xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_input.c (revision b3783300013fa93b98278c901b855062f538f7e2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2019 Joyent, Inc.
26  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2022 Oxide Computer Company
29  */
30 
31 /* This file contains all TCP input processing functions. */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <sys/strsubr.h>
37 #include <sys/stropts.h>
38 #include <sys/strlog.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/suntpi.h>
42 #include <sys/xti_inet.h>
43 #include <sys/squeue_impl.h>
44 #include <sys/squeue.h>
45 #include <sys/tsol/tnet.h>
46 
47 #include <inet/common.h>
48 #include <inet/ip.h>
49 #include <inet/tcp.h>
50 #include <inet/tcp_impl.h>
51 #include <inet/tcp_cluster.h>
52 #include <inet/proto_set.h>
53 #include <inet/ipsec_impl.h>
54 
55 /*
56  * RFC7323-recommended phrasing of TSTAMP option, for easier parsing
57  */
58 
59 #ifdef _BIG_ENDIAN
60 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
61 	(TCPOPT_TSTAMP << 8) | 10)
62 #else
63 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
64 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
65 #endif
66 
67 /*
68  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
69  */
70 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
71 
72 /*
73  * Since tcp_listener is not cleared atomically with tcp_detached
74  * being cleared we need this extra bit to tell a detached connection
75  * apart from one that is in the process of being accepted.
76  */
77 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
78 	(TCP_IS_DETACHED(tcp) &&	\
79 	    (!(tcp)->tcp_hard_binding))
80 
81 /*
82  * Steps to do when a tcp_t moves to TIME-WAIT state.
83  *
84  * This connection is done, we don't need to account for it.  Decrement
85  * the listener connection counter if needed.
86  *
87  * Decrement the connection counter of the stack.  Note that this counter
88  * is per CPU.  So the total number of connections in a stack is the sum of all
89  * of them.  Since there is no lock for handling all of them exclusively, the
90  * resulting sum is only an approximation.
91  *
92  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
93  * connection won't interfere with new ones.
94  *
95  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
96  * the timer is handled within the context of this tcp_t.  When the timer
97  * fires, tcp_clean_death() is called.  If upper layer closes the connection
98  * during this period, tcp_time_wait_append() will be called to add this
99  * tcp_t to the global TIME-WAIT list.  Note that this means that the
100  * actual wait time in TIME-WAIT state will be longer than the
101  * tcps_time_wait_interval since the period before upper layer closes the
102  * connection is not accounted for when tcp_time_wait_append() is called.
103  *
104  * If upper layer has closed the connection, call tcp_time_wait_append()
105  * directly.
106  *
107  */
108 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
109 {								\
110 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
111 	if ((tcp)->tcp_listen_cnt != NULL)			\
112 		TCP_DECR_LISTEN_CNT(tcp);			\
113 	atomic_dec_64(						\
114 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
115 	(connp)->conn_exclbind = 0;				\
116 	if (!TCP_IS_DETACHED(tcp)) {				\
117 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
118 	} else {						\
119 		tcp_time_wait_append(tcp);			\
120 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
121 	}							\
122 }
123 
124 /*
125  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
126  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
127  * data, TCP will not respond with an ACK.  RFC 793 requires that
128  * TCP responds with an ACK for such a bogus ACK.  By not following
129  * the RFC, we prevent TCP from getting into an ACK storm if somehow
130  * an attacker successfully spoofs an acceptable segment to our
131  * peer; or when our peer is "confused."
132  */
133 static uint32_t tcp_drop_ack_unsent_cnt = 10;
134 
135 /*
136  * To protect TCP against attacker using a small window and requesting
137  * large amount of data (DoS attack by conuming memory), TCP checks the
138  * window advertised in the last ACK of the 3-way handshake.  TCP uses
139  * the tcp_mss (the size of one packet) value for comparion.  The window
140  * should be larger than tcp_mss.  But while a sane TCP should advertise
141  * a receive window larger than or equal to 4*MSS to avoid stop and go
142  * tarrfic, not all TCP stacks do that.  This is especially true when
143  * tcp_mss is a big value.
144  *
145  * To work around this issue, an additional fixed value for comparison
146  * is also used.  If the advertised window is smaller than both tcp_mss
147  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
148  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
149  * smaller than 8K is considered to be OK.
150  */
151 static uint32_t tcp_init_wnd_chk = 4096;
152 
153 /* Process ICMP source quench message or not. */
154 static boolean_t tcp_icmp_source_quench = B_FALSE;
155 
156 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
157 
158 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
159 		    ip_recv_attr_t *);
160 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
161 		    ip_recv_attr_t *);
162 static boolean_t	tcp_drop_q0(tcp_t *);
163 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
164 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
165 		    ip_recv_attr_t *);
166 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
167 static void	tcp_process_options(tcp_t *, tcpha_t *);
168 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
169 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
170 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
171 static void	tcp_set_rto(tcp_t *, hrtime_t);
172 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
173 
174 /*
175  * CC wrapper hook functions
176  */
177 static void
178 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked,
179     uint16_t type)
180 {
181 	uint32_t old_cwnd = tcp->tcp_cwnd;
182 
183 	tcp->tcp_ccv.bytes_this_ack = bytes_acked;
184 	if (tcp->tcp_cwnd <= tcp->tcp_swnd)
185 		tcp->tcp_ccv.flags |= CCF_CWND_LIMITED;
186 	else
187 		tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED;
188 
189 	if (type == CC_ACK) {
190 		if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
191 			if (tcp->tcp_ccv.flags & CCF_RTO)
192 				tcp->tcp_ccv.flags &= ~CCF_RTO;
193 
194 			tcp->tcp_ccv.t_bytes_acked +=
195 			    min(tcp->tcp_ccv.bytes_this_ack,
196 			    tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss);
197 			if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) {
198 				tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd;
199 				tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND;
200 			}
201 		} else {
202 			tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND;
203 			tcp->tcp_ccv.t_bytes_acked = 0;
204 		}
205 	}
206 
207 	if (CC_ALGO(tcp)->ack_received != NULL) {
208 		/*
209 		 * The FreeBSD code where this originated had a comment "Find
210 		 * a way to live without this" in several places where curack
211 		 * got set.  If they eventually dump curack from the cc
212 		 * variables, we'll need to adapt our code.
213 		 */
214 		tcp->tcp_ccv.curack = seg_ack;
215 		CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type);
216 	}
217 
218 	DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd,
219 	    uint32_t, tcp->tcp_cwnd);
220 }
221 
222 void
223 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type)
224 {
225 	uint32_t old_cwnd = tcp->tcp_cwnd;
226 	uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh;
227 	switch (type) {
228 	case CC_NDUPACK:
229 		if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) {
230 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
231 			if (tcp->tcp_ecn_ok) {
232 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
233 				tcp->tcp_cwr = B_TRUE;
234 				tcp->tcp_ecn_cwr_sent = B_FALSE;
235 			}
236 		}
237 		break;
238 	case CC_ECN:
239 		if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) {
240 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
241 			if (tcp->tcp_ecn_ok) {
242 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
243 				tcp->tcp_cwr = B_TRUE;
244 				tcp->tcp_ecn_cwr_sent = B_FALSE;
245 			}
246 		}
247 		break;
248 	case CC_RTO:
249 		tcp->tcp_ccv.flags |= CCF_RTO;
250 		tcp->tcp_dupack_cnt = 0;
251 		tcp->tcp_ccv.t_bytes_acked = 0;
252 		/*
253 		 * Give up on fast recovery and congestion recovery if we were
254 		 * attempting either.
255 		 */
256 		EXIT_RECOVERY(tcp->tcp_ccv.flags);
257 		if (CC_ALGO(tcp)->cong_signal == NULL) {
258 			/*
259 			 * RFC5681 Section 3.1
260 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
261 			 */
262 			tcp->tcp_cwnd_ssthresh = max(
263 			    (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss,
264 			    2) * tcp->tcp_mss;
265 			tcp->tcp_cwnd = tcp->tcp_mss;
266 		}
267 
268 		if (tcp->tcp_ecn_ok) {
269 			tcp->tcp_cwr = B_TRUE;
270 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
271 			tcp->tcp_ecn_cwr_sent = B_FALSE;
272 		}
273 		break;
274 	}
275 
276 	if (CC_ALGO(tcp)->cong_signal != NULL) {
277 		tcp->tcp_ccv.curack = seg_ack;
278 		CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type);
279 	}
280 
281 	DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd,
282 	    uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh,
283 	    uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type);
284 }
285 
286 static void
287 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack)
288 {
289 	uint32_t old_cwnd = tcp->tcp_cwnd;
290 
291 	if (CC_ALGO(tcp)->post_recovery != NULL) {
292 		tcp->tcp_ccv.curack = seg_ack;
293 		CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv);
294 	}
295 	tcp->tcp_ccv.t_bytes_acked = 0;
296 
297 	DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp,
298 	    uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd);
299 }
300 
301 /*
302  * Set the MSS associated with a particular tcp based on its current value,
303  * and a new one passed in. Observe minimums and maximums, and reset other
304  * state variables that we want to view as multiples of MSS.
305  *
306  * The value of MSS could be either increased or descreased.
307  */
308 void
309 tcp_mss_set(tcp_t *tcp, uint32_t mss)
310 {
311 	uint32_t	mss_max;
312 	tcp_stack_t	*tcps = tcp->tcp_tcps;
313 	conn_t		*connp = tcp->tcp_connp;
314 
315 	if (connp->conn_ipversion == IPV4_VERSION)
316 		mss_max = tcps->tcps_mss_max_ipv4;
317 	else
318 		mss_max = tcps->tcps_mss_max_ipv6;
319 
320 	if (mss < tcps->tcps_mss_min)
321 		mss = tcps->tcps_mss_min;
322 	if (mss > mss_max)
323 		mss = mss_max;
324 	/*
325 	 * Unless naglim has been set by our client to
326 	 * a non-mss value, force naglim to track mss.
327 	 * This can help to aggregate small writes.
328 	 */
329 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
330 		tcp->tcp_naglim = mss;
331 	/*
332 	 * TCP should be able to buffer at least 4 MSS data for obvious
333 	 * performance reason.
334 	 */
335 	if ((mss << 2) > connp->conn_sndbuf)
336 		connp->conn_sndbuf = mss << 2;
337 
338 	/*
339 	 * Set the send lowater to at least twice of MSS.
340 	 */
341 	if ((mss << 1) > connp->conn_sndlowat)
342 		connp->conn_sndlowat = mss << 1;
343 
344 	/*
345 	 * Update tcp_cwnd according to the new value of MSS. Keep the
346 	 * previous ratio to preserve the transmit rate.
347 	 */
348 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
349 	tcp->tcp_cwnd_cnt = 0;
350 
351 	tcp->tcp_mss = mss;
352 	(void) tcp_maxpsz_set(tcp, B_TRUE);
353 }
354 
355 /*
356  * Extract option values from a tcp header.  We put any found values into the
357  * tcpopt struct and return a bitmask saying which options were found.
358  */
359 int
360 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
361 {
362 	uchar_t		*endp;
363 	int		len;
364 	uint32_t	mss;
365 	uchar_t		*up = (uchar_t *)tcpha;
366 	int		found = 0;
367 	int32_t		sack_len;
368 	tcp_seq		sack_begin, sack_end;
369 	tcp_t		*tcp;
370 
371 	endp = up + TCP_HDR_LENGTH(tcpha);
372 	up += TCP_MIN_HEADER_LENGTH;
373 	/*
374 	 * If timestamp option is aligned as recommended in RFC 7323 Appendix
375 	 * A, and is the only option, return quickly.
376 	 */
377 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
378 	    TCPOPT_REAL_TS_LEN &&
379 	    OK_32PTR(up) &&
380 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
381 		tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4));
382 		tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
383 
384 		return (TCP_OPT_TSTAMP_PRESENT);
385 	}
386 	while (up < endp) {
387 		len = endp - up;
388 		switch (*up) {
389 		case TCPOPT_EOL:
390 			break;
391 
392 		case TCPOPT_NOP:
393 			up++;
394 			continue;
395 
396 		case TCPOPT_MAXSEG:
397 			if (len < TCPOPT_MAXSEG_LEN ||
398 			    up[1] != TCPOPT_MAXSEG_LEN)
399 				break;
400 
401 			mss = BE16_TO_U16(up+2);
402 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
403 			tcpopt->tcp_opt_mss = mss;
404 			found |= TCP_OPT_MSS_PRESENT;
405 
406 			up += TCPOPT_MAXSEG_LEN;
407 			continue;
408 
409 		case TCPOPT_WSCALE:
410 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
411 				break;
412 
413 			if (up[2] > TCP_MAX_WINSHIFT)
414 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
415 			else
416 				tcpopt->tcp_opt_wscale = up[2];
417 			found |= TCP_OPT_WSCALE_PRESENT;
418 
419 			up += TCPOPT_WS_LEN;
420 			continue;
421 
422 		case TCPOPT_SACK_PERMITTED:
423 			if (len < TCPOPT_SACK_OK_LEN ||
424 			    up[1] != TCPOPT_SACK_OK_LEN)
425 				break;
426 			found |= TCP_OPT_SACK_OK_PRESENT;
427 			up += TCPOPT_SACK_OK_LEN;
428 			continue;
429 
430 		case TCPOPT_SACK:
431 			if (len <= 2 || up[1] <= 2 || len < up[1])
432 				break;
433 
434 			/* If TCP is not interested in SACK blks... */
435 			if ((tcp = tcpopt->tcp) == NULL) {
436 				up += up[1];
437 				continue;
438 			}
439 			sack_len = up[1] - TCPOPT_HEADER_LEN;
440 			up += TCPOPT_HEADER_LEN;
441 
442 			/*
443 			 * If the list is empty, allocate one and assume
444 			 * nothing is sack'ed.
445 			 */
446 			if (tcp->tcp_notsack_list == NULL) {
447 				tcp_notsack_update(&(tcp->tcp_notsack_list),
448 				    tcp->tcp_suna, tcp->tcp_snxt,
449 				    &(tcp->tcp_num_notsack_blk),
450 				    &(tcp->tcp_cnt_notsack_list));
451 
452 				/*
453 				 * Make sure tcp_notsack_list is not NULL.
454 				 * This happens when kmem_alloc(KM_NOSLEEP)
455 				 * returns NULL.
456 				 */
457 				if (tcp->tcp_notsack_list == NULL) {
458 					up += sack_len;
459 					continue;
460 				}
461 				tcp->tcp_fack = tcp->tcp_suna;
462 			}
463 
464 			while (sack_len > 0) {
465 				if (up + 8 > endp) {
466 					up = endp;
467 					break;
468 				}
469 				sack_begin = BE32_TO_U32(up);
470 				up += 4;
471 				sack_end = BE32_TO_U32(up);
472 				up += 4;
473 				sack_len -= 8;
474 				/*
475 				 * Bounds checking.  Make sure the SACK
476 				 * info is within tcp_suna and tcp_snxt.
477 				 * If this SACK blk is out of bound, ignore
478 				 * it but continue to parse the following
479 				 * blks.
480 				 */
481 				if (SEQ_LEQ(sack_end, sack_begin) ||
482 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
483 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
484 					continue;
485 				}
486 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
487 				    sack_begin, sack_end,
488 				    &(tcp->tcp_num_notsack_blk),
489 				    &(tcp->tcp_cnt_notsack_list));
490 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
491 					tcp->tcp_fack = sack_end;
492 				}
493 			}
494 			found |= TCP_OPT_SACK_PRESENT;
495 			continue;
496 
497 		case TCPOPT_TSTAMP:
498 			if (len < TCPOPT_TSTAMP_LEN ||
499 			    up[1] != TCPOPT_TSTAMP_LEN)
500 				break;
501 
502 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
503 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
504 
505 			found |= TCP_OPT_TSTAMP_PRESENT;
506 
507 			up += TCPOPT_TSTAMP_LEN;
508 			continue;
509 
510 		default:
511 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
512 				break;
513 			up += up[1];
514 			continue;
515 		}
516 		break;
517 	}
518 	return (found);
519 }
520 
521 /*
522  * Process all TCP option in SYN segment.  Note that this function should
523  * be called after tcp_set_destination() is called so that the necessary info
524  * from IRE is already set in the tcp structure.
525  *
526  * This function sets up the correct tcp_mss value according to the
527  * MSS option value and our header size.  It also sets up the window scale
528  * and timestamp values, and initialize SACK info blocks.  But it does not
529  * change receive window size after setting the tcp_mss value.  The caller
530  * should do the appropriate change.
531  */
532 static void
533 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
534 {
535 	int options;
536 	tcp_opt_t tcpopt;
537 	uint32_t mss_max;
538 	char *tmp_tcph;
539 	tcp_stack_t	*tcps = tcp->tcp_tcps;
540 	conn_t		*connp = tcp->tcp_connp;
541 
542 	tcpopt.tcp = NULL;
543 	options = tcp_parse_options(tcpha, &tcpopt);
544 
545 	/*
546 	 * Process MSS option.  Note that MSS option value does not account
547 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
548 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
549 	 * IPv6.
550 	 */
551 	if (!(options & TCP_OPT_MSS_PRESENT)) {
552 		if (connp->conn_ipversion == IPV4_VERSION)
553 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
554 		else
555 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
556 	} else {
557 		if (connp->conn_ipversion == IPV4_VERSION)
558 			mss_max = tcps->tcps_mss_max_ipv4;
559 		else
560 			mss_max = tcps->tcps_mss_max_ipv6;
561 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
562 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
563 		else if (tcpopt.tcp_opt_mss > mss_max)
564 			tcpopt.tcp_opt_mss = mss_max;
565 	}
566 
567 	/* Process Window Scale option. */
568 	if (options & TCP_OPT_WSCALE_PRESENT) {
569 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
570 		tcp->tcp_snd_ws_ok = B_TRUE;
571 	} else {
572 		tcp->tcp_snd_ws = B_FALSE;
573 		tcp->tcp_snd_ws_ok = B_FALSE;
574 		tcp->tcp_rcv_ws = B_FALSE;
575 	}
576 
577 	/* Process Timestamp option. */
578 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
579 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
580 		tmp_tcph = (char *)tcp->tcp_tcpha;
581 
582 		tcp->tcp_snd_ts_ok = B_TRUE;
583 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
584 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
585 		ASSERT(OK_32PTR(tmp_tcph));
586 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
587 
588 		/* Fill in our template header with basic timestamp option. */
589 		tmp_tcph += connp->conn_ht_ulp_len;
590 		tmp_tcph[0] = TCPOPT_NOP;
591 		tmp_tcph[1] = TCPOPT_NOP;
592 		tmp_tcph[2] = TCPOPT_TSTAMP;
593 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
594 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
595 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
596 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
597 	} else {
598 		tcp->tcp_snd_ts_ok = B_FALSE;
599 	}
600 
601 	/*
602 	 * Process SACK options.  If SACK is enabled for this connection,
603 	 * then allocate the SACK info structure.  Note the following ways
604 	 * when tcp_snd_sack_ok is set to true.
605 	 *
606 	 * For active connection: in tcp_set_destination() called in
607 	 * tcp_connect().
608 	 *
609 	 * For passive connection: in tcp_set_destination() called in
610 	 * tcp_input_listener().
611 	 *
612 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
613 	 * That check makes sure that if we did not send a SACK OK option,
614 	 * we will not enable SACK for this connection even though the other
615 	 * side sends us SACK OK option.  For active connection, the SACK
616 	 * info structure has already been allocated.  So we need to free
617 	 * it if SACK is disabled.
618 	 */
619 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
620 	    (tcp->tcp_snd_sack_ok ||
621 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
622 		ASSERT(tcp->tcp_num_sack_blk == 0);
623 		ASSERT(tcp->tcp_notsack_list == NULL);
624 
625 		tcp->tcp_snd_sack_ok = B_TRUE;
626 		if (tcp->tcp_snd_ts_ok) {
627 			tcp->tcp_max_sack_blk = 3;
628 		} else {
629 			tcp->tcp_max_sack_blk = 4;
630 		}
631 	} else if (tcp->tcp_snd_sack_ok) {
632 		/*
633 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
634 		 * no SACK info will be used for this
635 		 * connection.  This assumes that SACK usage
636 		 * permission is negotiated.  This may need
637 		 * to be changed once this is clarified.
638 		 */
639 		ASSERT(tcp->tcp_num_sack_blk == 0);
640 		ASSERT(tcp->tcp_notsack_list == NULL);
641 		tcp->tcp_snd_sack_ok = B_FALSE;
642 	}
643 
644 	/*
645 	 * Now we know the exact TCP/IP header length, subtract
646 	 * that from tcp_mss to get our side's MSS.
647 	 */
648 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
649 
650 	/*
651 	 * Here we assume that the other side's header size will be equal to
652 	 * our header size.  We calculate the real MSS accordingly.  Need to
653 	 * take into additional stuffs IPsec puts in.
654 	 *
655 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
656 	 */
657 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
658 	    tcp->tcp_ipsec_overhead -
659 	    ((connp->conn_ipversion == IPV4_VERSION ?
660 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
661 
662 	/*
663 	 * Set MSS to the smaller one of both ends of the connection.
664 	 * We should not have called tcp_mss_set() before, but our
665 	 * side of the MSS should have been set to a proper value
666 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
667 	 * STREAM head parameters properly.
668 	 *
669 	 * If we have a larger-than-16-bit window but the other side
670 	 * didn't want to do window scale, tcp_rwnd_set() will take
671 	 * care of that.
672 	 */
673 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
674 
675 	/*
676 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
677 	 * updated properly.
678 	 */
679 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
680 
681 	if (tcp->tcp_cc_algo->conn_init != NULL)
682 		tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv);
683 }
684 
685 /*
686  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
687  * is filled, return as much as we can.  The message passed in may be
688  * multi-part, chained using b_cont.  "start" is the starting sequence
689  * number for this piece.
690  */
691 static mblk_t *
692 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
693 {
694 	uint32_t	end, bytes;
695 	mblk_t		*mp1;
696 	mblk_t		*mp2;
697 	mblk_t		*next_mp;
698 	uint32_t	u1;
699 	tcp_stack_t	*tcps = tcp->tcp_tcps;
700 
701 
702 	/* Walk through all the new pieces. */
703 	do {
704 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
705 		    (uintptr_t)INT_MAX);
706 		end = start + (int)(mp->b_wptr - mp->b_rptr);
707 		next_mp = mp->b_cont;
708 		if (start == end) {
709 			/* Empty.  Blast it. */
710 			freeb(mp);
711 			continue;
712 		}
713 		bytes = end - start;
714 		mp->b_cont = NULL;
715 		TCP_REASS_SET_SEQ(mp, start);
716 		TCP_REASS_SET_END(mp, end);
717 		mp1 = tcp->tcp_reass_tail;
718 		if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) {
719 			if (mp1 != NULL) {
720 				/*
721 				 * New stuff is beyond the tail; link it on the
722 				 * end.
723 				 */
724 				mp1->b_cont = mp;
725 			} else {
726 				tcp->tcp_reass_head = mp;
727 			}
728 			tcp->tcp_reass_tail = mp;
729 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
730 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes);
731 			tcp->tcp_cs.tcp_in_data_unorder_segs++;
732 			tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes;
733 			continue;
734 		}
735 		mp1 = tcp->tcp_reass_head;
736 		u1 = TCP_REASS_SEQ(mp1);
737 		/* New stuff at the front? */
738 		if (SEQ_LT(start, u1)) {
739 			/* Yes... Check for overlap. */
740 			mp->b_cont = mp1;
741 			tcp->tcp_reass_head = mp;
742 			tcp_reass_elim_overlap(tcp, mp);
743 			continue;
744 		}
745 		/*
746 		 * The new piece fits somewhere between the head and tail.
747 		 * We find our slot, where mp1 precedes us and mp2 trails.
748 		 */
749 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
750 			u1 = TCP_REASS_SEQ(mp2);
751 			if (SEQ_LEQ(start, u1))
752 				break;
753 		}
754 		/* Link ourselves in */
755 		mp->b_cont = mp2;
756 		mp1->b_cont = mp;
757 
758 		/* Trim overlap with following mblk(s) first */
759 		tcp_reass_elim_overlap(tcp, mp);
760 
761 		/* Trim overlap with preceding mblk */
762 		tcp_reass_elim_overlap(tcp, mp1);
763 
764 	} while (start = end, mp = next_mp);
765 	mp1 = tcp->tcp_reass_head;
766 	/* Anything ready to go? */
767 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
768 		return (NULL);
769 	/* Eat what we can off the queue */
770 	for (;;) {
771 		mp = mp1->b_cont;
772 		end = TCP_REASS_END(mp1);
773 		TCP_REASS_SET_SEQ(mp1, 0);
774 		TCP_REASS_SET_END(mp1, 0);
775 		if (!mp) {
776 			tcp->tcp_reass_tail = NULL;
777 			break;
778 		}
779 		if (end != TCP_REASS_SEQ(mp)) {
780 			mp1->b_cont = NULL;
781 			break;
782 		}
783 		mp1 = mp;
784 	}
785 	mp1 = tcp->tcp_reass_head;
786 	tcp->tcp_reass_head = mp;
787 	return (mp1);
788 }
789 
790 /* Eliminate any overlap that mp may have over later mblks */
791 static void
792 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
793 {
794 	uint32_t	end;
795 	mblk_t		*mp1;
796 	uint32_t	u1;
797 	tcp_stack_t	*tcps = tcp->tcp_tcps;
798 
799 	end = TCP_REASS_END(mp);
800 	while ((mp1 = mp->b_cont) != NULL) {
801 		u1 = TCP_REASS_SEQ(mp1);
802 		if (!SEQ_GT(end, u1))
803 			break;
804 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
805 			mp->b_wptr -= end - u1;
806 			TCP_REASS_SET_END(mp, u1);
807 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
808 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
809 			    end - u1);
810 			break;
811 		}
812 		mp->b_cont = mp1->b_cont;
813 		TCP_REASS_SET_SEQ(mp1, 0);
814 		TCP_REASS_SET_END(mp1, 0);
815 		freeb(mp1);
816 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
817 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
818 	}
819 	if (!mp1)
820 		tcp->tcp_reass_tail = mp;
821 }
822 
823 /*
824  * This function does PAWS protection check, per RFC 7323 section 5. Requires
825  * that timestamp options are already processed into tcpoptp. Returns B_TRUE if
826  * the segment passes the PAWS test, else returns B_FALSE.
