) 286 { 287 uint32_t old_cwnd = tcp->tcp_cwnd; 288 289 if (CC_ALGO(tcp)->post_recovery != NULL) { 290 tcp->tcp_ccv.curack = seg_ack; 291 CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv); 292 } 293 tcp->tcp_ccv.t_bytes_acked = 0; 294 295 DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp, 296 uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd); 297 } 298 299 /* 300 * Set the MSS associated with a particular tcp based on its current value, 301 * and a new one passed in. Observe minimums and maximums, and reset other 302 * state variables that we want to view as multiples of MSS. 303 * 304 * The value of MSS could be either increased or descreased. 305 */ 306 void 307 tcp_mss_set(tcp_t *tcp, uint32_t mss) 308 { 309 uint32_t mss_max; 310 tcp_stack_t *tcps = tcp->tcp_tcps; 311 conn_t *connp = tcp->tcp_connp; 312 313 if (connp->conn_ipversion == IPV4_VERSION) 314 mss_max = tcps->tcps_mss_max_ipv4; 315 else 316 mss_max = tcps->tcps_mss_max_ipv6; 317 318 if (mss < tcps->tcps_mss_min) 319 mss = tcps->tcps_mss_min; 320 if (mss > mss_max) 321 mss = mss_max; 322 /* 323 * Unless naglim has been set by our client to 324 * a non-mss value, force naglim to track mss. 325 * This can help to aggregate small writes. 326 */ 327 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 328 tcp->tcp_naglim = mss; 329 /* 330 * TCP should be able to buffer at least 4 MSS data for obvious 331 * performance reason. 332 */ 333 if ((mss << 2) > connp->conn_sndbuf) 334 connp->conn_sndbuf = mss << 2; 335 336 /* 337 * Set the send lowater to at least twice of MSS. 338 */ 339 if ((mss << 1) > connp->conn_sndlowat) 340 connp->conn_sndlowat = mss << 1; 341 342 /* 343 * Update tcp_cwnd according to the new value of MSS. Keep the 344 * previous ratio to preserve the transmit rate. 345 */ 346 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 347 tcp->tcp_cwnd_cnt = 0; 348 349 tcp->tcp_mss = mss; 350 (void) tcp_maxpsz_set(tcp, B_TRUE); 351 } 352 353 /* 354 * Extract option values from a tcp header. We put any found values into the 355 * tcpopt struct and return a bitmask saying which options were found. 356 */ 357 int 358 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 359 { 360 uchar_t *endp; 361 int len; 362 uint32_t mss; 363 uchar_t *up = (uchar_t *)tcpha; 364 int found = 0; 365 int32_t sack_len; 366 tcp_seq sack_begin, sack_end; 367 tcp_t *tcp; 368 369 endp = up + TCP_HDR_LENGTH(tcpha); 370 up += TCP_MIN_HEADER_LENGTH; 371 /* 372 * If timestamp option is aligned as recommended in RFC 7323 Appendix 373 * A, and is the only option, return quickly. 374 */ 375 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 376 TCPOPT_REAL_TS_LEN && 377 OK_32PTR(up) && 378 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 379 tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 380 tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 381 382 return (TCP_OPT_TSTAMP_PRESENT); 383 } 384 while (up < endp) { 385 len = endp - up; 386 switch (*up) { 387 case TCPOPT_EOL: 388 break; 389 390 case TCPOPT_NOP: 391 up++; 392 continue; 393 394 case TCPOPT_MAXSEG: 395 if (len < TCPOPT_MAXSEG_LEN || 396 up[1] != TCPOPT_MAXSEG_LEN) 397 break; 398 399 mss = BE16_TO_U16(up+2); 400 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 401 tcpopt->tcp_opt_mss = mss; 402 found |= TCP_OPT_MSS_PRESENT; 403 404 up += TCPOPT_MAXSEG_LEN; 405 continue; 406 407 case TCPOPT_WSCALE: 408 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 409 break; 410 411 if (up[2] > TCP_MAX_WINSHIFT) 412 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 413 else 414 tcpopt->tcp_opt_wscale = up[2]; 415 found |= TCP_OPT_WSCALE_PRESENT; 416 417 up += TCPOPT_WS_LEN; 418 continue; 419 420 case TCPOPT_SACK_PERMITTED: 421 if (len < TCPOPT_SACK_OK_LEN || 422 up[1] != TCPOPT_SACK_OK_LEN) 423 break; 424 found |= TCP_OPT_SACK_OK_PRESENT; 425 up += TCPOPT_SACK_OK_LEN; 426 continue; 427 428 case TCPOPT_SACK: 429 if (len <= 2 || up[1] <= 2 || len < up[1]) 430 break; 431 432 /* If TCP is not interested in SACK blks... */ 433 if ((tcp = tcpopt->tcp) == NULL) { 434 up += up[1]; 435 continue; 436 } 437 sack_len = up[1] - TCPOPT_HEADER_LEN; 438 up += TCPOPT_HEADER_LEN; 439 440 /* 441 * If the list is empty, allocate one and assume 442 * nothing is sack'ed. 443 */ 444 if (tcp->tcp_notsack_list == NULL) { 445 tcp_notsack_update(&(tcp->tcp_notsack_list), 446 tcp->tcp_suna, tcp->tcp_snxt, 447 &(tcp->tcp_num_notsack_blk), 448 &(tcp->tcp_cnt_notsack_list)); 449 450 /* 451 * Make sure tcp_notsack_list is not NULL. 452 * This happens when kmem_alloc(KM_NOSLEEP) 453 * returns NULL. 454 */ 455 if (tcp->tcp_notsack_list == NULL) { 456 up += sack_len; 457 continue; 458 } 459 tcp->tcp_fack = tcp->tcp_suna; 460 } 461 462 while (sack_len > 0) { 463 if (up + 8 > endp) { 464 up = endp; 465 break; 466 } 467 sack_begin = BE32_TO_U32(up); 468 up += 4; 469 sack_end = BE32_TO_U32(up); 470 up += 4; 471 sack_len -= 8; 472 /* 473 * Bounds checking. Make sure the SACK 474 * info is within tcp_suna and tcp_snxt. 475 * If this SACK blk is out of bound, ignore 476 * it but continue to parse the following 477 * blks. 478 */ 479 if (SEQ_LEQ(sack_end, sack_begin) || 480 SEQ_LT(sack_begin, tcp->tcp_suna) || 481 SEQ_GT(sack_end, tcp->tcp_snxt)) { 482 continue; 483 } 484 tcp_notsack_insert(&(tcp->tcp_notsack_list), 485 sack_begin, sack_end, 486 &(tcp->tcp_num_notsack_blk), 487 &(tcp->tcp_cnt_notsack_list)); 488 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 489 tcp->tcp_fack = sack_end; 490 } 491 } 492 found |= TCP_OPT_SACK_PRESENT; 493 continue; 494 495 case TCPOPT_TSTAMP: 496 if (len < TCPOPT_TSTAMP_LEN || 497 up[1] != TCPOPT_TSTAMP_LEN) 498 break; 499 500 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 501 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 502 503 found |= TCP_OPT_TSTAMP_PRESENT; 504 505 up += TCPOPT_TSTAMP_LEN; 506 continue; 507 508 default: 509 if (len <= 1 || len < (int)up[1] || up[1] == 0) 510 break; 511 up += up[1]; 512 continue; 513 } 514 break; 515 } 516 return (found); 517 } 518 519 /* 520 * Process all TCP option in SYN segment. Note that this function should 521 * be called after tcp_set_destination() is called so that the necessary info 522 * from IRE is already set in the tcp structure. 523 * 524 * This function sets up the correct tcp_mss value according to the 525 * MSS option value and our header size. It also sets up the window scale 526 * and timestamp values, and initialize SACK info blocks. But it does not 527 * change receive window size after setting the tcp_mss value. The caller 528 * should do the appropriate change. 529 */ 530 static void 531 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 532 { 533 int options; 534 tcp_opt_t tcpopt; 535 uint32_t mss_max; 536 char *tmp_tcph; 537 tcp_stack_t *tcps = tcp->tcp_tcps; 538 conn_t *connp = tcp->tcp_connp; 539 540 tcpopt.tcp = NULL; 541 options = tcp_parse_options(tcpha, &tcpopt); 542 543 /* 544 * Process MSS option. Note that MSS option value does not account 545 * for IP or TCP options. This means that it is equal to MTU - minimum 546 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 547 * IPv6. 548 */ 549 if (!(options & TCP_OPT_MSS_PRESENT)) { 550 if (connp->conn_ipversion == IPV4_VERSION) 551 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 552 else 553 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 554 } else { 555 if (connp->conn_ipversion == IPV4_VERSION) 556 mss_max = tcps->tcps_mss_max_ipv4; 557 else 558 mss_max = tcps->tcps_mss_max_ipv6; 559 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 560 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 561 else if (tcpopt.tcp_opt_mss > mss_max) 562 tcpopt.tcp_opt_mss = mss_max; 563 } 564 565 /* Process Window Scale option. */ 566 if (options & TCP_OPT_WSCALE_PRESENT) { 567 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 568 tcp->tcp_snd_ws_ok = B_TRUE; 569 } else { 570 tcp->tcp_snd_ws = B_FALSE; 571 tcp->tcp_snd_ws_ok = B_FALSE; 572 tcp->tcp_rcv_ws = B_FALSE; 573 } 574 575 /* Process Timestamp option. */ 576 if ((options & TCP_OPT_TSTAMP_PRESENT) && 577 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 578 tmp_tcph = (char *)tcp->tcp_tcpha; 579 580 tcp->tcp_snd_ts_ok = B_TRUE; 581 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 582 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 583 ASSERT(OK_32PTR(tmp_tcph)); 584 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 585 586 /* Fill in our template header with basic timestamp option. */ 587 tmp_tcph += connp->conn_ht_ulp_len; 588 tmp_tcph[0] = TCPOPT_NOP; 589 tmp_tcph[1] = TCPOPT_NOP; 590 tmp_tcph[2] = TCPOPT_TSTAMP; 591 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 592 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 593 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 594 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 595 } else { 596 tcp->tcp_snd_ts_ok = B_FALSE; 597 } 598 599 /* 600 * Process SACK options. If SACK is enabled for this connection, 601 * then allocate the SACK info structure. Note the following ways 602 * when tcp_snd_sack_ok is set to true. 603 * 604 * For active connection: in tcp_set_destination() called in 605 * tcp_connect(). 606 * 607 * For passive connection: in tcp_set_destination() called in 608 * tcp_input_listener(). 609 * 610 * That's the reason why the extra TCP_IS_DETACHED() check is there. 611 * That check makes sure that if we did not send a SACK OK option, 612 * we will not enable SACK for this connection even though the other 613 * side sends us SACK OK option. For active connection, the SACK 614 * info structure has already been allocated. So we need to free 615 * it if SACK is disabled. 616 */ 617 if ((options & TCP_OPT_SACK_OK_PRESENT) && 618 (tcp->tcp_snd_sack_ok || 619 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 620 ASSERT(tcp->tcp_num_sack_blk == 0); 621 ASSERT(tcp->tcp_notsack_list == NULL); 622 623 tcp->tcp_snd_sack_ok = B_TRUE; 624 if (tcp->tcp_snd_ts_ok) { 625 tcp->tcp_max_sack_blk = 3; 626 } else { 627 tcp->tcp_max_sack_blk = 4; 628 } 629 } else if (tcp->tcp_snd_sack_ok) { 630 /* 631 * Resetting tcp_snd_sack_ok to B_FALSE so that 632 * no SACK info will be used for this 633 * connection. This assumes that SACK usage 634 * permission is negotiated. This may need 635 * to be changed once this is clarified. 636 */ 637 ASSERT(tcp->tcp_num_sack_blk == 0); 638 ASSERT(tcp->tcp_notsack_list == NULL); 639 tcp->tcp_snd_sack_ok = B_FALSE; 640 } 641 642 /* 643 * Now we know the exact TCP/IP header length, subtract 644 * that from tcp_mss to get our side's MSS. 645 */ 646 tcp->tcp_mss -= connp->conn_ht_iphc_len; 647 648 /* 649 * Here we assume that the other side's header size will be equal to 650 * our header size. We calculate the real MSS accordingly. Need to 651 * take into additional stuffs IPsec puts in. 652 * 653 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 654 */ 655 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 656 tcp->tcp_ipsec_overhead - 657 ((connp->conn_ipversion == IPV4_VERSION ? 658 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 659 660 /* 661 * Set MSS to the smaller one of both ends of the connection. 662 * We should not have called tcp_mss_set() before, but our 663 * side of the MSS should have been set to a proper value 664 * by tcp_set_destination(). tcp_mss_set() will also set up the 665 * STREAM head parameters properly. 666 * 667 * If we have a larger-than-16-bit window but the other side 668 * didn't want to do window scale, tcp_rwnd_set() will take 669 * care of that. 670 */ 671 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 672 673 /* 674 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 675 * updated properly. 676 */ 677 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 678 679 if (tcp->tcp_cc_algo->conn_init != NULL) 680 tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv); 681 } 682 683 /* 684 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 685 * is filled, return as much as we can. The message passed in may be 686 * multi-part, chained using b_cont. "start" is the starting sequence 687 * number for this piece. 688 */ 689 static mblk_t * 690 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 691 { 692 uint32_t end, bytes; 693 mblk_t *mp1; 694 mblk_t *mp2; 695 mblk_t *next_mp; 696 uint32_t u1; 697 tcp_stack_t *tcps = tcp->tcp_tcps; 698 699 700 /* Walk through all the new pieces. */ 701 do { 702 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 703 (uintptr_t)INT_MAX); 704 end = start + (int)(mp->b_wptr - mp->b_rptr); 705 next_mp = mp->b_cont; 706 if (start == end) { 707 /* Empty. Blast it. */ 708 freeb(mp); 709 continue; 710 } 711 bytes = end - start; 712 mp->b_cont = NULL; 713 TCP_REASS_SET_SEQ(mp, start); 714 TCP_REASS_SET_END(mp, end); 715 mp1 = tcp->tcp_reass_tail; 716 if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) { 717 if (mp1 != NULL) { 718 /* 719 * New stuff is beyond the tail; link it on the 720 * end. 721 */ 722 mp1->b_cont = mp; 723 } else { 724 tcp->tcp_reass_head = mp; 725 } 726 tcp->tcp_reass_tail = mp; 727 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 728 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes); 729 tcp->tcp_cs.tcp_in_data_unorder_segs++; 730 tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes; 731 continue; 732 } 733 mp1 = tcp->tcp_reass_head; 734 u1 = TCP_REASS_SEQ(mp1); 735 /* New stuff at the front? */ 736 if (SEQ_LT(start, u1)) { 737 /* Yes... Check for overlap. */ 738 mp->b_cont = mp1; 739 tcp->tcp_reass_head = mp; 740 tcp_reass_elim_overlap(tcp, mp); 741 continue; 742 } 743 /* 744 * The new piece fits somewhere between the head and tail. 745 * We find our slot, where mp1 precedes us and mp2 trails. 746 */ 747 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 748 u1 = TCP_REASS_SEQ(mp2); 749 if (SEQ_LEQ(start, u1)) 750 break; 751 } 752 /* Link ourselves in */ 753 mp->b_cont = mp2; 754 mp1->b_cont = mp; 755 756 /* Trim overlap with following mblk(s) first */ 757 tcp_reass_elim_overlap(tcp, mp); 758 759 /* Trim overlap with preceding mblk */ 760 tcp_reass_elim_overlap(tcp, mp1); 761 762 } while (start = end, mp = next_mp); 763 mp1 = tcp->tcp_reass_head; 764 /* Anything ready to go? */ 765 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 766 return (NULL); 767 /* Eat what we can off the queue */ 768 for (;;) { 769 mp = mp1->b_cont; 770 end = TCP_REASS_END(mp1); 771 TCP_REASS_SET_SEQ(mp1, 0); 772 TCP_REASS_SET_END(mp1, 0); 773 if (!mp) { 774 tcp->tcp_reass_tail = NULL; 775 break; 776 } 777 if (end != TCP_REASS_SEQ(mp)) { 778 mp1->b_cont = NULL; 779 break; 780 } 781 mp1 = mp; 782 } 783 mp1 = tcp->tcp_reass_head; 784 tcp->tcp_reass_head = mp; 785 return (mp1); 786 } 787 788 /* Eliminate any overlap that mp may have over later mblks */ 789 static void 790 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 791 { 792 uint32_t end; 793 mblk_t *mp1; 794 uint32_t u1; 795 tcp_stack_t *tcps = tcp->tcp_tcps; 796 797 end = TCP_REASS_END(mp); 798 while ((mp1 = mp->b_cont) != NULL) { 799 u1 = TCP_REASS_SEQ(mp1); 800 if (!SEQ_GT(end, u1)) 801 break; 802 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 803 mp->b_wptr -= end - u1; 804 TCP_REASS_SET_END(mp, u1); 805 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 806 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 807 end - u1); 808 break; 809 } 810 mp->b_cont = mp1->b_cont; 811 TCP_REASS_SET_SEQ(mp1, 0); 812 TCP_REASS_SET_END(mp1, 0); 813 freeb(mp1); 814 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 815 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 816 } 817 if (!mp1) 818 tcp->tcp_reass_tail = mp; 819 } 820 821 /* 822 * This function does PAWS protection check, per RFC 7323 section 5. Requires 823 * that timestamp options are already processed into tcpoptp. Returns B_TRUE if 824 * the segment passes the PAWS test, else returns B_FALSE. 825 */ 826 boolean_t 827 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp) 828 { 829 if (TSTMP_LT(tcpoptp->tcp_opt_ts_val, 830 tcp->tcp_ts_recent)) { 831 if (LBOLT_FASTPATH64 < 832 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 833 /* This segment is not acceptable. */ 834 return (B_FALSE); 835 } else { 836 /* 837 * Connection has been idle for 838 * too long. Reset the timestamp 839 */ 840 tcp->tcp_ts_recent = 841 tcpoptp->tcp_opt_ts_val; 842 } 843 } 844 return (B_TRUE); 845 } 846 847 /* 848 * Defense for the SYN attack - 849 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 850 * one from the list of droppable eagers. This list is a subset of q0. 851 * see comments before the definition of MAKE_DROPPABLE(). 852 * 2. Don't drop a SYN request before its first timeout. This gives every 853 * request at least til the first timeout to complete its 3-way handshake. 854 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 855 * requests currently on the queue that has timed out. This will be used 856 * as an indicator of whether an attack is under way, so that appropriate 857 * actions can be taken. (It's incremented in tcp_timer() and decremented 858 * either when eager goes into ESTABLISHED, or gets freed up.) 859 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 860 * # of timeout drops back to <= q0len/32 => SYN alert off 861 */ 862 static boolean_t 863 tcp_drop_q0(tcp_t *tcp) 864 { 865 tcp_t *eager; 866 mblk_t *mp; 867 tcp_stack_t *tcps = tcp->tcp_tcps; 868 869 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 870 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 871 872 /* Pick oldest eager from the list of droppable eagers */ 873 eager = tcp->tcp_eager_prev_drop_q0; 874 875 /* If list is empty. return B_FALSE */ 876 if (eager == tcp) { 877 return (B_FALSE); 878 } 879 880 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 881 if ((mp = allocb(0, BPRI_HI)) == NULL) 882 return (B_FALSE); 883 884 /* 885 * Take this eager out from the list of droppable eagers since we are 886 * going to drop it. 887 */ 888 MAKE_UNDROPPABLE(eager); 889 890 if (tcp->tcp_connp->conn_debug) { 891 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 892 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 893 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 894 tcp->tcp_conn_req_cnt_q0, 895 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 896 } 897 898 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 899 900 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 901 CONN_INC_REF(eager->tcp_connp); 902 903 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 904 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 905 SQ_FILL, SQTAG_TCP_DROP_Q0); 906 907 return (B_TRUE); 908 } 909 910 /* 911 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 912 */ 913 static mblk_t * 914 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 915 ip_recv_attr_t *ira) 916 { 917 tcp_t *ltcp = lconnp->conn_tcp; 918 tcp_t *tcp = connp->conn_tcp; 919 mblk_t *tpi_mp; 920 ipha_t *ipha; 921 ip6_t *ip6h; 922 sin6_t sin6; 923 uint_t ifindex = ira->ira_ruifindex; 924 tcp_stack_t *tcps = tcp->tcp_tcps; 925 926 if (ira->ira_flags & IRAF_IS_IPV4) { 927 ipha = (ipha_t *)mp->b_rptr; 928 929 connp->conn_ipversion = IPV4_VERSION; 930 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 931 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 932 connp->conn_saddr_v6 = connp->conn_laddr_v6; 933 934 sin6 = sin6_null; 935 sin6.sin6_addr = connp->conn_faddr_v6; 936 sin6.sin6_port = connp->conn_fport; 937 sin6.sin6_family = AF_INET6; 938 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 939 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 940 941 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 942 sin6_t sin6d; 943 944 sin6d = sin6_null; 945 sin6d.sin6_addr = connp->conn_laddr_v6; 946 sin6d.sin6_port = connp->conn_lport; 947 sin6d.sin6_family = AF_INET; 948 tpi_mp = mi_tpi_extconn_ind(NULL, 949 (char *)&sin6d, sizeof (sin6_t), 950 (char *)&tcp, 951 (t_scalar_t)sizeof (intptr_t), 952 (char *)&sin6d, sizeof (sin6_t), 953 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 954 } else { 955 tpi_mp = mi_tpi_conn_ind(NULL, 956 (char *)&sin6, sizeof (sin6_t), 957 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 958 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 959 } 960 } else { 961 ip6h = (ip6_t *)mp->b_rptr; 962 963 connp->conn_ipversion = IPV6_VERSION; 964 connp->conn_laddr_v6 = ip6h->ip6_dst; 965 connp->conn_faddr_v6 = ip6h->ip6_src; 966 connp->conn_saddr_v6 = connp->conn_laddr_v6; 967 968 sin6 = sin6_null; 969 sin6.sin6_addr = connp->conn_faddr_v6; 970 sin6.sin6_port = connp->conn_fport; 971 sin6.sin6_family = AF_INET6; 972 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 973 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 974 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 975 976 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 977 /* Pass up the scope_id of remote addr */ 978 sin6.sin6_scope_id = ifindex; 979 } else { 980 sin6.sin6_scope_id = 0; 981 } 982 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 983 sin6_t sin6d; 984 985 sin6d = sin6_null; 986 sin6.sin6_addr = connp->conn_laddr_v6; 987 sin6d.sin6_port = connp->conn_lport; 988 sin6d.sin6_family = AF_INET6; 989 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 990 sin6d.sin6_scope_id = ifindex; 991 992 tpi_mp = mi_tpi_extconn_ind(NULL, 993 (char *)&sin6d, sizeof (sin6_t), 994 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 995 (char *)&sin6d, sizeof (sin6_t), 996 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 997 } else { 998 tpi_mp = mi_tpi_conn_ind(NULL, 999 (char *)&sin6, sizeof (sin6_t), 1000 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1001 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1002 } 1003 } 1004 1005 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 1006 return (tpi_mp); 1007 } 1008 1009 /* Handle a SYN on an AF_INET socket */ 1010 static mblk_t * 1011 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 1012 ip_recv_attr_t *ira) 1013 { 1014 tcp_t *ltcp = lconnp->conn_tcp; 1015 tcp_t *tcp = connp->conn_tcp; 1016 sin_t sin; 1017 mblk_t *tpi_mp = NULL; 1018 tcp_stack_t *tcps = tcp->tcp_tcps; 1019 ipha_t *ipha; 1020 1021 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 1022 ipha = (ipha_t *)mp->b_rptr; 1023 1024 connp->conn_ipversion = IPV4_VERSION; 1025 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 1026 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 1027 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1028 1029 sin = sin_null; 1030 sin.sin_addr.s_addr = connp->conn_faddr_v4; 1031 sin.sin_port = connp->conn_fport; 1032 sin.sin_family = AF_INET; 1033 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 1034 sin_t sind; 1035 1036 sind = sin_null; 1037 sind.sin_addr.s_addr = connp->conn_laddr_v4; 1038 sind.sin_port = connp->conn_lport; 1039 sind.sin_family = AF_INET; 1040 tpi_mp = mi_tpi_extconn_ind(NULL, 1041 (char *)&sind, sizeof (sin_t), (char *)&tcp, 1042 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 1043 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1044 } else { 1045 tpi_mp = mi_tpi_conn_ind(NULL, 1046 (char *)&sin, sizeof (sin_t), 1047 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1048 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1049 } 1050 1051 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 1052 return (tpi_mp); 1053 } 1054 1055 /* 1056 * Called via squeue to get on to eager's perimeter. It sends a 1057 * TH_RST if eager is in the fanout table. The listener wants the 1058 * eager to disappear either by means of tcp_eager_blowoff() or 1059 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 1060 * called (via squeue) if the eager cannot be inserted in the 1061 * fanout table in tcp_input_listener(). 