1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2019 Joyent, Inc. 26 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 */ 29 30 /* This file contains all TCP input processing functions. */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/squeue_impl.h> 43 #include <sys/squeue.h> 44 #include <sys/tsol/tnet.h> 45 46 #include <inet/common.h> 47 #include <inet/ip.h> 48 #include <inet/tcp.h> 49 #include <inet/tcp_impl.h> 50 #include <inet/tcp_cluster.h> 51 #include <inet/proto_set.h> 52 #include <inet/ipsec_impl.h> 53 54 /* 55 * RFC7323-recommended phrasing of TSTAMP option, for easier parsing 56 */ 57 58 #ifdef _BIG_ENDIAN 59 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 60 (TCPOPT_TSTAMP << 8) | 10) 61 #else 62 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 63 (TCPOPT_NOP << 8) | TCPOPT_NOP) 64 #endif 65 66 /* 67 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 68 */ 69 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 70 71 /* 72 * Since tcp_listener is not cleared atomically with tcp_detached 73 * being cleared we need this extra bit to tell a detached connection 74 * apart from one that is in the process of being accepted. 75 */ 76 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 77 (TCP_IS_DETACHED(tcp) && \ 78 (!(tcp)->tcp_hard_binding)) 79 80 /* 81 * Steps to do when a tcp_t moves to TIME-WAIT state. 82 * 83 * This connection is done, we don't need to account for it. Decrement 84 * the listener connection counter if needed. 85 * 86 * Decrement the connection counter of the stack. Note that this counter 87 * is per CPU. So the total number of connections in a stack is the sum of all 88 * of them. Since there is no lock for handling all of them exclusively, the 89 * resulting sum is only an approximation. 90 * 91 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 92 * connection won't interfere with new ones. 93 * 94 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 95 * the timer is handled within the context of this tcp_t. When the timer 96 * fires, tcp_clean_death() is called. If upper layer closes the connection 97 * during this period, tcp_time_wait_append() will be called to add this 98 * tcp_t to the global TIME-WAIT list. Note that this means that the 99 * actual wait time in TIME-WAIT state will be longer than the 100 * tcps_time_wait_interval since the period before upper layer closes the 101 * connection is not accounted for when tcp_time_wait_append() is called. 102 * 103 * If upper layer has closed the connection, call tcp_time_wait_append() 104 * directly. 105 * 106 */ 107 #define SET_TIME_WAIT(tcps, tcp, connp) \ 108 { \ 109 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 110 if ((tcp)->tcp_listen_cnt != NULL) \ 111 TCP_DECR_LISTEN_CNT(tcp); \ 112 atomic_dec_64( \ 113 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 114 (connp)->conn_exclbind = 0; \ 115 if (!TCP_IS_DETACHED(tcp)) { \ 116 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 117 } else { \ 118 tcp_time_wait_append(tcp); \ 119 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 120 } \ 121 } 122 123 /* 124 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 125 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 126 * data, TCP will not respond with an ACK. RFC 793 requires that 127 * TCP responds with an ACK for such a bogus ACK. By not following 128 * the RFC, we prevent TCP from getting into an ACK storm if somehow 129 * an attacker successfully spoofs an acceptable segment to our 130 * peer; or when our peer is "confused." 131 */ 132 static uint32_t tcp_drop_ack_unsent_cnt = 10; 133 134 /* 135 * To protect TCP against attacker using a small window and requesting 136 * large amount of data (DoS attack by conuming memory), TCP checks the 137 * window advertised in the last ACK of the 3-way handshake. TCP uses 138 * the tcp_mss (the size of one packet) value for comparion. The window 139 * should be larger than tcp_mss. But while a sane TCP should advertise 140 * a receive window larger than or equal to 4*MSS to avoid stop and go 141 * tarrfic, not all TCP stacks do that. This is especially true when 142 * tcp_mss is a big value. 143 * 144 * To work around this issue, an additional fixed value for comparison 145 * is also used. If the advertised window is smaller than both tcp_mss 146 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 147 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 148 * smaller than 8K is considered to be OK. 149 */ 150 static uint32_t tcp_init_wnd_chk = 4096; 151 152 /* Process ICMP source quench message or not. */ 153 static boolean_t tcp_icmp_source_quench = B_FALSE; 154 155 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 156 157 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 158 ip_recv_attr_t *); 159 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 160 ip_recv_attr_t *); 161 static boolean_t tcp_drop_q0(tcp_t *); 162 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 163 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 164 ip_recv_attr_t *); 165 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 166 static void tcp_process_options(tcp_t *, tcpha_t *); 167 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 168 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 169 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 170 static void tcp_set_rto(tcp_t *, hrtime_t); 171 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 172 173 /* 174 * CC wrapper hook functions 175 */ 176 static void 177 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked, 178 uint16_t type) 179 { 180 uint32_t old_cwnd = tcp->tcp_cwnd; 181 182 tcp->tcp_ccv.bytes_this_ack = bytes_acked; 183 if (tcp->tcp_cwnd <= tcp->tcp_swnd) 184 tcp->tcp_ccv.flags |= CCF_CWND_LIMITED; 185 else 186 tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED; 187 188 if (type == CC_ACK) { 189 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 190 if (tcp->tcp_ccv.flags & CCF_RTO) 191 tcp->tcp_ccv.flags &= ~CCF_RTO; 192 193 tcp->tcp_ccv.t_bytes_acked += 194 min(tcp->tcp_ccv.bytes_this_ack, 195 tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss); 196 if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) { 197 tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd; 198 tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND; 199 } 200 } else { 201 tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND; 202 tcp->tcp_ccv.t_bytes_acked = 0; 203 } 204 } 205 206 if (CC_ALGO(tcp)->ack_received != NULL) { 207 /* 208 * The FreeBSD code where this originated had a comment "Find 209 * a way to live without this" in several places where curack 210 * got set. If they eventually dump curack from the cc 211 * variables, we'll need to adapt our code. 212 */ 213 tcp->tcp_ccv.curack = seg_ack; 214 CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type); 215 } 216 217 DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd, 218 uint32_t, tcp->tcp_cwnd); 219 } 220 221 void 222 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type) 223 { 224 uint32_t old_cwnd = tcp->tcp_cwnd; 225 uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh; 226 switch (type) { 227 case CC_NDUPACK: 228 if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) { 229 tcp->tcp_rexmit_max = tcp->tcp_snxt; 230 if (tcp->tcp_ecn_ok) { 231 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 232 tcp->tcp_cwr = B_TRUE; 233 tcp->tcp_ecn_cwr_sent = B_FALSE; 234 } 235 } 236 break; 237 case CC_ECN: 238 if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) { 239 tcp->tcp_rexmit_max = tcp->tcp_snxt; 240 if (tcp->tcp_ecn_ok) { 241 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 242 tcp->tcp_cwr = B_TRUE; 243 tcp->tcp_ecn_cwr_sent = B_FALSE; 244 } 245 } 246 break; 247 case CC_RTO: 248 tcp->tcp_ccv.flags |= CCF_RTO; 249 tcp->tcp_dupack_cnt = 0; 250 tcp->tcp_ccv.t_bytes_acked = 0; 251 /* 252 * Give up on fast recovery and congestion recovery if we were 253 * attempting either. 254 */ 255 EXIT_RECOVERY(tcp->tcp_ccv.flags); 256 if (CC_ALGO(tcp)->cong_signal == NULL) { 257 /* 258 * RFC5681 Section 3.1 259 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4) 260 */ 261 tcp->tcp_cwnd_ssthresh = max( 262 (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss, 263 2) * tcp->tcp_mss; 264 tcp->tcp_cwnd = tcp->tcp_mss; 265 } 266 267 if (tcp->tcp_ecn_ok) { 268 tcp->tcp_cwr = B_TRUE; 269 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 270 tcp->tcp_ecn_cwr_sent = B_FALSE; 271 } 272 break; 273 } 274 275 if (CC_ALGO(tcp)->cong_signal != NULL) { 276 tcp->tcp_ccv.curack = seg_ack; 277 CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type); 278 } 279 280 DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd, 281 uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh, 282 uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type); 283 } 284 285 static void 286 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack) 287 { 288 uint32_t old_cwnd = tcp->tcp_cwnd; 289 290 if (CC_ALGO(tcp)->post_recovery != NULL) { 291 tcp->tcp_ccv.curack = seg_ack; 292 CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv); 293 } 294 tcp->tcp_ccv.t_bytes_acked = 0; 295 296 DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp, 297 uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd); 298 } 299 300 /* 301 * Set the MSS associated with a particular tcp based on its current value, 302 * and a new one passed in. Observe minimums and maximums, and reset other 303 * state variables that we want to view as multiples of MSS. 304 * 305 * The value of MSS could be either increased or descreased. 306 */ 307 void 308 tcp_mss_set(tcp_t *tcp, uint32_t mss) 309 { 310 uint32_t mss_max; 311 tcp_stack_t *tcps = tcp->tcp_tcps; 312 conn_t *connp = tcp->tcp_connp; 313 314 if (connp->conn_ipversion == IPV4_VERSION) 315 mss_max = tcps->tcps_mss_max_ipv4; 316 else 317 mss_max = tcps->tcps_mss_max_ipv6; 318 319 if (mss < tcps->tcps_mss_min) 320 mss = tcps->tcps_mss_min; 321 if (mss > mss_max) 322 mss = mss_max; 323 /* 324 * Unless naglim has been set by our client to 325 * a non-mss value, force naglim to track mss. 326 * This can help to aggregate small writes. 327 */ 328 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 329 tcp->tcp_naglim = mss; 330 /* 331 * TCP should be able to buffer at least 4 MSS data for obvious 332 * performance reason. 333 */ 334 if ((mss << 2) > connp->conn_sndbuf) 335 connp->conn_sndbuf = mss << 2; 336 337 /* 338 * Set the send lowater to at least twice of MSS. 339 */ 340 if ((mss << 1) > connp->conn_sndlowat) 341 connp->conn_sndlowat = mss << 1; 342 343 /* 344 * Update tcp_cwnd according to the new value of MSS. Keep the 345 * previous ratio to preserve the transmit rate. 346 */ 347 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 348 tcp->tcp_cwnd_cnt = 0; 349 350 tcp->tcp_mss = mss; 351 (void) tcp_maxpsz_set(tcp, B_TRUE); 352 } 353 354 /* 355 * Extract option values from a tcp header. We put any found values into the 356 * tcpopt struct and return a bitmask saying which options were found. 357 */ 358 int 359 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 360 { 361 uchar_t *endp; 362 int len; 363 uint32_t mss; 364 uchar_t *up = (uchar_t *)tcpha; 365 int found = 0; 366 int32_t sack_len; 367 tcp_seq sack_begin, sack_end; 368 tcp_t *tcp; 369 370 endp = up + TCP_HDR_LENGTH(tcpha); 371 up += TCP_MIN_HEADER_LENGTH; 372 /* 373 * If timestamp option is aligned as recommended in RFC 7323 Appendix 374 * A, and is the only option, return quickly. 375 */ 376 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 377 TCPOPT_REAL_TS_LEN && 378 OK_32PTR(up) && 379 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 380 tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 381 tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 382 383 return (TCP_OPT_TSTAMP_PRESENT); 384 } 385 while (up < endp) { 386 len = endp - up; 387 switch (*up) { 388 case TCPOPT_EOL: 389 break; 390 391 case TCPOPT_NOP: 392 up++; 393 continue; 394 395 case TCPOPT_MAXSEG: 396 if (len < TCPOPT_MAXSEG_LEN || 397 up[1] != TCPOPT_MAXSEG_LEN) 398 break; 399 400 mss = BE16_TO_U16(up+2); 401 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 402 tcpopt->tcp_opt_mss = mss; 403 found |= TCP_OPT_MSS_PRESENT; 404 405 up += TCPOPT_MAXSEG_LEN; 406 continue; 407 408 case TCPOPT_WSCALE: 409 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 410 break; 411 412 if (up[2] > TCP_MAX_WINSHIFT) 413 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 414 else 415 tcpopt->tcp_opt_wscale = up[2]; 416 found |= TCP_OPT_WSCALE_PRESENT; 417 418 up += TCPOPT_WS_LEN; 419 continue; 420 421 case TCPOPT_SACK_PERMITTED: 422 if (len < TCPOPT_SACK_OK_LEN || 423 up[1] != TCPOPT_SACK_OK_LEN) 424 break; 425 found |= TCP_OPT_SACK_OK_PRESENT; 426 up += TCPOPT_SACK_OK_LEN; 427 continue; 428 429 case TCPOPT_SACK: 430 if (len <= 2 || up[1] <= 2 || len < up[1]) 431 break; 432 433 /* If TCP is not interested in SACK blks... */ 434 if ((tcp = tcpopt->tcp) == NULL) { 435 up += up[1]; 436 continue; 437 } 438 sack_len = up[1] - TCPOPT_HEADER_LEN; 439 up += TCPOPT_HEADER_LEN; 440 441 /* 442 * If the list is empty, allocate one and assume 443 * nothing is sack'ed. 444 */ 445 if (tcp->tcp_notsack_list == NULL) { 446 tcp_notsack_update(&(tcp->tcp_notsack_list), 447 tcp->tcp_suna, tcp->tcp_snxt, 448 &(tcp->tcp_num_notsack_blk), 449 &(tcp->tcp_cnt_notsack_list)); 450 451 /* 452 * Make sure tcp_notsack_list is not NULL. 453 * This happens when kmem_alloc(KM_NOSLEEP) 454 * returns NULL. 455 */ 456 if (tcp->tcp_notsack_list == NULL) { 457 up += sack_len; 458 continue; 459 } 460 tcp->tcp_fack = tcp->tcp_suna; 461 } 462 463 while (sack_len > 0) { 464 if (up + 8 > endp) { 465 up = endp; 466 break; 467 } 468 sack_begin = BE32_TO_U32(up); 469 up += 4; 470 sack_end = BE32_TO_U32(up); 471 up += 4; 472 sack_len -= 8; 473 /* 474 * Bounds checking. Make sure the SACK 475 * info is within tcp_suna and tcp_snxt. 476 * If this SACK blk is out of bound, ignore 477 * it but continue to parse the following 478 * blks. 479 */ 480 if (SEQ_LEQ(sack_end, sack_begin) || 481 SEQ_LT(sack_begin, tcp->tcp_suna) || 482 SEQ_GT(sack_end, tcp->tcp_snxt)) { 483 continue; 484 } 485 tcp_notsack_insert(&(tcp->tcp_notsack_list), 486 sack_begin, sack_end, 487 &(tcp->tcp_num_notsack_blk), 488 &(tcp->tcp_cnt_notsack_list)); 489 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 490 tcp->tcp_fack = sack_end; 491 } 492 } 493 found |= TCP_OPT_SACK_PRESENT; 494 continue; 495 496 case TCPOPT_TSTAMP: 497 if (len < TCPOPT_TSTAMP_LEN || 498 up[1] != TCPOPT_TSTAMP_LEN) 499 break; 500 501 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 502 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 503 504 found |= TCP_OPT_TSTAMP_PRESENT; 505 506 up += TCPOPT_TSTAMP_LEN; 507 continue; 508 509 default: 510 if (len <= 1 || len < (int)up[1] || up[1] == 0) 511 break; 512 up += up[1]; 513 continue; 514 } 515 break; 516 } 517 return (found); 518 } 519 520 /* 521 * Process all TCP option in SYN segment. Note that this function should 522 * be called after tcp_set_destination() is called so that the necessary info 523 * from IRE is already set in the tcp structure. 524 * 525 * This function sets up the correct tcp_mss value according to the 526 * MSS option value and our header size. It also sets up the window scale 527 * and timestamp values, and initialize SACK info blocks. But it does not 528 * change receive window size after setting the tcp_mss value. The caller 529 * should do the appropriate change. 530 */ 531 static void 532 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 533 { 534 int options; 535 tcp_opt_t tcpopt; 536 uint32_t mss_max; 537 char *tmp_tcph; 538 tcp_stack_t *tcps = tcp->tcp_tcps; 539 conn_t *connp = tcp->tcp_connp; 540 541 tcpopt.tcp = NULL; 542 options = tcp_parse_options(tcpha, &tcpopt); 543 544 /* 545 * Process MSS option. Note that MSS option value does not account 546 * for IP or TCP options. This means that it is equal to MTU - minimum 547 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 548 * IPv6. 549 */ 550 if (!(options & TCP_OPT_MSS_PRESENT)) { 551 if (connp->conn_ipversion == IPV4_VERSION) 552 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 553 else 554 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 555 } else { 556 if (connp->conn_ipversion == IPV4_VERSION) 557 mss_max = tcps->tcps_mss_max_ipv4; 558 else 559 mss_max = tcps->tcps_mss_max_ipv6; 560 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 561 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 562 else if (tcpopt.tcp_opt_mss > mss_max) 563 tcpopt.tcp_opt_mss = mss_max; 564 } 565 566 /* Process Window Scale option. */ 567 if (options & TCP_OPT_WSCALE_PRESENT) { 568 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 569 tcp->tcp_snd_ws_ok = B_TRUE; 570 } else { 571 tcp->tcp_snd_ws = B_FALSE; 572 tcp->tcp_snd_ws_ok = B_FALSE; 573 tcp->tcp_rcv_ws = B_FALSE; 574 } 575 576 /* Process Timestamp option. */ 577 if ((options & TCP_OPT_TSTAMP_PRESENT) && 578 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 579 tmp_tcph = (char *)tcp->tcp_tcpha; 580 581 tcp->tcp_snd_ts_ok = B_TRUE; 582 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 583 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 584 ASSERT(OK_32PTR(tmp_tcph)); 585 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 586 587 /* Fill in our template header with basic timestamp option. */ 588 tmp_tcph += connp->conn_ht_ulp_len; 589 tmp_tcph[0] = TCPOPT_NOP; 590 tmp_tcph[1] = TCPOPT_NOP; 591 tmp_tcph[2] = TCPOPT_TSTAMP; 592 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 593 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 594 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 595 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 596 } else { 597 tcp->tcp_snd_ts_ok = B_FALSE; 598 } 599 600 /* 601 * Process SACK options. If SACK is enabled for this connection, 602 * then allocate the SACK info structure. Note the following ways 603 * when tcp_snd_sack_ok is set to true. 604 * 605 * For active connection: in tcp_set_destination() called in 606 * tcp_connect(). 607 * 608 * For passive connection: in tcp_set_destination() called in 609 * tcp_input_listener(). 610 * 611 * That's the reason why the extra TCP_IS_DETACHED() check is there. 612 * That check makes sure that if we did not send a SACK OK option, 613 * we will not enable SACK for this connection even though the other 614 * side sends us SACK OK option. For active connection, the SACK 615 * info structure has already been allocated. So we need to free 616 * it if SACK is disabled. 617 */ 618 if ((options & TCP_OPT_SACK_OK_PRESENT) && 619 (tcp->tcp_snd_sack_ok || 620 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 621 ASSERT(tcp->tcp_num_sack_blk == 0); 622 ASSERT(tcp->tcp_notsack_list == NULL); 623 624 tcp->tcp_snd_sack_ok = B_TRUE; 625 if (tcp->tcp_snd_ts_ok) { 626 tcp->tcp_max_sack_blk = 3; 627 } else { 628 tcp->tcp_max_sack_blk = 4; 629 } 630 } else if (tcp->tcp_snd_sack_ok) { 631 /* 632 * Resetting tcp_snd_sack_ok to B_FALSE so that 633 * no SACK info will be used for this 634 * connection. This assumes that SACK usage 635 * permission is negotiated. This may need 636 * to be changed once this is clarified. 637 */ 638 ASSERT(tcp->tcp_num_sack_blk == 0); 639 ASSERT(tcp->tcp_notsack_list == NULL); 640 tcp->tcp_snd_sack_ok = B_FALSE; 641 } 642 643 /* 644 * Now we know the exact TCP/IP header length, subtract 645 * that from tcp_mss to get our side's MSS. 646 */ 647 tcp->tcp_mss -= connp->conn_ht_iphc_len; 648 649 /* 650 * Here we assume that the other side's header size will be equal to 651 * our header size. We calculate the real MSS accordingly. Need to 652 * take into additional stuffs IPsec puts in. 653 * 654 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 655 */ 656 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 657 tcp->tcp_ipsec_overhead - 658 ((connp->conn_ipversion == IPV4_VERSION ? 659 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 660 661 /* 662 * Set MSS to the smaller one of both ends of the connection. 663 * We should not have called tcp_mss_set() before, but our 664 * side of the MSS should have been set to a proper value 665 * by tcp_set_destination(). tcp_mss_set() will also set up the 666 * STREAM head parameters properly. 667 * 668 * If we have a larger-than-16-bit window but the other side 669 * didn't want to do window scale, tcp_rwnd_set() will take 670 * care of that. 671 */ 672 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 673 674 /* 675 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 676 * updated properly. 677 */ 678 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 679 680 if (tcp->tcp_cc_algo->conn_init != NULL) 681 tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv); 682 } 683 684 /* 685 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 686 * is filled, return as much as we can. The message passed in may be 687 * multi-part, chained using b_cont. "start" is the starting sequence 688 * number for this piece. 689 */ 690 static mblk_t * 691 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 692 { 693 uint32_t end, bytes; 694 mblk_t *mp1; 695 mblk_t *mp2; 696 mblk_t *next_mp; 697 uint32_t u1; 698 tcp_stack_t *tcps = tcp->tcp_tcps; 699 700 701 /* Walk through all the new pieces. */ 702 do { 703 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 704 (uintptr_t)INT_MAX); 705 end = start + (int)(mp->b_wptr - mp->b_rptr); 706 next_mp = mp->b_cont; 707 if (start == end) { 708 /* Empty. Blast it. */ 709 freeb(mp); 710 continue; 711 } 712 bytes = end - start; 713 mp->b_cont = NULL; 714 TCP_REASS_SET_SEQ(mp, start); 715 TCP_REASS_SET_END(mp, end); 716 mp1 = tcp->tcp_reass_tail; 717 if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) { 718 if (mp1 != NULL) { 719 /* 720 * New stuff is beyond the tail; link it on the 721 * end. 722 */ 723 mp1->b_cont = mp; 724 } else { 725 tcp->tcp_reass_head = mp; 726 } 727 tcp->tcp_reass_tail = mp; 728 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 729 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes); 730 tcp->tcp_cs.tcp_in_data_unorder_segs++; 731 tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes; 732 continue; 733 } 734 mp1 = tcp->tcp_reass_head; 735 u1 = TCP_REASS_SEQ(mp1); 736 /* New stuff at the front? */ 737 if (SEQ_LT(start, u1)) { 738 /* Yes... Check for overlap. */ 739 mp->b_cont = mp1; 740 tcp->tcp_reass_head = mp; 741 tcp_reass_elim_overlap(tcp, mp); 742 continue; 743 } 744 /* 745 * The new piece fits somewhere between the head and tail. 746 * We find our slot, where mp1 precedes us and mp2 trails. 747 */ 748 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 749 u1 = TCP_REASS_SEQ(mp2); 750 if (SEQ_LEQ(start, u1)) 751 break; 752 } 753 /* Link ourselves in */ 754 mp->b_cont = mp2; 755 mp1->b_cont = mp; 756 757 /* Trim overlap with following mblk(s) first */ 758 tcp_reass_elim_overlap(tcp, mp); 759 760 /* Trim overlap with preceding mblk */ 761 tcp_reass_elim_overlap(tcp, mp1); 762 763 } while (start = end, mp = next_mp); 764 mp1 = tcp->tcp_reass_head; 765 /* Anything ready to go? */ 766 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 767 return (NULL); 768 /* Eat what we can off the queue */ 769 for (;;) { 770 mp = mp1->b_cont; 771 end = TCP_REASS_END(mp1); 772 TCP_REASS_SET_SEQ(mp1, 0); 773 TCP_REASS_SET_END(mp1, 0); 774 if (!mp) { 775 tcp->tcp_reass_tail = NULL; 776 break; 777 } 778 if (end != TCP_REASS_SEQ(mp)) { 779 mp1->b_cont = NULL; 780 break; 781 } 782 mp1 = mp; 783 } 784 mp1 = tcp->tcp_reass_head; 785 tcp->tcp_reass_head = mp; 786 return (mp1); 787 } 788 789 /* Eliminate any overlap that mp may have over later mblks */ 790 static void 791 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 792 { 793 uint32_t end; 794 mblk_t *mp1; 795 uint32_t u1; 796 tcp_stack_t *tcps = tcp->tcp_tcps; 797 798 end = TCP_REASS_END(mp); 799 while ((mp1 = mp->b_cont) != NULL) { 800 u1 = TCP_REASS_SEQ(mp1); 801 if (!SEQ_GT(end, u1)) 802 break; 803 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 804 mp->b_wptr -= end - u1; 805 TCP_REASS_SET_END(mp, u1); 806 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 807 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 808 end - u1); 809 break; 810 } 811 mp->b_cont = mp1->b_cont; 812 TCP_REASS_SET_SEQ(mp1, 0); 813 TCP_REASS_SET_END(mp1, 0); 814 freeb(mp1); 815 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 816 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 817 } 818 if (!mp1) 819 tcp->tcp_reass_tail = mp; 820 } 821 822 /* 823 * This function does PAWS protection check, per RFC 7323 section 5. Requires 824 * that timestamp options are already processed into tcpoptp. Returns B_TRUE if 825 * the segment passes the PAWS test, else returns B_FALSE. 