827  */
828 boolean_t
829 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp)
830 {
831 	if (TSTMP_LT(tcpoptp->tcp_opt_ts_val,
832 	    tcp->tcp_ts_recent)) {
833 		if (LBOLT_FASTPATH64 <
834 		    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
835 			/* This segment is not acceptable. */
836 			return (B_FALSE);
837 		} else {
838 			/*
839 			 * Connection has been idle for
840 			 * too long.  Reset the timestamp
841 			 */
842 			tcp->tcp_ts_recent =
843 			    tcpoptp->tcp_opt_ts_val;
844 		}
845 	}
846 	return (B_TRUE);
847 }
848 
849 /*
850  * Defense for the SYN attack -
851  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
852  *    one from the list of droppable eagers. This list is a subset of q0.
853  *    see comments before the definition of MAKE_DROPPABLE().
854  * 2. Don't drop a SYN request before its first timeout. This gives every
855  *    request at least til the first timeout to complete its 3-way handshake.
856  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
857  *    requests currently on the queue that has timed out. This will be used
858  *    as an indicator of whether an attack is under way, so that appropriate
859  *    actions can be taken. (It's incremented in tcp_timer() and decremented
860  *    either when eager goes into ESTABLISHED, or gets freed up.)
861  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
862  *    # of timeout drops back to <= q0len/32 => SYN alert off
863  */
864 static boolean_t
865 tcp_drop_q0(tcp_t *tcp)
866 {
867 	tcp_t	*eager;
868 	mblk_t	*mp;
869 	tcp_stack_t	*tcps = tcp->tcp_tcps;
870 
871 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
872 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
873 
874 	/* Pick oldest eager from the list of droppable eagers */
875 	eager = tcp->tcp_eager_prev_drop_q0;
876 
877 	/* If list is empty. return B_FALSE */
878 	if (eager == tcp) {
879 		return (B_FALSE);
880 	}
881 
882 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
883 	if ((mp = allocb(0, BPRI_HI)) == NULL)
884 		return (B_FALSE);
885 
886 	/*
887 	 * Take this eager out from the list of droppable eagers since we are
888 	 * going to drop it.
889 	 */
890 	MAKE_UNDROPPABLE(eager);
891 
892 	if (tcp->tcp_connp->conn_debug) {
893 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
894 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
895 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
896 		    tcp->tcp_conn_req_cnt_q0,
897 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
898 	}
899 
900 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
901 
902 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
903 	CONN_INC_REF(eager->tcp_connp);
904 
905 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
906 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
907 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
908 
909 	return (B_TRUE);
910 }
911 
912 /*
913  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
914  */
915 static mblk_t *
916 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
917     ip_recv_attr_t *ira)
918 {
919 	tcp_t		*ltcp = lconnp->conn_tcp;
920 	tcp_t		*tcp = connp->conn_tcp;
921 	mblk_t		*tpi_mp;
922 	ipha_t		*ipha;
923 	ip6_t		*ip6h;
924 	sin6_t		sin6;
925 	uint_t		ifindex = ira->ira_ruifindex;
926 	tcp_stack_t	*tcps = tcp->tcp_tcps;
927 
928 	if (ira->ira_flags & IRAF_IS_IPV4) {
929 		ipha = (ipha_t *)mp->b_rptr;
930 
931 		connp->conn_ipversion = IPV4_VERSION;
932 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
933 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
934 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
935 
936 		sin6 = sin6_null;
937 		sin6.sin6_addr = connp->conn_faddr_v6;
938 		sin6.sin6_port = connp->conn_fport;
939 		sin6.sin6_family = AF_INET6;
940 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
941 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
942 
943 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
944 			sin6_t	sin6d;
945 
946 			sin6d = sin6_null;
947 			sin6d.sin6_addr = connp->conn_laddr_v6;
948 			sin6d.sin6_port = connp->conn_lport;
949 			sin6d.sin6_family = AF_INET;
950 			tpi_mp = mi_tpi_extconn_ind(NULL,
951 			    (char *)&sin6d, sizeof (sin6_t),
952 			    (char *)&tcp,
953 			    (t_scalar_t)sizeof (intptr_t),
954 			    (char *)&sin6d, sizeof (sin6_t),
955 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
956 		} else {
957 			tpi_mp = mi_tpi_conn_ind(NULL,
958 			    (char *)&sin6, sizeof (sin6_t),
959 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
960 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
961 		}
962 	} else {
963 		ip6h = (ip6_t *)mp->b_rptr;
964 
965 		connp->conn_ipversion = IPV6_VERSION;
966 		connp->conn_laddr_v6 = ip6h->ip6_dst;
967 		connp->conn_faddr_v6 = ip6h->ip6_src;
968 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
969 
970 		sin6 = sin6_null;
971 		sin6.sin6_addr = connp->conn_faddr_v6;
972 		sin6.sin6_port = connp->conn_fport;
973 		sin6.sin6_family = AF_INET6;
974 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
975 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
976 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
977 
978 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
979 			/* Pass up the scope_id of remote addr */
980 			sin6.sin6_scope_id = ifindex;
981 		} else {
982 			sin6.sin6_scope_id = 0;
983 		}
984 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
985 			sin6_t	sin6d;
986 
987 			sin6d = sin6_null;
988 			sin6.sin6_addr = connp->conn_laddr_v6;
989 			sin6d.sin6_port = connp->conn_lport;
990 			sin6d.sin6_family = AF_INET6;
991 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
992 				sin6d.sin6_scope_id = ifindex;
993 
994 			tpi_mp = mi_tpi_extconn_ind(NULL,
995 			    (char *)&sin6d, sizeof (sin6_t),
996 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
997 			    (char *)&sin6d, sizeof (sin6_t),
998 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
999 		} else {
1000 			tpi_mp = mi_tpi_conn_ind(NULL,
1001 			    (char *)&sin6, sizeof (sin6_t),
1002 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1003 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1004 		}
1005 	}
1006 
1007 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
1008 	return (tpi_mp);
1009 }
1010 
1011 /* Handle a SYN on an AF_INET socket */
1012 static mblk_t *
1013 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
1014     ip_recv_attr_t *ira)
1015 {
1016 	tcp_t		*ltcp = lconnp->conn_tcp;
1017 	tcp_t		*tcp = connp->conn_tcp;
1018 	sin_t		sin;
1019 	mblk_t		*tpi_mp = NULL;
1020 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1021 	ipha_t		*ipha;
1022 
1023 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
1024 	ipha = (ipha_t *)mp->b_rptr;
1025 
1026 	connp->conn_ipversion = IPV4_VERSION;
1027 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
1028 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
1029 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
1030 
1031 	sin = sin_null;
1032 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
1033 	sin.sin_port = connp->conn_fport;
1034 	sin.sin_family = AF_INET;
1035 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
1036 		sin_t	sind;
1037 
1038 		sind = sin_null;
1039 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
1040 		sind.sin_port = connp->conn_lport;
1041 		sind.sin_family = AF_INET;
1042 		tpi_mp = mi_tpi_extconn_ind(NULL,
1043 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
1044 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
1045 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1046 	} else {
1047 		tpi_mp = mi_tpi_conn_ind(NULL,
1048 		    (char *)&sin, sizeof (sin_t),
1049 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1050 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1051 	}
1052 
1053 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
1054 	return (tpi_mp);
1055 }
1056 
1057 /*
1058  * Called via squeue to get on to eager's perimeter. It sends a
1059  * TH_RST if eager is in the fanout table. The listener wants the
1060  * eager to disappear either by means of tcp_eager_blowoff() or
1061  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
1062  * called (via squeue) if the eager cannot be inserted in the
1063  * fanout table in tcp_input_listener().
1064  */
1065 /* ARGSUSED */
1066 void
1067 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1068 {
1069 	conn_t	*econnp = (conn_t *)arg;
1070 	tcp_t	*eager = econnp->conn_tcp;
1071 	tcp_t	*listener = eager->tcp_listener;
1072 
1073 	/*
1074 	 * We could be called because listener is closing. Since
1075 	 * the eager was using listener's queue's, we avoid
1076 	 * using the listeners queues from now on.
1077 	 */
1078 	ASSERT(eager->tcp_detached);
1079 	econnp->conn_rq = NULL;
1080 	econnp->conn_wq = NULL;
1081 
1082 	/*
1083 	 * An eager's conn_fanout will be NULL if it's a duplicate
1084 	 * for an existing 4-tuples in the conn fanout table.
1085 	 * We don't want to send an RST out in such case.
1086 	 */
1087 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1088 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1089 		    eager, eager->tcp_snxt, 0, TH_RST);
1090 	}
1091 
1092 	/* We are here because listener wants this eager gone */
1093 	if (listener != NULL) {
1094 		mutex_enter(&listener->tcp_eager_lock);
1095 		tcp_eager_unlink(eager);
1096 		if (eager->tcp_tconnind_started) {
1097 			/*
1098 			 * The eager has sent a conn_ind up to the
1099 			 * listener but listener decides to close
1100 			 * instead. We need to drop the extra ref
1101 			 * placed on eager in tcp_input_data() before
1102 			 * sending the conn_ind to listener.
1103 			 */
1104 			CONN_DEC_REF(econnp);
1105 		}
1106 		mutex_exit(&listener->tcp_eager_lock);
1107 		CONN_DEC_REF(listener->tcp_connp);
1108 	}
1109 
1110 	if (eager->tcp_state != TCPS_CLOSED)
1111 		tcp_close_detached(eager);
1112 }
1113 
1114 /*
1115  * Reset any eager connection hanging off this listener marked
1116  * with 'seqnum' and then reclaim it's resources.
1117  */
1118 boolean_t
1119 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1120 {
1121 	tcp_t	*eager;
1122 	mblk_t	*mp;
1123 
1124 	eager = listener;
1125 	mutex_enter(&listener->tcp_eager_lock);
1126 	do {
1127 		eager = eager->tcp_eager_next_q;
1128 		if (eager == NULL) {
1129 			mutex_exit(&listener->tcp_eager_lock);
1130 			return (B_FALSE);
1131 		}
1132 	} while (eager->tcp_conn_req_seqnum != seqnum);
1133 
1134 	if (eager->tcp_closemp_used) {
1135 		mutex_exit(&listener->tcp_eager_lock);
1136 		return (B_TRUE);
1137 	}
1138 	eager->tcp_closemp_used = B_TRUE;
1139 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1140 	CONN_INC_REF(eager->tcp_connp);
1141 	mutex_exit(&listener->tcp_eager_lock);
1142 	mp = &eager->tcp_closemp;
1143 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1144 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1145 	return (B_TRUE);
1146 }
1147 
1148 /*
1149  * Reset any eager connection hanging off this listener
1150  * and then reclaim it's resources.
1151  */
1152 void
1153 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1154 {
1155 	tcp_t	*eager;
1156 	mblk_t	*mp;
1157 	tcp_stack_t	*tcps = listener->tcp_tcps;
1158 
1159 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1160 
1161 	if (!q0_only) {
1162 		/* First cleanup q */
1163 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1164 		eager = listener->tcp_eager_next_q;
1165 		while (eager != NULL) {
1166 			if (!eager->tcp_closemp_used) {
1167 				eager->tcp_closemp_used = B_TRUE;
1168 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1169 				CONN_INC_REF(eager->tcp_connp);
1170 				mp = &eager->tcp_closemp;
1171 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1172 				    tcp_eager_kill, eager->tcp_connp, NULL,
1173 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1174 			}
1175 			eager = eager->tcp_eager_next_q;
1176 		}
1177 	}
1178 	/* Then cleanup q0 */
1179 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1180 	eager = listener->tcp_eager_next_q0;
1181 	while (eager != listener) {
1182 		if (!eager->tcp_closemp_used) {
1183 			eager->tcp_closemp_used = B_TRUE;
1184 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1185 			CONN_INC_REF(eager->tcp_connp);
1186 			mp = &eager->tcp_closemp;
1187 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1188 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1189 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1190 		}
1191 		eager = eager->tcp_eager_next_q0;
1192 	}
1193 }
1194 
1195 /*
1196  * If we are an eager connection hanging off a listener that hasn't
1197  * formally accepted the connection yet, get off its list and blow off
1198  * any data that we have accumulated.
1199  */
1200 void
1201 tcp_eager_unlink(tcp_t *tcp)
1202 {
1203 	tcp_t	*listener = tcp->tcp_listener;
1204 
1205 	ASSERT(listener != NULL);
1206 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1207 	if (tcp->tcp_eager_next_q0 != NULL) {
1208 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1209 
1210 		/* Remove the eager tcp from q0 */
1211 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1212 		    tcp->tcp_eager_prev_q0;
1213 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1214 		    tcp->tcp_eager_next_q0;
1215 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1216 		listener->tcp_conn_req_cnt_q0--;
1217 
1218 		tcp->tcp_eager_next_q0 = NULL;
1219 		tcp->tcp_eager_prev_q0 = NULL;
1220 
1221 		/*
1222 		 * Take the eager out, if it is in the list of droppable
1223 		 * eagers.
1224 		 */
1225 		MAKE_UNDROPPABLE(tcp);
1226 
1227 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1228 			/* we have timed out before */
1229 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1230 			listener->tcp_syn_rcvd_timeout--;
1231 		}
1232 	} else {
1233 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1234 		tcp_t	*prev = NULL;
1235 
1236 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1237 			if (tcpp[0] == tcp) {
1238 				if (listener->tcp_eager_last_q == tcp) {
1239 					/*
1240 					 * If we are unlinking the last
1241 					 * element on the list, adjust
1242 					 * tail pointer. Set tail pointer
1243 					 * to nil when list is empty.
1244 					 */
1245 					ASSERT(tcp->tcp_eager_next_q == NULL);
1246 					if (listener->tcp_eager_last_q ==
1247 					    listener->tcp_eager_next_q) {
1248 						listener->tcp_eager_last_q =
1249 						    NULL;
1250 					} else {
1251 						/*
1252 						 * We won't get here if there
1253 						 * is only one eager in the
1254 						 * list.
1255 						 */
1256 						ASSERT(prev != NULL);
1257 						listener->tcp_eager_last_q =
1258 						    prev;
1259 					}
1260 				}
1261 				tcpp[0] = tcp->tcp_eager_next_q;
1262 				tcp->tcp_eager_next_q = NULL;
1263 				tcp->tcp_eager_last_q = NULL;
1264 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1265 				listener->tcp_conn_req_cnt_q--;
1266 				break;
1267 			}
1268 			prev = tcpp[0];
1269 		}
1270 	}
1271 	tcp->tcp_listener = NULL;
1272 }
1273 
1274 /* BEGIN CSTYLED */
1275 /*
1276  *
1277  * The sockfs ACCEPT path:
1278  * =======================
1279  *
1280  * The eager is now established in its own perimeter as soon as SYN is
1281  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1282  * completes the accept processing on the acceptor STREAM. The sending
1283  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1284  * listener but a TLI/XTI listener completes the accept processing
1285  * on the listener perimeter.
1286  *
1287  * Common control flow for 3 way handshake:
1288  * ----------------------------------------
1289  *
1290  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1291  *
1292  * incoming SYN-ACK-ACK (eager perim)	-> tcp_input_data()
1293  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1294  *
1295  * Sockfs ACCEPT Path:
1296  * -------------------
1297  *
1298  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1299  * as STREAM entry point)
1300  *
1301  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1302  *
1303  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1304  * association (we are not behind eager's squeue but sockfs is protecting us
1305  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1306  * is changed to point at tcp_wput().
1307  *
1308  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1309  * listener (done on listener's perimeter).
1310  *
1311  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1312  * accept.
1313  *
1314  * TLI/XTI client ACCEPT path:
1315  * ---------------------------
1316  *
1317  * soaccept() sends T_CONN_RES on the listener STREAM.
1318  *
1319  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1320  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1321  *
1322  * Locks:
1323  * ======
1324  *
1325  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1326  * and listeners->tcp_eager_next_q.
1327  *
1328  * Referencing:
1329  * ============
1330  *
1331  * 1) We start out in tcp_input_listener by eager placing a ref on
1332  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1333  *
1334  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1335  * doing so we place a ref on the eager. This ref is finally dropped at the
1336  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1337  * reference is dropped by the squeue framework.
1338  *
1339  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1340  *
1341  * The reference must be released by the same entity that added the reference
1342  * In the above scheme, the eager is the entity that adds and releases the
1343  * references. Note that tcp_accept_finish executes in the squeue of the eager
1344  * (albeit after it is attached to the acceptor stream). Though 1. executes
1345  * in the listener's squeue, the eager is nascent at this point and the
1346  * reference can be considered to have been added on behalf of the eager.
1347  *
1348  * Eager getting a Reset or listener closing:
1349  * ==========================================
1350  *
1351  * Once the listener and eager are linked, the listener never does the unlink.
1352  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1353  * a message on all eager perimeter. The eager then does the unlink, clears
1354  * any pointers to the listener's queue and drops the reference to the
1355  * listener. The listener waits in tcp_close outside the squeue until its
1356  * refcount has dropped to 1. This ensures that the listener has waited for
1357  * all eagers to clear their association with the listener.
1358  *
1359  * Similarly, if eager decides to go away, it can unlink itself and close.
1360  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1361  * the reference to eager is still valid because of the extra ref we put
1362  * in tcp_send_conn_ind.
1363  *
1364  * Listener can always locate the eager under the protection
1365  * of the listener->tcp_eager_lock, and then do a refhold
1366  * on the eager during the accept processing.
1367  *
1368  * The acceptor stream accesses the eager in the accept processing
1369  * based on the ref placed on eager before sending T_conn_ind.
1370  * The only entity that can negate this refhold is a listener close
1371  * which is mutually exclusive with an active acceptor stream.
1372  *
1373  * Eager's reference on the listener
1374  * ===================================
1375  *
1376  * If the accept happens (even on a closed eager) the eager drops its
1377  * reference on the listener at the start of tcp_accept_finish. If the
1378  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1379  * the reference is dropped in tcp_closei_local. If the listener closes,
1380  * the reference is dropped in tcp_eager_kill. In all cases the reference
1381  * is dropped while executing in the eager's context (squeue).
1382  */
1383 /* END CSTYLED */
1384 
1385 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1386 
1387 /*
1388  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1389  * tcp_input_data will not see any packets for listeners since the listener
1390  * has conn_recv set to tcp_input_listener.
1391  */
1392 /* ARGSUSED */
1393 static void
1394 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1395 {
1396 	tcpha_t		*tcpha;
1397 	uint32_t	seg_seq;
1398 	tcp_t		*eager;
1399 	int		err;
1400 	conn_t		*econnp = NULL;
1401 	squeue_t	*new_sqp;
1402 	mblk_t		*mp1;
1403 	uint_t		ip_hdr_len;
1404 	conn_t		*lconnp = (conn_t *)arg;
1405 	tcp_t		*listener = lconnp->conn_tcp;
1406 	tcp_stack_t	*tcps = listener->tcp_tcps;
1407 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1408 	uint_t		flags;
1409 	mblk_t		*tpi_mp;
1410 	uint_t		ifindex = ira->ira_ruifindex;
1411 	boolean_t	tlc_set = B_FALSE;
1412 
1413 	ip_hdr_len = ira->ira_ip_hdr_length;
1414 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1415 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1416 
1417 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1418 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1419 	    __dtrace_tcp_tcph_t *, tcpha);
1420 
1421 	if (!(flags & TH_SYN)) {
1422 		if ((flags & TH_RST) || (flags & TH_URG)) {
1423 			freemsg(mp);
1424 			return;
1425 		}
1426 		if (flags & TH_ACK) {
1427 			/* Note this executes in listener's squeue */
1428 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1429 			return;
1430 		}
1431 
1432 		freemsg(mp);
1433 		return;
1434 	}
1435 
1436 	if (listener->tcp_state != TCPS_LISTEN)
1437 		goto error2;
1438 
1439 	ASSERT(IPCL_IS_BOUND(lconnp));
1440 
1441 	mutex_enter(&listener->tcp_eager_lock);
1442 
1443 	/*
1444 	 * The system is under memory pressure, so we need to do our part
1445 	 * to relieve the pressure.  So we only accept new request if there
1446 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1447 	 * handshake.  This means that busy listener will not get too many
1448 	 * new requests which they cannot handle in time while non-busy
1449 	 * listener is still functioning properly.
1450 	 */
1451 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1452 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1453 		mutex_exit(&listener->tcp_eager_lock);
1454 		TCP_STAT(tcps, tcp_listen_mem_drop);
1455 		goto error2;
1456 	}
1457 
1458 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1459 		mutex_exit(&listener->tcp_eager_lock);
1460 		TCP_STAT(tcps, tcp_listendrop);
1461 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1462 		if (lconnp->conn_debug) {
1463 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1464 			    "tcp_input_listener: listen backlog (max=%d) "
1465 			    "overflow (%d pending) on %s",
1466 			    listener->tcp_conn_req_max,
1467 			    listener->tcp_conn_req_cnt_q,
1468 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1469 		}
1470 		goto error2;
1471 	}
1472 
1473 	if (listener->tcp_conn_req_cnt_q0 >=
1474 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1475 		/*
1476 		 * Q0 is full. Drop a pending half-open req from the queue
1477 		 * to make room for the new SYN req. Also mark the time we
1478 		 * drop a SYN.
1479 		 *
1480 		 * A more aggressive defense against SYN attack will
1481 		 * be to set the "tcp_syn_defense" flag now.
1482 		 */
1483 		TCP_STAT(tcps, tcp_listendropq0);
1484 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1485 		if (!tcp_drop_q0(listener)) {
1486 			mutex_exit(&listener->tcp_eager_lock);
1487 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1488 			if (lconnp->conn_debug) {
1489 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1490 				    "tcp_input_listener: listen half-open "
1491 				    "queue (max=%d) full (%d pending) on %s",
1492 				    tcps->tcps_conn_req_max_q0,
1493 				    listener->tcp_conn_req_cnt_q0,
1494 				    tcp_display(listener, NULL,
1495 				    DISP_PORT_ONLY));
1496 			}
1497 			goto error2;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * Enforce the limit set on the number of connections per listener.
1503 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1504 	 * for comparison.
1505 	 */
1506 	if (listener->tcp_listen_cnt != NULL) {
1507 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1508 		int64_t now;
1509 
1510 		if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) {
1511 			mutex_exit(&listener->tcp_eager_lock);
1512 			now = ddi_get_lbolt64();
1513 			atomic_dec_32(&tlc->tlc_cnt);
1514 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1515 			tlc->tlc_drop++;
1516 			if (now - tlc->tlc_report_time >
1517 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1518 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1519 				    "Listener (port %d) connection max (%u) "
1520 				    "reached: %u attempts dropped total\n",
1521 				    ntohs(listener->tcp_connp->conn_lport),
1522 				    tlc->tlc_max, tlc->tlc_drop);
1523 				tlc->tlc_report_time = now;
1524 			}
1525 			goto error2;
1526 		}
1527 		tlc_set = B_TRUE;
1528 	}
1529 
1530 	mutex_exit(&listener->tcp_eager_lock);
1531 
1532 	/*
1533 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1534 	 * or based on the ring (for packets from GLD). Otherwise it is
1535 	 * set based on lbolt i.e., a somewhat random number.
1536 	 */
1537 	ASSERT(ira->ira_sqp != NULL);
1538 	new_sqp = ira->ira_sqp;
1539 
1540 	econnp = tcp_get_conn(arg2, tcps);
1541 	if (econnp == NULL)
1542 		goto error2;
1543 
1544 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1545 	econnp->conn_sqp = new_sqp;
1546 	econnp->conn_initial_sqp = new_sqp;
1547 	econnp->conn_ixa->ixa_sqp = new_sqp;
1548 
1549 	econnp->conn_fport = tcpha->tha_lport;
1550 	econnp->conn_lport = tcpha->tha_fport;
1551 
1552 	err = conn_inherit_parent(lconnp, econnp);
1553 	if (err != 0)
1554 		goto error3;
1555 
1556 	/* We already know the laddr of the new connection is ours */
1557 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1558 
1559 	ASSERT(OK_32PTR(mp->b_rptr));
1560 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1561 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1562 
1563 	if (lconnp->conn_family == AF_INET) {
1564 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1565 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1566 	} else {
1567 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1568 	}
1569 
1570 	if (tpi_mp == NULL)
1571 		goto error3;
1572 
1573 	eager = econnp->conn_tcp;
1574 	eager->tcp_detached = B_TRUE;
1575 	SOCK_CONNID_INIT(eager->tcp_connid);
1576 
1577 	/*
1578 	 * Initialize the eager's tcp_t and inherit some parameters from
1579 	 * the listener.