1062 */ 1063 /* ARGSUSED */ 1064 void 1065 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1066 { 1067 conn_t *econnp = (conn_t *)arg; 1068 tcp_t *eager = econnp->conn_tcp; 1069 tcp_t *listener = eager->tcp_listener; 1070 1071 /* 1072 * We could be called because listener is closing. Since 1073 * the eager was using listener's queue's, we avoid 1074 * using the listeners queues from now on. 1075 */ 1076 ASSERT(eager->tcp_detached); 1077 econnp->conn_rq = NULL; 1078 econnp->conn_wq = NULL; 1079 1080 /* 1081 * An eager's conn_fanout will be NULL if it's a duplicate 1082 * for an existing 4-tuples in the conn fanout table. 1083 * We don't want to send an RST out in such case. 1084 */ 1085 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1086 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1087 eager, eager->tcp_snxt, 0, TH_RST); 1088 } 1089 1090 /* We are here because listener wants this eager gone */ 1091 if (listener != NULL) { 1092 mutex_enter(&listener->tcp_eager_lock); 1093 tcp_eager_unlink(eager); 1094 if (eager->tcp_tconnind_started) { 1095 /* 1096 * The eager has sent a conn_ind up to the 1097 * listener but listener decides to close 1098 * instead. We need to drop the extra ref 1099 * placed on eager in tcp_input_data() before 1100 * sending the conn_ind to listener. 1101 */ 1102 CONN_DEC_REF(econnp); 1103 } 1104 mutex_exit(&listener->tcp_eager_lock); 1105 CONN_DEC_REF(listener->tcp_connp); 1106 } 1107 1108 if (eager->tcp_state != TCPS_CLOSED) 1109 tcp_close_detached(eager); 1110 } 1111 1112 /* 1113 * Reset any eager connection hanging off this listener marked 1114 * with 'seqnum' and then reclaim it's resources. 1115 */ 1116 boolean_t 1117 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1118 { 1119 tcp_t *eager; 1120 mblk_t *mp; 1121 1122 eager = listener; 1123 mutex_enter(&listener->tcp_eager_lock); 1124 do { 1125 eager = eager->tcp_eager_next_q; 1126 if (eager == NULL) { 1127 mutex_exit(&listener->tcp_eager_lock); 1128 return (B_FALSE); 1129 } 1130 } while (eager->tcp_conn_req_seqnum != seqnum); 1131 1132 if (eager->tcp_closemp_used) { 1133 mutex_exit(&listener->tcp_eager_lock); 1134 return (B_TRUE); 1135 } 1136 eager->tcp_closemp_used = B_TRUE; 1137 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1138 CONN_INC_REF(eager->tcp_connp); 1139 mutex_exit(&listener->tcp_eager_lock); 1140 mp = &eager->tcp_closemp; 1141 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1142 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1143 return (B_TRUE); 1144 } 1145 1146 /* 1147 * Reset any eager connection hanging off this listener 1148 * and then reclaim it's resources. 1149 */ 1150 void 1151 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1152 { 1153 tcp_t *eager; 1154 mblk_t *mp; 1155 tcp_stack_t *tcps = listener->tcp_tcps; 1156 1157 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1158 1159 if (!q0_only) { 1160 /* First cleanup q */ 1161 TCP_STAT(tcps, tcp_eager_blowoff_q); 1162 eager = listener->tcp_eager_next_q; 1163 while (eager != NULL) { 1164 if (!eager->tcp_closemp_used) { 1165 eager->tcp_closemp_used = B_TRUE; 1166 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1167 CONN_INC_REF(eager->tcp_connp); 1168 mp = &eager->tcp_closemp; 1169 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1170 tcp_eager_kill, eager->tcp_connp, NULL, 1171 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1172 } 1173 eager = eager->tcp_eager_next_q; 1174 } 1175 } 1176 /* Then cleanup q0 */ 1177 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1178 eager = listener->tcp_eager_next_q0; 1179 while (eager != listener) { 1180 if (!eager->tcp_closemp_used) { 1181 eager->tcp_closemp_used = B_TRUE; 1182 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1183 CONN_INC_REF(eager->tcp_connp); 1184 mp = &eager->tcp_closemp; 1185 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1186 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1187 SQTAG_TCP_EAGER_CLEANUP_Q0); 1188 } 1189 eager = eager->tcp_eager_next_q0; 1190 } 1191 } 1192 1193 /* 1194 * If we are an eager connection hanging off a listener that hasn't 1195 * formally accepted the connection yet, get off its list and blow off 1196 * any data that we have accumulated. 1197 */ 1198 void 1199 tcp_eager_unlink(tcp_t *tcp) 1200 { 1201 tcp_t *listener = tcp->tcp_listener; 1202 1203 ASSERT(listener != NULL); 1204 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1205 if (tcp->tcp_eager_next_q0 != NULL) { 1206 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1207 1208 /* Remove the eager tcp from q0 */ 1209 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1210 tcp->tcp_eager_prev_q0; 1211 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1212 tcp->tcp_eager_next_q0; 1213 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1214 listener->tcp_conn_req_cnt_q0--; 1215 1216 tcp->tcp_eager_next_q0 = NULL; 1217 tcp->tcp_eager_prev_q0 = NULL; 1218 1219 /* 1220 * Take the eager out, if it is in the list of droppable 1221 * eagers. 1222 */ 1223 MAKE_UNDROPPABLE(tcp); 1224 1225 if (tcp->tcp_syn_rcvd_timeout != 0) { 1226 /* we have timed out before */ 1227 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1228 listener->tcp_syn_rcvd_timeout--; 1229 } 1230 } else { 1231 tcp_t **tcpp = &listener->tcp_eager_next_q; 1232 tcp_t *prev = NULL; 1233 1234 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1235 if (tcpp[0] == tcp) { 1236 if (listener->tcp_eager_last_q == tcp) { 1237 /* 1238 * If we are unlinking the last 1239 * element on the list, adjust 1240 * tail pointer. Set tail pointer 1241 * to nil when list is empty. 1242 */ 1243 ASSERT(tcp->tcp_eager_next_q == NULL); 1244 if (listener->tcp_eager_last_q == 1245 listener->tcp_eager_next_q) { 1246 listener->tcp_eager_last_q = 1247 NULL; 1248 } else { 1249 /* 1250 * We won't get here if there 1251 * is only one eager in the 1252 * list. 1253 */ 1254 ASSERT(prev != NULL); 1255 listener->tcp_eager_last_q = 1256 prev; 1257 } 1258 } 1259 tcpp[0] = tcp->tcp_eager_next_q; 1260 tcp->tcp_eager_next_q = NULL; 1261 tcp->tcp_eager_last_q = NULL; 1262 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1263 listener->tcp_conn_req_cnt_q--; 1264 break; 1265 } 1266 prev = tcpp[0]; 1267 } 1268 } 1269 tcp->tcp_listener = NULL; 1270 } 1271 1272 /* BEGIN CSTYLED */ 1273 /* 1274 * 1275 * The sockfs ACCEPT path: 1276 * ======================= 1277 * 1278 * The eager is now established in its own perimeter as soon as SYN is 1279 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1280 * completes the accept processing on the acceptor STREAM. The sending 1281 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1282 * listener but a TLI/XTI listener completes the accept processing 1283 * on the listener perimeter. 1284 * 1285 * Common control flow for 3 way handshake: 1286 * ---------------------------------------- 1287 * 1288 * incoming SYN (listener perimeter) -> tcp_input_listener() 1289 * 1290 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1291 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1292 * 1293 * Sockfs ACCEPT Path: 1294 * ------------------- 1295 * 1296 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1297 * as STREAM entry point) 1298 * 1299 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1300 * 1301 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1302 * association (we are not behind eager's squeue but sockfs is protecting us 1303 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1304 * is changed to point at tcp_wput(). 1305 * 1306 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1307 * listener (done on listener's perimeter). 1308 * 1309 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1310 * accept. 1311 * 1312 * TLI/XTI client ACCEPT path: 1313 * --------------------------- 1314 * 1315 * soaccept() sends T_CONN_RES on the listener STREAM. 1316 * 1317 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1318 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1319 * 1320 * Locks: 1321 * ====== 1322 * 1323 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1324 * and listeners->tcp_eager_next_q. 1325 * 1326 * Referencing: 1327 * ============ 1328 * 1329 * 1) We start out in tcp_input_listener by eager placing a ref on 1330 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1331 * 1332 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1333 * doing so we place a ref on the eager. This ref is finally dropped at the 1334 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1335 * reference is dropped by the squeue framework. 1336 * 1337 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1338 * 1339 * The reference must be released by the same entity that added the reference 1340 * In the above scheme, the eager is the entity that adds and releases the 1341 * references. Note that tcp_accept_finish executes in the squeue of the eager 1342 * (albeit after it is attached to the acceptor stream). Though 1. executes 1343 * in the listener's squeue, the eager is nascent at this point and the 1344 * reference can be considered to have been added on behalf of the eager. 1345 * 1346 * Eager getting a Reset or listener closing: 1347 * ========================================== 1348 * 1349 * Once the listener and eager are linked, the listener never does the unlink. 1350 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1351 * a message on all eager perimeter. The eager then does the unlink, clears 1352 * any pointers to the listener's queue and drops the reference to the 1353 * listener. The listener waits in tcp_close outside the squeue until its 1354 * refcount has dropped to 1. This ensures that the listener has waited for 1355 * all eagers to clear their association with the listener. 1356 * 1357 * Similarly, if eager decides to go away, it can unlink itself and close. 1358 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1359 * the reference to eager is still valid because of the extra ref we put 1360 * in tcp_send_conn_ind. 1361 * 1362 * Listener can always locate the eager under the protection 1363 * of the listener->tcp_eager_lock, and then do a refhold 1364 * on the eager during the accept processing. 1365 * 1366 * The acceptor stream accesses the eager in the accept processing 1367 * based on the ref placed on eager before sending T_conn_ind. 1368 * The only entity that can negate this refhold is a listener close 1369 * which is mutually exclusive with an active acceptor stream. 1370 * 1371 * Eager's reference on the listener 1372 * =================================== 1373 * 1374 * If the accept happens (even on a closed eager) the eager drops its 1375 * reference on the listener at the start of tcp_accept_finish. If the 1376 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1377 * the reference is dropped in tcp_closei_local. If the listener closes, 1378 * the reference is dropped in tcp_eager_kill. In all cases the reference 1379 * is dropped while executing in the eager's context (squeue). 1380 */ 1381 /* END CSTYLED */ 1382 1383 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1384 1385 /* 1386 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1387 * tcp_input_data will not see any packets for listeners since the listener 1388 * has conn_recv set to tcp_input_listener. 1389 */ 1390 /* ARGSUSED */ 1391 static void 1392 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1393 { 1394 tcpha_t *tcpha; 1395 uint32_t seg_seq; 1396 tcp_t *eager; 1397 int err; 1398 conn_t *econnp = NULL; 1399 squeue_t *new_sqp; 1400 mblk_t *mp1; 1401 uint_t ip_hdr_len; 1402 conn_t *lconnp = (conn_t *)arg; 1403 tcp_t *listener = lconnp->conn_tcp; 1404 tcp_stack_t *tcps = listener->tcp_tcps; 1405 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1406 uint_t flags; 1407 mblk_t *tpi_mp; 1408 uint_t ifindex = ira->ira_ruifindex; 1409 boolean_t tlc_set = B_FALSE; 1410 1411 ip_hdr_len = ira->ira_ip_hdr_length; 1412 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1413 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1414 1415 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1416 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1417 __dtrace_tcp_tcph_t *, tcpha); 1418 1419 if (!(flags & TH_SYN)) { 1420 if ((flags & TH_RST) || (flags & TH_URG)) { 1421 freemsg(mp); 1422 return; 1423 } 1424 if (flags & TH_ACK) { 1425 /* Note this executes in listener's squeue */ 1426 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1427 return; 1428 } 1429 1430 freemsg(mp); 1431 return; 1432 } 1433 1434 if (listener->tcp_state != TCPS_LISTEN) 1435 goto error2; 1436 1437 ASSERT(IPCL_IS_BOUND(lconnp)); 1438 1439 mutex_enter(&listener->tcp_eager_lock); 1440 1441 /* 1442 * The system is under memory pressure, so we need to do our part 1443 * to relieve the pressure. So we only accept new request if there 1444 * is nothing waiting to be accepted or waiting to complete the 3-way 1445 * handshake. This means that busy listener will not get too many 1446 * new requests which they cannot handle in time while non-busy 1447 * listener is still functioning properly. 1448 */ 1449 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1450 listener->tcp_conn_req_cnt_q0 > 0)) { 1451 mutex_exit(&listener->tcp_eager_lock); 1452 TCP_STAT(tcps, tcp_listen_mem_drop); 1453 goto error2; 1454 } 1455 1456 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1457 mutex_exit(&listener->tcp_eager_lock); 1458 TCP_STAT(tcps, tcp_listendrop); 1459 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1460 if (lconnp->conn_debug) { 1461 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1462 "tcp_input_listener: listen backlog (max=%d) " 1463 "overflow (%d pending) on %s", 1464 listener->tcp_conn_req_max, 1465 listener->tcp_conn_req_cnt_q, 1466 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1467 } 1468 goto error2; 1469 } 1470 1471 if (listener->tcp_conn_req_cnt_q0 >= 1472 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1473 /* 1474 * Q0 is full. Drop a pending half-open req from the queue 1475 * to make room for the new SYN req. Also mark the time we 1476 * drop a SYN. 1477 * 1478 * A more aggressive defense against SYN attack will 1479 * be to set the "tcp_syn_defense" flag now. 1480 */ 1481 TCP_STAT(tcps, tcp_listendropq0); 1482 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1483 if (!tcp_drop_q0(listener)) { 1484 mutex_exit(&listener->tcp_eager_lock); 1485 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1486 if (lconnp->conn_debug) { 1487 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1488 "tcp_input_listener: listen half-open " 1489 "queue (max=%d) full (%d pending) on %s", 1490 tcps->tcps_conn_req_max_q0, 1491 listener->tcp_conn_req_cnt_q0, 1492 tcp_display(listener, NULL, 1493 DISP_PORT_ONLY)); 1494 } 1495 goto error2; 1496 } 1497 } 1498 1499 /* 1500 * Enforce the limit set on the number of connections per listener. 1501 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1502 * for comparison. 1503 */ 1504 if (listener->tcp_listen_cnt != NULL) { 1505 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1506 int64_t now; 1507 1508 if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) { 1509 mutex_exit(&listener->tcp_eager_lock); 1510 now = ddi_get_lbolt64(); 1511 atomic_dec_32(&tlc->tlc_cnt); 1512 TCP_STAT(tcps, tcp_listen_cnt_drop); 1513 tlc->tlc_drop++; 1514 if (now - tlc->tlc_report_time > 1515 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1516 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1517 "Listener (port %d) connection max (%u) " 1518 "reached: %u attempts dropped total\n", 1519 ntohs(listener->tcp_connp->conn_lport), 1520 tlc->tlc_max, tlc->tlc_drop); 1521 tlc->tlc_report_time = now; 1522 } 1523 goto error2; 1524 } 1525 tlc_set = B_TRUE; 1526 } 1527 1528 mutex_exit(&listener->tcp_eager_lock); 1529 1530 /* 1531 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1532 * or based on the ring (for packets from GLD). Otherwise it is 1533 * set based on lbolt i.e., a somewhat random number. 1534 */ 1535 ASSERT(ira->ira_sqp != NULL); 1536 new_sqp = ira->ira_sqp; 1537 1538 econnp = tcp_get_conn(arg2, tcps); 1539 if (econnp == NULL) 1540 goto error2; 1541 1542 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1543 econnp->conn_sqp = new_sqp; 1544 econnp->conn_initial_sqp = new_sqp; 1545 econnp->conn_ixa->ixa_sqp = new_sqp; 1546 1547 econnp->conn_fport = tcpha->tha_lport; 1548 econnp->conn_lport = tcpha->tha_fport; 1549 1550 err = conn_inherit_parent(lconnp, econnp); 1551 if (err != 0) 1552 goto error3; 1553 1554 /* We already know the laddr of the new connection is ours */ 1555 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1556 1557 ASSERT(OK_32PTR(mp->b_rptr)); 1558 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1559 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1560 1561 if (lconnp->conn_family == AF_INET) { 1562 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1563 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1564 } else { 1565 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1566 } 1567 1568 if (tpi_mp == NULL) 1569 goto error3; 1570 1571 eager = econnp->conn_tcp; 1572 eager->tcp_detached = B_TRUE; 1573 SOCK_CONNID_INIT(eager->tcp_connid); 1574 1575 /* 1576 * Initialize the eager's tcp_t and inherit some parameters from 1577 * the listener. 1578 */ 1579 tcp_init_values(eager, listener); 1580 1581 ASSERT((econnp->conn_ixa->ixa_flags & 1582 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1583 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1584 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1585 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1586 1587 if (!tcps->tcps_dev_flow_ctl) 1588 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1589 1590 /* Prepare for diffing against previous packets */ 1591 eager->tcp_recvifindex = 0; 1592 eager->tcp_recvhops = 0xffffffffU; 1593 1594 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1595 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1596 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1597 econnp->conn_incoming_ifindex = ifindex; 1598 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1599 econnp->conn_ixa->ixa_scopeid = ifindex; 1600 } 1601 } 1602 1603 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1604 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1605 tcps->tcps_rev_src_routes) { 1606 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1607 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1608 1609 /* Source routing option copyover (reverse it) */ 1610 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1611 if (err != 0) { 1612 freemsg(tpi_mp); 1613 goto error3; 1614 } 1615 ip_pkt_source_route_reverse_v4(ipp); 1616 } 1617 1618 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1619 ASSERT(!eager->tcp_tconnind_started); 1620 /* 1621 * If the SYN came with a credential, it's a loopback packet or a 1622 * labeled packet; attach the credential to the TPI message. 1623 */ 1624 if (ira->ira_cred != NULL) 1625 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1626 1627 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1628 ASSERT(eager->tcp_ordrel_mp == NULL); 1629 1630 /* Inherit the listener's non-STREAMS flag */ 1631 if (IPCL_IS_NONSTR(lconnp)) { 1632 econnp->conn_flags |= IPCL_NONSTR; 1633 /* All non-STREAMS tcp_ts are sockets */ 1634 eager->tcp_issocket = B_TRUE; 1635 } else { 1636 /* 1637 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1638 * at close time, we will always have that to send up. 1639 * Otherwise, we need to do special handling in case the 1640 * allocation fails at that time. 1641 */ 1642 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1643 goto error3; 1644 } 1645 /* 1646 * Now that the IP addresses and ports are setup in econnp we 1647 * can do the IPsec policy work. 1648 */ 1649 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1650 if (lconnp->conn_policy != NULL) { 1651 /* 1652 * Inherit the policy from the listener; use 1653 * actions from ira 1654 */ 1655 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1656 CONN_DEC_REF(econnp); 1657 freemsg(mp); 1658 goto error3; 1659 } 1660 } 1661 } 1662 1663 /* 1664 * tcp_set_destination() may set tcp_rwnd according to the route 1665 * metrics. If it does not, the eager's receive window will be set 1666 * to the listener's receive window later in this function. 1667 */ 1668 eager->tcp_rwnd = 0; 1669 1670 if (is_system_labeled()) { 1671 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1672 1673 ASSERT(ira->ira_tsl != NULL); 1674 /* Discard any old label */ 1675 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1676 ASSERT(ixa->ixa_tsl != NULL); 1677 label_rele(ixa->ixa_tsl); 1678 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1679 ixa->ixa_tsl = NULL; 1680 } 1681 if ((lconnp->conn_mlp_type != mlptSingle || 1682 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1683 ira->ira_tsl != NULL) { 1684 /* 1685 * If this is an MLP connection or a MAC-Exempt 1686 * connection with an unlabeled node, packets are to be 1687 * exchanged using the security label of the received 1688 * SYN packet instead of the server application's label. 1689 * tsol_check_dest called from ip_set_destination 1690 * might later update TSF_UNLABELED by replacing 1691 * ixa_tsl with a new label. 