826 */ 827 boolean_t 828 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp) 829 { 830 if (TSTMP_LT(tcpoptp->tcp_opt_ts_val, 831 tcp->tcp_ts_recent)) { 832 if (LBOLT_FASTPATH64 < 833 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 834 /* This segment is not acceptable. */ 835 return (B_FALSE); 836 } else { 837 /* 838 * Connection has been idle for 839 * too long. Reset the timestamp 840 */ 841 tcp->tcp_ts_recent = 842 tcpoptp->tcp_opt_ts_val; 843 } 844 } 845 return (B_TRUE); 846 } 847 848 /* 849 * Defense for the SYN attack - 850 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 851 * one from the list of droppable eagers. This list is a subset of q0. 852 * see comments before the definition of MAKE_DROPPABLE(). 853 * 2. Don't drop a SYN request before its first timeout. This gives every 854 * request at least til the first timeout to complete its 3-way handshake. 855 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 856 * requests currently on the queue that has timed out. This will be used 857 * as an indicator of whether an attack is under way, so that appropriate 858 * actions can be taken. (It's incremented in tcp_timer() and decremented 859 * either when eager goes into ESTABLISHED, or gets freed up.) 860 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 861 * # of timeout drops back to <= q0len/32 => SYN alert off 862 */ 863 static boolean_t 864 tcp_drop_q0(tcp_t *tcp) 865 { 866 tcp_t *eager; 867 mblk_t *mp; 868 tcp_stack_t *tcps = tcp->tcp_tcps; 869 870 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 871 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 872 873 /* Pick oldest eager from the list of droppable eagers */ 874 eager = tcp->tcp_eager_prev_drop_q0; 875 876 /* If list is empty. return B_FALSE */ 877 if (eager == tcp) { 878 return (B_FALSE); 879 } 880 881 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 882 if ((mp = allocb(0, BPRI_HI)) == NULL) 883 return (B_FALSE); 884 885 /* 886 * Take this eager out from the list of droppable eagers since we are 887 * going to drop it. 888 */ 889 MAKE_UNDROPPABLE(eager); 890 891 if (tcp->tcp_connp->conn_debug) { 892 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 893 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 894 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 895 tcp->tcp_conn_req_cnt_q0, 896 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 897 } 898 899 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 900 901 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 902 CONN_INC_REF(eager->tcp_connp); 903 904 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 905 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 906 SQ_FILL, SQTAG_TCP_DROP_Q0); 907 908 return (B_TRUE); 909 } 910 911 /* 912 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 913 */ 914 static mblk_t * 915 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 916 ip_recv_attr_t *ira) 917 { 918 tcp_t *ltcp = lconnp->conn_tcp; 919 tcp_t *tcp = connp->conn_tcp; 920 mblk_t *tpi_mp; 921 ipha_t *ipha; 922 ip6_t *ip6h; 923 sin6_t sin6; 924 uint_t ifindex = ira->ira_ruifindex; 925 tcp_stack_t *tcps = tcp->tcp_tcps; 926 927 if (ira->ira_flags & IRAF_IS_IPV4) { 928 ipha = (ipha_t *)mp->b_rptr; 929 930 connp->conn_ipversion = IPV4_VERSION; 931 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 932 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 933 connp->conn_saddr_v6 = connp->conn_laddr_v6; 934 935 sin6 = sin6_null; 936 sin6.sin6_addr = connp->conn_faddr_v6; 937 sin6.sin6_port = connp->conn_fport; 938 sin6.sin6_family = AF_INET6; 939 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 940 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 941 942 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 943 sin6_t sin6d; 944 945 sin6d = sin6_null; 946 sin6d.sin6_addr = connp->conn_laddr_v6; 947 sin6d.sin6_port = connp->conn_lport; 948 sin6d.sin6_family = AF_INET; 949 tpi_mp = mi_tpi_extconn_ind(NULL, 950 (char *)&sin6d, sizeof (sin6_t), 951 (char *)&tcp, 952 (t_scalar_t)sizeof (intptr_t), 953 (char *)&sin6d, sizeof (sin6_t), 954 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 955 } else { 956 tpi_mp = mi_tpi_conn_ind(NULL, 957 (char *)&sin6, sizeof (sin6_t), 958 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 959 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 960 } 961 } else { 962 ip6h = (ip6_t *)mp->b_rptr; 963 964 connp->conn_ipversion = IPV6_VERSION; 965 connp->conn_laddr_v6 = ip6h->ip6_dst; 966 connp->conn_faddr_v6 = ip6h->ip6_src; 967 connp->conn_saddr_v6 = connp->conn_laddr_v6; 968 969 sin6 = sin6_null; 970 sin6.sin6_addr = connp->conn_faddr_v6; 971 sin6.sin6_port = connp->conn_fport; 972 sin6.sin6_family = AF_INET6; 973 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 974 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 975 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 976 977 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 978 /* Pass up the scope_id of remote addr */ 979 sin6.sin6_scope_id = ifindex; 980 } else { 981 sin6.sin6_scope_id = 0; 982 } 983 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 984 sin6_t sin6d; 985 986 sin6d = sin6_null; 987 sin6.sin6_addr = connp->conn_laddr_v6; 988 sin6d.sin6_port = connp->conn_lport; 989 sin6d.sin6_family = AF_INET6; 990 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 991 sin6d.sin6_scope_id = ifindex; 992 993 tpi_mp = mi_tpi_extconn_ind(NULL, 994 (char *)&sin6d, sizeof (sin6_t), 995 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 996 (char *)&sin6d, sizeof (sin6_t), 997 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 998 } else { 999 tpi_mp = mi_tpi_conn_ind(NULL, 1000 (char *)&sin6, sizeof (sin6_t), 1001 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1002 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1003 } 1004 } 1005 1006 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 1007 return (tpi_mp); 1008 } 1009 1010 /* Handle a SYN on an AF_INET socket */ 1011 static mblk_t * 1012 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 1013 ip_recv_attr_t *ira) 1014 { 1015 tcp_t *ltcp = lconnp->conn_tcp; 1016 tcp_t *tcp = connp->conn_tcp; 1017 sin_t sin; 1018 mblk_t *tpi_mp = NULL; 1019 tcp_stack_t *tcps = tcp->tcp_tcps; 1020 ipha_t *ipha; 1021 1022 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 1023 ipha = (ipha_t *)mp->b_rptr; 1024 1025 connp->conn_ipversion = IPV4_VERSION; 1026 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 1027 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 1028 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1029 1030 sin = sin_null; 1031 sin.sin_addr.s_addr = connp->conn_faddr_v4; 1032 sin.sin_port = connp->conn_fport; 1033 sin.sin_family = AF_INET; 1034 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 1035 sin_t sind; 1036 1037 sind = sin_null; 1038 sind.sin_addr.s_addr = connp->conn_laddr_v4; 1039 sind.sin_port = connp->conn_lport; 1040 sind.sin_family = AF_INET; 1041 tpi_mp = mi_tpi_extconn_ind(NULL, 1042 (char *)&sind, sizeof (sin_t), (char *)&tcp, 1043 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 1044 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1045 } else { 1046 tpi_mp = mi_tpi_conn_ind(NULL, 1047 (char *)&sin, sizeof (sin_t), 1048 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 1049 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 1050 } 1051 1052 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 1053 return (tpi_mp); 1054 } 1055 1056 /* 1057 * Called via squeue to get on to eager's perimeter. It sends a 1058 * TH_RST if eager is in the fanout table. The listener wants the 1059 * eager to disappear either by means of tcp_eager_blowoff() or 1060 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 1061 * called (via squeue) if the eager cannot be inserted in the 1062 * fanout table in tcp_input_listener(). 1063 */ 1064 /* ARGSUSED */ 1065 void 1066 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1067 { 1068 conn_t *econnp = (conn_t *)arg; 1069 tcp_t *eager = econnp->conn_tcp; 1070 tcp_t *listener = eager->tcp_listener; 1071 1072 /* 1073 * We could be called because listener is closing. Since 1074 * the eager was using listener's queue's, we avoid 1075 * using the listeners queues from now on. 1076 */ 1077 ASSERT(eager->tcp_detached); 1078 econnp->conn_rq = NULL; 1079 econnp->conn_wq = NULL; 1080 1081 /* 1082 * An eager's conn_fanout will be NULL if it's a duplicate 1083 * for an existing 4-tuples in the conn fanout table. 1084 * We don't want to send an RST out in such case. 1085 */ 1086 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1087 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1088 eager, eager->tcp_snxt, 0, TH_RST); 1089 } 1090 1091 /* We are here because listener wants this eager gone */ 1092 if (listener != NULL) { 1093 mutex_enter(&listener->tcp_eager_lock); 1094 tcp_eager_unlink(eager); 1095 if (eager->tcp_tconnind_started) { 1096 /* 1097 * The eager has sent a conn_ind up to the 1098 * listener but listener decides to close 1099 * instead. We need to drop the extra ref 1100 * placed on eager in tcp_input_data() before 1101 * sending the conn_ind to listener. 1102 */ 1103 CONN_DEC_REF(econnp); 1104 } 1105 mutex_exit(&listener->tcp_eager_lock); 1106 CONN_DEC_REF(listener->tcp_connp); 1107 } 1108 1109 if (eager->tcp_state != TCPS_CLOSED) 1110 tcp_close_detached(eager); 1111 } 1112 1113 /* 1114 * Reset any eager connection hanging off this listener marked 1115 * with 'seqnum' and then reclaim it's resources. 1116 */ 1117 boolean_t 1118 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1119 { 1120 tcp_t *eager; 1121 mblk_t *mp; 1122 1123 eager = listener; 1124 mutex_enter(&listener->tcp_eager_lock); 1125 do { 1126 eager = eager->tcp_eager_next_q; 1127 if (eager == NULL) { 1128 mutex_exit(&listener->tcp_eager_lock); 1129 return (B_FALSE); 1130 } 1131 } while (eager->tcp_conn_req_seqnum != seqnum); 1132 1133 if (eager->tcp_closemp_used) { 1134 mutex_exit(&listener->tcp_eager_lock); 1135 return (B_TRUE); 1136 } 1137 eager->tcp_closemp_used = B_TRUE; 1138 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1139 CONN_INC_REF(eager->tcp_connp); 1140 mutex_exit(&listener->tcp_eager_lock); 1141 mp = &eager->tcp_closemp; 1142 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1143 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1144 return (B_TRUE); 1145 } 1146 1147 /* 1148 * Reset any eager connection hanging off this listener 1149 * and then reclaim it's resources. 1150 */ 1151 void 1152 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1153 { 1154 tcp_t *eager; 1155 mblk_t *mp; 1156 tcp_stack_t *tcps = listener->tcp_tcps; 1157 1158 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1159 1160 if (!q0_only) { 1161 /* First cleanup q */ 1162 TCP_STAT(tcps, tcp_eager_blowoff_q); 1163 eager = listener->tcp_eager_next_q; 1164 while (eager != NULL) { 1165 if (!eager->tcp_closemp_used) { 1166 eager->tcp_closemp_used = B_TRUE; 1167 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1168 CONN_INC_REF(eager->tcp_connp); 1169 mp = &eager->tcp_closemp; 1170 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1171 tcp_eager_kill, eager->tcp_connp, NULL, 1172 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1173 } 1174 eager = eager->tcp_eager_next_q; 1175 } 1176 } 1177 /* Then cleanup q0 */ 1178 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1179 eager = listener->tcp_eager_next_q0; 1180 while (eager != listener) { 1181 if (!eager->tcp_closemp_used) { 1182 eager->tcp_closemp_used = B_TRUE; 1183 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1184 CONN_INC_REF(eager->tcp_connp); 1185 mp = &eager->tcp_closemp; 1186 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1187 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1188 SQTAG_TCP_EAGER_CLEANUP_Q0); 1189 } 1190 eager = eager->tcp_eager_next_q0; 1191 } 1192 } 1193 1194 /* 1195 * If we are an eager connection hanging off a listener that hasn't 1196 * formally accepted the connection yet, get off its list and blow off 1197 * any data that we have accumulated. 1198 */ 1199 void 1200 tcp_eager_unlink(tcp_t *tcp) 1201 { 1202 tcp_t *listener = tcp->tcp_listener; 1203 1204 ASSERT(listener != NULL); 1205 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1206 if (tcp->tcp_eager_next_q0 != NULL) { 1207 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1208 1209 /* Remove the eager tcp from q0 */ 1210 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1211 tcp->tcp_eager_prev_q0; 1212 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1213 tcp->tcp_eager_next_q0; 1214 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1215 listener->tcp_conn_req_cnt_q0--; 1216 1217 tcp->tcp_eager_next_q0 = NULL; 1218 tcp->tcp_eager_prev_q0 = NULL; 1219 1220 /* 1221 * Take the eager out, if it is in the list of droppable 1222 * eagers. 1223 */ 1224 MAKE_UNDROPPABLE(tcp); 1225 1226 if (tcp->tcp_syn_rcvd_timeout != 0) { 1227 /* we have timed out before */ 1228 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1229 listener->tcp_syn_rcvd_timeout--; 1230 } 1231 } else { 1232 tcp_t **tcpp = &listener->tcp_eager_next_q; 1233 tcp_t *prev = NULL; 1234 1235 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1236 if (tcpp[0] == tcp) { 1237 if (listener->tcp_eager_last_q == tcp) { 1238 /* 1239 * If we are unlinking the last 1240 * element on the list, adjust 1241 * tail pointer. Set tail pointer 1242 * to nil when list is empty. 1243 */ 1244 ASSERT(tcp->tcp_eager_next_q == NULL); 1245 if (listener->tcp_eager_last_q == 1246 listener->tcp_eager_next_q) { 1247 listener->tcp_eager_last_q = 1248 NULL; 1249 } else { 1250 /* 1251 * We won't get here if there 1252 * is only one eager in the 1253 * list. 1254 */ 1255 ASSERT(prev != NULL); 1256 listener->tcp_eager_last_q = 1257 prev; 1258 } 1259 } 1260 tcpp[0] = tcp->tcp_eager_next_q; 1261 tcp->tcp_eager_next_q = NULL; 1262 tcp->tcp_eager_last_q = NULL; 1263 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1264 listener->tcp_conn_req_cnt_q--; 1265 break; 1266 } 1267 prev = tcpp[0]; 1268 } 1269 } 1270 tcp->tcp_listener = NULL; 1271 } 1272 1273 /* BEGIN CSTYLED */ 1274 /* 1275 * 1276 * The sockfs ACCEPT path: 1277 * ======================= 1278 * 1279 * The eager is now established in its own perimeter as soon as SYN is 1280 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1281 * completes the accept processing on the acceptor STREAM. The sending 1282 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1283 * listener but a TLI/XTI listener completes the accept processing 1284 * on the listener perimeter. 1285 * 1286 * Common control flow for 3 way handshake: 1287 * ---------------------------------------- 1288 * 1289 * incoming SYN (listener perimeter) -> tcp_input_listener() 1290 * 1291 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1292 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1293 * 1294 * Sockfs ACCEPT Path: 1295 * ------------------- 1296 * 1297 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1298 * as STREAM entry point) 1299 * 1300 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1301 * 1302 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1303 * association (we are not behind eager's squeue but sockfs is protecting us 1304 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1305 * is changed to point at tcp_wput(). 1306 * 1307 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1308 * listener (done on listener's perimeter). 1309 * 1310 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1311 * accept. 1312 * 1313 * TLI/XTI client ACCEPT path: 1314 * --------------------------- 1315 * 1316 * soaccept() sends T_CONN_RES on the listener STREAM. 1317 * 1318 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1319 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1320 * 1321 * Locks: 1322 * ====== 1323 * 1324 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1325 * and listeners->tcp_eager_next_q. 1326 * 1327 * Referencing: 1328 * ============ 1329 * 1330 * 1) We start out in tcp_input_listener by eager placing a ref on 1331 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1332 * 1333 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1334 * doing so we place a ref on the eager. This ref is finally dropped at the 1335 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1336 * reference is dropped by the squeue framework. 1337 * 1338 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1339 * 1340 * The reference must be released by the same entity that added the reference 1341 * In the above scheme, the eager is the entity that adds and releases the 1342 * references. Note that tcp_accept_finish executes in the squeue of the eager 1343 * (albeit after it is attached to the acceptor stream). Though 1. executes 1344 * in the listener's squeue, the eager is nascent at this point and the 1345 * reference can be considered to have been added on behalf of the eager. 1346 * 1347 * Eager getting a Reset or listener closing: 1348 * ========================================== 1349 * 1350 * Once the listener and eager are linked, the listener never does the unlink. 1351 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1352 * a message on all eager perimeter. The eager then does the unlink, clears 1353 * any pointers to the listener's queue and drops the reference to the 1354 * listener. The listener waits in tcp_close outside the squeue until its 1355 * refcount has dropped to 1. This ensures that the listener has waited for 1356 * all eagers to clear their association with the listener. 1357 * 1358 * Similarly, if eager decides to go away, it can unlink itself and close. 1359 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1360 * the reference to eager is still valid because of the extra ref we put 1361 * in tcp_send_conn_ind. 1362 * 1363 * Listener can always locate the eager under the protection 1364 * of the listener->tcp_eager_lock, and then do a refhold 1365 * on the eager during the accept processing. 1366 * 1367 * The acceptor stream accesses the eager in the accept processing 1368 * based on the ref placed on eager before sending T_conn_ind. 1369 * The only entity that can negate this refhold is a listener close 1370 * which is mutually exclusive with an active acceptor stream. 1371 * 1372 * Eager's reference on the listener 1373 * =================================== 1374 * 1375 * If the accept happens (even on a closed eager) the eager drops its 1376 * reference on the listener at the start of tcp_accept_finish. If the 1377 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1378 * the reference is dropped in tcp_closei_local. If the listener closes, 1379 * the reference is dropped in tcp_eager_kill. In all cases the reference 1380 * is dropped while executing in the eager's context (squeue). 1381 */ 1382 /* END CSTYLED */ 1383 1384 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1385 1386 /* 1387 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1388 * tcp_input_data will not see any packets for listeners since the listener 1389 * has conn_recv set to tcp_input_listener. 1390 */ 1391 /* ARGSUSED */ 1392 static void 1393 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1394 { 1395 tcpha_t *tcpha; 1396 uint32_t seg_seq; 1397 tcp_t *eager; 1398 int err; 1399 conn_t *econnp = NULL; 1400 squeue_t *new_sqp; 1401 mblk_t *mp1; 1402 uint_t ip_hdr_len; 1403 conn_t *lconnp = (conn_t *)arg; 1404 tcp_t *listener = lconnp->conn_tcp; 1405 tcp_stack_t *tcps = listener->tcp_tcps; 1406 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1407 uint_t flags; 1408 mblk_t *tpi_mp; 1409 uint_t ifindex = ira->ira_ruifindex; 1410 boolean_t tlc_set = B_FALSE; 1411 1412 ip_hdr_len = ira->ira_ip_hdr_length; 1413 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1414 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1415 1416 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1417 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1418 __dtrace_tcp_tcph_t *, tcpha); 1419 1420 if (!(flags & TH_SYN)) { 1421 if ((flags & TH_RST) || (flags & TH_URG)) { 1422 freemsg(mp); 1423 return; 1424 } 1425 if (flags & TH_ACK) { 1426 /* Note this executes in listener's squeue */ 1427 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1428 return; 1429 } 1430 1431 freemsg(mp); 1432 return; 1433 } 1434 1435 if (listener->tcp_state != TCPS_LISTEN) 1436 goto error2; 1437 1438 ASSERT(IPCL_IS_BOUND(lconnp)); 1439 1440 mutex_enter(&listener->tcp_eager_lock); 1441 1442 /* 1443 * The system is under memory pressure, so we need to do our part 1444 * to relieve the pressure. So we only accept new request if there 1445 * is nothing waiting to be accepted or waiting to complete the 3-way 1446 * handshake. This means that busy listener will not get too many 1447 * new requests which they cannot handle in time while non-busy 1448 * listener is still functioning properly. 1449 */ 1450 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1451 listener->tcp_conn_req_cnt_q0 > 0)) { 1452 mutex_exit(&listener->tcp_eager_lock); 1453 TCP_STAT(tcps, tcp_listen_mem_drop); 1454 goto error2; 1455 } 1456 1457 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1458 mutex_exit(&listener->tcp_eager_lock); 1459 TCP_STAT(tcps, tcp_listendrop); 1460 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1461 if (lconnp->conn_debug) { 1462 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1463 "tcp_input_listener: listen backlog (max=%d) " 1464 "overflow (%d pending) on %s", 1465 listener->tcp_conn_req_max, 1466 listener->tcp_conn_req_cnt_q, 1467 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1468 } 1469 goto error2; 1470 } 1471 1472 if (listener->tcp_conn_req_cnt_q0 >= 1473 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1474 /* 1475 * Q0 is full. Drop a pending half-open req from the queue 1476 * to make room for the new SYN req. Also mark the time we 1477 * drop a SYN. 1478 * 1479 * A more aggressive defense against SYN attack will 1480 * be to set the "tcp_syn_defense" flag now. 1481 */ 1482 TCP_STAT(tcps, tcp_listendropq0); 1483 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1484 if (!tcp_drop_q0(listener)) { 1485 mutex_exit(&listener->tcp_eager_lock); 1486 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1487 if (lconnp->conn_debug) { 1488 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1489 "tcp_input_listener: listen half-open " 1490 "queue (max=%d) full (%d pending) on %s", 1491 tcps->tcps_conn_req_max_q0, 1492 listener->tcp_conn_req_cnt_q0, 1493 tcp_display(listener, NULL, 1494 DISP_PORT_ONLY)); 1495 } 1496 goto error2; 1497 } 1498 } 1499 1500 /* 1501 * Enforce the limit set on the number of connections per listener. 