1580 	 */
1581 	tcp_init_values(eager, listener);
1582 
1583 	ASSERT((econnp->conn_ixa->ixa_flags &
1584 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1585 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1586 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1587 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1588 
1589 	if (!tcps->tcps_dev_flow_ctl)
1590 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1591 
1592 	/* Prepare for diffing against previous packets */
1593 	eager->tcp_recvifindex = 0;
1594 	eager->tcp_recvhops = 0xffffffffU;
1595 
1596 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1597 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1598 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1599 			econnp->conn_incoming_ifindex = ifindex;
1600 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1601 			econnp->conn_ixa->ixa_scopeid = ifindex;
1602 		}
1603 	}
1604 
1605 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1606 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1607 	    tcps->tcps_rev_src_routes) {
1608 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1609 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1610 
1611 		/* Source routing option copyover (reverse it) */
1612 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1613 		if (err != 0) {
1614 			freemsg(tpi_mp);
1615 			goto error3;
1616 		}
1617 		ip_pkt_source_route_reverse_v4(ipp);
1618 	}
1619 
1620 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1621 	ASSERT(!eager->tcp_tconnind_started);
1622 	/*
1623 	 * If the SYN came with a credential, it's a loopback packet or a
1624 	 * labeled packet; attach the credential to the TPI message.
1625 	 */
1626 	if (ira->ira_cred != NULL)
1627 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1628 
1629 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1630 	ASSERT(eager->tcp_ordrel_mp == NULL);
1631 
1632 	/* Inherit the listener's non-STREAMS flag */
1633 	if (IPCL_IS_NONSTR(lconnp)) {
1634 		econnp->conn_flags |= IPCL_NONSTR;
1635 		/* All non-STREAMS tcp_ts are sockets */
1636 		eager->tcp_issocket = B_TRUE;
1637 	} else {
1638 		/*
1639 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1640 		 * at close time, we will always have that to send up.
1641 		 * Otherwise, we need to do special handling in case the
1642 		 * allocation fails at that time.
1643 		 */
1644 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1645 			goto error3;
1646 	}
1647 	/*
1648 	 * Now that the IP addresses and ports are setup in econnp we
1649 	 * can do the IPsec policy work.
1650 	 */
1651 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1652 		if (lconnp->conn_policy != NULL) {
1653 			/*
1654 			 * Inherit the policy from the listener; use
1655 			 * actions from ira
1656 			 */
1657 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1658 				CONN_DEC_REF(econnp);
1659 				freemsg(mp);
1660 				goto error3;
1661 			}
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * tcp_set_destination() may set tcp_rwnd according to the route
1667 	 * metrics. If it does not, the eager's receive window will be set
1668 	 * to the listener's receive window later in this function.
1669 	 */
1670 	eager->tcp_rwnd = 0;
1671 
1672 	if (is_system_labeled()) {
1673 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1674 
1675 		ASSERT(ira->ira_tsl != NULL);
1676 		/* Discard any old label */
1677 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1678 			ASSERT(ixa->ixa_tsl != NULL);
1679 			label_rele(ixa->ixa_tsl);
1680 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1681 			ixa->ixa_tsl = NULL;
1682 		}
1683 		if ((lconnp->conn_mlp_type != mlptSingle ||
1684 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1685 		    ira->ira_tsl != NULL) {
1686 			/*
1687 			 * If this is an MLP connection or a MAC-Exempt
1688 			 * connection with an unlabeled node, packets are to be
1689 			 * exchanged using the security label of the received
1690 			 * SYN packet instead of the server application's label.
1691 			 * tsol_check_dest called from ip_set_destination
1692 			 * might later update TSF_UNLABELED by replacing
1693 			 * ixa_tsl with a new label.
1694 			 */
1695 			label_hold(ira->ira_tsl);
1696 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1697 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1698 			    econnp, ts_label_t *, ixa->ixa_tsl)
1699 		} else {
1700 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1701 			DTRACE_PROBE2(syn_accept, conn_t *,
1702 			    econnp, ts_label_t *, ixa->ixa_tsl)
1703 		}
1704 		/*
1705 		 * conn_connect() called from tcp_set_destination will verify
1706 		 * the destination is allowed to receive packets at the
1707 		 * security label of the SYN-ACK we are generating. As part of
1708 		 * that, tsol_check_dest() may create a new effective label for
1709 		 * this connection.
1710 		 * Finally conn_connect() will call conn_update_label.
1711 		 * All that remains for TCP to do is to call
1712 		 * conn_build_hdr_template which is done as part of
1713 		 * tcp_set_destination.
1714 		 */
1715 	}
1716 
1717 	/*
1718 	 * Since we will clear tcp_listener before we clear tcp_detached
1719 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1720 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1721 	 */
1722 	eager->tcp_hard_binding = B_TRUE;
1723 
1724 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1725 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1726 
1727 	CL_INET_CONNECT(econnp, B_FALSE, err);
1728 	if (err != 0) {
1729 		tcp_bind_hash_remove(eager);
1730 		goto error3;
1731 	}
1732 
1733 	SOCK_CONNID_BUMP(eager->tcp_connid);
1734 
1735 	/*
1736 	 * Adapt our mss, ttl, ... based on the remote address.
1737 	 */
1738 
1739 	if (tcp_set_destination(eager) != 0) {
1740 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1741 		/* Undo the bind_hash_insert */
1742 		tcp_bind_hash_remove(eager);
1743 		goto error3;
1744 	}
1745 
1746 	/* Process all TCP options. */
1747 	tcp_process_options(eager, tcpha);
1748 
1749 	/* Is the other end ECN capable? */
1750 	if (tcps->tcps_ecn_permitted >= 1 &&
1751 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1752 		eager->tcp_ecn_ok = B_TRUE;
1753 	}
1754 
1755 	/*
1756 	 * The listener's conn_rcvbuf should be the default window size or a
1757 	 * window size changed via SO_RCVBUF option. First round up the
1758 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1759 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1760 	 * setting.
1761 	 *
1762 	 * Note if there is a rpipe metric associated with the remote host,
1763 	 * we should not inherit receive window size from listener.
1764 	 */
1765 	eager->tcp_rwnd = MSS_ROUNDUP(
1766 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1767 	    eager->tcp_rwnd), eager->tcp_mss);
1768 	if (eager->tcp_snd_ws_ok)
1769 		tcp_set_ws_value(eager);
1770 	/*
1771 	 * Note that this is the only place tcp_rwnd_set() is called for
1772 	 * accepting a connection.  We need to call it here instead of
1773 	 * after the 3-way handshake because we need to tell the other
1774 	 * side our rwnd in the SYN-ACK segment.
1775 	 */
1776 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1777 
1778 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1779 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1780 
1781 	ASSERT(econnp->conn_rcvbuf != 0 &&
1782 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1783 
1784 	/* Put a ref on the listener for the eager. */
1785 	CONN_INC_REF(lconnp);
1786 	mutex_enter(&listener->tcp_eager_lock);
1787 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1788 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1789 	listener->tcp_eager_next_q0 = eager;
1790 	eager->tcp_eager_prev_q0 = listener;
1791 
1792 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1793 	eager->tcp_listener = listener;
1794 	eager->tcp_saved_listener = listener;
1795 
1796 	/*
1797 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1798 	 * is decremented.
1799 	 */
1800 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1801 
1802 	/*
1803 	 * Tag this detached tcp vector for later retrieval
1804 	 * by our listener client in tcp_accept().
1805 	 */
1806 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1807 	listener->tcp_conn_req_cnt_q0++;
1808 	if (++listener->tcp_conn_req_seqnum == -1) {
1809 		/*
1810 		 * -1 is "special" and defined in TPI as something
1811 		 * that should never be used in T_CONN_IND
1812 		 */
1813 		++listener->tcp_conn_req_seqnum;
1814 	}
1815 	mutex_exit(&listener->tcp_eager_lock);
1816 
1817 	if (listener->tcp_syn_defense) {
1818 		/* Don't drop the SYN that comes from a good IP source */
1819 		ipaddr_t *addr_cache;
1820 
1821 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1822 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1823 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1824 			eager->tcp_dontdrop = B_TRUE;
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * We need to insert the eager in its own perimeter but as soon
1830 	 * as we do that, we expose the eager to the classifier and
1831 	 * should not touch any field outside the eager's perimeter.
1832 	 * So do all the work necessary before inserting the eager
1833 	 * in its own perimeter. Be optimistic that conn_connect()
1834 	 * will succeed but undo everything if it fails.
1835 	 */
1836 	seg_seq = ntohl(tcpha->tha_seq);
1837 	eager->tcp_irs = seg_seq;
1838 	eager->tcp_rack = seg_seq;
1839 	eager->tcp_rnxt = seg_seq + 1;
1840 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1841 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1842 	eager->tcp_state = TCPS_SYN_RCVD;
1843 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1844 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1845 	    int32_t, TCPS_LISTEN);
1846 
1847 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1848 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1849 	if (mp1 == NULL) {
1850 		/*
1851 		 * Increment the ref count as we are going to
1852 		 * enqueueing an mp in squeue
1853 		 */
1854 		CONN_INC_REF(econnp);
1855 		goto error;
1856 	}
1857 
1858 	/*
1859 	 * We need to start the rto timer. In normal case, we start
1860 	 * the timer after sending the packet on the wire (or at
1861 	 * least believing that packet was sent by waiting for
1862 	 * conn_ip_output() to return). Since this is the first packet
1863 	 * being sent on the wire for the eager, our initial tcp_rto
1864 	 * is at least tcp_rexmit_interval_min which is a fairly
1865 	 * large value to allow the algorithm to adjust slowly to large
1866 	 * fluctuations of RTT during first few transmissions.
1867 	 *
1868 	 * Starting the timer first and then sending the packet in this
1869 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1870 	 * is of the order of several 100ms and starting the timer
1871 	 * first and then sending the packet will result in difference
1872 	 * of few micro seconds.
1873 	 *
1874 	 * Without this optimization, we are forced to hold the fanout
1875 	 * lock across the ipcl_bind_insert() and sending the packet
1876 	 * so that we don't race against an incoming packet (maybe RST)
1877 	 * for this eager.
1878 	 *
1879 	 * It is necessary to acquire an extra reference on the eager
1880 	 * at this point and hold it until after tcp_send_data() to
1881 	 * ensure against an eager close race.
1882 	 */
1883 
1884 	CONN_INC_REF(econnp);
1885 
1886 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1887 
1888 	/*
1889 	 * Insert the eager in its own perimeter now. We are ready to deal
1890 	 * with any packets on eager.
1891 	 */
1892 	if (ipcl_conn_insert(econnp) != 0)
1893 		goto error;
1894 
1895 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1896 	freemsg(mp);
1897 	/*
1898 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1899 	 * only used by one thread at a time.
1900 	 */
1901 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1902 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1903 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1904 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1905 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1906 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1907 		CONN_DEC_REF(econnp);
1908 	} else {
1909 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1910 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1911 	}
1912 	return;
1913 error:
1914 	freemsg(mp1);
1915 	eager->tcp_closemp_used = B_TRUE;
1916 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1917 	mp1 = &eager->tcp_closemp;
1918 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1919 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1920 
1921 	/*
1922 	 * If a connection already exists, send the mp to that connections so
1923 	 * that it can be appropriately dealt with.
1924 	 */
1925 	ipst = tcps->tcps_netstack->netstack_ip;
1926 
1927 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1928 		if (!IPCL_IS_CONNECTED(econnp)) {
1929 			/*
1930 			 * Something bad happened. ipcl_conn_insert()
1931 			 * failed because a connection already existed
1932 			 * in connected hash but we can't find it
1933 			 * anymore (someone blew it away). Just
1934 			 * free this message and hopefully remote
1935 			 * will retransmit at which time the SYN can be
1936 			 * treated as a new connection or dealth with
1937 			 * a TH_RST if a connection already exists.
1938 			 */
1939 			CONN_DEC_REF(econnp);
1940 			freemsg(mp);
1941 		} else {
1942 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1943 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1944 		}
1945 	} else {
1946 		/* Nobody wants this packet */
1947 		freemsg(mp);
1948 	}
1949 	return;
1950 error3:
1951 	CONN_DEC_REF(econnp);
1952 error2:
1953 	freemsg(mp);
1954 	if (tlc_set)
1955 		atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt);
1956 }
1957 
1958 /*
1959  * In an ideal case of vertical partition in NUMA architecture, its
1960  * beneficial to have the listener and all the incoming connections
1961  * tied to the same squeue. The other constraint is that incoming
1962  * connections should be tied to the squeue attached to interrupted
1963  * CPU for obvious locality reason so this leaves the listener to
1964  * be tied to the same squeue. Our only problem is that when listener
1965  * is binding, the CPU that will get interrupted by the NIC whose
1966  * IP address the listener is binding to is not even known. So
1967  * the code below allows us to change that binding at the time the
1968  * CPU is interrupted by virtue of incoming connection's squeue.
1969  *
1970  * This is usefull only in case of a listener bound to a specific IP
1971  * address. For other kind of listeners, they get bound the
1972  * very first time and there is no attempt to rebind them.
1973  */
1974 void
1975 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1976     ip_recv_attr_t *ira)
1977 {
1978 	conn_t		*connp = (conn_t *)arg;
1979 	squeue_t	*sqp = (squeue_t *)arg2;
1980 	squeue_t	*new_sqp;
1981 	uint32_t	conn_flags;
1982 
1983 	/*
1984 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1985 	 * or based on the ring (for packets from GLD). Otherwise it is
1986 	 * set based on lbolt i.e., a somewhat random number.
1987 	 */
1988 	ASSERT(ira->ira_sqp != NULL);
1989 	new_sqp = ira->ira_sqp;
1990 
1991 	if (connp->conn_fanout == NULL)
1992 		goto done;
1993 
1994 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1995 		mutex_enter(&connp->conn_fanout->connf_lock);
1996 		mutex_enter(&connp->conn_lock);
1997 		/*
1998 		 * No one from read or write side can access us now
1999 		 * except for already queued packets on this squeue.
2000 		 * But since we haven't changed the squeue yet, they
2001 		 * can't execute. If they are processed after we have
2002 		 * changed the squeue, they are sent back to the
2003 		 * correct squeue down below.
2004 		 * But a listner close can race with processing of
2005 		 * incoming SYN. If incoming SYN processing changes
2006 		 * the squeue then the listener close which is waiting
2007 		 * to enter the squeue would operate on the wrong
2008 		 * squeue. Hence we don't change the squeue here unless
2009 		 * the refcount is exactly the minimum refcount. The
2010 		 * minimum refcount of 4 is counted as - 1 each for
2011 		 * TCP and IP, 1 for being in the classifier hash, and
2012 		 * 1 for the mblk being processed.
2013 		 */
2014 
2015 		if (connp->conn_ref != 4 ||
2016 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
2017 			mutex_exit(&connp->conn_lock);
2018 			mutex_exit(&connp->conn_fanout->connf_lock);
2019 			goto done;
2020 		}
2021 		if (connp->conn_sqp != new_sqp) {
2022 			while (connp->conn_sqp != new_sqp)
2023 				(void) atomic_cas_ptr(&connp->conn_sqp, sqp,
2024 				    new_sqp);
2025 			/* No special MT issues for outbound ixa_sqp hint */
2026 			connp->conn_ixa->ixa_sqp = new_sqp;
2027 		}
2028 
2029 		do {
2030 			conn_flags = connp->conn_flags;
2031 			conn_flags |= IPCL_FULLY_BOUND;
2032 			(void) atomic_cas_32(&connp->conn_flags,
2033 			    connp->conn_flags, conn_flags);
2034 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
2035 
2036 		mutex_exit(&connp->conn_fanout->connf_lock);
2037 		mutex_exit(&connp->conn_lock);
2038 
2039 		/*
2040 		 * Assume we have picked a good squeue for the listener. Make
2041 		 * subsequent SYNs not try to change the squeue.
2042 		 */
2043 		connp->conn_recv = tcp_input_listener;
2044 	}
2045 
2046 done:
2047 	if (connp->conn_sqp != sqp) {
2048 		CONN_INC_REF(connp);
2049 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
2050 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
2051 	} else {
2052 		tcp_input_listener(connp, mp, sqp, ira);
2053 	}
2054 }
2055 
2056 /*
2057  * Send up all messages queued on tcp_rcv_list.
2058  */
2059 uint_t
2060 tcp_rcv_drain(tcp_t *tcp)
2061 {
2062 	mblk_t *mp;
2063 	uint_t ret = 0;
2064 #ifdef DEBUG
2065 	uint_t cnt = 0;
2066 #endif
2067 	queue_t	*q = tcp->tcp_connp->conn_rq;
2068 
2069 	/* Can't drain on an eager connection */
2070 	if (tcp->tcp_listener != NULL)
2071 		return (ret);
2072 
2073 	/* Can't be a non-STREAMS connection */
2074 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
2075 
2076 	/* No need for the push timer now. */
2077 	if (tcp->tcp_push_tid != 0) {
2078 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
2079 		tcp->tcp_push_tid = 0;
2080 	}
2081 
2082 	/*
2083 	 * Handle two cases here: we are currently fused or we were
2084 	 * previously fused and have some urgent data to be delivered
2085 	 * upstream.  The latter happens because we either ran out of
2086 	 * memory or were detached and therefore sending the SIGURG was
2087 	 * deferred until this point.  In either case we pass control
2088 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2089 	 * some work.
2090 	 */
2091 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2092 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2093 		    &tcp->tcp_fused_sigurg_mp))
2094 			return (ret);
2095 	}
2096 
2097 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2098 		tcp->tcp_rcv_list = mp->b_next;
2099 		mp->b_next = NULL;
2100 #ifdef DEBUG
2101 		cnt += msgdsize(mp);
2102 #endif
2103 		putnext(q, mp);
2104 	}
2105 #ifdef DEBUG
2106 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2107 #endif
2108 	tcp->tcp_rcv_last_head = NULL;
2109 	tcp->tcp_rcv_last_tail = NULL;
2110 	tcp->tcp_rcv_cnt = 0;
2111 
2112 	if (canputnext(q))
2113 		return (tcp_rwnd_reopen(tcp));
2114 
2115 	return (ret);
2116 }
2117 
2118 /*
2119  * Queue data on tcp_rcv_list which is a b_next chain.
2120  * tcp_rcv_last_head/tail is the last element of this chain.
2121  * Each element of the chain is a b_cont chain.
2122  *
2123  * M_DATA messages are added to the current element.
2124  * Other messages are added as new (b_next) elements.
2125  */
2126 void
2127 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2128 {
2129 	ASSERT(seg_len == msgdsize(mp));
2130 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2131 
2132 	if (is_system_labeled()) {
2133 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2134 		/*
2135 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2136 		 * db_cpid unchanged.
2137 		 * The cred could have already been set.
2138 		 */
2139 		if (cr != NULL)
2140 			mblk_setcred(mp, cr, NOPID);
2141 	}
2142 
2143 	if (tcp->tcp_rcv_list == NULL) {
2144 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2145 		tcp->tcp_rcv_list = mp;
2146 		tcp->tcp_rcv_last_head = mp;
2147 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2148 		tcp->tcp_rcv_last_tail->b_cont = mp;
2149 	} else {
2150 		tcp->tcp_rcv_last_head->b_next = mp;
2151 		tcp->tcp_rcv_last_head = mp;
2152 	}
2153 
2154 	while (mp->b_cont)
2155 		mp = mp->b_cont;
2156 
2157 	tcp->tcp_rcv_last_tail = mp;
2158 	tcp->tcp_rcv_cnt += seg_len;
2159 	tcp->tcp_rwnd -= seg_len;
2160 }
2161 
2162 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2163 mblk_t *
2164 tcp_ack_mp(tcp_t *tcp)
2165 {
2166 	uint32_t	seq_no;
2167 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2168 	conn_t		*connp = tcp->tcp_connp;
2169 
2170 	/*
2171 	 * There are a few cases to be considered while setting the sequence no.
2172 	 * Essentially, we can come here while processing an unacceptable pkt
2173 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2174 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2175 	 * If we are here for a zero window probe, stick with suna. In all
2176 	 * other cases, we check if suna + swnd encompasses snxt and set
2177 	 * the sequence number to snxt, if so. If snxt falls outside the
2178 	 * window (the receiver probably shrunk its window), we will go with
2179 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2180 	 * receiver.
2181 	 */
2182 	if (tcp->tcp_zero_win_probe) {
2183 		seq_no = tcp->tcp_suna;
2184 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2185 		ASSERT(tcp->tcp_swnd == 0);
2186 		seq_no = tcp->tcp_snxt;
2187 	} else {
2188 		seq_no = SEQ_GT(tcp->tcp_snxt,
2189 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2190 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2191 	}
2192 
2193 	if (tcp->tcp_valid_bits) {
2194 		/*
2195 		 * For the complex case where we have to send some
2196 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
2197 		 */
2198 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2199 		    NULL, B_FALSE));
2200 	} else {
2201 		/* Generate a simple ACK */
2202 		int	data_length;
2203 		uchar_t	*rptr;
2204 		tcpha_t	*tcpha;
2205 		mblk_t	*mp1;
2206 		int32_t	total_hdr_len;
2207 		int32_t	tcp_hdr_len;
2208 		int32_t	num_sack_blk = 0;
2209 		int32_t sack_opt_len;
2210 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2211 
2212 		/*
2213 		 * Allocate space for TCP + IP headers
2214 		 * and link-level header
2215 		 */
2216 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2217 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2218 			    tcp->tcp_num_sack_blk);
2219 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2220 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2221 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2222 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2223 		} else {
2224 			total_hdr_len = connp->conn_ht_iphc_len;
2225 			tcp_hdr_len = connp->conn_ht_ulp_len;
2226 		}
2227 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2228 		if (!mp1)
2229 			return (NULL);
2230 
2231 		/* Update the latest receive window size in TCP header. */
2232 		tcp->tcp_tcpha->tha_win =
2233 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2234 		/* copy in prototype TCP + IP header */
2235 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2236 		mp1->b_rptr = rptr;
2237 		mp1->b_wptr = rptr + total_hdr_len;
2238 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2239 
2240 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2241 
2242 		/* Set the TCP sequence number. */
2243 		tcpha->tha_seq = htonl(seq_no);
2244 
2245 		/* Set up the TCP flag field. */
2246 		tcpha->tha_flags = (uchar_t)TH_ACK;
2247 		if (tcp->tcp_ecn_echo_on)
2248 			tcpha->tha_flags |= TH_ECE;
2249 
2250 		tcp->tcp_rack = tcp->tcp_rnxt;
2251 		tcp->tcp_rack_cnt = 0;
2252 
2253 		/* fill in timestamp option if in use */
2254 		if (tcp->tcp_snd_ts_ok) {
2255 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2256 
2257 			U32_TO_BE32(llbolt,
2258 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2259 			U32_TO_BE32(tcp->tcp_ts_recent,
2260 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2261 		}
2262 
2263 		/* Fill in SACK options */
2264 		if (num_sack_blk > 0) {
2265 			uchar_t *wptr = (uchar_t *)tcpha +
2266 			    connp->conn_ht_ulp_len;
2267 			sack_blk_t *tmp;
2268 			int32_t	i;
2269 
2270 			wptr[0] = TCPOPT_NOP;
2271 			wptr[1] = TCPOPT_NOP;
2272 			wptr[2] = TCPOPT_SACK;
2273 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2274 			    sizeof (sack_blk_t);
2275 			wptr += TCPOPT_REAL_SACK_LEN;
2276 
2277 			tmp = tcp->tcp_sack_list;
2278 			for (i = 0; i < num_sack_blk; i++) {
2279 				U32_TO_BE32(tmp[i].begin, wptr);
2280 				wptr += sizeof (tcp_seq);
2281 				U32_TO_BE32(tmp[i].end, wptr);
2282 				wptr += sizeof (tcp_seq);
2283 			}
2284 			tcpha->tha_offset_and_reserved +=
2285 			    ((num_sack_blk * 2 + 1) << 4);
2286 		}
2287 
2288 		ixa->ixa_pktlen = total_hdr_len;
2289 
2290 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2291 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2292 		} else {
2293 			ip6_t *ip6 = (ip6_t *)rptr;
2294 
2295 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2296 		}
2297 
2298 		/*
2299 		 * Prime pump for checksum calculation in IP.  Include the
2300 		 * adjustment for a source route if any.
2301 		 */
2302 		data_length = tcp_hdr_len + connp->conn_sum;
2303 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2304 		tcpha->tha_sum = htons(data_length);
2305 
2306 		if (tcp->tcp_ip_forward_progress) {
2307 			tcp->tcp_ip_forward_progress = B_FALSE;
2308 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2309 		} else {
2310 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2311 		}
2312 		return (mp1);
2313 	}
2314 }
2315 
2316 /*
2317  * Dummy socket upcalls for if/when the conn_t gets detached from a
2318  * direct-callback sonode via a user-driven close().  Easy to catch with
2319  * DTrace FBT, and should be mostly harmless.