1692 */ 1693 label_hold(ira->ira_tsl); 1694 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1695 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1696 econnp, ts_label_t *, ixa->ixa_tsl) 1697 } else { 1698 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1699 DTRACE_PROBE2(syn_accept, conn_t *, 1700 econnp, ts_label_t *, ixa->ixa_tsl) 1701 } 1702 /* 1703 * conn_connect() called from tcp_set_destination will verify 1704 * the destination is allowed to receive packets at the 1705 * security label of the SYN-ACK we are generating. As part of 1706 * that, tsol_check_dest() may create a new effective label for 1707 * this connection. 1708 * Finally conn_connect() will call conn_update_label. 1709 * All that remains for TCP to do is to call 1710 * conn_build_hdr_template which is done as part of 1711 * tcp_set_destination. 1712 */ 1713 } 1714 1715 /* 1716 * Since we will clear tcp_listener before we clear tcp_detached 1717 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1718 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1719 */ 1720 eager->tcp_hard_binding = B_TRUE; 1721 1722 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1723 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1724 1725 CL_INET_CONNECT(econnp, B_FALSE, err); 1726 if (err != 0) { 1727 tcp_bind_hash_remove(eager); 1728 goto error3; 1729 } 1730 1731 SOCK_CONNID_BUMP(eager->tcp_connid); 1732 1733 /* 1734 * Adapt our mss, ttl, ... based on the remote address. 1735 */ 1736 1737 if (tcp_set_destination(eager) != 0) { 1738 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1739 /* Undo the bind_hash_insert */ 1740 tcp_bind_hash_remove(eager); 1741 goto error3; 1742 } 1743 1744 /* Process all TCP options. */ 1745 tcp_process_options(eager, tcpha); 1746 1747 /* Is the other end ECN capable? */ 1748 if (tcps->tcps_ecn_permitted >= 1 && 1749 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1750 eager->tcp_ecn_ok = B_TRUE; 1751 } 1752 1753 /* 1754 * The listener's conn_rcvbuf should be the default window size or a 1755 * window size changed via SO_RCVBUF option. First round up the 1756 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1757 * scale option value if needed. Call tcp_rwnd_set() to finish the 1758 * setting. 1759 * 1760 * Note if there is a rpipe metric associated with the remote host, 1761 * we should not inherit receive window size from listener. 1762 */ 1763 eager->tcp_rwnd = MSS_ROUNDUP( 1764 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1765 eager->tcp_rwnd), eager->tcp_mss); 1766 if (eager->tcp_snd_ws_ok) 1767 tcp_set_ws_value(eager); 1768 /* 1769 * Note that this is the only place tcp_rwnd_set() is called for 1770 * accepting a connection. We need to call it here instead of 1771 * after the 3-way handshake because we need to tell the other 1772 * side our rwnd in the SYN-ACK segment. 1773 */ 1774 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1775 1776 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1777 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1778 1779 ASSERT(econnp->conn_rcvbuf != 0 && 1780 econnp->conn_rcvbuf == eager->tcp_rwnd); 1781 1782 /* Put a ref on the listener for the eager. */ 1783 CONN_INC_REF(lconnp); 1784 mutex_enter(&listener->tcp_eager_lock); 1785 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1786 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1787 listener->tcp_eager_next_q0 = eager; 1788 eager->tcp_eager_prev_q0 = listener; 1789 1790 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1791 eager->tcp_listener = listener; 1792 eager->tcp_saved_listener = listener; 1793 1794 /* 1795 * Set tcp_listen_cnt so that when the connection is done, the counter 1796 * is decremented. 1797 */ 1798 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1799 1800 /* 1801 * Tag this detached tcp vector for later retrieval 1802 * by our listener client in tcp_accept(). 1803 */ 1804 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1805 listener->tcp_conn_req_cnt_q0++; 1806 if (++listener->tcp_conn_req_seqnum == -1) { 1807 /* 1808 * -1 is "special" and defined in TPI as something 1809 * that should never be used in T_CONN_IND 1810 */ 1811 ++listener->tcp_conn_req_seqnum; 1812 } 1813 mutex_exit(&listener->tcp_eager_lock); 1814 1815 if (listener->tcp_syn_defense) { 1816 /* Don't drop the SYN that comes from a good IP source */ 1817 ipaddr_t *addr_cache; 1818 1819 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1820 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1821 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1822 eager->tcp_dontdrop = B_TRUE; 1823 } 1824 } 1825 1826 /* 1827 * We need to insert the eager in its own perimeter but as soon 1828 * as we do that, we expose the eager to the classifier and 1829 * should not touch any field outside the eager's perimeter. 1830 * So do all the work necessary before inserting the eager 1831 * in its own perimeter. Be optimistic that conn_connect() 1832 * will succeed but undo everything if it fails. 1833 */ 1834 seg_seq = ntohl(tcpha->tha_seq); 1835 eager->tcp_irs = seg_seq; 1836 eager->tcp_rack = seg_seq; 1837 eager->tcp_rnxt = seg_seq + 1; 1838 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1839 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1840 eager->tcp_state = TCPS_SYN_RCVD; 1841 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1842 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1843 int32_t, TCPS_LISTEN); 1844 1845 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1846 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1847 if (mp1 == NULL) { 1848 /* 1849 * Increment the ref count as we are going to 1850 * enqueueing an mp in squeue 1851 */ 1852 CONN_INC_REF(econnp); 1853 goto error; 1854 } 1855 1856 /* 1857 * We need to start the rto timer. In normal case, we start 1858 * the timer after sending the packet on the wire (or at 1859 * least believing that packet was sent by waiting for 1860 * conn_ip_output() to return). Since this is the first packet 1861 * being sent on the wire for the eager, our initial tcp_rto 1862 * is at least tcp_rexmit_interval_min which is a fairly 1863 * large value to allow the algorithm to adjust slowly to large 1864 * fluctuations of RTT during first few transmissions. 1865 * 1866 * Starting the timer first and then sending the packet in this 1867 * case shouldn't make much difference since tcp_rexmit_interval_min 1868 * is of the order of several 100ms and starting the timer 1869 * first and then sending the packet will result in difference 1870 * of few micro seconds. 1871 * 1872 * Without this optimization, we are forced to hold the fanout 1873 * lock across the ipcl_bind_insert() and sending the packet 1874 * so that we don't race against an incoming packet (maybe RST) 1875 * for this eager. 1876 * 1877 * It is necessary to acquire an extra reference on the eager 1878 * at this point and hold it until after tcp_send_data() to 1879 * ensure against an eager close race. 1880 */ 1881 1882 CONN_INC_REF(econnp); 1883 1884 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1885 1886 /* 1887 * Insert the eager in its own perimeter now. We are ready to deal 1888 * with any packets on eager. 1889 */ 1890 if (ipcl_conn_insert(econnp) != 0) 1891 goto error; 1892 1893 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1894 freemsg(mp); 1895 /* 1896 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1897 * only used by one thread at a time. 1898 */ 1899 if (econnp->conn_sqp == lconnp->conn_sqp) { 1900 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1901 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1902 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1903 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1904 (void) conn_ip_output(mp1, econnp->conn_ixa); 1905 CONN_DEC_REF(econnp); 1906 } else { 1907 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1908 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1909 } 1910 return; 1911 error: 1912 freemsg(mp1); 1913 eager->tcp_closemp_used = B_TRUE; 1914 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1915 mp1 = &eager->tcp_closemp; 1916 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1917 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1918 1919 /* 1920 * If a connection already exists, send the mp to that connections so 1921 * that it can be appropriately dealt with. 1922 */ 1923 ipst = tcps->tcps_netstack->netstack_ip; 1924 1925 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1926 if (!IPCL_IS_CONNECTED(econnp)) { 1927 /* 1928 * Something bad happened. ipcl_conn_insert() 1929 * failed because a connection already existed 1930 * in connected hash but we can't find it 1931 * anymore (someone blew it away). Just 1932 * free this message and hopefully remote 1933 * will retransmit at which time the SYN can be 1934 * treated as a new connection or dealth with 1935 * a TH_RST if a connection already exists. 1936 */ 1937 CONN_DEC_REF(econnp); 1938 freemsg(mp); 1939 } else { 1940 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1941 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1942 } 1943 } else { 1944 /* Nobody wants this packet */ 1945 freemsg(mp); 1946 } 1947 return; 1948 error3: 1949 CONN_DEC_REF(econnp); 1950 error2: 1951 freemsg(mp); 1952 if (tlc_set) 1953 atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt); 1954 } 1955 1956 /* 1957 * In an ideal case of vertical partition in NUMA architecture, its 1958 * beneficial to have the listener and all the incoming connections 1959 * tied to the same squeue. The other constraint is that incoming 1960 * connections should be tied to the squeue attached to interrupted 1961 * CPU for obvious locality reason so this leaves the listener to 1962 * be tied to the same squeue. Our only problem is that when listener 1963 * is binding, the CPU that will get interrupted by the NIC whose 1964 * IP address the listener is binding to is not even known. So 1965 * the code below allows us to change that binding at the time the 1966 * CPU is interrupted by virtue of incoming connection's squeue. 1967 * 1968 * This is usefull only in case of a listener bound to a specific IP 1969 * address. For other kind of listeners, they get bound the 1970 * very first time and there is no attempt to rebind them. 1971 */ 1972 void 1973 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1974 ip_recv_attr_t *ira) 1975 { 1976 conn_t *connp = (conn_t *)arg; 1977 squeue_t *sqp = (squeue_t *)arg2; 1978 squeue_t *new_sqp; 1979 uint32_t conn_flags; 1980 1981 /* 1982 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1983 * or based on the ring (for packets from GLD). Otherwise it is 1984 * set based on lbolt i.e., a somewhat random number. 1985 */ 1986 ASSERT(ira->ira_sqp != NULL); 1987 new_sqp = ira->ira_sqp; 1988 1989 if (connp->conn_fanout == NULL) 1990 goto done; 1991 1992 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1993 mutex_enter(&connp->conn_fanout->connf_lock); 1994 mutex_enter(&connp->conn_lock); 1995 /* 1996 * No one from read or write side can access us now 1997 * except for already queued packets on this squeue. 1998 * But since we haven't changed the squeue yet, they 1999 * can't execute. If they are processed after we have 2000 * changed the squeue, they are sent back to the 2001 * correct squeue down below. 2002 * But a listner close can race with processing of 2003 * incoming SYN. If incoming SYN processing changes 2004 * the squeue then the listener close which is waiting 2005 * to enter the squeue would operate on the wrong 2006 * squeue. Hence we don't change the squeue here unless 2007 * the refcount is exactly the minimum refcount. The 2008 * minimum refcount of 4 is counted as - 1 each for 2009 * TCP and IP, 1 for being in the classifier hash, and 2010 * 1 for the mblk being processed. 2011 */ 2012 2013 if (connp->conn_ref != 4 || 2014 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 2015 mutex_exit(&connp->conn_lock); 2016 mutex_exit(&connp->conn_fanout->connf_lock); 2017 goto done; 2018 } 2019 if (connp->conn_sqp != new_sqp) { 2020 while (connp->conn_sqp != new_sqp) 2021 (void) atomic_cas_ptr(&connp->conn_sqp, sqp, 2022 new_sqp); 2023 /* No special MT issues for outbound ixa_sqp hint */ 2024 connp->conn_ixa->ixa_sqp = new_sqp; 2025 } 2026 2027 do { 2028 conn_flags = connp->conn_flags; 2029 conn_flags |= IPCL_FULLY_BOUND; 2030 (void) atomic_cas_32(&connp->conn_flags, 2031 connp->conn_flags, conn_flags); 2032 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 2033 2034 mutex_exit(&connp->conn_fanout->connf_lock); 2035 mutex_exit(&connp->conn_lock); 2036 2037 /* 2038 * Assume we have picked a good squeue for the listener. Make 2039 * subsequent SYNs not try to change the squeue. 2040 */ 2041 connp->conn_recv = tcp_input_listener; 2042 } 2043 2044 done: 2045 if (connp->conn_sqp != sqp) { 2046 CONN_INC_REF(connp); 2047 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 2048 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 2049 } else { 2050 tcp_input_listener(connp, mp, sqp, ira); 2051 } 2052 } 2053 2054 /* 2055 * Send up all messages queued on tcp_rcv_list. 2056 */ 2057 uint_t 2058 tcp_rcv_drain(tcp_t *tcp) 2059 { 2060 mblk_t *mp; 2061 uint_t ret = 0; 2062 #ifdef DEBUG 2063 uint_t cnt = 0; 2064 #endif 2065 queue_t *q = tcp->tcp_connp->conn_rq; 2066 2067 /* Can't drain on an eager connection */ 2068 if (tcp->tcp_listener != NULL) 2069 return (ret); 2070 2071 /* Can't be a non-STREAMS connection */ 2072 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 2073 2074 /* No need for the push timer now. */ 2075 if (tcp->tcp_push_tid != 0) { 2076 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2077 tcp->tcp_push_tid = 0; 2078 } 2079 2080 /* 2081 * Handle two cases here: we are currently fused or we were 2082 * previously fused and have some urgent data to be delivered 2083 * upstream. The latter happens because we either ran out of 2084 * memory or were detached and therefore sending the SIGURG was 2085 * deferred until this point. In either case we pass control 2086 * over to tcp_fuse_rcv_drain() since it may need to complete 2087 * some work. 2088 */ 2089 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2090 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2091 &tcp->tcp_fused_sigurg_mp)) 2092 return (ret); 2093 } 2094 2095 while ((mp = tcp->tcp_rcv_list) != NULL) { 2096 tcp->tcp_rcv_list = mp->b_next; 2097 mp->b_next = NULL; 2098 #ifdef DEBUG 2099 cnt += msgdsize(mp); 2100 #endif 2101 putnext(q, mp); 2102 } 2103 #ifdef DEBUG 2104 ASSERT(cnt == tcp->tcp_rcv_cnt); 2105 #endif 2106 tcp->tcp_rcv_last_head = NULL; 2107 tcp->tcp_rcv_last_tail = NULL; 2108 tcp->tcp_rcv_cnt = 0; 2109 2110 if (canputnext(q)) 2111 return (tcp_rwnd_reopen(tcp)); 2112 2113 return (ret); 2114 } 2115 2116 /* 2117 * Queue data on tcp_rcv_list which is a b_next chain. 2118 * tcp_rcv_last_head/tail is the last element of this chain. 2119 * Each element of the chain is a b_cont chain. 2120 * 2121 * M_DATA messages are added to the current element. 2122 * Other messages are added as new (b_next) elements. 2123 */ 2124 void 2125 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2126 { 2127 ASSERT(seg_len == msgdsize(mp)); 2128 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2129 2130 if (is_system_labeled()) { 2131 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2132 /* 2133 * Provide for protocols above TCP such as RPC. NOPID leaves 2134 * db_cpid unchanged. 2135 * The cred could have already been set. 2136 */ 2137 if (cr != NULL) 2138 mblk_setcred(mp, cr, NOPID); 2139 } 2140 2141 if (tcp->tcp_rcv_list == NULL) { 2142 ASSERT(tcp->tcp_rcv_last_head == NULL); 2143 tcp->tcp_rcv_list = mp; 2144 tcp->tcp_rcv_last_head = mp; 2145 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2146 tcp->tcp_rcv_last_tail->b_cont = mp; 2147 } else { 2148 tcp->tcp_rcv_last_head->b_next = mp; 2149 tcp->tcp_rcv_last_head = mp; 2150 } 2151 2152 while (mp->b_cont) 2153 mp = mp->b_cont; 2154 2155 tcp->tcp_rcv_last_tail = mp; 2156 tcp->tcp_rcv_cnt += seg_len; 2157 tcp->tcp_rwnd -= seg_len; 2158 } 2159 2160 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2161 mblk_t * 2162 tcp_ack_mp(tcp_t *tcp) 2163 { 2164 uint32_t seq_no; 2165 tcp_stack_t *tcps = tcp->tcp_tcps; 2166 conn_t *connp = tcp->tcp_connp; 2167 2168 /* 2169 * There are a few cases to be considered while setting the sequence no. 2170 * Essentially, we can come here while processing an unacceptable pkt 2171 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2172 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2173 * If we are here for a zero window probe, stick with suna. In all 2174 * other cases, we check if suna + swnd encompasses snxt and set 2175 * the sequence number to snxt, if so. If snxt falls outside the 2176 * window (the receiver probably shrunk its window), we will go with 2177 * suna + swnd, otherwise the sequence no will be unacceptable to the 2178 * receiver. 2179 */ 2180 if (tcp->tcp_zero_win_probe) { 2181 seq_no = tcp->tcp_suna; 2182 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2183 ASSERT(tcp->tcp_swnd == 0); 2184 seq_no = tcp->tcp_snxt; 2185 } else { 2186 seq_no = SEQ_GT(tcp->tcp_snxt, 2187 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2188 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2189 } 2190 2191 if (tcp->tcp_valid_bits) { 2192 /* 2193 * For the complex case where we have to send some 2194 * controls (FIN or SYN), let tcp_xmit_mp do it. 2195 */ 2196 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2197 NULL, B_FALSE)); 2198 } else { 2199 /* Generate a simple ACK */ 2200 int data_length; 2201 uchar_t *rptr; 2202 tcpha_t *tcpha; 2203 mblk_t *mp1; 2204 int32_t total_hdr_len; 2205 int32_t tcp_hdr_len; 2206 int32_t num_sack_blk = 0; 2207 int32_t sack_opt_len; 2208 ip_xmit_attr_t *ixa = connp->conn_ixa; 2209 2210 /* 2211 * Allocate space for TCP + IP headers 2212 * and link-level header 2213 */ 2214 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2215 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2216 tcp->tcp_num_sack_blk); 2217 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2218 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2219 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2220 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2221 } else { 2222 total_hdr_len = connp->conn_ht_iphc_len; 2223 tcp_hdr_len = connp->conn_ht_ulp_len; 2224 } 2225 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2226 if (!mp1) 2227 return (NULL); 2228 2229 /* Update the latest receive window size in TCP header. */ 2230 tcp->tcp_tcpha->tha_win = 2231 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2232 /* copy in prototype TCP + IP header */ 2233 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2234 mp1->b_rptr = rptr; 2235 mp1->b_wptr = rptr + total_hdr_len; 2236 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2237 2238 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2239 2240 /* Set the TCP sequence number. */ 2241 tcpha->tha_seq = htonl(seq_no); 2242 2243 /* Set up the TCP flag field. */ 2244 tcpha->tha_flags = (uchar_t)TH_ACK; 2245 if (tcp->tcp_ecn_echo_on) 2246 tcpha->tha_flags |= TH_ECE; 2247 2248 tcp->tcp_rack = tcp->tcp_rnxt; 2249 tcp->tcp_rack_cnt = 0; 2250 2251 /* fill in timestamp option if in use */ 2252 if (tcp->tcp_snd_ts_ok) { 2253 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2254 2255 U32_TO_BE32(llbolt, 2256 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2257 U32_TO_BE32(tcp->tcp_ts_recent, 2258 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2259 } 2260 2261 /* Fill in SACK options */ 2262 if (num_sack_blk > 0) { 2263 uchar_t *wptr = (uchar_t *)tcpha + 2264 connp->conn_ht_ulp_len; 2265 sack_blk_t *tmp; 2266 int32_t i; 2267 2268 wptr[0] = TCPOPT_NOP; 2269 wptr[1] = TCPOPT_NOP; 2270 wptr[2] = TCPOPT_SACK; 2271 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2272 sizeof (sack_blk_t); 2273 wptr += TCPOPT_REAL_SACK_LEN; 2274 2275 tmp = tcp->tcp_sack_list; 2276 for (i = 0; i < num_sack_blk; i++) { 2277 U32_TO_BE32(tmp[i].begin, wptr); 2278 wptr += sizeof (tcp_seq); 2279 U32_TO_BE32(tmp[i].end, wptr); 2280 wptr += sizeof (tcp_seq); 2281 } 2282 tcpha->tha_offset_and_reserved += 2283 ((num_sack_blk * 2 + 1) << 4); 2284 } 2285 2286 ixa->ixa_pktlen = total_hdr_len; 2287 2288 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2289 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2290 } else { 2291 ip6_t *ip6 = (ip6_t *)rptr; 2292 2293 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2294 } 2295 2296 /* 2297 * Prime pump for checksum calculation in IP. Include the 2298 * adjustment for a source route if any. 2299 */ 2300 data_length = tcp_hdr_len + connp->conn_sum; 2301 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2302 tcpha->tha_sum = htons(data_length); 2303 2304 if (tcp->tcp_ip_forward_progress) { 2305 tcp->tcp_ip_forward_progress = B_FALSE; 2306 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2307 } else { 2308 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2309 } 2310 return (mp1); 2311 } 2312 } 2313 2314 /* 2315 * Dummy socket upcalls for if/when the conn_t gets detached from a 2316 * direct-callback sonode via a user-driven close(). Easy to catch with 2317 * DTrace FBT, and should be mostly harmless. 2318 */ 2319 2320 /* ARGSUSED */ 2321 static sock_upper_handle_t 2322 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y, 2323 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored) 2324 { 2325 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2326 return (NULL); 2327 } 2328 2329 /* ARGSUSED */ 2330 static void 2331 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr, 2332 pid_t pid) 2333 { 2334 ASSERT(x == NULL); 2335 /* Normally we'd crhold(cr) and attach it to socket state. */ 2336 /* LINTED */ 2337 } 2338 2339 /* ARGSUSED */ 2340 static int 2341 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah) 2342 { 2343 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2344 return (-1); 2345 } 2346 2347 /* ARGSUSED */ 2348 static void 2349 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah) 2350 { 2351 ASSERT(x == NULL); 2352 /* We really want this one to be a harmless NOP for now. */ 2353 /* LINTED */ 2354 } 2355 2356 /* ARGSUSED */ 2357 static ssize_t 2358 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags, 2359 int *error, boolean_t *push) 2360 { 2361 ASSERT(x == NULL); 2362 2363 /* 2364 * Consume the message, set ESHUTDOWN, and return an error. 