xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_input.c (revision 28ab0ca48b3e331cbbb231b1c8325f9f24f9af95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2019 Joyent, Inc.
26  * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  */
29 
30 /* This file contains all TCP input processing functions. */
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #define	_SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/suntpi.h>
41 #include <sys/xti_inet.h>
42 #include <sys/squeue_impl.h>
43 #include <sys/squeue.h>
44 #include <sys/tsol/tnet.h>
45 
46 #include <inet/common.h>
47 #include <inet/ip.h>
48 #include <inet/tcp.h>
49 #include <inet/tcp_impl.h>
50 #include <inet/tcp_cluster.h>
51 #include <inet/proto_set.h>
52 #include <inet/ipsec_impl.h>
53 
54 /*
55  * RFC7323-recommended phrasing of TSTAMP option, for easier parsing
56  */
57 
58 #ifdef _BIG_ENDIAN
59 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
60 	(TCPOPT_TSTAMP << 8) | 10)
61 #else
62 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
63 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
64 #endif
65 
66 /*
67  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
68  */
69 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
70 
71 /*
72  * Since tcp_listener is not cleared atomically with tcp_detached
73  * being cleared we need this extra bit to tell a detached connection
74  * apart from one that is in the process of being accepted.
75  */
76 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
77 	(TCP_IS_DETACHED(tcp) &&	\
78 	    (!(tcp)->tcp_hard_binding))
79 
80 /*
81  * Steps to do when a tcp_t moves to TIME-WAIT state.
82  *
83  * This connection is done, we don't need to account for it.  Decrement
84  * the listener connection counter if needed.
85  *
86  * Decrement the connection counter of the stack.  Note that this counter
87  * is per CPU.  So the total number of connections in a stack is the sum of all
88  * of them.  Since there is no lock for handling all of them exclusively, the
89  * resulting sum is only an approximation.
90  *
91  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
92  * connection won't interfere with new ones.
93  *
94  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
95  * the timer is handled within the context of this tcp_t.  When the timer
96  * fires, tcp_clean_death() is called.  If upper layer closes the connection
97  * during this period, tcp_time_wait_append() will be called to add this
98  * tcp_t to the global TIME-WAIT list.  Note that this means that the
99  * actual wait time in TIME-WAIT state will be longer than the
100  * tcps_time_wait_interval since the period before upper layer closes the
101  * connection is not accounted for when tcp_time_wait_append() is called.
102  *
103  * If upper layer has closed the connection, call tcp_time_wait_append()
104  * directly.
105  *
106  */
107 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
108 {								\
109 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
110 	if ((tcp)->tcp_listen_cnt != NULL)			\
111 		TCP_DECR_LISTEN_CNT(tcp);			\
112 	atomic_dec_64(						\
113 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
114 	(connp)->conn_exclbind = 0;				\
115 	if (!TCP_IS_DETACHED(tcp)) {				\
116 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
117 	} else {						\
118 		tcp_time_wait_append(tcp);			\
119 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
120 	}							\
121 }
122 
123 /*
124  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
125  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
126  * data, TCP will not respond with an ACK.  RFC 793 requires that
127  * TCP responds with an ACK for such a bogus ACK.  By not following
128  * the RFC, we prevent TCP from getting into an ACK storm if somehow
129  * an attacker successfully spoofs an acceptable segment to our
130  * peer; or when our peer is "confused."
131  */
132 static uint32_t tcp_drop_ack_unsent_cnt = 10;
133 
134 /*
135  * To protect TCP against attacker using a small window and requesting
136  * large amount of data (DoS attack by conuming memory), TCP checks the
137  * window advertised in the last ACK of the 3-way handshake.  TCP uses
138  * the tcp_mss (the size of one packet) value for comparion.  The window
139  * should be larger than tcp_mss.  But while a sane TCP should advertise
140  * a receive window larger than or equal to 4*MSS to avoid stop and go
141  * tarrfic, not all TCP stacks do that.  This is especially true when
142  * tcp_mss is a big value.
143  *
144  * To work around this issue, an additional fixed value for comparison
145  * is also used.  If the advertised window is smaller than both tcp_mss
146  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
147  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
148  * smaller than 8K is considered to be OK.
149  */
150 static uint32_t tcp_init_wnd_chk = 4096;
151 
152 /* Process ICMP source quench message or not. */
153 static boolean_t tcp_icmp_source_quench = B_FALSE;
154 
155 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
156 
157 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
158 		    ip_recv_attr_t *);
159 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
160 		    ip_recv_attr_t *);
161 static boolean_t	tcp_drop_q0(tcp_t *);
162 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
163 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
164 		    ip_recv_attr_t *);
165 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
166 static void	tcp_process_options(tcp_t *, tcpha_t *);
167 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
168 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
169 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
170 static void	tcp_set_rto(tcp_t *, hrtime_t);
171 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
172 
173 /*
174  * CC wrapper hook functions
175  */
176 static void
177 cc_ack_received(tcp_t *tcp, uint32_t seg_ack, int32_t bytes_acked,
178     uint16_t type)
179 {
180 	uint32_t old_cwnd = tcp->tcp_cwnd;
181 
182 	tcp->tcp_ccv.bytes_this_ack = bytes_acked;
183 	if (tcp->tcp_cwnd <= tcp->tcp_swnd)
184 		tcp->tcp_ccv.flags |= CCF_CWND_LIMITED;
185 	else
186 		tcp->tcp_ccv.flags &= ~CCF_CWND_LIMITED;
187 
188 	if (type == CC_ACK) {
189 		if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
190 			if (tcp->tcp_ccv.flags & CCF_RTO)
191 				tcp->tcp_ccv.flags &= ~CCF_RTO;
192 
193 			tcp->tcp_ccv.t_bytes_acked +=
194 			    min(tcp->tcp_ccv.bytes_this_ack,
195 			    tcp->tcp_tcps->tcps_abc_l_var * tcp->tcp_mss);
196 			if (tcp->tcp_ccv.t_bytes_acked >= tcp->tcp_cwnd) {
197 				tcp->tcp_ccv.t_bytes_acked -= tcp->tcp_cwnd;
198 				tcp->tcp_ccv.flags |= CCF_ABC_SENTAWND;
199 			}
200 		} else {
201 			tcp->tcp_ccv.flags &= ~CCF_ABC_SENTAWND;
202 			tcp->tcp_ccv.t_bytes_acked = 0;
203 		}
204 	}
205 
206 	if (CC_ALGO(tcp)->ack_received != NULL) {
207 		/*
208 		 * The FreeBSD code where this originated had a comment "Find
209 		 * a way to live without this" in several places where curack
210 		 * got set.  If they eventually dump curack from the cc
211 		 * variables, we'll need to adapt our code.
212 		 */
213 		tcp->tcp_ccv.curack = seg_ack;
214 		CC_ALGO(tcp)->ack_received(&tcp->tcp_ccv, type);
215 	}
216 
217 	DTRACE_PROBE3(cwnd__cc__ack__received, tcp_t *, tcp, uint32_t, old_cwnd,
218 	    uint32_t, tcp->tcp_cwnd);
219 }
220 
221 void
222 cc_cong_signal(tcp_t *tcp, uint32_t seg_ack, uint32_t type)
223 {
224 	uint32_t old_cwnd = tcp->tcp_cwnd;
225 	uint32_t old_cwnd_ssthresh = tcp->tcp_cwnd_ssthresh;
226 	switch (type) {
227 	case CC_NDUPACK:
228 		if (!IN_FASTRECOVERY(tcp->tcp_ccv.flags)) {
229 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
230 			if (tcp->tcp_ecn_ok) {
231 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
232 				tcp->tcp_cwr = B_TRUE;
233 				tcp->tcp_ecn_cwr_sent = B_FALSE;
234 			}
235 		}
236 		break;
237 	case CC_ECN:
238 		if (!IN_CONGRECOVERY(tcp->tcp_ccv.flags)) {
239 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
240 			if (tcp->tcp_ecn_ok) {
241 				tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
242 				tcp->tcp_cwr = B_TRUE;
243 				tcp->tcp_ecn_cwr_sent = B_FALSE;
244 			}
245 		}
246 		break;
247 	case CC_RTO:
248 		tcp->tcp_ccv.flags |= CCF_RTO;
249 		tcp->tcp_dupack_cnt = 0;
250 		tcp->tcp_ccv.t_bytes_acked = 0;
251 		/*
252 		 * Give up on fast recovery and congestion recovery if we were
253 		 * attempting either.
254 		 */
255 		EXIT_RECOVERY(tcp->tcp_ccv.flags);
256 		if (CC_ALGO(tcp)->cong_signal == NULL) {
257 			/*
258 			 * RFC5681 Section 3.1
259 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
260 			 */
261 			tcp->tcp_cwnd_ssthresh = max(
262 			    (tcp->tcp_snxt - tcp->tcp_suna) / 2 / tcp->tcp_mss,
263 			    2) * tcp->tcp_mss;
264 			tcp->tcp_cwnd = tcp->tcp_mss;
265 		}
266 
267 		if (tcp->tcp_ecn_ok) {
268 			tcp->tcp_cwr = B_TRUE;
269 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
270 			tcp->tcp_ecn_cwr_sent = B_FALSE;
271 		}
272 		break;
273 	}
274 
275 	if (CC_ALGO(tcp)->cong_signal != NULL) {
276 		tcp->tcp_ccv.curack = seg_ack;
277 		CC_ALGO(tcp)->cong_signal(&tcp->tcp_ccv, type);
278 	}
279 
280 	DTRACE_PROBE6(cwnd__cc__cong__signal, tcp_t *, tcp, uint32_t, old_cwnd,
281 	    uint32_t, tcp->tcp_cwnd, uint32_t, old_cwnd_ssthresh,
282 	    uint32_t, tcp->tcp_cwnd_ssthresh, uint32_t, type);
283 }
284 
285 static void
286 cc_post_recovery(tcp_t *tcp, uint32_t seg_ack)
287 {
288 	uint32_t old_cwnd = tcp->tcp_cwnd;
289 
290 	if (CC_ALGO(tcp)->post_recovery != NULL) {
291 		tcp->tcp_ccv.curack = seg_ack;
292 		CC_ALGO(tcp)->post_recovery(&tcp->tcp_ccv);
293 	}
294 	tcp->tcp_ccv.t_bytes_acked = 0;
295 
296 	DTRACE_PROBE3(cwnd__cc__post__recovery, tcp_t *, tcp,
297 	    uint32_t, old_cwnd, uint32_t, tcp->tcp_cwnd);
298 }
299 
300 /*
301  * Set the MSS associated with a particular tcp based on its current value,
302  * and a new one passed in. Observe minimums and maximums, and reset other
303  * state variables that we want to view as multiples of MSS.
304  *
305  * The value of MSS could be either increased or descreased.
306  */
307 void
308 tcp_mss_set(tcp_t *tcp, uint32_t mss)
309 {
310 	uint32_t	mss_max;
311 	tcp_stack_t	*tcps = tcp->tcp_tcps;
312 	conn_t		*connp = tcp->tcp_connp;
313 
314 	if (connp->conn_ipversion == IPV4_VERSION)
315 		mss_max = tcps->tcps_mss_max_ipv4;
316 	else
317 		mss_max = tcps->tcps_mss_max_ipv6;
318 
319 	if (mss < tcps->tcps_mss_min)
320 		mss = tcps->tcps_mss_min;
321 	if (mss > mss_max)
322 		mss = mss_max;
323 	/*
324 	 * Unless naglim has been set by our client to
325 	 * a non-mss value, force naglim to track mss.
326 	 * This can help to aggregate small writes.
327 	 */
328 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
329 		tcp->tcp_naglim = mss;
330 	/*
331 	 * TCP should be able to buffer at least 4 MSS data for obvious
332 	 * performance reason.
333 	 */
334 	if ((mss << 2) > connp->conn_sndbuf)
335 		connp->conn_sndbuf = mss << 2;
336 
337 	/*
338 	 * Set the send lowater to at least twice of MSS.
339 	 */
340 	if ((mss << 1) > connp->conn_sndlowat)
341 		connp->conn_sndlowat = mss << 1;
342 
343 	/*
344 	 * Update tcp_cwnd according to the new value of MSS. Keep the
345 	 * previous ratio to preserve the transmit rate.
346 	 */
347 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
348 	tcp->tcp_cwnd_cnt = 0;
349 
350 	tcp->tcp_mss = mss;
351 	(void) tcp_maxpsz_set(tcp, B_TRUE);
352 }
353 
354 /*
355  * Extract option values from a tcp header.  We put any found values into the
356  * tcpopt struct and return a bitmask saying which options were found.
357  */
358 int
359 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
360 {
361 	uchar_t		*endp;
362 	int		len;
363 	uint32_t	mss;
364 	uchar_t		*up = (uchar_t *)tcpha;
365 	int		found = 0;
366 	int32_t		sack_len;
367 	tcp_seq		sack_begin, sack_end;
368 	tcp_t		*tcp;
369 
370 	endp = up + TCP_HDR_LENGTH(tcpha);
371 	up += TCP_MIN_HEADER_LENGTH;
372 	/*
373 	 * If timestamp option is aligned as recommended in RFC 7323 Appendix
374 	 * A, and is the only option, return quickly.
375 	 */
376 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
377 	    TCPOPT_REAL_TS_LEN &&
378 	    OK_32PTR(up) &&
379 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
380 		tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4));
381 		tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
382 
383 		return (TCP_OPT_TSTAMP_PRESENT);
384 	}
385 	while (up < endp) {
386 		len = endp - up;
387 		switch (*up) {
388 		case TCPOPT_EOL:
389 			break;
390 
391 		case TCPOPT_NOP:
392 			up++;
393 			continue;
394 
395 		case TCPOPT_MAXSEG:
396 			if (len < TCPOPT_MAXSEG_LEN ||
397 			    up[1] != TCPOPT_MAXSEG_LEN)
398 				break;
399 
400 			mss = BE16_TO_U16(up+2);
401 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
402 			tcpopt->tcp_opt_mss = mss;
403 			found |= TCP_OPT_MSS_PRESENT;
404 
405 			up += TCPOPT_MAXSEG_LEN;
406 			continue;
407 
408 		case TCPOPT_WSCALE:
409 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
410 				break;
411 
412 			if (up[2] > TCP_MAX_WINSHIFT)
413 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
414 			else
415 				tcpopt->tcp_opt_wscale = up[2];
416 			found |= TCP_OPT_WSCALE_PRESENT;
417 
418 			up += TCPOPT_WS_LEN;
419 			continue;
420 
421 		case TCPOPT_SACK_PERMITTED:
422 			if (len < TCPOPT_SACK_OK_LEN ||
423 			    up[1] != TCPOPT_SACK_OK_LEN)
424 				break;
425 			found |= TCP_OPT_SACK_OK_PRESENT;
426 			up += TCPOPT_SACK_OK_LEN;
427 			continue;
428 
429 		case TCPOPT_SACK:
430 			if (len <= 2 || up[1] <= 2 || len < up[1])
431 				break;
432 
433 			/* If TCP is not interested in SACK blks... */
434 			if ((tcp = tcpopt->tcp) == NULL) {
435 				up += up[1];
436 				continue;
437 			}
438 			sack_len = up[1] - TCPOPT_HEADER_LEN;
439 			up += TCPOPT_HEADER_LEN;
440 
441 			/*
442 			 * If the list is empty, allocate one and assume
443 			 * nothing is sack'ed.
444 			 */
445 			if (tcp->tcp_notsack_list == NULL) {
446 				tcp_notsack_update(&(tcp->tcp_notsack_list),
447 				    tcp->tcp_suna, tcp->tcp_snxt,
448 				    &(tcp->tcp_num_notsack_blk),
449 				    &(tcp->tcp_cnt_notsack_list));
450 
451 				/*
452 				 * Make sure tcp_notsack_list is not NULL.