2320  */
2321 
2322 /* ARGSUSED */
2323 static sock_upper_handle_t
2324 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2325     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2326 {
2327 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2328 	return (NULL);
2329 }
2330 
2331 /* ARGSUSED */
2332 static void
2333 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2334     pid_t pid)
2335 {
2336 	ASSERT(x == NULL);
2337 	/* Normally we'd crhold(cr) and attach it to socket state. */
2338 	/* LINTED */
2339 }
2340 
2341 /* ARGSUSED */
2342 static int
2343 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2344 {
2345 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2346 	return (-1);
2347 }
2348 
2349 /* ARGSUSED */
2350 static void
2351 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2352 {
2353 	ASSERT(x == NULL);
2354 	/* We really want this one to be a harmless NOP for now. */
2355 	/* LINTED */
2356 }
2357 
2358 /* ARGSUSED */
2359 static ssize_t
2360 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2361     int *error, boolean_t *push)
2362 {
2363 	ASSERT(x == NULL);
2364 
2365 	/*
2366 	 * Consume the message, set ESHUTDOWN, and return an error.
2367 	 * Nobody's home!
2368 	 */
2369 	freemsg(mp);
2370 	*error = ESHUTDOWN;
2371 	return (-1);
2372 }
2373 
2374 /* ARGSUSED */
2375 static void
2376 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2377 {
2378 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2379 }
2380 
2381 /* ARGSUSED */
2382 static void
2383 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2384 {
2385 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2386 }
2387 
2388 /* ARGSUSED */
2389 static void
2390 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2391 {
2392 	ASSERT(x == NULL);
2393 	/* Otherwise, this would signal socket state about OOB data. */
2394 }
2395 
2396 /* ARGSUSED */
2397 static void
2398 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2399 {
2400 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2401 }
2402 
2403 /* ARGSUSED */
2404 static void
2405 tcp_dummy_onearg(sock_upper_handle_t x)
2406 {
2407 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2408 }
2409 
2410 static sock_upcalls_t tcp_dummy_upcalls = {
2411 	tcp_dummy_newconn,
2412 	tcp_dummy_connected,
2413 	tcp_dummy_disconnected,
2414 	tcp_dummy_opctl,
2415 	tcp_dummy_recv,
2416 	tcp_dummy_set_proto_props,
2417 	tcp_dummy_txq_full,
2418 	tcp_dummy_signal_oob,
2419 	tcp_dummy_onearg,
2420 	tcp_dummy_set_error,
2421 	tcp_dummy_onearg
2422 };
2423 
2424 /*
2425  * Handle M_DATA messages from IP. Its called directly from IP via
2426  * squeue for received IP packets.
2427  *
2428  * The first argument is always the connp/tcp to which the mp belongs.
2429  * There are no exceptions to this rule. The caller has already put
2430  * a reference on this connp/tcp and once tcp_input_data() returns,
2431  * the squeue will do the refrele.
2432  *
2433  * The TH_SYN for the listener directly go to tcp_input_listener via
2434  * squeue. ICMP errors go directly to tcp_icmp_input().
2435  *
2436  * sqp: NULL = recursive, sqp != NULL means called from squeue
2437  */
2438 void
2439 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2440 {
2441 	int32_t		bytes_acked;
2442 	int32_t		gap;
2443 	mblk_t		*mp1;
2444 	uint_t		flags;
2445 	uint32_t	new_swnd = 0;
2446 	uchar_t		*iphdr;
2447 	uchar_t		*rptr;
2448 	int32_t		rgap;
2449 	uint32_t	seg_ack;
2450 	int		seg_len;
2451 	uint_t		ip_hdr_len;
2452 	uint32_t	seg_seq;
2453 	tcpha_t		*tcpha;
2454 	int		urp;
2455 	tcp_opt_t	tcpopt;
2456 	ip_pkt_t	ipp;
2457 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2458 	uint32_t	cwnd;
2459 	int		mss;
2460 	conn_t		*connp = (conn_t *)arg;
2461 	squeue_t	*sqp = (squeue_t *)arg2;
2462 	tcp_t		*tcp = connp->conn_tcp;
2463 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2464 	sock_upcalls_t	*sockupcalls;
2465 
2466 	/*
2467 	 * RST from fused tcp loopback peer should trigger an unfuse.
2468 	 */
2469 	if (tcp->tcp_fused) {
2470 		TCP_STAT(tcps, tcp_fusion_aborted);
2471 		tcp_unfuse(tcp);
2472 	}
2473 
2474 	mss = 0;
2475 	iphdr = mp->b_rptr;
2476 	rptr = mp->b_rptr;
2477 	ASSERT(OK_32PTR(rptr));
2478 
2479 	ip_hdr_len = ira->ira_ip_hdr_length;
2480 	if (connp->conn_recv_ancillary.crb_all != 0) {
2481 		/*
2482 		 * Record packet information in the ip_pkt_t
2483 		 */
2484 		ipp.ipp_fields = 0;
2485 		if (ira->ira_flags & IRAF_IS_IPV4) {
2486 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2487 			    B_FALSE);
2488 		} else {
2489 			uint8_t nexthdrp;
2490 
2491 			/*
2492 			 * IPv6 packets can only be received by applications
2493 			 * that are prepared to receive IPv6 addresses.
2494 			 * The IP fanout must ensure this.
2495 			 */
2496 			ASSERT(connp->conn_family == AF_INET6);
2497 
2498 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2499 			    &nexthdrp);
2500 			ASSERT(nexthdrp == IPPROTO_TCP);
2501 
2502 			/* Could have caused a pullup? */
2503 			iphdr = mp->b_rptr;
2504 			rptr = mp->b_rptr;
2505 		}
2506 	}
2507 	ASSERT(DB_TYPE(mp) == M_DATA);
2508 	ASSERT(mp->b_next == NULL);
2509 
2510 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2511 	seg_seq = ntohl(tcpha->tha_seq);
2512 	seg_ack = ntohl(tcpha->tha_ack);
2513 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2514 	seg_len = (int)(mp->b_wptr - rptr) -
2515 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2516 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2517 		do {
2518 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2519 			    (uintptr_t)INT_MAX);
2520 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2521 		} while ((mp1 = mp1->b_cont) != NULL &&
2522 		    mp1->b_datap->db_type == M_DATA);
2523 	}
2524 
2525 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2526 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2527 	    __dtrace_tcp_tcph_t *, tcpha);
2528 
2529 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2530 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2531 		    seg_len, tcpha, ira);
2532 		return;
2533 	}
2534 
2535 	if (sqp != NULL) {
2536 		/*
2537 		 * This is the correct place to update tcp_last_recv_time. Note
2538 		 * that it is also updated for tcp structure that belongs to
2539 		 * global and listener queues which do not really need updating.
2540 		 * But that should not cause any harm.  And it is updated for
2541 		 * all kinds of incoming segments, not only for data segments.
2542 		 */
2543 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2544 	}
2545 
2546 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2547 
2548 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
2549 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2550 
2551 	if ((flags & TH_URG) && sqp != NULL) {
2552 		/*
2553 		 * TCP can't handle urgent pointers that arrive before
2554 		 * the connection has been accept()ed since it can't
2555 		 * buffer OOB data.  Discard segment if this happens.
2556 		 *
2557 		 * We can't just rely on a non-null tcp_listener to indicate
2558 		 * that the accept() has completed since unlinking of the
2559 		 * eager and completion of the accept are not atomic.
2560 		 * tcp_detached, when it is not set (B_FALSE) indicates
2561 		 * that the accept() has completed.
2562 		 *
2563 		 * Nor can it reassemble urgent pointers, so discard
2564 		 * if it's not the next segment expected.
2565 		 *
2566 		 * Otherwise, collapse chain into one mblk (discard if
2567 		 * that fails).  This makes sure the headers, retransmitted
2568 		 * data, and new data all are in the same mblk.
2569 		 */
2570 		ASSERT(mp != NULL);
2571 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2572 			freemsg(mp);
2573 			return;
2574 		}
2575 		/* Update pointers into message */
2576 		iphdr = rptr = mp->b_rptr;
2577 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2578 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2579 			/*
2580 			 * Since we can't handle any data with this urgent
2581 			 * pointer that is out of sequence, we expunge
2582 			 * the data.  This allows us to still register
2583 			 * the urgent mark and generate the M_PCSIG,
2584 			 * which we can do.
2585 			 */
2586 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2587 			seg_len = 0;
2588 		}
2589 	}
2590 
2591 	sockupcalls = connp->conn_upcalls;
2592 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2593 	if (sockupcalls == NULL)
2594 		sockupcalls = &tcp_dummy_upcalls;
2595 
2596 	switch (tcp->tcp_state) {
2597 	case TCPS_SYN_SENT:
2598 		if (connp->conn_final_sqp == NULL &&
2599 		    tcp_outbound_squeue_switch && sqp != NULL) {
2600 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2601 			connp->conn_final_sqp = sqp;
2602 			if (connp->conn_final_sqp != connp->conn_sqp) {
2603 				DTRACE_PROBE1(conn__final__sqp__switch,
2604 				    conn_t *, connp);
2605 				CONN_INC_REF(connp);
2606 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2607 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2608 				    tcp_input_data, connp, ira, ip_squeue_flag,
2609 				    SQTAG_CONNECT_FINISH);
2610 				return;
2611 			}
2612 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2613 		}
2614 		if (flags & TH_ACK) {
2615 			/*
2616 			 * Note that our stack cannot send data before a
2617 			 * connection is established, therefore the
2618 			 * following check is valid.  Otherwise, it has
2619 			 * to be changed.
2620 			 */
2621 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2622 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2623 				freemsg(mp);
2624 				if (flags & TH_RST)
2625 					return;
2626 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2627 				    tcp, seg_ack, 0, TH_RST);
2628 				return;
2629 			}
2630 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2631 		}
2632 		if (flags & TH_RST) {
2633 			if (flags & TH_ACK) {
2634 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2635 				    ip_xmit_attr_t *, connp->conn_ixa,
2636 				    void_ip_t *, iphdr, tcp_t *, tcp,
2637 				    tcph_t *, tcpha);
2638 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2639 			}
2640 			freemsg(mp);
2641 			return;
2642 		}
2643 		if (!(flags & TH_SYN)) {
2644 			freemsg(mp);
2645 			return;
2646 		}
2647 
2648 		/* Process all TCP options. */
2649 		tcp_process_options(tcp, tcpha);
2650 		/*
2651 		 * The following changes our rwnd to be a multiple of the
2652 		 * MIN(peer MSS, our MSS) for performance reason.
2653 		 */
2654 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2655 		    tcp->tcp_mss));
2656 
2657 		/* Is the other end ECN capable? */
2658 		if (tcp->tcp_ecn_ok) {
2659 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2660 				tcp->tcp_ecn_ok = B_FALSE;
2661 			}
2662 		}
2663 		/*
2664 		 * Clear ECN flags because it may interfere with later
2665 		 * processing.
2666 		 */
2667 		flags &= ~(TH_ECE|TH_CWR);
2668 
2669 		tcp->tcp_irs = seg_seq;
2670 		tcp->tcp_rack = seg_seq;
2671 		tcp->tcp_rnxt = seg_seq + 1;
2672 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2673 		if (!TCP_IS_DETACHED(tcp)) {
2674 			/* Allocate room for SACK options if needed. */
2675 			connp->conn_wroff = connp->conn_ht_iphc_len;
2676 			if (tcp->tcp_snd_sack_ok)
2677 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2678 			if (!tcp->tcp_loopback)
2679 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2680 
2681 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2682 			    connp->conn_wroff);
2683 		}
2684 		if (flags & TH_ACK) {
2685 			/*
2686 			 * If we can't get the confirmation upstream, pretend
2687 			 * we didn't even see this one.
2688 			 *
2689 			 * XXX: how can we pretend we didn't see it if we
2690 			 * have updated rnxt et. al.
2691 			 *
2692 			 * For loopback we defer sending up the T_CONN_CON
2693 			 * until after some checks below.
2694 			 */
2695 			mp1 = NULL;
2696 			/*
2697 			 * tcp_sendmsg() checks tcp_state without entering
2698 			 * the squeue so tcp_state should be updated before
2699 			 * sending up connection confirmation.  Probe the
2700 			 * state change below when we are sure the connection
2701 			 * confirmation has been sent.
2702 			 */
2703 			tcp->tcp_state = TCPS_ESTABLISHED;
2704 			if (!tcp_conn_con(tcp, iphdr, mp,
2705 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2706 				tcp->tcp_state = TCPS_SYN_SENT;
2707 				freemsg(mp);
2708 				return;
2709 			}
2710 			TCPS_CONN_INC(tcps);
2711 			/* SYN was acked - making progress */
2712 			tcp->tcp_ip_forward_progress = B_TRUE;
2713 
2714 			/* One for the SYN */
2715 			tcp->tcp_suna = tcp->tcp_iss + 1;
2716 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2717 
2718 			/*
2719 			 * If SYN was retransmitted, need to reset all
2720 			 * retransmission info.  This is because this
2721 			 * segment will be treated as a dup ACK.
2722 			 */
2723 			if (tcp->tcp_rexmit) {
2724 				tcp->tcp_rexmit = B_FALSE;
2725 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2726 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2727 				tcp->tcp_ms_we_have_waited = 0;
2728 
2729 				/*
2730 				 * Set tcp_cwnd back to 1 MSS, per
2731 				 * recommendation from
2732 				 * draft-floyd-incr-init-win-01.txt,
2733 				 * Increasing TCP's Initial Window.
2734 				 */
2735 				DTRACE_PROBE3(cwnd__retransmitted__syn,
2736 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
2737 				    uint32_t, tcp->tcp_mss);
2738 				tcp->tcp_cwnd = tcp->tcp_mss;
2739 			}
2740 
2741 			tcp->tcp_swl1 = seg_seq;
2742 			tcp->tcp_swl2 = seg_ack;
2743 
2744 			new_swnd = ntohs(tcpha->tha_win);
2745 			tcp->tcp_swnd = new_swnd;
2746 			if (new_swnd > tcp->tcp_max_swnd)
2747 				tcp->tcp_max_swnd = new_swnd;
2748 
2749 			/*
2750 			 * Always send the three-way handshake ack immediately
2751 			 * in order to make the connection complete as soon as
2752 			 * possible on the accepting host.
2753 			 */
2754 			flags |= TH_ACK_NEEDED;
2755 
2756 			/*
2757 			 * Trace connect-established here.
2758 			 */
2759 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2760 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2761 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2762 
2763 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2764 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2765 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2766 			    void, NULL, int32_t, TCPS_SYN_SENT);
2767 
2768 			/*
2769 			 * Special case for loopback.  At this point we have
2770 			 * received SYN-ACK from the remote endpoint.  In
2771 			 * order to ensure that both endpoints reach the
2772 			 * fused state prior to any data exchange, the final
2773 			 * ACK needs to be sent before we indicate T_CONN_CON
2774 			 * to the module upstream.
2775 			 */
2776 			if (tcp->tcp_loopback) {
2777 				mblk_t *ack_mp;
2778 
2779 				ASSERT(!tcp->tcp_unfusable);
2780 				ASSERT(mp1 != NULL);
2781 				/*
2782 				 * For loopback, we always get a pure SYN-ACK
2783 				 * and only need to send back the final ACK
2784 				 * with no data (this is because the other
2785 				 * tcp is ours and we don't do T/TCP).  This
2786 				 * final ACK triggers the passive side to
2787 				 * perform fusion in ESTABLISHED state.
2788 				 */
2789 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2790 					if (tcp->tcp_ack_tid != 0) {
2791 						(void) TCP_TIMER_CANCEL(tcp,
2792 						    tcp->tcp_ack_tid);
2793 						tcp->tcp_ack_tid = 0;
2794 					}
2795 					tcp_send_data(tcp, ack_mp);
2796 					TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
2797 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2798 
2799 					if (!IPCL_IS_NONSTR(connp)) {
2800 						/* Send up T_CONN_CON */
2801 						if (ira->ira_cred != NULL) {
2802 							mblk_setcred(mp1,
2803 							    ira->ira_cred,
2804 							    ira->ira_cpid);
2805 						}
2806 						putnext(connp->conn_rq, mp1);
2807 					} else {
2808 						(*sockupcalls->su_connected)
2809 						    (connp->conn_upper_handle,
2810 						    tcp->tcp_connid,
2811 						    ira->ira_cred,
2812 						    ira->ira_cpid);
2813 						freemsg(mp1);
2814 					}
2815 
2816 					freemsg(mp);
2817 					return;
2818 				}
2819 				/*
2820 				 * Forget fusion; we need to handle more
2821 				 * complex cases below.  Send the deferred
2822 				 * T_CONN_CON message upstream and proceed
2823 				 * as usual.  Mark this tcp as not capable
2824 				 * of fusion.
2825 				 */
2826 				TCP_STAT(tcps, tcp_fusion_unfusable);
2827 				tcp->tcp_unfusable = B_TRUE;
2828 				if (!IPCL_IS_NONSTR(connp)) {
2829 					if (ira->ira_cred != NULL) {
2830 						mblk_setcred(mp1, ira->ira_cred,
2831 						    ira->ira_cpid);
2832 					}
2833 					putnext(connp->conn_rq, mp1);
2834 				} else {
2835 					(*sockupcalls->su_connected)
2836 					    (connp->conn_upper_handle,
2837 					    tcp->tcp_connid, ira->ira_cred,
2838 					    ira->ira_cpid);
2839 					freemsg(mp1);
2840 				}
2841 			}
2842 
2843 			/*
2844 			 * Check to see if there is data to be sent.  If
2845 			 * yes, set the transmit flag.  Then check to see
2846 			 * if received data processing needs to be done.
2847 			 * If not, go straight to xmit_check.  This short
2848 			 * cut is OK as we don't support T/TCP.
2849 			 */
2850 			if (tcp->tcp_unsent)
2851 				flags |= TH_XMIT_NEEDED;
2852 
2853 			if (seg_len == 0 && !(flags & TH_URG)) {
2854 				freemsg(mp);
2855 				goto xmit_check;
2856 			}
2857 
2858 			flags &= ~TH_SYN;
2859 			seg_seq++;
2860 			break;
2861 		}
2862 		tcp->tcp_state = TCPS_SYN_RCVD;
2863 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2864 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2865 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2866 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2867 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2868 		if (mp1 != NULL) {
2869 			tcp_send_data(tcp, mp1);
2870 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2871 		}
2872 		freemsg(mp);
2873 		return;
2874 	case TCPS_SYN_RCVD:
2875 		if (flags & TH_ACK) {
2876 			uint32_t pinit_wnd;
2877 
2878 			/*
2879 			 * In this state, a SYN|ACK packet is either bogus
2880 			 * because the other side must be ACKing our SYN which
2881 			 * indicates it has seen the ACK for their SYN and
2882 			 * shouldn't retransmit it or we're crossing SYNs
2883 			 * on active open.
2884 			 */
2885 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2886 				freemsg(mp);
2887 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2888 				    tcp, seg_ack, 0, TH_RST);
2889 				return;
2890 			}
2891 			/*
2892 			 * NOTE: RFC 793 pg. 72 says this should be
2893 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2894 			 * but that would mean we have an ack that ignored
2895 			 * our SYN.
2896 			 */
2897 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2898 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2899 				freemsg(mp);
2900 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2901 				    tcp, seg_ack, 0, TH_RST);
2902 				return;
2903 			}
2904 			/*
2905 			 * No sane TCP stack will send such a small window
2906 			 * without receiving any data.  Just drop this invalid
2907 			 * ACK.  We also shorten the abort timeout in case
2908 			 * this is an attack.
2909 			 */
2910 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2911 			if (pinit_wnd < tcp->tcp_mss &&
2912 			    pinit_wnd < tcp_init_wnd_chk) {
2913 				freemsg(mp);
2914 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2915 				tcp->tcp_second_ctimer_threshold =
2916 				    tcp_early_abort * SECONDS;
2917 				return;
2918 			}
2919 		}
2920 		break;
2921 	case TCPS_LISTEN:
2922 		/*
2923 		 * Only a TLI listener can come through this path when a
2924 		 * acceptor is going back to be a listener and a packet
2925 		 * for the acceptor hits the classifier. For a socket
2926 		 * listener, this can never happen because a listener
2927 		 * can never accept connection on itself and hence a
2928 		 * socket acceptor can not go back to being a listener.
2929 		 */
2930 		ASSERT(!TCP_IS_SOCKET(tcp));
2931 		/*FALLTHRU*/
2932 	case TCPS_CLOSED:
2933 	case TCPS_BOUND: {
2934 		conn_t	*new_connp;
2935 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2936 
2937 		/*
2938 		 * Don't accept any input on a closed tcp as this TCP logically
2939 		 * does not exist on the system. Don't proceed further with
2940 		 * this TCP. For instance, this packet could trigger another
2941 		 * close of this tcp which would be disastrous for tcp_refcnt.
2942 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2943 		 * be called at most once on a TCP. In this case we need to
2944 		 * refeed the packet into the classifier and figure out where
2945 		 * the packet should go.
2946 		 */
2947 		new_connp = ipcl_classify(mp, ira, ipst);
2948 		if (new_connp != NULL) {
2949 			/* Drops ref on new_connp */
2950 			tcp_reinput(new_connp, mp, ira, ipst);
2951 			return;
2952 		}
2953 		/* We failed to classify. For now just drop the packet */
2954 		freemsg(mp);
2955 		return;
2956 	}
2957 	case TCPS_IDLE:
2958 		/*
2959 		 * Handle the case where the tcp_clean_death() has happened
2960 		 * on a connection (application hasn't closed yet) but a packet
2961 		 * was already queued on squeue before tcp_clean_death()
2962 		 * was processed. Calling tcp_clean_death() twice on same
2963 		 * connection can result in weird behaviour.
2964 		 */
2965 		freemsg(mp);
2966 		return;
2967 	default:
2968 		break;
2969 	}
2970 
2971 	/*
2972 	 * Already on the correct queue/perimeter.
2973 	 * If this is a detached connection and not an eager
2974 	 * connection hanging off a listener then new data
2975 	 * (past the FIN) will cause a reset.
2976 	 * We do a special check here where it
2977 	 * is out of the main line, rather than check
2978 	 * if we are detached every time we see new
2979 	 * data down below.
2980 	 */
2981 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2982 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2983 		TCPS_BUMP_MIB(tcps, tcpInClosed);
2984 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2985 		freemsg(mp);
2986 		tcp_xmit_ctl("new data when detached", tcp,
2987 		    tcp->tcp_snxt, 0, TH_RST);
2988 		(void) tcp_clean_death(tcp, EPROTO);
2989 		return;
2990 	}
2991 
2992 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2993 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2994 	new_swnd = ntohs(tcpha->tha_win) <<
2995 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2996 
2997 	/*
2998 	 * We are interested in two TCP options: timestamps (if negotiated) and
2999 	 * SACK (if negotiated). Skip option parsing if neither is negotiated.
3000 	 */
3001 	if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) {
3002 		int options;
3003 		if (tcp->tcp_snd_sack_ok)
3004 			tcpopt.tcp = tcp;
3005 		else
3006 			tcpopt.tcp = NULL;
3007 		options = tcp_parse_options(tcpha, &tcpopt);
3008 		/*
3009 		 * RST segments must not be subject to PAWS and are not
3010 		 * required to have timestamps.
3011 		 * We do not drop keepalive segments without
3012 		 * timestamps, to maintain compatibility with legacy TCP stacks.
3013 		 */
3014 		boolean_t keepalive = (seg_len == 0 || seg_len == 1) &&
3015 		    (seg_seq + 1 == tcp->tcp_rnxt);
3016 		if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) {
3017 			/*
3018 			 * Per RFC 7323 section 3.2., silently drop non-RST
3019 			 * segments without expected TSopt. This is a 'SHOULD'
3020 			 * requirement.
3021 			 * We accept keepalives without TSopt to maintain
3022 			 * interoperability with tcp implementations that omit
3023 			 * the TSopt on these. Keepalive data is discarded, so
3024 			 * there is no risk corrupting data by accepting these.
3025 			 */
3026 			if (!(options & TCP_OPT_TSTAMP_PRESENT)) {
3027 				/*
3028 				 * Leave a breadcrumb for people to detect this
3029 				 * behavior.
3030 				 */
3031 				DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp);
3032 				freemsg(mp);
3033 				return;
3034 			}
3035 
3036 			if (!tcp_paws_check(tcp, &tcpopt)) {
3037 				/*
3038 				 * This segment is not acceptable.
3039 				 * Drop it and send back an ACK.
3040 				 */
3041 				freemsg(mp);
3042 				flags |= TH_ACK_NEEDED;
3043 				goto ack_check;
3044 			}
3045 		}
3046 	}
3047 try_again:;
3048 	mss = tcp->tcp_mss;
3049 	gap = seg_seq - tcp->tcp_rnxt;
3050 	rgap = tcp->tcp_rwnd - (gap + seg_len);
3051 	/*
3052 	 * gap is the amount of sequence space between what we expect to see
3053 	 * and what we got for seg_seq.  A positive value for gap means
3054 	 * something got lost.  A negative value means we got some old stuff.
3055 	 */
3056 	if (gap < 0) {
3057 		/* Old stuff present.  Is the SYN in there? */
3058 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
3059 		    (seg_len != 0)) {
3060 			flags &= ~TH_SYN;
3061 			seg_seq++;
3062 			urp--;
3063 			/* Recompute the gaps after noting the SYN. */
3064 			goto try_again;
3065 		}
3066 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
3067 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
3068 		    (seg_len > -gap ? -gap : seg_len));
3069 		/* Remove the old stuff from seg_len. */
3070 		seg_len += gap;
3071 		/*
3072 		 * Anything left?
3073 		 * Make sure to check for unack'd FIN when rest of data
3074 		 * has been previously ack'd.