1502 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1503 * for comparison. 1504 */ 1505 if (listener->tcp_listen_cnt != NULL) { 1506 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1507 int64_t now; 1508 1509 if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) { 1510 mutex_exit(&listener->tcp_eager_lock); 1511 now = ddi_get_lbolt64(); 1512 atomic_dec_32(&tlc->tlc_cnt); 1513 TCP_STAT(tcps, tcp_listen_cnt_drop); 1514 tlc->tlc_drop++; 1515 if (now - tlc->tlc_report_time > 1516 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1517 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1518 "Listener (port %d) connection max (%u) " 1519 "reached: %u attempts dropped total\n", 1520 ntohs(listener->tcp_connp->conn_lport), 1521 tlc->tlc_max, tlc->tlc_drop); 1522 tlc->tlc_report_time = now; 1523 } 1524 goto error2; 1525 } 1526 tlc_set = B_TRUE; 1527 } 1528 1529 mutex_exit(&listener->tcp_eager_lock); 1530 1531 /* 1532 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1533 * or based on the ring (for packets from GLD). Otherwise it is 1534 * set based on lbolt i.e., a somewhat random number. 1535 */ 1536 ASSERT(ira->ira_sqp != NULL); 1537 new_sqp = ira->ira_sqp; 1538 1539 econnp = tcp_get_conn(arg2, tcps); 1540 if (econnp == NULL) 1541 goto error2; 1542 1543 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1544 econnp->conn_sqp = new_sqp; 1545 econnp->conn_initial_sqp = new_sqp; 1546 econnp->conn_ixa->ixa_sqp = new_sqp; 1547 1548 econnp->conn_fport = tcpha->tha_lport; 1549 econnp->conn_lport = tcpha->tha_fport; 1550 1551 err = conn_inherit_parent(lconnp, econnp); 1552 if (err != 0) 1553 goto error3; 1554 1555 /* We already know the laddr of the new connection is ours */ 1556 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1557 1558 ASSERT(OK_32PTR(mp->b_rptr)); 1559 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1560 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1561 1562 if (lconnp->conn_family == AF_INET) { 1563 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1564 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1565 } else { 1566 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1567 } 1568 1569 if (tpi_mp == NULL) 1570 goto error3; 1571 1572 eager = econnp->conn_tcp; 1573 eager->tcp_detached = B_TRUE; 1574 SOCK_CONNID_INIT(eager->tcp_connid); 1575 1576 /* 1577 * Initialize the eager's tcp_t and inherit some parameters from 1578 * the listener. 1579 */ 1580 tcp_init_values(eager, listener); 1581 1582 ASSERT((econnp->conn_ixa->ixa_flags & 1583 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1584 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1585 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1586 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1587 1588 if (!tcps->tcps_dev_flow_ctl) 1589 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1590 1591 /* Prepare for diffing against previous packets */ 1592 eager->tcp_recvifindex = 0; 1593 eager->tcp_recvhops = 0xffffffffU; 1594 1595 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1596 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1597 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1598 econnp->conn_incoming_ifindex = ifindex; 1599 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1600 econnp->conn_ixa->ixa_scopeid = ifindex; 1601 } 1602 } 1603 1604 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1605 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1606 tcps->tcps_rev_src_routes) { 1607 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1608 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1609 1610 /* Source routing option copyover (reverse it) */ 1611 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1612 if (err != 0) { 1613 freemsg(tpi_mp); 1614 goto error3; 1615 } 1616 ip_pkt_source_route_reverse_v4(ipp); 1617 } 1618 1619 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1620 ASSERT(!eager->tcp_tconnind_started); 1621 /* 1622 * If the SYN came with a credential, it's a loopback packet or a 1623 * labeled packet; attach the credential to the TPI message. 1624 */ 1625 if (ira->ira_cred != NULL) 1626 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1627 1628 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1629 ASSERT(eager->tcp_ordrel_mp == NULL); 1630 1631 /* Inherit the listener's non-STREAMS flag */ 1632 if (IPCL_IS_NONSTR(lconnp)) { 1633 econnp->conn_flags |= IPCL_NONSTR; 1634 /* All non-STREAMS tcp_ts are sockets */ 1635 eager->tcp_issocket = B_TRUE; 1636 } else { 1637 /* 1638 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1639 * at close time, we will always have that to send up. 1640 * Otherwise, we need to do special handling in case the 1641 * allocation fails at that time. 1642 */ 1643 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1644 goto error3; 1645 } 1646 /* 1647 * Now that the IP addresses and ports are setup in econnp we 1648 * can do the IPsec policy work. 1649 */ 1650 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1651 if (lconnp->conn_policy != NULL) { 1652 /* 1653 * Inherit the policy from the listener; use 1654 * actions from ira 1655 */ 1656 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1657 CONN_DEC_REF(econnp); 1658 freemsg(mp); 1659 goto error3; 1660 } 1661 } 1662 } 1663 1664 /* 1665 * tcp_set_destination() may set tcp_rwnd according to the route 1666 * metrics. If it does not, the eager's receive window will be set 1667 * to the listener's receive window later in this function. 1668 */ 1669 eager->tcp_rwnd = 0; 1670 1671 if (is_system_labeled()) { 1672 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1673 1674 ASSERT(ira->ira_tsl != NULL); 1675 /* Discard any old label */ 1676 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1677 ASSERT(ixa->ixa_tsl != NULL); 1678 label_rele(ixa->ixa_tsl); 1679 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1680 ixa->ixa_tsl = NULL; 1681 } 1682 if ((lconnp->conn_mlp_type != mlptSingle || 1683 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1684 ira->ira_tsl != NULL) { 1685 /* 1686 * If this is an MLP connection or a MAC-Exempt 1687 * connection with an unlabeled node, packets are to be 1688 * exchanged using the security label of the received 1689 * SYN packet instead of the server application's label. 1690 * tsol_check_dest called from ip_set_destination 1691 * might later update TSF_UNLABELED by replacing 1692 * ixa_tsl with a new label. 1693 */ 1694 label_hold(ira->ira_tsl); 1695 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1696 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1697 econnp, ts_label_t *, ixa->ixa_tsl) 1698 } else { 1699 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1700 DTRACE_PROBE2(syn_accept, conn_t *, 1701 econnp, ts_label_t *, ixa->ixa_tsl) 1702 } 1703 /* 1704 * conn_connect() called from tcp_set_destination will verify 1705 * the destination is allowed to receive packets at the 1706 * security label of the SYN-ACK we are generating. As part of 1707 * that, tsol_check_dest() may create a new effective label for 1708 * this connection. 1709 * Finally conn_connect() will call conn_update_label. 1710 * All that remains for TCP to do is to call 1711 * conn_build_hdr_template which is done as part of 1712 * tcp_set_destination. 1713 */ 1714 } 1715 1716 /* 1717 * Since we will clear tcp_listener before we clear tcp_detached 1718 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1719 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1720 */ 1721 eager->tcp_hard_binding = B_TRUE; 1722 1723 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1724 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1725 1726 CL_INET_CONNECT(econnp, B_FALSE, err); 1727 if (err != 0) { 1728 tcp_bind_hash_remove(eager); 1729 goto error3; 1730 } 1731 1732 SOCK_CONNID_BUMP(eager->tcp_connid); 1733 1734 /* 1735 * Adapt our mss, ttl, ... based on the remote address. 1736 */ 1737 1738 if (tcp_set_destination(eager) != 0) { 1739 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1740 /* Undo the bind_hash_insert */ 1741 tcp_bind_hash_remove(eager); 1742 goto error3; 1743 } 1744 1745 /* Process all TCP options. */ 1746 tcp_process_options(eager, tcpha); 1747 1748 /* Is the other end ECN capable? */ 1749 if (tcps->tcps_ecn_permitted >= 1 && 1750 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1751 eager->tcp_ecn_ok = B_TRUE; 1752 } 1753 1754 /* 1755 * The listener's conn_rcvbuf should be the default window size or a 1756 * window size changed via SO_RCVBUF option. First round up the 1757 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1758 * scale option value if needed. Call tcp_rwnd_set() to finish the 1759 * setting. 1760 * 1761 * Note if there is a rpipe metric associated with the remote host, 1762 * we should not inherit receive window size from listener. 1763 */ 1764 eager->tcp_rwnd = MSS_ROUNDUP( 1765 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1766 eager->tcp_rwnd), eager->tcp_mss); 1767 if (eager->tcp_snd_ws_ok) 1768 tcp_set_ws_value(eager); 1769 /* 1770 * Note that this is the only place tcp_rwnd_set() is called for 1771 * accepting a connection. We need to call it here instead of 1772 * after the 3-way handshake because we need to tell the other 1773 * side our rwnd in the SYN-ACK segment. 1774 */ 1775 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1776 1777 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1778 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1779 1780 ASSERT(econnp->conn_rcvbuf != 0 && 1781 econnp->conn_rcvbuf == eager->tcp_rwnd); 1782 1783 /* Put a ref on the listener for the eager. */ 1784 CONN_INC_REF(lconnp); 1785 mutex_enter(&listener->tcp_eager_lock); 1786 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1787 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1788 listener->tcp_eager_next_q0 = eager; 1789 eager->tcp_eager_prev_q0 = listener; 1790 1791 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1792 eager->tcp_listener = listener; 1793 eager->tcp_saved_listener = listener; 1794 1795 /* 1796 * Set tcp_listen_cnt so that when the connection is done, the counter 1797 * is decremented. 1798 */ 1799 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1800 1801 /* 1802 * Tag this detached tcp vector for later retrieval 1803 * by our listener client in tcp_accept(). 1804 */ 1805 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1806 listener->tcp_conn_req_cnt_q0++; 1807 if (++listener->tcp_conn_req_seqnum == -1) { 1808 /* 1809 * -1 is "special" and defined in TPI as something 1810 * that should never be used in T_CONN_IND 1811 */ 1812 ++listener->tcp_conn_req_seqnum; 1813 } 1814 mutex_exit(&listener->tcp_eager_lock); 1815 1816 if (listener->tcp_syn_defense) { 1817 /* Don't drop the SYN that comes from a good IP source */ 1818 ipaddr_t *addr_cache; 1819 1820 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1821 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1822 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1823 eager->tcp_dontdrop = B_TRUE; 1824 } 1825 } 1826 1827 /* 1828 * We need to insert the eager in its own perimeter but as soon 1829 * as we do that, we expose the eager to the classifier and 1830 * should not touch any field outside the eager's perimeter. 1831 * So do all the work necessary before inserting the eager 1832 * in its own perimeter. Be optimistic that conn_connect() 1833 * will succeed but undo everything if it fails. 1834 */ 1835 seg_seq = ntohl(tcpha->tha_seq); 1836 eager->tcp_irs = seg_seq; 1837 eager->tcp_rack = seg_seq; 1838 eager->tcp_rnxt = seg_seq + 1; 1839 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1840 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1841 eager->tcp_state = TCPS_SYN_RCVD; 1842 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1843 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1844 int32_t, TCPS_LISTEN); 1845 1846 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1847 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1848 if (mp1 == NULL) { 1849 /* 1850 * Increment the ref count as we are going to 1851 * enqueueing an mp in squeue 1852 */ 1853 CONN_INC_REF(econnp); 1854 goto error; 1855 } 1856 1857 /* 1858 * We need to start the rto timer. In normal case, we start 1859 * the timer after sending the packet on the wire (or at 1860 * least believing that packet was sent by waiting for 1861 * conn_ip_output() to return). Since this is the first packet 1862 * being sent on the wire for the eager, our initial tcp_rto 1863 * is at least tcp_rexmit_interval_min which is a fairly 1864 * large value to allow the algorithm to adjust slowly to large 1865 * fluctuations of RTT during first few transmissions. 1866 * 1867 * Starting the timer first and then sending the packet in this 1868 * case shouldn't make much difference since tcp_rexmit_interval_min 1869 * is of the order of several 100ms and starting the timer 1870 * first and then sending the packet will result in difference 1871 * of few micro seconds. 1872 * 1873 * Without this optimization, we are forced to hold the fanout 1874 * lock across the ipcl_bind_insert() and sending the packet 1875 * so that we don't race against an incoming packet (maybe RST) 1876 * for this eager. 1877 * 1878 * It is necessary to acquire an extra reference on the eager 1879 * at this point and hold it until after tcp_send_data() to 1880 * ensure against an eager close race. 1881 */ 1882 1883 CONN_INC_REF(econnp); 1884 1885 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1886 1887 /* 1888 * Insert the eager in its own perimeter now. We are ready to deal 1889 * with any packets on eager. 1890 */ 1891 if (ipcl_conn_insert(econnp) != 0) 1892 goto error; 1893 1894 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1895 freemsg(mp); 1896 /* 1897 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1898 * only used by one thread at a time. 1899 */ 1900 if (econnp->conn_sqp == lconnp->conn_sqp) { 1901 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1902 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1903 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1904 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1905 (void) conn_ip_output(mp1, econnp->conn_ixa); 1906 CONN_DEC_REF(econnp); 1907 } else { 1908 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1909 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1910 } 1911 return; 1912 error: 1913 freemsg(mp1); 1914 eager->tcp_closemp_used = B_TRUE; 1915 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1916 mp1 = &eager->tcp_closemp; 1917 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1918 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1919 1920 /* 1921 * If a connection already exists, send the mp to that connections so 1922 * that it can be appropriately dealt with. 1923 */ 1924 ipst = tcps->tcps_netstack->netstack_ip; 1925 1926 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1927 if (!IPCL_IS_CONNECTED(econnp)) { 1928 /* 1929 * Something bad happened. ipcl_conn_insert() 1930 * failed because a connection already existed 1931 * in connected hash but we can't find it 1932 * anymore (someone blew it away). Just 1933 * free this message and hopefully remote 1934 * will retransmit at which time the SYN can be 1935 * treated as a new connection or dealth with 1936 * a TH_RST if a connection already exists. 1937 */ 1938 CONN_DEC_REF(econnp); 1939 freemsg(mp); 1940 } else { 1941 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1942 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1943 } 1944 } else { 1945 /* Nobody wants this packet */ 1946 freemsg(mp); 1947 } 1948 return; 1949 error3: 1950 CONN_DEC_REF(econnp); 1951 error2: 1952 freemsg(mp); 1953 if (tlc_set) 1954 atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt); 1955 } 1956 1957 /* 1958 * In an ideal case of vertical partition in NUMA architecture, its 1959 * beneficial to have the listener and all the incoming connections 1960 * tied to the same squeue. The other constraint is that incoming 1961 * connections should be tied to the squeue attached to interrupted 1962 * CPU for obvious locality reason so this leaves the listener to 1963 * be tied to the same squeue. Our only problem is that when listener 1964 * is binding, the CPU that will get interrupted by the NIC whose 1965 * IP address the listener is binding to is not even known. So 1966 * the code below allows us to change that binding at the time the 1967 * CPU is interrupted by virtue of incoming connection's squeue. 1968 * 1969 * This is usefull only in case of a listener bound to a specific IP 1970 * address. For other kind of listeners, they get bound the 1971 * very first time and there is no attempt to rebind them. 1972 */ 1973 void 1974 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1975 ip_recv_attr_t *ira) 1976 { 1977 conn_t *connp = (conn_t *)arg; 1978 squeue_t *sqp = (squeue_t *)arg2; 1979 squeue_t *new_sqp; 1980 uint32_t conn_flags; 1981 1982 /* 1983 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1984 * or based on the ring (for packets from GLD). Otherwise it is 1985 * set based on lbolt i.e., a somewhat random number. 1986 */ 1987 ASSERT(ira->ira_sqp != NULL); 1988 new_sqp = ira->ira_sqp; 1989 1990 if (connp->conn_fanout == NULL) 1991 goto done; 1992 1993 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1994 mutex_enter(&connp->conn_fanout->connf_lock); 1995 mutex_enter(&connp->conn_lock); 1996 /* 1997 * No one from read or write side can access us now 1998 * except for already queued packets on this squeue. 1999 * But since we haven't changed the squeue yet, they 2000 * can't execute. If they are processed after we have 2001 * changed the squeue, they are sent back to the 2002 * correct squeue down below. 2003 * But a listner close can race with processing of 2004 * incoming SYN. If incoming SYN processing changes 2005 * the squeue then the listener close which is waiting 2006 * to enter the squeue would operate on the wrong 2007 * squeue. Hence we don't change the squeue here unless 2008 * the refcount is exactly the minimum refcount. The 2009 * minimum refcount of 4 is counted as - 1 each for 2010 * TCP and IP, 1 for being in the classifier hash, and 2011 * 1 for the mblk being processed. 2012 */ 2013 2014 if (connp->conn_ref != 4 || 2015 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 2016 mutex_exit(&connp->conn_lock); 2017 mutex_exit(&connp->conn_fanout->connf_lock); 2018 goto done; 2019 } 2020 if (connp->conn_sqp != new_sqp) { 2021 while (connp->conn_sqp != new_sqp) 2022 (void) atomic_cas_ptr(&connp->conn_sqp, sqp, 2023 new_sqp); 2024 /* No special MT issues for outbound ixa_sqp hint */ 2025 connp->conn_ixa->ixa_sqp = new_sqp; 2026 } 2027 2028 do { 2029 conn_flags = connp->conn_flags; 2030 conn_flags |= IPCL_FULLY_BOUND; 2031 (void) atomic_cas_32(&connp->conn_flags, 2032 connp->conn_flags, conn_flags); 2033 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 2034 2035 mutex_exit(&connp->conn_fanout->connf_lock); 2036 mutex_exit(&connp->conn_lock); 2037 2038 /* 2039 * Assume we have picked a good squeue for the listener. Make 2040 * subsequent SYNs not try to change the squeue. 2041 */ 2042 connp->conn_recv = tcp_input_listener; 2043 } 2044 2045 done: 2046 if (connp->conn_sqp != sqp) { 2047 CONN_INC_REF(connp); 2048 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 2049 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 2050 } else { 2051 tcp_input_listener(connp, mp, sqp, ira); 2052 } 2053 } 2054 2055 /* 2056 * Send up all messages queued on tcp_rcv_list. 2057 */ 2058 uint_t 2059 tcp_rcv_drain(tcp_t *tcp) 2060 { 2061 mblk_t *mp; 2062 uint_t ret = 0; 2063 #ifdef DEBUG 2064 uint_t cnt = 0; 2065 #endif 2066 queue_t *q = tcp->tcp_connp->conn_rq; 2067 2068 /* Can't drain on an eager connection */ 2069 if (tcp->tcp_listener != NULL) 2070 return (ret); 2071 2072 /* Can't be a non-STREAMS connection */ 2073 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 2074 2075 /* No need for the push timer now. */ 2076 if (tcp->tcp_push_tid != 0) { 2077 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2078 tcp->tcp_push_tid = 0; 2079 } 2080 2081 /* 2082 * Handle two cases here: we are currently fused or we were 2083 * previously fused and have some urgent data to be delivered 2084 * upstream. The latter happens because we either ran out of 2085 * memory or were detached and therefore sending the SIGURG was 2086 * deferred until this point. In either case we pass control 2087 * over to tcp_fuse_rcv_drain() since it may need to complete 2088 * some work. 2089 */ 2090 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2091 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2092 &tcp->tcp_fused_sigurg_mp)) 2093 return (ret); 2094 } 2095 2096 while ((mp = tcp->tcp_rcv_list) != NULL) { 2097 tcp->tcp_rcv_list = mp->b_next; 2098 mp->b_next = NULL; 2099 #ifdef DEBUG 2100 cnt += msgdsize(mp); 2101 #endif 2102 putnext(q, mp); 2103 } 2104 #ifdef DEBUG 2105 ASSERT(cnt == tcp->tcp_rcv_cnt); 2106 #endif 2107 tcp->tcp_rcv_last_head = NULL; 2108 tcp->tcp_rcv_last_tail = NULL; 2109 tcp->tcp_rcv_cnt = 0; 2110 2111 if (canputnext(q)) 2112 return (tcp_rwnd_reopen(tcp)); 2113 2114 return (ret); 2115 } 2116 2117 /* 2118 * Queue data on tcp_rcv_list which is a b_next chain. 2119 * tcp_rcv_last_head/tail is the last element of this chain. 2120 * Each element of the chain is a b_cont chain. 2121 * 2122 * M_DATA messages are added to the current element. 2123 * Other messages are added as new (b_next) elements. 2124 */ 2125 void 2126 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2127 { 2128 ASSERT(seg_len == msgdsize(mp)); 2129 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2130 2131 if (is_system_labeled()) { 2132 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2133 /* 2134 * Provide for protocols above TCP such as RPC. NOPID leaves 2135 * db_cpid unchanged. 2136 * The cred could have already been set. 2137 */ 2138 if (cr != NULL) 2139 mblk_setcred(mp, cr, NOPID); 2140 } 2141 2142 if (tcp->tcp_rcv_list == NULL) { 2143 ASSERT(tcp->tcp_rcv_last_head == NULL); 2144 tcp->tcp_rcv_list = mp; 2145 tcp->tcp_rcv_last_head = mp; 2146 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2147 tcp->tcp_rcv_last_tail->b_cont = mp; 2148 } else { 2149 tcp->tcp_rcv_last_head->b_next = mp; 2150 tcp->tcp_rcv_last_head = mp; 2151 } 2152 2153 while (mp->b_cont) 2154 mp = mp->b_cont; 2155 2156 tcp->tcp_rcv_last_tail = mp; 2157 tcp->tcp_rcv_cnt += seg_len; 2158 tcp->tcp_rwnd -= seg_len; 2159 } 2160 2161 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2162 mblk_t * 2163 tcp_ack_mp(tcp_t *tcp) 2164 { 2165 uint32_t seq_no; 2166 tcp_stack_t *tcps = tcp->tcp_tcps; 2167 conn_t *connp = tcp->tcp_connp; 2168 2169 /* 2170 * There are a few cases to be considered while setting the sequence no. 2171 * Essentially, we can come here while processing an unacceptable pkt 2172 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2173 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2174 * If we are here for a zero window probe, stick with suna. In all 2175 * other cases, we check if suna + swnd encompasses snxt and set 2176 * the sequence number to snxt, if so. If snxt falls outside the 2177 * window (the receiver probably shrunk its window), we will go with 2178 * suna + swnd, otherwise the sequence no will be unacceptable to the 2179 * receiver. 