453 				 * This happens when kmem_alloc(KM_NOSLEEP)
454 				 * returns NULL.
455 				 */
456 				if (tcp->tcp_notsack_list == NULL) {
457 					up += sack_len;
458 					continue;
459 				}
460 				tcp->tcp_fack = tcp->tcp_suna;
461 			}
462 
463 			while (sack_len > 0) {
464 				if (up + 8 > endp) {
465 					up = endp;
466 					break;
467 				}
468 				sack_begin = BE32_TO_U32(up);
469 				up += 4;
470 				sack_end = BE32_TO_U32(up);
471 				up += 4;
472 				sack_len -= 8;
473 				/*
474 				 * Bounds checking.  Make sure the SACK
475 				 * info is within tcp_suna and tcp_snxt.
476 				 * If this SACK blk is out of bound, ignore
477 				 * it but continue to parse the following
478 				 * blks.
479 				 */
480 				if (SEQ_LEQ(sack_end, sack_begin) ||
481 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
482 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
483 					continue;
484 				}
485 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
486 				    sack_begin, sack_end,
487 				    &(tcp->tcp_num_notsack_blk),
488 				    &(tcp->tcp_cnt_notsack_list));
489 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
490 					tcp->tcp_fack = sack_end;
491 				}
492 			}
493 			found |= TCP_OPT_SACK_PRESENT;
494 			continue;
495 
496 		case TCPOPT_TSTAMP:
497 			if (len < TCPOPT_TSTAMP_LEN ||
498 			    up[1] != TCPOPT_TSTAMP_LEN)
499 				break;
500 
501 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
502 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
503 
504 			found |= TCP_OPT_TSTAMP_PRESENT;
505 
506 			up += TCPOPT_TSTAMP_LEN;
507 			continue;
508 
509 		default:
510 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
511 				break;
512 			up += up[1];
513 			continue;
514 		}
515 		break;
516 	}
517 	return (found);
518 }
519 
520 /*
521  * Process all TCP option in SYN segment.  Note that this function should
522  * be called after tcp_set_destination() is called so that the necessary info
523  * from IRE is already set in the tcp structure.
524  *
525  * This function sets up the correct tcp_mss value according to the
526  * MSS option value and our header size.  It also sets up the window scale
527  * and timestamp values, and initialize SACK info blocks.  But it does not
528  * change receive window size after setting the tcp_mss value.  The caller
529  * should do the appropriate change.
530  */
531 static void
532 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
533 {
534 	int options;
535 	tcp_opt_t tcpopt;
536 	uint32_t mss_max;
537 	char *tmp_tcph;
538 	tcp_stack_t	*tcps = tcp->tcp_tcps;
539 	conn_t		*connp = tcp->tcp_connp;
540 
541 	tcpopt.tcp = NULL;
542 	options = tcp_parse_options(tcpha, &tcpopt);
543 
544 	/*
545 	 * Process MSS option.  Note that MSS option value does not account
546 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
547 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
548 	 * IPv6.
549 	 */
550 	if (!(options & TCP_OPT_MSS_PRESENT)) {
551 		if (connp->conn_ipversion == IPV4_VERSION)
552 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
553 		else
554 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
555 	} else {
556 		if (connp->conn_ipversion == IPV4_VERSION)
557 			mss_max = tcps->tcps_mss_max_ipv4;
558 		else
559 			mss_max = tcps->tcps_mss_max_ipv6;
560 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
561 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
562 		else if (tcpopt.tcp_opt_mss > mss_max)
563 			tcpopt.tcp_opt_mss = mss_max;
564 	}
565 
566 	/* Process Window Scale option. */
567 	if (options & TCP_OPT_WSCALE_PRESENT) {
568 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
569 		tcp->tcp_snd_ws_ok = B_TRUE;
570 	} else {
571 		tcp->tcp_snd_ws = B_FALSE;
572 		tcp->tcp_snd_ws_ok = B_FALSE;
573 		tcp->tcp_rcv_ws = B_FALSE;
574 	}
575 
576 	/* Process Timestamp option. */
577 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
578 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
579 		tmp_tcph = (char *)tcp->tcp_tcpha;
580 
581 		tcp->tcp_snd_ts_ok = B_TRUE;
582 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
583 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
584 		ASSERT(OK_32PTR(tmp_tcph));
585 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
586 
587 		/* Fill in our template header with basic timestamp option. */
588 		tmp_tcph += connp->conn_ht_ulp_len;
589 		tmp_tcph[0] = TCPOPT_NOP;
590 		tmp_tcph[1] = TCPOPT_NOP;
591 		tmp_tcph[2] = TCPOPT_TSTAMP;
592 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
593 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
594 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
595 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
596 	} else {
597 		tcp->tcp_snd_ts_ok = B_FALSE;
598 	}
599 
600 	/*
601 	 * Process SACK options.  If SACK is enabled for this connection,
602 	 * then allocate the SACK info structure.  Note the following ways
603 	 * when tcp_snd_sack_ok is set to true.
604 	 *
605 	 * For active connection: in tcp_set_destination() called in
606 	 * tcp_connect().
607 	 *
608 	 * For passive connection: in tcp_set_destination() called in
609 	 * tcp_input_listener().
610 	 *
611 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
612 	 * That check makes sure that if we did not send a SACK OK option,
613 	 * we will not enable SACK for this connection even though the other
614 	 * side sends us SACK OK option.  For active connection, the SACK
615 	 * info structure has already been allocated.  So we need to free
616 	 * it if SACK is disabled.
617 	 */
618 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
619 	    (tcp->tcp_snd_sack_ok ||
620 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
621 		ASSERT(tcp->tcp_num_sack_blk == 0);
622 		ASSERT(tcp->tcp_notsack_list == NULL);
623 
624 		tcp->tcp_snd_sack_ok = B_TRUE;
625 		if (tcp->tcp_snd_ts_ok) {
626 			tcp->tcp_max_sack_blk = 3;
627 		} else {
628 			tcp->tcp_max_sack_blk = 4;
629 		}
630 	} else if (tcp->tcp_snd_sack_ok) {
631 		/*
632 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
633 		 * no SACK info will be used for this
634 		 * connection.  This assumes that SACK usage
635 		 * permission is negotiated.  This may need
636 		 * to be changed once this is clarified.
637 		 */
638 		ASSERT(tcp->tcp_num_sack_blk == 0);
639 		ASSERT(tcp->tcp_notsack_list == NULL);
640 		tcp->tcp_snd_sack_ok = B_FALSE;
641 	}
642 
643 	/*
644 	 * Now we know the exact TCP/IP header length, subtract
645 	 * that from tcp_mss to get our side's MSS.
646 	 */
647 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
648 
649 	/*
650 	 * Here we assume that the other side's header size will be equal to
651 	 * our header size.  We calculate the real MSS accordingly.  Need to
652 	 * take into additional stuffs IPsec puts in.
653 	 *
654 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
655 	 */
656 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
657 	    tcp->tcp_ipsec_overhead -
658 	    ((connp->conn_ipversion == IPV4_VERSION ?
659 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
660 
661 	/*
662 	 * Set MSS to the smaller one of both ends of the connection.
663 	 * We should not have called tcp_mss_set() before, but our
664 	 * side of the MSS should have been set to a proper value
665 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
666 	 * STREAM head parameters properly.
667 	 *
668 	 * If we have a larger-than-16-bit window but the other side
669 	 * didn't want to do window scale, tcp_rwnd_set() will take
670 	 * care of that.
671 	 */
672 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
673 
674 	/*
675 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
676 	 * updated properly.
677 	 */
678 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
679 
680 	if (tcp->tcp_cc_algo->conn_init != NULL)
681 		tcp->tcp_cc_algo->conn_init(&tcp->tcp_ccv);
682 }
683 
684 /*
685  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
686  * is filled, return as much as we can.  The message passed in may be
687  * multi-part, chained using b_cont.  "start" is the starting sequence
688  * number for this piece.
689  */
690 static mblk_t *
691 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
692 {
693 	uint32_t	end, bytes;
694 	mblk_t		*mp1;
695 	mblk_t		*mp2;
696 	mblk_t		*next_mp;
697 	uint32_t	u1;
698 	tcp_stack_t	*tcps = tcp->tcp_tcps;
699 
700 
701 	/* Walk through all the new pieces. */
702 	do {
703 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
704 		    (uintptr_t)INT_MAX);
705 		end = start + (int)(mp->b_wptr - mp->b_rptr);
706 		next_mp = mp->b_cont;
707 		if (start == end) {
708 			/* Empty.  Blast it. */
709 			freeb(mp);
710 			continue;
711 		}
712 		bytes = end - start;
713 		mp->b_cont = NULL;
714 		TCP_REASS_SET_SEQ(mp, start);
715 		TCP_REASS_SET_END(mp, end);
716 		mp1 = tcp->tcp_reass_tail;
717 		if (mp1 == NULL || SEQ_GEQ(start, TCP_REASS_END(mp1))) {
718 			if (mp1 != NULL) {
719 				/*
720 				 * New stuff is beyond the tail; link it on the
721 				 * end.
722 				 */
723 				mp1->b_cont = mp;
724 			} else {
725 				tcp->tcp_reass_head = mp;
726 			}
727 			tcp->tcp_reass_tail = mp;
728 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
729 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, bytes);
730 			tcp->tcp_cs.tcp_in_data_unorder_segs++;
731 			tcp->tcp_cs.tcp_in_data_unorder_bytes += bytes;
732 			continue;
733 		}
734 		mp1 = tcp->tcp_reass_head;
735 		u1 = TCP_REASS_SEQ(mp1);
736 		/* New stuff at the front? */
737 		if (SEQ_LT(start, u1)) {
738 			/* Yes... Check for overlap. */
739 			mp->b_cont = mp1;
740 			tcp->tcp_reass_head = mp;
741 			tcp_reass_elim_overlap(tcp, mp);
742 			continue;
743 		}
744 		/*
745 		 * The new piece fits somewhere between the head and tail.
746 		 * We find our slot, where mp1 precedes us and mp2 trails.
747 		 */
748 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
749 			u1 = TCP_REASS_SEQ(mp2);
750 			if (SEQ_LEQ(start, u1))
751 				break;
752 		}
753 		/* Link ourselves in */
754 		mp->b_cont = mp2;
755 		mp1->b_cont = mp;
756 
757 		/* Trim overlap with following mblk(s) first */
758 		tcp_reass_elim_overlap(tcp, mp);
759 
760 		/* Trim overlap with preceding mblk */
761 		tcp_reass_elim_overlap(tcp, mp1);
762 
763 	} while (start = end, mp = next_mp);
764 	mp1 = tcp->tcp_reass_head;
765 	/* Anything ready to go? */
766 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
767 		return (NULL);
768 	/* Eat what we can off the queue */
769 	for (;;) {
770 		mp = mp1->b_cont;
771 		end = TCP_REASS_END(mp1);
772 		TCP_REASS_SET_SEQ(mp1, 0);
773 		TCP_REASS_SET_END(mp1, 0);
774 		if (!mp) {
775 			tcp->tcp_reass_tail = NULL;
776 			break;
777 		}
778 		if (end != TCP_REASS_SEQ(mp)) {
779 			mp1->b_cont = NULL;
780 			break;
781 		}
782 		mp1 = mp;
783 	}
784 	mp1 = tcp->tcp_reass_head;
785 	tcp->tcp_reass_head = mp;
786 	return (mp1);
787 }
788 
789 /* Eliminate any overlap that mp may have over later mblks */
790 static void
791 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
792 {
793 	uint32_t	end;
794 	mblk_t		*mp1;
795 	uint32_t	u1;
796 	tcp_stack_t	*tcps = tcp->tcp_tcps;
797 
798 	end = TCP_REASS_END(mp);
799 	while ((mp1 = mp->b_cont) != NULL) {
800 		u1 = TCP_REASS_SEQ(mp1);
801 		if (!SEQ_GT(end, u1))
802 			break;
803 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
804 			mp->b_wptr -= end - u1;
805 			TCP_REASS_SET_END(mp, u1);
806 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
807 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
808 			    end - u1);
809 			break;
810 		}
811 		mp->b_cont = mp1->b_cont;
812 		TCP_REASS_SET_SEQ(mp1, 0);
813 		TCP_REASS_SET_END(mp1, 0);
814 		freeb(mp1);
815 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
816 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
817 	}
818 	if (!mp1)
819 		tcp->tcp_reass_tail = mp;
820 }
821 
822 /*
823  * This function does PAWS protection check, per RFC 7323 section 5. Requires
824  * that timestamp options are already processed into tcpoptp. Returns B_TRUE if
825  * the segment passes the PAWS test, else returns B_FALSE.
826  */
827 boolean_t
828 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp)
829 {
830 	if (TSTMP_LT(tcpoptp->tcp_opt_ts_val,
831 	    tcp->tcp_ts_recent)) {
832 		if (LBOLT_FASTPATH64 <
833 		    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
834 			/* This segment is not acceptable. */
835 			return (B_FALSE);
836 		} else {
837 			/*
838 			 * Connection has been idle for
839 			 * too long.  Reset the timestamp
840 			 */
841 			tcp->tcp_ts_recent =
842 			    tcpoptp->tcp_opt_ts_val;
843 		}
844 	}
845 	return (B_TRUE);
846 }
847 
848 /*
849  * Defense for the SYN attack -
850  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
851  *    one from the list of droppable eagers. This list is a subset of q0.
852  *    see comments before the definition of MAKE_DROPPABLE().
853  * 2. Don't drop a SYN request before its first timeout. This gives every
854  *    request at least til the first timeout to complete its 3-way handshake.
855  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
856  *    requests currently on the queue that has timed out. This will be used
857  *    as an indicator of whether an attack is under way, so that appropriate
858  *    actions can be taken. (It's incremented in tcp_timer() and decremented
859  *    either when eager goes into ESTABLISHED, or gets freed up.)
860  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
861  *    # of timeout drops back to <= q0len/32 => SYN alert off
862  */
863 static boolean_t
864 tcp_drop_q0(tcp_t *tcp)
865 {
866 	tcp_t	*eager;
867 	mblk_t	*mp;
868 	tcp_stack_t	*tcps = tcp->tcp_tcps;
869 
870 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
871 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
872 
873 	/* Pick oldest eager from the list of droppable eagers */
874 	eager = tcp->tcp_eager_prev_drop_q0;
875 
876 	/* If list is empty. return B_FALSE */
877 	if (eager == tcp) {
878 		return (B_FALSE);
879 	}
880 
881 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
882 	if ((mp = allocb(0, BPRI_HI)) == NULL)
883 		return (B_FALSE);
884 
885 	/*
886 	 * Take this eager out from the list of droppable eagers since we are
887 	 * going to drop it.