3075 		 */
3076 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
3077 			/*
3078 			 * Resets are only valid if they lie within our offered
3079 			 * window.  If the RST bit is set, we just ignore this
3080 			 * segment.
3081 			 */
3082 			if (flags & TH_RST) {
3083 				freemsg(mp);
3084 				return;
3085 			}
3086 
3087 			/*
3088 			 * The arriving of dup data packets indicate that we
3089 			 * may have postponed an ack for too long, or the other
3090 			 * side's RTT estimate is out of shape. Start acking
3091 			 * more often.
3092 			 */
3093 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
3094 			    tcp->tcp_rack_cnt >= 1 &&
3095 			    tcp->tcp_rack_abs_max > 2) {
3096 				tcp->tcp_rack_abs_max--;
3097 			}
3098 			tcp->tcp_rack_cur_max = 1;
3099 
3100 			/*
3101 			 * This segment is "unacceptable".  None of its
3102 			 * sequence space lies within our advertized window.
3103 			 *
3104 			 * Adjust seg_len to the original value for tracing.
3105 			 */
3106 			seg_len -= gap;
3107 			if (connp->conn_debug) {
3108 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3109 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
3110 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
3111 				    "seg_len %d, rnxt %u, snxt %u, %s",
3112 				    gap, rgap, flags, seg_seq, seg_ack,
3113 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3114 				    tcp_display(tcp, NULL,
3115 				    DISP_ADDR_AND_PORT));
3116 			}
3117 
3118 			/*
3119 			 * Arrange to send an ACK in response to the
3120 			 * unacceptable segment per RFC 793 page 69. There
3121 			 * is only one small difference between ours and the
3122 			 * acceptability test in the RFC - we accept ACK-only
3123 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3124 			 * will be generated.
3125 			 *
3126 			 * Note that we have to ACK an ACK-only packet at least
3127 			 * for stacks that send 0-length keep-alives with
3128 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3129 			 * section 4.2.3.6. As long as we don't ever generate
3130 			 * an unacceptable packet in response to an incoming
3131 			 * packet that is unacceptable, it should not cause
3132 			 * "ACK wars".
3133 			 */
3134 			flags |=  TH_ACK_NEEDED;
3135 
3136 			/*
3137 			 * Continue processing this segment in order to use the
3138 			 * ACK information it contains, but skip all other
3139 			 * sequence-number processing.	Processing the ACK
3140 			 * information is necessary in order to
3141 			 * re-synchronize connections that may have lost
3142 			 * synchronization.
3143 			 *
3144 			 * We clear seg_len and flag fields related to
3145 			 * sequence number processing as they are not
3146 			 * to be trusted for an unacceptable segment.
3147 			 */
3148 			seg_len = 0;
3149 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3150 			goto process_ack;
3151 		}
3152 
3153 		/* Fix seg_seq, and chew the gap off the front. */
3154 		seg_seq = tcp->tcp_rnxt;
3155 		urp += gap;
3156 		do {
3157 			mblk_t	*mp2;
3158 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3159 			    (uintptr_t)UINT_MAX);
3160 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3161 			if (gap > 0) {
3162 				mp->b_rptr = mp->b_wptr - gap;
3163 				break;
3164 			}
3165 			mp2 = mp;
3166 			mp = mp->b_cont;
3167 			freeb(mp2);
3168 		} while (gap < 0);
3169 		/*
3170 		 * If the urgent data has already been acknowledged, we
3171 		 * should ignore TH_URG below
3172 		 */
3173 		if (urp < 0)
3174 			flags &= ~TH_URG;
3175 	}
3176 	/*
3177 	 * rgap is the amount of stuff received out of window.  A negative
3178 	 * value is the amount out of window.
3179 	 */
3180 	if (rgap < 0) {
3181 		mblk_t	*mp2;
3182 
3183 		if (tcp->tcp_rwnd == 0) {
3184 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3185 			tcp->tcp_cs.tcp_in_zwnd_probes++;
3186 		} else {
3187 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3188 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3189 		}
3190 
3191 		/*
3192 		 * seg_len does not include the FIN, so if more than
3193 		 * just the FIN is out of window, we act like we don't
3194 		 * see it.  (If just the FIN is out of window, rgap
3195 		 * will be zero and we will go ahead and acknowledge
3196 		 * the FIN.)
3197 		 */
3198 		flags &= ~TH_FIN;
3199 
3200 		/* Fix seg_len and make sure there is something left. */
3201 		seg_len += rgap;
3202 		if (seg_len <= 0) {
3203 			/*
3204 			 * Resets are only valid if they lie within our offered
3205 			 * window.  If the RST bit is set, we just ignore this
3206 			 * segment.
3207 			 */
3208 			if (flags & TH_RST) {
3209 				freemsg(mp);
3210 				return;
3211 			}
3212 
3213 			/* Per RFC 793, we need to send back an ACK. */
3214 			flags |= TH_ACK_NEEDED;
3215 
3216 			/*
3217 			 * Send SIGURG as soon as possible i.e. even
3218 			 * if the TH_URG was delivered in a window probe
3219 			 * packet (which will be unacceptable).
3220 			 *
3221 			 * We generate a signal if none has been generated
3222 			 * for this connection or if this is a new urgent
3223 			 * byte. Also send a zero-length "unmarked" message
3224 			 * to inform SIOCATMARK that this is not the mark.
3225 			 *
3226 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3227 			 * is sent up. This plus the check for old data
3228 			 * (gap >= 0) handles the wraparound of the sequence
3229 			 * number space without having to always track the
3230 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3231 			 * this max in its rcv_up variable).
3232 			 *
3233 			 * This prevents duplicate SIGURGS due to a "late"
3234 			 * zero-window probe when the T_EXDATA_IND has already
3235 			 * been sent up.
3236 			 */
3237 			if ((flags & TH_URG) &&
3238 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3239 			    tcp->tcp_urp_last))) {
3240 				if (IPCL_IS_NONSTR(connp)) {
3241 					if (!TCP_IS_DETACHED(tcp)) {
3242 						(*sockupcalls->su_signal_oob)
3243 						    (connp->conn_upper_handle,
3244 						    urp);
3245 					}
3246 				} else {
3247 					mp1 = allocb(0, BPRI_MED);
3248 					if (mp1 == NULL) {
3249 						freemsg(mp);
3250 						return;
3251 					}
3252 					if (!TCP_IS_DETACHED(tcp) &&
3253 					    !putnextctl1(connp->conn_rq,
3254 					    M_PCSIG, SIGURG)) {
3255 						/* Try again on the rexmit. */
3256 						freemsg(mp1);
3257 						freemsg(mp);
3258 						return;
3259 					}
3260 					/*
3261 					 * If the next byte would be the mark
3262 					 * then mark with MARKNEXT else mark
3263 					 * with NOTMARKNEXT.
3264 					 */
3265 					if (gap == 0 && urp == 0)
3266 						mp1->b_flag |= MSGMARKNEXT;
3267 					else
3268 						mp1->b_flag |= MSGNOTMARKNEXT;
3269 					freemsg(tcp->tcp_urp_mark_mp);
3270 					tcp->tcp_urp_mark_mp = mp1;
3271 					flags |= TH_SEND_URP_MARK;
3272 				}
3273 				tcp->tcp_urp_last_valid = B_TRUE;
3274 				tcp->tcp_urp_last = urp + seg_seq;
3275 			}
3276 			/*
3277 			 * If this is a zero window probe, continue to
3278 			 * process the ACK part.  But we need to set seg_len
3279 			 * to 0 to avoid data processing.  Otherwise just
3280 			 * drop the segment and send back an ACK.
3281 			 */
3282 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3283 				flags &= ~(TH_SYN | TH_URG);
3284 				seg_len = 0;
3285 				goto process_ack;
3286 			} else {
3287 				freemsg(mp);
3288 				goto ack_check;
3289 			}
3290 		}
3291 		/* Pitch out of window stuff off the end. */
3292 		rgap = seg_len;
3293 		mp2 = mp;
3294 		do {
3295 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3296 			    (uintptr_t)INT_MAX);
3297 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3298 			if (rgap < 0) {
3299 				mp2->b_wptr += rgap;
3300 				if ((mp1 = mp2->b_cont) != NULL) {
3301 					mp2->b_cont = NULL;
3302 					freemsg(mp1);
3303 				}
3304 				break;
3305 			}
3306 		} while ((mp2 = mp2->b_cont) != NULL);
3307 	}
3308 ok:;
3309 	/*
3310 	 * TCP should check ECN info for segments inside the window only.
3311 	 * Therefore the check should be done here.
3312 	 */
3313 	if (tcp->tcp_ecn_ok) {
3314 		if (flags & TH_CWR) {
3315 			tcp->tcp_ecn_echo_on = B_FALSE;
3316 		}
3317 		/*
3318 		 * Note that both ECN_CE and CWR can be set in the
3319 		 * same segment.  In this case, we once again turn
3320 		 * on ECN_ECHO.
3321 		 */
3322 		if (connp->conn_ipversion == IPV4_VERSION) {
3323 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3324 
3325 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3326 				tcp->tcp_ecn_echo_on = B_TRUE;
3327 			}
3328 		} else {
3329 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3330 
3331 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3332 			    htonl(IPH_ECN_CE << 20)) {
3333 				tcp->tcp_ecn_echo_on = B_TRUE;
3334 			}
3335 		}
3336 	}
3337 
3338 	/*
3339 	 * Check whether we can update tcp_ts_recent. This test is from RFC
3340 	 * 7323, section 5.3.
3341 	 */
3342 	if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) &&
3343 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3344 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3345 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3346 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3347 	}
3348 
3349 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3350 		/*
3351 		 * FIN in an out of order segment.  We record this in
3352 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3353 		 * Clear the FIN so that any check on FIN flag will fail.
3354 		 * Remember that FIN also counts in the sequence number
3355 		 * space.  So we need to ack out of order FIN only segments.
3356 		 */
3357 		if (flags & TH_FIN) {
3358 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3359 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3360 			flags &= ~TH_FIN;
3361 			flags |= TH_ACK_NEEDED;
3362 		}
3363 		if (seg_len > 0) {
3364 			/* Fill in the SACK blk list. */
3365 			if (tcp->tcp_snd_sack_ok) {
3366 				tcp_sack_insert(tcp->tcp_sack_list,
3367 				    seg_seq, seg_seq + seg_len,
3368 				    &(tcp->tcp_num_sack_blk));
3369 			}
3370 
3371 			/*
3372 			 * Attempt reassembly and see if we have something
3373 			 * ready to go.
3374 			 */
3375 			mp = tcp_reass(tcp, mp, seg_seq);
3376 			/* Always ack out of order packets */
3377 			flags |= TH_ACK_NEEDED | TH_PUSH;
3378 			if (mp) {
3379 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3380 				    (uintptr_t)INT_MAX);
3381 				seg_len = mp->b_cont ? msgdsize(mp) :
3382 				    (int)(mp->b_wptr - mp->b_rptr);
3383 				seg_seq = tcp->tcp_rnxt;
3384 				/*
3385 				 * A gap is filled and the seq num and len
3386 				 * of the gap match that of a previously
3387 				 * received FIN, put the FIN flag back in.
3388 				 */
3389 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3390 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3391 					flags |= TH_FIN;
3392 					tcp->tcp_valid_bits &=
3393 					    ~TCP_OFO_FIN_VALID;
3394 				}
3395 				if (tcp->tcp_reass_tid != 0) {
3396 					(void) TCP_TIMER_CANCEL(tcp,
3397 					    tcp->tcp_reass_tid);
3398 					/*
3399 					 * Restart the timer if there is still
3400 					 * data in the reassembly queue.
3401 					 */
3402 					if (tcp->tcp_reass_head != NULL) {
3403 						tcp->tcp_reass_tid = TCP_TIMER(
3404 						    tcp, tcp_reass_timer,
3405 						    tcps->tcps_reass_timeout);
3406 					} else {
3407 						tcp->tcp_reass_tid = 0;
3408 					}
3409 				}
3410 			} else {
3411 				/*
3412 				 * Keep going even with NULL mp.
3413 				 * There may be a useful ACK or something else
3414 				 * we don't want to miss.
3415 				 *
3416 				 * But TCP should not perform fast retransmit
3417 				 * because of the ack number.  TCP uses
3418 				 * seg_len == 0 to determine if it is a pure
3419 				 * ACK.  And this is not a pure ACK.
3420 				 */
3421 				seg_len = 0;
3422 				ofo_seg = B_TRUE;
3423 
3424 				if (tcps->tcps_reass_timeout != 0 &&
3425 				    tcp->tcp_reass_tid == 0) {
3426 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3427 					    tcp_reass_timer,
3428 					    tcps->tcps_reass_timeout);
3429 				}
3430 			}
3431 		}
3432 	} else if (seg_len > 0) {
3433 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3434 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3435 		tcp->tcp_cs.tcp_in_data_inorder_segs++;
3436 		tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len;
3437 
3438 		/*
3439 		 * If an out of order FIN was received before, and the seq
3440 		 * num and len of the new segment match that of the FIN,
3441 		 * put the FIN flag back in.
3442 		 */
3443 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3444 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3445 			flags |= TH_FIN;
3446 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3447 		}
3448 	}
3449 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3450 	if (flags & TH_RST) {
3451 		freemsg(mp);
3452 		switch (tcp->tcp_state) {
3453 		case TCPS_SYN_RCVD:
3454 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3455 			break;
3456 		case TCPS_ESTABLISHED:
3457 		case TCPS_FIN_WAIT_1:
3458 		case TCPS_FIN_WAIT_2:
3459 		case TCPS_CLOSE_WAIT:
3460 			(void) tcp_clean_death(tcp, ECONNRESET);
3461 			break;
3462 		case TCPS_CLOSING:
3463 		case TCPS_LAST_ACK:
3464 			(void) tcp_clean_death(tcp, 0);
3465 			break;
3466 		default:
3467 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3468 			(void) tcp_clean_death(tcp, ENXIO);
3469 			break;
3470 		}
3471 		return;
3472 	}
3473 	if (flags & TH_SYN) {
3474 		/*
3475 		 * See RFC 793, Page 71
3476 		 *
3477 		 * The seq number must be in the window as it should
3478 		 * be "fixed" above.  If it is outside window, it should
3479 		 * be already rejected.  Note that we allow seg_seq to be
3480 		 * rnxt + rwnd because we want to accept 0 window probe.
3481 		 */
3482 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3483 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3484 		freemsg(mp);
3485 		/*
3486 		 * If the ACK flag is not set, just use our snxt as the
3487 		 * seq number of the RST segment.
3488 		 */
3489 		if (!(flags & TH_ACK)) {
3490 			seg_ack = tcp->tcp_snxt;
3491 		}
3492 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3493 		    TH_RST|TH_ACK);
3494 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3495 		(void) tcp_clean_death(tcp, ECONNRESET);
3496 		return;
3497 	}
3498 	/*
3499 	 * urp could be -1 when the urp field in the packet is 0
3500 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3501 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3502 	 */
3503 	if ((flags & TH_URG) && urp >= 0) {
3504 		if (!tcp->tcp_urp_last_valid ||
3505 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3506 			/*
3507 			 * Non-STREAMS sockets handle the urgent data a litte
3508 			 * differently from STREAMS based sockets. There is no
3509 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3510 			 * flags to keep SIOCATMARK happy. Instead a
3511 			 * su_signal_oob upcall is made to update the mark.
3512 			 * Neither is a T_EXDATA_IND mblk needed to be
3513 			 * prepended to the urgent data. The urgent data is
3514 			 * delivered using the su_recv upcall, where we set
3515 			 * the MSG_OOB flag to indicate that it is urg data.
3516 			 *
3517 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3518 			 * are used by non-STREAMS sockets.
3519 			 */
3520 			if (IPCL_IS_NONSTR(connp)) {
3521 				if (!TCP_IS_DETACHED(tcp)) {
3522 					(*sockupcalls->su_signal_oob)
3523 					    (connp->conn_upper_handle, urp);
3524 				}
3525 			} else {
3526 				/*
3527 				 * If we haven't generated the signal yet for
3528 				 * this urgent pointer value, do it now.  Also,
3529 				 * send up a zero-length M_DATA indicating
3530 				 * whether or not this is the mark. The latter
3531 				 * is not needed when a T_EXDATA_IND is sent up.
3532 				 * However, if there are allocation failures
3533 				 * this code relies on the sender retransmitting
3534 				 * and the socket code for determining the mark
3535 				 * should not block waiting for the peer to
3536 				 * transmit. Thus, for simplicity we always
3537 				 * send up the mark indication.
3538 				 */
3539 				mp1 = allocb(0, BPRI_MED);
3540 				if (mp1 == NULL) {
3541 					freemsg(mp);
3542 					return;
3543 				}
3544 				if (!TCP_IS_DETACHED(tcp) &&
3545 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3546 				    SIGURG)) {
3547 					/* Try again on the rexmit. */
3548 					freemsg(mp1);
3549 					freemsg(mp);
3550 					return;
3551 				}
3552 				/*
3553 				 * Mark with NOTMARKNEXT for now.
3554 				 * The code below will change this to MARKNEXT
3555 				 * if we are at the mark.
3556 				 *
3557 				 * If there are allocation failures (e.g. in
3558 				 * dupmsg below) the next time tcp_input_data
3559 				 * sees the urgent segment it will send up the
3560 				 * MSGMARKNEXT message.
3561 				 */
3562 				mp1->b_flag |= MSGNOTMARKNEXT;
3563 				freemsg(tcp->tcp_urp_mark_mp);
3564 				tcp->tcp_urp_mark_mp = mp1;
3565 				flags |= TH_SEND_URP_MARK;
3566 #ifdef DEBUG
3567 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3568 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3569 				    "last %x, %s",
3570 				    seg_seq, urp, tcp->tcp_urp_last,
3571 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3572 #endif /* DEBUG */
3573 			}
3574 			tcp->tcp_urp_last_valid = B_TRUE;
3575 			tcp->tcp_urp_last = urp + seg_seq;
3576 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3577 			/*
3578 			 * An allocation failure prevented the previous
3579 			 * tcp_input_data from sending up the allocated
3580 			 * MSG*MARKNEXT message - send it up this time
3581 			 * around.
3582 			 */
3583 			flags |= TH_SEND_URP_MARK;
3584 		}
3585 
3586 		/*
3587 		 * If the urgent byte is in this segment, make sure that it is
3588 		 * all by itself.  This makes it much easier to deal with the
3589 		 * possibility of an allocation failure on the T_exdata_ind.
3590 		 * Note that seg_len is the number of bytes in the segment, and
3591 		 * urp is the offset into the segment of the urgent byte.
3592 		 * urp < seg_len means that the urgent byte is in this segment.
3593 		 */
3594 		if (urp < seg_len) {
3595 			if (seg_len != 1) {
3596 				uint32_t  tmp_rnxt;
3597 				/*
3598 				 * Break it up and feed it back in.
3599 				 * Re-attach the IP header.
3600 				 */
3601 				mp->b_rptr = iphdr;
3602 				if (urp > 0) {
3603 					/*
3604 					 * There is stuff before the urgent
3605 					 * byte.
3606 					 */
3607 					mp1 = dupmsg(mp);
3608 					if (!mp1) {
3609 						/*
3610 						 * Trim from urgent byte on.
3611 						 * The rest will come back.
3612 						 */
3613 						(void) adjmsg(mp,
3614 						    urp - seg_len);
3615 						tcp_input_data(connp,
3616 						    mp, NULL, ira);
3617 						return;
3618 					}
3619 					(void) adjmsg(mp1, urp - seg_len);
3620 					/* Feed this piece back in. */
3621 					tmp_rnxt = tcp->tcp_rnxt;
3622 					tcp_input_data(connp, mp1, NULL, ira);
3623 					/*
3624 					 * If the data passed back in was not
3625 					 * processed (ie: bad ACK) sending
3626 					 * the remainder back in will cause a
3627 					 * loop. In this case, drop the
3628 					 * packet and let the sender try
3629 					 * sending a good packet.
3630 					 */
3631 					if (tmp_rnxt == tcp->tcp_rnxt) {
3632 						freemsg(mp);
3633 						return;
3634 					}
3635 				}
3636 				if (urp != seg_len - 1) {
3637 					uint32_t  tmp_rnxt;
3638 					/*
3639 					 * There is stuff after the urgent
3640 					 * byte.
3641 					 */
3642 					mp1 = dupmsg(mp);
3643 					if (!mp1) {
3644 						/*
3645 						 * Trim everything beyond the
3646 						 * urgent byte.  The rest will
3647 						 * come back.
3648 						 */
3649 						(void) adjmsg(mp,
3650 						    urp + 1 - seg_len);
3651 						tcp_input_data(connp,
3652 						    mp, NULL, ira);
3653 						return;
3654 					}
3655 					(void) adjmsg(mp1, urp + 1 - seg_len);
3656 					tmp_rnxt = tcp->tcp_rnxt;
3657 					tcp_input_data(connp, mp1, NULL, ira);
3658 					/*
3659 					 * If the data passed back in was not
3660 					 * processed (ie: bad ACK) sending
3661 					 * the remainder back in will cause a
3662 					 * loop. In this case, drop the
3663 					 * packet and let the sender try
3664 					 * sending a good packet.
3665 					 */
3666 					if (tmp_rnxt == tcp->tcp_rnxt) {
3667 						freemsg(mp);
3668 						return;
3669 					}
3670 				}
3671 				tcp_input_data(connp, mp, NULL, ira);
3672 				return;
3673 			}
3674 			/*
3675 			 * This segment contains only the urgent byte.  We
3676 			 * have to allocate the T_exdata_ind, if we can.
3677 			 */
3678 			if (IPCL_IS_NONSTR(connp)) {
3679 				int error;
3680 
3681 				(*sockupcalls->su_recv)
3682 				    (connp->conn_upper_handle, mp, seg_len,
3683 				    MSG_OOB, &error, NULL);
3684 				/*
3685 				 * We should never be in middle of a
3686 				 * fallback, the squeue guarantees that.
3687 				 */
3688 				ASSERT(error != EOPNOTSUPP);
3689 				mp = NULL;
3690 				goto update_ack;
3691 			} else if (!tcp->tcp_urp_mp) {
3692 				struct T_exdata_ind *tei;
3693 				mp1 = allocb(sizeof (struct T_exdata_ind),
3694 				    BPRI_MED);
3695 				if (!mp1) {
3696 					/*
3697 					 * Sigh... It'll be back.
3698 					 * Generate any MSG*MARK message now.
3699 					 */
3700 					freemsg(mp);
3701 					seg_len = 0;
3702 					if (flags & TH_SEND_URP_MARK) {
3703 
3704 
3705 						ASSERT(tcp->tcp_urp_mark_mp);
3706 						tcp->tcp_urp_mark_mp->b_flag &=
3707 						    ~MSGNOTMARKNEXT;
3708 						tcp->tcp_urp_mark_mp->b_flag |=
3709 						    MSGMARKNEXT;
3710 					}
3711 					goto ack_check;
3712 				}
3713 				mp1->b_datap->db_type = M_PROTO;
3714 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3715 				tei->PRIM_type = T_EXDATA_IND;
3716 				tei->MORE_flag = 0;
3717 				mp1->b_wptr = (uchar_t *)&tei[1];
3718 				tcp->tcp_urp_mp = mp1;
3719 #ifdef DEBUG
3720 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3721 				    "tcp_rput: allocated exdata_ind %s",
3722 				    tcp_display(tcp, NULL,
3723 				    DISP_PORT_ONLY));
3724 #endif /* DEBUG */
3725 				/*
3726 				 * There is no need to send a separate MSG*MARK
3727 				 * message since the T_EXDATA_IND will be sent
3728 				 * now.
3729 				 */
3730 				flags &= ~TH_SEND_URP_MARK;
3731 				freemsg(tcp->tcp_urp_mark_mp);
3732 				tcp->tcp_urp_mark_mp = NULL;
3733 			}
3734 			/*
3735 			 * Now we are all set.  On the next putnext upstream,
3736 			 * tcp_urp_mp will be non-NULL and will get prepended
3737 			 * to what has to be this piece containing the urgent
3738 			 * byte.  If for any reason we abort this segment below,
3739 			 * if it comes back, we will have this ready, or it
3740 			 * will get blown off in close.
3741 			 */
3742 		} else if (urp == seg_len) {
3743 			/*
3744 			 * The urgent byte is the next byte after this sequence
3745 			 * number. If this endpoint is non-STREAMS, then there
3746 			 * is nothing to do here since the socket has already
3747 			 * been notified about the urg pointer by the
3748 			 * su_signal_oob call above.
3749 			 *
3750 			 * In case of STREAMS, some more work might be needed.
3751 			 * If there is data it is marked with MSGMARKNEXT and
3752 			 * and any tcp_urp_mark_mp is discarded since it is not
3753 			 * needed. Otherwise, if the code above just allocated
3754 			 * a zero-length tcp_urp_mark_mp message, that message
3755 			 * is tagged with MSGMARKNEXT. Sending up these
3756 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3757 			 * even though the T_EXDATA_IND will not be sent up
3758 			 * until the urgent byte arrives.