2180 */ 2181 if (tcp->tcp_zero_win_probe) { 2182 seq_no = tcp->tcp_suna; 2183 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2184 ASSERT(tcp->tcp_swnd == 0); 2185 seq_no = tcp->tcp_snxt; 2186 } else { 2187 seq_no = SEQ_GT(tcp->tcp_snxt, 2188 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2189 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2190 } 2191 2192 if (tcp->tcp_valid_bits) { 2193 /* 2194 * For the complex case where we have to send some 2195 * controls (FIN or SYN), let tcp_xmit_mp do it. 2196 */ 2197 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2198 NULL, B_FALSE)); 2199 } else { 2200 /* Generate a simple ACK */ 2201 int data_length; 2202 uchar_t *rptr; 2203 tcpha_t *tcpha; 2204 mblk_t *mp1; 2205 int32_t total_hdr_len; 2206 int32_t tcp_hdr_len; 2207 int32_t num_sack_blk = 0; 2208 int32_t sack_opt_len; 2209 ip_xmit_attr_t *ixa = connp->conn_ixa; 2210 2211 /* 2212 * Allocate space for TCP + IP headers 2213 * and link-level header 2214 */ 2215 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2216 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2217 tcp->tcp_num_sack_blk); 2218 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2219 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2220 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2221 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2222 } else { 2223 total_hdr_len = connp->conn_ht_iphc_len; 2224 tcp_hdr_len = connp->conn_ht_ulp_len; 2225 } 2226 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2227 if (!mp1) 2228 return (NULL); 2229 2230 /* Update the latest receive window size in TCP header. */ 2231 tcp->tcp_tcpha->tha_win = 2232 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2233 /* copy in prototype TCP + IP header */ 2234 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2235 mp1->b_rptr = rptr; 2236 mp1->b_wptr = rptr + total_hdr_len; 2237 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2238 2239 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2240 2241 /* Set the TCP sequence number. */ 2242 tcpha->tha_seq = htonl(seq_no); 2243 2244 /* Set up the TCP flag field. */ 2245 tcpha->tha_flags = (uchar_t)TH_ACK; 2246 if (tcp->tcp_ecn_echo_on) 2247 tcpha->tha_flags |= TH_ECE; 2248 2249 tcp->tcp_rack = tcp->tcp_rnxt; 2250 tcp->tcp_rack_cnt = 0; 2251 2252 /* fill in timestamp option if in use */ 2253 if (tcp->tcp_snd_ts_ok) { 2254 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2255 2256 U32_TO_BE32(llbolt, 2257 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2258 U32_TO_BE32(tcp->tcp_ts_recent, 2259 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2260 } 2261 2262 /* Fill in SACK options */ 2263 if (num_sack_blk > 0) { 2264 uchar_t *wptr = (uchar_t *)tcpha + 2265 connp->conn_ht_ulp_len; 2266 sack_blk_t *tmp; 2267 int32_t i; 2268 2269 wptr[0] = TCPOPT_NOP; 2270 wptr[1] = TCPOPT_NOP; 2271 wptr[2] = TCPOPT_SACK; 2272 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2273 sizeof (sack_blk_t); 2274 wptr += TCPOPT_REAL_SACK_LEN; 2275 2276 tmp = tcp->tcp_sack_list; 2277 for (i = 0; i < num_sack_blk; i++) { 2278 U32_TO_BE32(tmp[i].begin, wptr); 2279 wptr += sizeof (tcp_seq); 2280 U32_TO_BE32(tmp[i].end, wptr); 2281 wptr += sizeof (tcp_seq); 2282 } 2283 tcpha->tha_offset_and_reserved += 2284 ((num_sack_blk * 2 + 1) << 4); 2285 } 2286 2287 ixa->ixa_pktlen = total_hdr_len; 2288 2289 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2290 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2291 } else { 2292 ip6_t *ip6 = (ip6_t *)rptr; 2293 2294 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2295 } 2296 2297 /* 2298 * Prime pump for checksum calculation in IP. Include the 2299 * adjustment for a source route if any. 2300 */ 2301 data_length = tcp_hdr_len + connp->conn_sum; 2302 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2303 tcpha->tha_sum = htons(data_length); 2304 2305 if (tcp->tcp_ip_forward_progress) { 2306 tcp->tcp_ip_forward_progress = B_FALSE; 2307 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2308 } else { 2309 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2310 } 2311 return (mp1); 2312 } 2313 } 2314 2315 /* 2316 * Dummy socket upcalls for if/when the conn_t gets detached from a 2317 * direct-callback sonode via a user-driven close(). Easy to catch with 2318 * DTrace FBT, and should be mostly harmless. 2319 */ 2320 2321 /* ARGSUSED */ 2322 static sock_upper_handle_t 2323 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y, 2324 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored) 2325 { 2326 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2327 return (NULL); 2328 } 2329 2330 /* ARGSUSED */ 2331 static void 2332 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr, 2333 pid_t pid) 2334 { 2335 ASSERT(x == NULL); 2336 /* Normally we'd crhold(cr) and attach it to socket state. */ 2337 /* LINTED */ 2338 } 2339 2340 /* ARGSUSED */ 2341 static int 2342 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah) 2343 { 2344 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2345 return (-1); 2346 } 2347 2348 /* ARGSUSED */ 2349 static void 2350 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah) 2351 { 2352 ASSERT(x == NULL); 2353 /* We really want this one to be a harmless NOP for now. */ 2354 /* LINTED */ 2355 } 2356 2357 /* ARGSUSED */ 2358 static ssize_t 2359 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags, 2360 int *error, boolean_t *push) 2361 { 2362 ASSERT(x == NULL); 2363 2364 /* 2365 * Consume the message, set ESHUTDOWN, and return an error. 2366 * Nobody's home! 2367 */ 2368 freemsg(mp); 2369 *error = ESHUTDOWN; 2370 return (-1); 2371 } 2372 2373 /* ARGSUSED */ 2374 static void 2375 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y) 2376 { 2377 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2378 } 2379 2380 /* ARGSUSED */ 2381 static void 2382 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y) 2383 { 2384 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2385 } 2386 2387 /* ARGSUSED */ 2388 static void 2389 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len) 2390 { 2391 ASSERT(x == NULL); 2392 /* Otherwise, this would signal socket state about OOB data. */ 2393 } 2394 2395 /* ARGSUSED */ 2396 static void 2397 tcp_dummy_set_error(sock_upper_handle_t x, int err) 2398 { 2399 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2400 } 2401 2402 /* ARGSUSED */ 2403 static void 2404 tcp_dummy_onearg(sock_upper_handle_t x) 2405 { 2406 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2407 } 2408 2409 static sock_upcalls_t tcp_dummy_upcalls = { 2410 tcp_dummy_newconn, 2411 tcp_dummy_connected, 2412 tcp_dummy_disconnected, 2413 tcp_dummy_opctl, 2414 tcp_dummy_recv, 2415 tcp_dummy_set_proto_props, 2416 tcp_dummy_txq_full, 2417 tcp_dummy_signal_oob, 2418 tcp_dummy_onearg, 2419 tcp_dummy_set_error, 2420 tcp_dummy_onearg 2421 }; 2422 2423 /* 2424 * Handle M_DATA messages from IP. Its called directly from IP via 2425 * squeue for received IP packets. 2426 * 2427 * The first argument is always the connp/tcp to which the mp belongs. 2428 * There are no exceptions to this rule. The caller has already put 2429 * a reference on this connp/tcp and once tcp_input_data() returns, 2430 * the squeue will do the refrele. 2431 * 2432 * The TH_SYN for the listener directly go to tcp_input_listener via 2433 * squeue. ICMP errors go directly to tcp_icmp_input(). 2434 * 2435 * sqp: NULL = recursive, sqp != NULL means called from squeue 2436 */ 2437 void 2438 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2439 { 2440 int32_t bytes_acked; 2441 int32_t gap; 2442 mblk_t *mp1; 2443 uint_t flags; 2444 uint32_t new_swnd = 0; 2445 uchar_t *iphdr; 2446 uchar_t *rptr; 2447 int32_t rgap; 2448 uint32_t seg_ack; 2449 int seg_len; 2450 uint_t ip_hdr_len; 2451 uint32_t seg_seq; 2452 tcpha_t *tcpha; 2453 int urp; 2454 tcp_opt_t tcpopt; 2455 ip_pkt_t ipp; 2456 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2457 uint32_t cwnd; 2458 int mss; 2459 conn_t *connp = (conn_t *)arg; 2460 squeue_t *sqp = (squeue_t *)arg2; 2461 tcp_t *tcp = connp->conn_tcp; 2462 tcp_stack_t *tcps = tcp->tcp_tcps; 2463 sock_upcalls_t *sockupcalls; 2464 2465 /* 2466 * RST from fused tcp loopback peer should trigger an unfuse. 2467 */ 2468 if (tcp->tcp_fused) { 2469 TCP_STAT(tcps, tcp_fusion_aborted); 2470 tcp_unfuse(tcp); 2471 } 2472 2473 mss = 0; 2474 iphdr = mp->b_rptr; 2475 rptr = mp->b_rptr; 2476 ASSERT(OK_32PTR(rptr)); 2477 2478 ip_hdr_len = ira->ira_ip_hdr_length; 2479 if (connp->conn_recv_ancillary.crb_all != 0) { 2480 /* 2481 * Record packet information in the ip_pkt_t 2482 */ 2483 ipp.ipp_fields = 0; 2484 if (ira->ira_flags & IRAF_IS_IPV4) { 2485 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2486 B_FALSE); 2487 } else { 2488 uint8_t nexthdrp; 2489 2490 /* 2491 * IPv6 packets can only be received by applications 2492 * that are prepared to receive IPv6 addresses. 2493 * The IP fanout must ensure this. 2494 */ 2495 ASSERT(connp->conn_family == AF_INET6); 2496 2497 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2498 &nexthdrp); 2499 ASSERT(nexthdrp == IPPROTO_TCP); 2500 2501 /* Could have caused a pullup? */ 2502 iphdr = mp->b_rptr; 2503 rptr = mp->b_rptr; 2504 } 2505 } 2506 ASSERT(DB_TYPE(mp) == M_DATA); 2507 ASSERT(mp->b_next == NULL); 2508 2509 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2510 seg_seq = ntohl(tcpha->tha_seq); 2511 seg_ack = ntohl(tcpha->tha_ack); 2512 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2513 seg_len = (int)(mp->b_wptr - rptr) - 2514 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2515 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2516 do { 2517 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2518 (uintptr_t)INT_MAX); 2519 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2520 } while ((mp1 = mp1->b_cont) != NULL && 2521 mp1->b_datap->db_type == M_DATA); 2522 } 2523 2524 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2525 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2526 __dtrace_tcp_tcph_t *, tcpha); 2527 2528 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2529 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2530 seg_len, tcpha, ira); 2531 return; 2532 } 2533 2534 if (sqp != NULL) { 2535 /* 2536 * This is the correct place to update tcp_last_recv_time. Note 2537 * that it is also updated for tcp structure that belongs to 2538 * global and listener queues which do not really need updating. 2539 * But that should not cause any harm. And it is updated for 2540 * all kinds of incoming segments, not only for data segments. 2541 */ 2542 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2543 } 2544 2545 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2546 2547 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 2548 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2549 2550 if ((flags & TH_URG) && sqp != NULL) { 2551 /* 2552 * TCP can't handle urgent pointers that arrive before 2553 * the connection has been accept()ed since it can't 2554 * buffer OOB data. Discard segment if this happens. 2555 * 2556 * We can't just rely on a non-null tcp_listener to indicate 2557 * that the accept() has completed since unlinking of the 2558 * eager and completion of the accept are not atomic. 2559 * tcp_detached, when it is not set (B_FALSE) indicates 2560 * that the accept() has completed. 2561 * 2562 * Nor can it reassemble urgent pointers, so discard 2563 * if it's not the next segment expected. 2564 * 2565 * Otherwise, collapse chain into one mblk (discard if 2566 * that fails). This makes sure the headers, retransmitted 2567 * data, and new data all are in the same mblk. 2568 */ 2569 ASSERT(mp != NULL); 2570 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2571 freemsg(mp); 2572 return; 2573 } 2574 /* Update pointers into message */ 2575 iphdr = rptr = mp->b_rptr; 2576 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2577 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2578 /* 2579 * Since we can't handle any data with this urgent 2580 * pointer that is out of sequence, we expunge 2581 * the data. This allows us to still register 2582 * the urgent mark and generate the M_PCSIG, 2583 * which we can do. 2584 */ 2585 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2586 seg_len = 0; 2587 } 2588 } 2589 2590 sockupcalls = connp->conn_upcalls; 2591 /* A conn_t may have belonged to a now-closed socket. Be careful. */ 2592 if (sockupcalls == NULL) 2593 sockupcalls = &tcp_dummy_upcalls; 2594 2595 switch (tcp->tcp_state) { 2596 case TCPS_SYN_SENT: 2597 if (connp->conn_final_sqp == NULL && 2598 tcp_outbound_squeue_switch && sqp != NULL) { 2599 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2600 connp->conn_final_sqp = sqp; 2601 if (connp->conn_final_sqp != connp->conn_sqp) { 2602 DTRACE_PROBE1(conn__final__sqp__switch, 2603 conn_t *, connp); 2604 CONN_INC_REF(connp); 2605 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2606 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2607 tcp_input_data, connp, ira, ip_squeue_flag, 2608 SQTAG_CONNECT_FINISH); 2609 return; 2610 } 2611 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2612 } 2613 if (flags & TH_ACK) { 2614 /* 2615 * Note that our stack cannot send data before a 2616 * connection is established, therefore the 2617 * following check is valid. Otherwise, it has 2618 * to be changed. 2619 */ 2620 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2621 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2622 freemsg(mp); 2623 if (flags & TH_RST) 2624 return; 2625 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2626 tcp, seg_ack, 0, TH_RST); 2627 return; 2628 } 2629 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2630 } 2631 if (flags & TH_RST) { 2632 if (flags & TH_ACK) { 2633 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2634 ip_xmit_attr_t *, connp->conn_ixa, 2635 void_ip_t *, iphdr, tcp_t *, tcp, 2636 tcph_t *, tcpha); 2637 (void) tcp_clean_death(tcp, ECONNREFUSED); 2638 } 2639 freemsg(mp); 2640 return; 2641 } 2642 if (!(flags & TH_SYN)) { 2643 freemsg(mp); 2644 return; 2645 } 2646 2647 /* Process all TCP options. */ 2648 tcp_process_options(tcp, tcpha); 2649 /* 2650 * The following changes our rwnd to be a multiple of the 2651 * MIN(peer MSS, our MSS) for performance reason. 2652 */ 2653 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2654 tcp->tcp_mss)); 2655 2656 /* Is the other end ECN capable? */ 2657 if (tcp->tcp_ecn_ok) { 2658 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2659 tcp->tcp_ecn_ok = B_FALSE; 2660 } 2661 } 2662 /* 2663 * Clear ECN flags because it may interfere with later 2664 * processing. 2665 */ 2666 flags &= ~(TH_ECE|TH_CWR); 2667 2668 tcp->tcp_irs = seg_seq; 2669 tcp->tcp_rack = seg_seq; 2670 tcp->tcp_rnxt = seg_seq + 1; 2671 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2672 if (!TCP_IS_DETACHED(tcp)) { 2673 /* Allocate room for SACK options if needed. */ 2674 connp->conn_wroff = connp->conn_ht_iphc_len; 2675 if (tcp->tcp_snd_sack_ok) 2676 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2677 if (!tcp->tcp_loopback) 2678 connp->conn_wroff += tcps->tcps_wroff_xtra; 2679 2680 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2681 connp->conn_wroff); 2682 } 2683 if (flags & TH_ACK) { 2684 /* 2685 * If we can't get the confirmation upstream, pretend 2686 * we didn't even see this one. 2687 * 2688 * XXX: how can we pretend we didn't see it if we 2689 * have updated rnxt et. al. 2690 * 2691 * For loopback we defer sending up the T_CONN_CON 2692 * until after some checks below. 2693 */ 2694 mp1 = NULL; 2695 /* 2696 * tcp_sendmsg() checks tcp_state without entering 2697 * the squeue so tcp_state should be updated before 2698 * sending up connection confirmation. Probe the 2699 * state change below when we are sure the connection 2700 * confirmation has been sent. 2701 */ 2702 tcp->tcp_state = TCPS_ESTABLISHED; 2703 if (!tcp_conn_con(tcp, iphdr, mp, 2704 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2705 tcp->tcp_state = TCPS_SYN_SENT; 2706 freemsg(mp); 2707 return; 2708 } 2709 TCPS_CONN_INC(tcps); 2710 /* SYN was acked - making progress */ 2711 tcp->tcp_ip_forward_progress = B_TRUE; 2712 2713 /* One for the SYN */ 2714 tcp->tcp_suna = tcp->tcp_iss + 1; 2715 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2716 2717 /* 2718 * If SYN was retransmitted, need to reset all 2719 * retransmission info. This is because this 2720 * segment will be treated as a dup ACK. 2721 */ 2722 if (tcp->tcp_rexmit) { 2723 tcp->tcp_rexmit = B_FALSE; 2724 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2725 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2726 tcp->tcp_ms_we_have_waited = 0; 2727 2728 /* 2729 * Set tcp_cwnd back to 1 MSS, per 2730 * recommendation from 2731 * draft-floyd-incr-init-win-01.txt, 2732 * Increasing TCP's Initial Window. 2733 */ 2734 DTRACE_PROBE3(cwnd__retransmitted__syn, 2735 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 2736 uint32_t, tcp->tcp_mss); 2737 tcp->tcp_cwnd = tcp->tcp_mss; 2738 } 2739 2740 tcp->tcp_swl1 = seg_seq; 2741 tcp->tcp_swl2 = seg_ack; 2742 2743 new_swnd = ntohs(tcpha->tha_win); 2744 tcp->tcp_swnd = new_swnd; 2745 if (new_swnd > tcp->tcp_max_swnd) 2746 tcp->tcp_max_swnd = new_swnd; 2747 2748 /* 2749 * Always send the three-way handshake ack immediately 2750 * in order to make the connection complete as soon as 2751 * possible on the accepting host. 2752 */ 2753 flags |= TH_ACK_NEEDED; 2754 2755 /* 2756 * Trace connect-established here. 2757 */ 2758 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2759 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2760 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2761 2762 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2763 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2764 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2765 void, NULL, int32_t, TCPS_SYN_SENT); 2766 2767 /* 2768 * Special case for loopback. At this point we have 2769 * received SYN-ACK from the remote endpoint. In 2770 * order to ensure that both endpoints reach the 2771 * fused state prior to any data exchange, the final 2772 * ACK needs to be sent before we indicate T_CONN_CON 2773 * to the module upstream. 2774 */ 2775 if (tcp->tcp_loopback) { 2776 mblk_t *ack_mp; 2777 2778 ASSERT(!tcp->tcp_unfusable); 2779 ASSERT(mp1 != NULL); 2780 /* 2781 * For loopback, we always get a pure SYN-ACK 2782 * and only need to send back the final ACK 2783 * with no data (this is because the other 2784 * tcp is ours and we don't do T/TCP). This 2785 * final ACK triggers the passive side to 2786 * perform fusion in ESTABLISHED state. 2787 */ 2788 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2789 if (tcp->tcp_ack_tid != 0) { 2790 (void) TCP_TIMER_CANCEL(tcp, 2791 tcp->tcp_ack_tid); 2792 tcp->tcp_ack_tid = 0; 2793 } 2794 tcp_send_data(tcp, ack_mp); 2795 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 2796 TCPS_BUMP_MIB(tcps, tcpOutAck); 2797 2798 if (!IPCL_IS_NONSTR(connp)) { 2799 /* Send up T_CONN_CON */ 2800 if (ira->ira_cred != NULL) { 2801 mblk_setcred(mp1, 2802 ira->ira_cred, 2803 ira->ira_cpid); 2804 } 2805 putnext(connp->conn_rq, mp1); 2806 } else { 2807 (*sockupcalls->su_connected) 2808 (connp->conn_upper_handle, 2809 tcp->tcp_connid, 2810 ira->ira_cred, 2811 ira->ira_cpid); 2812 freemsg(mp1); 2813 } 2814 2815 freemsg(mp); 2816 return; 2817 } 2818 /* 2819 * Forget fusion; we need to handle more 2820 * complex cases below. Send the deferred 2821 * T_CONN_CON message upstream and proceed 2822 * as usual. Mark this tcp as not capable 2823 * of fusion. 2824 */ 2825 TCP_STAT(tcps, tcp_fusion_unfusable); 2826 tcp->tcp_unfusable = B_TRUE; 2827 if (!IPCL_IS_NONSTR(connp)) { 2828 if (ira->ira_cred != NULL) { 2829 mblk_setcred(mp1, ira->ira_cred, 2830 ira->ira_cpid); 2831 } 2832 putnext(connp->conn_rq, mp1); 2833 } else { 2834 (*sockupcalls->su_connected) 2835 (connp->conn_upper_handle, 2836 tcp->tcp_connid, ira->ira_cred, 2837 ira->ira_cpid); 2838 freemsg(mp1); 2839 } 2840 } 2841 2842 /* 2843 * Check to see if there is data to be sent. If 2844 * yes, set the transmit flag. Then check to see 2845 * if received data processing needs to be done. 2846 * If not, go straight to xmit_check. This short 2847 * cut is OK as we don't support T/TCP. 2848 */ 2849 if (tcp->tcp_unsent) 2850 flags |= TH_XMIT_NEEDED; 2851 2852 if (seg_len == 0 && !(flags & TH_URG)) { 2853 freemsg(mp); 2854 goto xmit_check; 2855 } 2856 2857 flags &= ~TH_SYN; 2858 seg_seq++; 2859 break; 2860 } 2861 tcp->tcp_state = TCPS_SYN_RCVD; 2862 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2863 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2864 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2865 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2866 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2867 if (mp1 != NULL) { 2868 tcp_send_data(tcp, mp1); 2869 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2870 } 2871 freemsg(mp); 2872 return; 2873 case TCPS_SYN_RCVD: 2874 if (flags & TH_ACK) { 2875 uint32_t pinit_wnd; 2876 2877 /* 2878 * In this state, a SYN|ACK packet is either bogus 2879 * because the other side must be ACKing our SYN which 2880 * indicates it has seen the ACK for their SYN and 2881 * shouldn't retransmit it or we're crossing SYNs 2882 * on active open. 2883 */ 2884 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2885 freemsg(mp); 2886 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2887 tcp, seg_ack, 0, TH_RST); 2888 return; 2889 } 2890 /* 2891 * NOTE: RFC 793 pg. 72 says this should be 2892 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2893 * but that would mean we have an ack that ignored 2894 * our SYN. 2895 */ 2896 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2897 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2898 freemsg(mp); 2899 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2900 tcp, seg_ack, 0, TH_RST); 2901 return; 2902 } 2903 /* 2904 * No sane TCP stack will send such a small window 2905 * without receiving any data. Just drop this invalid 2906 * ACK. We also shorten the abort timeout in case 2907 * this is an attack. 2908 */ 2909 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2910 if (pinit_wnd < tcp->tcp_mss && 2911 pinit_wnd < tcp_init_wnd_chk) { 2912 freemsg(mp); 2913 TCP_STAT(tcps, tcp_zwin_ack_syn); 2914 tcp->tcp_second_ctimer_threshold = 2915 tcp_early_abort * SECONDS; 2916 return; 2917 } 2918 } 2919 break; 2920 case TCPS_LISTEN: 2921 /* 2922 * Only a TLI listener can come through this path when a 2923 * acceptor is going back to be a listener and a packet 2924 * for the acceptor hits the classifier. For a socket 2925 * listener, this can never happen because a listener 2926 * can never accept connection on itself and hence a 2927 * socket acceptor can not go back to being a listener. 2928 */ 2929 ASSERT(!TCP_IS_SOCKET(tcp)); 2930 /*FALLTHRU*/ 2931 case TCPS_CLOSED: 2932 case TCPS_BOUND: { 2933 conn_t *new_connp; 2934 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2935 2936 /* 2937 * Don't accept any input on a closed tcp as this TCP logically 2938 * does not exist on the system. Don't proceed further with 2939 * this TCP. For instance, this packet could trigger another 2940 * close of this tcp which would be disastrous for tcp_refcnt. 2941 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2942 * be called at most once on a TCP. In this case we need to 2943 * refeed the packet into the classifier and figure out where 2944 * the packet should go. 2945 */ 2946 new_connp = ipcl_classify(mp, ira, ipst); 2947 if (new_connp != NULL) { 2948 /* Drops ref on new_connp */ 2949 tcp_reinput(new_connp, mp, ira, ipst); 2950 return; 2951 } 2952 /* We failed to classify. For now just drop the packet */ 2953 freemsg(mp); 2954 return; 2955 } 2956 case TCPS_IDLE: 2957 /* 2958 * Handle the case where the tcp_clean_death() has happened 2959 * on a connection (application hasn't closed yet) but a packet 2960 * was already queued on squeue before tcp_clean_death() 2961 * was processed. Calling tcp_clean_death() twice on same 2962 * connection can result in weird behaviour. 