888 	 */
889 	MAKE_UNDROPPABLE(eager);
890 
891 	if (tcp->tcp_connp->conn_debug) {
892 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
893 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
894 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
895 		    tcp->tcp_conn_req_cnt_q0,
896 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
897 	}
898 
899 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
900 
901 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
902 	CONN_INC_REF(eager->tcp_connp);
903 
904 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
905 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
906 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
907 
908 	return (B_TRUE);
909 }
910 
911 /*
912  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
913  */
914 static mblk_t *
915 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
916     ip_recv_attr_t *ira)
917 {
918 	tcp_t		*ltcp = lconnp->conn_tcp;
919 	tcp_t		*tcp = connp->conn_tcp;
920 	mblk_t		*tpi_mp;
921 	ipha_t		*ipha;
922 	ip6_t		*ip6h;
923 	sin6_t		sin6;
924 	uint_t		ifindex = ira->ira_ruifindex;
925 	tcp_stack_t	*tcps = tcp->tcp_tcps;
926 
927 	if (ira->ira_flags & IRAF_IS_IPV4) {
928 		ipha = (ipha_t *)mp->b_rptr;
929 
930 		connp->conn_ipversion = IPV4_VERSION;
931 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
932 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
933 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
934 
935 		sin6 = sin6_null;
936 		sin6.sin6_addr = connp->conn_faddr_v6;
937 		sin6.sin6_port = connp->conn_fport;
938 		sin6.sin6_family = AF_INET6;
939 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
940 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
941 
942 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
943 			sin6_t	sin6d;
944 
945 			sin6d = sin6_null;
946 			sin6d.sin6_addr = connp->conn_laddr_v6;
947 			sin6d.sin6_port = connp->conn_lport;
948 			sin6d.sin6_family = AF_INET;
949 			tpi_mp = mi_tpi_extconn_ind(NULL,
950 			    (char *)&sin6d, sizeof (sin6_t),
951 			    (char *)&tcp,
952 			    (t_scalar_t)sizeof (intptr_t),
953 			    (char *)&sin6d, sizeof (sin6_t),
954 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
955 		} else {
956 			tpi_mp = mi_tpi_conn_ind(NULL,
957 			    (char *)&sin6, sizeof (sin6_t),
958 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
959 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
960 		}
961 	} else {
962 		ip6h = (ip6_t *)mp->b_rptr;
963 
964 		connp->conn_ipversion = IPV6_VERSION;
965 		connp->conn_laddr_v6 = ip6h->ip6_dst;
966 		connp->conn_faddr_v6 = ip6h->ip6_src;
967 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
968 
969 		sin6 = sin6_null;
970 		sin6.sin6_addr = connp->conn_faddr_v6;
971 		sin6.sin6_port = connp->conn_fport;
972 		sin6.sin6_family = AF_INET6;
973 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
974 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
975 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
976 
977 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
978 			/* Pass up the scope_id of remote addr */
979 			sin6.sin6_scope_id = ifindex;
980 		} else {
981 			sin6.sin6_scope_id = 0;
982 		}
983 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
984 			sin6_t	sin6d;
985 
986 			sin6d = sin6_null;
987 			sin6.sin6_addr = connp->conn_laddr_v6;
988 			sin6d.sin6_port = connp->conn_lport;
989 			sin6d.sin6_family = AF_INET6;
990 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
991 				sin6d.sin6_scope_id = ifindex;
992 
993 			tpi_mp = mi_tpi_extconn_ind(NULL,
994 			    (char *)&sin6d, sizeof (sin6_t),
995 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
996 			    (char *)&sin6d, sizeof (sin6_t),
997 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
998 		} else {
999 			tpi_mp = mi_tpi_conn_ind(NULL,
1000 			    (char *)&sin6, sizeof (sin6_t),
1001 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1002 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1003 		}
1004 	}
1005 
1006 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
1007 	return (tpi_mp);
1008 }
1009 
1010 /* Handle a SYN on an AF_INET socket */
1011 static mblk_t *
1012 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
1013     ip_recv_attr_t *ira)
1014 {
1015 	tcp_t		*ltcp = lconnp->conn_tcp;
1016 	tcp_t		*tcp = connp->conn_tcp;
1017 	sin_t		sin;
1018 	mblk_t		*tpi_mp = NULL;
1019 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1020 	ipha_t		*ipha;
1021 
1022 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
1023 	ipha = (ipha_t *)mp->b_rptr;
1024 
1025 	connp->conn_ipversion = IPV4_VERSION;
1026 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
1027 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
1028 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
1029 
1030 	sin = sin_null;
1031 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
1032 	sin.sin_port = connp->conn_fport;
1033 	sin.sin_family = AF_INET;
1034 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
1035 		sin_t	sind;
1036 
1037 		sind = sin_null;
1038 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
1039 		sind.sin_port = connp->conn_lport;
1040 		sind.sin_family = AF_INET;
1041 		tpi_mp = mi_tpi_extconn_ind(NULL,
1042 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
1043 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
1044 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1045 	} else {
1046 		tpi_mp = mi_tpi_conn_ind(NULL,
1047 		    (char *)&sin, sizeof (sin_t),
1048 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
1049 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
1050 	}
1051 
1052 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
1053 	return (tpi_mp);
1054 }
1055 
1056 /*
1057  * Called via squeue to get on to eager's perimeter. It sends a
1058  * TH_RST if eager is in the fanout table. The listener wants the
1059  * eager to disappear either by means of tcp_eager_blowoff() or
1060  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
1061  * called (via squeue) if the eager cannot be inserted in the
1062  * fanout table in tcp_input_listener().
1063  */
1064 /* ARGSUSED */
1065 void
1066 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1067 {
1068 	conn_t	*econnp = (conn_t *)arg;
1069 	tcp_t	*eager = econnp->conn_tcp;
1070 	tcp_t	*listener = eager->tcp_listener;
1071 
1072 	/*
1073 	 * We could be called because listener is closing. Since
1074 	 * the eager was using listener's queue's, we avoid
1075 	 * using the listeners queues from now on.
1076 	 */
1077 	ASSERT(eager->tcp_detached);
1078 	econnp->conn_rq = NULL;
1079 	econnp->conn_wq = NULL;
1080 
1081 	/*
1082 	 * An eager's conn_fanout will be NULL if it's a duplicate
1083 	 * for an existing 4-tuples in the conn fanout table.
1084 	 * We don't want to send an RST out in such case.
1085 	 */
1086 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1087 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1088 		    eager, eager->tcp_snxt, 0, TH_RST);
1089 	}
1090 
1091 	/* We are here because listener wants this eager gone */
1092 	if (listener != NULL) {
1093 		mutex_enter(&listener->tcp_eager_lock);
1094 		tcp_eager_unlink(eager);
1095 		if (eager->tcp_tconnind_started) {
1096 			/*
1097 			 * The eager has sent a conn_ind up to the
1098 			 * listener but listener decides to close
1099 			 * instead. We need to drop the extra ref
1100 			 * placed on eager in tcp_input_data() before
1101 			 * sending the conn_ind to listener.
1102 			 */
1103 			CONN_DEC_REF(econnp);
1104 		}
1105 		mutex_exit(&listener->tcp_eager_lock);
1106 		CONN_DEC_REF(listener->tcp_connp);
1107 	}
1108 
1109 	if (eager->tcp_state != TCPS_CLOSED)
1110 		tcp_close_detached(eager);
1111 }
1112 
1113 /*
1114  * Reset any eager connection hanging off this listener marked
1115  * with 'seqnum' and then reclaim it's resources.
1116  */
1117 boolean_t
1118 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1119 {
1120 	tcp_t	*eager;
1121 	mblk_t	*mp;
1122 
1123 	eager = listener;
1124 	mutex_enter(&listener->tcp_eager_lock);
1125 	do {
1126 		eager = eager->tcp_eager_next_q;
1127 		if (eager == NULL) {
1128 			mutex_exit(&listener->tcp_eager_lock);
1129 			return (B_FALSE);
1130 		}
1131 	} while (eager->tcp_conn_req_seqnum != seqnum);
1132 
1133 	if (eager->tcp_closemp_used) {
1134 		mutex_exit(&listener->tcp_eager_lock);
1135 		return (B_TRUE);
1136 	}
1137 	eager->tcp_closemp_used = B_TRUE;
1138 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1139 	CONN_INC_REF(eager->tcp_connp);
1140 	mutex_exit(&listener->tcp_eager_lock);
1141 	mp = &eager->tcp_closemp;
1142 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1143 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1144 	return (B_TRUE);
1145 }
1146 
1147 /*
1148  * Reset any eager connection hanging off this listener
1149  * and then reclaim it's resources.
1150  */
1151 void
1152 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1153 {
1154 	tcp_t	*eager;
1155 	mblk_t	*mp;
1156 	tcp_stack_t	*tcps = listener->tcp_tcps;
1157 
1158 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1159 
1160 	if (!q0_only) {
1161 		/* First cleanup q */
1162 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1163 		eager = listener->tcp_eager_next_q;
1164 		while (eager != NULL) {
1165 			if (!eager->tcp_closemp_used) {
1166 				eager->tcp_closemp_used = B_TRUE;
1167 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1168 				CONN_INC_REF(eager->tcp_connp);
1169 				mp = &eager->tcp_closemp;
1170 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1171 				    tcp_eager_kill, eager->tcp_connp, NULL,
1172 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1173 			}
1174 			eager = eager->tcp_eager_next_q;
1175 		}
1176 	}
1177 	/* Then cleanup q0 */
1178 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1179 	eager = listener->tcp_eager_next_q0;
1180 	while (eager != listener) {
1181 		if (!eager->tcp_closemp_used) {
1182 			eager->tcp_closemp_used = B_TRUE;
1183 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1184 			CONN_INC_REF(eager->tcp_connp);
1185 			mp = &eager->tcp_closemp;
1186 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1187 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1188 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1189 		}
1190 		eager = eager->tcp_eager_next_q0;
1191 	}
1192 }
1193 
1194 /*
1195  * If we are an eager connection hanging off a listener that hasn't
1196  * formally accepted the connection yet, get off its list and blow off
1197  * any data that we have accumulated.
1198  */
1199 void
1200 tcp_eager_unlink(tcp_t *tcp)
1201 {
1202 	tcp_t	*listener = tcp->tcp_listener;
1203 
1204 	ASSERT(listener != NULL);
1205 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1206 	if (tcp->tcp_eager_next_q0 != NULL) {
1207 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1208 
1209 		/* Remove the eager tcp from q0 */
1210 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1211 		    tcp->tcp_eager_prev_q0;
1212 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1213 		    tcp->tcp_eager_next_q0;
1214 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1215 		listener->tcp_conn_req_cnt_q0--;
1216 
1217 		tcp->tcp_eager_next_q0 = NULL;
1218 		tcp->tcp_eager_prev_q0 = NULL;
1219 
1220 		/*
1221 		 * Take the eager out, if it is in the list of droppable
1222 		 * eagers.
1223 		 */
1224 		MAKE_UNDROPPABLE(tcp);
1225 
1226 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1227 			/* we have timed out before */
1228 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1229 			listener->tcp_syn_rcvd_timeout--;
1230 		}
1231 	} else {
1232 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1233 		tcp_t	*prev = NULL;
1234 
1235 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1236 			if (tcpp[0] == tcp) {
1237 				if (listener->tcp_eager_last_q == tcp) {
1238 					/*
1239 					 * If we are unlinking the last
1240 					 * element on the list, adjust
1241 					 * tail pointer. Set tail pointer
1242 					 * to nil when list is empty.
1243 					 */
1244 					ASSERT(tcp->tcp_eager_next_q == NULL);
1245 					if (listener->tcp_eager_last_q ==
1246 					    listener->tcp_eager_next_q) {
1247 						listener->tcp_eager_last_q =
1248 						    NULL;
1249 					} else {
1250 						/*
1251 						 * We won't get here if there
1252 						 * is only one eager in the
1253 						 * list.
1254 						 */
1255 						ASSERT(prev != NULL);
1256 						listener->tcp_eager_last_q =
1257 						    prev;
1258 					}
1259 				}
1260 				tcpp[0] = tcp->tcp_eager_next_q;
1261 				tcp->tcp_eager_next_q = NULL;
1262 				tcp->tcp_eager_last_q = NULL;
1263 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1264 				listener->tcp_conn_req_cnt_q--;
1265 				break;
1266 			}
1267 			prev = tcpp[0];
1268 		}
1269 	}
1270 	tcp->tcp_listener = NULL;
1271 }
1272 
1273 /* BEGIN CSTYLED */
1274 /*
1275  *
1276  * The sockfs ACCEPT path:
1277  * =======================
1278  *
1279  * The eager is now established in its own perimeter as soon as SYN is
1280  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1281  * completes the accept processing on the acceptor STREAM. The sending
1282  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1283  * listener but a TLI/XTI listener completes the accept processing
1284  * on the listener perimeter.
1285  *
1286  * Common control flow for 3 way handshake:
1287  * ----------------------------------------
1288  *
1289  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1290  *
1291  * incoming SYN-ACK-ACK (eager perim)	-> tcp_input_data()
1292  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1293  *
1294  * Sockfs ACCEPT Path:
1295  * -------------------
1296  *
1297  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1298  * as STREAM entry point)
1299  *
1300  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1301  *
1302  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1303  * association (we are not behind eager's squeue but sockfs is protecting us
1304  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1305  * is changed to point at tcp_wput().
1306  *
1307  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1308  * listener (done on listener's perimeter).
1309  *
1310  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1311  * accept.
1312  *
1313  * TLI/XTI client ACCEPT path:
1314  * ---------------------------
1315  *
1316  * soaccept() sends T_CONN_RES on the listener STREAM.
1317  *
1318  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1319  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1320  *
1321  * Locks:
1322  * ======
1323  *
1324  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1325  * and listeners->tcp_eager_next_q.
1326  *
1327  * Referencing:
1328  * ============
1329  *
1330  * 1) We start out in tcp_input_listener by eager placing a ref on
1331  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1332  *
1333  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1334  * doing so we place a ref on the eager. This ref is finally dropped at the
1335  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1336  * reference is dropped by the squeue framework.
1337  *
1338  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1339  *
1340  * The reference must be released by the same entity that added the reference
1341  * In the above scheme, the eager is the entity that adds and releases the
1342  * references. Note that tcp_accept_finish executes in the squeue of the eager
1343  * (albeit after it is attached to the acceptor stream). Though 1. executes
1344  * in the listener's squeue, the eager is nascent at this point and the
1345  * reference can be considered to have been added on behalf of the eager.
1346  *
1347  * Eager getting a Reset or listener closing:
1348  * ==========================================
1349  *
1350  * Once the listener and eager are linked, the listener never does the unlink.
1351  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1352  * a message on all eager perimeter. The eager then does the unlink, clears
1353  * any pointers to the listener's queue and drops the reference to the
1354  * listener. The listener waits in tcp_close outside the squeue until its
1355  * refcount has dropped to 1. This ensures that the listener has waited for
1356  * all eagers to clear their association with the listener.
1357  *
1358  * Similarly, if eager decides to go away, it can unlink itself and close.
1359  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1360  * the reference to eager is still valid because of the extra ref we put
1361  * in tcp_send_conn_ind.
1362  *
1363  * Listener can always locate the eager under the protection
1364  * of the listener->tcp_eager_lock, and then do a refhold
1365  * on the eager during the accept processing.
1366  *
1367  * The acceptor stream accesses the eager in the accept processing
1368  * based on the ref placed on eager before sending T_conn_ind.
1369  * The only entity that can negate this refhold is a listener close
1370  * which is mutually exclusive with an active acceptor stream.
1371  *
1372  * Eager's reference on the listener
1373  * ===================================
1374  *
1375  * If the accept happens (even on a closed eager) the eager drops its
1376  * reference on the listener at the start of tcp_accept_finish. If the
1377  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1378  * the reference is dropped in tcp_closei_local. If the listener closes,
1379  * the reference is dropped in tcp_eager_kill. In all cases the reference
1380  * is dropped while executing in the eager's context (squeue).
1381  */
1382 /* END CSTYLED */
1383 
1384 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1385 
1386 /*
1387  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1388  * tcp_input_data will not see any packets for listeners since the listener
1389  * has conn_recv set to tcp_input_listener.