3759 			 */
3760 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3761 				if (seg_len != 0) {
3762 					flags |= TH_MARKNEXT_NEEDED;
3763 					freemsg(tcp->tcp_urp_mark_mp);
3764 					tcp->tcp_urp_mark_mp = NULL;
3765 					flags &= ~TH_SEND_URP_MARK;
3766 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3767 					flags |= TH_SEND_URP_MARK;
3768 					tcp->tcp_urp_mark_mp->b_flag &=
3769 					    ~MSGNOTMARKNEXT;
3770 					tcp->tcp_urp_mark_mp->b_flag |=
3771 					    MSGMARKNEXT;
3772 				}
3773 			}
3774 #ifdef DEBUG
3775 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3776 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3777 			    seg_len, flags,
3778 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3779 #endif /* DEBUG */
3780 		}
3781 #ifdef DEBUG
3782 		else {
3783 			/* Data left until we hit mark */
3784 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3785 			    "tcp_rput: URP %d bytes left, %s",
3786 			    urp - seg_len, tcp_display(tcp, NULL,
3787 			    DISP_PORT_ONLY));
3788 		}
3789 #endif /* DEBUG */
3790 	}
3791 
3792 process_ack:
3793 	if (!(flags & TH_ACK)) {
3794 		freemsg(mp);
3795 		goto xmit_check;
3796 	}
3797 	}
3798 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3799 
3800 	if (bytes_acked > 0)
3801 		tcp->tcp_ip_forward_progress = B_TRUE;
3802 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3803 		/*
3804 		 * tcp_sendmsg() checks tcp_state without entering
3805 		 * the squeue so tcp_state should be updated before
3806 		 * sending up a connection confirmation or a new
3807 		 * connection indication.
3808 		 */
3809 		tcp->tcp_state = TCPS_ESTABLISHED;
3810 
3811 		/*
3812 		 * We are seeing the final ack in the three way
3813 		 * hand shake of a active open'ed connection
3814 		 * so we must send up a T_CONN_CON
3815 		 */
3816 		if (tcp->tcp_active_open) {
3817 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3818 				freemsg(mp);
3819 				tcp->tcp_state = TCPS_SYN_RCVD;
3820 				return;
3821 			}
3822 			/*
3823 			 * Don't fuse the loopback endpoints for
3824 			 * simultaneous active opens.
3825 			 */
3826 			if (tcp->tcp_loopback) {
3827 				TCP_STAT(tcps, tcp_fusion_unfusable);
3828 				tcp->tcp_unfusable = B_TRUE;
3829 			}
3830 			/*
3831 			 * For simultaneous active open, trace receipt of final
3832 			 * ACK as tcp:::connect-established.
3833 			 */
3834 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3835 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3836 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3837 		} else if (IPCL_IS_NONSTR(connp)) {
3838 			/*
3839 			 * 3-way handshake has completed, so notify socket
3840 			 * of the new connection.
3841 			 *
3842 			 * We are here means eager is fine but it can
3843 			 * get a TH_RST at any point between now and till
3844 			 * accept completes and disappear. We need to
3845 			 * ensure that reference to eager is valid after
3846 			 * we get out of eager's perimeter. So we do
3847 			 * an extra refhold.
3848 			 */
3849 			CONN_INC_REF(connp);
3850 
3851 			if (!tcp_newconn_notify(tcp, ira)) {
3852 				/*
3853 				 * The state-change probe for SYN_RCVD ->
3854 				 * ESTABLISHED has not fired yet. We reset
3855 				 * the state to SYN_RCVD so that future
3856 				 * state-change probes report correct state
3857 				 * transistions.
3858 				 */
3859 				tcp->tcp_state = TCPS_SYN_RCVD;
3860 				freemsg(mp);
3861 				/* notification did not go up, so drop ref */
3862 				CONN_DEC_REF(connp);
3863 				/* ... and close the eager */
3864 				ASSERT(TCP_IS_DETACHED(tcp));
3865 				(void) tcp_close_detached(tcp);
3866 				return;
3867 			}
3868 			/*
3869 			 * tcp_newconn_notify() changes conn_upcalls and
3870 			 * connp->conn_upper_handle.  Fix things now, in case
3871 			 * there's data attached to this ack.
3872 			 */
3873 			if (connp->conn_upcalls != NULL)
3874 				sockupcalls = connp->conn_upcalls;
3875 			/*
3876 			 * For passive open, trace receipt of final ACK as
3877 			 * tcp:::accept-established.
3878 			 */
3879 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3880 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3881 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3882 		} else {
3883 			/*
3884 			 * 3-way handshake complete - this is a STREAMS based
3885 			 * socket, so pass up the T_CONN_IND.
3886 			 */
3887 			tcp_t	*listener = tcp->tcp_listener;
3888 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3889 
3890 			tcp->tcp_tconnind_started = B_TRUE;
3891 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3892 			ASSERT(mp != NULL);
3893 			/*
3894 			 * We are here means eager is fine but it can
3895 			 * get a TH_RST at any point between now and till
3896 			 * accept completes and disappear. We need to
3897 			 * ensure that reference to eager is valid after
3898 			 * we get out of eager's perimeter. So we do
3899 			 * an extra refhold.
3900 			 */
3901 			CONN_INC_REF(connp);
3902 
3903 			/*
3904 			 * The listener also exists because of the refhold
3905 			 * done in tcp_input_listener. Its possible that it
3906 			 * might have closed. We will check that once we
3907 			 * get inside listeners context.
3908 			 */
3909 			CONN_INC_REF(listener->tcp_connp);
3910 			if (listener->tcp_connp->conn_sqp ==
3911 			    connp->conn_sqp) {
3912 				/*
3913 				 * We optimize by not calling an SQUEUE_ENTER
3914 				 * on the listener since we know that the
3915 				 * listener and eager squeues are the same.
3916 				 * We are able to make this check safely only
3917 				 * because neither the eager nor the listener
3918 				 * can change its squeue. Only an active connect
3919 				 * can change its squeue
3920 				 */
3921 				tcp_send_conn_ind(listener->tcp_connp, mp,
3922 				    listener->tcp_connp->conn_sqp);
3923 				CONN_DEC_REF(listener->tcp_connp);
3924 			} else if (!tcp->tcp_loopback) {
3925 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3926 				    mp, tcp_send_conn_ind,
3927 				    listener->tcp_connp, NULL, SQ_FILL,
3928 				    SQTAG_TCP_CONN_IND);
3929 			} else {
3930 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3931 				    mp, tcp_send_conn_ind,
3932 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3933 				    SQTAG_TCP_CONN_IND);
3934 			}
3935 			/*
3936 			 * For passive open, trace receipt of final ACK as
3937 			 * tcp:::accept-established.
3938 			 */
3939 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3940 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3941 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3942 		}
3943 		TCPS_CONN_INC(tcps);
3944 
3945 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3946 		bytes_acked--;
3947 		/* SYN was acked - making progress */
3948 		tcp->tcp_ip_forward_progress = B_TRUE;
3949 
3950 		/*
3951 		 * If SYN was retransmitted, need to reset all
3952 		 * retransmission info as this segment will be
3953 		 * treated as a dup ACK.
3954 		 */
3955 		if (tcp->tcp_rexmit) {
3956 			tcp->tcp_rexmit = B_FALSE;
3957 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3958 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3959 			tcp->tcp_ms_we_have_waited = 0;
3960 			DTRACE_PROBE3(cwnd__retransmitted__syn,
3961 			    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
3962 			    uint32_t, tcp->tcp_mss);
3963 			tcp->tcp_cwnd = mss;
3964 		}
3965 
3966 		/*
3967 		 * We set the send window to zero here.
3968 		 * This is needed if there is data to be
3969 		 * processed already on the queue.
3970 		 * Later (at swnd_update label), the
3971 		 * "new_swnd > tcp_swnd" condition is satisfied
3972 		 * the XMIT_NEEDED flag is set in the current
3973 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3974 		 * called if there is already data on queue in
3975 		 * this state.
3976 		 */
3977 		tcp->tcp_swnd = 0;
3978 
3979 		if (new_swnd > tcp->tcp_max_swnd)
3980 			tcp->tcp_max_swnd = new_swnd;
3981 		tcp->tcp_swl1 = seg_seq;
3982 		tcp->tcp_swl2 = seg_ack;
3983 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3984 
3985 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
3986 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3987 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3988 		    int32_t, TCPS_SYN_RCVD);
3989 
3990 		/* Fuse when both sides are in ESTABLISHED state */
3991 		if (tcp->tcp_loopback && do_tcp_fusion)
3992 			tcp_fuse(tcp, iphdr, tcpha);
3993 
3994 	}
3995 	/* This code follows 4.4BSD-Lite2 mostly. */
3996 	if (bytes_acked < 0)
3997 		goto est;
3998 
3999 	/*
4000 	 * If TCP is ECN capable and the congestion experience bit is
4001 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
4002 	 * done once per window (or more loosely, per RTT).
4003 	 */
4004 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
4005 		tcp->tcp_cwr = B_FALSE;
4006 	if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) {
4007 		cc_cong_signal(tcp, seg_ack, CC_ECN);
4008 		/*
4009 		 * If the cwnd is 0, use the timer to clock out
4010 		 * new segments.  This is required by the ECN spec.
4011 		 */
4012 		if (tcp->tcp_cwnd == 0)
4013 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4014 		tcp->tcp_cwr = B_TRUE;
4015 		/*
4016 		 * This marks the end of the current window of in
4017 		 * flight data.  That is why we don't use
4018 		 * tcp_suna + tcp_swnd.  Only data in flight can
4019 		 * provide ECN info.
4020 		 */
4021 		tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4022 	}
4023 
4024 	mp1 = tcp->tcp_xmit_head;
4025 	if (bytes_acked == 0) {
4026 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
4027 			int dupack_cnt;
4028 
4029 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
4030 			/*
4031 			 * Fast retransmit.  When we have seen exactly three
4032 			 * identical ACKs while we have unacked data
4033 			 * outstanding we take it as a hint that our peer
4034 			 * dropped something.
4035 			 *
4036 			 * If TCP is retransmitting, don't do fast retransmit.
4037 			 */
4038 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
4039 			    ! tcp->tcp_rexmit) {
4040 				/* Do Limited Transmit */
4041 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
4042 				    tcps->tcps_dupack_fast_retransmit) {
4043 					cc_ack_received(tcp, seg_ack,
4044 					    bytes_acked, CC_DUPACK);
4045 					/*
4046 					 * RFC 3042
4047 					 *
4048 					 * What we need to do is temporarily
4049 					 * increase tcp_cwnd so that new
4050 					 * data can be sent if it is allowed
4051 					 * by the receive window (tcp_rwnd).
4052 					 * tcp_wput_data() will take care of
4053 					 * the rest.
4054 					 *
4055 					 * If the connection is SACK capable,
4056 					 * only do limited xmit when there
4057 					 * is SACK info.
4058 					 *
4059 					 * Note how tcp_cwnd is incremented.
4060 					 * The first dup ACK will increase
4061 					 * it by 1 MSS.  The second dup ACK
4062 					 * will increase it by 2 MSS.  This
4063 					 * means that only 1 new segment will
4064 					 * be sent for each dup ACK.
4065 					 */
4066 					if (tcp->tcp_unsent > 0 &&
4067 					    (!tcp->tcp_snd_sack_ok ||
4068 					    (tcp->tcp_snd_sack_ok &&
4069 					    tcp->tcp_notsack_list != NULL))) {
4070 						tcp->tcp_cwnd += mss <<
4071 						    (tcp->tcp_dupack_cnt - 1);
4072 						flags |= TH_LIMIT_XMIT;
4073 					}
4074 				} else if (dupack_cnt ==
4075 				    tcps->tcps_dupack_fast_retransmit) {
4076 
4077 				/*
4078 				 * If we have reduced tcp_ssthresh
4079 				 * because of ECN, do not reduce it again
4080 				 * unless it is already one window of data
4081 				 * away.  After one window of data, tcp_cwr
4082 				 * should then be cleared.  Note that
4083 				 * for non ECN capable connection, tcp_cwr
4084 				 * should always be false.
4085 				 *
4086 				 * Adjust cwnd since the duplicate
4087 				 * ack indicates that a packet was
4088 				 * dropped (due to congestion.)
4089 				 */
4090 				if (!tcp->tcp_cwr) {
4091 					cc_cong_signal(tcp, seg_ack,
4092 					    CC_NDUPACK);
4093 					cc_ack_received(tcp, seg_ack,
4094 					    bytes_acked, CC_DUPACK);
4095 				}
4096 				if (tcp->tcp_ecn_ok) {
4097 					tcp->tcp_cwr = B_TRUE;
4098 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4099 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4100 				}
4101 
4102 				/*
4103 				 * We do Hoe's algorithm.  Refer to her
4104 				 * paper "Improving the Start-up Behavior
4105 				 * of a Congestion Control Scheme for TCP,"
4106 				 * appeared in SIGCOMM'96.
4107 				 *
4108 				 * Save highest seq no we have sent so far.
4109 				 * Be careful about the invisible FIN byte.
4110 				 */
4111 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4112 				    (tcp->tcp_unsent == 0)) {
4113 					tcp->tcp_rexmit_max = tcp->tcp_fss;
4114 				} else {
4115 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4116 				}
4117 
4118 				/*
4119 				 * For SACK:
4120 				 * Calculate tcp_pipe, which is the
4121 				 * estimated number of bytes in
4122 				 * network.
4123 				 *
4124 				 * tcp_fack is the highest sack'ed seq num
4125 				 * TCP has received.
4126 				 *
4127 				 * tcp_pipe is explained in the above quoted
4128 				 * Fall and Floyd's paper.  tcp_fack is
4129 				 * explained in Mathis and Mahdavi's
4130 				 * "Forward Acknowledgment: Refining TCP
4131 				 * Congestion Control" in SIGCOMM '96.
4132 				 */
4133 				if (tcp->tcp_snd_sack_ok) {
4134 					if (tcp->tcp_notsack_list != NULL) {
4135 						tcp->tcp_pipe = tcp->tcp_snxt -
4136 						    tcp->tcp_fack;
4137 						tcp->tcp_sack_snxt = seg_ack;
4138 						flags |= TH_NEED_SACK_REXMIT;
4139 					} else {
4140 						/*
4141 						 * Always initialize tcp_pipe
4142 						 * even though we don't have
4143 						 * any SACK info.  If later
4144 						 * we get SACK info and
4145 						 * tcp_pipe is not initialized,
4146 						 * funny things will happen.
4147 						 */
4148 						tcp->tcp_pipe =
4149 						    tcp->tcp_cwnd_ssthresh;
4150 					}
4151 				} else {
4152 					flags |= TH_REXMIT_NEEDED;
4153 				} /* tcp_snd_sack_ok */
4154 
4155 				} else {
4156 					cc_ack_received(tcp, seg_ack,
4157 					    bytes_acked, CC_DUPACK);
4158 					/*
4159 					 * Here we perform congestion
4160 					 * avoidance, but NOT slow start.
4161 					 * This is known as the Fast
4162 					 * Recovery Algorithm.
4163 					 */
4164 					if (tcp->tcp_snd_sack_ok &&
4165 					    tcp->tcp_notsack_list != NULL) {
4166 						flags |= TH_NEED_SACK_REXMIT;
4167 						tcp->tcp_pipe -= mss;
4168 						if (tcp->tcp_pipe < 0)
4169 							tcp->tcp_pipe = 0;
4170 					} else {
4171 					/*
4172 					 * We know that one more packet has
4173 					 * left the pipe thus we can update
4174 					 * cwnd.
4175 					 */
4176 					cwnd = tcp->tcp_cwnd + mss;
4177 					if (cwnd > tcp->tcp_cwnd_max)
4178 						cwnd = tcp->tcp_cwnd_max;
4179 					DTRACE_PROBE3(cwnd__fast__recovery,
4180 					    tcp_t *, tcp,
4181 					    uint32_t, tcp->tcp_cwnd,
4182 					    uint32_t, cwnd);
4183 					tcp->tcp_cwnd = cwnd;
4184 					if (tcp->tcp_unsent > 0)
4185 						flags |= TH_XMIT_NEEDED;
4186 					}
4187 				}
4188 			}
4189 		} else if (tcp->tcp_zero_win_probe) {
4190 			/*
4191 			 * If the window has opened, need to arrange
4192 			 * to send additional data.
4193 			 */
4194 			if (new_swnd != 0) {
4195 				/* tcp_suna != tcp_snxt */
4196 				/* Packet contains a window update */
4197 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4198 				tcp->tcp_zero_win_probe = 0;
4199 				tcp->tcp_timer_backoff = 0;
4200 				tcp->tcp_ms_we_have_waited = 0;
4201 
4202 				/*
4203 				 * Transmit starting with tcp_suna since
4204 				 * the one byte probe is not ack'ed.
4205 				 * If TCP has sent more than one identical
4206 				 * probe, tcp_rexmit will be set.  That means
4207 				 * tcp_ss_rexmit() will send out the one
4208 				 * byte along with new data.  Otherwise,
4209 				 * fake the retransmission.
4210 				 */
4211 				flags |= TH_XMIT_NEEDED;
4212 				if (!tcp->tcp_rexmit) {
4213 					tcp->tcp_rexmit = B_TRUE;
4214 					tcp->tcp_dupack_cnt = 0;
4215 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4216 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4217 				}
4218 			}
4219 		}
4220 		goto swnd_update;
4221 	}
4222 
4223 	/*
4224 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4225 	 * If the ACK value acks something that we have not yet sent, it might
4226 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4227 	 * other side.
4228 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4229 	 * state is handled above, so we can always just drop the segment and
4230 	 * send an ACK here.
4231 	 *
4232 	 * In the case where the peer shrinks the window, we see the new window
4233 	 * update, but all the data sent previously is queued up by the peer.
4234 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4235 	 * number, which was already sent, and within window, is recorded.
4236 	 * tcp_snxt is then updated.
4237 	 *
4238 	 * If the window has previously shrunk, and an ACK for data not yet
4239 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4240 	 * the ACK is for data within the window at the time the window was
4241 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4242 	 * the sequence number ACK'ed.
4243 	 *
4244 	 * If the ACK covers all the data sent at the time the window was
4245 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4246 	 *
4247 	 * Should we send ACKs in response to ACK only segments?
4248 	 */
4249 
4250 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4251 		if ((tcp->tcp_is_wnd_shrnk) &&
4252 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4253 			uint32_t data_acked_ahead_snxt;
4254 
4255 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4256 			tcp_update_xmit_tail(tcp, seg_ack);
4257 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4258 		} else {
4259 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4260 			/* drop the received segment */
4261 			freemsg(mp);
4262 
4263 			/*
4264 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4265 			 * greater than 0, check if the number of such
4266 			 * bogus ACks is greater than that count.  If yes,
4267 			 * don't send back any ACK.  This prevents TCP from
4268 			 * getting into an ACK storm if somehow an attacker
4269 			 * successfully spoofs an acceptable segment to our
4270 			 * peer.  If this continues (count > 2 X threshold),
4271 			 * we should abort this connection.
4272 			 */
4273 			if (tcp_drop_ack_unsent_cnt > 0 &&
4274 			    ++tcp->tcp_in_ack_unsent >
4275 			    tcp_drop_ack_unsent_cnt) {
4276 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4277 				if (tcp->tcp_in_ack_unsent > 2 *
4278 				    tcp_drop_ack_unsent_cnt) {
4279 					(void) tcp_clean_death(tcp, EPROTO);
4280 				}
4281 				return;
4282 			}
4283 			mp = tcp_ack_mp(tcp);
4284 			if (mp != NULL) {
4285 				TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
4286 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4287 				tcp_send_data(tcp, mp);
4288 			}
4289 			return;
4290 		}
4291 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4292 	    tcp->tcp_snxt_shrunk)) {
4293 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4294 	}
4295 
4296 	/*
4297 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4298 	 * blocks that are covered by this ACK.
4299 	 */
4300 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4301 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4302 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4303 	}
4304 
4305 	/*
4306 	 * If we got an ACK after fast retransmit, check to see
4307 	 * if it is a partial ACK.  If it is not and the congestion
4308 	 * window was inflated to account for the other side's
4309 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4310 	 */
4311 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4312 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4313 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4314 			tcp->tcp_dupack_cnt = 0;
4315 
4316 			cc_post_recovery(tcp, seg_ack);
4317 
4318 			tcp->tcp_rexmit_max = seg_ack;
4319 
4320 			/*
4321 			 * Remove all notsack info to avoid confusion with
4322 			 * the next fast retrasnmit/recovery phase.
4323 			 */
4324 			if (tcp->tcp_snd_sack_ok) {
4325 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4326 				    tcp);
4327 			}
4328 		} else {
4329 			if (tcp->tcp_snd_sack_ok &&
4330 			    tcp->tcp_notsack_list != NULL) {
4331 				flags |= TH_NEED_SACK_REXMIT;
4332 				tcp->tcp_pipe -= mss;
4333 				if (tcp->tcp_pipe < 0)
4334 					tcp->tcp_pipe = 0;
4335 			} else {
4336 				/*
4337 				 * Hoe's algorithm:
4338 				 *
4339 				 * Retransmit the unack'ed segment and
4340 				 * restart fast recovery.  Note that we
4341 				 * need to scale back tcp_cwnd to the
4342 				 * original value when we started fast
4343 				 * recovery.  This is to prevent overly
4344 				 * aggressive behaviour in sending new
4345 				 * segments.
4346 				 */
4347 				cwnd = tcp->tcp_cwnd_ssthresh +
4348 				    tcps->tcps_dupack_fast_retransmit * mss;
4349 				DTRACE_PROBE3(cwnd__fast__retransmit__part__ack,
4350 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4351 				    uint32_t, cwnd);
4352 				tcp->tcp_cwnd = cwnd;
4353 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4354 				flags |= TH_REXMIT_NEEDED;
4355 			}
4356 		}
4357 	} else {
4358 		tcp->tcp_dupack_cnt = 0;
4359 		if (tcp->tcp_rexmit) {
4360 			/*
4361 			 * TCP is retranmitting.  If the ACK ack's all
4362 			 * outstanding data, update tcp_rexmit_max and
4363 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4364 			 * to the correct value.
4365 			 *
4366 			 * Note that SEQ_LEQ() is used.  This is to avoid
4367 			 * unnecessary fast retransmit caused by dup ACKs
4368 			 * received when TCP does slow start retransmission
4369 			 * after a time out.  During this phase, TCP may
4370 			 * send out segments which are already received.
4371 			 * This causes dup ACKs to be sent back.
4372 			 */
4373 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4374 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4375 					tcp->tcp_rexmit_nxt = seg_ack;
4376 				}
4377 				if (seg_ack != tcp->tcp_rexmit_max) {
4378 					flags |= TH_XMIT_NEEDED;
4379 				}
4380 			} else {
4381 				tcp->tcp_rexmit = B_FALSE;
4382 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4383 			}
4384 			tcp->tcp_ms_we_have_waited = 0;
4385 		}
4386 	}
4387 
4388 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4389 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4390 	tcp->tcp_suna = seg_ack;
4391 	if (tcp->tcp_zero_win_probe != 0) {
4392 		tcp->tcp_zero_win_probe = 0;
4393 		tcp->tcp_timer_backoff = 0;
4394 	}
4395 
4396 	/*
4397 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4398 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4399 	 * will not reach here.
4400 	 */
4401 	if (mp1 == NULL) {
4402 		goto fin_acked;
4403 	}
4404 
4405 	/*
4406 	 * Update the congestion window.
4407 	 *
4408 	 * If TCP is not ECN capable or TCP is ECN capable but the
4409 	 * congestion experience bit is not set, increase the tcp_cwnd as
4410 	 * usual.
4411 	 */
4412 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4413 		if (IN_RECOVERY(tcp->tcp_ccv.flags)) {
4414 			EXIT_RECOVERY(tcp->tcp_ccv.flags);
4415 		}
4416 		cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK);
4417 	}
4418 
4419 	/* See if the latest urgent data has been acknowledged */
4420 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4421 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4422 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4423 
4424 	/*
4425 	 * Update the RTT estimates. Note that we don't use the TCP
4426 	 * timestamp option to calculate RTT even if one is present. This is
4427 	 * because the timestamp option's resolution (CPU tick) is
4428 	 * too coarse to measure modern datacenter networks' microsecond
4429 	 * latencies. The timestamp field's resolution is limited by its
4430 	 * 4-byte width (see RFC1323), and since we always store a
4431 	 * high-resolution nanosecond presision timestamp along with the data,
4432 	 * there is no point to ever using the timestamp option.
4433 	 */
4434 	if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4435 		/*
4436 		 * An ACK sequence we haven't seen before, so get the RTT
4437 		 * and update the RTO. But first check if the timestamp is
4438 		 * valid to use.
4439 		 */
4440 		if ((mp1->b_next != NULL) &&
4441 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) {
4442 			tcp_set_rto(tcp, gethrtime() -
4443 			    (hrtime_t)(intptr_t)mp1->b_prev);
4444 		} else {
4445 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4446 		}
4447 
4448 		/* Remeber the last sequence to be ACKed */
4449 		tcp->tcp_csuna = seg_ack;
4450 		if (tcp->tcp_set_timer == 1) {
4451 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4452 			tcp->tcp_set_timer = 0;
4453 		}
4454 	} else {
4455 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4456 	}
4457 
4458 	/* Eat acknowledged bytes off the xmit queue. */
4459 	for (;;) {
4460 		mblk_t	*mp2;
4461 		uchar_t	*wptr;
4462 
4463 		wptr = mp1->b_wptr;
4464 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4465 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4466 		if (bytes_acked < 0) {
4467 			mp1->b_rptr = wptr + bytes_acked;
4468 			/*
4469 			 * Set a new timestamp if all the bytes timed by the
4470 			 * old timestamp have been ack'ed.