2963 */ 2964 freemsg(mp); 2965 return; 2966 default: 2967 break; 2968 } 2969 2970 /* 2971 * Already on the correct queue/perimeter. 2972 * If this is a detached connection and not an eager 2973 * connection hanging off a listener then new data 2974 * (past the FIN) will cause a reset. 2975 * We do a special check here where it 2976 * is out of the main line, rather than check 2977 * if we are detached every time we see new 2978 * data down below. 2979 */ 2980 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2981 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2982 TCPS_BUMP_MIB(tcps, tcpInClosed); 2983 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2984 freemsg(mp); 2985 tcp_xmit_ctl("new data when detached", tcp, 2986 tcp->tcp_snxt, 0, TH_RST); 2987 (void) tcp_clean_death(tcp, EPROTO); 2988 return; 2989 } 2990 2991 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2992 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2993 new_swnd = ntohs(tcpha->tha_win) << 2994 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2995 2996 /* 2997 * We are interested in two TCP options: timestamps (if negotiated) and 2998 * SACK (if negotiated). Skip option parsing if neither is negotiated. 2999 */ 3000 if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) { 3001 int options; 3002 if (tcp->tcp_snd_sack_ok) 3003 tcpopt.tcp = tcp; 3004 else 3005 tcpopt.tcp = NULL; 3006 options = tcp_parse_options(tcpha, &tcpopt); 3007 /* 3008 * RST segments must not be subject to PAWS and are not 3009 * required to have timestamps. 3010 * We do not drop keepalive segments without 3011 * timestamps, to maintain compatibility with legacy TCP stacks. 3012 */ 3013 boolean_t keepalive = (seg_len == 0 || seg_len == 1) && 3014 (seg_seq + 1 == tcp->tcp_rnxt); 3015 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) { 3016 /* 3017 * Per RFC 7323 section 3.2., silently drop non-RST 3018 * segments without expected TSopt. This is a 'SHOULD' 3019 * requirement. 3020 * We accept keepalives without TSopt to maintain 3021 * interoperability with tcp implementations that omit 3022 * the TSopt on these. Keepalive data is discarded, so 3023 * there is no risk corrupting data by accepting these. 3024 */ 3025 if (!(options & TCP_OPT_TSTAMP_PRESENT)) { 3026 /* 3027 * Leave a breadcrumb for people to detect this 3028 * behavior. 3029 */ 3030 DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp); 3031 freemsg(mp); 3032 return; 3033 } 3034 3035 if (!tcp_paws_check(tcp, &tcpopt)) { 3036 /* 3037 * This segment is not acceptable. 3038 * Drop it and send back an ACK. 3039 */ 3040 freemsg(mp); 3041 flags |= TH_ACK_NEEDED; 3042 goto ack_check; 3043 } 3044 } 3045 } 3046 try_again:; 3047 mss = tcp->tcp_mss; 3048 gap = seg_seq - tcp->tcp_rnxt; 3049 rgap = tcp->tcp_rwnd - (gap + seg_len); 3050 /* 3051 * gap is the amount of sequence space between what we expect to see 3052 * and what we got for seg_seq. A positive value for gap means 3053 * something got lost. A negative value means we got some old stuff. 3054 */ 3055 if (gap < 0) { 3056 /* Old stuff present. Is the SYN in there? */ 3057 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 3058 (seg_len != 0)) { 3059 flags &= ~TH_SYN; 3060 seg_seq++; 3061 urp--; 3062 /* Recompute the gaps after noting the SYN. */ 3063 goto try_again; 3064 } 3065 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 3066 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 3067 (seg_len > -gap ? -gap : seg_len)); 3068 /* Remove the old stuff from seg_len. */ 3069 seg_len += gap; 3070 /* 3071 * Anything left? 3072 * Make sure to check for unack'd FIN when rest of data 3073 * has been previously ack'd. 3074 */ 3075 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 3076 /* 3077 * Resets are only valid if they lie within our offered 3078 * window. If the RST bit is set, we just ignore this 3079 * segment. 3080 */ 3081 if (flags & TH_RST) { 3082 freemsg(mp); 3083 return; 3084 } 3085 3086 /* 3087 * The arriving of dup data packets indicate that we 3088 * may have postponed an ack for too long, or the other 3089 * side's RTT estimate is out of shape. Start acking 3090 * more often. 3091 */ 3092 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 3093 tcp->tcp_rack_cnt >= 1 && 3094 tcp->tcp_rack_abs_max > 2) { 3095 tcp->tcp_rack_abs_max--; 3096 } 3097 tcp->tcp_rack_cur_max = 1; 3098 3099 /* 3100 * This segment is "unacceptable". None of its 3101 * sequence space lies within our advertized window. 3102 * 3103 * Adjust seg_len to the original value for tracing. 3104 */ 3105 seg_len -= gap; 3106 if (connp->conn_debug) { 3107 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3108 "tcp_rput: unacceptable, gap %d, rgap %d, " 3109 "flags 0x%x, seg_seq %u, seg_ack %u, " 3110 "seg_len %d, rnxt %u, snxt %u, %s", 3111 gap, rgap, flags, seg_seq, seg_ack, 3112 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 3113 tcp_display(tcp, NULL, 3114 DISP_ADDR_AND_PORT)); 3115 } 3116 3117 /* 3118 * Arrange to send an ACK in response to the 3119 * unacceptable segment per RFC 793 page 69. There 3120 * is only one small difference between ours and the 3121 * acceptability test in the RFC - we accept ACK-only 3122 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 3123 * will be generated. 3124 * 3125 * Note that we have to ACK an ACK-only packet at least 3126 * for stacks that send 0-length keep-alives with 3127 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 3128 * section 4.2.3.6. As long as we don't ever generate 3129 * an unacceptable packet in response to an incoming 3130 * packet that is unacceptable, it should not cause 3131 * "ACK wars". 3132 */ 3133 flags |= TH_ACK_NEEDED; 3134 3135 /* 3136 * Continue processing this segment in order to use the 3137 * ACK information it contains, but skip all other 3138 * sequence-number processing. Processing the ACK 3139 * information is necessary in order to 3140 * re-synchronize connections that may have lost 3141 * synchronization. 3142 * 3143 * We clear seg_len and flag fields related to 3144 * sequence number processing as they are not 3145 * to be trusted for an unacceptable segment. 3146 */ 3147 seg_len = 0; 3148 flags &= ~(TH_SYN | TH_FIN | TH_URG); 3149 goto process_ack; 3150 } 3151 3152 /* Fix seg_seq, and chew the gap off the front. */ 3153 seg_seq = tcp->tcp_rnxt; 3154 urp += gap; 3155 do { 3156 mblk_t *mp2; 3157 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3158 (uintptr_t)UINT_MAX); 3159 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 3160 if (gap > 0) { 3161 mp->b_rptr = mp->b_wptr - gap; 3162 break; 3163 } 3164 mp2 = mp; 3165 mp = mp->b_cont; 3166 freeb(mp2); 3167 } while (gap < 0); 3168 /* 3169 * If the urgent data has already been acknowledged, we 3170 * should ignore TH_URG below 3171 */ 3172 if (urp < 0) 3173 flags &= ~TH_URG; 3174 } 3175 /* 3176 * rgap is the amount of stuff received out of window. A negative 3177 * value is the amount out of window. 3178 */ 3179 if (rgap < 0) { 3180 mblk_t *mp2; 3181 3182 if (tcp->tcp_rwnd == 0) { 3183 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 3184 tcp->tcp_cs.tcp_in_zwnd_probes++; 3185 } else { 3186 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 3187 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 3188 } 3189 3190 /* 3191 * seg_len does not include the FIN, so if more than 3192 * just the FIN is out of window, we act like we don't 3193 * see it. (If just the FIN is out of window, rgap 3194 * will be zero and we will go ahead and acknowledge 3195 * the FIN.) 3196 */ 3197 flags &= ~TH_FIN; 3198 3199 /* Fix seg_len and make sure there is something left. */ 3200 seg_len += rgap; 3201 if (seg_len <= 0) { 3202 /* 3203 * Resets are only valid if they lie within our offered 3204 * window. If the RST bit is set, we just ignore this 3205 * segment. 3206 */ 3207 if (flags & TH_RST) { 3208 freemsg(mp); 3209 return; 3210 } 3211 3212 /* Per RFC 793, we need to send back an ACK. */ 3213 flags |= TH_ACK_NEEDED; 3214 3215 /* 3216 * Send SIGURG as soon as possible i.e. even 3217 * if the TH_URG was delivered in a window probe 3218 * packet (which will be unacceptable). 3219 * 3220 * We generate a signal if none has been generated 3221 * for this connection or if this is a new urgent 3222 * byte. Also send a zero-length "unmarked" message 3223 * to inform SIOCATMARK that this is not the mark. 3224 * 3225 * tcp_urp_last_valid is cleared when the T_exdata_ind 3226 * is sent up. This plus the check for old data 3227 * (gap >= 0) handles the wraparound of the sequence 3228 * number space without having to always track the 3229 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3230 * this max in its rcv_up variable). 3231 * 3232 * This prevents duplicate SIGURGS due to a "late" 3233 * zero-window probe when the T_EXDATA_IND has already 3234 * been sent up. 3235 */ 3236 if ((flags & TH_URG) && 3237 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3238 tcp->tcp_urp_last))) { 3239 if (IPCL_IS_NONSTR(connp)) { 3240 if (!TCP_IS_DETACHED(tcp)) { 3241 (*sockupcalls->su_signal_oob) 3242 (connp->conn_upper_handle, 3243 urp); 3244 } 3245 } else { 3246 mp1 = allocb(0, BPRI_MED); 3247 if (mp1 == NULL) { 3248 freemsg(mp); 3249 return; 3250 } 3251 if (!TCP_IS_DETACHED(tcp) && 3252 !putnextctl1(connp->conn_rq, 3253 M_PCSIG, SIGURG)) { 3254 /* Try again on the rexmit. */ 3255 freemsg(mp1); 3256 freemsg(mp); 3257 return; 3258 } 3259 /* 3260 * If the next byte would be the mark 3261 * then mark with MARKNEXT else mark 3262 * with NOTMARKNEXT. 3263 */ 3264 if (gap == 0 && urp == 0) 3265 mp1->b_flag |= MSGMARKNEXT; 3266 else 3267 mp1->b_flag |= MSGNOTMARKNEXT; 3268 freemsg(tcp->tcp_urp_mark_mp); 3269 tcp->tcp_urp_mark_mp = mp1; 3270 flags |= TH_SEND_URP_MARK; 3271 } 3272 tcp->tcp_urp_last_valid = B_TRUE; 3273 tcp->tcp_urp_last = urp + seg_seq; 3274 } 3275 /* 3276 * If this is a zero window probe, continue to 3277 * process the ACK part. But we need to set seg_len 3278 * to 0 to avoid data processing. Otherwise just 3279 * drop the segment and send back an ACK. 3280 */ 3281 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3282 flags &= ~(TH_SYN | TH_URG); 3283 seg_len = 0; 3284 goto process_ack; 3285 } else { 3286 freemsg(mp); 3287 goto ack_check; 3288 } 3289 } 3290 /* Pitch out of window stuff off the end. */ 3291 rgap = seg_len; 3292 mp2 = mp; 3293 do { 3294 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3295 (uintptr_t)INT_MAX); 3296 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3297 if (rgap < 0) { 3298 mp2->b_wptr += rgap; 3299 if ((mp1 = mp2->b_cont) != NULL) { 3300 mp2->b_cont = NULL; 3301 freemsg(mp1); 3302 } 3303 break; 3304 } 3305 } while ((mp2 = mp2->b_cont) != NULL); 3306 } 3307 ok:; 3308 /* 3309 * TCP should check ECN info for segments inside the window only. 3310 * Therefore the check should be done here. 3311 */ 3312 if (tcp->tcp_ecn_ok) { 3313 if (flags & TH_CWR) { 3314 tcp->tcp_ecn_echo_on = B_FALSE; 3315 } 3316 /* 3317 * Note that both ECN_CE and CWR can be set in the 3318 * same segment. In this case, we once again turn 3319 * on ECN_ECHO. 3320 */ 3321 if (connp->conn_ipversion == IPV4_VERSION) { 3322 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3323 3324 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3325 tcp->tcp_ecn_echo_on = B_TRUE; 3326 } 3327 } else { 3328 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3329 3330 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3331 htonl(IPH_ECN_CE << 20)) { 3332 tcp->tcp_ecn_echo_on = B_TRUE; 3333 } 3334 } 3335 } 3336 3337 /* 3338 * Check whether we can update tcp_ts_recent. This test is from RFC 3339 * 7323, section 5.3. 3340 */ 3341 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && 3342 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3343 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3344 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3345 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3346 } 3347 3348 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3349 /* 3350 * FIN in an out of order segment. We record this in 3351 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3352 * Clear the FIN so that any check on FIN flag will fail. 3353 * Remember that FIN also counts in the sequence number 3354 * space. So we need to ack out of order FIN only segments. 3355 */ 3356 if (flags & TH_FIN) { 3357 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3358 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3359 flags &= ~TH_FIN; 3360 flags |= TH_ACK_NEEDED; 3361 } 3362 if (seg_len > 0) { 3363 /* Fill in the SACK blk list. */ 3364 if (tcp->tcp_snd_sack_ok) { 3365 tcp_sack_insert(tcp->tcp_sack_list, 3366 seg_seq, seg_seq + seg_len, 3367 &(tcp->tcp_num_sack_blk)); 3368 } 3369 3370 /* 3371 * Attempt reassembly and see if we have something 3372 * ready to go. 3373 */ 3374 mp = tcp_reass(tcp, mp, seg_seq); 3375 /* Always ack out of order packets */ 3376 flags |= TH_ACK_NEEDED | TH_PUSH; 3377 if (mp) { 3378 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3379 (uintptr_t)INT_MAX); 3380 seg_len = mp->b_cont ? msgdsize(mp) : 3381 (int)(mp->b_wptr - mp->b_rptr); 3382 seg_seq = tcp->tcp_rnxt; 3383 /* 3384 * A gap is filled and the seq num and len 3385 * of the gap match that of a previously 3386 * received FIN, put the FIN flag back in. 3387 */ 3388 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3389 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3390 flags |= TH_FIN; 3391 tcp->tcp_valid_bits &= 3392 ~TCP_OFO_FIN_VALID; 3393 } 3394 if (tcp->tcp_reass_tid != 0) { 3395 (void) TCP_TIMER_CANCEL(tcp, 3396 tcp->tcp_reass_tid); 3397 /* 3398 * Restart the timer if there is still 3399 * data in the reassembly queue. 3400 */ 3401 if (tcp->tcp_reass_head != NULL) { 3402 tcp->tcp_reass_tid = TCP_TIMER( 3403 tcp, tcp_reass_timer, 3404 tcps->tcps_reass_timeout); 3405 } else { 3406 tcp->tcp_reass_tid = 0; 3407 } 3408 } 3409 } else { 3410 /* 3411 * Keep going even with NULL mp. 3412 * There may be a useful ACK or something else 3413 * we don't want to miss. 3414 * 3415 * But TCP should not perform fast retransmit 3416 * because of the ack number. TCP uses 3417 * seg_len == 0 to determine if it is a pure 3418 * ACK. And this is not a pure ACK. 3419 */ 3420 seg_len = 0; 3421 ofo_seg = B_TRUE; 3422 3423 if (tcps->tcps_reass_timeout != 0 && 3424 tcp->tcp_reass_tid == 0) { 3425 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3426 tcp_reass_timer, 3427 tcps->tcps_reass_timeout); 3428 } 3429 } 3430 } 3431 } else if (seg_len > 0) { 3432 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3433 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3434 tcp->tcp_cs.tcp_in_data_inorder_segs++; 3435 tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len; 3436 3437 /* 3438 * If an out of order FIN was received before, and the seq 3439 * num and len of the new segment match that of the FIN, 3440 * put the FIN flag back in. 3441 */ 3442 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3443 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3444 flags |= TH_FIN; 3445 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3446 } 3447 } 3448 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3449 if (flags & TH_RST) { 3450 freemsg(mp); 3451 switch (tcp->tcp_state) { 3452 case TCPS_SYN_RCVD: 3453 (void) tcp_clean_death(tcp, ECONNREFUSED); 3454 break; 3455 case TCPS_ESTABLISHED: 3456 case TCPS_FIN_WAIT_1: 3457 case TCPS_FIN_WAIT_2: 3458 case TCPS_CLOSE_WAIT: 3459 (void) tcp_clean_death(tcp, ECONNRESET); 3460 break; 3461 case TCPS_CLOSING: 3462 case TCPS_LAST_ACK: 3463 (void) tcp_clean_death(tcp, 0); 3464 break; 3465 default: 3466 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3467 (void) tcp_clean_death(tcp, ENXIO); 3468 break; 3469 } 3470 return; 3471 } 3472 if (flags & TH_SYN) { 3473 /* 3474 * See RFC 793, Page 71 3475 * 3476 * The seq number must be in the window as it should 3477 * be "fixed" above. If it is outside window, it should 3478 * be already rejected. Note that we allow seg_seq to be 3479 * rnxt + rwnd because we want to accept 0 window probe. 3480 */ 3481 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3482 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3483 freemsg(mp); 3484 /* 3485 * If the ACK flag is not set, just use our snxt as the 3486 * seq number of the RST segment. 3487 */ 3488 if (!(flags & TH_ACK)) { 3489 seg_ack = tcp->tcp_snxt; 3490 } 3491 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3492 TH_RST|TH_ACK); 3493 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3494 (void) tcp_clean_death(tcp, ECONNRESET); 3495 return; 3496 } 3497 /* 3498 * urp could be -1 when the urp field in the packet is 0 3499 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3500 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3501 */ 3502 if ((flags & TH_URG) && urp >= 0) { 3503 if (!tcp->tcp_urp_last_valid || 3504 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3505 /* 3506 * Non-STREAMS sockets handle the urgent data a litte 3507 * differently from STREAMS based sockets. There is no 3508 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3509 * flags to keep SIOCATMARK happy. Instead a 3510 * su_signal_oob upcall is made to update the mark. 3511 * Neither is a T_EXDATA_IND mblk needed to be 3512 * prepended to the urgent data. The urgent data is 3513 * delivered using the su_recv upcall, where we set 3514 * the MSG_OOB flag to indicate that it is urg data. 3515 * 3516 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3517 * are used by non-STREAMS sockets. 3518 */ 3519 if (IPCL_IS_NONSTR(connp)) { 3520 if (!TCP_IS_DETACHED(tcp)) { 3521 (*sockupcalls->su_signal_oob) 3522 (connp->conn_upper_handle, urp); 3523 } 3524 } else { 3525 /* 3526 * If we haven't generated the signal yet for 3527 * this urgent pointer value, do it now. Also, 3528 * send up a zero-length M_DATA indicating 3529 * whether or not this is the mark. The latter 3530 * is not needed when a T_EXDATA_IND is sent up. 3531 * However, if there are allocation failures 3532 * this code relies on the sender retransmitting 3533 * and the socket code for determining the mark 3534 * should not block waiting for the peer to 3535 * transmit. Thus, for simplicity we always 3536 * send up the mark indication. 3537 */ 3538 mp1 = allocb(0, BPRI_MED); 3539 if (mp1 == NULL) { 3540 freemsg(mp); 3541 return; 3542 } 3543 if (!TCP_IS_DETACHED(tcp) && 3544 !putnextctl1(connp->conn_rq, M_PCSIG, 3545 SIGURG)) { 3546 /* Try again on the rexmit. */ 3547 freemsg(mp1); 3548 freemsg(mp); 3549 return; 3550 } 3551 /* 3552 * Mark with NOTMARKNEXT for now. 3553 * The code below will change this to MARKNEXT 3554 * if we are at the mark. 3555 * 3556 * If there are allocation failures (e.g. in 3557 * dupmsg below) the next time tcp_input_data 3558 * sees the urgent segment it will send up the 3559 * MSGMARKNEXT message. 3560 */ 3561 mp1->b_flag |= MSGNOTMARKNEXT; 3562 freemsg(tcp->tcp_urp_mark_mp); 3563 tcp->tcp_urp_mark_mp = mp1; 3564 flags |= TH_SEND_URP_MARK; 3565 #ifdef DEBUG 3566 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3567 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3568 "last %x, %s", 3569 seg_seq, urp, tcp->tcp_urp_last, 3570 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3571 #endif /* DEBUG */ 3572 } 3573 tcp->tcp_urp_last_valid = B_TRUE; 3574 tcp->tcp_urp_last = urp + seg_seq; 3575 } else if (tcp->tcp_urp_mark_mp != NULL) { 3576 /* 3577 * An allocation failure prevented the previous 3578 * tcp_input_data from sending up the allocated 3579 * MSG*MARKNEXT message - send it up this time 3580 * around. 3581 */ 3582 flags |= TH_SEND_URP_MARK; 3583 } 3584 3585 /* 3586 * If the urgent byte is in this segment, make sure that it is 3587 * all by itself. This makes it much easier to deal with the 3588 * possibility of an allocation failure on the T_exdata_ind. 3589 * Note that seg_len is the number of bytes in the segment, and 3590 * urp is the offset into the segment of the urgent byte. 3591 * urp < seg_len means that the urgent byte is in this segment. 3592 */ 3593 if (urp < seg_len) { 3594 if (seg_len != 1) { 3595 uint32_t tmp_rnxt; 3596 /* 3597 * Break it up and feed it back in. 3598 * Re-attach the IP header. 3599 */ 3600 mp->b_rptr = iphdr; 3601 if (urp > 0) { 3602 /* 3603 * There is stuff before the urgent 3604 * byte. 3605 */ 3606 mp1 = dupmsg(mp); 3607 if (!mp1) { 3608 /* 3609 * Trim from urgent byte on. 3610 * The rest will come back. 3611 */ 3612 (void) adjmsg(mp, 3613 urp - seg_len); 3614 tcp_input_data(connp, 3615 mp, NULL, ira); 3616 return; 3617 } 3618 (void) adjmsg(mp1, urp - seg_len); 3619 /* Feed this piece back in. */ 3620 tmp_rnxt = tcp->tcp_rnxt; 3621 tcp_input_data(connp, mp1, NULL, ira); 3622 /* 3623 * If the data passed back in was not 3624 * processed (ie: bad ACK) sending 3625 * the remainder back in will cause a 3626 * loop. In this case, drop the 3627 * packet and let the sender try 3628 * sending a good packet. 3629 */ 3630 if (tmp_rnxt == tcp->tcp_rnxt) { 3631 freemsg(mp); 3632 return; 3633 } 3634 } 3635 if (urp != seg_len - 1) { 3636 uint32_t tmp_rnxt; 3637 /* 3638 * There is stuff after the urgent 3639 * byte. 3640 */ 3641 mp1 = dupmsg(mp); 3642 if (!mp1) { 3643 /* 3644 * Trim everything beyond the 3645 * urgent byte. The rest will 3646 * come back. 3647 */ 3648 (void) adjmsg(mp, 3649 urp + 1 - seg_len); 3650 tcp_input_data(connp, 3651 mp, NULL, ira); 3652 return; 3653 } 3654 (void) adjmsg(mp1, urp + 1 - seg_len); 3655 tmp_rnxt = tcp->tcp_rnxt; 3656 tcp_input_data(connp, mp1, NULL, ira); 3657 /* 3658 * If the data passed back in was not 3659 * processed (ie: bad ACK) sending 3660 * the remainder back in will cause a 3661 * loop. In this case, drop the 3662 * packet and let the sender try 3663 * sending a good packet. 3664 */ 3665 if (tmp_rnxt == tcp->tcp_rnxt) { 3666 freemsg(mp); 3667 return; 3668 } 3669 } 3670 tcp_input_data(connp, mp, NULL, ira); 3671 return; 3672 } 3673 /* 3674 * This segment contains only the urgent byte. We 3675 * have to allocate the T_exdata_ind, if we can. 3676 */ 3677 if (IPCL_IS_NONSTR(connp)) { 3678 int error; 3679 3680 (*sockupcalls->su_recv) 3681 (connp->conn_upper_handle, mp, seg_len, 3682 MSG_OOB, &error, NULL); 3683 /* 3684 * We should never be in middle of a 3685 * fallback, the squeue guarantees that. 3686 */ 3687 ASSERT(error != EOPNOTSUPP); 3688 mp = NULL; 3689 goto update_ack; 3690 } else if (!tcp->tcp_urp_mp) { 3691 struct T_exdata_ind *tei; 3692 mp1 = allocb(sizeof (struct T_exdata_ind), 3693 BPRI_MED); 3694 if (!mp1) { 3695 /* 3696 * Sigh... It'll be back. 3697 * Generate any MSG*MARK message now. 3698 */ 3699 freemsg(mp); 3700 seg_len = 0; 3701 if (flags & TH_SEND_URP_MARK) { 3702 3703 3704 ASSERT(tcp->tcp_urp_mark_mp); 3705 tcp->tcp_urp_mark_mp->b_flag &= 3706 ~MSGNOTMARKNEXT; 3707 tcp->tcp_urp_mark_mp->b_flag |= 3708 MSGMARKNEXT; 3709 } 3710 goto ack_check; 3711 } 3712 mp1->b_datap->db_type = M_PROTO; 3713 tei = (struct T_exdata_ind *)mp1->b_rptr; 3714 tei->PRIM_type = T_EXDATA_IND; 3715 tei->MORE_flag = 0; 3716 mp1->b_wptr = (uchar_t *)&tei[1]; 3717 tcp->tcp_urp_mp = mp1; 3718 #ifdef DEBUG 3719 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3720 "tcp_rput: allocated exdata_ind %s", 3721 tcp_display(tcp, NULL, 3722 DISP_PORT_ONLY)); 3723 #endif /* DEBUG */ 3724 /* 3725 * There is no need to send a separate MSG*MARK 3726 * message since the T_EXDATA_IND will be sent 3727 * now. 3728 */ 3729 flags &= ~TH_SEND_URP_MARK; 3730 freemsg(tcp->tcp_urp_mark_mp); 3731 tcp->tcp_urp_mark_mp = NULL; 3732 } 3733 /* 3734 * Now we are all set. On the next putnext upstream, 3735 * tcp_urp_mp will be non-NULL and will get prepended 3736 * to what has to be this piece containing the urgent 3737 * byte. If for any reason we abort this segment below, 3738 * if it comes back, we will have this ready, or it 3739 * will get blown off in close. 