2365 * Nobody's home! 2366 */ 2367 freemsg(mp); 2368 *error = ESHUTDOWN; 2369 return (-1); 2370 } 2371 2372 /* ARGSUSED */ 2373 static void 2374 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y) 2375 { 2376 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2377 } 2378 2379 /* ARGSUSED */ 2380 static void 2381 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y) 2382 { 2383 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2384 } 2385 2386 /* ARGSUSED */ 2387 static void 2388 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len) 2389 { 2390 ASSERT(x == NULL); 2391 /* Otherwise, this would signal socket state about OOB data. */ 2392 } 2393 2394 /* ARGSUSED */ 2395 static void 2396 tcp_dummy_set_error(sock_upper_handle_t x, int err) 2397 { 2398 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2399 } 2400 2401 /* ARGSUSED */ 2402 static void 2403 tcp_dummy_onearg(sock_upper_handle_t x) 2404 { 2405 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2406 } 2407 2408 static sock_upcalls_t tcp_dummy_upcalls = { 2409 tcp_dummy_newconn, 2410 tcp_dummy_connected, 2411 tcp_dummy_disconnected, 2412 tcp_dummy_opctl, 2413 tcp_dummy_recv, 2414 tcp_dummy_set_proto_props, 2415 tcp_dummy_txq_full, 2416 tcp_dummy_signal_oob, 2417 tcp_dummy_onearg, 2418 tcp_dummy_set_error, 2419 tcp_dummy_onearg 2420 }; 2421 2422 /* 2423 * Handle M_DATA messages from IP. Its called directly from IP via 2424 * squeue for received IP packets. 2425 * 2426 * The first argument is always the connp/tcp to which the mp belongs. 2427 * There are no exceptions to this rule. The caller has already put 2428 * a reference on this connp/tcp and once tcp_input_data() returns, 2429 * the squeue will do the refrele. 2430 * 2431 * The TH_SYN for the listener directly go to tcp_input_listener via 2432 * squeue. ICMP errors go directly to tcp_icmp_input(). 2433 * 2434 * sqp: NULL = recursive, sqp != NULL means called from squeue 2435 */ 2436 void 2437 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2438 { 2439 int32_t bytes_acked; 2440 int32_t gap; 2441 mblk_t *mp1; 2442 uint_t flags; 2443 uint32_t new_swnd = 0; 2444 uchar_t *iphdr; 2445 uchar_t *rptr; 2446 int32_t rgap; 2447 uint32_t seg_ack; 2448 int seg_len; 2449 uint_t ip_hdr_len; 2450 uint32_t seg_seq; 2451 tcpha_t *tcpha; 2452 int urp; 2453 tcp_opt_t tcpopt; 2454 ip_pkt_t ipp; 2455 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2456 uint32_t cwnd; 2457 int mss; 2458 conn_t *connp = (conn_t *)arg; 2459 squeue_t *sqp = (squeue_t *)arg2; 2460 tcp_t *tcp = connp->conn_tcp; 2461 tcp_stack_t *tcps = tcp->tcp_tcps; 2462 sock_upcalls_t *sockupcalls; 2463 2464 /* 2465 * RST from fused tcp loopback peer should trigger an unfuse. 2466 */ 2467 if (tcp->tcp_fused) { 2468 TCP_STAT(tcps, tcp_fusion_aborted); 2469 tcp_unfuse(tcp); 2470 } 2471 2472 iphdr = mp->b_rptr; 2473 rptr = mp->b_rptr; 2474 ASSERT(OK_32PTR(rptr)); 2475 2476 ip_hdr_len = ira->ira_ip_hdr_length; 2477 if (connp->conn_recv_ancillary.crb_all != 0) { 2478 /* 2479 * Record packet information in the ip_pkt_t 2480 */ 2481 ipp.ipp_fields = 0; 2482 if (ira->ira_flags & IRAF_IS_IPV4) { 2483 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2484 B_FALSE); 2485 } else { 2486 uint8_t nexthdrp; 2487 2488 /* 2489 * IPv6 packets can only be received by applications 2490 * that are prepared to receive IPv6 addresses. 2491 * The IP fanout must ensure this. 2492 */ 2493 ASSERT(connp->conn_family == AF_INET6); 2494 2495 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2496 &nexthdrp); 2497 ASSERT(nexthdrp == IPPROTO_TCP); 2498 2499 /* Could have caused a pullup? */ 2500 iphdr = mp->b_rptr; 2501 rptr = mp->b_rptr; 2502 } 2503 } 2504 ASSERT(DB_TYPE(mp) == M_DATA); 2505 ASSERT(mp->b_next == NULL); 2506 2507 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2508 seg_seq = ntohl(tcpha->tha_seq); 2509 seg_ack = ntohl(tcpha->tha_ack); 2510 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2511 seg_len = (int)(mp->b_wptr - rptr) - 2512 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2513 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2514 do { 2515 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2516 (uintptr_t)INT_MAX); 2517 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2518 } while ((mp1 = mp1->b_cont) != NULL && 2519 mp1->b_datap->db_type == M_DATA); 2520 } 2521 2522 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2523 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2524 __dtrace_tcp_tcph_t *, tcpha); 2525 2526 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2527 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2528 seg_len, tcpha, ira); 2529 return; 2530 } 2531 2532 if (sqp != NULL) { 2533 /* 2534 * This is the correct place to update tcp_last_recv_time. Note 2535 * that it is also updated for tcp structure that belongs to 2536 * global and listener queues which do not really need updating. 2537 * But that should not cause any harm. And it is updated for 2538 * all kinds of incoming segments, not only for data segments. 2539 */ 2540 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2541 } 2542 2543 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2544 2545 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 2546 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2547 2548 if ((flags & TH_URG) && sqp != NULL) { 2549 /* 2550 * TCP can't handle urgent pointers that arrive before 2551 * the connection has been accept()ed since it can't 2552 * buffer OOB data. Discard segment if this happens. 2553 * 2554 * We can't just rely on a non-null tcp_listener to indicate 2555 * that the accept() has completed since unlinking of the 2556 * eager and completion of the accept are not atomic. 2557 * tcp_detached, when it is not set (B_FALSE) indicates 2558 * that the accept() has completed. 2559 * 2560 * Nor can it reassemble urgent pointers, so discard 2561 * if it's not the next segment expected. 2562 * 2563 * Otherwise, collapse chain into one mblk (discard if 2564 * that fails). This makes sure the headers, retransmitted 2565 * data, and new data all are in the same mblk. 2566 */ 2567 ASSERT(mp != NULL); 2568 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2569 freemsg(mp); 2570 return; 2571 } 2572 /* Update pointers into message */ 2573 iphdr = rptr = mp->b_rptr; 2574 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2575 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2576 /* 2577 * Since we can't handle any data with this urgent 2578 * pointer that is out of sequence, we expunge 2579 * the data. This allows us to still register 2580 * the urgent mark and generate the M_PCSIG, 2581 * which we can do. 2582 */ 2583 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2584 seg_len = 0; 2585 } 2586 } 2587 2588 sockupcalls = connp->conn_upcalls; 2589 /* A conn_t may have belonged to a now-closed socket. Be careful. */ 2590 if (sockupcalls == NULL) 2591 sockupcalls = &tcp_dummy_upcalls; 2592 2593 switch (tcp->tcp_state) { 2594 case TCPS_SYN_SENT: 2595 if (connp->conn_final_sqp == NULL && 2596 tcp_outbound_squeue_switch && sqp != NULL) { 2597 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2598 connp->conn_final_sqp = sqp; 2599 if (connp->conn_final_sqp != connp->conn_sqp) { 2600 DTRACE_PROBE1(conn__final__sqp__switch, 2601 conn_t *, connp); 2602 CONN_INC_REF(connp); 2603 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2604 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2605 tcp_input_data, connp, ira, ip_squeue_flag, 2606 SQTAG_CONNECT_FINISH); 2607 return; 2608 } 2609 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2610 } 2611 if (flags & TH_ACK) { 2612 /* 2613 * Note that our stack cannot send data before a 2614 * connection is established, therefore the 2615 * following check is valid. Otherwise, it has 2616 * to be changed. 2617 */ 2618 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2619 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2620 freemsg(mp); 2621 if (flags & TH_RST) 2622 return; 2623 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2624 tcp, seg_ack, 0, TH_RST); 2625 return; 2626 } 2627 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2628 } 2629 if (flags & TH_RST) { 2630 if (flags & TH_ACK) { 2631 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2632 ip_xmit_attr_t *, connp->conn_ixa, 2633 void_ip_t *, iphdr, tcp_t *, tcp, 2634 tcph_t *, tcpha); 2635 (void) tcp_clean_death(tcp, ECONNREFUSED); 2636 } 2637 freemsg(mp); 2638 return; 2639 } 2640 if (!(flags & TH_SYN)) { 2641 freemsg(mp); 2642 return; 2643 } 2644 2645 /* Process all TCP options. */ 2646 tcp_process_options(tcp, tcpha); 2647 /* 2648 * The following changes our rwnd to be a multiple of the 2649 * MIN(peer MSS, our MSS) for performance reason. 2650 */ 2651 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2652 tcp->tcp_mss)); 2653 2654 /* Is the other end ECN capable? */ 2655 if (tcp->tcp_ecn_ok) { 2656 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2657 tcp->tcp_ecn_ok = B_FALSE; 2658 } 2659 } 2660 /* 2661 * Clear ECN flags because it may interfere with later 2662 * processing. 2663 */ 2664 flags &= ~(TH_ECE|TH_CWR); 2665 2666 tcp->tcp_irs = seg_seq; 2667 tcp->tcp_rack = seg_seq; 2668 tcp->tcp_rnxt = seg_seq + 1; 2669 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2670 if (!TCP_IS_DETACHED(tcp)) { 2671 /* Allocate room for SACK options if needed. */ 2672 connp->conn_wroff = connp->conn_ht_iphc_len; 2673 if (tcp->tcp_snd_sack_ok) 2674 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2675 if (!tcp->tcp_loopback) 2676 connp->conn_wroff += tcps->tcps_wroff_xtra; 2677 2678 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2679 connp->conn_wroff); 2680 } 2681 if (flags & TH_ACK) { 2682 /* 2683 * If we can't get the confirmation upstream, pretend 2684 * we didn't even see this one. 2685 * 2686 * XXX: how can we pretend we didn't see it if we 2687 * have updated rnxt et. al. 2688 * 2689 * For loopback we defer sending up the T_CONN_CON 2690 * until after some checks below. 2691 */ 2692 mp1 = NULL; 2693 /* 2694 * tcp_sendmsg() checks tcp_state without entering 2695 * the squeue so tcp_state should be updated before 2696 * sending up connection confirmation. Probe the 2697 * state change below when we are sure the connection 2698 * confirmation has been sent. 2699 */ 2700 tcp->tcp_state = TCPS_ESTABLISHED; 2701 if (!tcp_conn_con(tcp, iphdr, mp, 2702 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2703 tcp->tcp_state = TCPS_SYN_SENT; 2704 freemsg(mp); 2705 return; 2706 } 2707 TCPS_CONN_INC(tcps); 2708 /* SYN was acked - making progress */ 2709 tcp->tcp_ip_forward_progress = B_TRUE; 2710 2711 /* One for the SYN */ 2712 tcp->tcp_suna = tcp->tcp_iss + 1; 2713 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2714 2715 /* 2716 * If SYN was retransmitted, need to reset all 2717 * retransmission info. This is because this 2718 * segment will be treated as a dup ACK. 2719 */ 2720 if (tcp->tcp_rexmit) { 2721 tcp->tcp_rexmit = B_FALSE; 2722 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2723 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2724 tcp->tcp_ms_we_have_waited = 0; 2725 2726 /* 2727 * Set tcp_cwnd back to 1 MSS, per 2728 * recommendation from 2729 * draft-floyd-incr-init-win-01.txt, 2730 * Increasing TCP's Initial Window. 2731 */ 2732 DTRACE_PROBE3(cwnd__retransmitted__syn, 2733 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 2734 uint32_t, tcp->tcp_mss); 2735 tcp->tcp_cwnd = tcp->tcp_mss; 2736 } 2737 2738 tcp->tcp_swl1 = seg_seq; 2739 tcp->tcp_swl2 = seg_ack; 2740 2741 new_swnd = ntohs(tcpha->tha_win); 2742 tcp->tcp_swnd = new_swnd; 2743 if (new_swnd > tcp->tcp_max_swnd) 2744 tcp->tcp_max_swnd = new_swnd; 2745 2746 /* 2747 * Always send the three-way handshake ack immediately 2748 * in order to make the connection complete as soon as 2749 * possible on the accepting host. 2750 */ 2751 flags |= TH_ACK_NEEDED; 2752 2753 /* 2754 * Trace connect-established here. 2755 */ 2756 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2757 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2758 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2759 2760 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2761 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2762 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2763 void, NULL, int32_t, TCPS_SYN_SENT); 2764 2765 /* 2766 * Special case for loopback. At this point we have 2767 * received SYN-ACK from the remote endpoint. In 2768 * order to ensure that both endpoints reach the 2769 * fused state prior to any data exchange, the final 2770 * ACK needs to be sent before we indicate T_CONN_CON 2771 * to the module upstream. 2772 */ 2773 if (tcp->tcp_loopback) { 2774 mblk_t *ack_mp; 2775 2776 ASSERT(!tcp->tcp_unfusable); 2777 ASSERT(mp1 != NULL); 2778 /* 2779 * For loopback, we always get a pure SYN-ACK 2780 * and only need to send back the final ACK 2781 * with no data (this is because the other 2782 * tcp is ours and we don't do T/TCP). This 2783 * final ACK triggers the passive side to 2784 * perform fusion in ESTABLISHED state. 2785 */ 2786 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2787 if (tcp->tcp_ack_tid != 0) { 2788 (void) TCP_TIMER_CANCEL(tcp, 2789 tcp->tcp_ack_tid); 2790 tcp->tcp_ack_tid = 0; 2791 } 2792 tcp_send_data(tcp, ack_mp); 2793 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 2794 TCPS_BUMP_MIB(tcps, tcpOutAck); 2795 2796 if (!IPCL_IS_NONSTR(connp)) { 2797 /* Send up T_CONN_CON */ 2798 if (ira->ira_cred != NULL) { 2799 mblk_setcred(mp1, 2800 ira->ira_cred, 2801 ira->ira_cpid); 2802 } 2803 putnext(connp->conn_rq, mp1); 2804 } else { 2805 (*sockupcalls->su_connected) 2806 (connp->conn_upper_handle, 2807 tcp->tcp_connid, 2808 ira->ira_cred, 2809 ira->ira_cpid); 2810 freemsg(mp1); 2811 } 2812 2813 freemsg(mp); 2814 return; 2815 } 2816 /* 2817 * Forget fusion; we need to handle more 2818 * complex cases below. Send the deferred 2819 * T_CONN_CON message upstream and proceed 2820 * as usual. Mark this tcp as not capable 2821 * of fusion. 2822 */ 2823 TCP_STAT(tcps, tcp_fusion_unfusable); 2824 tcp->tcp_unfusable = B_TRUE; 2825 if (!IPCL_IS_NONSTR(connp)) { 2826 if (ira->ira_cred != NULL) { 2827 mblk_setcred(mp1, ira->ira_cred, 2828 ira->ira_cpid); 2829 } 2830 putnext(connp->conn_rq, mp1); 2831 } else { 2832 (*sockupcalls->su_connected) 2833 (connp->conn_upper_handle, 2834 tcp->tcp_connid, ira->ira_cred, 2835 ira->ira_cpid); 2836 freemsg(mp1); 2837 } 2838 } 2839 2840 /* 2841 * Check to see if there is data to be sent. If 2842 * yes, set the transmit flag. Then check to see 2843 * if received data processing needs to be done. 2844 * If not, go straight to xmit_check. This short 2845 * cut is OK as we don't support T/TCP. 2846 */ 2847 if (tcp->tcp_unsent) 2848 flags |= TH_XMIT_NEEDED; 2849 2850 if (seg_len == 0 && !(flags & TH_URG)) { 2851 freemsg(mp); 2852 goto xmit_check; 2853 } 2854 2855 flags &= ~TH_SYN; 2856 seg_seq++; 2857 break; 2858 } 2859 tcp->tcp_state = TCPS_SYN_RCVD; 2860 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2861 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2862 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2863 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2864 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2865 if (mp1 != NULL) { 2866 tcp_send_data(tcp, mp1); 2867 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2868 } 2869 freemsg(mp); 2870 return; 2871 case TCPS_SYN_RCVD: 2872 if (flags & TH_ACK) { 2873 uint32_t pinit_wnd; 2874 2875 /* 2876 * In this state, a SYN|ACK packet is either bogus 2877 * because the other side must be ACKing our SYN which 2878 * indicates it has seen the ACK for their SYN and 2879 * shouldn't retransmit it or we're crossing SYNs 2880 * on active open. 2881 */ 2882 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2883 freemsg(mp); 2884 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2885 tcp, seg_ack, 0, TH_RST); 2886 return; 2887 } 2888 /* 2889 * NOTE: RFC 793 pg. 72 says this should be 2890 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2891 * but that would mean we have an ack that ignored 2892 * our SYN. 2893 */ 2894 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2895 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2896 freemsg(mp); 2897 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2898 tcp, seg_ack, 0, TH_RST); 2899 return; 2900 } 2901 /* 2902 * No sane TCP stack will send such a small window 2903 * without receiving any data. Just drop this invalid 2904 * ACK. We also shorten the abort timeout in case 2905 * this is an attack. 2906 */ 2907 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2908 if (pinit_wnd < tcp->tcp_mss && 2909 pinit_wnd < tcp_init_wnd_chk) { 2910 freemsg(mp); 2911 TCP_STAT(tcps, tcp_zwin_ack_syn); 2912 tcp->tcp_second_ctimer_threshold = 2913 tcp_early_abort * SECONDS; 2914 return; 2915 } 2916 } 2917 break; 2918 case TCPS_LISTEN: 2919 /* 2920 * Only a TLI listener can come through this path when a 2921 * acceptor is going back to be a listener and a packet 2922 * for the acceptor hits the classifier. For a socket 2923 * listener, this can never happen because a listener 2924 * can never accept connection on itself and hence a 2925 * socket acceptor can not go back to being a listener. 2926 */ 2927 ASSERT(!TCP_IS_SOCKET(tcp)); 2928 /*FALLTHRU*/ 2929 case TCPS_CLOSED: 2930 case TCPS_BOUND: { 2931 conn_t *new_connp; 2932 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2933 2934 /* 2935 * Don't accept any input on a closed tcp as this TCP logically 2936 * does not exist on the system. Don't proceed further with 2937 * this TCP. For instance, this packet could trigger another 2938 * close of this tcp which would be disastrous for tcp_refcnt. 2939 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2940 * be called at most once on a TCP. In this case we need to 2941 * refeed the packet into the classifier and figure out where 2942 * the packet should go. 2943 */ 2944 new_connp = ipcl_classify(mp, ira, ipst); 2945 if (new_connp != NULL) { 2946 /* Drops ref on new_connp */ 2947 tcp_reinput(new_connp, mp, ira, ipst); 2948 return; 2949 } 2950 /* We failed to classify. For now just drop the packet */ 2951 freemsg(mp); 2952 return; 2953 } 2954 case TCPS_IDLE: 2955 /* 2956 * Handle the case where the tcp_clean_death() has happened 2957 * on a connection (application hasn't closed yet) but a packet 2958 * was already queued on squeue before tcp_clean_death() 2959 * was processed. Calling tcp_clean_death() twice on same 2960 * connection can result in weird behaviour. 2961 */ 2962 freemsg(mp); 2963 return; 2964 default: 2965 break; 2966 } 2967 2968 /* 2969 * Already on the correct queue/perimeter. 2970 * If this is a detached connection and not an eager 2971 * connection hanging off a listener then new data 2972 * (past the FIN) will cause a reset. 2973 * We do a special check here where it 2974 * is out of the main line, rather than check 2975 * if we are detached every time we see new 2976 * data down below. 2977 */ 2978 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2979 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2980 TCPS_BUMP_MIB(tcps, tcpInClosed); 2981 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2982 freemsg(mp); 2983 tcp_xmit_ctl("new data when detached", tcp, 2984 tcp->tcp_snxt, 0, TH_RST); 2985 (void) tcp_clean_death(tcp, EPROTO); 2986 return; 2987 } 2988 2989 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2990 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2991 new_swnd = ntohs(tcpha->tha_win) << 2992 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2993 2994 /* 2995 * We are interested in two TCP options: timestamps (if negotiated) and 2996 * SACK (if negotiated). Skip option parsing if neither is negotiated. 2997 */ 2998 if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) { 2999 int options; 3000 if (tcp->tcp_snd_sack_ok) 3001 tcpopt.tcp = tcp; 3002 else 3003 tcpopt.tcp = NULL; 3004 options = tcp_parse_options(tcpha, &tcpopt); 3005 /* 3006 * RST segments must not be subject to PAWS and are not 3007 * required to have timestamps. 3008 * We do not drop keepalive segments without 3009 * timestamps, to maintain compatibility with legacy TCP stacks. 3010 */ 3011 boolean_t keepalive = (seg_len == 0 || seg_len == 1) && 3012 (seg_seq + 1 == tcp->tcp_rnxt); 3013 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) { 3014 /* 3015 * Per RFC 7323 section 3.2., silently drop non-RST 3016 * segments without expected TSopt. This is a 'SHOULD' 3017 * requirement. 3018 * We accept keepalives without TSopt to maintain 3019 * interoperability with tcp implementations that omit 3020 * the TSopt on these. Keepalive data is discarded, so 3021 * there is no risk corrupting data by accepting these. 3022 */ 3023 if (!(options & TCP_OPT_TSTAMP_PRESENT)) { 3024 /* 3025 * Leave a breadcrumb for people to detect this 3026 * behavior. 3027 */ 3028 DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp); 3029 freemsg(mp); 3030 return; 3031 } 3032 3033 if (!tcp_paws_check(tcp, &tcpopt)) { 3034 /* 3035 * This segment is not acceptable. 3036 * Drop it and send back an ACK. 3037 */ 3038 freemsg(mp); 3039 flags |= TH_ACK_NEEDED; 3040 goto ack_check; 3041 } 3042 } 3043 } 3044 try_again:; 3045 mss = tcp->tcp_mss; 3046 gap = seg_seq - tcp->tcp_rnxt; 3047 rgap = tcp->tcp_rwnd - (gap + seg_len); 3048 /* 3049 * gap is the amount of sequence space between what we expect to see 3050 * and what we got for seg_seq. A positive value for gap means 3051 * something got lost. A negative value means we got some old stuff. 3052 */ 3053 if (gap < 0) { 3054 /* Old stuff present. Is the SYN in there? */ 3055 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 3056 (seg_len != 0)) { 3057 flags &= ~TH_SYN; 3058 seg_seq++; 3059 urp--; 3060 /* Recompute the gaps after noting the SYN. */ 3061 goto try_again; 3062 } 3063 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 3064 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 3065 (seg_len > -gap ? -gap : seg_len)); 3066 /* Remove the old stuff from seg_len. */ 3067 seg_len += gap; 3068 /* 3069 * Anything left? 3070 * Make sure to check for unack'd FIN when rest of data 3071 * has been previously ack'd. 3072 */ 3073 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 3074 /* 3075 * Resets are only valid if they lie within our offered 3076 * window. If the RST bit is set, we just ignore this 3077 * segment. 