1390  */
1391 /* ARGSUSED */
1392 static void
1393 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1394 {
1395 	tcpha_t		*tcpha;
1396 	uint32_t	seg_seq;
1397 	tcp_t		*eager;
1398 	int		err;
1399 	conn_t		*econnp = NULL;
1400 	squeue_t	*new_sqp;
1401 	mblk_t		*mp1;
1402 	uint_t		ip_hdr_len;
1403 	conn_t		*lconnp = (conn_t *)arg;
1404 	tcp_t		*listener = lconnp->conn_tcp;
1405 	tcp_stack_t	*tcps = listener->tcp_tcps;
1406 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1407 	uint_t		flags;
1408 	mblk_t		*tpi_mp;
1409 	uint_t		ifindex = ira->ira_ruifindex;
1410 	boolean_t	tlc_set = B_FALSE;
1411 
1412 	ip_hdr_len = ira->ira_ip_hdr_length;
1413 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1414 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1415 
1416 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1417 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1418 	    __dtrace_tcp_tcph_t *, tcpha);
1419 
1420 	if (!(flags & TH_SYN)) {
1421 		if ((flags & TH_RST) || (flags & TH_URG)) {
1422 			freemsg(mp);
1423 			return;
1424 		}
1425 		if (flags & TH_ACK) {
1426 			/* Note this executes in listener's squeue */
1427 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1428 			return;
1429 		}
1430 
1431 		freemsg(mp);
1432 		return;
1433 	}
1434 
1435 	if (listener->tcp_state != TCPS_LISTEN)
1436 		goto error2;
1437 
1438 	ASSERT(IPCL_IS_BOUND(lconnp));
1439 
1440 	mutex_enter(&listener->tcp_eager_lock);
1441 
1442 	/*
1443 	 * The system is under memory pressure, so we need to do our part
1444 	 * to relieve the pressure.  So we only accept new request if there
1445 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1446 	 * handshake.  This means that busy listener will not get too many
1447 	 * new requests which they cannot handle in time while non-busy
1448 	 * listener is still functioning properly.
1449 	 */
1450 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1451 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1452 		mutex_exit(&listener->tcp_eager_lock);
1453 		TCP_STAT(tcps, tcp_listen_mem_drop);
1454 		goto error2;
1455 	}
1456 
1457 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1458 		mutex_exit(&listener->tcp_eager_lock);
1459 		TCP_STAT(tcps, tcp_listendrop);
1460 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1461 		if (lconnp->conn_debug) {
1462 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1463 			    "tcp_input_listener: listen backlog (max=%d) "
1464 			    "overflow (%d pending) on %s",
1465 			    listener->tcp_conn_req_max,
1466 			    listener->tcp_conn_req_cnt_q,
1467 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1468 		}
1469 		goto error2;
1470 	}
1471 
1472 	if (listener->tcp_conn_req_cnt_q0 >=
1473 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1474 		/*
1475 		 * Q0 is full. Drop a pending half-open req from the queue
1476 		 * to make room for the new SYN req. Also mark the time we
1477 		 * drop a SYN.
1478 		 *
1479 		 * A more aggressive defense against SYN attack will
1480 		 * be to set the "tcp_syn_defense" flag now.
1481 		 */
1482 		TCP_STAT(tcps, tcp_listendropq0);
1483 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1484 		if (!tcp_drop_q0(listener)) {
1485 			mutex_exit(&listener->tcp_eager_lock);
1486 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1487 			if (lconnp->conn_debug) {
1488 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1489 				    "tcp_input_listener: listen half-open "
1490 				    "queue (max=%d) full (%d pending) on %s",
1491 				    tcps->tcps_conn_req_max_q0,
1492 				    listener->tcp_conn_req_cnt_q0,
1493 				    tcp_display(listener, NULL,
1494 				    DISP_PORT_ONLY));
1495 			}
1496 			goto error2;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Enforce the limit set on the number of connections per listener.
1502 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1503 	 * for comparison.
1504 	 */
1505 	if (listener->tcp_listen_cnt != NULL) {
1506 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1507 		int64_t now;
1508 
1509 		if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) {
1510 			mutex_exit(&listener->tcp_eager_lock);
1511 			now = ddi_get_lbolt64();
1512 			atomic_dec_32(&tlc->tlc_cnt);
1513 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1514 			tlc->tlc_drop++;
1515 			if (now - tlc->tlc_report_time >
1516 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1517 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1518 				    "Listener (port %d) connection max (%u) "
1519 				    "reached: %u attempts dropped total\n",
1520 				    ntohs(listener->tcp_connp->conn_lport),
1521 				    tlc->tlc_max, tlc->tlc_drop);
1522 				tlc->tlc_report_time = now;
1523 			}
1524 			goto error2;
1525 		}
1526 		tlc_set = B_TRUE;
1527 	}
1528 
1529 	mutex_exit(&listener->tcp_eager_lock);
1530 
1531 	/*
1532 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1533 	 * or based on the ring (for packets from GLD). Otherwise it is
1534 	 * set based on lbolt i.e., a somewhat random number.
1535 	 */
1536 	ASSERT(ira->ira_sqp != NULL);
1537 	new_sqp = ira->ira_sqp;
1538 
1539 	econnp = tcp_get_conn(arg2, tcps);
1540 	if (econnp == NULL)
1541 		goto error2;
1542 
1543 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1544 	econnp->conn_sqp = new_sqp;
1545 	econnp->conn_initial_sqp = new_sqp;
1546 	econnp->conn_ixa->ixa_sqp = new_sqp;
1547 
1548 	econnp->conn_fport = tcpha->tha_lport;
1549 	econnp->conn_lport = tcpha->tha_fport;
1550 
1551 	err = conn_inherit_parent(lconnp, econnp);
1552 	if (err != 0)
1553 		goto error3;
1554 
1555 	/* We already know the laddr of the new connection is ours */
1556 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1557 
1558 	ASSERT(OK_32PTR(mp->b_rptr));
1559 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1560 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1561 
1562 	if (lconnp->conn_family == AF_INET) {
1563 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1564 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1565 	} else {
1566 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1567 	}
1568 
1569 	if (tpi_mp == NULL)
1570 		goto error3;
1571 
1572 	eager = econnp->conn_tcp;
1573 	eager->tcp_detached = B_TRUE;
1574 	SOCK_CONNID_INIT(eager->tcp_connid);
1575 
1576 	/*
1577 	 * Initialize the eager's tcp_t and inherit some parameters from
1578 	 * the listener.
1579 	 */
1580 	tcp_init_values(eager, listener);
1581 
1582 	ASSERT((econnp->conn_ixa->ixa_flags &
1583 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1584 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1585 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1586 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1587 
1588 	if (!tcps->tcps_dev_flow_ctl)
1589 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1590 
1591 	/* Prepare for diffing against previous packets */
1592 	eager->tcp_recvifindex = 0;
1593 	eager->tcp_recvhops = 0xffffffffU;
1594 
1595 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1596 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1597 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1598 			econnp->conn_incoming_ifindex = ifindex;
1599 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1600 			econnp->conn_ixa->ixa_scopeid = ifindex;
1601 		}
1602 	}
1603 
1604 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1605 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1606 	    tcps->tcps_rev_src_routes) {
1607 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1608 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1609 
1610 		/* Source routing option copyover (reverse it) */
1611 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1612 		if (err != 0) {
1613 			freemsg(tpi_mp);
1614 			goto error3;
1615 		}
1616 		ip_pkt_source_route_reverse_v4(ipp);
1617 	}
1618 
1619 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1620 	ASSERT(!eager->tcp_tconnind_started);
1621 	/*
1622 	 * If the SYN came with a credential, it's a loopback packet or a
1623 	 * labeled packet; attach the credential to the TPI message.
1624 	 */
1625 	if (ira->ira_cred != NULL)
1626 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1627 
1628 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1629 	ASSERT(eager->tcp_ordrel_mp == NULL);
1630 
1631 	/* Inherit the listener's non-STREAMS flag */
1632 	if (IPCL_IS_NONSTR(lconnp)) {
1633 		econnp->conn_flags |= IPCL_NONSTR;
1634 		/* All non-STREAMS tcp_ts are sockets */
1635 		eager->tcp_issocket = B_TRUE;
1636 	} else {
1637 		/*
1638 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1639 		 * at close time, we will always have that to send up.
1640 		 * Otherwise, we need to do special handling in case the
1641 		 * allocation fails at that time.
1642 		 */
1643 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1644 			goto error3;
1645 	}
1646 	/*
1647 	 * Now that the IP addresses and ports are setup in econnp we
1648 	 * can do the IPsec policy work.
1649 	 */
1650 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1651 		if (lconnp->conn_policy != NULL) {
1652 			/*
1653 			 * Inherit the policy from the listener; use
1654 			 * actions from ira
1655 			 */
1656 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1657 				CONN_DEC_REF(econnp);
1658 				freemsg(mp);
1659 				goto error3;
1660 			}
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * tcp_set_destination() may set tcp_rwnd according to the route
1666 	 * metrics. If it does not, the eager's receive window will be set
1667 	 * to the listener's receive window later in this function.
1668 	 */
1669 	eager->tcp_rwnd = 0;
1670 
1671 	if (is_system_labeled()) {
1672 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1673 
1674 		ASSERT(ira->ira_tsl != NULL);
1675 		/* Discard any old label */
1676 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1677 			ASSERT(ixa->ixa_tsl != NULL);
1678 			label_rele(ixa->ixa_tsl);
1679 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1680 			ixa->ixa_tsl = NULL;
1681 		}
1682 		if ((lconnp->conn_mlp_type != mlptSingle ||
1683 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1684 		    ira->ira_tsl != NULL) {
1685 			/*
1686 			 * If this is an MLP connection or a MAC-Exempt
1687 			 * connection with an unlabeled node, packets are to be
1688 			 * exchanged using the security label of the received
1689 			 * SYN packet instead of the server application's label.
1690 			 * tsol_check_dest called from ip_set_destination
1691 			 * might later update TSF_UNLABELED by replacing
1692 			 * ixa_tsl with a new label.
1693 			 */
1694 			label_hold(ira->ira_tsl);
1695 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1696 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1697 			    econnp, ts_label_t *, ixa->ixa_tsl)
1698 		} else {
1699 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1700 			DTRACE_PROBE2(syn_accept, conn_t *,
1701 			    econnp, ts_label_t *, ixa->ixa_tsl)
1702 		}
1703 		/*
1704 		 * conn_connect() called from tcp_set_destination will verify
1705 		 * the destination is allowed to receive packets at the
1706 		 * security label of the SYN-ACK we are generating. As part of
1707 		 * that, tsol_check_dest() may create a new effective label for
1708 		 * this connection.
1709 		 * Finally conn_connect() will call conn_update_label.
1710 		 * All that remains for TCP to do is to call
1711 		 * conn_build_hdr_template which is done as part of
1712 		 * tcp_set_destination.
1713 		 */
1714 	}
1715 
1716 	/*
1717 	 * Since we will clear tcp_listener before we clear tcp_detached
1718 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1719 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1720 	 */
1721 	eager->tcp_hard_binding = B_TRUE;
1722 
1723 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1724 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1725 
1726 	CL_INET_CONNECT(econnp, B_FALSE, err);
1727 	if (err != 0) {
1728 		tcp_bind_hash_remove(eager);
1729 		goto error3;
1730 	}
1731 
1732 	SOCK_CONNID_BUMP(eager->tcp_connid);
1733 
1734 	/*
1735 	 * Adapt our mss, ttl, ... based on the remote address.
1736 	 */
1737 
1738 	if (tcp_set_destination(eager) != 0) {
1739 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1740 		/* Undo the bind_hash_insert */
1741 		tcp_bind_hash_remove(eager);
1742 		goto error3;
1743 	}
1744 
1745 	/* Process all TCP options. */
1746 	tcp_process_options(eager, tcpha);
1747 
1748 	/* Is the other end ECN capable? */
1749 	if (tcps->tcps_ecn_permitted >= 1 &&
1750 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1751 		eager->tcp_ecn_ok = B_TRUE;
1752 	}
1753 
1754 	/*
1755 	 * The listener's conn_rcvbuf should be the default window size or a
1756 	 * window size changed via SO_RCVBUF option. First round up the
1757 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1758 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1759 	 * setting.
1760 	 *
1761 	 * Note if there is a rpipe metric associated with the remote host,
1762 	 * we should not inherit receive window size from listener.
1763 	 */
1764 	eager->tcp_rwnd = MSS_ROUNDUP(
1765 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1766 	    eager->tcp_rwnd), eager->tcp_mss);
1767 	if (eager->tcp_snd_ws_ok)
1768 		tcp_set_ws_value(eager);
1769 	/*
1770 	 * Note that this is the only place tcp_rwnd_set() is called for
1771 	 * accepting a connection.  We need to call it here instead of
1772 	 * after the 3-way handshake because we need to tell the other
1773 	 * side our rwnd in the SYN-ACK segment.
1774 	 */
1775 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1776 
1777 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1778 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1779 
1780 	ASSERT(econnp->conn_rcvbuf != 0 &&
1781 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1782 
1783 	/* Put a ref on the listener for the eager. */
1784 	CONN_INC_REF(lconnp);
1785 	mutex_enter(&listener->tcp_eager_lock);
1786 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1787 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1788 	listener->tcp_eager_next_q0 = eager;
1789 	eager->tcp_eager_prev_q0 = listener;
1790 
1791 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1792 	eager->tcp_listener = listener;
1793 	eager->tcp_saved_listener = listener;
1794 
1795 	/*
1796 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1797 	 * is decremented.
1798 	 */
1799 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1800 
1801 	/*
1802 	 * Tag this detached tcp vector for later retrieval
1803 	 * by our listener client in tcp_accept().
1804 	 */
1805 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1806 	listener->tcp_conn_req_cnt_q0++;
1807 	if (++listener->tcp_conn_req_seqnum == -1) {
1808 		/*
1809 		 * -1 is "special" and defined in TPI as something
1810 		 * that should never be used in T_CONN_IND
1811 		 */
1812 		++listener->tcp_conn_req_seqnum;
1813 	}
1814 	mutex_exit(&listener->tcp_eager_lock);
1815 
1816 	if (listener->tcp_syn_defense) {
1817 		/* Don't drop the SYN that comes from a good IP source */
1818 		ipaddr_t *addr_cache;
1819 
1820 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1821 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1822 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1823 			eager->tcp_dontdrop = B_TRUE;
1824 		}
1825 	}
1826 
1827 	/*
1828 	 * We need to insert the eager in its own perimeter but as soon
1829 	 * as we do that, we expose the eager to the classifier and
1830 	 * should not touch any field outside the eager's perimeter.
1831 	 * So do all the work necessary before inserting the eager
1832 	 * in its own perimeter. Be optimistic that conn_connect()
1833 	 * will succeed but undo everything if it fails.
1834 	 */
1835 	seg_seq = ntohl(tcpha->tha_seq);
1836 	eager->tcp_irs = seg_seq;
1837 	eager->tcp_rack = seg_seq;
1838 	eager->tcp_rnxt = seg_seq + 1;
1839 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1840 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1841 	eager->tcp_state = TCPS_SYN_RCVD;
1842 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1843 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1844 	    int32_t, TCPS_LISTEN);
1845 
1846 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1847 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1848 	if (mp1 == NULL) {
1849 		/*
1850 		 * Increment the ref count as we are going to
1851 		 * enqueueing an mp in squeue
1852 		 */
1853 		CONN_INC_REF(econnp);
1854 		goto error;
1855 	}
1856 
1857 	/*
1858 	 * We need to start the rto timer. In normal case, we start
1859 	 * the timer after sending the packet on the wire (or at
1860 	 * least believing that packet was sent by waiting for
1861 	 * conn_ip_output() to return). Since this is the first packet
1862 	 * being sent on the wire for the eager, our initial tcp_rto
1863 	 * is at least tcp_rexmit_interval_min which is a fairly
1864 	 * large value to allow the algorithm to adjust slowly to large
1865 	 * fluctuations of RTT during first few transmissions.