3740 */ 3741 } else if (urp == seg_len) { 3742 /* 3743 * The urgent byte is the next byte after this sequence 3744 * number. If this endpoint is non-STREAMS, then there 3745 * is nothing to do here since the socket has already 3746 * been notified about the urg pointer by the 3747 * su_signal_oob call above. 3748 * 3749 * In case of STREAMS, some more work might be needed. 3750 * If there is data it is marked with MSGMARKNEXT and 3751 * and any tcp_urp_mark_mp is discarded since it is not 3752 * needed. Otherwise, if the code above just allocated 3753 * a zero-length tcp_urp_mark_mp message, that message 3754 * is tagged with MSGMARKNEXT. Sending up these 3755 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3756 * even though the T_EXDATA_IND will not be sent up 3757 * until the urgent byte arrives. 3758 */ 3759 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3760 if (seg_len != 0) { 3761 flags |= TH_MARKNEXT_NEEDED; 3762 freemsg(tcp->tcp_urp_mark_mp); 3763 tcp->tcp_urp_mark_mp = NULL; 3764 flags &= ~TH_SEND_URP_MARK; 3765 } else if (tcp->tcp_urp_mark_mp != NULL) { 3766 flags |= TH_SEND_URP_MARK; 3767 tcp->tcp_urp_mark_mp->b_flag &= 3768 ~MSGNOTMARKNEXT; 3769 tcp->tcp_urp_mark_mp->b_flag |= 3770 MSGMARKNEXT; 3771 } 3772 } 3773 #ifdef DEBUG 3774 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3775 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3776 seg_len, flags, 3777 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3778 #endif /* DEBUG */ 3779 } 3780 #ifdef DEBUG 3781 else { 3782 /* Data left until we hit mark */ 3783 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3784 "tcp_rput: URP %d bytes left, %s", 3785 urp - seg_len, tcp_display(tcp, NULL, 3786 DISP_PORT_ONLY)); 3787 } 3788 #endif /* DEBUG */ 3789 } 3790 3791 process_ack: 3792 if (!(flags & TH_ACK)) { 3793 freemsg(mp); 3794 goto xmit_check; 3795 } 3796 } 3797 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3798 3799 if (bytes_acked > 0) 3800 tcp->tcp_ip_forward_progress = B_TRUE; 3801 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3802 /* 3803 * tcp_sendmsg() checks tcp_state without entering 3804 * the squeue so tcp_state should be updated before 3805 * sending up a connection confirmation or a new 3806 * connection indication. 3807 */ 3808 tcp->tcp_state = TCPS_ESTABLISHED; 3809 3810 /* 3811 * We are seeing the final ack in the three way 3812 * hand shake of a active open'ed connection 3813 * so we must send up a T_CONN_CON 3814 */ 3815 if (tcp->tcp_active_open) { 3816 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3817 freemsg(mp); 3818 tcp->tcp_state = TCPS_SYN_RCVD; 3819 return; 3820 } 3821 /* 3822 * Don't fuse the loopback endpoints for 3823 * simultaneous active opens. 3824 */ 3825 if (tcp->tcp_loopback) { 3826 TCP_STAT(tcps, tcp_fusion_unfusable); 3827 tcp->tcp_unfusable = B_TRUE; 3828 } 3829 /* 3830 * For simultaneous active open, trace receipt of final 3831 * ACK as tcp:::connect-established. 3832 */ 3833 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3834 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3835 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3836 } else if (IPCL_IS_NONSTR(connp)) { 3837 /* 3838 * 3-way handshake has completed, so notify socket 3839 * of the new connection. 3840 * 3841 * We are here means eager is fine but it can 3842 * get a TH_RST at any point between now and till 3843 * accept completes and disappear. We need to 3844 * ensure that reference to eager is valid after 3845 * we get out of eager's perimeter. So we do 3846 * an extra refhold. 3847 */ 3848 CONN_INC_REF(connp); 3849 3850 if (!tcp_newconn_notify(tcp, ira)) { 3851 /* 3852 * The state-change probe for SYN_RCVD -> 3853 * ESTABLISHED has not fired yet. We reset 3854 * the state to SYN_RCVD so that future 3855 * state-change probes report correct state 3856 * transistions. 3857 */ 3858 tcp->tcp_state = TCPS_SYN_RCVD; 3859 freemsg(mp); 3860 /* notification did not go up, so drop ref */ 3861 CONN_DEC_REF(connp); 3862 /* ... and close the eager */ 3863 ASSERT(TCP_IS_DETACHED(tcp)); 3864 (void) tcp_close_detached(tcp); 3865 return; 3866 } 3867 /* 3868 * tcp_newconn_notify() changes conn_upcalls and 3869 * connp->conn_upper_handle. Fix things now, in case 3870 * there's data attached to this ack. 3871 */ 3872 if (connp->conn_upcalls != NULL) 3873 sockupcalls = connp->conn_upcalls; 3874 /* 3875 * For passive open, trace receipt of final ACK as 3876 * tcp:::accept-established. 3877 */ 3878 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3879 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3880 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3881 } else { 3882 /* 3883 * 3-way handshake complete - this is a STREAMS based 3884 * socket, so pass up the T_CONN_IND. 3885 */ 3886 tcp_t *listener = tcp->tcp_listener; 3887 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3888 3889 tcp->tcp_tconnind_started = B_TRUE; 3890 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3891 ASSERT(mp != NULL); 3892 /* 3893 * We are here means eager is fine but it can 3894 * get a TH_RST at any point between now and till 3895 * accept completes and disappear. We need to 3896 * ensure that reference to eager is valid after 3897 * we get out of eager's perimeter. So we do 3898 * an extra refhold. 3899 */ 3900 CONN_INC_REF(connp); 3901 3902 /* 3903 * The listener also exists because of the refhold 3904 * done in tcp_input_listener. Its possible that it 3905 * might have closed. We will check that once we 3906 * get inside listeners context. 3907 */ 3908 CONN_INC_REF(listener->tcp_connp); 3909 if (listener->tcp_connp->conn_sqp == 3910 connp->conn_sqp) { 3911 /* 3912 * We optimize by not calling an SQUEUE_ENTER 3913 * on the listener since we know that the 3914 * listener and eager squeues are the same. 3915 * We are able to make this check safely only 3916 * because neither the eager nor the listener 3917 * can change its squeue. Only an active connect 3918 * can change its squeue 3919 */ 3920 tcp_send_conn_ind(listener->tcp_connp, mp, 3921 listener->tcp_connp->conn_sqp); 3922 CONN_DEC_REF(listener->tcp_connp); 3923 } else if (!tcp->tcp_loopback) { 3924 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3925 mp, tcp_send_conn_ind, 3926 listener->tcp_connp, NULL, SQ_FILL, 3927 SQTAG_TCP_CONN_IND); 3928 } else { 3929 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3930 mp, tcp_send_conn_ind, 3931 listener->tcp_connp, NULL, SQ_NODRAIN, 3932 SQTAG_TCP_CONN_IND); 3933 } 3934 /* 3935 * For passive open, trace receipt of final ACK as 3936 * tcp:::accept-established. 3937 */ 3938 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3939 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3940 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3941 } 3942 TCPS_CONN_INC(tcps); 3943 3944 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3945 bytes_acked--; 3946 /* SYN was acked - making progress */ 3947 tcp->tcp_ip_forward_progress = B_TRUE; 3948 3949 /* 3950 * If SYN was retransmitted, need to reset all 3951 * retransmission info as this segment will be 3952 * treated as a dup ACK. 3953 */ 3954 if (tcp->tcp_rexmit) { 3955 tcp->tcp_rexmit = B_FALSE; 3956 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3957 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3958 tcp->tcp_ms_we_have_waited = 0; 3959 DTRACE_PROBE3(cwnd__retransmitted__syn, 3960 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 3961 uint32_t, tcp->tcp_mss); 3962 tcp->tcp_cwnd = mss; 3963 } 3964 3965 /* 3966 * We set the send window to zero here. 3967 * This is needed if there is data to be 3968 * processed already on the queue. 3969 * Later (at swnd_update label), the 3970 * "new_swnd > tcp_swnd" condition is satisfied 3971 * the XMIT_NEEDED flag is set in the current 3972 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3973 * called if there is already data on queue in 3974 * this state. 3975 */ 3976 tcp->tcp_swnd = 0; 3977 3978 if (new_swnd > tcp->tcp_max_swnd) 3979 tcp->tcp_max_swnd = new_swnd; 3980 tcp->tcp_swl1 = seg_seq; 3981 tcp->tcp_swl2 = seg_ack; 3982 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3983 3984 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3985 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3986 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3987 int32_t, TCPS_SYN_RCVD); 3988 3989 /* Fuse when both sides are in ESTABLISHED state */ 3990 if (tcp->tcp_loopback && do_tcp_fusion) 3991 tcp_fuse(tcp, iphdr, tcpha); 3992 3993 } 3994 /* This code follows 4.4BSD-Lite2 mostly. */ 3995 if (bytes_acked < 0) 3996 goto est; 3997 3998 /* 3999 * If TCP is ECN capable and the congestion experience bit is 4000 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 4001 * done once per window (or more loosely, per RTT). 4002 */ 4003 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 4004 tcp->tcp_cwr = B_FALSE; 4005 if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) { 4006 cc_cong_signal(tcp, seg_ack, CC_ECN); 4007 /* 4008 * If the cwnd is 0, use the timer to clock out 4009 * new segments. This is required by the ECN spec. 4010 */ 4011 if (tcp->tcp_cwnd == 0) 4012 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4013 tcp->tcp_cwr = B_TRUE; 4014 /* 4015 * This marks the end of the current window of in 4016 * flight data. That is why we don't use 4017 * tcp_suna + tcp_swnd. Only data in flight can 4018 * provide ECN info. 4019 */ 4020 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4021 } 4022 4023 mp1 = tcp->tcp_xmit_head; 4024 if (bytes_acked == 0) { 4025 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 4026 int dupack_cnt; 4027 4028 TCPS_BUMP_MIB(tcps, tcpInDupAck); 4029 /* 4030 * Fast retransmit. When we have seen exactly three 4031 * identical ACKs while we have unacked data 4032 * outstanding we take it as a hint that our peer 4033 * dropped something. 4034 * 4035 * If TCP is retransmitting, don't do fast retransmit. 4036 */ 4037 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 4038 ! tcp->tcp_rexmit) { 4039 /* Do Limited Transmit */ 4040 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 4041 tcps->tcps_dupack_fast_retransmit) { 4042 cc_ack_received(tcp, seg_ack, 4043 bytes_acked, CC_DUPACK); 4044 /* 4045 * RFC 3042 4046 * 4047 * What we need to do is temporarily 4048 * increase tcp_cwnd so that new 4049 * data can be sent if it is allowed 4050 * by the receive window (tcp_rwnd). 4051 * tcp_wput_data() will take care of 4052 * the rest. 4053 * 4054 * If the connection is SACK capable, 4055 * only do limited xmit when there 4056 * is SACK info. 4057 * 4058 * Note how tcp_cwnd is incremented. 4059 * The first dup ACK will increase 4060 * it by 1 MSS. The second dup ACK 4061 * will increase it by 2 MSS. This 4062 * means that only 1 new segment will 4063 * be sent for each dup ACK. 4064 */ 4065 if (tcp->tcp_unsent > 0 && 4066 (!tcp->tcp_snd_sack_ok || 4067 (tcp->tcp_snd_sack_ok && 4068 tcp->tcp_notsack_list != NULL))) { 4069 tcp->tcp_cwnd += mss << 4070 (tcp->tcp_dupack_cnt - 1); 4071 flags |= TH_LIMIT_XMIT; 4072 } 4073 } else if (dupack_cnt == 4074 tcps->tcps_dupack_fast_retransmit) { 4075 4076 /* 4077 * If we have reduced tcp_ssthresh 4078 * because of ECN, do not reduce it again 4079 * unless it is already one window of data 4080 * away. After one window of data, tcp_cwr 4081 * should then be cleared. Note that 4082 * for non ECN capable connection, tcp_cwr 4083 * should always be false. 4084 * 4085 * Adjust cwnd since the duplicate 4086 * ack indicates that a packet was 4087 * dropped (due to congestion.) 4088 */ 4089 if (!tcp->tcp_cwr) { 4090 cc_cong_signal(tcp, seg_ack, 4091 CC_NDUPACK); 4092 cc_ack_received(tcp, seg_ack, 4093 bytes_acked, CC_DUPACK); 4094 } 4095 if (tcp->tcp_ecn_ok) { 4096 tcp->tcp_cwr = B_TRUE; 4097 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 4098 tcp->tcp_ecn_cwr_sent = B_FALSE; 4099 } 4100 4101 /* 4102 * We do Hoe's algorithm. Refer to her 4103 * paper "Improving the Start-up Behavior 4104 * of a Congestion Control Scheme for TCP," 4105 * appeared in SIGCOMM'96. 4106 * 4107 * Save highest seq no we have sent so far. 4108 * Be careful about the invisible FIN byte. 4109 */ 4110 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 4111 (tcp->tcp_unsent == 0)) { 4112 tcp->tcp_rexmit_max = tcp->tcp_fss; 4113 } else { 4114 tcp->tcp_rexmit_max = tcp->tcp_snxt; 4115 } 4116 4117 /* 4118 * For SACK: 4119 * Calculate tcp_pipe, which is the 4120 * estimated number of bytes in 4121 * network. 4122 * 4123 * tcp_fack is the highest sack'ed seq num 4124 * TCP has received. 4125 * 4126 * tcp_pipe is explained in the above quoted 4127 * Fall and Floyd's paper. tcp_fack is 4128 * explained in Mathis and Mahdavi's 4129 * "Forward Acknowledgment: Refining TCP 4130 * Congestion Control" in SIGCOMM '96. 4131 */ 4132 if (tcp->tcp_snd_sack_ok) { 4133 if (tcp->tcp_notsack_list != NULL) { 4134 tcp->tcp_pipe = tcp->tcp_snxt - 4135 tcp->tcp_fack; 4136 tcp->tcp_sack_snxt = seg_ack; 4137 flags |= TH_NEED_SACK_REXMIT; 4138 } else { 4139 /* 4140 * Always initialize tcp_pipe 4141 * even though we don't have 4142 * any SACK info. If later 4143 * we get SACK info and 4144 * tcp_pipe is not initialized, 4145 * funny things will happen. 4146 */ 4147 tcp->tcp_pipe = 4148 tcp->tcp_cwnd_ssthresh; 4149 } 4150 } else { 4151 flags |= TH_REXMIT_NEEDED; 4152 } /* tcp_snd_sack_ok */ 4153 4154 } else { 4155 cc_ack_received(tcp, seg_ack, 4156 bytes_acked, CC_DUPACK); 4157 /* 4158 * Here we perform congestion 4159 * avoidance, but NOT slow start. 4160 * This is known as the Fast 4161 * Recovery Algorithm. 4162 */ 4163 if (tcp->tcp_snd_sack_ok && 4164 tcp->tcp_notsack_list != NULL) { 4165 flags |= TH_NEED_SACK_REXMIT; 4166 tcp->tcp_pipe -= mss; 4167 if (tcp->tcp_pipe < 0) 4168 tcp->tcp_pipe = 0; 4169 } else { 4170 /* 4171 * We know that one more packet has 4172 * left the pipe thus we can update 4173 * cwnd. 4174 */ 4175 cwnd = tcp->tcp_cwnd + mss; 4176 if (cwnd > tcp->tcp_cwnd_max) 4177 cwnd = tcp->tcp_cwnd_max; 4178 DTRACE_PROBE3(cwnd__fast__recovery, 4179 tcp_t *, tcp, 4180 uint32_t, tcp->tcp_cwnd, 4181 uint32_t, cwnd); 4182 tcp->tcp_cwnd = cwnd; 4183 if (tcp->tcp_unsent > 0) 4184 flags |= TH_XMIT_NEEDED; 4185 } 4186 } 4187 } 4188 } else if (tcp->tcp_zero_win_probe) { 4189 /* 4190 * If the window has opened, need to arrange 4191 * to send additional data. 4192 */ 4193 if (new_swnd != 0) { 4194 /* tcp_suna != tcp_snxt */ 4195 /* Packet contains a window update */ 4196 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 4197 tcp->tcp_zero_win_probe = 0; 4198 tcp->tcp_timer_backoff = 0; 4199 tcp->tcp_ms_we_have_waited = 0; 4200 4201 /* 4202 * Transmit starting with tcp_suna since 4203 * the one byte probe is not ack'ed. 4204 * If TCP has sent more than one identical 4205 * probe, tcp_rexmit will be set. That means 4206 * tcp_ss_rexmit() will send out the one 4207 * byte along with new data. Otherwise, 4208 * fake the retransmission. 4209 */ 4210 flags |= TH_XMIT_NEEDED; 4211 if (!tcp->tcp_rexmit) { 4212 tcp->tcp_rexmit = B_TRUE; 4213 tcp->tcp_dupack_cnt = 0; 4214 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 4215 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 4216 } 4217 } 4218 } 4219 goto swnd_update; 4220 } 4221 4222 /* 4223 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4224 * If the ACK value acks something that we have not yet sent, it might 4225 * be an old duplicate segment. Send an ACK to re-synchronize the 4226 * other side. 4227 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4228 * state is handled above, so we can always just drop the segment and 4229 * send an ACK here. 4230 * 4231 * In the case where the peer shrinks the window, we see the new window 4232 * update, but all the data sent previously is queued up by the peer. 4233 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4234 * number, which was already sent, and within window, is recorded. 4235 * tcp_snxt is then updated. 4236 * 4237 * If the window has previously shrunk, and an ACK for data not yet 4238 * sent, according to tcp_snxt is recieved, it may still be valid. If 4239 * the ACK is for data within the window at the time the window was 4240 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4241 * the sequence number ACK'ed. 4242 * 4243 * If the ACK covers all the data sent at the time the window was 4244 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4245 * 4246 * Should we send ACKs in response to ACK only segments? 4247 */ 4248 4249 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4250 if ((tcp->tcp_is_wnd_shrnk) && 4251 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4252 uint32_t data_acked_ahead_snxt; 4253 4254 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4255 tcp_update_xmit_tail(tcp, seg_ack); 4256 tcp->tcp_unsent -= data_acked_ahead_snxt; 4257 } else { 4258 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4259 /* drop the received segment */ 4260 freemsg(mp); 4261 4262 /* 4263 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4264 * greater than 0, check if the number of such 4265 * bogus ACks is greater than that count. If yes, 4266 * don't send back any ACK. This prevents TCP from 4267 * getting into an ACK storm if somehow an attacker 4268 * successfully spoofs an acceptable segment to our 4269 * peer. If this continues (count > 2 X threshold), 4270 * we should abort this connection. 4271 */ 4272 if (tcp_drop_ack_unsent_cnt > 0 && 4273 ++tcp->tcp_in_ack_unsent > 4274 tcp_drop_ack_unsent_cnt) { 4275 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4276 if (tcp->tcp_in_ack_unsent > 2 * 4277 tcp_drop_ack_unsent_cnt) { 4278 (void) tcp_clean_death(tcp, EPROTO); 4279 } 4280 return; 4281 } 4282 mp = tcp_ack_mp(tcp); 4283 if (mp != NULL) { 4284 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 4285 TCPS_BUMP_MIB(tcps, tcpOutAck); 4286 tcp_send_data(tcp, mp); 4287 } 4288 return; 4289 } 4290 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4291 tcp->tcp_snxt_shrunk)) { 4292 tcp->tcp_is_wnd_shrnk = B_FALSE; 4293 } 4294 4295 /* 4296 * TCP gets a new ACK, update the notsack'ed list to delete those 4297 * blocks that are covered by this ACK. 4298 */ 4299 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4300 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4301 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4302 } 4303 4304 /* 4305 * If we got an ACK after fast retransmit, check to see 4306 * if it is a partial ACK. If it is not and the congestion 4307 * window was inflated to account for the other side's 4308 * cached packets, retract it. If it is, do Hoe's algorithm. 4309 */ 4310 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4311 ASSERT(tcp->tcp_rexmit == B_FALSE); 4312 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4313 tcp->tcp_dupack_cnt = 0; 4314 4315 cc_post_recovery(tcp, seg_ack); 4316 4317 tcp->tcp_rexmit_max = seg_ack; 4318 4319 /* 4320 * Remove all notsack info to avoid confusion with 4321 * the next fast retrasnmit/recovery phase. 4322 */ 4323 if (tcp->tcp_snd_sack_ok) { 4324 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4325 tcp); 4326 } 4327 } else { 4328 if (tcp->tcp_snd_sack_ok && 4329 tcp->tcp_notsack_list != NULL) { 4330 flags |= TH_NEED_SACK_REXMIT; 4331 tcp->tcp_pipe -= mss; 4332 if (tcp->tcp_pipe < 0) 4333 tcp->tcp_pipe = 0; 4334 } else { 4335 /* 4336 * Hoe's algorithm: 4337 * 4338 * Retransmit the unack'ed segment and 4339 * restart fast recovery. Note that we 4340 * need to scale back tcp_cwnd to the 4341 * original value when we started fast 4342 * recovery. This is to prevent overly 4343 * aggressive behaviour in sending new 4344 * segments. 4345 */ 4346 cwnd = tcp->tcp_cwnd_ssthresh + 4347 tcps->tcps_dupack_fast_retransmit * mss; 4348 DTRACE_PROBE3(cwnd__fast__retransmit__part__ack, 4349 tcp_t *, tcp, uint32_t, tcp->tcp_cwnd, 4350 uint32_t, cwnd); 4351 tcp->tcp_cwnd = cwnd; 4352 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4353 flags |= TH_REXMIT_NEEDED; 4354 } 4355 } 4356 } else { 4357 tcp->tcp_dupack_cnt = 0; 4358 if (tcp->tcp_rexmit) { 4359 /* 4360 * TCP is retranmitting. If the ACK ack's all 4361 * outstanding data, update tcp_rexmit_max and 4362 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4363 * to the correct value. 4364 * 4365 * Note that SEQ_LEQ() is used. This is to avoid 4366 * unnecessary fast retransmit caused by dup ACKs 4367 * received when TCP does slow start retransmission 4368 * after a time out. During this phase, TCP may 4369 * send out segments which are already received. 4370 * This causes dup ACKs to be sent back. 4371 */ 4372 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4373 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4374 tcp->tcp_rexmit_nxt = seg_ack; 4375 } 4376 if (seg_ack != tcp->tcp_rexmit_max) { 4377 flags |= TH_XMIT_NEEDED; 4378 } 4379 } else { 4380 tcp->tcp_rexmit = B_FALSE; 4381 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4382 } 4383 tcp->tcp_ms_we_have_waited = 0; 4384 } 4385 } 4386 4387 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4388 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4389 tcp->tcp_suna = seg_ack; 4390 if (tcp->tcp_zero_win_probe != 0) { 4391 tcp->tcp_zero_win_probe = 0; 4392 tcp->tcp_timer_backoff = 0; 4393 } 4394 4395 /* 4396 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4397 * Note that it cannot be the SYN being ack'ed. The code flow 4398 * will not reach here. 4399 */ 4400 if (mp1 == NULL) { 4401 goto fin_acked; 4402 } 4403 4404 /* 4405 * Update the congestion window. 4406 * 4407 * If TCP is not ECN capable or TCP is ECN capable but the 4408 * congestion experience bit is not set, increase the tcp_cwnd as 4409 * usual. 4410 */ 4411 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4412 if (IN_RECOVERY(tcp->tcp_ccv.flags)) { 4413 EXIT_RECOVERY(tcp->tcp_ccv.flags); 4414 } 4415 cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK); 4416 } 4417 4418 /* See if the latest urgent data has been acknowledged */ 4419 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4420 SEQ_GT(seg_ack, tcp->tcp_urg)) 4421 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4422 4423 /* 4424 * Update the RTT estimates. Note that we don't use the TCP 4425 * timestamp option to calculate RTT even if one is present. This is 4426 * because the timestamp option's resolution (CPU tick) is 4427 * too coarse to measure modern datacenter networks' microsecond 4428 * latencies. The timestamp field's resolution is limited by its 4429 * 4-byte width (see RFC1323), and since we always store a 4430 * high-resolution nanosecond presision timestamp along with the data, 4431 * there is no point to ever using the timestamp option. 