3078 */ 3079 if (flags & TH_RST) { 3080 freemsg(mp); 3081 return; 3082 } 3083 3084 /* 3085 * The arriving of dup data packets indicate that we 3086 * may have postponed an ack for too long, or the other 3087 * side's RTT estimate is out of shape. Start acking 3088 * more often. 3089 */ 3090 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 3091 tcp->tcp_rack_cnt >= 1 && 3092 tcp->tcp_rack_abs_max > 2) { 3093 tcp->tcp_rack_abs_max--; 3094 } 3095 tcp->tcp_rack_cur_max = 1; 3096 3097 /* 3098 * This segment is "unacceptable". None of its 3099 * sequence space lies within our advertized window. 3100 * 3101 * Adjust seg_len to the original value for tracing. 3102 */ 3103 seg_len -= gap; 3104 if (connp->conn_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3106 "tcp_rput: unacceptable, gap %d, rgap %d, " 3107 "flags 0x%x, seg_seq %u, seg_ack %u, " 3108 "seg_len %d, rnxt %u, snxt %u, %s", 3109 gap, rgap, flags, seg_seq, seg_ack, 3110 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 3111 tcp_display(tcp, NULL, 3112 DISP_ADDR_AND_PORT)); 3113 } 3114 3115 /* 3116 * Arrange to send an ACK in response to the 3117 * unacceptable segment per RFC 793 page 69. There 3118 * is only one small difference between ours and the 3119 * acceptability test in the RFC - we accept ACK-only 3120 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 3121 * will be generated. 3122 * 3123 * Note that we have to ACK an ACK-only packet at least 3124 * for stacks that send 0-length keep-alives with 3125 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 3126 * section 4.2.3.6. As long as we don't ever generate 3127 * an unacceptable packet in response to an incoming 3128 * packet that is unacceptable, it should not cause 3129 * "ACK wars". 3130 */ 3131 flags |= TH_ACK_NEEDED; 3132 3133 /* 3134 * Continue processing this segment in order to use the 3135 * ACK information it contains, but skip all other 3136 * sequence-number processing. Processing the ACK 3137 * information is necessary in order to 3138 * re-synchronize connections that may have lost 3139 * synchronization. 3140 * 3141 * We clear seg_len and flag fields related to 3142 * sequence number processing as they are not 3143 * to be trusted for an unacceptable segment. 3144 */ 3145 seg_len = 0; 3146 flags &= ~(TH_SYN | TH_FIN | TH_URG); 3147 goto process_ack; 3148 } 3149 3150 /* Fix seg_seq, and chew the gap off the front. */ 3151 seg_seq = tcp->tcp_rnxt; 3152 urp += gap; 3153 do { 3154 mblk_t *mp2; 3155 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3156 (uintptr_t)UINT_MAX); 3157 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 3158 if (gap > 0) { 3159 mp->b_rptr = mp->b_wptr - gap; 3160 break; 3161 } 3162 mp2 = mp; 3163 mp = mp->b_cont; 3164 freeb(mp2); 3165 } while (gap < 0); 3166 /* 3167 * If the urgent data has already been acknowledged, we 3168 * should ignore TH_URG below 3169 */ 3170 if (urp < 0) 3171 flags &= ~TH_URG; 3172 } 3173 /* 3174 * rgap is the amount of stuff received out of window. A negative 3175 * value is the amount out of window. 3176 */ 3177 if (rgap < 0) { 3178 mblk_t *mp2; 3179 3180 if (tcp->tcp_rwnd == 0) { 3181 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 3182 tcp->tcp_cs.tcp_in_zwnd_probes++; 3183 } else { 3184 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 3185 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 3186 } 3187 3188 /* 3189 * seg_len does not include the FIN, so if more than 3190 * just the FIN is out of window, we act like we don't 3191 * see it. (If just the FIN is out of window, rgap 3192 * will be zero and we will go ahead and acknowledge 3193 * the FIN.) 3194 */ 3195 flags &= ~TH_FIN; 3196 3197 /* Fix seg_len and make sure there is something left. */ 3198 seg_len += rgap; 3199 if (seg_len <= 0) { 3200 /* 3201 * Resets are only valid if they lie within our offered 3202 * window. If the RST bit is set, we just ignore this 3203 * segment. 3204 */ 3205 if (flags & TH_RST) { 3206 freemsg(mp); 3207 return; 3208 } 3209 3210 /* Per RFC 793, we need to send back an ACK. */ 3211 flags |= TH_ACK_NEEDED; 3212 3213 /* 3214 * Send SIGURG as soon as possible i.e. even 3215 * if the TH_URG was delivered in a window probe 3216 * packet (which will be unacceptable). 3217 * 3218 * We generate a signal if none has been generated 3219 * for this connection or if this is a new urgent 3220 * byte. Also send a zero-length "unmarked" message 3221 * to inform SIOCATMARK that this is not the mark. 3222 * 3223 * tcp_urp_last_valid is cleared when the T_exdata_ind 3224 * is sent up. This plus the check for old data 3225 * (gap >= 0) handles the wraparound of the sequence 3226 * number space without having to always track the 3227 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3228 * this max in its rcv_up variable). 3229 * 3230 * This prevents duplicate SIGURGS due to a "late" 3231 * zero-window probe when the T_EXDATA_IND has already 3232 * been sent up. 3233 */ 3234 if ((flags & TH_URG) && 3235 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3236 tcp->tcp_urp_last))) { 3237 if (IPCL_IS_NONSTR(connp)) { 3238 if (!TCP_IS_DETACHED(tcp)) { 3239 (*sockupcalls->su_signal_oob) 3240 (connp->conn_upper_handle, 3241 urp); 3242 } 3243 } else { 3244 mp1 = allocb(0, BPRI_MED); 3245 if (mp1 == NULL) { 3246 freemsg(mp); 3247 return; 3248 } 3249 if (!TCP_IS_DETACHED(tcp) && 3250 !putnextctl1(connp->conn_rq, 3251 M_PCSIG, SIGURG)) { 3252 /* Try again on the rexmit. */ 3253 freemsg(mp1); 3254 freemsg(mp); 3255 return; 3256 } 3257 /* 3258 * If the next byte would be the mark 3259 * then mark with MARKNEXT else mark 3260 * with NOTMARKNEXT. 3261 */ 3262 if (gap == 0 && urp == 0) 3263 mp1->b_flag |= MSGMARKNEXT; 3264 else 3265 mp1->b_flag |= MSGNOTMARKNEXT; 3266 freemsg(tcp->tcp_urp_mark_mp); 3267 tcp->tcp_urp_mark_mp = mp1; 3268 flags |= TH_SEND_URP_MARK; 3269 } 3270 tcp->tcp_urp_last_valid = B_TRUE; 3271 tcp->tcp_urp_last = urp + seg_seq; 3272 } 3273 /* 3274 * If this is a zero window probe, continue to 3275 * process the ACK part. But we need to set seg_len 3276 * to 0 to avoid data processing. Otherwise just 3277 * drop the segment and send back an ACK. 3278 */ 3279 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3280 flags &= ~(TH_SYN | TH_URG); 3281 seg_len = 0; 3282 goto process_ack; 3283 } else { 3284 freemsg(mp); 3285 goto ack_check; 3286 } 3287 } 3288 /* Pitch out of window stuff off the end. */ 3289 rgap = seg_len; 3290 mp2 = mp; 3291 do { 3292 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3293 (uintptr_t)INT_MAX); 3294 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3295 if (rgap < 0) { 3296 mp2->b_wptr += rgap; 3297 if ((mp1 = mp2->b_cont) != NULL) { 3298 mp2->b_cont = NULL; 3299 freemsg(mp1); 3300 } 3301 break; 3302 } 3303 } while ((mp2 = mp2->b_cont) != NULL); 3304 } 3305 ok:; 3306 /* 3307 * TCP should check ECN info for segments inside the window only. 3308 * Therefore the check should be done here. 3309 */ 3310 if (tcp->tcp_ecn_ok) { 3311 if (flags & TH_CWR) { 3312 tcp->tcp_ecn_echo_on = B_FALSE; 3313 } 3314 /* 3315 * Note that both ECN_CE and CWR can be set in the 3316 * same segment. In this case, we once again turn 3317 * on ECN_ECHO. 3318 */ 3319 if (connp->conn_ipversion == IPV4_VERSION) { 3320 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3321 3322 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3323 tcp->tcp_ecn_echo_on = B_TRUE; 3324 } 3325 } else { 3326 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3327 3328 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3329 htonl(IPH_ECN_CE << 20)) { 3330 tcp->tcp_ecn_echo_on = B_TRUE; 3331 } 3332 } 3333 } 3334 3335 /* 3336 * Check whether we can update tcp_ts_recent. This test is from RFC 3337 * 7323, section 5.3. 3338 */ 3339 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && 3340 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3341 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3342 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3343 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3344 } 3345 3346 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3347 /* 3348 * FIN in an out of order segment. We record this in 3349 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3350 * Clear the FIN so that any check on FIN flag will fail. 3351 * Remember that FIN also counts in the sequence number 3352 * space. So we need to ack out of order FIN only segments. 3353 */ 3354 if (flags & TH_FIN) { 3355 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3356 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3357 flags &= ~TH_FIN; 3358 flags |= TH_ACK_NEEDED; 3359 } 3360 if (seg_len > 0) { 3361 /* Fill in the SACK blk list. */ 3362 if (tcp->tcp_snd_sack_ok) { 3363 tcp_sack_insert(tcp->tcp_sack_list, 3364 seg_seq, seg_seq + seg_len, 3365 &(tcp->tcp_num_sack_blk)); 3366 } 3367 3368 /* 3369 * Attempt reassembly and see if we have something 3370 * ready to go. 3371 */ 3372 mp = tcp_reass(tcp, mp, seg_seq); 3373 /* Always ack out of order packets */ 3374 flags |= TH_ACK_NEEDED | TH_PUSH; 3375 if (mp) { 3376 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3377 (uintptr_t)INT_MAX); 3378 seg_len = mp->b_cont ? msgdsize(mp) : 3379 (int)(mp->b_wptr - mp->b_rptr); 3380 seg_seq = tcp->tcp_rnxt; 3381 /* 3382 * A gap is filled and the seq num and len 3383 * of the gap match that of a previously 3384 * received FIN, put the FIN flag back in. 3385 */ 3386 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3387 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3388 flags |= TH_FIN; 3389 tcp->tcp_valid_bits &= 3390 ~TCP_OFO_FIN_VALID; 3391 } 3392 if (tcp->tcp_reass_tid != 0) { 3393 (void) TCP_TIMER_CANCEL(tcp, 3394 tcp->tcp_reass_tid); 3395 /* 3396 * Restart the timer if there is still 3397 * data in the reassembly queue. 3398 */ 3399 if (tcp->tcp_reass_head != NULL) { 3400 tcp->tcp_reass_tid = TCP_TIMER( 3401 tcp, tcp_reass_timer, 3402 tcps->tcps_reass_timeout); 3403 } else { 3404 tcp->tcp_reass_tid = 0; 3405 } 3406 } 3407 } else { 3408 /* 3409 * Keep going even with NULL mp. 3410 * There may be a useful ACK or something else 3411 * we don't want to miss. 3412 * 3413 * But TCP should not perform fast retransmit 3414 * because of the ack number. TCP uses 3415 * seg_len == 0 to determine if it is a pure 3416 * ACK. And this is not a pure ACK. 3417 */ 3418 seg_len = 0; 3419 ofo_seg = B_TRUE; 3420 3421 if (tcps->tcps_reass_timeout != 0 && 3422 tcp->tcp_reass_tid == 0) { 3423 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3424 tcp_reass_timer, 3425 tcps->tcps_reass_timeout); 3426 } 3427 } 3428 } 3429 } else if (seg_len > 0) { 3430 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3431 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3432 tcp->tcp_cs.tcp_in_data_inorder_segs++; 3433 tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len; 3434 3435 /* 3436 * If an out of order FIN was received before, and the seq 3437 * num and len of the new segment match that of the FIN, 3438 * put the FIN flag back in. 3439 */ 3440 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3441 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3442 flags |= TH_FIN; 3443 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3444 } 3445 } 3446 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3447 if (flags & TH_RST) { 3448 freemsg(mp); 3449 switch (tcp->tcp_state) { 3450 case TCPS_SYN_RCVD: 3451 (void) tcp_clean_death(tcp, ECONNREFUSED); 3452 break; 3453 case TCPS_ESTABLISHED: 3454 case TCPS_FIN_WAIT_1: 3455 case TCPS_FIN_WAIT_2: 3456 case TCPS_CLOSE_WAIT: 3457 (void) tcp_clean_death(tcp, ECONNRESET); 3458 break; 3459 case TCPS_CLOSING: 3460 case TCPS_LAST_ACK: 3461 (void) tcp_clean_death(tcp, 0); 3462 break; 3463 default: 3464 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3465 (void) tcp_clean_death(tcp, ENXIO); 3466 break; 3467 } 3468 return; 3469 } 3470 if (flags & TH_SYN) { 3471 /* 3472 * See RFC 793, Page 71 3473 * 3474 * The seq number must be in the window as it should 3475 * be "fixed" above. If it is outside window, it should 3476 * be already rejected. Note that we allow seg_seq to be 3477 * rnxt + rwnd because we want to accept 0 window probe. 3478 */ 3479 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3480 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3481 freemsg(mp); 3482 /* 3483 * If the ACK flag is not set, just use our snxt as the 3484 * seq number of the RST segment. 3485 */ 3486 if (!(flags & TH_ACK)) { 3487 seg_ack = tcp->tcp_snxt; 3488 } 3489 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3490 TH_RST|TH_ACK); 3491 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3492 (void) tcp_clean_death(tcp, ECONNRESET); 3493 return; 3494 } 3495 /* 3496 * urp could be -1 when the urp field in the packet is 0 3497 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3498 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3499 */ 3500 if ((flags & TH_URG) && urp >= 0) { 3501 if (!tcp->tcp_urp_last_valid || 3502 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3503 /* 3504 * Non-STREAMS sockets handle the urgent data a litte 3505 * differently from STREAMS based sockets. There is no 3506 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3507 * flags to keep SIOCATMARK happy. Instead a 3508 * su_signal_oob upcall is made to update the mark. 3509 * Neither is a T_EXDATA_IND mblk needed to be 3510 * prepended to the urgent data. The urgent data is 3511 * delivered using the su_recv upcall, where we set 3512 * the MSG_OOB flag to indicate that it is urg data. 3513 * 3514 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3515 * are used by non-STREAMS sockets. 3516 */ 3517 if (IPCL_IS_NONSTR(connp)) { 3518 if (!TCP_IS_DETACHED(tcp)) { 3519 (*sockupcalls->su_signal_oob) 3520 (connp->conn_upper_handle, urp); 3521 } 3522 } else { 3523 /* 3524 * If we haven't generated the signal yet for 3525 * this urgent pointer value, do it now. Also, 3526 * send up a zero-length M_DATA indicating 3527 * whether or not this is the mark. The latter 3528 * is not needed when a T_EXDATA_IND is sent up. 3529 * However, if there are allocation failures 3530 * this code relies on the sender retransmitting 3531 * and the socket code for determining the mark 3532 * should not block waiting for the peer to 3533 * transmit. Thus, for simplicity we always 3534 * send up the mark indication. 3535 */ 3536 mp1 = allocb(0, BPRI_MED); 3537 if (mp1 == NULL) { 3538 freemsg(mp); 3539 return; 3540 } 3541 if (!TCP_IS_DETACHED(tcp) && 3542 !putnextctl1(connp->conn_rq, M_PCSIG, 3543 SIGURG)) { 3544 /* Try again on the rexmit. */ 3545 freemsg(mp1); 3546 freemsg(mp); 3547 return; 3548 } 3549 /* 3550 * Mark with NOTMARKNEXT for now. 3551 * The code below will change this to MARKNEXT 3552 * if we are at the mark. 3553 * 3554 * If there are allocation failures (e.g. in 3555 * dupmsg below) the next time tcp_input_data 3556 * sees the urgent segment it will send up the 3557 * MSGMARKNEXT message. 3558 */ 3559 mp1->b_flag |= MSGNOTMARKNEXT; 3560 freemsg(tcp->tcp_urp_mark_mp); 3561 tcp->tcp_urp_mark_mp = mp1; 3562 flags |= TH_SEND_URP_MARK; 3563 #ifdef DEBUG 3564 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3565 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3566 "last %x, %s", 3567 seg_seq, urp, tcp->tcp_urp_last, 3568 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3569 #endif /* DEBUG */ 3570 } 3571 tcp->tcp_urp_last_valid = B_TRUE; 3572 tcp->tcp_urp_last = urp + seg_seq; 3573 } else if (tcp->tcp_urp_mark_mp != NULL) { 3574 /* 3575 * An allocation failure prevented the previous 3576 * tcp_input_data from sending up the allocated 3577 * MSG*MARKNEXT message - send it up this time 3578 * around. 3579 */ 3580 flags |= TH_SEND_URP_MARK; 3581 } 3582 3583 /* 3584 * If the urgent byte is in this segment, make sure that it is 3585 * all by itself. This makes it much easier to deal with the 3586 * possibility of an allocation failure on the T_exdata_ind. 3587 * Note that seg_len is the number of bytes in the segment, and 3588 * urp is the offset into the segment of the urgent byte. 3589 * urp < seg_len means that the urgent byte is in this segment. 3590 */ 3591 if (urp < seg_len) { 3592 if (seg_len != 1) { 3593 uint32_t tmp_rnxt; 3594 /* 3595 * Break it up and feed it back in. 3596 * Re-attach the IP header. 3597 */ 3598 mp->b_rptr = iphdr; 3599 if (urp > 0) { 3600 /* 3601 * There is stuff before the urgent 3602 * byte. 3603 */ 3604 mp1 = dupmsg(mp); 3605 if (!mp1) { 3606 /* 3607 * Trim from urgent byte on. 3608 * The rest will come back. 3609 */ 3610 (void) adjmsg(mp, 3611 urp - seg_len); 3612 tcp_input_data(connp, 3613 mp, NULL, ira); 3614 return; 3615 } 3616 (void) adjmsg(mp1, urp - seg_len); 3617 /* Feed this piece back in. */ 3618 tmp_rnxt = tcp->tcp_rnxt; 3619 tcp_input_data(connp, mp1, NULL, ira); 3620 /* 3621 * If the data passed back in was not 3622 * processed (ie: bad ACK) sending 3623 * the remainder back in will cause a 3624 * loop. In this case, drop the 3625 * packet and let the sender try 3626 * sending a good packet. 3627 */ 3628 if (tmp_rnxt == tcp->tcp_rnxt) { 3629 freemsg(mp); 3630 return; 3631 } 3632 } 3633 if (urp != seg_len - 1) { 3634 uint32_t tmp_rnxt; 3635 /* 3636 * There is stuff after the urgent 3637 * byte. 3638 */ 3639 mp1 = dupmsg(mp); 3640 if (!mp1) { 3641 /* 3642 * Trim everything beyond the 3643 * urgent byte. The rest will 3644 * come back. 3645 */ 3646 (void) adjmsg(mp, 3647 urp + 1 - seg_len); 3648 tcp_input_data(connp, 3649 mp, NULL, ira); 3650 return; 3651 } 3652 (void) adjmsg(mp1, urp + 1 - seg_len); 3653 tmp_rnxt = tcp->tcp_rnxt; 3654 tcp_input_data(connp, mp1, NULL, ira); 3655 /* 3656 * If the data passed back in was not 3657 * processed (ie: bad ACK) sending 3658 * the remainder back in will cause a 3659 * loop. In this case, drop the 3660 * packet and let the sender try 3661 * sending a good packet. 3662 */ 3663 if (tmp_rnxt == tcp->tcp_rnxt) { 3664 freemsg(mp); 3665 return; 3666 } 3667 } 3668 tcp_input_data(connp, mp, NULL, ira); 3669 return; 3670 } 3671 /* 3672 * This segment contains only the urgent byte. We 3673 * have to allocate the T_exdata_ind, if we can. 3674 */ 3675 if (IPCL_IS_NONSTR(connp)) { 3676 int error; 3677 3678 (*sockupcalls->su_recv) 3679 (connp->conn_upper_handle, mp, seg_len, 3680 MSG_OOB, &error, NULL); 3681 /* 3682 * We should never be in middle of a 3683 * fallback, the squeue guarantees that. 3684 */ 3685 ASSERT(error != EOPNOTSUPP); 3686 mp = NULL; 3687 goto update_ack; 3688 } else if (!tcp->tcp_urp_mp) { 3689 struct T_exdata_ind *tei; 3690 mp1 = allocb(sizeof (struct T_exdata_ind), 3691 BPRI_MED); 3692 if (!mp1) { 3693 /* 3694 * Sigh... It'll be back. 3695 * Generate any MSG*MARK message now. 3696 */ 3697 freemsg(mp); 3698 seg_len = 0; 3699 if (flags & TH_SEND_URP_MARK) { 3700 3701 3702 ASSERT(tcp->tcp_urp_mark_mp); 3703 tcp->tcp_urp_mark_mp->b_flag &= 3704 ~MSGNOTMARKNEXT; 3705 tcp->tcp_urp_mark_mp->b_flag |= 3706 MSGMARKNEXT; 3707 } 3708 goto ack_check; 3709 } 3710 mp1->b_datap->db_type = M_PROTO; 3711 tei = (struct T_exdata_ind *)mp1->b_rptr; 3712 tei->PRIM_type = T_EXDATA_IND; 3713 tei->MORE_flag = 0; 3714 mp1->b_wptr = (uchar_t *)&tei[1]; 3715 tcp->tcp_urp_mp = mp1; 3716 #ifdef DEBUG 3717 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3718 "tcp_rput: allocated exdata_ind %s", 3719 tcp_display(tcp, NULL, 3720 DISP_PORT_ONLY)); 3721 #endif /* DEBUG */ 3722 /* 3723 * There is no need to send a separate MSG*MARK 3724 * message since the T_EXDATA_IND will be sent 3725 * now. 3726 */ 3727 flags &= ~TH_SEND_URP_MARK; 3728 freemsg(tcp->tcp_urp_mark_mp); 3729 tcp->tcp_urp_mark_mp = NULL; 3730 } 3731 /* 3732 * Now we are all set. On the next putnext upstream, 3733 * tcp_urp_mp will be non-NULL and will get prepended 3734 * to what has to be this piece containing the urgent 3735 * byte. If for any reason we abort this segment below, 3736 * if it comes back, we will have this ready, or it 3737 * will get blown off in close. 3738 */ 3739 } else if (urp == seg_len) { 3740 /* 3741 * The urgent byte is the next byte after this sequence 3742 * number. If this endpoint is non-STREAMS, then there 3743 * is nothing to do here since the socket has already 3744 * been notified about the urg pointer by the 3745 * su_signal_oob call above. 3746 * 3747 * In case of STREAMS, some more work might be needed. 3748 * If there is data it is marked with MSGMARKNEXT and 3749 * and any tcp_urp_mark_mp is discarded since it is not 3750 * needed. Otherwise, if the code above just allocated 3751 * a zero-length tcp_urp_mark_mp message, that message 3752 * is tagged with MSGMARKNEXT. Sending up these 3753 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3754 * even though the T_EXDATA_IND will not be sent up 3755 * until the urgent byte arrives. 3756 */ 3757 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3758 if (seg_len != 0) { 3759 flags |= TH_MARKNEXT_NEEDED; 3760 freemsg(tcp->tcp_urp_mark_mp); 3761 tcp->tcp_urp_mark_mp = NULL; 3762 flags &= ~TH_SEND_URP_MARK; 3763 } else if (tcp->tcp_urp_mark_mp != NULL) { 3764 flags |= TH_SEND_URP_MARK; 3765 tcp->tcp_urp_mark_mp->b_flag &= 3766 ~MSGNOTMARKNEXT; 3767 tcp->tcp_urp_mark_mp->b_flag |= 3768 MSGMARKNEXT; 3769 } 3770 } 3771 #ifdef DEBUG 3772 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3773 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3774 seg_len, flags, 3775 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3776 #endif /* DEBUG */ 3777 } 3778 #ifdef DEBUG 3779 else { 3780 /* Data left until we hit mark */ 3781 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3782 "tcp_rput: URP %d bytes left, %s", 3783 urp - seg_len, tcp_display(tcp, NULL, 3784 DISP_PORT_ONLY)); 3785 } 3786 #endif /* DEBUG */ 3787 } 3788 3789 process_ack: 3790 if (!(flags & TH_ACK)) { 3791 freemsg(mp); 3792 goto xmit_check; 3793 } 3794 } 3795 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3796 3797 if (bytes_acked > 0) 3798 tcp->tcp_ip_forward_progress = B_TRUE; 3799 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3800 /* 3801 * tcp_sendmsg() checks tcp_state without entering 3802 * the squeue so tcp_state should be updated before 3803 * sending up a connection confirmation or a new 3804 * connection indication. 