1866 	 *
1867 	 * Starting the timer first and then sending the packet in this
1868 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1869 	 * is of the order of several 100ms and starting the timer
1870 	 * first and then sending the packet will result in difference
1871 	 * of few micro seconds.
1872 	 *
1873 	 * Without this optimization, we are forced to hold the fanout
1874 	 * lock across the ipcl_bind_insert() and sending the packet
1875 	 * so that we don't race against an incoming packet (maybe RST)
1876 	 * for this eager.
1877 	 *
1878 	 * It is necessary to acquire an extra reference on the eager
1879 	 * at this point and hold it until after tcp_send_data() to
1880 	 * ensure against an eager close race.
1881 	 */
1882 
1883 	CONN_INC_REF(econnp);
1884 
1885 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1886 
1887 	/*
1888 	 * Insert the eager in its own perimeter now. We are ready to deal
1889 	 * with any packets on eager.
1890 	 */
1891 	if (ipcl_conn_insert(econnp) != 0)
1892 		goto error;
1893 
1894 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1895 	freemsg(mp);
1896 	/*
1897 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1898 	 * only used by one thread at a time.
1899 	 */
1900 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1901 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1902 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1903 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1904 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1905 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1906 		CONN_DEC_REF(econnp);
1907 	} else {
1908 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1909 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1910 	}
1911 	return;
1912 error:
1913 	freemsg(mp1);
1914 	eager->tcp_closemp_used = B_TRUE;
1915 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1916 	mp1 = &eager->tcp_closemp;
1917 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1918 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1919 
1920 	/*
1921 	 * If a connection already exists, send the mp to that connections so
1922 	 * that it can be appropriately dealt with.
1923 	 */
1924 	ipst = tcps->tcps_netstack->netstack_ip;
1925 
1926 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1927 		if (!IPCL_IS_CONNECTED(econnp)) {
1928 			/*
1929 			 * Something bad happened. ipcl_conn_insert()
1930 			 * failed because a connection already existed
1931 			 * in connected hash but we can't find it
1932 			 * anymore (someone blew it away). Just
1933 			 * free this message and hopefully remote
1934 			 * will retransmit at which time the SYN can be
1935 			 * treated as a new connection or dealth with
1936 			 * a TH_RST if a connection already exists.
1937 			 */
1938 			CONN_DEC_REF(econnp);
1939 			freemsg(mp);
1940 		} else {
1941 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1942 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1943 		}
1944 	} else {
1945 		/* Nobody wants this packet */
1946 		freemsg(mp);
1947 	}
1948 	return;
1949 error3:
1950 	CONN_DEC_REF(econnp);
1951 error2:
1952 	freemsg(mp);
1953 	if (tlc_set)
1954 		atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt);
1955 }
1956 
1957 /*
1958  * In an ideal case of vertical partition in NUMA architecture, its
1959  * beneficial to have the listener and all the incoming connections
1960  * tied to the same squeue. The other constraint is that incoming
1961  * connections should be tied to the squeue attached to interrupted
1962  * CPU for obvious locality reason so this leaves the listener to
1963  * be tied to the same squeue. Our only problem is that when listener
1964  * is binding, the CPU that will get interrupted by the NIC whose
1965  * IP address the listener is binding to is not even known. So
1966  * the code below allows us to change that binding at the time the
1967  * CPU is interrupted by virtue of incoming connection's squeue.
1968  *
1969  * This is usefull only in case of a listener bound to a specific IP
1970  * address. For other kind of listeners, they get bound the
1971  * very first time and there is no attempt to rebind them.
1972  */
1973 void
1974 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1975     ip_recv_attr_t *ira)
1976 {
1977 	conn_t		*connp = (conn_t *)arg;
1978 	squeue_t	*sqp = (squeue_t *)arg2;
1979 	squeue_t	*new_sqp;
1980 	uint32_t	conn_flags;
1981 
1982 	/*
1983 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1984 	 * or based on the ring (for packets from GLD). Otherwise it is
1985 	 * set based on lbolt i.e., a somewhat random number.
1986 	 */
1987 	ASSERT(ira->ira_sqp != NULL);
1988 	new_sqp = ira->ira_sqp;
1989 
1990 	if (connp->conn_fanout == NULL)
1991 		goto done;
1992 
1993 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1994 		mutex_enter(&connp->conn_fanout->connf_lock);
1995 		mutex_enter(&connp->conn_lock);
1996 		/*
1997 		 * No one from read or write side can access us now
1998 		 * except for already queued packets on this squeue.
1999 		 * But since we haven't changed the squeue yet, they
2000 		 * can't execute. If they are processed after we have
2001 		 * changed the squeue, they are sent back to the
2002 		 * correct squeue down below.
2003 		 * But a listner close can race with processing of
2004 		 * incoming SYN. If incoming SYN processing changes
2005 		 * the squeue then the listener close which is waiting
2006 		 * to enter the squeue would operate on the wrong
2007 		 * squeue. Hence we don't change the squeue here unless
2008 		 * the refcount is exactly the minimum refcount. The
2009 		 * minimum refcount of 4 is counted as - 1 each for
2010 		 * TCP and IP, 1 for being in the classifier hash, and
2011 		 * 1 for the mblk being processed.
2012 		 */
2013 
2014 		if (connp->conn_ref != 4 ||
2015 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
2016 			mutex_exit(&connp->conn_lock);
2017 			mutex_exit(&connp->conn_fanout->connf_lock);
2018 			goto done;
2019 		}
2020 		if (connp->conn_sqp != new_sqp) {
2021 			while (connp->conn_sqp != new_sqp)
2022 				(void) atomic_cas_ptr(&connp->conn_sqp, sqp,
2023 				    new_sqp);
2024 			/* No special MT issues for outbound ixa_sqp hint */
2025 			connp->conn_ixa->ixa_sqp = new_sqp;
2026 		}
2027 
2028 		do {
2029 			conn_flags = connp->conn_flags;
2030 			conn_flags |= IPCL_FULLY_BOUND;
2031 			(void) atomic_cas_32(&connp->conn_flags,
2032 			    connp->conn_flags, conn_flags);
2033 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
2034 
2035 		mutex_exit(&connp->conn_fanout->connf_lock);
2036 		mutex_exit(&connp->conn_lock);
2037 
2038 		/*
2039 		 * Assume we have picked a good squeue for the listener. Make
2040 		 * subsequent SYNs not try to change the squeue.
2041 		 */
2042 		connp->conn_recv = tcp_input_listener;
2043 	}
2044 
2045 done:
2046 	if (connp->conn_sqp != sqp) {
2047 		CONN_INC_REF(connp);
2048 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
2049 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
2050 	} else {
2051 		tcp_input_listener(connp, mp, sqp, ira);
2052 	}
2053 }
2054 
2055 /*
2056  * Send up all messages queued on tcp_rcv_list.
2057  */
2058 uint_t
2059 tcp_rcv_drain(tcp_t *tcp)
2060 {
2061 	mblk_t *mp;
2062 	uint_t ret = 0;
2063 #ifdef DEBUG
2064 	uint_t cnt = 0;
2065 #endif
2066 	queue_t	*q = tcp->tcp_connp->conn_rq;
2067 
2068 	/* Can't drain on an eager connection */
2069 	if (tcp->tcp_listener != NULL)
2070 		return (ret);
2071 
2072 	/* Can't be a non-STREAMS connection */
2073 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
2074 
2075 	/* No need for the push timer now. */
2076 	if (tcp->tcp_push_tid != 0) {
2077 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
2078 		tcp->tcp_push_tid = 0;
2079 	}
2080 
2081 	/*
2082 	 * Handle two cases here: we are currently fused or we were
2083 	 * previously fused and have some urgent data to be delivered
2084 	 * upstream.  The latter happens because we either ran out of
2085 	 * memory or were detached and therefore sending the SIGURG was
2086 	 * deferred until this point.  In either case we pass control
2087 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2088 	 * some work.
2089 	 */
2090 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2091 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2092 		    &tcp->tcp_fused_sigurg_mp))
2093 			return (ret);
2094 	}
2095 
2096 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2097 		tcp->tcp_rcv_list = mp->b_next;
2098 		mp->b_next = NULL;
2099 #ifdef DEBUG
2100 		cnt += msgdsize(mp);
2101 #endif
2102 		putnext(q, mp);
2103 	}
2104 #ifdef DEBUG
2105 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2106 #endif
2107 	tcp->tcp_rcv_last_head = NULL;
2108 	tcp->tcp_rcv_last_tail = NULL;
2109 	tcp->tcp_rcv_cnt = 0;
2110 
2111 	if (canputnext(q))
2112 		return (tcp_rwnd_reopen(tcp));
2113 
2114 	return (ret);
2115 }
2116 
2117 /*
2118  * Queue data on tcp_rcv_list which is a b_next chain.
2119  * tcp_rcv_last_head/tail is the last element of this chain.
2120  * Each element of the chain is a b_cont chain.
2121  *
2122  * M_DATA messages are added to the current element.
2123  * Other messages are added as new (b_next) elements.
2124  */
2125 void
2126 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2127 {
2128 	ASSERT(seg_len == msgdsize(mp));
2129 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2130 
2131 	if (is_system_labeled()) {
2132 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2133 		/*
2134 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2135 		 * db_cpid unchanged.
2136 		 * The cred could have already been set.
2137 		 */
2138 		if (cr != NULL)
2139 			mblk_setcred(mp, cr, NOPID);
2140 	}
2141 
2142 	if (tcp->tcp_rcv_list == NULL) {
2143 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2144 		tcp->tcp_rcv_list = mp;
2145 		tcp->tcp_rcv_last_head = mp;
2146 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2147 		tcp->tcp_rcv_last_tail->b_cont = mp;
2148 	} else {
2149 		tcp->tcp_rcv_last_head->b_next = mp;
2150 		tcp->tcp_rcv_last_head = mp;
2151 	}
2152 
2153 	while (mp->b_cont)
2154 		mp = mp->b_cont;
2155 
2156 	tcp->tcp_rcv_last_tail = mp;
2157 	tcp->tcp_rcv_cnt += seg_len;
2158 	tcp->tcp_rwnd -= seg_len;
2159 }
2160 
2161 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2162 mblk_t *
2163 tcp_ack_mp(tcp_t *tcp)
2164 {
2165 	uint32_t	seq_no;
2166 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2167 	conn_t		*connp = tcp->tcp_connp;
2168 
2169 	/*
2170 	 * There are a few cases to be considered while setting the sequence no.
2171 	 * Essentially, we can come here while processing an unacceptable pkt
2172 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2173 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2174 	 * If we are here for a zero window probe, stick with suna. In all
2175 	 * other cases, we check if suna + swnd encompasses snxt and set
2176 	 * the sequence number to snxt, if so. If snxt falls outside the
2177 	 * window (the receiver probably shrunk its window), we will go with
2178 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2179 	 * receiver.
2180 	 */
2181 	if (tcp->tcp_zero_win_probe) {
2182 		seq_no = tcp->tcp_suna;
2183 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2184 		ASSERT(tcp->tcp_swnd == 0);
2185 		seq_no = tcp->tcp_snxt;
2186 	} else {
2187 		seq_no = SEQ_GT(tcp->tcp_snxt,
2188 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2189 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2190 	}
2191 
2192 	if (tcp->tcp_valid_bits) {
2193 		/*
2194 		 * For the complex case where we have to send some
2195 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
2196 		 */
2197 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2198 		    NULL, B_FALSE));
2199 	} else {
2200 		/* Generate a simple ACK */
2201 		int	data_length;
2202 		uchar_t	*rptr;
2203 		tcpha_t	*tcpha;
2204 		mblk_t	*mp1;
2205 		int32_t	total_hdr_len;
2206 		int32_t	tcp_hdr_len;
2207 		int32_t	num_sack_blk = 0;
2208 		int32_t sack_opt_len;
2209 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2210 
2211 		/*
2212 		 * Allocate space for TCP + IP headers
2213 		 * and link-level header
2214 		 */
2215 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2216 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2217 			    tcp->tcp_num_sack_blk);
2218 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2219 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2220 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2221 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2222 		} else {
2223 			total_hdr_len = connp->conn_ht_iphc_len;
2224 			tcp_hdr_len = connp->conn_ht_ulp_len;
2225 		}
2226 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2227 		if (!mp1)
2228 			return (NULL);
2229 
2230 		/* Update the latest receive window size in TCP header. */
2231 		tcp->tcp_tcpha->tha_win =
2232 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2233 		/* copy in prototype TCP + IP header */
2234 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2235 		mp1->b_rptr = rptr;
2236 		mp1->b_wptr = rptr + total_hdr_len;
2237 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2238 
2239 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2240 
2241 		/* Set the TCP sequence number. */
2242 		tcpha->tha_seq = htonl(seq_no);
2243 
2244 		/* Set up the TCP flag field. */
2245 		tcpha->tha_flags = (uchar_t)TH_ACK;
2246 		if (tcp->tcp_ecn_echo_on)
2247 			tcpha->tha_flags |= TH_ECE;
2248 
2249 		tcp->tcp_rack = tcp->tcp_rnxt;
2250 		tcp->tcp_rack_cnt = 0;
2251 
2252 		/* fill in timestamp option if in use */
2253 		if (tcp->tcp_snd_ts_ok) {
2254 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2255 
2256 			U32_TO_BE32(llbolt,
2257 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2258 			U32_TO_BE32(tcp->tcp_ts_recent,
2259 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2260 		}
2261 
2262 		/* Fill in SACK options */
2263 		if (num_sack_blk > 0) {
2264 			uchar_t *wptr = (uchar_t *)tcpha +
2265 			    connp->conn_ht_ulp_len;
2266 			sack_blk_t *tmp;
2267 			int32_t	i;
2268 
2269 			wptr[0] = TCPOPT_NOP;
2270 			wptr[1] = TCPOPT_NOP;
2271 			wptr[2] = TCPOPT_SACK;
2272 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2273 			    sizeof (sack_blk_t);
2274 			wptr += TCPOPT_REAL_SACK_LEN;
2275 
2276 			tmp = tcp->tcp_sack_list;
2277 			for (i = 0; i < num_sack_blk; i++) {
2278 				U32_TO_BE32(tmp[i].begin, wptr);
2279 				wptr += sizeof (tcp_seq);
2280 				U32_TO_BE32(tmp[i].end, wptr);
2281 				wptr += sizeof (tcp_seq);
2282 			}
2283 			tcpha->tha_offset_and_reserved +=
2284 			    ((num_sack_blk * 2 + 1) << 4);
2285 		}
2286 
2287 		ixa->ixa_pktlen = total_hdr_len;
2288 
2289 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2290 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2291 		} else {
2292 			ip6_t *ip6 = (ip6_t *)rptr;
2293 
2294 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2295 		}
2296 
2297 		/*
2298 		 * Prime pump for checksum calculation in IP.  Include the
2299 		 * adjustment for a source route if any.
2300 		 */
2301 		data_length = tcp_hdr_len + connp->conn_sum;
2302 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2303 		tcpha->tha_sum = htons(data_length);
2304 
2305 		if (tcp->tcp_ip_forward_progress) {
2306 			tcp->tcp_ip_forward_progress = B_FALSE;
2307 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2308 		} else {
2309 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2310 		}
2311 		return (mp1);
2312 	}
2313 }
2314 
2315 /*
2316  * Dummy socket upcalls for if/when the conn_t gets detached from a
2317  * direct-callback sonode via a user-driven close().  Easy to catch with
2318  * DTrace FBT, and should be mostly harmless.