4432 */ 4433 if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4434 /* 4435 * An ACK sequence we haven't seen before, so get the RTT 4436 * and update the RTO. But first check if the timestamp is 4437 * valid to use. 4438 */ 4439 if ((mp1->b_next != NULL) && 4440 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { 4441 tcp_set_rto(tcp, gethrtime() - 4442 (hrtime_t)(intptr_t)mp1->b_prev); 4443 } else { 4444 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4445 } 4446 4447 /* Remeber the last sequence to be ACKed */ 4448 tcp->tcp_csuna = seg_ack; 4449 if (tcp->tcp_set_timer == 1) { 4450 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4451 tcp->tcp_set_timer = 0; 4452 } 4453 } else { 4454 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4455 } 4456 4457 /* Eat acknowledged bytes off the xmit queue. */ 4458 for (;;) { 4459 mblk_t *mp2; 4460 uchar_t *wptr; 4461 4462 wptr = mp1->b_wptr; 4463 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4464 bytes_acked -= (int)(wptr - mp1->b_rptr); 4465 if (bytes_acked < 0) { 4466 mp1->b_rptr = wptr + bytes_acked; 4467 /* 4468 * Set a new timestamp if all the bytes timed by the 4469 * old timestamp have been ack'ed. 4470 */ 4471 if (SEQ_GT(seg_ack, 4472 (uint32_t)(uintptr_t)(mp1->b_next))) { 4473 mp1->b_prev = 4474 (mblk_t *)(intptr_t)gethrtime(); 4475 mp1->b_next = NULL; 4476 } 4477 break; 4478 } 4479 mp1->b_next = NULL; 4480 mp1->b_prev = NULL; 4481 mp2 = mp1; 4482 mp1 = mp1->b_cont; 4483 4484 /* 4485 * This notification is required for some zero-copy 4486 * clients to maintain a copy semantic. After the data 4487 * is ack'ed, client is safe to modify or reuse the buffer. 4488 */ 4489 if (tcp->tcp_snd_zcopy_aware && 4490 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4491 tcp_zcopy_notify(tcp); 4492 freeb(mp2); 4493 if (bytes_acked == 0) { 4494 if (mp1 == NULL) { 4495 /* Everything is ack'ed, clear the tail. */ 4496 tcp->tcp_xmit_tail = NULL; 4497 /* 4498 * Cancel the timer unless we are still 4499 * waiting for an ACK for the FIN packet. 4500 */ 4501 if (tcp->tcp_timer_tid != 0 && 4502 tcp->tcp_snxt == tcp->tcp_suna) { 4503 (void) TCP_TIMER_CANCEL(tcp, 4504 tcp->tcp_timer_tid); 4505 tcp->tcp_timer_tid = 0; 4506 } 4507 goto pre_swnd_update; 4508 } 4509 if (mp2 != tcp->tcp_xmit_tail) 4510 break; 4511 tcp->tcp_xmit_tail = mp1; 4512 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4513 (uintptr_t)INT_MAX); 4514 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4515 mp1->b_rptr); 4516 break; 4517 } 4518 if (mp1 == NULL) { 4519 /* 4520 * More was acked but there is nothing more 4521 * outstanding. This means that the FIN was 4522 * just acked or that we're talking to a clown. 4523 */ 4524 fin_acked: 4525 ASSERT(tcp->tcp_fin_sent); 4526 tcp->tcp_xmit_tail = NULL; 4527 if (tcp->tcp_fin_sent) { 4528 /* FIN was acked - making progress */ 4529 if (!tcp->tcp_fin_acked) 4530 tcp->tcp_ip_forward_progress = B_TRUE; 4531 tcp->tcp_fin_acked = B_TRUE; 4532 if (tcp->tcp_linger_tid != 0 && 4533 TCP_TIMER_CANCEL(tcp, 4534 tcp->tcp_linger_tid) >= 0) { 4535 tcp_stop_lingering(tcp); 4536 freemsg(mp); 4537 mp = NULL; 4538 } 4539 } else { 4540 /* 4541 * We should never get here because 4542 * we have already checked that the 4543 * number of bytes ack'ed should be 4544 * smaller than or equal to what we 4545 * have sent so far (it is the 4546 * acceptability check of the ACK). 4547 * We can only get here if the send 4548 * queue is corrupted. 4549 * 4550 * Terminate the connection and 4551 * panic the system. It is better 4552 * for us to panic instead of 4553 * continuing to avoid other disaster. 4554 */ 4555 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4556 tcp->tcp_rnxt, TH_RST|TH_ACK); 4557 panic("Memory corruption " 4558 "detected for connection %s.", 4559 tcp_display(tcp, NULL, 4560 DISP_ADDR_AND_PORT)); 4561 /*NOTREACHED*/ 4562 } 4563 goto pre_swnd_update; 4564 } 4565 ASSERT(mp2 != tcp->tcp_xmit_tail); 4566 } 4567 if (tcp->tcp_unsent) { 4568 flags |= TH_XMIT_NEEDED; 4569 } 4570 pre_swnd_update: 4571 tcp->tcp_xmit_head = mp1; 4572 swnd_update: 4573 /* 4574 * The following check is different from most other implementations. 4575 * For bi-directional transfer, when segments are dropped, the 4576 * "normal" check will not accept a window update in those 4577 * retransmitted segemnts. Failing to do that, TCP may send out 4578 * segments which are outside receiver's window. As TCP accepts 4579 * the ack in those retransmitted segments, if the window update in 4580 * the same segment is not accepted, TCP will incorrectly calculates 4581 * that it can send more segments. This can create a deadlock 4582 * with the receiver if its window becomes zero. 4583 */ 4584 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4585 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4586 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4587 /* 4588 * The criteria for update is: 4589 * 4590 * 1. the segment acknowledges some data. Or 4591 * 2. the segment is new, i.e. it has a higher seq num. Or 4592 * 3. the segment is not old and the advertised window is 4593 * larger than the previous advertised window. 4594 */ 4595 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4596 flags |= TH_XMIT_NEEDED; 4597 tcp->tcp_swnd = new_swnd; 4598 if (new_swnd > tcp->tcp_max_swnd) 4599 tcp->tcp_max_swnd = new_swnd; 4600 tcp->tcp_swl1 = seg_seq; 4601 tcp->tcp_swl2 = seg_ack; 4602 } 4603 est: 4604 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4605 4606 switch (tcp->tcp_state) { 4607 case TCPS_FIN_WAIT_1: 4608 if (tcp->tcp_fin_acked) { 4609 tcp->tcp_state = TCPS_FIN_WAIT_2; 4610 DTRACE_TCP6(state__change, void, NULL, 4611 ip_xmit_attr_t *, connp->conn_ixa, 4612 void, NULL, tcp_t *, tcp, void, NULL, 4613 int32_t, TCPS_FIN_WAIT_1); 4614 /* 4615 * We implement the non-standard BSD/SunOS 4616 * FIN_WAIT_2 flushing algorithm. 4617 * If there is no user attached to this 4618 * TCP endpoint, then this TCP struct 4619 * could hang around forever in FIN_WAIT_2 4620 * state if the peer forgets to send us 4621 * a FIN. To prevent this, we wait only 4622 * 2*MSL (a convenient time value) for 4623 * the FIN to arrive. If it doesn't show up, 4624 * we flush the TCP endpoint. This algorithm, 4625 * though a violation of RFC-793, has worked 4626 * for over 10 years in BSD systems. 4627 * Note: SunOS 4.x waits 675 seconds before 4628 * flushing the FIN_WAIT_2 connection. 4629 */ 4630 TCP_TIMER_RESTART(tcp, 4631 tcp->tcp_fin_wait_2_flush_interval); 4632 } 4633 break; 4634 case TCPS_FIN_WAIT_2: 4635 break; /* Shutdown hook? */ 4636 case TCPS_LAST_ACK: 4637 freemsg(mp); 4638 if (tcp->tcp_fin_acked) { 4639 (void) tcp_clean_death(tcp, 0); 4640 return; 4641 } 4642 goto xmit_check; 4643 case TCPS_CLOSING: 4644 if (tcp->tcp_fin_acked) { 4645 SET_TIME_WAIT(tcps, tcp, connp); 4646 DTRACE_TCP6(state__change, void, NULL, 4647 ip_xmit_attr_t *, connp->conn_ixa, void, 4648 NULL, tcp_t *, tcp, void, NULL, int32_t, 4649 TCPS_CLOSING); 4650 } 4651 /*FALLTHRU*/ 4652 case TCPS_CLOSE_WAIT: 4653 freemsg(mp); 4654 goto xmit_check; 4655 default: 4656 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4657 break; 4658 } 4659 } 4660 if (flags & TH_FIN) { 4661 /* Make sure we ack the fin */ 4662 flags |= TH_ACK_NEEDED; 4663 if (!tcp->tcp_fin_rcvd) { 4664 tcp->tcp_fin_rcvd = B_TRUE; 4665 tcp->tcp_rnxt++; 4666 tcpha = tcp->tcp_tcpha; 4667 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4668 4669 /* 4670 * Generate the ordrel_ind at the end unless the 4671 * conn is detached or it is a STREAMS based eager. 4672 * In the eager case we defer the notification until 4673 * tcp_accept_finish has run. 4674 */ 4675 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4676 (tcp->tcp_listener == NULL && 4677 !tcp->tcp_hard_binding))) 4678 flags |= TH_ORDREL_NEEDED; 4679 switch (tcp->tcp_state) { 4680 case TCPS_SYN_RCVD: 4681 tcp->tcp_state = TCPS_CLOSE_WAIT; 4682 DTRACE_TCP6(state__change, void, NULL, 4683 ip_xmit_attr_t *, connp->conn_ixa, 4684 void, NULL, tcp_t *, tcp, void, NULL, 4685 int32_t, TCPS_SYN_RCVD); 4686 /* Keepalive? */ 4687 break; 4688 case TCPS_ESTABLISHED: 4689 tcp->tcp_state = TCPS_CLOSE_WAIT; 4690 DTRACE_TCP6(state__change, void, NULL, 4691 ip_xmit_attr_t *, connp->conn_ixa, 4692 void, NULL, tcp_t *, tcp, void, NULL, 4693 int32_t, TCPS_ESTABLISHED); 4694 /* Keepalive? */ 4695 break; 4696 case TCPS_FIN_WAIT_1: 4697 if (!tcp->tcp_fin_acked) { 4698 tcp->tcp_state = TCPS_CLOSING; 4699 DTRACE_TCP6(state__change, void, NULL, 4700 ip_xmit_attr_t *, connp->conn_ixa, 4701 void, NULL, tcp_t *, tcp, void, 4702 NULL, int32_t, TCPS_FIN_WAIT_1); 4703 break; 4704 } 4705 /* FALLTHRU */ 4706 case TCPS_FIN_WAIT_2: 4707 SET_TIME_WAIT(tcps, tcp, connp); 4708 DTRACE_TCP6(state__change, void, NULL, 4709 ip_xmit_attr_t *, connp->conn_ixa, void, 4710 NULL, tcp_t *, tcp, void, NULL, int32_t, 4711 TCPS_FIN_WAIT_2); 4712 if (seg_len) { 4713 /* 4714 * implies data piggybacked on FIN. 4715 * break to handle data. 4716 */ 4717 break; 4718 } 4719 freemsg(mp); 4720 goto ack_check; 4721 } 4722 } 4723 } 4724 if (mp == NULL) 4725 goto xmit_check; 4726 if (seg_len == 0) { 4727 freemsg(mp); 4728 goto xmit_check; 4729 } 4730 if (mp->b_rptr == mp->b_wptr) { 4731 /* 4732 * The header has been consumed, so we remove the 4733 * zero-length mblk here. 4734 */ 4735 mp1 = mp; 4736 mp = mp->b_cont; 4737 freeb(mp1); 4738 } 4739 update_ack: 4740 tcpha = tcp->tcp_tcpha; 4741 tcp->tcp_rack_cnt++; 4742 { 4743 uint32_t cur_max; 4744 4745 cur_max = tcp->tcp_rack_cur_max; 4746 if (tcp->tcp_rack_cnt >= cur_max) { 4747 /* 4748 * We have more unacked data than we should - send 4749 * an ACK now. 4750 */ 4751 flags |= TH_ACK_NEEDED; 4752 cur_max++; 4753 if (cur_max > tcp->tcp_rack_abs_max) 4754 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4755 else 4756 tcp->tcp_rack_cur_max = cur_max; 4757 } else if (TCP_IS_DETACHED(tcp)) { 4758 /* We don't have an ACK timer for detached TCP. */ 4759 flags |= TH_ACK_NEEDED; 4760 } else if (seg_len < mss) { 4761 /* 4762 * If we get a segment that is less than an mss, and we 4763 * already have unacknowledged data, and the amount 4764 * unacknowledged is not a multiple of mss, then we 4765 * better generate an ACK now. Otherwise, this may be 4766 * the tail piece of a transaction, and we would rather 4767 * wait for the response. 4768 */ 4769 uint32_t udif; 4770 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4771 (uintptr_t)INT_MAX); 4772 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4773 if (udif && (udif % mss)) 4774 flags |= TH_ACK_NEEDED; 4775 else 4776 flags |= TH_ACK_TIMER_NEEDED; 4777 } else { 4778 /* Start delayed ack timer */ 4779 flags |= TH_ACK_TIMER_NEEDED; 4780 } 4781 } 4782 tcp->tcp_rnxt += seg_len; 4783 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4784 4785 if (mp == NULL) 4786 goto xmit_check; 4787 4788 /* Update SACK list */ 4789 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4790 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4791 &(tcp->tcp_num_sack_blk)); 4792 } 4793 4794 if (tcp->tcp_urp_mp) { 4795 tcp->tcp_urp_mp->b_cont = mp; 4796 mp = tcp->tcp_urp_mp; 4797 tcp->tcp_urp_mp = NULL; 4798 /* Ready for a new signal. */ 4799 tcp->tcp_urp_last_valid = B_FALSE; 4800 #ifdef DEBUG 4801 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4802 "tcp_rput: sending exdata_ind %s", 4803 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4804 #endif /* DEBUG */ 4805 } 4806 4807 /* 4808 * Check for ancillary data changes compared to last segment. 4809 */ 4810 if (connp->conn_recv_ancillary.crb_all != 0) { 4811 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4812 if (mp == NULL) 4813 return; 4814 } 4815 4816 if (IPCL_IS_NONSTR(connp)) { 4817 /* 4818 * Non-STREAMS socket 4819 */ 4820 boolean_t push = flags & (TH_PUSH|TH_FIN); 4821 int error; 4822 4823 if ((*sockupcalls->su_recv)(connp->conn_upper_handle, 4824 mp, seg_len, 0, &error, &push) <= 0) { 4825 /* 4826 * We should never be in middle of a 4827 * fallback, the squeue guarantees that. 4828 */ 4829 ASSERT(error != EOPNOTSUPP); 4830 if (error == ENOSPC) 4831 tcp->tcp_rwnd -= seg_len; 4832 } else if (push) { 4833 /* PUSH bit set and sockfs is not flow controlled */ 4834 flags |= tcp_rwnd_reopen(tcp); 4835 } 4836 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4837 /* 4838 * Side queue inbound data until the accept happens. 4839 * tcp_accept/tcp_rput drains this when the accept happens. 4840 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4841 * T_EXDATA_IND) it is queued on b_next. 4842 * XXX Make urgent data use this. Requires: 4843 * Removing tcp_listener check for TH_URG 4844 * Making M_PCPROTO and MARK messages skip the eager case 4845 */ 4846 4847 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4848 } else { 4849 /* Active STREAMS socket */ 4850 if (mp->b_datap->db_type != M_DATA || 4851 (flags & TH_MARKNEXT_NEEDED)) { 4852 if (tcp->tcp_rcv_list != NULL) { 4853 flags |= tcp_rcv_drain(tcp); 4854 } 4855 ASSERT(tcp->tcp_rcv_list == NULL || 4856 tcp->tcp_fused_sigurg); 4857 4858 if (flags & TH_MARKNEXT_NEEDED) { 4859 #ifdef DEBUG 4860 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4861 "tcp_rput: sending MSGMARKNEXT %s", 4862 tcp_display(tcp, NULL, 4863 DISP_PORT_ONLY)); 4864 #endif /* DEBUG */ 4865 mp->b_flag |= MSGMARKNEXT; 4866 flags &= ~TH_MARKNEXT_NEEDED; 4867 } 4868 4869 if (is_system_labeled()) 4870 tcp_setcred_data(mp, ira); 4871 4872 putnext(connp->conn_rq, mp); 4873 if (!canputnext(connp->conn_rq)) 4874 tcp->tcp_rwnd -= seg_len; 4875 } else if ((flags & (TH_PUSH|TH_FIN)) || 4876 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4877 if (tcp->tcp_rcv_list != NULL) { 4878 /* 4879 * Enqueue the new segment first and then 4880 * call tcp_rcv_drain() to send all data 4881 * up. The other way to do this is to 4882 * send all queued data up and then call 4883 * putnext() to send the new segment up. 4884 * This way can remove the else part later 4885 * on. 4886 * 4887 * We don't do this to avoid one more call to 4888 * canputnext() as tcp_rcv_drain() needs to 4889 * call canputnext(). 4890 */ 4891 tcp_rcv_enqueue(tcp, mp, seg_len, 4892 ira->ira_cred); 4893 flags |= tcp_rcv_drain(tcp); 4894 } else { 4895 if (is_system_labeled()) 4896 tcp_setcred_data(mp, ira); 4897 4898 putnext(connp->conn_rq, mp); 4899 if (!canputnext(connp->conn_rq)) 4900 tcp->tcp_rwnd -= seg_len; 4901 } 4902 } else { 4903 /* 4904 * Enqueue all packets when processing an mblk 4905 * from the co queue and also enqueue normal packets. 4906 */ 4907 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4908 } 4909 /* 4910 * Make sure the timer is running if we have data waiting 4911 * for a push bit. This provides resiliency against 4912 * implementations that do not correctly generate push bits. 4913 */ 4914 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4915 /* 4916 * The connection may be closed at this point, so don't 4917 * do anything for a detached tcp. 4918 */ 4919 if (!TCP_IS_DETACHED(tcp)) 4920 tcp->tcp_push_tid = TCP_TIMER(tcp, 4921 tcp_push_timer, 4922 tcps->tcps_push_timer_interval); 4923 } 4924 } 4925 4926 xmit_check: 4927 /* Is there anything left to do? */ 4928 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4929 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4930 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4931 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4932 goto done; 4933 4934 /* Any transmit work to do and a non-zero window? */ 4935 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4936 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4937 if (flags & TH_REXMIT_NEEDED) { 4938 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4939 4940 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4941 if (snd_size > mss) 4942 snd_size = mss; 4943 if (snd_size > tcp->tcp_swnd) 4944 snd_size = tcp->tcp_swnd; 4945 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4946 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4947 B_TRUE); 4948 4949 if (mp1 != NULL) { 4950 tcp->tcp_xmit_head->b_prev = 4951 (mblk_t *)(intptr_t)gethrtime(); 4952 tcp->tcp_csuna = tcp->tcp_snxt; 4953 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4954 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4955 snd_size); 4956 tcp->tcp_cs.tcp_out_retrans_segs++; 4957 tcp->tcp_cs.tcp_out_retrans_bytes += snd_size; 4958 tcp_send_data(tcp, mp1); 4959 } 4960 } 4961 if (flags & TH_NEED_SACK_REXMIT) { 4962 tcp_sack_rexmit(tcp, &flags); 4963 } 4964 /* 4965 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4966 * out new segment. Note that tcp_rexmit should not be 4967 * set, otherwise TH_LIMIT_XMIT should not be set. 4968 */ 4969 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4970 if (!tcp->tcp_rexmit) { 4971 tcp_wput_data(tcp, NULL, B_FALSE); 4972 } else { 4973 tcp_ss_rexmit(tcp); 4974 } 4975 } 4976 /* 4977 * Adjust tcp_cwnd back to normal value after sending 4978 * new data segments. 4979 */ 4980 if (flags & TH_LIMIT_XMIT) { 4981 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4982 /* 4983 * This will restart the timer. Restarting the 4984 * timer is used to avoid a timeout before the 4985 * limited transmitted segment's ACK gets back. 4986 */ 4987 if (tcp->tcp_xmit_head != NULL) { 4988 tcp->tcp_xmit_head->b_prev = 4989 (mblk_t *)(intptr_t)gethrtime(); 4990 } 4991 } 4992 4993 /* Anything more to do? */ 4994 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4995 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4996 goto done; 4997 } 4998 ack_check: 4999 if (flags & TH_SEND_URP_MARK) { 5000 ASSERT(tcp->tcp_urp_mark_mp); 5001 ASSERT(!IPCL_IS_NONSTR(connp)); 5002 /* 5003 * Send up any queued data and then send the mark message 5004 */ 5005 if (tcp->tcp_rcv_list != NULL) { 5006 flags |= tcp_rcv_drain(tcp); 5007 5008 } 5009 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5010 mp1 = tcp->tcp_urp_mark_mp; 5011 tcp->tcp_urp_mark_mp = NULL; 5012 if (is_system_labeled()) 5013 tcp_setcred_data(mp1, ira); 5014 5015 putnext(connp->conn_rq, mp1); 5016 #ifdef DEBUG 5017 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 5018 "tcp_rput: sending zero-length %s %s", 5019 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 5020 "MSGNOTMARKNEXT"), 5021 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5022 #endif /* DEBUG */ 5023 flags &= ~TH_SEND_URP_MARK; 5024 } 5025 if (flags & TH_ACK_NEEDED) { 5026 /* 5027 * Time to send an ack for some reason. 5028 */ 5029 mp1 = tcp_ack_mp(tcp); 5030 5031 if (mp1 != NULL) { 5032 tcp_send_data(tcp, mp1); 5033 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 5034 TCPS_BUMP_MIB(tcps, tcpOutAck); 5035 } 5036 if (tcp->tcp_ack_tid != 0) { 5037 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 5038 tcp->tcp_ack_tid = 0; 5039 } 5040 } 5041 if (flags & TH_ACK_TIMER_NEEDED) { 5042 /* 5043 * Arrange for deferred ACK or push wait timeout. 5044 * Start timer if it is not already running. 5045 */ 5046 if (tcp->tcp_ack_tid == 0) { 5047 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 5048 tcp->tcp_localnet ? 5049 tcps->tcps_local_dack_interval : 5050 tcps->tcps_deferred_ack_interval); 5051 } 5052 } 5053 if (flags & TH_ORDREL_NEEDED) { 5054 /* 5055 * Notify upper layer about an orderly release. If this is 5056 * a non-STREAMS socket, then just make an upcall. For STREAMS 5057 * we send up an ordrel_ind, unless this is an eager, in which 5058 * case the ordrel will be sent when tcp_accept_finish runs. 5059 * Note that for non-STREAMS we make an upcall even if it is an 5060 * eager, because we have an upper handle to send it to. 5061 */ 5062 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 5063 ASSERT(!tcp->tcp_detached); 5064 5065 if (IPCL_IS_NONSTR(connp)) { 5066 ASSERT(tcp->tcp_ordrel_mp == NULL); 5067 tcp->tcp_ordrel_done = B_TRUE; 5068 (*sockupcalls->su_opctl)(connp->conn_upper_handle, 5069 SOCK_OPCTL_SHUT_RECV, 0); 5070 goto done; 5071 } 5072 5073 if (tcp->tcp_rcv_list != NULL) { 5074 /* 5075 * Push any mblk(s) enqueued from co processing. 5076 */ 5077 flags |= tcp_rcv_drain(tcp); 5078 } 5079 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 5080 5081 mp1 = tcp->tcp_ordrel_mp; 5082 tcp->tcp_ordrel_mp = NULL; 5083 tcp->tcp_ordrel_done = B_TRUE; 5084 putnext(connp->conn_rq, mp1); 5085 } 5086 done: 5087 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 5088 } 5089 5090 /* 5091 * Attach ancillary data to a received TCP segments for the 5092 * ancillary pieces requested by the application that are 5093 * different than they were in the previous data segment. 5094 * 5095 * Save the "current" values once memory allocation is ok so that 5096 * when memory allocation fails we can just wait for the next data segment. 5097 */ 5098 static mblk_t * 5099 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 5100 ip_recv_attr_t *ira) 5101 { 5102 struct T_optdata_ind *todi; 5103 int optlen; 5104 uchar_t *optptr; 5105 struct T_opthdr *toh; 5106 crb_t addflag; /* Which pieces to add */ 5107 mblk_t *mp1; 5108 conn_t *connp = tcp->tcp_connp; 5109 5110 optlen = 0; 5111 addflag.crb_all = 0; 5112 5113 /* If app asked for TOS and it has changed ... */ 5114 if (connp->conn_recv_ancillary.crb_recvtos && 5115 ipp->ipp_type_of_service != tcp->tcp_recvtos && 5116 (ira->ira_flags & IRAF_IS_IPV4)) { 5117 optlen += sizeof (struct T_opthdr) + 5118 P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE); 5119 addflag.crb_recvtos = 1; 5120 } 5121 /* If app asked for pktinfo and the index has changed ... */ 5122 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 5123 ira->ira_ruifindex != tcp->tcp_recvifindex) { 5124 optlen += sizeof (struct T_opthdr) + 5125 sizeof (struct in6_pktinfo); 5126 addflag.crb_ip_recvpktinfo = 1; 5127 } 5128 /* If app asked for hoplimit and it has changed ... */ 5129 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 5130 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 5131 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5132 addflag.crb_ipv6_recvhoplimit = 1; 5133 } 5134 /* If app asked for tclass and it has changed ... */ 5135 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 5136 ipp->ipp_tclass != tcp->tcp_recvtclass) { 5137 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5138 addflag.crb_ipv6_recvtclass = 1; 5139 } 5140 5141 /* 5142 * If app asked for hop-by-hop headers and it has changed ... 5143 * For security labels, note that (1) security labels can't change on 5144 * a connected socket at all, (2) we're connected to at most one peer, 5145 * (3) if anything changes, then it must be some other extra option. 5146 */ 5147 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 5148 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 5149 (ipp->ipp_fields & IPPF_HOPOPTS), 5150 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 5151 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 5152 addflag.crb_ipv6_recvhopopts = 1; 5153 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 5154 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 5155 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 5156 return (mp); 5157 } 5158 /* If app asked for dst headers before routing headers ... */ 5159 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 5160 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 5161 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5162 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 5163 optlen += sizeof (struct T_opthdr) + 5164 ipp->ipp_rthdrdstoptslen; 5165 addflag.crb_ipv6_recvrthdrdstopts = 1; 5166 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 5167 &tcp->tcp_rthdrdstoptslen, 5168 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5169 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 5170 return (mp); 5171 } 5172 /* If app asked for routing headers and it has changed ... */ 5173 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 5174 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 5175 (ipp->ipp_fields & IPPF_RTHDR), 5176 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 5177 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 5178 addflag.crb_ipv6_recvrthdr = 1; 5179 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 5180 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 5181 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 5182 return (mp); 5183 } 5184 /* If app asked for dest headers and it has changed ... */ 5185 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 5186 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 5187 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 5188 (ipp->ipp_fields & IPPF_DSTOPTS), 5189 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 5190 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 5191 addflag.crb_ipv6_recvdstopts = 1; 5192 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 5193 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 5194 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 5195 return (mp); 5196 } 5197 5198 if (optlen == 0) { 5199 /* Nothing to add */ 5200 return (mp); 5201 } 5202 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 5203 if (mp1 == NULL) { 5204 /* 5205 * Defer sending ancillary data until the next TCP segment 5206 * arrives. 