3805 */ 3806 tcp->tcp_state = TCPS_ESTABLISHED; 3807 3808 /* 3809 * We are seeing the final ack in the three way 3810 * hand shake of a active open'ed connection 3811 * so we must send up a T_CONN_CON 3812 */ 3813 if (tcp->tcp_active_open) { 3814 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3815 freemsg(mp); 3816 tcp->tcp_state = TCPS_SYN_RCVD; 3817 return; 3818 } 3819 /* 3820 * Don't fuse the loopback endpoints for 3821 * simultaneous active opens. 3822 */ 3823 if (tcp->tcp_loopback) { 3824 TCP_STAT(tcps, tcp_fusion_unfusable); 3825 tcp->tcp_unfusable = B_TRUE; 3826 } 3827 /* 3828 * For simultaneous active open, trace receipt of final 3829 * ACK as tcp:::connect-established. 3830 */ 3831 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3832 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3833 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3834 } else if (IPCL_IS_NONSTR(connp)) { 3835 /* 3836 * 3-way handshake has completed, so notify socket 3837 * of the new connection. 3838 * 3839 * We are here means eager is fine but it can 3840 * get a TH_RST at any point between now and till 3841 * accept completes and disappear. We need to 3842 * ensure that reference to eager is valid after 3843 * we get out of eager's perimeter. So we do 3844 * an extra refhold. 3845 */ 3846 CONN_INC_REF(connp); 3847 3848 if (!tcp_newconn_notify(tcp, ira)) { 3849 /* 3850 * The state-change probe for SYN_RCVD -> 3851 * ESTABLISHED has not fired yet. We reset 3852 * the state to SYN_RCVD so that future 3853 * state-change probes report correct state 3854 * transistions. 3855 */ 3856 tcp->tcp_state = TCPS_SYN_RCVD; 3857 freemsg(mp); 3858 /* notification did not go up, so drop ref */ 3859 CONN_DEC_REF(connp); 3860 /* ... and close the eager */ 3861 ASSERT(TCP_IS_DETACHED(tcp)); 3862 (void) tcp_close_detached(tcp); 3863 return; 3864 } 3865 /* 3866 * tcp_newconn_notify() changes conn_upcalls and 3867 * connp->conn_upper_handle. Fix things now, in case 3868 * there's data attached to this ack. 3869 */ 3870 if (connp->conn_upcalls != NULL) 3871 sockupcalls = connp->conn_upcalls; 3872 /* 3873 * For passive open, trace receipt of final ACK as 3874 * tcp:::accept-established. 3875 */ 3876 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3877 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3878 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3879 } else { 3880 /* 3881 * 3-way handshake complete - this is a STREAMS based 3882 * socket, so pass up the T_CONN_IND. 3883 */ 3884 tcp_t *listener = tcp->tcp_listener; 3885 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3886 3887 tcp->tcp_tconnind_started = B_TRUE; 3888 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3889 ASSERT(mp != NULL); 3890 /* 3891 * We are here means eager is fine but it can 3892 * get a TH_RST at any point between now and till 3893 * accept completes and disappear. We need to 3894 * ensure that reference to eager is valid after 3895 * we get out of eager's perimeter. So we do 3896 * an extra refhold. 3897 */ 3898 CONN_INC_REF(connp); 3899 3900 /* 3901 * The listener also exists because of the refhold 3902 * done in tcp_input_listener. Its possible that it 3903 * might have closed. We will check that once we 3904 * get inside listeners context. 3905 */ 3906 CONN_INC_REF(listener->tcp_connp); 3907 if (listener->tcp_connp->conn_sqp == 3908 connp->conn_sqp) { 3909 /* 3910 * We optimize by not calling an SQUEUE_ENTER 3911 * on the listener since we know that the 3912 * listener and eager squeues are the same. 3913 * We are able to make this check safely only 3914 * because neither the eager nor the listener 3915 * can change its squeue. Only an active connect 3916 * can change its squeue 3917 */ 3918 tcp_send_conn_ind(listener->tcp_connp, mp, 3919 listener->tcp_connp->conn_sqp); 3920 CONN_DEC_REF(listener->tcp_connp); 3921 } else if (!tcp->tcp_loopback) { 3922 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3923 mp, tcp_send_conn_ind, 3924 listener->tcp_connp, NULL, SQ_FILL, 3925 SQTAG_TCP_CONN_IND); 3926 } else { 3927 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3928 mp, tcp_send_conn_ind, 3929 listener->tcp_connp, NULL, SQ_NODRAIN, 3930 SQTAG_TCP_CONN_IND); 3931 } 3932 /* 3933 * For passive open, trace receipt of final ACK as 3934 * tcp:::accept-established. 3935 */ 3936 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3937 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3938 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3939 } 3940 TCPS_CONN_INC(tcps); 3941 3942 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3943 bytes_acked--; 3944 /* SYN was acked - making progress */ 3945 tcp->tcp_ip_forward_progress = B_TRUE; 3946 3947 /* 3948 * If SYN was retransmitted, need to reset all 3949 * retransmission info as this segment will be 3950 * treated as a dup ACK. 3951 */ 3952 if (tcp->tcp_rexmit) { 3953 tcp->tcp_rexmit = B_FALSE; 3954 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3955 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3956 tcp->tcp_ms_we_have_waited = 0; 3957 DTRACE_PROBE3(cwnd__retransmitted__syn, 3958 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 3959 uint32_t, tcp->tcp_mss); 3960 tcp->tcp_cwnd = mss; 3961 } 3962 3963 /* 3964 * We set the send window to zero here. 3965 * This is needed if there is data to be 3966 * processed already on the queue. 3967 * Later (at swnd_update label), the 3968 * "new_swnd > tcp_swnd" condition is satisfied 3969 * the XMIT_NEEDED flag is set in the current 3970 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3971 * called if there is already data on queue in 3972 * this state. 3973 */ 3974 tcp->tcp_swnd = 0; 3975 3976 if (new_swnd > tcp->tcp_max_swnd) 3977 tcp->tcp_max_swnd = new_swnd; 3978 tcp->tcp_swl1 = seg_seq; 3979 tcp->tcp_swl2 = seg_ack; 3980 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3981 3982 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3983 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3984 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3985 int32_t, TCPS_SYN_RCVD); 3986 3987 /* Fuse when both sides are in ESTABLISHED state */ 3988 if (tcp->tcp_loopback && do_tcp_fusion) 3989 tcp_fuse(tcp, iphdr, tcpha); 3990 3991 } 3992 /* This code follows 4.4BSD-Lite2 mostly. */ 3993 if (bytes_acked < 0) 3994 goto est; 3995 3996 /* 3997 * If TCP is ECN capable and the congestion experience bit is 3998 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3999 * done once per window (or more loosely, per RTT). 4000 */ 4001 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 4002 tcp->tcp_cwr = B_FALSE; 4003 if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) { 4004 cc_cong_signal(tcp, seg_ack, CC_ECN); 4005 /* 4006 * If the cwnd is 0, use the timer to clock out 4007 * new segments. This is required by the ECN spec. 4008 */ 4009 if (tcp->tcp_cwnd == 0) 4010 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4011 tcp->tcp_cwr = B_TRUE; 4012 /* 4013 * This marks the end of the current window of in 4014 * flight data. That is why we don't use 4015 * tcp_suna + tcp_swnd. Only data in flight can 4016 * provide ECN info. 4017 */ 4018 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4019 } 4020 4021 mp1 = tcp->tcp_xmit_head; 4022 if (bytes_acked == 0) { 4023 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 4024 int dupack_cnt; 4025 4026 TCPS_BUMP_MIB(tcps, tcpInDupAck); 4027 /* 4028 * Fast retransmit. When we have seen exactly three 4029 * identical ACKs while we have unacked data 4030 * outstanding we take it as a hint that our peer 4031 * dropped something. 4032 * 4033 * If TCP is retransmitting, don't do fast retransmit. 4034 */ 4035 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 4036 ! tcp->tcp_rexmit) { 4037 /* Do Limited Transmit */ 4038 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 4039 tcps->tcps_dupack_fast_retransmit) { 4040 cc_ack_received(tcp, seg_ack, 4041 bytes_acked, CC_DUPACK); 4042 /* 4043 * RFC 3042 4044 * 4045 * What we need to do is temporarily 4046 * increase tcp_cwnd so that new 4047 * data can be sent if it is allowed 4048 * by the receive window (tcp_rwnd). 4049 * tcp_wput_data() will take care of 4050 * the rest. 4051 * 4052 * If the connection is SACK capable, 4053 * only do limited xmit when there 4054 * is SACK info. 4055 * 4056 * Note how tcp_cwnd is incremented. 4057 * The first dup ACK will increase 4058 * it by 1 MSS. The second dup ACK 4059 * will increase it by 2 MSS. This 4060 * means that only 1 new segment will 4061 * be sent for each dup ACK. 4062 */ 4063 if (tcp->tcp_unsent > 0 && 4064 (!tcp->tcp_snd_sack_ok || 4065 (tcp->tcp_snd_sack_ok && 4066 tcp->tcp_notsack_list != NULL))) { 4067 tcp->tcp_cwnd += mss << 4068 (tcp->tcp_dupack_cnt - 1); 4069 flags |= TH_LIMIT_XMIT; 4070 } 4071 } else if (dupack_cnt == 4072 tcps->tcps_dupack_fast_retransmit) { 4073 4074 /* 4075 * If we have reduced tcp_ssthresh 4076 * because of ECN, do not reduce it again 4077 * unless it is already one window of data 4078 * away. After one window of data, tcp_cwr 4079 * should then be cleared. Note that 4080 * for non ECN capable connection, tcp_cwr 4081 * should always be false. 4082 * 4083 * Adjust cwnd since the duplicate 4084 * ack indicates that a packet was 4085 * dropped (due to congestion.) 4086 */ 4087 if (!tcp->tcp_cwr) { 4088 cc_cong_signal(tcp, seg_ack, 4089 CC_NDUPACK); 4090 cc_ack_received(tcp, seg_ack, 4091 bytes_acked, CC_DUPACK); 4092 } 4093 if (tcp->tcp_ecn_ok) { 4094 tcp->tcp_cwr = B_TRUE; 4095 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4096 tcp->tcp_ecn_cwr_sent = B_FALSE; 4097 } 4098 4099 /* 4100 * We do Hoe's algorithm. Refer to her 4101 * paper "Improving the Start-up Behavior 4102 * of a Congestion Control Scheme for TCP," 4103 * appeared in SIGCOMM'96. 4104 * 4105 * Save highest seq no we have sent so far. 4106 * Be careful about the invisible FIN byte. 4107 */ 4108 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 4109 (tcp->tcp_unsent == 0)) { 4110 tcp->tcp_rexmit_max = tcp->tcp_fss; 4111 } else { 4112 tcp->tcp_rexmit_max = tcp->tcp_snxt; 4113 } 4114 4115 /* 4116 * For SACK: 4117 * Calculate tcp_pipe, which is the 4118 * estimated number of bytes in 4119 * network. 4120 * 4121 * tcp_fack is the highest sack'ed seq num 4122 * TCP has received. 4123 * 4124 * tcp_pipe is explained in the above quoted 4125 * Fall and Floyd's paper. tcp_fack is 4126 * explained in Mathis and Mahdavi's 4127 * "Forward Acknowledgment: Refining TCP 4128 * Congestion Control" in SIGCOMM '96. 4129 */ 4130 if (tcp->tcp_snd_sack_ok) { 4131 if (tcp->tcp_notsack_list != NULL) { 4132 tcp->tcp_pipe = tcp->tcp_snxt - 4133 tcp->tcp_fack; 4134 tcp->tcp_sack_snxt = seg_ack; 4135 flags |= TH_NEED_SACK_REXMIT; 4136 } else { 4137 /* 4138 * Always initialize tcp_pipe 4139 * even though we don't have 4140 * any SACK info. If later 4141 * we get SACK info and 4142 * tcp_pipe is not initialized, 4143 * funny things will happen. 4144 */ 4145 tcp->tcp_pipe = 4146 tcp->tcp_cwnd_ssthresh; 4147 } 4148 } else { 4149 flags |= TH_REXMIT_NEEDED; 4150 } /* tcp_snd_sack_ok */ 4151 4152 } else { 4153 cc_ack_received(tcp, seg_ack, 4154 bytes_acked, CC_DUPACK); 4155 /* 4156 * Here we perform congestion 4157 * avoidance, but NOT slow start. 4158 * This is known as the Fast 4159 * Recovery Algorithm. 4160 */ 4161 if (tcp->tcp_snd_sack_ok && 4162 tcp->tcp_notsack_list != NULL) { 4163 flags |= TH_NEED_SACK_REXMIT; 4164 tcp->tcp_pipe -= mss; 4165 if (tcp->tcp_pipe < 0) 4166 tcp->tcp_pipe = 0; 4167 } else { 4168 /* 4169 * We know that one more packet has 4170 * left the pipe thus we can update 4171 * cwnd. 4172 */ 4173 cwnd = tcp->tcp_cwnd + mss; 4174 if (cwnd > tcp->tcp_cwnd_max) 4175 cwnd = tcp->tcp_cwnd_max; 4176 DTRACE_PROBE3(cwnd__fast__recovery, 4177 tcp_t *, tcp, 4178 uint32_t, tcp->tcp_cwnd, 4179 uint32_t, cwnd); 4180 tcp->tcp_cwnd = cwnd; 4181 if (tcp->tcp_unsent > 0) 4182 flags |= TH_XMIT_NEEDED; 4183 } 4184 } 4185 } 4186 } else if (tcp->tcp_zero_win_probe) { 4187 /* 4188 * If the window has opened, need to arrange 4189 * to send additional data. 4190 */ 4191 if (new_swnd != 0) { 4192 /* tcp_suna != tcp_snxt */ 4193 /* Packet contains a window update */ 4194 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 4195 tcp->tcp_zero_win_probe = 0; 4196 tcp->tcp_timer_backoff = 0; 4197 tcp->tcp_ms_we_have_waited = 0; 4198 4199 /* 4200 * Transmit starting with tcp_suna since 4201 * the one byte probe is not ack'ed. 4202 * If TCP has sent more than one identical 4203 * probe, tcp_rexmit will be set. That means 4204 * tcp_ss_rexmit() will send out the one 4205 * byte along with new data. Otherwise, 4206 * fake the retransmission. 4207 */ 4208 flags |= TH_XMIT_NEEDED; 4209 if (!tcp->tcp_rexmit) { 4210 tcp->tcp_rexmit = B_TRUE; 4211 tcp->tcp_dupack_cnt = 0; 4212 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 4213 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 4214 } 4215 } 4216 } 4217 goto swnd_update; 4218 } 4219 4220 /* 4221 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4222 * If the ACK value acks something that we have not yet sent, it might 4223 * be an old duplicate segment. Send an ACK to re-synchronize the 4224 * other side. 4225 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4226 * state is handled above, so we can always just drop the segment and 4227 * send an ACK here. 4228 * 4229 * In the case where the peer shrinks the window, we see the new window 4230 * update, but all the data sent previously is queued up by the peer. 4231 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4232 * number, which was already sent, and within window, is recorded. 4233 * tcp_snxt is then updated. 4234 * 4235 * If the window has previously shrunk, and an ACK for data not yet 4236 * sent, according to tcp_snxt is recieved, it may still be valid. If 4237 * the ACK is for data within the window at the time the window was 4238 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4239 * the sequence number ACK'ed. 4240 * 4241 * If the ACK covers all the data sent at the time the window was 4242 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4243 * 4244 * Should we send ACKs in response to ACK only segments? 4245 */ 4246 4247 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4248 if ((tcp->tcp_is_wnd_shrnk) && 4249 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4250 uint32_t data_acked_ahead_snxt; 4251 4252 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4253 tcp_update_xmit_tail(tcp, seg_ack); 4254 tcp->tcp_unsent -= data_acked_ahead_snxt; 4255 } else { 4256 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4257 /* drop the received segment */ 4258 freemsg(mp); 4259 4260 /* 4261 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4262 * greater than 0, check if the number of such 4263 * bogus ACks is greater than that count. If yes, 4264 * don't send back any ACK. This prevents TCP from 4265 * getting into an ACK storm if somehow an attacker 4266 * successfully spoofs an acceptable segment to our 4267 * peer. If this continues (count > 2 X threshold), 4268 * we should abort this connection. 4269 */ 4270 if (tcp_drop_ack_unsent_cnt > 0 && 4271 ++tcp->tcp_in_ack_unsent > 4272 tcp_drop_ack_unsent_cnt) { 4273 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4274 if (tcp->tcp_in_ack_unsent > 2 * 4275 tcp_drop_ack_unsent_cnt) { 4276 (void) tcp_clean_death(tcp, EPROTO); 4277 } 4278 return; 4279 } 4280 mp = tcp_ack_mp(tcp); 4281 if (mp != NULL) { 4282 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 4283 TCPS_BUMP_MIB(tcps, tcpOutAck); 4284 tcp_send_data(tcp, mp); 4285 } 4286 return; 4287 } 4288 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4289 tcp->tcp_snxt_shrunk)) { 4290 tcp->tcp_is_wnd_shrnk = B_FALSE; 4291 } 4292 4293 /* 4294 * TCP gets a new ACK, update the notsack'ed list to delete those 4295 * blocks that are covered by this ACK. 4296 */ 4297 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4298 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4299 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4300 } 4301 4302 /* 4303 * If we got an ACK after fast retransmit, check to see 4304 * if it is a partial ACK. If it is not and the congestion 4305 * window was inflated to account for the other side's 4306 * cached packets, retract it. If it is, do Hoe's algorithm. 4307 */ 4308 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4309 ASSERT(tcp->tcp_rexmit == B_FALSE); 4310 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4311 tcp->tcp_dupack_cnt = 0; 4312 4313 cc_post_recovery(tcp, seg_ack); 4314 4315 tcp->tcp_rexmit_max = seg_ack; 4316 4317 /* 4318 * Remove all notsack info to avoid confusion with 4319 * the next fast retrasnmit/recovery phase. 4320 */ 4321 if (tcp->tcp_snd_sack_ok) { 4322 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4323 tcp); 4324 } 4325 } else { 4326 if (tcp->tcp_snd_sack_ok && 4327 tcp->tcp_notsack_list != NULL) { 4328 flags |= TH_NEED_SACK_REXMIT; 4329 tcp->tcp_pipe -= mss; 4330 if (tcp->tcp_pipe < 0) 4331 tcp->tcp_pipe = 0; 4332 } else { 4333 /* 4334 * Hoe's algorithm: 4335 * 4336 * Retransmit the unack'ed segment and 4337 * restart fast recovery. Note that we 4338 * need to scale back tcp_cwnd to the 4339 * original value when we started fast 4340 * recovery. This is to prevent overly 4341 * aggressive behaviour in sending new 4342 * segments. 4343 */ 4344 cwnd = tcp->tcp_cwnd_ssthresh + 4345 tcps->tcps_dupack_fast_retransmit * mss; 4346 DTRACE_PROBE3(cwnd__fast__retransmit__part__ack, 4347 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 4348 uint32_t, cwnd); 4349 tcp->tcp_cwnd = cwnd; 4350 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4351 flags |= TH_REXMIT_NEEDED; 4352 } 4353 } 4354 } else { 4355 tcp->tcp_dupack_cnt = 0; 4356 if (tcp->tcp_rexmit) { 4357 /* 4358 * TCP is retranmitting. If the ACK ack's all 4359 * outstanding data, update tcp_rexmit_max and 4360 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4361 * to the correct value. 4362 * 4363 * Note that SEQ_LEQ() is used. This is to avoid 4364 * unnecessary fast retransmit caused by dup ACKs 4365 * received when TCP does slow start retransmission 4366 * after a time out. During this phase, TCP may 4367 * send out segments which are already received. 4368 * This causes dup ACKs to be sent back. 4369 */ 4370 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4371 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4372 tcp->tcp_rexmit_nxt = seg_ack; 4373 } 4374 if (seg_ack != tcp->tcp_rexmit_max) { 4375 flags |= TH_XMIT_NEEDED; 4376 } 4377 } else { 4378 tcp->tcp_rexmit = B_FALSE; 4379 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4380 } 4381 tcp->tcp_ms_we_have_waited = 0; 4382 } 4383 } 4384 4385 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4386 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4387 tcp->tcp_suna = seg_ack; 4388 if (tcp->tcp_zero_win_probe != 0) { 4389 tcp->tcp_zero_win_probe = 0; 4390 tcp->tcp_timer_backoff = 0; 4391 } 4392 4393 /* 4394 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4395 * Note that it cannot be the SYN being ack'ed. The code flow 4396 * will not reach here. 4397 */ 4398 if (mp1 == NULL) { 4399 goto fin_acked; 4400 } 4401 4402 /* 4403 * Update the congestion window. 4404 * 4405 * If TCP is not ECN capable or TCP is ECN capable but the 4406 * congestion experience bit is not set, increase the tcp_cwnd as 4407 * usual. 4408 */ 4409 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4410 if (IN_RECOVERY(tcp->tcp_ccv.flags)) { 4411 EXIT_RECOVERY(tcp->tcp_ccv.flags); 4412 } 4413 cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK); 4414 } 4415 4416 /* See if the latest urgent data has been acknowledged */ 4417 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4418 SEQ_GT(seg_ack, tcp->tcp_urg)) 4419 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4420 4421 /* 4422 * Update the RTT estimates. Note that we don't use the TCP 4423 * timestamp option to calculate RTT even if one is present. This is 4424 * because the timestamp option's resolution (CPU tick) is 4425 * too coarse to measure modern datacenter networks' microsecond 4426 * latencies. The timestamp field's resolution is limited by its 4427 * 4-byte width (see RFC1323), and since we always store a 4428 * high-resolution nanosecond presision timestamp along with the data, 4429 * there is no point to ever using the timestamp option. 4430 */ 4431 if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4432 /* 4433 * An ACK sequence we haven't seen before, so get the RTT 4434 * and update the RTO. But first check if the timestamp is 4435 * valid to use. 4436 */ 4437 if ((mp1->b_next != NULL) && 4438 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { 4439 tcp_set_rto(tcp, gethrtime() - 4440 (hrtime_t)(intptr_t)mp1->b_prev); 4441 } else { 4442 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4443 } 4444 4445 /* Remeber the last sequence to be ACKed */ 4446 tcp->tcp_csuna = seg_ack; 4447 if (tcp->tcp_set_timer == 1) { 4448 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4449 tcp->tcp_set_timer = 0; 4450 } 4451 } else { 4452 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4453 } 4454 4455 /* Eat acknowledged bytes off the xmit queue. */ 4456 for (;;) { 4457 mblk_t *mp2; 4458 uchar_t *wptr; 4459 4460 wptr = mp1->b_wptr; 4461 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4462 bytes_acked -= (int)(wptr - mp1->b_rptr); 4463 if (bytes_acked < 0) { 4464 mp1->b_rptr = wptr + bytes_acked; 4465 /* 4466 * Set a new timestamp if all the bytes timed by the 4467 * old timestamp have been ack'ed. 4468 */ 4469 if (SEQ_GT(seg_ack, 4470 (uint32_t)(uintptr_t)(mp1->b_next))) { 4471 mp1->b_prev = 4472 (mblk_t *)(intptr_t)gethrtime(); 4473 mp1->b_next = NULL; 4474 } 4475 break; 4476 } 4477 mp1->b_next = NULL; 4478 mp1->b_prev = NULL; 4479 mp2 = mp1; 4480 mp1 = mp1->b_cont; 4481 4482 /* 4483 * This notification is required for some zero-copy 4484 * clients to maintain a copy semantic. After the data 4485 * is ack'ed, client is safe to modify or reuse the buffer. 4486 */ 4487 if (tcp->tcp_snd_zcopy_aware && 4488 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4489 tcp_zcopy_notify(tcp); 4490 freeb(mp2); 4491 if (bytes_acked == 0) { 4492 if (mp1 == NULL) { 4493 /* Everything is ack'ed, clear the tail. */ 4494 tcp->tcp_xmit_tail = NULL; 4495 /* 4496 * Cancel the timer unless we are still 4497 * waiting for an ACK for the FIN packet. 