2319  */
2320 
2321 /* ARGSUSED */
2322 static sock_upper_handle_t
2323 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2324     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2325 {
2326 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2327 	return (NULL);
2328 }
2329 
2330 /* ARGSUSED */
2331 static void
2332 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2333     pid_t pid)
2334 {
2335 	ASSERT(x == NULL);
2336 	/* Normally we'd crhold(cr) and attach it to socket state. */
2337 	/* LINTED */
2338 }
2339 
2340 /* ARGSUSED */
2341 static int
2342 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2343 {
2344 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2345 	return (-1);
2346 }
2347 
2348 /* ARGSUSED */
2349 static void
2350 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2351 {
2352 	ASSERT(x == NULL);
2353 	/* We really want this one to be a harmless NOP for now. */
2354 	/* LINTED */
2355 }
2356 
2357 /* ARGSUSED */
2358 static ssize_t
2359 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2360     int *error, boolean_t *push)
2361 {
2362 	ASSERT(x == NULL);
2363 
2364 	/*
2365 	 * Consume the message, set ESHUTDOWN, and return an error.
2366 	 * Nobody's home!
2367 	 */
2368 	freemsg(mp);
2369 	*error = ESHUTDOWN;
2370 	return (-1);
2371 }
2372 
2373 /* ARGSUSED */
2374 static void
2375 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2376 {
2377 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2378 }
2379 
2380 /* ARGSUSED */
2381 static void
2382 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2383 {
2384 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2385 }
2386 
2387 /* ARGSUSED */
2388 static void
2389 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2390 {
2391 	ASSERT(x == NULL);
2392 	/* Otherwise, this would signal socket state about OOB data. */
2393 }
2394 
2395 /* ARGSUSED */
2396 static void
2397 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2398 {
2399 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2400 }
2401 
2402 /* ARGSUSED */
2403 static void
2404 tcp_dummy_onearg(sock_upper_handle_t x)
2405 {
2406 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2407 }
2408 
2409 static sock_upcalls_t tcp_dummy_upcalls = {
2410 	tcp_dummy_newconn,
2411 	tcp_dummy_connected,
2412 	tcp_dummy_disconnected,
2413 	tcp_dummy_opctl,
2414 	tcp_dummy_recv,
2415 	tcp_dummy_set_proto_props,
2416 	tcp_dummy_txq_full,
2417 	tcp_dummy_signal_oob,
2418 	tcp_dummy_onearg,
2419 	tcp_dummy_set_error,
2420 	tcp_dummy_onearg
2421 };
2422 
2423 /*
2424  * Handle M_DATA messages from IP. Its called directly from IP via
2425  * squeue for received IP packets.
2426  *
2427  * The first argument is always the connp/tcp to which the mp belongs.
2428  * There are no exceptions to this rule. The caller has already put
2429  * a reference on this connp/tcp and once tcp_input_data() returns,
2430  * the squeue will do the refrele.
2431  *
2432  * The TH_SYN for the listener directly go to tcp_input_listener via
2433  * squeue. ICMP errors go directly to tcp_icmp_input().
2434  *
2435  * sqp: NULL = recursive, sqp != NULL means called from squeue
2436  */
2437 void
2438 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2439 {
2440 	int32_t		bytes_acked;
2441 	int32_t		gap;
2442 	mblk_t		*mp1;
2443 	uint_t		flags;
2444 	uint32_t	new_swnd = 0;
2445 	uchar_t		*iphdr;
2446 	uchar_t		*rptr;
2447 	int32_t		rgap;
2448 	uint32_t	seg_ack;
2449 	int		seg_len;
2450 	uint_t		ip_hdr_len;
2451 	uint32_t	seg_seq;
2452 	tcpha_t		*tcpha;
2453 	int		urp;
2454 	tcp_opt_t	tcpopt;
2455 	ip_pkt_t	ipp;
2456 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2457 	uint32_t	cwnd;
2458 	int		mss;
2459 	conn_t		*connp = (conn_t *)arg;
2460 	squeue_t	*sqp = (squeue_t *)arg2;
2461 	tcp_t		*tcp = connp->conn_tcp;
2462 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2463 	sock_upcalls_t	*sockupcalls;
2464 
2465 	/*
2466 	 * RST from fused tcp loopback peer should trigger an unfuse.
2467 	 */
2468 	if (tcp->tcp_fused) {
2469 		TCP_STAT(tcps, tcp_fusion_aborted);
2470 		tcp_unfuse(tcp);
2471 	}
2472 
2473 	mss = 0;
2474 	iphdr = mp->b_rptr;
2475 	rptr = mp->b_rptr;
2476 	ASSERT(OK_32PTR(rptr));
2477 
2478 	ip_hdr_len = ira->ira_ip_hdr_length;
2479 	if (connp->conn_recv_ancillary.crb_all != 0) {
2480 		/*
2481 		 * Record packet information in the ip_pkt_t
2482 		 */
2483 		ipp.ipp_fields = 0;
2484 		if (ira->ira_flags & IRAF_IS_IPV4) {
2485 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2486 			    B_FALSE);
2487 		} else {
2488 			uint8_t nexthdrp;
2489 
2490 			/*
2491 			 * IPv6 packets can only be received by applications
2492 			 * that are prepared to receive IPv6 addresses.
2493 			 * The IP fanout must ensure this.
2494 			 */
2495 			ASSERT(connp->conn_family == AF_INET6);
2496 
2497 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2498 			    &nexthdrp);
2499 			ASSERT(nexthdrp == IPPROTO_TCP);
2500 
2501 			/* Could have caused a pullup? */
2502 			iphdr = mp->b_rptr;
2503 			rptr = mp->b_rptr;
2504 		}
2505 	}
2506 	ASSERT(DB_TYPE(mp) == M_DATA);
2507 	ASSERT(mp->b_next == NULL);
2508 
2509 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2510 	seg_seq = ntohl(tcpha->tha_seq);
2511 	seg_ack = ntohl(tcpha->tha_ack);
2512 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2513 	seg_len = (int)(mp->b_wptr - rptr) -
2514 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2515 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2516 		do {
2517 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2518 			    (uintptr_t)INT_MAX);
2519 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2520 		} while ((mp1 = mp1->b_cont) != NULL &&
2521 		    mp1->b_datap->db_type == M_DATA);
2522 	}
2523 
2524 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2525 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2526 	    __dtrace_tcp_tcph_t *, tcpha);
2527 
2528 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2529 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2530 		    seg_len, tcpha, ira);
2531 		return;
2532 	}
2533 
2534 	if (sqp != NULL) {
2535 		/*
2536 		 * This is the correct place to update tcp_last_recv_time. Note
2537 		 * that it is also updated for tcp structure that belongs to
2538 		 * global and listener queues which do not really need updating.
2539 		 * But that should not cause any harm.  And it is updated for
2540 		 * all kinds of incoming segments, not only for data segments.
2541 		 */
2542 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2543 	}
2544 
2545 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2546 
2547 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
2548 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2549 
2550 	if ((flags & TH_URG) && sqp != NULL) {
2551 		/*
2552 		 * TCP can't handle urgent pointers that arrive before
2553 		 * the connection has been accept()ed since it can't
2554 		 * buffer OOB data.  Discard segment if this happens.
2555 		 *
2556 		 * We can't just rely on a non-null tcp_listener to indicate
2557 		 * that the accept() has completed since unlinking of the
2558 		 * eager and completion of the accept are not atomic.
2559 		 * tcp_detached, when it is not set (B_FALSE) indicates
2560 		 * that the accept() has completed.
2561 		 *
2562 		 * Nor can it reassemble urgent pointers, so discard
2563 		 * if it's not the next segment expected.
2564 		 *
2565 		 * Otherwise, collapse chain into one mblk (discard if
2566 		 * that fails).  This makes sure the headers, retransmitted
2567 		 * data, and new data all are in the same mblk.
2568 		 */
2569 		ASSERT(mp != NULL);
2570 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2571 			freemsg(mp);
2572 			return;
2573 		}
2574 		/* Update pointers into message */
2575 		iphdr = rptr = mp->b_rptr;
2576 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2577 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2578 			/*
2579 			 * Since we can't handle any data with this urgent
2580 			 * pointer that is out of sequence, we expunge
2581 			 * the data.  This allows us to still register
2582 			 * the urgent mark and generate the M_PCSIG,
2583 			 * which we can do.
2584 			 */
2585 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2586 			seg_len = 0;
2587 		}
2588 	}
2589 
2590 	sockupcalls = connp->conn_upcalls;
2591 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2592 	if (sockupcalls == NULL)
2593 		sockupcalls = &tcp_dummy_upcalls;
2594 
2595 	switch (tcp->tcp_state) {
2596 	case TCPS_SYN_SENT:
2597 		if (connp->conn_final_sqp == NULL &&
2598 		    tcp_outbound_squeue_switch && sqp != NULL) {
2599 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2600 			connp->conn_final_sqp = sqp;
2601 			if (connp->conn_final_sqp != connp->conn_sqp) {
2602 				DTRACE_PROBE1(conn__final__sqp__switch,
2603 				    conn_t *, connp);
2604 				CONN_INC_REF(connp);
2605 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2606 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2607 				    tcp_input_data, connp, ira, ip_squeue_flag,
2608 				    SQTAG_CONNECT_FINISH);
2609 				return;
2610 			}
2611 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2612 		}
2613 		if (flags & TH_ACK) {
2614 			/*
2615 			 * Note that our stack cannot send data before a
2616 			 * connection is established, therefore the
2617 			 * following check is valid.  Otherwise, it has
2618 			 * to be changed.
2619 			 */
2620 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2621 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2622 				freemsg(mp);
2623 				if (flags & TH_RST)
2624 					return;
2625 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2626 				    tcp, seg_ack, 0, TH_RST);
2627 				return;
2628 			}
2629 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2630 		}
2631 		if (flags & TH_RST) {
2632 			if (flags & TH_ACK) {
2633 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2634 				    ip_xmit_attr_t *, connp->conn_ixa,
2635 				    void_ip_t *, iphdr, tcp_t *, tcp,
2636 				    tcph_t *, tcpha);
2637 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2638 			}
2639 			freemsg(mp);
2640 			return;
2641 		}
2642 		if (!(flags & TH_SYN)) {
2643 			freemsg(mp);
2644 			return;
2645 		}
2646 
2647 		/* Process all TCP options. */
2648 		tcp_process_options(tcp, tcpha);
2649 		/*
2650 		 * The following changes our rwnd to be a multiple of the
2651 		 * MIN(peer MSS, our MSS) for performance reason.
2652 		 */
2653 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2654 		    tcp->tcp_mss));
2655 
2656 		/* Is the other end ECN capable? */
2657 		if (tcp->tcp_ecn_ok) {
2658 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2659 				tcp->tcp_ecn_ok = B_FALSE;
2660 			}
2661 		}
2662 		/*
2663 		 * Clear ECN flags because it may interfere with later
2664 		 * processing.
2665 		 */
2666 		flags &= ~(TH_ECE|TH_CWR);
2667 
2668 		tcp->tcp_irs = seg_seq;
2669 		tcp->tcp_rack = seg_seq;
2670 		tcp->tcp_rnxt = seg_seq + 1;
2671 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2672 		if (!TCP_IS_DETACHED(tcp)) {
2673 			/* Allocate room for SACK options if needed. */
2674 			connp->conn_wroff = connp->conn_ht_iphc_len;
2675 			if (tcp->tcp_snd_sack_ok)
2676 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2677 			if (!tcp->tcp_loopback)
2678 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2679 
2680 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2681 			    connp->conn_wroff);
2682 		}
2683 		if (flags & TH_ACK) {
2684 			/*
2685 			 * If we can't get the confirmation upstream, pretend
2686 			 * we didn't even see this one.
2687 			 *
2688 			 * XXX: how can we pretend we didn't see it if we
2689 			 * have updated rnxt et. al.
2690 			 *
2691 			 * For loopback we defer sending up the T_CONN_CON
2692 			 * until after some checks below.
2693 			 */
2694 			mp1 = NULL;
2695 			/*
2696 			 * tcp_sendmsg() checks tcp_state without entering
2697 			 * the squeue so tcp_state should be updated before
2698 			 * sending up connection confirmation.  Probe the
2699 			 * state change below when we are sure the connection
2700 			 * confirmation has been sent.
2701 			 */
2702 			tcp->tcp_state = TCPS_ESTABLISHED;
2703 			if (!tcp_conn_con(tcp, iphdr, mp,
2704 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2705 				tcp->tcp_state = TCPS_SYN_SENT;
2706 				freemsg(mp);
2707 				return;
2708 			}
2709 			TCPS_CONN_INC(tcps);
2710 			/* SYN was acked - making progress */
2711 			tcp->tcp_ip_forward_progress = B_TRUE;
2712 
2713 			/* One for the SYN */
2714 			tcp->tcp_suna = tcp->tcp_iss + 1;
2715 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2716 
2717 			/*
2718 			 * If SYN was retransmitted, need to reset all
2719 			 * retransmission info.  This is because this
2720 			 * segment will be treated as a dup ACK.
2721 			 */
2722 			if (tcp->tcp_rexmit) {
2723 				tcp->tcp_rexmit = B_FALSE;
2724 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2725 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2726 				tcp->tcp_ms_we_have_waited = 0;
2727 
2728 				/*
2729 				 * Set tcp_cwnd back to 1 MSS, per
2730 				 * recommendation from
2731 				 * draft-floyd-incr-init-win-01.txt,
2732 				 * Increasing TCP's Initial Window.
2733 				 */
2734 				DTRACE_PROBE3(cwnd__retransmitted__syn,
2735 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
2736 				    uint32_t, tcp->tcp_mss);
2737 				tcp->tcp_cwnd = tcp->tcp_mss;
2738 			}
2739 
2740 			tcp->tcp_swl1 = seg_seq;
2741 			tcp->tcp_swl2 = seg_ack;
2742 
2743 			new_swnd = ntohs(tcpha->tha_win);
2744 			tcp->tcp_swnd = new_swnd;
2745 			if (new_swnd > tcp->tcp_max_swnd)
2746 				tcp->tcp_max_swnd = new_swnd;
2747 
2748 			/*
2749 			 * Always send the three-way handshake ack immediately
2750 			 * in order to make the connection complete as soon as
2751 			 * possible on the accepting host.
2752 			 */
2753 			flags |= TH_ACK_NEEDED;
2754 
2755 			/*
2756 			 * Trace connect-established here.
2757 			 */
2758 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2759 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2760 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2761 
2762 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2763 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2764 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2765 			    void, NULL, int32_t, TCPS_SYN_SENT);
2766 
2767 			/*
2768 			 * Special case for loopback.  At this point we have
2769 			 * received SYN-ACK from the remote endpoint.  In
2770 			 * order to ensure that both endpoints reach the
2771 			 * fused state prior to any data exchange, the final
2772 			 * ACK needs to be sent before we indicate T_CONN_CON
2773 			 * to the module upstream.
2774 			 */
2775 			if (tcp->tcp_loopback) {
2776 				mblk_t *ack_mp;
2777 
2778 				ASSERT(!tcp->tcp_unfusable);
2779 				ASSERT(mp1 != NULL);
2780 				/*
2781 				 * For loopback, we always get a pure SYN-ACK
2782 				 * and only need to send back the final ACK
2783 				 * with no data (this is because the other
2784 				 * tcp is ours and we don't do T/TCP).  This
2785 				 * final ACK triggers the passive side to
2786 				 * perform fusion in ESTABLISHED state.