5207 */ 5208 return (mp); 5209 } 5210 mp1->b_cont = mp; 5211 mp = mp1; 5212 mp->b_wptr += sizeof (*todi) + optlen; 5213 mp->b_datap->db_type = M_PROTO; 5214 todi = (struct T_optdata_ind *)mp->b_rptr; 5215 todi->PRIM_type = T_OPTDATA_IND; 5216 todi->DATA_flag = 1; /* MORE data */ 5217 todi->OPT_length = optlen; 5218 todi->OPT_offset = sizeof (*todi); 5219 optptr = (uchar_t *)&todi[1]; 5220 5221 /* If app asked for TOS and it has changed ... */ 5222 if (addflag.crb_recvtos) { 5223 toh = (struct T_opthdr *)optptr; 5224 toh->level = IPPROTO_IP; 5225 toh->name = IP_RECVTOS; 5226 toh->len = sizeof (*toh) + 5227 P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE); 5228 toh->status = 0; 5229 optptr += sizeof (*toh); 5230 *(uint8_t *)optptr = ipp->ipp_type_of_service; 5231 optptr = (uchar_t *)toh + toh->len; 5232 ASSERT(__TPI_TOPT_ISALIGNED(optptr)); 5233 /* Save as "last" value */ 5234 tcp->tcp_recvtos = ipp->ipp_type_of_service; 5235 } 5236 5237 /* 5238 * If app asked for pktinfo and the index has changed ... 5239 * Note that the local address never changes for the connection. 5240 */ 5241 if (addflag.crb_ip_recvpktinfo) { 5242 struct in6_pktinfo *pkti; 5243 uint_t ifindex; 5244 5245 ifindex = ira->ira_ruifindex; 5246 toh = (struct T_opthdr *)optptr; 5247 toh->level = IPPROTO_IPV6; 5248 toh->name = IPV6_PKTINFO; 5249 toh->len = sizeof (*toh) + sizeof (*pkti); 5250 toh->status = 0; 5251 optptr += sizeof (*toh); 5252 pkti = (struct in6_pktinfo *)optptr; 5253 pkti->ipi6_addr = connp->conn_laddr_v6; 5254 pkti->ipi6_ifindex = ifindex; 5255 optptr += sizeof (*pkti); 5256 ASSERT(OK_32PTR(optptr)); 5257 /* Save as "last" value */ 5258 tcp->tcp_recvifindex = ifindex; 5259 } 5260 /* If app asked for hoplimit and it has changed ... */ 5261 if (addflag.crb_ipv6_recvhoplimit) { 5262 toh = (struct T_opthdr *)optptr; 5263 toh->level = IPPROTO_IPV6; 5264 toh->name = IPV6_HOPLIMIT; 5265 toh->len = sizeof (*toh) + sizeof (uint_t); 5266 toh->status = 0; 5267 optptr += sizeof (*toh); 5268 *(uint_t *)optptr = ipp->ipp_hoplimit; 5269 optptr += sizeof (uint_t); 5270 ASSERT(OK_32PTR(optptr)); 5271 /* Save as "last" value */ 5272 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5273 } 5274 /* If app asked for tclass and it has changed ... */ 5275 if (addflag.crb_ipv6_recvtclass) { 5276 toh = (struct T_opthdr *)optptr; 5277 toh->level = IPPROTO_IPV6; 5278 toh->name = IPV6_TCLASS; 5279 toh->len = sizeof (*toh) + sizeof (uint_t); 5280 toh->status = 0; 5281 optptr += sizeof (*toh); 5282 *(uint_t *)optptr = ipp->ipp_tclass; 5283 optptr += sizeof (uint_t); 5284 ASSERT(OK_32PTR(optptr)); 5285 /* Save as "last" value */ 5286 tcp->tcp_recvtclass = ipp->ipp_tclass; 5287 } 5288 if (addflag.crb_ipv6_recvhopopts) { 5289 toh = (struct T_opthdr *)optptr; 5290 toh->level = IPPROTO_IPV6; 5291 toh->name = IPV6_HOPOPTS; 5292 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5293 toh->status = 0; 5294 optptr += sizeof (*toh); 5295 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5296 optptr += ipp->ipp_hopoptslen; 5297 ASSERT(OK_32PTR(optptr)); 5298 /* Save as last value */ 5299 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5300 (ipp->ipp_fields & IPPF_HOPOPTS), 5301 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5302 } 5303 if (addflag.crb_ipv6_recvrthdrdstopts) { 5304 toh = (struct T_opthdr *)optptr; 5305 toh->level = IPPROTO_IPV6; 5306 toh->name = IPV6_RTHDRDSTOPTS; 5307 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5308 toh->status = 0; 5309 optptr += sizeof (*toh); 5310 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5311 optptr += ipp->ipp_rthdrdstoptslen; 5312 ASSERT(OK_32PTR(optptr)); 5313 /* Save as last value */ 5314 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5315 &tcp->tcp_rthdrdstoptslen, 5316 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5317 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5318 } 5319 if (addflag.crb_ipv6_recvrthdr) { 5320 toh = (struct T_opthdr *)optptr; 5321 toh->level = IPPROTO_IPV6; 5322 toh->name = IPV6_RTHDR; 5323 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5324 toh->status = 0; 5325 optptr += sizeof (*toh); 5326 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5327 optptr += ipp->ipp_rthdrlen; 5328 ASSERT(OK_32PTR(optptr)); 5329 /* Save as last value */ 5330 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5331 (ipp->ipp_fields & IPPF_RTHDR), 5332 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5333 } 5334 if (addflag.crb_ipv6_recvdstopts) { 5335 toh = (struct T_opthdr *)optptr; 5336 toh->level = IPPROTO_IPV6; 5337 toh->name = IPV6_DSTOPTS; 5338 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5339 toh->status = 0; 5340 optptr += sizeof (*toh); 5341 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5342 optptr += ipp->ipp_dstoptslen; 5343 ASSERT(OK_32PTR(optptr)); 5344 /* Save as last value */ 5345 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5346 (ipp->ipp_fields & IPPF_DSTOPTS), 5347 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5348 } 5349 ASSERT(optptr == mp->b_wptr); 5350 return (mp); 5351 } 5352 5353 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */ 5354 #define TCP_SD_MIN 400000000 5355 5356 /* 5357 * Set RTO for this connection based on a new round-trip time measurement. 5358 * The formula is from Jacobson and Karels' "Congestion Avoidance and Control" 5359 * in SIGCOMM '88. The variable names are the same as those in Appendix A.2 5360 * of that paper. 5361 * 5362 * m = new measurement 5363 * sa = smoothed RTT average (8 * average estimates). 5364 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5365 */ 5366 static void 5367 tcp_set_rto(tcp_t *tcp, hrtime_t rtt) 5368 { 5369 hrtime_t m = rtt; 5370 hrtime_t sa = tcp->tcp_rtt_sa; 5371 hrtime_t sv = tcp->tcp_rtt_sd; 5372 tcp_stack_t *tcps = tcp->tcp_tcps; 5373 5374 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5375 tcp->tcp_rtt_update++; 5376 tcp->tcp_rtt_sum += m; 5377 tcp->tcp_rtt_cnt++; 5378 5379 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5380 if (sa != 0) { 5381 /* 5382 * Update average estimator (see section 2.3 of RFC6298): 5383 * SRTT = 7/8 SRTT + 1/8 rtt 5384 * 5385 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to: 5386 * tcp_rtt_sa = 7 * SRTT + rtt 5387 * tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt 5388 * tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt 5389 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8)) 5390 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3)) 5391 * tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3)) 5392 * 5393 * (rtt - tcp_rtt_sa / 8) is simply the difference 5394 * between the new rtt measurement and the existing smoothed 5395 * RTT average. This is referred to as "Error" in subsequent 5396 * calculations. 5397 */ 5398 5399 /* m is now Error. */ 5400 m -= sa >> 3; 5401 if ((sa += m) <= 0) { 5402 /* 5403 * Don't allow the smoothed average to be negative. 5404 * We use 0 to denote reinitialization of the 5405 * variables. 5406 */ 5407 sa = 1; 5408 } 5409 5410 /* 5411 * Update deviation estimator: 5412 * mdev = 3/4 mdev + 1/4 abs(Error) 5413 * 5414 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to: 5415 * tcp_rtt_sd = 3 * mdev + abs(Error) 5416 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error) 5417 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error) 5418 * tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error) 5419 */ 5420 if (m < 0) 5421 m = -m; 5422 m -= sv >> 2; 5423 sv += m; 5424 } else { 5425 /* 5426 * This follows BSD's implementation. So the reinitialized 5427 * RTO is 3 * m. We cannot go less than 2 because if the 5428 * link is bandwidth dominated, doubling the window size 5429 * during slow start means doubling the RTT. We want to be 5430 * more conservative when we reinitialize our estimates. 3 5431 * is just a convenient number. 5432 */ 5433 sa = m << 3; 5434 sv = m << 1; 5435 } 5436 if (sv < TCP_SD_MIN) { 5437 /* 5438 * Since a receiver doesn't delay its ACKs during a long run of 5439 * segments, sa may not have captured the effect of delayed ACK 5440 * timeouts on the RTT. To make sure we always account for the 5441 * possible delay (and avoid the unnecessary retransmission), 5442 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of 5443 * 200ms on older SunOS/BSD systems and modern Windows systems 5444 * (as of 2019). This means that the minimum possible mean 5445 * deviation is 100 ms. 5446 */ 5447 sv = TCP_SD_MIN; 5448 } 5449 tcp->tcp_rtt_sa = sa; 5450 tcp->tcp_rtt_sd = sv; 5451 5452 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 5453 5454 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5455 tcp->tcp_timer_backoff = 0; 5456 } 5457 5458 /* 5459 * On a labeled system we have some protocols above TCP, such as RPC, which 5460 * appear to assume that every mblk in a chain has a db_credp. 5461 */ 5462 static void 5463 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5464 { 5465 ASSERT(is_system_labeled()); 5466 ASSERT(ira->ira_cred != NULL); 5467 5468 while (mp != NULL) { 5469 mblk_setcred(mp, ira->ira_cred, NOPID); 5470 mp = mp->b_cont; 5471 } 5472 } 5473 5474 uint_t 5475 tcp_rwnd_reopen(tcp_t *tcp) 5476 { 5477 uint_t ret = 0; 5478 uint_t thwin; 5479 conn_t *connp = tcp->tcp_connp; 5480 5481 /* Learn the latest rwnd information that we sent to the other side. */ 5482 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5483 << tcp->tcp_rcv_ws; 5484 /* This is peer's calculated send window (our receive window). */ 5485 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5486 /* 5487 * Increase the receive window to max. But we need to do receiver 5488 * SWS avoidance. This means that we need to check the increase of 5489 * of receive window is at least 1 MSS. 5490 */ 5491 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5492 /* 5493 * If the window that the other side knows is less than max 5494 * deferred acks segments, send an update immediately. 5495 */ 5496 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5497 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5498 ret = TH_ACK_NEEDED; 5499 } 5500 tcp->tcp_rwnd = connp->conn_rcvbuf; 5501 } 5502 return (ret); 5503 } 5504 5505 /* 5506 * Handle a packet that has been reclassified by TCP. 5507 * This function drops the ref on connp that the caller had. 5508 */ 5509 void 5510 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5511 { 5512 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5513 5514 if (connp->conn_incoming_ifindex != 0 && 5515 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5516 freemsg(mp); 5517 CONN_DEC_REF(connp); 5518 return; 5519 } 5520 5521 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5522 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5523 ip6_t *ip6h; 5524 ipha_t *ipha; 5525 5526 if (ira->ira_flags & IRAF_IS_IPV4) { 5527 ipha = (ipha_t *)mp->b_rptr; 5528 ip6h = NULL; 5529 } else { 5530 ipha = NULL; 5531 ip6h = (ip6_t *)mp->b_rptr; 5532 } 5533 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5534 if (mp == NULL) { 5535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5536 /* Note that mp is NULL */ 5537 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5538 CONN_DEC_REF(connp); 5539 return; 5540 } 5541 } 5542 5543 if (IPCL_IS_TCP(connp)) { 5544 /* 5545 * do not drain, certain use cases can blow 5546 * the stack 5547 */ 5548 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5549 connp->conn_recv, connp, ira, 5550 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5551 } else { 5552 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5553 (connp->conn_recv)(connp, mp, NULL, 5554 ira); 5555 CONN_DEC_REF(connp); 5556 } 5557 5558 } 5559 5560 /* ARGSUSED */ 5561 static void 5562 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5563 { 5564 conn_t *connp = (conn_t *)arg; 5565 tcp_t *tcp = connp->conn_tcp; 5566 queue_t *q = connp->conn_rq; 5567 5568 ASSERT(!IPCL_IS_NONSTR(connp)); 5569 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5570 tcp->tcp_rsrv_mp = mp; 5571 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5572 5573 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5574 return; 5575 } 5576 5577 if (tcp->tcp_fused) { 5578 tcp_fuse_backenable(tcp); 5579 return; 5580 } 5581 5582 if (canputnext(q)) { 5583 /* Not flow-controlled, open rwnd */ 5584 tcp->tcp_rwnd = connp->conn_rcvbuf; 5585 5586 /* 5587 * Send back a window update immediately if TCP is above 5588 * ESTABLISHED state and the increase of the rcv window 5589 * that the other side knows is at least 1 MSS after flow 5590 * control is lifted. 5591 */ 5592 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5593 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5594 tcp_xmit_ctl(NULL, tcp, 5595 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5596 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5597 } 5598 } 5599 } 5600 5601 /* 5602 * The read side service routine is called mostly when we get back-enabled as a 5603 * result of flow control relief. Since we don't actually queue anything in 5604 * TCP, we have no data to send out of here. What we do is clear the receive 5605 * window, and send out a window update. 5606 */ 5607 int 5608 tcp_rsrv(queue_t *q) 5609 { 5610 conn_t *connp = Q_TO_CONN(q); 5611 tcp_t *tcp = connp->conn_tcp; 5612 mblk_t *mp; 5613 5614 /* No code does a putq on the read side */ 5615 ASSERT(q->q_first == NULL); 5616 5617 /* 5618 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5619 * been run. So just return. 5620 */ 5621 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5622 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5623 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5624 return (0); 5625 } 5626 tcp->tcp_rsrv_mp = NULL; 5627 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5628 5629 CONN_INC_REF(connp); 5630 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5631 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5632 return (0); 5633 } 5634 5635 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5636 #define ICMP_MIN_TCP_HDR 8 5637 5638 /* 5639 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5640 * passed up by IP. The message is always received on the correct tcp_t. 5641 * Assumes that IP has pulled up everything up to and including the ICMP header. 5642 */ 5643 /* ARGSUSED2 */ 5644 void 5645 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5646 { 5647 conn_t *connp = (conn_t *)arg1; 5648 icmph_t *icmph; 5649 ipha_t *ipha; 5650 int iph_hdr_length; 5651 tcpha_t *tcpha; 5652 uint32_t seg_seq; 5653 tcp_t *tcp = connp->conn_tcp; 5654 5655 /* Assume IP provides aligned packets */ 5656 ASSERT(OK_32PTR(mp->b_rptr)); 5657 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5658 5659 /* 5660 * It's possible we have a closed, but not yet destroyed, TCP 5661 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid 5662 * in the closed state, so don't take any chances and drop the packet. 5663 */ 5664 if (tcp->tcp_state == TCPS_CLOSED) { 5665 freemsg(mp); 5666 return; 5667 } 5668 5669 /* 5670 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5671 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5672 */ 5673 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5674 tcp_icmp_error_ipv6(tcp, mp, ira); 5675 return; 5676 } 5677 5678 /* Skip past the outer IP and ICMP headers */ 5679 iph_hdr_length = ira->ira_ip_hdr_length; 5680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5681 /* 5682 * If we don't have the correct outer IP header length 5683 * or if we don't have a complete inner IP header 5684 * drop it. 5685 */ 5686 if (iph_hdr_length < sizeof (ipha_t) || 5687 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5688 noticmpv4: 5689 freemsg(mp); 5690 return; 5691 } 5692 ipha = (ipha_t *)&icmph[1]; 5693 5694 /* Skip past the inner IP and find the ULP header */ 5695 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5696 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5697 /* 5698 * If we don't have the correct inner IP header length or if the ULP 5699 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5700 * bytes of TCP header, drop it. 5701 */ 5702 if (iph_hdr_length < sizeof (ipha_t) || 5703 ipha->ipha_protocol != IPPROTO_TCP || 5704 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5705 goto noticmpv4; 5706 } 5707 5708 seg_seq = ntohl(tcpha->tha_seq); 5709 switch (icmph->icmph_type) { 5710 case ICMP_DEST_UNREACHABLE: 5711 switch (icmph->icmph_code) { 5712 case ICMP_FRAGMENTATION_NEEDED: 5713 /* 5714 * Update Path MTU, then try to send something out. 5715 */ 5716 tcp_update_pmtu(tcp, B_TRUE); 5717 tcp_rexmit_after_error(tcp); 5718 break; 5719 case ICMP_PORT_UNREACHABLE: 5720 case ICMP_PROTOCOL_UNREACHABLE: 5721 switch (tcp->tcp_state) { 5722 case TCPS_SYN_SENT: 5723 case TCPS_SYN_RCVD: 5724 /* 5725 * ICMP can snipe away incipient 5726 * TCP connections as long as 5727 * seq number is same as initial 5728 * send seq number. 5729 */ 5730 if (seg_seq == tcp->tcp_iss) { 5731 (void) tcp_clean_death(tcp, 5732 ECONNREFUSED); 5733 } 5734 break; 5735 } 5736 break; 5737 case ICMP_HOST_UNREACHABLE: 5738 case ICMP_NET_UNREACHABLE: 5739 /* Record the error in case we finally time out. */ 5740 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5741 tcp->tcp_client_errno = EHOSTUNREACH; 5742 else 5743 tcp->tcp_client_errno = ENETUNREACH; 5744 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5745 if (tcp->tcp_listener != NULL && 5746 tcp->tcp_listener->tcp_syn_defense) { 5747 /* 5748 * Ditch the half-open connection if we 5749 * suspect a SYN attack is under way. 5750 */ 5751 (void) tcp_clean_death(tcp, 5752 tcp->tcp_client_errno); 5753 } 5754 } 5755 break; 5756 default: 5757 break; 5758 } 5759 break; 5760 case ICMP_SOURCE_QUENCH: { 5761 /* 5762 * use a global boolean to control 5763 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5764 * The default is false. 5765 */ 5766 if (tcp_icmp_source_quench) { 5767 /* 5768 * Reduce the sending rate as if we got a 5769 * retransmit timeout 5770 */ 5771 uint32_t npkt; 5772 5773 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5774 tcp->tcp_mss; 5775 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5776 5777 DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp, 5778 uint32_t, tcp->tcp_cwnd, 5779 uint32_t, tcp->tcp_mss); 5780 tcp->tcp_cwnd = tcp->tcp_mss; 5781 tcp->tcp_cwnd_cnt = 0; 5782 } 5783 break; 5784 } 5785 } 5786 freemsg(mp); 5787 } 5788 5789 /* 5790 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5791 * error messages passed up by IP. 5792 * Assumes that IP has pulled up all the extension headers as well 5793 * as the ICMPv6 header. 5794 */ 5795 static void 5796 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5797 { 5798 icmp6_t *icmp6; 5799 ip6_t *ip6h; 5800 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5801 tcpha_t *tcpha; 5802 uint8_t *nexthdrp; 5803 uint32_t seg_seq; 5804 5805 /* 5806 * Verify that we have a complete IP header. 5807 */ 5808 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5809 5810 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5811 ip6h = (ip6_t *)&icmp6[1]; 5812 /* 5813 * Verify if we have a complete ICMP and inner IP header. 5814 */ 5815 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5816 noticmpv6: 5817 freemsg(mp); 5818 return; 5819 } 5820 5821 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5822 goto noticmpv6; 5823 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5824 /* 5825 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5826 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5827 * packet. 5828 */ 5829 if ((*nexthdrp != IPPROTO_TCP) || 5830 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5831 goto noticmpv6; 5832 } 5833 5834 seg_seq = ntohl(tcpha->tha_seq); 5835 switch (icmp6->icmp6_type) { 5836 case ICMP6_PACKET_TOO_BIG: 5837 /* 5838 * Update Path MTU, then try to send something out. 5839 */ 5840 tcp_update_pmtu(tcp, B_TRUE); 5841 tcp_rexmit_after_error(tcp); 5842 break; 5843 case ICMP6_DST_UNREACH: 5844 switch (icmp6->icmp6_code) { 5845 case ICMP6_DST_UNREACH_NOPORT: 5846 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5847 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5848 (seg_seq == tcp->tcp_iss)) { 5849 (void) tcp_clean_death(tcp, ECONNREFUSED); 5850 } 5851 break; 5852 case ICMP6_DST_UNREACH_ADMIN: 5853 case ICMP6_DST_UNREACH_NOROUTE: 5854 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5855 case ICMP6_DST_UNREACH_ADDR: 5856 /* Record the error in case we finally time out. */ 5857 tcp->tcp_client_errno = EHOSTUNREACH; 5858 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5859 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5860 (seg_seq == tcp->tcp_iss)) { 5861 if (tcp->tcp_listener != NULL && 5862 tcp->tcp_listener->tcp_syn_defense) { 5863 /* 5864 * Ditch the half-open connection if we 5865 * suspect a SYN attack is under way. 5866 */ 5867 (void) tcp_clean_death(tcp, 5868 tcp->tcp_client_errno); 5869 } 5870 } 5871 5872 5873 break; 5874 default: 5875 break; 5876 } 5877 break; 5878 case ICMP6_PARAM_PROB: 5879 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5880 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5881 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5882 (uchar_t *)nexthdrp) { 5883 if (tcp->tcp_state == TCPS_SYN_SENT || 5884 tcp->tcp_state == TCPS_SYN_RCVD) { 5885 (void) tcp_clean_death(tcp, ECONNREFUSED); 5886 } 5887 break; 5888 } 5889 break; 5890 5891 case ICMP6_TIME_EXCEEDED: 5892 default: 5893 break; 5894 } 5895 freemsg(mp); 5896 } 5897 5898 /* 5899 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5900 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5901 * 5902 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5903 * error messages received by IP. The message is always received on the correct 5904 * tcp_t. 5905 */ 5906 /* ARGSUSED */ 5907 boolean_t 5908 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5909 ip_recv_attr_t *ira) 5910 { 5911 tcpha_t *tcpha = (tcpha_t *)arg2; 5912 uint32_t seq = ntohl(tcpha->tha_seq); 5913 tcp_t *tcp = connp->conn_tcp; 5914 5915 /* 5916 * TCP sequence number contained in payload of the ICMP error message 5917 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5918 * the message is either a stale ICMP error, or an attack from the 5919 * network. Fail the verification. 5920 */ 5921 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5922 return (B_FALSE); 5923 5924 /* For "too big" we also check the ignore flag */ 5925 if (ira->ira_flags & IRAF_IS_IPV4) { 5926 ASSERT(icmph != NULL); 5927 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5928 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5929 tcp->tcp_tcps->tcps_ignore_path_mtu) 5930 return (B_FALSE); 5931 } else { 5932 ASSERT(icmp6 != NULL); 5933 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5934 tcp->tcp_tcps->tcps_ignore_path_mtu) 5935 return (B_FALSE); 5936 } 5937 return (B_TRUE); 5938 } 5939