4471 			 */
4472 			if (SEQ_GT(seg_ack,
4473 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4474 				mp1->b_prev =
4475 				    (mblk_t *)(intptr_t)gethrtime();
4476 				mp1->b_next = NULL;
4477 			}
4478 			break;
4479 		}
4480 		mp1->b_next = NULL;
4481 		mp1->b_prev = NULL;
4482 		mp2 = mp1;
4483 		mp1 = mp1->b_cont;
4484 
4485 		/*
4486 		 * This notification is required for some zero-copy
4487 		 * clients to maintain a copy semantic. After the data
4488 		 * is ack'ed, client is safe to modify or reuse the buffer.
4489 		 */
4490 		if (tcp->tcp_snd_zcopy_aware &&
4491 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4492 			tcp_zcopy_notify(tcp);
4493 		freeb(mp2);
4494 		if (bytes_acked == 0) {
4495 			if (mp1 == NULL) {
4496 				/* Everything is ack'ed, clear the tail. */
4497 				tcp->tcp_xmit_tail = NULL;
4498 				/*
4499 				 * Cancel the timer unless we are still
4500 				 * waiting for an ACK for the FIN packet.
4501 				 */
4502 				if (tcp->tcp_timer_tid != 0 &&
4503 				    tcp->tcp_snxt == tcp->tcp_suna) {
4504 					(void) TCP_TIMER_CANCEL(tcp,
4505 					    tcp->tcp_timer_tid);
4506 					tcp->tcp_timer_tid = 0;
4507 				}
4508 				goto pre_swnd_update;
4509 			}
4510 			if (mp2 != tcp->tcp_xmit_tail)
4511 				break;
4512 			tcp->tcp_xmit_tail = mp1;
4513 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4514 			    (uintptr_t)INT_MAX);
4515 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4516 			    mp1->b_rptr);
4517 			break;
4518 		}
4519 		if (mp1 == NULL) {
4520 			/*
4521 			 * More was acked but there is nothing more
4522 			 * outstanding.  This means that the FIN was
4523 			 * just acked or that we're talking to a clown.
4524 			 */
4525 fin_acked:
4526 			ASSERT(tcp->tcp_fin_sent);
4527 			tcp->tcp_xmit_tail = NULL;
4528 			if (tcp->tcp_fin_sent) {
4529 				/* FIN was acked - making progress */
4530 				if (!tcp->tcp_fin_acked)
4531 					tcp->tcp_ip_forward_progress = B_TRUE;
4532 				tcp->tcp_fin_acked = B_TRUE;
4533 				if (tcp->tcp_linger_tid != 0 &&
4534 				    TCP_TIMER_CANCEL(tcp,
4535 				    tcp->tcp_linger_tid) >= 0) {
4536 					tcp_stop_lingering(tcp);
4537 					freemsg(mp);
4538 					mp = NULL;
4539 				}
4540 			} else {
4541 				/*
4542 				 * We should never get here because
4543 				 * we have already checked that the
4544 				 * number of bytes ack'ed should be
4545 				 * smaller than or equal to what we
4546 				 * have sent so far (it is the
4547 				 * acceptability check of the ACK).
4548 				 * We can only get here if the send
4549 				 * queue is corrupted.
4550 				 *
4551 				 * Terminate the connection and
4552 				 * panic the system.  It is better
4553 				 * for us to panic instead of
4554 				 * continuing to avoid other disaster.
4555 				 */
4556 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4557 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4558 				panic("Memory corruption "
4559 				    "detected for connection %s.",
4560 				    tcp_display(tcp, NULL,
4561 				    DISP_ADDR_AND_PORT));
4562 				/*NOTREACHED*/
4563 			}
4564 			goto pre_swnd_update;
4565 		}
4566 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4567 	}
4568 	if (tcp->tcp_unsent) {
4569 		flags |= TH_XMIT_NEEDED;
4570 	}
4571 pre_swnd_update:
4572 	tcp->tcp_xmit_head = mp1;
4573 swnd_update:
4574 	/*
4575 	 * The following check is different from most other implementations.
4576 	 * For bi-directional transfer, when segments are dropped, the
4577 	 * "normal" check will not accept a window update in those
4578 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4579 	 * segments which are outside receiver's window.  As TCP accepts
4580 	 * the ack in those retransmitted segments, if the window update in
4581 	 * the same segment is not accepted, TCP will incorrectly calculates
4582 	 * that it can send more segments.  This can create a deadlock
4583 	 * with the receiver if its window becomes zero.
4584 	 */
4585 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4586 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4587 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4588 		/*
4589 		 * The criteria for update is:
4590 		 *
4591 		 * 1. the segment acknowledges some data.  Or
4592 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4593 		 * 3. the segment is not old and the advertised window is
4594 		 * larger than the previous advertised window.
4595 		 */
4596 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4597 			flags |= TH_XMIT_NEEDED;
4598 		tcp->tcp_swnd = new_swnd;
4599 		if (new_swnd > tcp->tcp_max_swnd)
4600 			tcp->tcp_max_swnd = new_swnd;
4601 		tcp->tcp_swl1 = seg_seq;
4602 		tcp->tcp_swl2 = seg_ack;
4603 	}
4604 est:
4605 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4606 
4607 		switch (tcp->tcp_state) {
4608 		case TCPS_FIN_WAIT_1:
4609 			if (tcp->tcp_fin_acked) {
4610 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4611 				DTRACE_TCP6(state__change, void, NULL,
4612 				    ip_xmit_attr_t *, connp->conn_ixa,
4613 				    void, NULL, tcp_t *, tcp, void, NULL,
4614 				    int32_t, TCPS_FIN_WAIT_1);
4615 				/*
4616 				 * We implement the non-standard BSD/SunOS
4617 				 * FIN_WAIT_2 flushing algorithm.
4618 				 * If there is no user attached to this
4619 				 * TCP endpoint, then this TCP struct
4620 				 * could hang around forever in FIN_WAIT_2
4621 				 * state if the peer forgets to send us
4622 				 * a FIN.  To prevent this, we wait only
4623 				 * 2*MSL (a convenient time value) for
4624 				 * the FIN to arrive.  If it doesn't show up,
4625 				 * we flush the TCP endpoint.  This algorithm,
4626 				 * though a violation of RFC-793, has worked
4627 				 * for over 10 years in BSD systems.
4628 				 * Note: SunOS 4.x waits 675 seconds before
4629 				 * flushing the FIN_WAIT_2 connection.
4630 				 */
4631 				TCP_TIMER_RESTART(tcp,
4632 				    tcp->tcp_fin_wait_2_flush_interval);
4633 			}
4634 			break;
4635 		case TCPS_FIN_WAIT_2:
4636 			break;	/* Shutdown hook? */
4637 		case TCPS_LAST_ACK:
4638 			freemsg(mp);
4639 			if (tcp->tcp_fin_acked) {
4640 				(void) tcp_clean_death(tcp, 0);
4641 				return;
4642 			}
4643 			goto xmit_check;
4644 		case TCPS_CLOSING:
4645 			if (tcp->tcp_fin_acked) {
4646 				SET_TIME_WAIT(tcps, tcp, connp);
4647 				DTRACE_TCP6(state__change, void, NULL,
4648 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4649 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4650 				    TCPS_CLOSING);
4651 			}
4652 			/*FALLTHRU*/
4653 		case TCPS_CLOSE_WAIT:
4654 			freemsg(mp);
4655 			goto xmit_check;
4656 		default:
4657 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4658 			break;
4659 		}
4660 	}
4661 	if (flags & TH_FIN) {
4662 		/* Make sure we ack the fin */
4663 		flags |= TH_ACK_NEEDED;
4664 		if (!tcp->tcp_fin_rcvd) {
4665 			tcp->tcp_fin_rcvd = B_TRUE;
4666 			tcp->tcp_rnxt++;
4667 			tcpha = tcp->tcp_tcpha;
4668 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4669 
4670 			/*
4671 			 * Generate the ordrel_ind at the end unless the
4672 			 * conn is detached or it is a STREAMS based eager.
4673 			 * In the eager case we defer the notification until
4674 			 * tcp_accept_finish has run.
4675 			 */
4676 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4677 			    (tcp->tcp_listener == NULL &&
4678 			    !tcp->tcp_hard_binding)))
4679 				flags |= TH_ORDREL_NEEDED;
4680 			switch (tcp->tcp_state) {
4681 			case TCPS_SYN_RCVD:
4682 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4683 				DTRACE_TCP6(state__change, void, NULL,
4684 				    ip_xmit_attr_t *, connp->conn_ixa,
4685 				    void, NULL, tcp_t *, tcp, void, NULL,
4686 				    int32_t, TCPS_SYN_RCVD);
4687 				/* Keepalive? */
4688 				break;
4689 			case TCPS_ESTABLISHED:
4690 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4691 				DTRACE_TCP6(state__change, void, NULL,
4692 				    ip_xmit_attr_t *, connp->conn_ixa,
4693 				    void, NULL, tcp_t *, tcp, void, NULL,
4694 				    int32_t, TCPS_ESTABLISHED);
4695 				/* Keepalive? */
4696 				break;
4697 			case TCPS_FIN_WAIT_1:
4698 				if (!tcp->tcp_fin_acked) {
4699 					tcp->tcp_state = TCPS_CLOSING;
4700 					DTRACE_TCP6(state__change, void, NULL,
4701 					    ip_xmit_attr_t *, connp->conn_ixa,
4702 					    void, NULL, tcp_t *, tcp, void,
4703 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4704 					break;
4705 				}
4706 				/* FALLTHRU */
4707 			case TCPS_FIN_WAIT_2:
4708 				SET_TIME_WAIT(tcps, tcp, connp);
4709 				DTRACE_TCP6(state__change, void, NULL,
4710 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4711 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4712 				    TCPS_FIN_WAIT_2);
4713 				if (seg_len) {
4714 					/*
4715 					 * implies data piggybacked on FIN.
4716 					 * break to handle data.
4717 					 */
4718 					break;
4719 				}
4720 				freemsg(mp);
4721 				goto ack_check;
4722 			}
4723 		}
4724 	}
4725 	if (mp == NULL)
4726 		goto xmit_check;
4727 	if (seg_len == 0) {
4728 		freemsg(mp);
4729 		goto xmit_check;
4730 	}
4731 	if (mp->b_rptr == mp->b_wptr) {
4732 		/*
4733 		 * The header has been consumed, so we remove the
4734 		 * zero-length mblk here.
4735 		 */
4736 		mp1 = mp;
4737 		mp = mp->b_cont;
4738 		freeb(mp1);
4739 	}
4740 update_ack:
4741 	tcpha = tcp->tcp_tcpha;
4742 	tcp->tcp_rack_cnt++;
4743 	{
4744 		uint32_t cur_max;
4745 
4746 		cur_max = tcp->tcp_rack_cur_max;
4747 		if (tcp->tcp_rack_cnt >= cur_max) {
4748 			/*
4749 			 * We have more unacked data than we should - send
4750 			 * an ACK now.
4751 			 */
4752 			flags |= TH_ACK_NEEDED;
4753 			cur_max++;
4754 			if (cur_max > tcp->tcp_rack_abs_max)
4755 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4756 			else
4757 				tcp->tcp_rack_cur_max = cur_max;
4758 		} else if (tcp->tcp_quickack) {
4759 			/* The executable asked that we ack each packet */
4760 			flags |= TH_ACK_NEEDED;
4761 		} else if (TCP_IS_DETACHED(tcp)) {
4762 			/* We don't have an ACK timer for detached TCP. */
4763 			flags |= TH_ACK_NEEDED;
4764 		} else if (seg_len < mss) {
4765 			/*
4766 			 * If we get a segment that is less than an mss, and we
4767 			 * already have unacknowledged data, and the amount
4768 			 * unacknowledged is not a multiple of mss, then we
4769 			 * better generate an ACK now.  Otherwise, this may be
4770 			 * the tail piece of a transaction, and we would rather
4771 			 * wait for the response.
4772 			 */
4773 			uint32_t udif;
4774 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4775 			    (uintptr_t)INT_MAX);
4776 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4777 			if (udif && (udif % mss))
4778 				flags |= TH_ACK_NEEDED;
4779 			else
4780 				flags |= TH_ACK_TIMER_NEEDED;
4781 		} else {
4782 			/* Start delayed ack timer */
4783 			flags |= TH_ACK_TIMER_NEEDED;
4784 		}
4785 	}
4786 	tcp->tcp_rnxt += seg_len;
4787 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4788 
4789 	if (mp == NULL)
4790 		goto xmit_check;
4791 
4792 	/* Update SACK list */
4793 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4794 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4795 		    &(tcp->tcp_num_sack_blk));
4796 	}
4797 
4798 	if (tcp->tcp_urp_mp) {
4799 		tcp->tcp_urp_mp->b_cont = mp;
4800 		mp = tcp->tcp_urp_mp;
4801 		tcp->tcp_urp_mp = NULL;
4802 		/* Ready for a new signal. */
4803 		tcp->tcp_urp_last_valid = B_FALSE;
4804 #ifdef DEBUG
4805 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4806 		    "tcp_rput: sending exdata_ind %s",
4807 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4808 #endif /* DEBUG */
4809 	}
4810 
4811 	/*
4812 	 * Check for ancillary data changes compared to last segment.
4813 	 */
4814 	if (connp->conn_recv_ancillary.crb_all != 0) {
4815 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4816 		if (mp == NULL)
4817 			return;
4818 	}
4819 
4820 	if (IPCL_IS_NONSTR(connp)) {
4821 		/*
4822 		 * Non-STREAMS socket
4823 		 */
4824 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4825 		int error;
4826 
4827 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4828 		    mp, seg_len, 0, &error, &push) <= 0) {
4829 			/*
4830 			 * We should never be in middle of a
4831 			 * fallback, the squeue guarantees that.
4832 			 */
4833 			ASSERT(error != EOPNOTSUPP);
4834 			if (error == ENOSPC)
4835 				tcp->tcp_rwnd -= seg_len;
4836 		} else if (push) {
4837 			/* PUSH bit set and sockfs is not flow controlled */
4838 			flags |= tcp_rwnd_reopen(tcp);
4839 		}
4840 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4841 		/*
4842 		 * Side queue inbound data until the accept happens.
4843 		 * tcp_accept/tcp_rput drains this when the accept happens.
4844 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4845 		 * T_EXDATA_IND) it is queued on b_next.
4846 		 * XXX Make urgent data use this. Requires:
4847 		 *	Removing tcp_listener check for TH_URG
4848 		 *	Making M_PCPROTO and MARK messages skip the eager case
4849 		 */
4850 
4851 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4852 	} else {
4853 		/* Active STREAMS socket */
4854 		if (mp->b_datap->db_type != M_DATA ||
4855 		    (flags & TH_MARKNEXT_NEEDED)) {
4856 			if (tcp->tcp_rcv_list != NULL) {
4857 				flags |= tcp_rcv_drain(tcp);
4858 			}
4859 			ASSERT(tcp->tcp_rcv_list == NULL ||
4860 			    tcp->tcp_fused_sigurg);
4861 
4862 			if (flags & TH_MARKNEXT_NEEDED) {
4863 #ifdef DEBUG
4864 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4865 				    "tcp_rput: sending MSGMARKNEXT %s",
4866 				    tcp_display(tcp, NULL,
4867 				    DISP_PORT_ONLY));
4868 #endif /* DEBUG */
4869 				mp->b_flag |= MSGMARKNEXT;
4870 				flags &= ~TH_MARKNEXT_NEEDED;
4871 			}
4872 
4873 			if (is_system_labeled())
4874 				tcp_setcred_data(mp, ira);
4875 
4876 			putnext(connp->conn_rq, mp);
4877 			if (!canputnext(connp->conn_rq))
4878 				tcp->tcp_rwnd -= seg_len;
4879 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4880 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4881 			if (tcp->tcp_rcv_list != NULL) {
4882 				/*
4883 				 * Enqueue the new segment first and then
4884 				 * call tcp_rcv_drain() to send all data
4885 				 * up.  The other way to do this is to
4886 				 * send all queued data up and then call
4887 				 * putnext() to send the new segment up.
4888 				 * This way can remove the else part later
4889 				 * on.
4890 				 *
4891 				 * We don't do this to avoid one more call to
4892 				 * canputnext() as tcp_rcv_drain() needs to
4893 				 * call canputnext().
4894 				 */
4895 				tcp_rcv_enqueue(tcp, mp, seg_len,
4896 				    ira->ira_cred);
4897 				flags |= tcp_rcv_drain(tcp);
4898 			} else {
4899 				if (is_system_labeled())
4900 					tcp_setcred_data(mp, ira);
4901 
4902 				putnext(connp->conn_rq, mp);
4903 				if (!canputnext(connp->conn_rq))
4904 					tcp->tcp_rwnd -= seg_len;
4905 			}
4906 		} else {
4907 			/*
4908 			 * Enqueue all packets when processing an mblk
4909 			 * from the co queue and also enqueue normal packets.
4910 			 */
4911 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4912 		}
4913 		/*
4914 		 * Make sure the timer is running if we have data waiting
4915 		 * for a push bit. This provides resiliency against
4916 		 * implementations that do not correctly generate push bits.
4917 		 */
4918 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4919 			/*
4920 			 * The connection may be closed at this point, so don't
4921 			 * do anything for a detached tcp.
4922 			 */
4923 			if (!TCP_IS_DETACHED(tcp))
4924 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4925 				    tcp_push_timer,
4926 				    tcps->tcps_push_timer_interval);
4927 		}
4928 	}
4929 
4930 xmit_check:
4931 	/* Is there anything left to do? */
4932 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4933 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4934 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4935 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4936 		goto done;
4937 
4938 	/* Any transmit work to do and a non-zero window? */
4939 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4940 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4941 		if (flags & TH_REXMIT_NEEDED) {
4942 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4943 
4944 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4945 			if (snd_size > mss)
4946 				snd_size = mss;
4947 			if (snd_size > tcp->tcp_swnd)
4948 				snd_size = tcp->tcp_swnd;
4949 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4950 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4951 			    B_TRUE);
4952 
4953 			if (mp1 != NULL) {
4954 				tcp->tcp_xmit_head->b_prev =
4955 				    (mblk_t *)(intptr_t)gethrtime();
4956 				tcp->tcp_csuna = tcp->tcp_snxt;
4957 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4958 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4959 				    snd_size);
4960 				tcp->tcp_cs.tcp_out_retrans_segs++;
4961 				tcp->tcp_cs.tcp_out_retrans_bytes += snd_size;
4962 				tcp_send_data(tcp, mp1);
4963 			}
4964 		}
4965 		if (flags & TH_NEED_SACK_REXMIT) {
4966 			tcp_sack_rexmit(tcp, &flags);
4967 		}
4968 		/*
4969 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4970 		 * out new segment.  Note that tcp_rexmit should not be
4971 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4972 		 */
4973 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4974 			if (!tcp->tcp_rexmit) {
4975 				tcp_wput_data(tcp, NULL, B_FALSE);
4976 			} else {
4977 				tcp_ss_rexmit(tcp);
4978 			}
4979 		}
4980 		/*
4981 		 * Adjust tcp_cwnd back to normal value after sending
4982 		 * new data segments.
4983 		 */
4984 		if (flags & TH_LIMIT_XMIT) {
4985 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4986 			/*
4987 			 * This will restart the timer.  Restarting the
4988 			 * timer is used to avoid a timeout before the
4989 			 * limited transmitted segment's ACK gets back.
4990 			 */
4991 			if (tcp->tcp_xmit_head != NULL) {
4992 				tcp->tcp_xmit_head->b_prev =
4993 				    (mblk_t *)(intptr_t)gethrtime();
4994 			}
4995 		}
4996 
4997 		/* Anything more to do? */
4998 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4999 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
5000 			goto done;
5001 	}
5002 ack_check:
5003 	if (flags & TH_SEND_URP_MARK) {
5004 		ASSERT(tcp->tcp_urp_mark_mp);
5005 		ASSERT(!IPCL_IS_NONSTR(connp));
5006 		/*
5007 		 * Send up any queued data and then send the mark message
5008 		 */
5009 		if (tcp->tcp_rcv_list != NULL) {
5010 			flags |= tcp_rcv_drain(tcp);
5011 
5012 		}
5013 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5014 		mp1 = tcp->tcp_urp_mark_mp;
5015 		tcp->tcp_urp_mark_mp = NULL;
5016 		if (is_system_labeled())
5017 			tcp_setcred_data(mp1, ira);
5018 
5019 		putnext(connp->conn_rq, mp1);
5020 #ifdef DEBUG
5021 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
5022 		    "tcp_rput: sending zero-length %s %s",
5023 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
5024 		    "MSGNOTMARKNEXT"),
5025 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5026 #endif /* DEBUG */
5027 		flags &= ~TH_SEND_URP_MARK;
5028 	}
5029 	if (flags & TH_ACK_NEEDED) {
5030 		/*
5031 		 * Time to send an ack for some reason.
5032 		 */
5033 		mp1 = tcp_ack_mp(tcp);
5034 
5035 		if (mp1 != NULL) {
5036 			tcp_send_data(tcp, mp1);
5037 			TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
5038 			TCPS_BUMP_MIB(tcps, tcpOutAck);
5039 		}
5040 		if (tcp->tcp_ack_tid != 0) {
5041 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
5042 			tcp->tcp_ack_tid = 0;
5043 		}
5044 	}
5045 	if (flags & TH_ACK_TIMER_NEEDED) {
5046 		/*
5047 		 * Arrange for deferred ACK or push wait timeout.
5048 		 * Start timer if it is not already running.
5049 		 */
5050 		if (tcp->tcp_ack_tid == 0) {
5051 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
5052 			    tcp->tcp_localnet ?
5053 			    tcps->tcps_local_dack_interval :
5054 			    tcps->tcps_deferred_ack_interval);
5055 		}
5056 	}
5057 	if (flags & TH_ORDREL_NEEDED) {
5058 		/*
5059 		 * Notify upper layer about an orderly release. If this is
5060 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
5061 		 * we send up an ordrel_ind, unless this is an eager, in which
5062 		 * case the ordrel will be sent when tcp_accept_finish runs.
5063 		 * Note that for non-STREAMS we make an upcall even if it is an
5064 		 * eager, because we have an upper handle to send it to.
5065 		 */
5066 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
5067 		ASSERT(!tcp->tcp_detached);
5068 
5069 		if (IPCL_IS_NONSTR(connp)) {
5070 			ASSERT(tcp->tcp_ordrel_mp == NULL);
5071 			tcp->tcp_ordrel_done = B_TRUE;
5072 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
5073 			    SOCK_OPCTL_SHUT_RECV, 0);
5074 			goto done;
5075 		}
5076 
5077 		if (tcp->tcp_rcv_list != NULL) {
5078 			/*
5079 			 * Push any mblk(s) enqueued from co processing.
5080 			 */
5081 			flags |= tcp_rcv_drain(tcp);
5082 		}
5083 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5084 
5085 		mp1 = tcp->tcp_ordrel_mp;
5086 		tcp->tcp_ordrel_mp = NULL;
5087 		tcp->tcp_ordrel_done = B_TRUE;
5088 		putnext(connp->conn_rq, mp1);
5089 	}
5090 done:
5091 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5092 }
5093 
5094 /*
5095  * Attach ancillary data to a received TCP segments for the
5096  * ancillary pieces requested by the application that are
5097  * different than they were in the previous data segment.
5098  *
5099  * Save the "current" values once memory allocation is ok so that
5100  * when memory allocation fails we can just wait for the next data segment.
5101  */
5102 static mblk_t *
5103 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5104     ip_recv_attr_t *ira)
5105 {
5106 	struct T_optdata_ind *todi;
5107 	int optlen;
5108 	uchar_t *optptr;
5109 	struct T_opthdr *toh;
5110 	crb_t addflag;	/* Which pieces to add */
5111 	mblk_t *mp1;
5112 	conn_t	*connp = tcp->tcp_connp;
5113 
5114 	optlen = 0;
5115 	addflag.crb_all = 0;
5116 
5117 	/* If app asked for TOS and it has changed ... */
5118 	if (connp->conn_recv_ancillary.crb_recvtos &&
5119 	    ipp->ipp_type_of_service != tcp->tcp_recvtos &&
5120 	    (ira->ira_flags & IRAF_IS_IPV4)) {
5121 		optlen += sizeof (struct T_opthdr) +
5122 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5123 		addflag.crb_recvtos = 1;
5124 	}
5125 	/* If app asked for pktinfo and the index has changed ... */
5126 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5127 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5128 		optlen += sizeof (struct T_opthdr) +
5129 		    sizeof (struct in6_pktinfo);
5130 		addflag.crb_ip_recvpktinfo = 1;
5131 	}
5132 	/* If app asked for hoplimit and it has changed ... */
5133 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5134 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5135 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5136 		addflag.crb_ipv6_recvhoplimit = 1;
5137 	}
5138 	/* If app asked for tclass and it has changed ... */
5139 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5140 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5141 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5142 		addflag.crb_ipv6_recvtclass = 1;
5143 	}
5144 
5145 	/*
5146 	 * If app asked for hop-by-hop headers and it has changed ...
5147 	 * For security labels, note that (1) security labels can't change on
5148 	 * a connected socket at all, (2) we're connected to at most one peer,
5149 	 * (3) if anything changes, then it must be some other extra option.