2787 				 */
2788 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2789 					if (tcp->tcp_ack_tid != 0) {
2790 						(void) TCP_TIMER_CANCEL(tcp,
2791 						    tcp->tcp_ack_tid);
2792 						tcp->tcp_ack_tid = 0;
2793 					}
2794 					tcp_send_data(tcp, ack_mp);
2795 					TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
2796 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2797 
2798 					if (!IPCL_IS_NONSTR(connp)) {
2799 						/* Send up T_CONN_CON */
2800 						if (ira->ira_cred != NULL) {
2801 							mblk_setcred(mp1,
2802 							    ira->ira_cred,
2803 							    ira->ira_cpid);
2804 						}
2805 						putnext(connp->conn_rq, mp1);
2806 					} else {
2807 						(*sockupcalls->su_connected)
2808 						    (connp->conn_upper_handle,
2809 						    tcp->tcp_connid,
2810 						    ira->ira_cred,
2811 						    ira->ira_cpid);
2812 						freemsg(mp1);
2813 					}
2814 
2815 					freemsg(mp);
2816 					return;
2817 				}
2818 				/*
2819 				 * Forget fusion; we need to handle more
2820 				 * complex cases below.  Send the deferred
2821 				 * T_CONN_CON message upstream and proceed
2822 				 * as usual.  Mark this tcp as not capable
2823 				 * of fusion.
2824 				 */
2825 				TCP_STAT(tcps, tcp_fusion_unfusable);
2826 				tcp->tcp_unfusable = B_TRUE;
2827 				if (!IPCL_IS_NONSTR(connp)) {
2828 					if (ira->ira_cred != NULL) {
2829 						mblk_setcred(mp1, ira->ira_cred,
2830 						    ira->ira_cpid);
2831 					}
2832 					putnext(connp->conn_rq, mp1);
2833 				} else {
2834 					(*sockupcalls->su_connected)
2835 					    (connp->conn_upper_handle,
2836 					    tcp->tcp_connid, ira->ira_cred,
2837 					    ira->ira_cpid);
2838 					freemsg(mp1);
2839 				}
2840 			}
2841 
2842 			/*
2843 			 * Check to see if there is data to be sent.  If
2844 			 * yes, set the transmit flag.  Then check to see
2845 			 * if received data processing needs to be done.
2846 			 * If not, go straight to xmit_check.  This short
2847 			 * cut is OK as we don't support T/TCP.
2848 			 */
2849 			if (tcp->tcp_unsent)
2850 				flags |= TH_XMIT_NEEDED;
2851 
2852 			if (seg_len == 0 && !(flags & TH_URG)) {
2853 				freemsg(mp);
2854 				goto xmit_check;
2855 			}
2856 
2857 			flags &= ~TH_SYN;
2858 			seg_seq++;
2859 			break;
2860 		}
2861 		tcp->tcp_state = TCPS_SYN_RCVD;
2862 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2863 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2864 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2865 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2866 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2867 		if (mp1 != NULL) {
2868 			tcp_send_data(tcp, mp1);
2869 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2870 		}
2871 		freemsg(mp);
2872 		return;
2873 	case TCPS_SYN_RCVD:
2874 		if (flags & TH_ACK) {
2875 			uint32_t pinit_wnd;
2876 
2877 			/*
2878 			 * In this state, a SYN|ACK packet is either bogus
2879 			 * because the other side must be ACKing our SYN which
2880 			 * indicates it has seen the ACK for their SYN and
2881 			 * shouldn't retransmit it or we're crossing SYNs
2882 			 * on active open.
2883 			 */
2884 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2885 				freemsg(mp);
2886 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2887 				    tcp, seg_ack, 0, TH_RST);
2888 				return;
2889 			}
2890 			/*
2891 			 * NOTE: RFC 793 pg. 72 says this should be
2892 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2893 			 * but that would mean we have an ack that ignored
2894 			 * our SYN.
2895 			 */
2896 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2897 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2898 				freemsg(mp);
2899 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2900 				    tcp, seg_ack, 0, TH_RST);
2901 				return;
2902 			}
2903 			/*
2904 			 * No sane TCP stack will send such a small window
2905 			 * without receiving any data.  Just drop this invalid
2906 			 * ACK.  We also shorten the abort timeout in case
2907 			 * this is an attack.
2908 			 */
2909 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2910 			if (pinit_wnd < tcp->tcp_mss &&
2911 			    pinit_wnd < tcp_init_wnd_chk) {
2912 				freemsg(mp);
2913 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2914 				tcp->tcp_second_ctimer_threshold =
2915 				    tcp_early_abort * SECONDS;
2916 				return;
2917 			}
2918 		}
2919 		break;
2920 	case TCPS_LISTEN:
2921 		/*
2922 		 * Only a TLI listener can come through this path when a
2923 		 * acceptor is going back to be a listener and a packet
2924 		 * for the acceptor hits the classifier. For a socket
2925 		 * listener, this can never happen because a listener
2926 		 * can never accept connection on itself and hence a
2927 		 * socket acceptor can not go back to being a listener.
2928 		 */
2929 		ASSERT(!TCP_IS_SOCKET(tcp));
2930 		/*FALLTHRU*/
2931 	case TCPS_CLOSED:
2932 	case TCPS_BOUND: {
2933 		conn_t	*new_connp;
2934 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2935 
2936 		/*
2937 		 * Don't accept any input on a closed tcp as this TCP logically
2938 		 * does not exist on the system. Don't proceed further with
2939 		 * this TCP. For instance, this packet could trigger another
2940 		 * close of this tcp which would be disastrous for tcp_refcnt.
2941 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2942 		 * be called at most once on a TCP. In this case we need to
2943 		 * refeed the packet into the classifier and figure out where
2944 		 * the packet should go.
2945 		 */
2946 		new_connp = ipcl_classify(mp, ira, ipst);
2947 		if (new_connp != NULL) {
2948 			/* Drops ref on new_connp */
2949 			tcp_reinput(new_connp, mp, ira, ipst);
2950 			return;
2951 		}
2952 		/* We failed to classify. For now just drop the packet */
2953 		freemsg(mp);
2954 		return;
2955 	}
2956 	case TCPS_IDLE:
2957 		/*
2958 		 * Handle the case where the tcp_clean_death() has happened
2959 		 * on a connection (application hasn't closed yet) but a packet
2960 		 * was already queued on squeue before tcp_clean_death()
2961 		 * was processed. Calling tcp_clean_death() twice on same
2962 		 * connection can result in weird behaviour.
2963 		 */
2964 		freemsg(mp);
2965 		return;
2966 	default:
2967 		break;
2968 	}
2969 
2970 	/*
2971 	 * Already on the correct queue/perimeter.
2972 	 * If this is a detached connection and not an eager
2973 	 * connection hanging off a listener then new data
2974 	 * (past the FIN) will cause a reset.
2975 	 * We do a special check here where it
2976 	 * is out of the main line, rather than check
2977 	 * if we are detached every time we see new
2978 	 * data down below.
2979 	 */
2980 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2981 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2982 		TCPS_BUMP_MIB(tcps, tcpInClosed);
2983 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2984 		freemsg(mp);
2985 		tcp_xmit_ctl("new data when detached", tcp,
2986 		    tcp->tcp_snxt, 0, TH_RST);
2987 		(void) tcp_clean_death(tcp, EPROTO);
2988 		return;
2989 	}
2990 
2991 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2992 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2993 	new_swnd = ntohs(tcpha->tha_win) <<
2994 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2995 
2996 	/*
2997 	 * We are interested in two TCP options: timestamps (if negotiated) and
2998 	 * SACK (if negotiated). Skip option parsing if neither is negotiated.
2999 	 */
3000 	if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) {
3001 		int options;
3002 		if (tcp->tcp_snd_sack_ok)
3003 			tcpopt.tcp = tcp;
3004 		else
3005 			tcpopt.tcp = NULL;
3006 		options = tcp_parse_options(tcpha, &tcpopt);
3007 		/*
3008 		 * RST segments must not be subject to PAWS and are not
3009 		 * required to have timestamps.
3010 		 * We do not drop keepalive segments without
3011 		 * timestamps, to maintain compatibility with legacy TCP stacks.
3012 		 */
3013 		boolean_t keepalive = (seg_len == 0 || seg_len == 1) &&
3014 		    (seg_seq + 1 == tcp->tcp_rnxt);
3015 		if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) {
3016 			/*
3017 			 * Per RFC 7323 section 3.2., silently drop non-RST
3018 			 * segments without expected TSopt. This is a 'SHOULD'
3019 			 * requirement.
3020 			 * We accept keepalives without TSopt to maintain
3021 			 * interoperability with tcp implementations that omit
3022 			 * the TSopt on these. Keepalive data is discarded, so
3023 			 * there is no risk corrupting data by accepting these.
3024 			 */
3025 			if (!(options & TCP_OPT_TSTAMP_PRESENT)) {
3026 				/*
3027 				 * Leave a breadcrumb for people to detect this
3028 				 * behavior.
3029 				 */
3030 				DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp);
3031 				freemsg(mp);
3032 				return;
3033 			}
3034 
3035 			if (!tcp_paws_check(tcp, &tcpopt)) {
3036 				/*
3037 				 * This segment is not acceptable.
3038 				 * Drop it and send back an ACK.
3039 				 */
3040 				freemsg(mp);
3041 				flags |= TH_ACK_NEEDED;
3042 				goto ack_check;
3043 			}
3044 		}
3045 	}
3046 try_again:;
3047 	mss = tcp->tcp_mss;
3048 	gap = seg_seq - tcp->tcp_rnxt;
3049 	rgap = tcp->tcp_rwnd - (gap + seg_len);
3050 	/*
3051 	 * gap is the amount of sequence space between what we expect to see
3052 	 * and what we got for seg_seq.  A positive value for gap means
3053 	 * something got lost.  A negative value means we got some old stuff.
3054 	 */
3055 	if (gap < 0) {
3056 		/* Old stuff present.  Is the SYN in there? */
3057 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
3058 		    (seg_len != 0)) {
3059 			flags &= ~TH_SYN;
3060 			seg_seq++;
3061 			urp--;
3062 			/* Recompute the gaps after noting the SYN. */
3063 			goto try_again;
3064 		}
3065 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
3066 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
3067 		    (seg_len > -gap ? -gap : seg_len));
3068 		/* Remove the old stuff from seg_len. */
3069 		seg_len += gap;
3070 		/*
3071 		 * Anything left?
3072 		 * Make sure to check for unack'd FIN when rest of data
3073 		 * has been previously ack'd.
3074 		 */
3075 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
3076 			/*
3077 			 * Resets are only valid if they lie within our offered
3078 			 * window.  If the RST bit is set, we just ignore this
3079 			 * segment.
3080 			 */
3081 			if (flags & TH_RST) {
3082 				freemsg(mp);
3083 				return;
3084 			}
3085 
3086 			/*
3087 			 * The arriving of dup data packets indicate that we
3088 			 * may have postponed an ack for too long, or the other
3089 			 * side's RTT estimate is out of shape. Start acking
3090 			 * more often.
3091 			 */
3092 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
3093 			    tcp->tcp_rack_cnt >= 1 &&
3094 			    tcp->tcp_rack_abs_max > 2) {
3095 				tcp->tcp_rack_abs_max--;
3096 			}
3097 			tcp->tcp_rack_cur_max = 1;
3098 
3099 			/*
3100 			 * This segment is "unacceptable".  None of its
3101 			 * sequence space lies within our advertized window.
3102 			 *
3103 			 * Adjust seg_len to the original value for tracing.
3104 			 */
3105 			seg_len -= gap;
3106 			if (connp->conn_debug) {
3107 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3108 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
3109 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
3110 				    "seg_len %d, rnxt %u, snxt %u, %s",
3111 				    gap, rgap, flags, seg_seq, seg_ack,
3112 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
3113 				    tcp_display(tcp, NULL,
3114 				    DISP_ADDR_AND_PORT));
3115 			}
3116 
3117 			/*
3118 			 * Arrange to send an ACK in response to the
3119 			 * unacceptable segment per RFC 793 page 69. There
3120 			 * is only one small difference between ours and the
3121 			 * acceptability test in the RFC - we accept ACK-only
3122 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3123 			 * will be generated.
3124 			 *
3125 			 * Note that we have to ACK an ACK-only packet at least
3126 			 * for stacks that send 0-length keep-alives with
3127 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3128 			 * section 4.2.3.6. As long as we don't ever generate
3129 			 * an unacceptable packet in response to an incoming
3130 			 * packet that is unacceptable, it should not cause
3131 			 * "ACK wars".
3132 			 */
3133 			flags |=  TH_ACK_NEEDED;
3134 
3135 			/*
3136 			 * Continue processing this segment in order to use the
3137 			 * ACK information it contains, but skip all other
3138 			 * sequence-number processing.	Processing the ACK
3139 			 * information is necessary in order to
3140 			 * re-synchronize connections that may have lost
3141 			 * synchronization.
3142 			 *
3143 			 * We clear seg_len and flag fields related to
3144 			 * sequence number processing as they are not
3145 			 * to be trusted for an unacceptable segment.
3146 			 */
3147 			seg_len = 0;
3148 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3149 			goto process_ack;
3150 		}
3151 
3152 		/* Fix seg_seq, and chew the gap off the front. */
3153 		seg_seq = tcp->tcp_rnxt;
3154 		urp += gap;
3155 		do {
3156 			mblk_t	*mp2;
3157 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3158 			    (uintptr_t)UINT_MAX);
3159 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3160 			if (gap > 0) {
3161 				mp->b_rptr = mp->b_wptr - gap;
3162 				break;
3163 			}
3164 			mp2 = mp;
3165 			mp = mp->b_cont;
3166 			freeb(mp2);
3167 		} while (gap < 0);
3168 		/*
3169 		 * If the urgent data has already been acknowledged, we
3170 		 * should ignore TH_URG below
3171 		 */
3172 		if (urp < 0)
3173 			flags &= ~TH_URG;
3174 	}
3175 	/*
3176 	 * rgap is the amount of stuff received out of window.  A negative
3177 	 * value is the amount out of window.
3178 	 */
3179 	if (rgap < 0) {
3180 		mblk_t	*mp2;
3181 
3182 		if (tcp->tcp_rwnd == 0) {
3183 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3184 			tcp->tcp_cs.tcp_in_zwnd_probes++;
3185 		} else {
3186 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3187 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3188 		}
3189 
3190 		/*
3191 		 * seg_len does not include the FIN, so if more than
3192 		 * just the FIN is out of window, we act like we don't
3193 		 * see it.  (If just the FIN is out of window, rgap
3194 		 * will be zero and we will go ahead and acknowledge
3195 		 * the FIN.)
3196 		 */
3197 		flags &= ~TH_FIN;
3198 
3199 		/* Fix seg_len and make sure there is something left. */
3200 		seg_len += rgap;
3201 		if (seg_len <= 0) {
3202 			/*
3203 			 * Resets are only valid if they lie within our offered
3204 			 * window.  If the RST bit is set, we just ignore this
3205 			 * segment.
3206 			 */
3207 			if (flags & TH_RST) {
3208 				freemsg(mp);
3209 				return;
3210 			}
3211 
3212 			/* Per RFC 793, we need to send back an ACK. */
3213 			flags |= TH_ACK_NEEDED;
3214 
3215 			/*
3216 			 * Send SIGURG as soon as possible i.e. even
3217 			 * if the TH_URG was delivered in a window probe
3218 			 * packet (which will be unacceptable).
3219 			 *
3220 			 * We generate a signal if none has been generated
3221 			 * for this connection or if this is a new urgent
3222 			 * byte. Also send a zero-length "unmarked" message
3223 			 * to inform SIOCATMARK that this is not the mark.