4498 */ 4499 if (tcp->tcp_timer_tid != 0 && 4500 tcp->tcp_snxt == tcp->tcp_suna) { 4501 (void) TCP_TIMER_CANCEL(tcp, 4502 tcp->tcp_timer_tid); 4503 tcp->tcp_timer_tid = 0; 4504 } 4505 goto pre_swnd_update; 4506 } 4507 if (mp2 != tcp->tcp_xmit_tail) 4508 break; 4509 tcp->tcp_xmit_tail = mp1; 4510 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4511 (uintptr_t)INT_MAX); 4512 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4513 mp1->b_rptr); 4514 break; 4515 } 4516 if (mp1 == NULL) { 4517 /* 4518 * More was acked but there is nothing more 4519 * outstanding. This means that the FIN was 4520 * just acked or that we're talking to a clown. 4521 */ 4522 fin_acked: 4523 ASSERT(tcp->tcp_fin_sent); 4524 tcp->tcp_xmit_tail = NULL; 4525 if (tcp->tcp_fin_sent) { 4526 /* FIN was acked - making progress */ 4527 if (!tcp->tcp_fin_acked) 4528 tcp->tcp_ip_forward_progress = B_TRUE; 4529 tcp->tcp_fin_acked = B_TRUE; 4530 if (tcp->tcp_linger_tid != 0 && 4531 TCP_TIMER_CANCEL(tcp, 4532 tcp->tcp_linger_tid) >= 0) { 4533 tcp_stop_lingering(tcp); 4534 freemsg(mp); 4535 mp = NULL; 4536 } 4537 } else { 4538 /* 4539 * We should never get here because 4540 * we have already checked that the 4541 * number of bytes ack'ed should be 4542 * smaller than or equal to what we 4543 * have sent so far (it is the 4544 * acceptability check of the ACK). 4545 * We can only get here if the send 4546 * queue is corrupted. 4547 * 4548 * Terminate the connection and 4549 * panic the system. It is better 4550 * for us to panic instead of 4551 * continuing to avoid other disaster. 4552 */ 4553 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4554 tcp->tcp_rnxt, TH_RST|TH_ACK); 4555 panic("Memory corruption " 4556 "detected for connection %s.", 4557 tcp_display(tcp, NULL, 4558 DISP_ADDR_AND_PORT)); 4559 /*NOTREACHED*/ 4560 } 4561 goto pre_swnd_update; 4562 } 4563 ASSERT(mp2 != tcp->tcp_xmit_tail); 4564 } 4565 if (tcp->tcp_unsent) { 4566 flags |= TH_XMIT_NEEDED; 4567 } 4568 pre_swnd_update: 4569 tcp->tcp_xmit_head = mp1; 4570 swnd_update: 4571 /* 4572 * The following check is different from most other implementations. 4573 * For bi-directional transfer, when segments are dropped, the 4574 * "normal" check will not accept a window update in those 4575 * retransmitted segemnts. Failing to do that, TCP may send out 4576 * segments which are outside receiver's window. As TCP accepts 4577 * the ack in those retransmitted segments, if the window update in 4578 * the same segment is not accepted, TCP will incorrectly calculates 4579 * that it can send more segments. This can create a deadlock 4580 * with the receiver if its window becomes zero. 4581 */ 4582 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4583 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4584 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4585 /* 4586 * The criteria for update is: 4587 * 4588 * 1. the segment acknowledges some data. Or 4589 * 2. the segment is new, i.e. it has a higher seq num. Or 4590 * 3. the segment is not old and the advertised window is 4591 * larger than the previous advertised window. 4592 */ 4593 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4594 flags |= TH_XMIT_NEEDED; 4595 tcp->tcp_swnd = new_swnd; 4596 if (new_swnd > tcp->tcp_max_swnd) 4597 tcp->tcp_max_swnd = new_swnd; 4598 tcp->tcp_swl1 = seg_seq; 4599 tcp->tcp_swl2 = seg_ack; 4600 } 4601 est: 4602 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4603 4604 switch (tcp->tcp_state) { 4605 case TCPS_FIN_WAIT_1: 4606 if (tcp->tcp_fin_acked) { 4607 tcp->tcp_state = TCPS_FIN_WAIT_2; 4608 DTRACE_TCP6(state__change, void, NULL, 4609 ip_xmit_attr_t *, connp->conn_ixa, 4610 void, NULL, tcp_t *, tcp, void, NULL, 4611 int32_t, TCPS_FIN_WAIT_1); 4612 /* 4613 * We implement the non-standard BSD/SunOS 4614 * FIN_WAIT_2 flushing algorithm. 4615 * If there is no user attached to this 4616 * TCP endpoint, then this TCP struct 4617 * could hang around forever in FIN_WAIT_2 4618 * state if the peer forgets to send us 4619 * a FIN. To prevent this, we wait only 4620 * 2*MSL (a convenient time value) for 4621 * the FIN to arrive. If it doesn't show up, 4622 * we flush the TCP endpoint. This algorithm, 4623 * though a violation of RFC-793, has worked 4624 * for over 10 years in BSD systems. 4625 * Note: SunOS 4.x waits 675 seconds before 4626 * flushing the FIN_WAIT_2 connection. 4627 */ 4628 TCP_TIMER_RESTART(tcp, 4629 tcp->tcp_fin_wait_2_flush_interval); 4630 } 4631 break; 4632 case TCPS_FIN_WAIT_2: 4633 break; /* Shutdown hook? */ 4634 case TCPS_LAST_ACK: 4635 freemsg(mp); 4636 if (tcp->tcp_fin_acked) { 4637 (void) tcp_clean_death(tcp, 0); 4638 return; 4639 } 4640 goto xmit_check; 4641 case TCPS_CLOSING: 4642 if (tcp->tcp_fin_acked) { 4643 SET_TIME_WAIT(tcps, tcp, connp); 4644 DTRACE_TCP6(state__change, void, NULL, 4645 ip_xmit_attr_t *, connp->conn_ixa, void, 4646 NULL, tcp_t *, tcp, void, NULL, int32_t, 4647 TCPS_CLOSING); 4648 } 4649 /*FALLTHRU*/ 4650 case TCPS_CLOSE_WAIT: 4651 freemsg(mp); 4652 goto xmit_check; 4653 default: 4654 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4655 break; 4656 } 4657 } 4658 if (flags & TH_FIN) { 4659 /* Make sure we ack the fin */ 4660 flags |= TH_ACK_NEEDED; 4661 if (!tcp->tcp_fin_rcvd) { 4662 tcp->tcp_fin_rcvd = B_TRUE; 4663 tcp->tcp_rnxt++; 4664 tcpha = tcp->tcp_tcpha; 4665 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4666 4667 /* 4668 * Generate the ordrel_ind at the end unless the 4669 * conn is detached or it is a STREAMS based eager. 4670 * In the eager case we defer the notification until 4671 * tcp_accept_finish has run. 4672 */ 4673 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4674 (tcp->tcp_listener == NULL && 4675 !tcp->tcp_hard_binding))) 4676 flags |= TH_ORDREL_NEEDED; 4677 switch (tcp->tcp_state) { 4678 case TCPS_SYN_RCVD: 4679 tcp->tcp_state = TCPS_CLOSE_WAIT; 4680 DTRACE_TCP6(state__change, void, NULL, 4681 ip_xmit_attr_t *, connp->conn_ixa, 4682 void, NULL, tcp_t *, tcp, void, NULL, 4683 int32_t, TCPS_SYN_RCVD); 4684 /* Keepalive? */ 4685 break; 4686 case TCPS_ESTABLISHED: 4687 tcp->tcp_state = TCPS_CLOSE_WAIT; 4688 DTRACE_TCP6(state__change, void, NULL, 4689 ip_xmit_attr_t *, connp->conn_ixa, 4690 void, NULL, tcp_t *, tcp, void, NULL, 4691 int32_t, TCPS_ESTABLISHED); 4692 /* Keepalive? */ 4693 break; 4694 case TCPS_FIN_WAIT_1: 4695 if (!tcp->tcp_fin_acked) { 4696 tcp->tcp_state = TCPS_CLOSING; 4697 DTRACE_TCP6(state__change, void, NULL, 4698 ip_xmit_attr_t *, connp->conn_ixa, 4699 void, NULL, tcp_t *, tcp, void, 4700 NULL, int32_t, TCPS_FIN_WAIT_1); 4701 break; 4702 } 4703 /* FALLTHRU */ 4704 case TCPS_FIN_WAIT_2: 4705 SET_TIME_WAIT(tcps, tcp, connp); 4706 DTRACE_TCP6(state__change, void, NULL, 4707 ip_xmit_attr_t *, connp->conn_ixa, void, 4708 NULL, tcp_t *, tcp, void, NULL, int32_t, 4709 TCPS_FIN_WAIT_2); 4710 if (seg_len) { 4711 /* 4712 * implies data piggybacked on FIN. 4713 * break to handle data. 4714 */ 4715 break; 4716 } 4717 freemsg(mp); 4718 goto ack_check; 4719 } 4720 } 4721 } 4722 if (mp == NULL) 4723 goto xmit_check; 4724 if (seg_len == 0) { 4725 freemsg(mp); 4726 goto xmit_check; 4727 } 4728 if (mp->b_rptr == mp->b_wptr) { 4729 /* 4730 * The header has been consumed, so we remove the 4731 * zero-length mblk here. 4732 */ 4733 mp1 = mp; 4734 mp = mp->b_cont; 4735 freeb(mp1); 4736 } 4737 update_ack: 4738 tcpha = tcp->tcp_tcpha; 4739 tcp->tcp_rack_cnt++; 4740 { 4741 uint32_t cur_max; 4742 4743 cur_max = tcp->tcp_rack_cur_max; 4744 if (tcp->tcp_rack_cnt >= cur_max) { 4745 /* 4746 * We have more unacked data than we should - send 4747 * an ACK now. 4748 */ 4749 flags |= TH_ACK_NEEDED; 4750 cur_max++; 4751 if (cur_max > tcp->tcp_rack_abs_max) 4752 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4753 else 4754 tcp->tcp_rack_cur_max = cur_max; 4755 } else if (TCP_IS_DETACHED(tcp)) { 4756 /* We don't have an ACK timer for detached TCP. */ 4757 flags |= TH_ACK_NEEDED; 4758 } else if (seg_len < mss) { 4759 /* 4760 * If we get a segment that is less than an mss, and we 4761 * already have unacknowledged data, and the amount 4762 * unacknowledged is not a multiple of mss, then we 4763 * better generate an ACK now. Otherwise, this may be 4764 * the tail piece of a transaction, and we would rather 4765 * wait for the response. 4766 */ 4767 uint32_t udif; 4768 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4769 (uintptr_t)INT_MAX); 4770 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4771 if (udif && (udif % mss)) 4772 flags |= TH_ACK_NEEDED; 4773 else 4774 flags |= TH_ACK_TIMER_NEEDED; 4775 } else { 4776 /* Start delayed ack timer */ 4777 flags |= TH_ACK_TIMER_NEEDED; 4778 } 4779 } 4780 tcp->tcp_rnxt += seg_len; 4781 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4782 4783 if (mp == NULL) 4784 goto xmit_check; 4785 4786 /* Update SACK list */ 4787 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4788 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4789 &(tcp->tcp_num_sack_blk)); 4790 } 4791 4792 if (tcp->tcp_urp_mp) { 4793 tcp->tcp_urp_mp->b_cont = mp; 4794 mp = tcp->tcp_urp_mp; 4795 tcp->tcp_urp_mp = NULL; 4796 /* Ready for a new signal. */ 4797 tcp->tcp_urp_last_valid = B_FALSE; 4798 #ifdef DEBUG 4799 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4800 "tcp_rput: sending exdata_ind %s", 4801 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4802 #endif /* DEBUG */ 4803 } 4804 4805 /* 4806 * Check for ancillary data changes compared to last segment. 4807 */ 4808 if (connp->conn_recv_ancillary.crb_all != 0) { 4809 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4810 if (mp == NULL) 4811 return; 4812 } 4813 4814 if (IPCL_IS_NONSTR(connp)) { 4815 /* 4816 * Non-STREAMS socket 4817 */ 4818 boolean_t push = flags & (TH_PUSH|TH_FIN); 4819 int error; 4820 4821 if ((*sockupcalls->su_recv)(connp->conn_upper_handle, 4822 mp, seg_len, 0, &error, &push) <= 0) { 4823 /* 4824 * We should never be in middle of a 4825 * fallback, the squeue guarantees that. 4826 */ 4827 ASSERT(error != EOPNOTSUPP); 4828 if (error == ENOSPC) 4829 tcp->tcp_rwnd -= seg_len; 4830 } else if (push) { 4831 /* PUSH bit set and sockfs is not flow controlled */ 4832 flags |= tcp_rwnd_reopen(tcp); 4833 } 4834 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4835 /* 4836 * Side queue inbound data until the accept happens. 4837 * tcp_accept/tcp_rput drains this when the accept happens. 4838 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4839 * T_EXDATA_IND) it is queued on b_next. 4840 * XXX Make urgent data use this. Requires: 4841 * Removing tcp_listener check for TH_URG 4842 * Making M_PCPROTO and MARK messages skip the eager case 4843 */ 4844 4845 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4846 } else { 4847 /* Active STREAMS socket */ 4848 if (mp->b_datap->db_type != M_DATA || 4849 (flags & TH_MARKNEXT_NEEDED)) { 4850 if (tcp->tcp_rcv_list != NULL) { 4851 flags |= tcp_rcv_drain(tcp); 4852 } 4853 ASSERT(tcp->tcp_rcv_list == NULL || 4854 tcp->tcp_fused_sigurg); 4855 4856 if (flags & TH_MARKNEXT_NEEDED) { 4857 #ifdef DEBUG 4858 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4859 "tcp_rput: sending MSGMARKNEXT %s", 4860 tcp_display(tcp, NULL, 4861 DISP_PORT_ONLY)); 4862 #endif /* DEBUG */ 4863 mp->b_flag |= MSGMARKNEXT; 4864 flags &= ~TH_MARKNEXT_NEEDED; 4865 } 4866 4867 if (is_system_labeled()) 4868 tcp_setcred_data(mp, ira); 4869 4870 putnext(connp->conn_rq, mp); 4871 if (!canputnext(connp->conn_rq)) 4872 tcp->tcp_rwnd -= seg_len; 4873 } else if ((flags & (TH_PUSH|TH_FIN)) || 4874 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4875 if (tcp->tcp_rcv_list != NULL) { 4876 /* 4877 * Enqueue the new segment first and then 4878 * call tcp_rcv_drain() to send all data 4879 * up. The other way to do this is to 4880 * send all queued data up and then call 4881 * putnext() to send the new segment up. 4882 * This way can remove the else part later 4883 * on. 4884 * 4885 * We don't do this to avoid one more call to 4886 * canputnext() as tcp_rcv_drain() needs to 4887 * call canputnext(). 4888 */ 4889 tcp_rcv_enqueue(tcp, mp, seg_len, 4890 ira->ira_cred); 4891 flags |= tcp_rcv_drain(tcp); 4892 } else { 4893 if (is_system_labeled()) 4894 tcp_setcred_data(mp, ira); 4895 4896 putnext(connp->conn_rq, mp); 4897 if (!canputnext(connp->conn_rq)) 4898 tcp->tcp_rwnd -= seg_len; 4899 } 4900 } else { 4901 /* 4902 * Enqueue all packets when processing an mblk 4903 * from the co queue and also enqueue normal packets. 4904 */ 4905 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4906 } 4907 /* 4908 * Make sure the timer is running if we have data waiting 4909 * for a push bit. This provides resiliency against 4910 * implementations that do not correctly generate push bits. 4911 */ 4912 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4913 /* 4914 * The connection may be closed at this point, so don't 4915 * do anything for a detached tcp. 4916 */ 4917 if (!TCP_IS_DETACHED(tcp)) 4918 tcp->tcp_push_tid = TCP_TIMER(tcp, 4919 tcp_push_timer, 4920 tcps->tcps_push_timer_interval); 4921 } 4922 } 4923 4924 xmit_check: 4925 /* Is there anything left to do? */ 4926 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4927 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4928 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4929 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4930 goto done; 4931 4932 /* Any transmit work to do and a non-zero window? */ 4933 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4934 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4935 if (flags & TH_REXMIT_NEEDED) { 4936 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4937 4938 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4939 if (snd_size > mss) 4940 snd_size = mss; 4941 if (snd_size > tcp->tcp_swnd) 4942 snd_size = tcp->tcp_swnd; 4943 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4944 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4945 B_TRUE); 4946 4947 if (mp1 != NULL) { 4948 tcp->tcp_xmit_head->b_prev = 4949 (mblk_t *)(intptr_t)gethrtime(); 4950 tcp->tcp_csuna = tcp->tcp_snxt; 4951 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4952 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4953 snd_size); 4954 tcp->tcp_cs.tcp_out_retrans_segs++; 4955 tcp->tcp_cs.tcp_out_retrans_bytes += snd_size; 4956 tcp_send_data(tcp, mp1); 4957 } 4958 } 4959 if (flags & TH_NEED_SACK_REXMIT) { 4960 tcp_sack_rexmit(tcp, &flags); 4961 } 4962 /* 4963 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4964 * out new segment. Note that tcp_rexmit should not be 4965 * set, otherwise TH_LIMIT_XMIT should not be set. 4966 */ 4967 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4968 if (!tcp->tcp_rexmit) { 4969 tcp_wput_data(tcp, NULL, B_FALSE); 4970 } else { 4971 tcp_ss_rexmit(tcp); 4972 } 4973 } 4974 /* 4975 * Adjust tcp_cwnd back to normal value after sending 4976 * new data segments. 4977 */ 4978 if (flags & TH_LIMIT_XMIT) { 4979 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4980 /* 4981 * This will restart the timer. Restarting the 4982 * timer is used to avoid a timeout before the 4983 * limited transmitted segment's ACK gets back. 4984 */ 4985 if (tcp->tcp_xmit_head != NULL) { 4986 tcp->tcp_xmit_head->b_prev = 4987 (mblk_t *)(intptr_t)gethrtime(); 4988 } 4989 } 4990 4991 /* Anything more to do? */ 4992 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4993 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4994 goto done; 4995 } 4996 ack_check: 4997 if (flags & TH_SEND_URP_MARK) { 4998 ASSERT(tcp->tcp_urp_mark_mp); 4999 ASSERT(!IPCL_IS_NONSTR(connp)); 5000 /* 5001 * Send up any queued data and then send the mark message 5002 */ 5003 if (tcp->tcp_rcv_list != NULL) { 5004 flags |= tcp_rcv_drain(tcp); 5005 5006 } 5007 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5008 mp1 = tcp->tcp_urp_mark_mp; 5009 tcp->tcp_urp_mark_mp = NULL; 5010 if (is_system_labeled()) 5011 tcp_setcred_data(mp1, ira); 5012 5013 putnext(connp->conn_rq, mp1); 5014 #ifdef DEBUG 5015 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 5016 "tcp_rput: sending zero-length %s %s", 5017 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 5018 "MSGNOTMARKNEXT"), 5019 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5020 #endif /* DEBUG */ 5021 flags &= ~TH_SEND_URP_MARK; 5022 } 5023 if (flags & TH_ACK_NEEDED) { 5024 /* 5025 * Time to send an ack for some reason. 5026 */ 5027 mp1 = tcp_ack_mp(tcp); 5028 5029 if (mp1 != NULL) { 5030 tcp_send_data(tcp, mp1); 5031 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 5032 TCPS_BUMP_MIB(tcps, tcpOutAck); 5033 } 5034 if (tcp->tcp_ack_tid != 0) { 5035 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 5036 tcp->tcp_ack_tid = 0; 5037 } 5038 } 5039 if (flags & TH_ACK_TIMER_NEEDED) { 5040 /* 5041 * Arrange for deferred ACK or push wait timeout. 5042 * Start timer if it is not already running. 5043 */ 5044 if (tcp->tcp_ack_tid == 0) { 5045 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 5046 tcp->tcp_localnet ? 5047 tcps->tcps_local_dack_interval : 5048 tcps->tcps_deferred_ack_interval); 5049 } 5050 } 5051 if (flags & TH_ORDREL_NEEDED) { 5052 /* 5053 * Notify upper layer about an orderly release. If this is 5054 * a non-STREAMS socket, then just make an upcall. For STREAMS 5055 * we send up an ordrel_ind, unless this is an eager, in which 5056 * case the ordrel will be sent when tcp_accept_finish runs. 5057 * Note that for non-STREAMS we make an upcall even if it is an 5058 * eager, because we have an upper handle to send it to. 5059 */ 5060 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 5061 ASSERT(!tcp->tcp_detached); 5062 5063 if (IPCL_IS_NONSTR(connp)) { 5064 ASSERT(tcp->tcp_ordrel_mp == NULL); 5065 tcp->tcp_ordrel_done = B_TRUE; 5066 (*sockupcalls->su_opctl)(connp->conn_upper_handle, 5067 SOCK_OPCTL_SHUT_RECV, 0); 5068 goto done; 5069 } 5070 5071 if (tcp->tcp_rcv_list != NULL) { 5072 /* 5073 * Push any mblk(s) enqueued from co processing. 5074 */ 5075 flags |= tcp_rcv_drain(tcp); 5076 } 5077 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5078 5079 mp1 = tcp->tcp_ordrel_mp; 5080 tcp->tcp_ordrel_mp = NULL; 5081 tcp->tcp_ordrel_done = B_TRUE; 5082 putnext(connp->conn_rq, mp1); 5083 } 5084 done: 5085 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 5086 } 5087 5088 /* 5089 * Attach ancillary data to a received TCP segments for the 5090 * ancillary pieces requested by the application that are 5091 * different than they were in the previous data segment. 5092 * 5093 * Save the "current" values once memory allocation is ok so that 5094 * when memory allocation fails we can just wait for the next data segment. 5095 */ 5096 static mblk_t * 5097 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 5098 ip_recv_attr_t *ira) 5099 { 5100 struct T_optdata_ind *todi; 5101 int optlen; 5102 uchar_t *optptr; 5103 struct T_opthdr *toh; 5104 crb_t addflag; /* Which pieces to add */ 5105 mblk_t *mp1; 5106 conn_t *connp = tcp->tcp_connp; 5107 5108 optlen = 0; 5109 addflag.crb_all = 0; 5110 /* If app asked for pktinfo and the index has changed ... */ 5111 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 5112 ira->ira_ruifindex != tcp->tcp_recvifindex) { 5113 optlen += sizeof (struct T_opthdr) + 5114 sizeof (struct in6_pktinfo); 5115 addflag.crb_ip_recvpktinfo = 1; 5116 } 5117 /* If app asked for hoplimit and it has changed ... */ 5118 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 5119 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 5120 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5121 addflag.crb_ipv6_recvhoplimit = 1; 5122 } 5123 /* If app asked for tclass and it has changed ... */ 5124 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 5125 ipp->ipp_tclass != tcp->tcp_recvtclass) { 5126 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5127 addflag.crb_ipv6_recvtclass = 1; 5128 } 5129 /* 5130 * If app asked for hopbyhop headers and it has changed ... 5131 * For security labels, note that (1) security labels can't change on 5132 * a connected socket at all, (2) we're connected to at most one peer, 5133 * (3) if anything changes, then it must be some other extra option. 5134 */ 5135 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 5136 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 5137 (ipp->ipp_fields & IPPF_HOPOPTS), 5138 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 5139 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 5140 addflag.crb_ipv6_recvhopopts = 1; 5141 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 5142 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 5143 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 5144 return (mp); 5145 } 5146 /* If app asked for dst headers before routing headers ... */ 5147 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 5148 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 5149 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5150 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 5151 optlen += sizeof (struct T_opthdr) + 5152 ipp->ipp_rthdrdstoptslen; 5153 addflag.crb_ipv6_recvrthdrdstopts = 1; 5154 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 5155 &tcp->tcp_rthdrdstoptslen, 5156 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5157 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 5158 return (mp); 5159 } 5160 /* If app asked for routing headers and it has changed ... */ 5161 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 5162 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 5163 (ipp->ipp_fields & IPPF_RTHDR), 5164 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 5165 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 5166 addflag.crb_ipv6_recvrthdr = 1; 5167 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 5168 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 5169 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 5170 return (mp); 5171 } 5172 /* If app asked for dest headers and it has changed ... */ 5173 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 5174 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 5175 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 5176 (ipp->ipp_fields & IPPF_DSTOPTS), 5177 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 5178 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 5179 addflag.crb_ipv6_recvdstopts = 1; 5180 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 5181 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 5182 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 5183 return (mp); 5184 } 5185 5186 if (optlen == 0) { 5187 /* Nothing to add */ 5188 return (mp); 5189 } 5190 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 5191 if (mp1 == NULL) { 5192 /* 5193 * Defer sending ancillary data until the next TCP segment 5194 * arrives. 