5150 	 */
5151 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5152 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5153 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5154 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5155 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5156 		addflag.crb_ipv6_recvhopopts = 1;
5157 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5158 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5159 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5160 			return (mp);
5161 	}
5162 	/* If app asked for dst headers before routing headers ... */
5163 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5164 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5165 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5166 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5167 		optlen += sizeof (struct T_opthdr) +
5168 		    ipp->ipp_rthdrdstoptslen;
5169 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5170 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5171 		    &tcp->tcp_rthdrdstoptslen,
5172 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5173 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5174 			return (mp);
5175 	}
5176 	/* If app asked for routing headers and it has changed ... */
5177 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5178 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5179 	    (ipp->ipp_fields & IPPF_RTHDR),
5180 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5181 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5182 		addflag.crb_ipv6_recvrthdr = 1;
5183 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5184 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5185 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5186 			return (mp);
5187 	}
5188 	/* If app asked for dest headers and it has changed ... */
5189 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5190 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5191 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5192 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5193 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5194 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5195 		addflag.crb_ipv6_recvdstopts = 1;
5196 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5197 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5198 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5199 			return (mp);
5200 	}
5201 
5202 	if (optlen == 0) {
5203 		/* Nothing to add */
5204 		return (mp);
5205 	}
5206 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5207 	if (mp1 == NULL) {
5208 		/*
5209 		 * Defer sending ancillary data until the next TCP segment
5210 		 * arrives.
5211 		 */
5212 		return (mp);
5213 	}
5214 	mp1->b_cont = mp;
5215 	mp = mp1;
5216 	mp->b_wptr += sizeof (*todi) + optlen;
5217 	mp->b_datap->db_type = M_PROTO;
5218 	todi = (struct T_optdata_ind *)mp->b_rptr;
5219 	todi->PRIM_type = T_OPTDATA_IND;
5220 	todi->DATA_flag = 1;	/* MORE data */
5221 	todi->OPT_length = optlen;
5222 	todi->OPT_offset = sizeof (*todi);
5223 	optptr = (uchar_t *)&todi[1];
5224 
5225 	/* If app asked for TOS and it has changed ... */
5226 	if (addflag.crb_recvtos) {
5227 		toh = (struct T_opthdr *)optptr;
5228 		toh->level = IPPROTO_IP;
5229 		toh->name = IP_RECVTOS;
5230 		toh->len = sizeof (*toh) +
5231 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5232 		toh->status = 0;
5233 		optptr += sizeof (*toh);
5234 		*(uint8_t *)optptr = ipp->ipp_type_of_service;
5235 		optptr = (uchar_t *)toh + toh->len;
5236 		ASSERT(__TPI_TOPT_ISALIGNED(optptr));
5237 		/* Save as "last" value */
5238 		tcp->tcp_recvtos = ipp->ipp_type_of_service;
5239 	}
5240 
5241 	/*
5242 	 * If app asked for pktinfo and the index has changed ...
5243 	 * Note that the local address never changes for the connection.
5244 	 */
5245 	if (addflag.crb_ip_recvpktinfo) {
5246 		struct in6_pktinfo *pkti;
5247 		uint_t ifindex;
5248 
5249 		ifindex = ira->ira_ruifindex;
5250 		toh = (struct T_opthdr *)optptr;
5251 		toh->level = IPPROTO_IPV6;
5252 		toh->name = IPV6_PKTINFO;
5253 		toh->len = sizeof (*toh) + sizeof (*pkti);
5254 		toh->status = 0;
5255 		optptr += sizeof (*toh);
5256 		pkti = (struct in6_pktinfo *)optptr;
5257 		pkti->ipi6_addr = connp->conn_laddr_v6;
5258 		pkti->ipi6_ifindex = ifindex;
5259 		optptr += sizeof (*pkti);
5260 		ASSERT(OK_32PTR(optptr));
5261 		/* Save as "last" value */
5262 		tcp->tcp_recvifindex = ifindex;
5263 	}
5264 	/* If app asked for hoplimit and it has changed ... */
5265 	if (addflag.crb_ipv6_recvhoplimit) {
5266 		toh = (struct T_opthdr *)optptr;
5267 		toh->level = IPPROTO_IPV6;
5268 		toh->name = IPV6_HOPLIMIT;
5269 		toh->len = sizeof (*toh) + sizeof (uint_t);
5270 		toh->status = 0;
5271 		optptr += sizeof (*toh);
5272 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5273 		optptr += sizeof (uint_t);
5274 		ASSERT(OK_32PTR(optptr));
5275 		/* Save as "last" value */
5276 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5277 	}
5278 	/* If app asked for tclass and it has changed ... */
5279 	if (addflag.crb_ipv6_recvtclass) {
5280 		toh = (struct T_opthdr *)optptr;
5281 		toh->level = IPPROTO_IPV6;
5282 		toh->name = IPV6_TCLASS;
5283 		toh->len = sizeof (*toh) + sizeof (uint_t);
5284 		toh->status = 0;
5285 		optptr += sizeof (*toh);
5286 		*(uint_t *)optptr = ipp->ipp_tclass;
5287 		optptr += sizeof (uint_t);
5288 		ASSERT(OK_32PTR(optptr));
5289 		/* Save as "last" value */
5290 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5291 	}
5292 	if (addflag.crb_ipv6_recvhopopts) {
5293 		toh = (struct T_opthdr *)optptr;
5294 		toh->level = IPPROTO_IPV6;
5295 		toh->name = IPV6_HOPOPTS;
5296 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5297 		toh->status = 0;
5298 		optptr += sizeof (*toh);
5299 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5300 		optptr += ipp->ipp_hopoptslen;
5301 		ASSERT(OK_32PTR(optptr));
5302 		/* Save as last value */
5303 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5304 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5305 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5306 	}
5307 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5308 		toh = (struct T_opthdr *)optptr;
5309 		toh->level = IPPROTO_IPV6;
5310 		toh->name = IPV6_RTHDRDSTOPTS;
5311 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5312 		toh->status = 0;
5313 		optptr += sizeof (*toh);
5314 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5315 		optptr += ipp->ipp_rthdrdstoptslen;
5316 		ASSERT(OK_32PTR(optptr));
5317 		/* Save as last value */
5318 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5319 		    &tcp->tcp_rthdrdstoptslen,
5320 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5321 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5322 	}
5323 	if (addflag.crb_ipv6_recvrthdr) {
5324 		toh = (struct T_opthdr *)optptr;
5325 		toh->level = IPPROTO_IPV6;
5326 		toh->name = IPV6_RTHDR;
5327 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5328 		toh->status = 0;
5329 		optptr += sizeof (*toh);
5330 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5331 		optptr += ipp->ipp_rthdrlen;
5332 		ASSERT(OK_32PTR(optptr));
5333 		/* Save as last value */
5334 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5335 		    (ipp->ipp_fields & IPPF_RTHDR),
5336 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5337 	}
5338 	if (addflag.crb_ipv6_recvdstopts) {
5339 		toh = (struct T_opthdr *)optptr;
5340 		toh->level = IPPROTO_IPV6;
5341 		toh->name = IPV6_DSTOPTS;
5342 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5343 		toh->status = 0;
5344 		optptr += sizeof (*toh);
5345 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5346 		optptr += ipp->ipp_dstoptslen;
5347 		ASSERT(OK_32PTR(optptr));
5348 		/* Save as last value */
5349 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5350 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5351 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5352 	}
5353 	ASSERT(optptr == mp->b_wptr);
5354 	return (mp);
5355 }
5356 
5357 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */
5358 #define	TCP_SD_MIN	400000000
5359 
5360 /*
5361  * Set RTO for this connection based on a new round-trip time measurement.
5362  * The formula is from Jacobson and Karels' "Congestion Avoidance and Control"
5363  * in SIGCOMM '88.  The variable names are the same as those in Appendix A.2
5364  * of that paper.
5365  *
5366  * m = new measurement
5367  * sa = smoothed RTT average (8 * average estimates).
5368  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5369  */
5370 static void
5371 tcp_set_rto(tcp_t *tcp, hrtime_t rtt)
5372 {
5373 	hrtime_t m = rtt;
5374 	hrtime_t sa = tcp->tcp_rtt_sa;
5375 	hrtime_t sv = tcp->tcp_rtt_sd;
5376 	tcp_stack_t *tcps = tcp->tcp_tcps;
5377 
5378 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5379 	tcp->tcp_rtt_update++;
5380 	tcp->tcp_rtt_sum += m;
5381 	tcp->tcp_rtt_cnt++;
5382 
5383 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5384 	if (sa != 0) {
5385 		/*
5386 		 * Update average estimator (see section 2.3 of RFC6298):
5387 		 *	SRTT = 7/8 SRTT + 1/8 rtt
5388 		 *
5389 		 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to:
5390 		 *	tcp_rtt_sa = 7 * SRTT + rtt
5391 		 *	tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt
5392 		 *	tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt
5393 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8))
5394 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3))
5395 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3))
5396 		 *
5397 		 * (rtt - tcp_rtt_sa / 8) is simply the difference
5398 		 * between the new rtt measurement and the existing smoothed
5399 		 * RTT average. This is referred to as "Error" in subsequent
5400 		 * calculations.
5401 		 */
5402 
5403 		/* m is now Error. */
5404 		m -= sa >> 3;
5405 		if ((sa += m) <= 0) {
5406 			/*
5407 			 * Don't allow the smoothed average to be negative.
5408 			 * We use 0 to denote reinitialization of the
5409 			 * variables.
5410 			 */
5411 			sa = 1;
5412 		}
5413 
5414 		/*
5415 		 * Update deviation estimator:
5416 		 *  mdev = 3/4 mdev + 1/4 abs(Error)
5417 		 *
5418 		 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to:
5419 		 *  tcp_rtt_sd = 3 * mdev + abs(Error)
5420 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error)
5421 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error)
5422 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error)
5423 		 */
5424 		if (m < 0)
5425 			m = -m;
5426 		m -= sv >> 2;
5427 		sv += m;
5428 	} else {
5429 		/*
5430 		 * This follows BSD's implementation.  So the reinitialized
5431 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5432 		 * link is bandwidth dominated, doubling the window size
5433 		 * during slow start means doubling the RTT.  We want to be
5434 		 * more conservative when we reinitialize our estimates.  3
5435 		 * is just a convenient number.
5436 		 */
5437 		sa = m << 3;
5438 		sv = m << 1;
5439 	}
5440 	if (sv < TCP_SD_MIN) {
5441 		/*
5442 		 * Since a receiver doesn't delay its ACKs during a long run of
5443 		 * segments, sa may not have captured the effect of delayed ACK
5444 		 * timeouts on the RTT.  To make sure we always account for the
5445 		 * possible delay (and avoid the unnecessary retransmission),
5446 		 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of
5447 		 * 200ms on older SunOS/BSD systems and modern Windows systems
5448 		 * (as of 2019).  This means that the minimum possible mean
5449 		 * deviation is 100 ms.
5450 		 */
5451 		sv = TCP_SD_MIN;
5452 	}
5453 	tcp->tcp_rtt_sa = sa;
5454 	tcp->tcp_rtt_sd = sv;
5455 
5456 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
5457 
5458 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5459 	tcp->tcp_timer_backoff = 0;
5460 }
5461 
5462 /*
5463  * On a labeled system we have some protocols above TCP, such as RPC, which
5464  * appear to assume that every mblk in a chain has a db_credp.
5465  */
5466 static void
5467 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5468 {
5469 	ASSERT(is_system_labeled());
5470 	ASSERT(ira->ira_cred != NULL);
5471 
5472 	while (mp != NULL) {
5473 		mblk_setcred(mp, ira->ira_cred, NOPID);
5474 		mp = mp->b_cont;
5475 	}
5476 }
5477 
5478 uint_t
5479 tcp_rwnd_reopen(tcp_t *tcp)
5480 {
5481 	uint_t ret = 0;
5482 	uint_t thwin;
5483 	conn_t *connp = tcp->tcp_connp;
5484 
5485 	/* Learn the latest rwnd information that we sent to the other side. */
5486 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5487 	    << tcp->tcp_rcv_ws;
5488 	/* This is peer's calculated send window (our receive window). */
5489 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5490 	/*
5491 	 * Increase the receive window to max.  But we need to do receiver
5492 	 * SWS avoidance.  This means that we need to check the increase of
5493 	 * of receive window is at least 1 MSS.
5494 	 */
5495 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5496 		/*
5497 		 * If the window that the other side knows is less than max
5498 		 * deferred acks segments, send an update immediately.
5499 		 */
5500 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5501 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5502 			ret = TH_ACK_NEEDED;
5503 		}
5504 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5505 	}
5506 	return (ret);
5507 }
5508 
5509 /*
5510  * Handle a packet that has been reclassified by TCP.
5511  * This function drops the ref on connp that the caller had.
5512  */
5513 void
5514 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5515 {
5516 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5517 
5518 	if (connp->conn_incoming_ifindex != 0 &&
5519 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5520 		freemsg(mp);
5521 		CONN_DEC_REF(connp);
5522 		return;
5523 	}
5524 
5525 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5526 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5527 		ip6_t *ip6h;
5528 		ipha_t *ipha;
5529 
5530 		if (ira->ira_flags & IRAF_IS_IPV4) {
5531 			ipha = (ipha_t *)mp->b_rptr;
5532 			ip6h = NULL;
5533 		} else {
5534 			ipha = NULL;
5535 			ip6h = (ip6_t *)mp->b_rptr;
5536 		}
5537 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5538 		if (mp == NULL) {
5539 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5540 			/* Note that mp is NULL */
5541 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5542 			CONN_DEC_REF(connp);
5543 			return;
5544 		}
5545 	}
5546 
5547 	if (IPCL_IS_TCP(connp)) {
5548 		/*
5549 		 * do not drain, certain use cases can blow
5550 		 * the stack
5551 		 */
5552 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5553 		    connp->conn_recv, connp, ira,
5554 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5555 	} else {
5556 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5557 		(connp->conn_recv)(connp, mp, NULL,
5558 		    ira);
5559 		CONN_DEC_REF(connp);
5560 	}
5561 
5562 }
5563 
5564 /* ARGSUSED */
5565 static void
5566 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5567 {
5568 	conn_t	*connp = (conn_t *)arg;
5569 	tcp_t	*tcp = connp->conn_tcp;
5570 	queue_t	*q = connp->conn_rq;
5571 
5572 	ASSERT(!IPCL_IS_NONSTR(connp));
5573 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5574 	tcp->tcp_rsrv_mp = mp;
5575 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5576 
5577 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5578 		return;
5579 	}
5580 
5581 	if (tcp->tcp_fused) {
5582 		tcp_fuse_backenable(tcp);
5583 		return;
5584 	}
5585 
5586 	if (canputnext(q)) {
5587 		/* Not flow-controlled, open rwnd */
5588 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5589 
5590 		/*
5591 		 * Send back a window update immediately if TCP is above
5592 		 * ESTABLISHED state and the increase of the rcv window
5593 		 * that the other side knows is at least 1 MSS after flow
5594 		 * control is lifted.
5595 		 */
5596 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5597 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5598 			tcp_xmit_ctl(NULL, tcp,
5599 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5600 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5601 		}
5602 	}
5603 }
5604 
5605 /*
5606  * The read side service routine is called mostly when we get back-enabled as a
5607  * result of flow control relief.  Since we don't actually queue anything in
5608  * TCP, we have no data to send out of here.  What we do is clear the receive
5609  * window, and send out a window update.
5610  */
5611 int
5612 tcp_rsrv(queue_t *q)
5613 {
5614 	conn_t		*connp = Q_TO_CONN(q);
5615 	tcp_t		*tcp = connp->conn_tcp;
5616 	mblk_t		*mp;
5617 
5618 	/* No code does a putq on the read side */
5619 	ASSERT(q->q_first == NULL);
5620 
5621 	/*
5622 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5623 	 * been run.  So just return.
5624 	 */
5625 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5626 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5627 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5628 		return (0);
5629 	}
5630 	tcp->tcp_rsrv_mp = NULL;
5631 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5632 
5633 	CONN_INC_REF(connp);
5634 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5635 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5636 	return (0);
5637 }
5638 
5639 /* At minimum we need 8 bytes in the TCP header for the lookup */
5640 #define	ICMP_MIN_TCP_HDR	8
5641 
5642 /*
5643  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5644  * passed up by IP. The message is always received on the correct tcp_t.
5645  * Assumes that IP has pulled up everything up to and including the ICMP header.
5646  */
5647 /* ARGSUSED2 */
5648 void
5649 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5650 {
5651 	conn_t		*connp = (conn_t *)arg1;
5652 	icmph_t		*icmph;
5653 	ipha_t		*ipha;
5654 	int		iph_hdr_length;
5655 	tcpha_t		*tcpha;
5656 	uint32_t	seg_seq;
5657 	tcp_t		*tcp = connp->conn_tcp;
5658 
5659 	/* Assume IP provides aligned packets */
5660 	ASSERT(OK_32PTR(mp->b_rptr));
5661 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5662 
5663 	/*
5664 	 * It's possible we have a closed, but not yet destroyed, TCP
5665 	 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5666 	 * in the closed state, so don't take any chances and drop the packet.
5667 	 */
5668 	if (tcp->tcp_state == TCPS_CLOSED) {
5669 		freemsg(mp);
5670 		return;
5671 	}
5672 
5673 	/*
5674 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5675 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5676 	 */
5677 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5678 		tcp_icmp_error_ipv6(tcp, mp, ira);
5679 		return;
5680 	}
5681 
5682 	/* Skip past the outer IP and ICMP headers */
5683 	iph_hdr_length = ira->ira_ip_hdr_length;
5684 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5685 	/*
5686 	 * If we don't have the correct outer IP header length
5687 	 * or if we don't have a complete inner IP header
5688 	 * drop it.
5689 	 */
5690 	if (iph_hdr_length < sizeof (ipha_t) ||
5691 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5692 noticmpv4:
5693 		freemsg(mp);
5694 		return;
5695 	}
5696 	ipha = (ipha_t *)&icmph[1];
5697 
5698 	/* Skip past the inner IP and find the ULP header */
5699 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5700 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5701 	/*
5702 	 * If we don't have the correct inner IP header length or if the ULP
5703 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5704 	 * bytes of TCP header, drop it.
5705 	 */
5706 	if (iph_hdr_length < sizeof (ipha_t) ||
5707 	    ipha->ipha_protocol != IPPROTO_TCP ||
5708 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5709 		goto noticmpv4;
5710 	}
5711 
5712 	seg_seq = ntohl(tcpha->tha_seq);
5713 	switch (icmph->icmph_type) {
5714 	case ICMP_DEST_UNREACHABLE:
5715 		switch (icmph->icmph_code) {
5716 		case ICMP_FRAGMENTATION_NEEDED:
5717 			/*
5718 			 * Update Path MTU, then try to send something out.
5719 			 */
5720 			tcp_update_pmtu(tcp, B_TRUE);
5721 			tcp_rexmit_after_error(tcp);
5722 			break;
5723 		case ICMP_PORT_UNREACHABLE:
5724 		case ICMP_PROTOCOL_UNREACHABLE:
5725 			switch (tcp->tcp_state) {
5726 			case TCPS_SYN_SENT:
5727 			case TCPS_SYN_RCVD:
5728 				/*
5729 				 * ICMP can snipe away incipient
5730 				 * TCP connections as long as
5731 				 * seq number is same as initial
5732 				 * send seq number.
5733 				 */
5734 				if (seg_seq == tcp->tcp_iss) {
5735 					(void) tcp_clean_death(tcp,
5736 					    ECONNREFUSED);
5737 				}
5738 				break;
5739 			}
5740 			break;
5741 		case ICMP_HOST_UNREACHABLE:
5742 		case ICMP_NET_UNREACHABLE:
5743 			/* Record the error in case we finally time out. */
5744 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5745 				tcp->tcp_client_errno = EHOSTUNREACH;
5746 			else
5747 				tcp->tcp_client_errno = ENETUNREACH;
5748 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5749 				if (tcp->tcp_listener != NULL &&
5750 				    tcp->tcp_listener->tcp_syn_defense) {
5751 					/*
5752 					 * Ditch the half-open connection if we
5753 					 * suspect a SYN attack is under way.
5754 					 */
5755 					(void) tcp_clean_death(tcp,
5756 					    tcp->tcp_client_errno);
5757 				}
5758 			}
5759 			break;
5760 		default:
5761 			break;
5762 		}
5763 		break;
5764 	case ICMP_SOURCE_QUENCH: {
5765 		/*
5766 		 * use a global boolean to control
5767 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5768 		 * The default is false.
5769 		 */
5770 		if (tcp_icmp_source_quench) {
5771 			/*
5772 			 * Reduce the sending rate as if we got a
5773 			 * retransmit timeout
5774 			 */
5775 			uint32_t npkt;
5776 
5777 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5778 			    tcp->tcp_mss;
5779 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5780 
5781 			DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp,
5782 			    uint32_t, tcp->tcp_cwnd,
5783 			    uint32_t, tcp->tcp_mss);
5784 			tcp->tcp_cwnd = tcp->tcp_mss;
5785 			tcp->tcp_cwnd_cnt = 0;
5786 		}
5787 		break;
5788 	}
5789 	}
5790 	freemsg(mp);
5791 }
5792 
5793 /*
5794  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5795  * error messages passed up by IP.
5796  * Assumes that IP has pulled up all the extension headers as well
5797  * as the ICMPv6 header.
5798  */
5799 static void
5800 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5801 {
5802 	icmp6_t		*icmp6;
5803 	ip6_t		*ip6h;
5804 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5805 	tcpha_t		*tcpha;
5806 	uint8_t		*nexthdrp;
5807 	uint32_t	seg_seq;
5808 
5809 	/*
5810 	 * Verify that we have a complete IP header.
5811 	 */
5812 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5813 
5814 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5815 	ip6h = (ip6_t *)&icmp6[1];
5816 	/*
5817 	 * Verify if we have a complete ICMP and inner IP header.
5818 	 */
5819 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5820 noticmpv6:
5821 		freemsg(mp);
5822 		return;
5823 	}
5824 
5825 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5826 		goto noticmpv6;
5827 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5828 	/*
5829 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5830 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5831 	 * packet.
5832 	 */
5833 	if ((*nexthdrp != IPPROTO_TCP) ||
5834 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5835 		goto noticmpv6;
5836 	}
5837 
5838 	seg_seq = ntohl(tcpha->tha_seq);
5839 	switch (icmp6->icmp6_type) {
5840 	case ICMP6_PACKET_TOO_BIG:
5841 		/*
5842 		 * Update Path MTU, then try to send something out.
5843 		 */
5844 		tcp_update_pmtu(tcp, B_TRUE);
5845 		tcp_rexmit_after_error(tcp);
5846 		break;
5847 	case ICMP6_DST_UNREACH:
5848 		switch (icmp6->icmp6_code) {
5849 		case ICMP6_DST_UNREACH_NOPORT:
5850 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5851 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5852 			    (seg_seq == tcp->tcp_iss)) {
5853 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5854 			}
5855 			break;
5856 		case ICMP6_DST_UNREACH_ADMIN:
5857 		case ICMP6_DST_UNREACH_NOROUTE:
5858 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5859 		case ICMP6_DST_UNREACH_ADDR:
5860 			/* Record the error in case we finally time out. */
5861 			tcp->tcp_client_errno = EHOSTUNREACH;
5862 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5863 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5864 			    (seg_seq == tcp->tcp_iss)) {
5865 				if (tcp->tcp_listener != NULL &&
5866 				    tcp->tcp_listener->tcp_syn_defense) {
5867 					/*
5868 					 * Ditch the half-open connection if we
5869 					 * suspect a SYN attack is under way.
5870 					 */
5871 					(void) tcp_clean_death(tcp,
5872 					    tcp->tcp_client_errno);
5873 				}
5874 			}
5875 
5876 
5877 			break;
5878 		default:
5879 			break;
5880 		}
5881 		break;
5882 	case ICMP6_PARAM_PROB:
5883 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5884 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5885 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5886 		    (uchar_t *)nexthdrp) {
5887 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5888 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5889 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5890 			}
5891 			break;
5892 		}
5893 		break;
5894 
5895 	case ICMP6_TIME_EXCEEDED:
5896 	default:
5897 		break;
5898 	}
5899 	freemsg(mp);
5900 }
5901 
5902 /*
5903  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5904  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5905  *
5906  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5907  * error messages received by IP. The message is always received on the correct
5908  * tcp_t.
5909  */
5910 /* ARGSUSED */
5911 boolean_t
5912 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5913     ip_recv_attr_t *ira)
5914 {
5915 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5916 	uint32_t	seq = ntohl(tcpha->tha_seq);
5917 	tcp_t		*tcp = connp->conn_tcp;
5918 
5919 	/*
5920 	 * TCP sequence number contained in payload of the ICMP error message
5921 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5922 	 * the message is either a stale ICMP error, or an attack from the
5923 	 * network. Fail the verification.
5924 	 */
5925 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5926 		return (B_FALSE);
5927 
5928 	/* For "too big" we also check the ignore flag */
5929 	if (ira->ira_flags & IRAF_IS_IPV4) {
5930 		ASSERT(icmph != NULL);
5931 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5932 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5933 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5934 			return (B_FALSE);
5935 	} else {
5936 		ASSERT(icmp6 != NULL);
5937 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5938 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5939 			return (B_FALSE);
5940 	}
5941 	return (B_TRUE);
5942 }
5943