5195 */ 5196 return (mp); 5197 } 5198 mp1->b_cont = mp; 5199 mp = mp1; 5200 mp->b_wptr += sizeof (*todi) + optlen; 5201 mp->b_datap->db_type = M_PROTO; 5202 todi = (struct T_optdata_ind *)mp->b_rptr; 5203 todi->PRIM_type = T_OPTDATA_IND; 5204 todi->DATA_flag = 1; /* MORE data */ 5205 todi->OPT_length = optlen; 5206 todi->OPT_offset = sizeof (*todi); 5207 optptr = (uchar_t *)&todi[1]; 5208 /* 5209 * If app asked for pktinfo and the index has changed ... 5210 * Note that the local address never changes for the connection. 5211 */ 5212 if (addflag.crb_ip_recvpktinfo) { 5213 struct in6_pktinfo *pkti; 5214 uint_t ifindex; 5215 5216 ifindex = ira->ira_ruifindex; 5217 toh = (struct T_opthdr *)optptr; 5218 toh->level = IPPROTO_IPV6; 5219 toh->name = IPV6_PKTINFO; 5220 toh->len = sizeof (*toh) + sizeof (*pkti); 5221 toh->status = 0; 5222 optptr += sizeof (*toh); 5223 pkti = (struct in6_pktinfo *)optptr; 5224 pkti->ipi6_addr = connp->conn_laddr_v6; 5225 pkti->ipi6_ifindex = ifindex; 5226 optptr += sizeof (*pkti); 5227 ASSERT(OK_32PTR(optptr)); 5228 /* Save as "last" value */ 5229 tcp->tcp_recvifindex = ifindex; 5230 } 5231 /* If app asked for hoplimit and it has changed ... */ 5232 if (addflag.crb_ipv6_recvhoplimit) { 5233 toh = (struct T_opthdr *)optptr; 5234 toh->level = IPPROTO_IPV6; 5235 toh->name = IPV6_HOPLIMIT; 5236 toh->len = sizeof (*toh) + sizeof (uint_t); 5237 toh->status = 0; 5238 optptr += sizeof (*toh); 5239 *(uint_t *)optptr = ipp->ipp_hoplimit; 5240 optptr += sizeof (uint_t); 5241 ASSERT(OK_32PTR(optptr)); 5242 /* Save as "last" value */ 5243 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5244 } 5245 /* If app asked for tclass and it has changed ... */ 5246 if (addflag.crb_ipv6_recvtclass) { 5247 toh = (struct T_opthdr *)optptr; 5248 toh->level = IPPROTO_IPV6; 5249 toh->name = IPV6_TCLASS; 5250 toh->len = sizeof (*toh) + sizeof (uint_t); 5251 toh->status = 0; 5252 optptr += sizeof (*toh); 5253 *(uint_t *)optptr = ipp->ipp_tclass; 5254 optptr += sizeof (uint_t); 5255 ASSERT(OK_32PTR(optptr)); 5256 /* Save as "last" value */ 5257 tcp->tcp_recvtclass = ipp->ipp_tclass; 5258 } 5259 if (addflag.crb_ipv6_recvhopopts) { 5260 toh = (struct T_opthdr *)optptr; 5261 toh->level = IPPROTO_IPV6; 5262 toh->name = IPV6_HOPOPTS; 5263 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5264 toh->status = 0; 5265 optptr += sizeof (*toh); 5266 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5267 optptr += ipp->ipp_hopoptslen; 5268 ASSERT(OK_32PTR(optptr)); 5269 /* Save as last value */ 5270 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5271 (ipp->ipp_fields & IPPF_HOPOPTS), 5272 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5273 } 5274 if (addflag.crb_ipv6_recvrthdrdstopts) { 5275 toh = (struct T_opthdr *)optptr; 5276 toh->level = IPPROTO_IPV6; 5277 toh->name = IPV6_RTHDRDSTOPTS; 5278 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5279 toh->status = 0; 5280 optptr += sizeof (*toh); 5281 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5282 optptr += ipp->ipp_rthdrdstoptslen; 5283 ASSERT(OK_32PTR(optptr)); 5284 /* Save as last value */ 5285 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5286 &tcp->tcp_rthdrdstoptslen, 5287 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5288 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5289 } 5290 if (addflag.crb_ipv6_recvrthdr) { 5291 toh = (struct T_opthdr *)optptr; 5292 toh->level = IPPROTO_IPV6; 5293 toh->name = IPV6_RTHDR; 5294 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5295 toh->status = 0; 5296 optptr += sizeof (*toh); 5297 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5298 optptr += ipp->ipp_rthdrlen; 5299 ASSERT(OK_32PTR(optptr)); 5300 /* Save as last value */ 5301 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5302 (ipp->ipp_fields & IPPF_RTHDR), 5303 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5304 } 5305 if (addflag.crb_ipv6_recvdstopts) { 5306 toh = (struct T_opthdr *)optptr; 5307 toh->level = IPPROTO_IPV6; 5308 toh->name = IPV6_DSTOPTS; 5309 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5310 toh->status = 0; 5311 optptr += sizeof (*toh); 5312 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5313 optptr += ipp->ipp_dstoptslen; 5314 ASSERT(OK_32PTR(optptr)); 5315 /* Save as last value */ 5316 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5317 (ipp->ipp_fields & IPPF_DSTOPTS), 5318 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5319 } 5320 ASSERT(optptr == mp->b_wptr); 5321 return (mp); 5322 } 5323 5324 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */ 5325 #define TCP_SD_MIN 400000000 5326 5327 /* 5328 * Set RTO for this connection based on a new round-trip time measurement. 5329 * The formula is from Jacobson and Karels' "Congestion Avoidance and Control" 5330 * in SIGCOMM '88. The variable names are the same as those in Appendix A.2 5331 * of that paper. 5332 * 5333 * m = new measurement 5334 * sa = smoothed RTT average (8 * average estimates). 5335 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5336 */ 5337 static void 5338 tcp_set_rto(tcp_t *tcp, hrtime_t rtt) 5339 { 5340 hrtime_t m = rtt; 5341 hrtime_t sa = tcp->tcp_rtt_sa; 5342 hrtime_t sv = tcp->tcp_rtt_sd; 5343 tcp_stack_t *tcps = tcp->tcp_tcps; 5344 5345 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5346 tcp->tcp_rtt_update++; 5347 tcp->tcp_rtt_sum += m; 5348 tcp->tcp_rtt_cnt++; 5349 5350 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5351 if (sa != 0) { 5352 /* 5353 * Update average estimator (see section 2.3 of RFC6298): 5354 * SRTT = 7/8 SRTT + 1/8 rtt 5355 * 5356 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to: 5357 * tcp_rtt_sa = 7 * SRTT + rtt 5358 * tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt 5359 * tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt 5360 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8)) 5361 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3)) 5362 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3)) 5363 * 5364 * (rtt - tcp_rtt_sa / 8) is simply the difference 5365 * between the new rtt measurement and the existing smoothed 5366 * RTT average. This is referred to as "Error" in subsequent 5367 * calculations. 5368 */ 5369 5370 /* m is now Error. */ 5371 m -= sa >> 3; 5372 if ((sa += m) <= 0) { 5373 /* 5374 * Don't allow the smoothed average to be negative. 5375 * We use 0 to denote reinitialization of the 5376 * variables. 5377 */ 5378 sa = 1; 5379 } 5380 5381 /* 5382 * Update deviation estimator: 5383 * mdev = 3/4 mdev + 1/4 abs(Error) 5384 * 5385 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to: 5386 * tcp_rtt_sd = 3 * mdev + abs(Error) 5387 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error) 5388 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error) 5389 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error) 5390 */ 5391 if (m < 0) 5392 m = -m; 5393 m -= sv >> 2; 5394 sv += m; 5395 } else { 5396 /* 5397 * This follows BSD's implementation. So the reinitialized 5398 * RTO is 3 * m. We cannot go less than 2 because if the 5399 * link is bandwidth dominated, doubling the window size 5400 * during slow start means doubling the RTT. We want to be 5401 * more conservative when we reinitialize our estimates. 3 5402 * is just a convenient number. 5403 */ 5404 sa = m << 3; 5405 sv = m << 1; 5406 } 5407 if (sv < TCP_SD_MIN) { 5408 /* 5409 * Since a receiver doesn't delay its ACKs during a long run of 5410 * segments, sa may not have captured the effect of delayed ACK 5411 * timeouts on the RTT. To make sure we always account for the 5412 * possible delay (and avoid the unnecessary retransmission), 5413 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of 5414 * 200ms on older SunOS/BSD systems and modern Windows systems 5415 * (as of 2019). This means that the minimum possible mean 5416 * deviation is 100 ms. 5417 */ 5418 sv = TCP_SD_MIN; 5419 } 5420 tcp->tcp_rtt_sa = sa; 5421 tcp->tcp_rtt_sd = sv; 5422 5423 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 5424 5425 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5426 tcp->tcp_timer_backoff = 0; 5427 } 5428 5429 /* 5430 * On a labeled system we have some protocols above TCP, such as RPC, which 5431 * appear to assume that every mblk in a chain has a db_credp. 5432 */ 5433 static void 5434 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5435 { 5436 ASSERT(is_system_labeled()); 5437 ASSERT(ira->ira_cred != NULL); 5438 5439 while (mp != NULL) { 5440 mblk_setcred(mp, ira->ira_cred, NOPID); 5441 mp = mp->b_cont; 5442 } 5443 } 5444 5445 uint_t 5446 tcp_rwnd_reopen(tcp_t *tcp) 5447 { 5448 uint_t ret = 0; 5449 uint_t thwin; 5450 conn_t *connp = tcp->tcp_connp; 5451 5452 /* Learn the latest rwnd information that we sent to the other side. */ 5453 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5454 << tcp->tcp_rcv_ws; 5455 /* This is peer's calculated send window (our receive window). */ 5456 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5457 /* 5458 * Increase the receive window to max. But we need to do receiver 5459 * SWS avoidance. This means that we need to check the increase of 5460 * of receive window is at least 1 MSS. 5461 */ 5462 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5463 /* 5464 * If the window that the other side knows is less than max 5465 * deferred acks segments, send an update immediately. 5466 */ 5467 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5468 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5469 ret = TH_ACK_NEEDED; 5470 } 5471 tcp->tcp_rwnd = connp->conn_rcvbuf; 5472 } 5473 return (ret); 5474 } 5475 5476 /* 5477 * Handle a packet that has been reclassified by TCP. 5478 * This function drops the ref on connp that the caller had. 5479 */ 5480 void 5481 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5482 { 5483 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5484 5485 if (connp->conn_incoming_ifindex != 0 && 5486 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5487 freemsg(mp); 5488 CONN_DEC_REF(connp); 5489 return; 5490 } 5491 5492 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5493 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5494 ip6_t *ip6h; 5495 ipha_t *ipha; 5496 5497 if (ira->ira_flags & IRAF_IS_IPV4) { 5498 ipha = (ipha_t *)mp->b_rptr; 5499 ip6h = NULL; 5500 } else { 5501 ipha = NULL; 5502 ip6h = (ip6_t *)mp->b_rptr; 5503 } 5504 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5505 if (mp == NULL) { 5506 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5507 /* Note that mp is NULL */ 5508 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5509 CONN_DEC_REF(connp); 5510 return; 5511 } 5512 } 5513 5514 if (IPCL_IS_TCP(connp)) { 5515 /* 5516 * do not drain, certain use cases can blow 5517 * the stack 5518 */ 5519 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5520 connp->conn_recv, connp, ira, 5521 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5522 } else { 5523 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5524 (connp->conn_recv)(connp, mp, NULL, 5525 ira); 5526 CONN_DEC_REF(connp); 5527 } 5528 5529 } 5530 5531 /* ARGSUSED */ 5532 static void 5533 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5534 { 5535 conn_t *connp = (conn_t *)arg; 5536 tcp_t *tcp = connp->conn_tcp; 5537 queue_t *q = connp->conn_rq; 5538 5539 ASSERT(!IPCL_IS_NONSTR(connp)); 5540 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5541 tcp->tcp_rsrv_mp = mp; 5542 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5543 5544 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5545 return; 5546 } 5547 5548 if (tcp->tcp_fused) { 5549 tcp_fuse_backenable(tcp); 5550 return; 5551 } 5552 5553 if (canputnext(q)) { 5554 /* Not flow-controlled, open rwnd */ 5555 tcp->tcp_rwnd = connp->conn_rcvbuf; 5556 5557 /* 5558 * Send back a window update immediately if TCP is above 5559 * ESTABLISHED state and the increase of the rcv window 5560 * that the other side knows is at least 1 MSS after flow 5561 * control is lifted. 5562 */ 5563 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5564 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5565 tcp_xmit_ctl(NULL, tcp, 5566 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5567 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5568 } 5569 } 5570 } 5571 5572 /* 5573 * The read side service routine is called mostly when we get back-enabled as a 5574 * result of flow control relief. Since we don't actually queue anything in 5575 * TCP, we have no data to send out of here. What we do is clear the receive 5576 * window, and send out a window update. 5577 */ 5578 int 5579 tcp_rsrv(queue_t *q) 5580 { 5581 conn_t *connp = Q_TO_CONN(q); 5582 tcp_t *tcp = connp->conn_tcp; 5583 mblk_t *mp; 5584 5585 /* No code does a putq on the read side */ 5586 ASSERT(q->q_first == NULL); 5587 5588 /* 5589 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5590 * been run. So just return. 5591 */ 5592 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5593 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5594 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5595 return (0); 5596 } 5597 tcp->tcp_rsrv_mp = NULL; 5598 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5599 5600 CONN_INC_REF(connp); 5601 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5602 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5603 return (0); 5604 } 5605 5606 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5607 #define ICMP_MIN_TCP_HDR 8 5608 5609 /* 5610 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5611 * passed up by IP. The message is always received on the correct tcp_t. 5612 * Assumes that IP has pulled up everything up to and including the ICMP header. 5613 */ 5614 /* ARGSUSED2 */ 5615 void 5616 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5617 { 5618 conn_t *connp = (conn_t *)arg1; 5619 icmph_t *icmph; 5620 ipha_t *ipha; 5621 int iph_hdr_length; 5622 tcpha_t *tcpha; 5623 uint32_t seg_seq; 5624 tcp_t *tcp = connp->conn_tcp; 5625 5626 /* Assume IP provides aligned packets */ 5627 ASSERT(OK_32PTR(mp->b_rptr)); 5628 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5629 5630 /* 5631 * It's possible we have a closed, but not yet destroyed, TCP 5632 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid 5633 * in the closed state, so don't take any chances and drop the packet. 5634 */ 5635 if (tcp->tcp_state == TCPS_CLOSED) { 5636 freemsg(mp); 5637 return; 5638 } 5639 5640 /* 5641 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5642 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5643 */ 5644 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5645 tcp_icmp_error_ipv6(tcp, mp, ira); 5646 return; 5647 } 5648 5649 /* Skip past the outer IP and ICMP headers */ 5650 iph_hdr_length = ira->ira_ip_hdr_length; 5651 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5652 /* 5653 * If we don't have the correct outer IP header length 5654 * or if we don't have a complete inner IP header 5655 * drop it. 5656 */ 5657 if (iph_hdr_length < sizeof (ipha_t) || 5658 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5659 noticmpv4: 5660 freemsg(mp); 5661 return; 5662 } 5663 ipha = (ipha_t *)&icmph[1]; 5664 5665 /* Skip past the inner IP and find the ULP header */ 5666 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5667 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5668 /* 5669 * If we don't have the correct inner IP header length or if the ULP 5670 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5671 * bytes of TCP header, drop it. 5672 */ 5673 if (iph_hdr_length < sizeof (ipha_t) || 5674 ipha->ipha_protocol != IPPROTO_TCP || 5675 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5676 goto noticmpv4; 5677 } 5678 5679 seg_seq = ntohl(tcpha->tha_seq); 5680 switch (icmph->icmph_type) { 5681 case ICMP_DEST_UNREACHABLE: 5682 switch (icmph->icmph_code) { 5683 case ICMP_FRAGMENTATION_NEEDED: 5684 /* 5685 * Update Path MTU, then try to send something out. 5686 */ 5687 tcp_update_pmtu(tcp, B_TRUE); 5688 tcp_rexmit_after_error(tcp); 5689 break; 5690 case ICMP_PORT_UNREACHABLE: 5691 case ICMP_PROTOCOL_UNREACHABLE: 5692 switch (tcp->tcp_state) { 5693 case TCPS_SYN_SENT: 5694 case TCPS_SYN_RCVD: 5695 /* 5696 * ICMP can snipe away incipient 5697 * TCP connections as long as 5698 * seq number is same as initial 5699 * send seq number. 5700 */ 5701 if (seg_seq == tcp->tcp_iss) { 5702 (void) tcp_clean_death(tcp, 5703 ECONNREFUSED); 5704 } 5705 break; 5706 } 5707 break; 5708 case ICMP_HOST_UNREACHABLE: 5709 case ICMP_NET_UNREACHABLE: 5710 /* Record the error in case we finally time out. */ 5711 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5712 tcp->tcp_client_errno = EHOSTUNREACH; 5713 else 5714 tcp->tcp_client_errno = ENETUNREACH; 5715 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5716 if (tcp->tcp_listener != NULL && 5717 tcp->tcp_listener->tcp_syn_defense) { 5718 /* 5719 * Ditch the half-open connection if we 5720 * suspect a SYN attack is under way. 5721 */ 5722 (void) tcp_clean_death(tcp, 5723 tcp->tcp_client_errno); 5724 } 5725 } 5726 break; 5727 default: 5728 break; 5729 } 5730 break; 5731 case ICMP_SOURCE_QUENCH: { 5732 /* 5733 * use a global boolean to control 5734 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5735 * The default is false. 5736 */ 5737 if (tcp_icmp_source_quench) { 5738 /* 5739 * Reduce the sending rate as if we got a 5740 * retransmit timeout 5741 */ 5742 uint32_t npkt; 5743 5744 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5745 tcp->tcp_mss; 5746 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5747 5748 DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp, 5749 uint32_t, tcp->tcp_cwnd, 5750 uint32_t, tcp->tcp_mss); 5751 tcp->tcp_cwnd = tcp->tcp_mss; 5752 tcp->tcp_cwnd_cnt = 0; 5753 } 5754 break; 5755 } 5756 } 5757 freemsg(mp); 5758 } 5759 5760 /* 5761 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5762 * error messages passed up by IP. 5763 * Assumes that IP has pulled up all the extension headers as well 5764 * as the ICMPv6 header. 5765 */ 5766 static void 5767 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5768 { 5769 icmp6_t *icmp6; 5770 ip6_t *ip6h; 5771 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5772 tcpha_t *tcpha; 5773 uint8_t *nexthdrp; 5774 uint32_t seg_seq; 5775 5776 /* 5777 * Verify that we have a complete IP header. 5778 */ 5779 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5780 5781 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5782 ip6h = (ip6_t *)&icmp6[1]; 5783 /* 5784 * Verify if we have a complete ICMP and inner IP header. 5785 */ 5786 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5787 noticmpv6: 5788 freemsg(mp); 5789 return; 5790 } 5791 5792 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5793 goto noticmpv6; 5794 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5795 /* 5796 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5797 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5798 * packet. 5799 */ 5800 if ((*nexthdrp != IPPROTO_TCP) || 5801 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5802 goto noticmpv6; 5803 } 5804 5805 seg_seq = ntohl(tcpha->tha_seq); 5806 switch (icmp6->icmp6_type) { 5807 case ICMP6_PACKET_TOO_BIG: 5808 /* 5809 * Update Path MTU, then try to send something out. 5810 */ 5811 tcp_update_pmtu(tcp, B_TRUE); 5812 tcp_rexmit_after_error(tcp); 5813 break; 5814 case ICMP6_DST_UNREACH: 5815 switch (icmp6->icmp6_code) { 5816 case ICMP6_DST_UNREACH_NOPORT: 5817 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5818 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5819 (seg_seq == tcp->tcp_iss)) { 5820 (void) tcp_clean_death(tcp, ECONNREFUSED); 5821 } 5822 break; 5823 case ICMP6_DST_UNREACH_ADMIN: 5824 case ICMP6_DST_UNREACH_NOROUTE: 5825 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5826 case ICMP6_DST_UNREACH_ADDR: 5827 /* Record the error in case we finally time out. */ 5828 tcp->tcp_client_errno = EHOSTUNREACH; 5829 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5830 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5831 (seg_seq == tcp->tcp_iss)) { 5832 if (tcp->tcp_listener != NULL && 5833 tcp->tcp_listener->tcp_syn_defense) { 5834 /* 5835 * Ditch the half-open connection if we 5836 * suspect a SYN attack is under way. 5837 */ 5838 (void) tcp_clean_death(tcp, 5839 tcp->tcp_client_errno); 5840 } 5841 } 5842 5843 5844 break; 5845 default: 5846 break; 5847 } 5848 break; 5849 case ICMP6_PARAM_PROB: 5850 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5851 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5852 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5853 (uchar_t *)nexthdrp) { 5854 if (tcp->tcp_state == TCPS_SYN_SENT || 5855 tcp->tcp_state == TCPS_SYN_RCVD) { 5856 (void) tcp_clean_death(tcp, ECONNREFUSED); 5857 } 5858 break; 5859 } 5860 break; 5861 5862 case ICMP6_TIME_EXCEEDED: 5863 default: 5864 break; 5865 } 5866 freemsg(mp); 5867 } 5868 5869 /* 5870 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5871 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5872 * 5873 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5874 * error messages received by IP. The message is always received on the correct 5875 * tcp_t. 5876 */ 5877 /* ARGSUSED */ 5878 boolean_t 5879 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5880 ip_recv_attr_t *ira) 5881 { 5882 tcpha_t *tcpha = (tcpha_t *)arg2; 5883 uint32_t seq = ntohl(tcpha->tha_seq); 5884 tcp_t *tcp = connp->conn_tcp; 5885 5886 /* 5887 * TCP sequence number contained in payload of the ICMP error message 5888 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5889 * the message is either a stale ICMP error, or an attack from the 5890 * network. Fail the verification. 5891 */ 5892 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5893 return (B_FALSE); 5894 5895 /* For "too big" we also check the ignore flag */ 5896 if (ira->ira_flags & IRAF_IS_IPV4) { 5897 ASSERT(icmph != NULL); 5898 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5899 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5900 tcp->tcp_tcps->tcps_ignore_path_mtu) 5901 return (B_FALSE); 5902 } else { 5903 ASSERT(icmp6 != NULL); 5904 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5905 tcp->tcp_tcps->tcps_ignore_path_mtu) 5906 return (B_FALSE); 5907 } 5908 return (B_TRUE); 5909 } 5910