3224 			 *
3225 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3226 			 * is sent up. This plus the check for old data
3227 			 * (gap >= 0) handles the wraparound of the sequence
3228 			 * number space without having to always track the
3229 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3230 			 * this max in its rcv_up variable).
3231 			 *
3232 			 * This prevents duplicate SIGURGS due to a "late"
3233 			 * zero-window probe when the T_EXDATA_IND has already
3234 			 * been sent up.
3235 			 */
3236 			if ((flags & TH_URG) &&
3237 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3238 			    tcp->tcp_urp_last))) {
3239 				if (IPCL_IS_NONSTR(connp)) {
3240 					if (!TCP_IS_DETACHED(tcp)) {
3241 						(*sockupcalls->su_signal_oob)
3242 						    (connp->conn_upper_handle,
3243 						    urp);
3244 					}
3245 				} else {
3246 					mp1 = allocb(0, BPRI_MED);
3247 					if (mp1 == NULL) {
3248 						freemsg(mp);
3249 						return;
3250 					}
3251 					if (!TCP_IS_DETACHED(tcp) &&
3252 					    !putnextctl1(connp->conn_rq,
3253 					    M_PCSIG, SIGURG)) {
3254 						/* Try again on the rexmit. */
3255 						freemsg(mp1);
3256 						freemsg(mp);
3257 						return;
3258 					}
3259 					/*
3260 					 * If the next byte would be the mark
3261 					 * then mark with MARKNEXT else mark
3262 					 * with NOTMARKNEXT.
3263 					 */
3264 					if (gap == 0 && urp == 0)
3265 						mp1->b_flag |= MSGMARKNEXT;
3266 					else
3267 						mp1->b_flag |= MSGNOTMARKNEXT;
3268 					freemsg(tcp->tcp_urp_mark_mp);
3269 					tcp->tcp_urp_mark_mp = mp1;
3270 					flags |= TH_SEND_URP_MARK;
3271 				}
3272 				tcp->tcp_urp_last_valid = B_TRUE;
3273 				tcp->tcp_urp_last = urp + seg_seq;
3274 			}
3275 			/*
3276 			 * If this is a zero window probe, continue to
3277 			 * process the ACK part.  But we need to set seg_len
3278 			 * to 0 to avoid data processing.  Otherwise just
3279 			 * drop the segment and send back an ACK.
3280 			 */
3281 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3282 				flags &= ~(TH_SYN | TH_URG);
3283 				seg_len = 0;
3284 				goto process_ack;
3285 			} else {
3286 				freemsg(mp);
3287 				goto ack_check;
3288 			}
3289 		}
3290 		/* Pitch out of window stuff off the end. */
3291 		rgap = seg_len;
3292 		mp2 = mp;
3293 		do {
3294 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3295 			    (uintptr_t)INT_MAX);
3296 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3297 			if (rgap < 0) {
3298 				mp2->b_wptr += rgap;
3299 				if ((mp1 = mp2->b_cont) != NULL) {
3300 					mp2->b_cont = NULL;
3301 					freemsg(mp1);
3302 				}
3303 				break;
3304 			}
3305 		} while ((mp2 = mp2->b_cont) != NULL);
3306 	}
3307 ok:;
3308 	/*
3309 	 * TCP should check ECN info for segments inside the window only.
3310 	 * Therefore the check should be done here.
3311 	 */
3312 	if (tcp->tcp_ecn_ok) {
3313 		if (flags & TH_CWR) {
3314 			tcp->tcp_ecn_echo_on = B_FALSE;
3315 		}
3316 		/*
3317 		 * Note that both ECN_CE and CWR can be set in the
3318 		 * same segment.  In this case, we once again turn
3319 		 * on ECN_ECHO.
3320 		 */
3321 		if (connp->conn_ipversion == IPV4_VERSION) {
3322 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3323 
3324 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3325 				tcp->tcp_ecn_echo_on = B_TRUE;
3326 			}
3327 		} else {
3328 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3329 
3330 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3331 			    htonl(IPH_ECN_CE << 20)) {
3332 				tcp->tcp_ecn_echo_on = B_TRUE;
3333 			}
3334 		}
3335 	}
3336 
3337 	/*
3338 	 * Check whether we can update tcp_ts_recent. This test is from RFC
3339 	 * 7323, section 5.3.
3340 	 */
3341 	if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) &&
3342 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3343 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3344 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3345 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3346 	}
3347 
3348 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3349 		/*
3350 		 * FIN in an out of order segment.  We record this in
3351 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3352 		 * Clear the FIN so that any check on FIN flag will fail.
3353 		 * Remember that FIN also counts in the sequence number
3354 		 * space.  So we need to ack out of order FIN only segments.
3355 		 */
3356 		if (flags & TH_FIN) {
3357 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3358 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3359 			flags &= ~TH_FIN;
3360 			flags |= TH_ACK_NEEDED;
3361 		}
3362 		if (seg_len > 0) {
3363 			/* Fill in the SACK blk list. */
3364 			if (tcp->tcp_snd_sack_ok) {
3365 				tcp_sack_insert(tcp->tcp_sack_list,
3366 				    seg_seq, seg_seq + seg_len,
3367 				    &(tcp->tcp_num_sack_blk));
3368 			}
3369 
3370 			/*
3371 			 * Attempt reassembly and see if we have something
3372 			 * ready to go.
3373 			 */
3374 			mp = tcp_reass(tcp, mp, seg_seq);
3375 			/* Always ack out of order packets */
3376 			flags |= TH_ACK_NEEDED | TH_PUSH;
3377 			if (mp) {
3378 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3379 				    (uintptr_t)INT_MAX);
3380 				seg_len = mp->b_cont ? msgdsize(mp) :
3381 				    (int)(mp->b_wptr - mp->b_rptr);
3382 				seg_seq = tcp->tcp_rnxt;
3383 				/*
3384 				 * A gap is filled and the seq num and len
3385 				 * of the gap match that of a previously
3386 				 * received FIN, put the FIN flag back in.
3387 				 */
3388 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3389 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3390 					flags |= TH_FIN;
3391 					tcp->tcp_valid_bits &=
3392 					    ~TCP_OFO_FIN_VALID;
3393 				}
3394 				if (tcp->tcp_reass_tid != 0) {
3395 					(void) TCP_TIMER_CANCEL(tcp,
3396 					    tcp->tcp_reass_tid);
3397 					/*
3398 					 * Restart the timer if there is still
3399 					 * data in the reassembly queue.
3400 					 */
3401 					if (tcp->tcp_reass_head != NULL) {
3402 						tcp->tcp_reass_tid = TCP_TIMER(
3403 						    tcp, tcp_reass_timer,
3404 						    tcps->tcps_reass_timeout);
3405 					} else {
3406 						tcp->tcp_reass_tid = 0;
3407 					}
3408 				}
3409 			} else {
3410 				/*
3411 				 * Keep going even with NULL mp.
3412 				 * There may be a useful ACK or something else
3413 				 * we don't want to miss.
3414 				 *
3415 				 * But TCP should not perform fast retransmit
3416 				 * because of the ack number.  TCP uses
3417 				 * seg_len == 0 to determine if it is a pure
3418 				 * ACK.  And this is not a pure ACK.
3419 				 */
3420 				seg_len = 0;
3421 				ofo_seg = B_TRUE;
3422 
3423 				if (tcps->tcps_reass_timeout != 0 &&
3424 				    tcp->tcp_reass_tid == 0) {
3425 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3426 					    tcp_reass_timer,
3427 					    tcps->tcps_reass_timeout);
3428 				}
3429 			}
3430 		}
3431 	} else if (seg_len > 0) {
3432 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3433 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3434 		tcp->tcp_cs.tcp_in_data_inorder_segs++;
3435 		tcp->tcp_cs.tcp_in_data_inorder_bytes += seg_len;
3436 
3437 		/*
3438 		 * If an out of order FIN was received before, and the seq
3439 		 * num and len of the new segment match that of the FIN,
3440 		 * put the FIN flag back in.
3441 		 */
3442 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3443 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3444 			flags |= TH_FIN;
3445 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3446 		}
3447 	}
3448 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3449 	if (flags & TH_RST) {
3450 		freemsg(mp);
3451 		switch (tcp->tcp_state) {
3452 		case TCPS_SYN_RCVD:
3453 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3454 			break;
3455 		case TCPS_ESTABLISHED:
3456 		case TCPS_FIN_WAIT_1:
3457 		case TCPS_FIN_WAIT_2:
3458 		case TCPS_CLOSE_WAIT:
3459 			(void) tcp_clean_death(tcp, ECONNRESET);
3460 			break;
3461 		case TCPS_CLOSING:
3462 		case TCPS_LAST_ACK:
3463 			(void) tcp_clean_death(tcp, 0);
3464 			break;
3465 		default:
3466 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3467 			(void) tcp_clean_death(tcp, ENXIO);
3468 			break;
3469 		}
3470 		return;
3471 	}
3472 	if (flags & TH_SYN) {
3473 		/*
3474 		 * See RFC 793, Page 71
3475 		 *
3476 		 * The seq number must be in the window as it should
3477 		 * be "fixed" above.  If it is outside window, it should
3478 		 * be already rejected.  Note that we allow seg_seq to be
3479 		 * rnxt + rwnd because we want to accept 0 window probe.
3480 		 */
3481 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3482 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3483 		freemsg(mp);
3484 		/*
3485 		 * If the ACK flag is not set, just use our snxt as the
3486 		 * seq number of the RST segment.
3487 		 */
3488 		if (!(flags & TH_ACK)) {
3489 			seg_ack = tcp->tcp_snxt;
3490 		}
3491 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3492 		    TH_RST|TH_ACK);
3493 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3494 		(void) tcp_clean_death(tcp, ECONNRESET);
3495 		return;
3496 	}
3497 	/*
3498 	 * urp could be -1 when the urp field in the packet is 0
3499 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3500 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3501 	 */
3502 	if ((flags & TH_URG) && urp >= 0) {
3503 		if (!tcp->tcp_urp_last_valid ||
3504 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3505 			/*
3506 			 * Non-STREAMS sockets handle the urgent data a litte
3507 			 * differently from STREAMS based sockets. There is no
3508 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3509 			 * flags to keep SIOCATMARK happy. Instead a
3510 			 * su_signal_oob upcall is made to update the mark.
3511 			 * Neither is a T_EXDATA_IND mblk needed to be
3512 			 * prepended to the urgent data. The urgent data is
3513 			 * delivered using the su_recv upcall, where we set
3514 			 * the MSG_OOB flag to indicate that it is urg data.
3515 			 *
3516 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3517 			 * are used by non-STREAMS sockets.
3518 			 */
3519 			if (IPCL_IS_NONSTR(connp)) {
3520 				if (!TCP_IS_DETACHED(tcp)) {
3521 					(*sockupcalls->su_signal_oob)
3522 					    (connp->conn_upper_handle, urp);
3523 				}
3524 			} else {
3525 				/*
3526 				 * If we haven't generated the signal yet for
3527 				 * this urgent pointer value, do it now.  Also,
3528 				 * send up a zero-length M_DATA indicating
3529 				 * whether or not this is the mark. The latter
3530 				 * is not needed when a T_EXDATA_IND is sent up.
3531 				 * However, if there are allocation failures
3532 				 * this code relies on the sender retransmitting
3533 				 * and the socket code for determining the mark
3534 				 * should not block waiting for the peer to
3535 				 * transmit. Thus, for simplicity we always
3536 				 * send up the mark indication.
3537 				 */
3538 				mp1 = allocb(0, BPRI_MED);
3539 				if (mp1 == NULL) {
3540 					freemsg(mp);
3541 					return;
3542 				}
3543 				if (!TCP_IS_DETACHED(tcp) &&
3544 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3545 				    SIGURG)) {
3546 					/* Try again on the rexmit. */
3547 					freemsg(mp1);
3548 					freemsg(mp);
3549 					return;
3550 				}
3551 				/*
3552 				 * Mark with NOTMARKNEXT for now.
3553 				 * The code below will change this to MARKNEXT
3554 				 * if we are at the mark.
3555 				 *
3556 				 * If there are allocation failures (e.g. in
3557 				 * dupmsg below) the next time tcp_input_data
3558 				 * sees the urgent segment it will send up the
3559 				 * MSGMARKNEXT message.
3560 				 */
3561 				mp1->b_flag |= MSGNOTMARKNEXT;
3562 				freemsg(tcp->tcp_urp_mark_mp);
3563 				tcp->tcp_urp_mark_mp = mp1;
3564 				flags |= TH_SEND_URP_MARK;
3565 #ifdef DEBUG
3566 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3567 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3568 				    "last %x, %s",
3569 				    seg_seq, urp, tcp->tcp_urp_last,
3570 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3571 #endif /* DEBUG */
3572 			}
3573 			tcp->tcp_urp_last_valid = B_TRUE;
3574 			tcp->tcp_urp_last = urp + seg_seq;
3575 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3576 			/*
3577 			 * An allocation failure prevented the previous
3578 			 * tcp_input_data from sending up the allocated
3579 			 * MSG*MARKNEXT message - send it up this time
3580 			 * around.
3581 			 */
3582 			flags |= TH_SEND_URP_MARK;
3583 		}
3584 
3585 		/*
3586 		 * If the urgent byte is in this segment, make sure that it is
3587 		 * all by itself.  This makes it much easier to deal with the
3588 		 * possibility of an allocation failure on the T_exdata_ind.
3589 		 * Note that seg_len is the number of bytes in the segment, and
3590 		 * urp is the offset into the segment of the urgent byte.
3591 		 * urp < seg_len means that the urgent byte is in this segment.
3592 		 */
3593 		if (urp < seg_len) {
3594 			if (seg_len != 1) {
3595 				uint32_t  tmp_rnxt;
3596 				/*
3597 				 * Break it up and feed it back in.
3598 				 * Re-attach the IP header.
3599 				 */
3600 				mp->b_rptr = iphdr;
3601 				if (urp > 0) {
3602 					/*
3603 					 * There is stuff before the urgent
3604 					 * byte.
3605 					 */
3606 					mp1 = dupmsg(mp);
3607 					if (!mp1) {
3608 						/*
3609 						 * Trim from urgent byte on.
3610 						 * The rest will come back.
3611 						 */
3612 						(void) adjmsg(mp,
3613 						    urp - seg_len);
3614 						tcp_input_data(connp,
3615 						    mp, NULL, ira);
3616 						return;
3617 					}
3618 					(void) adjmsg(mp1, urp - seg_len);
3619 					/* Feed this piece back in. */
3620 					tmp_rnxt = tcp->tcp_rnxt;
3621 					tcp_input_data(connp, mp1, NULL, ira);
3622 					/*
3623 					 * If the data passed back in was not
3624 					 * processed (ie: bad ACK) sending
3625 					 * the remainder back in will cause a
3626 					 * loop. In this case, drop the
3627 					 * packet and let the sender try
3628 					 * sending a good packet.
3629 					 */
3630 					if (tmp_rnxt == tcp->tcp_rnxt) {
3631 						freemsg(mp);
3632 						return;
3633 					}
3634 				}
3635 				if (urp != seg_len - 1) {
3636 					uint32_t  tmp_rnxt;
3637 					/*
3638 					 * There is stuff after the urgent
3639 					 * byte.
3640 					 */
3641 					mp1 = dupmsg(mp);
3642 					if (!mp1) {
3643 						/*
3644 						 * Trim everything beyond the
3645 						 * urgent byte.  The rest will
3646 						 * come back.
3647 						 */
3648 						(void) adjmsg(mp,
3649 						    urp + 1 - seg_len);
3650 						tcp_input_data(connp,
3651 						    mp, NULL, ira);
3652 						return;
3653 					}
3654 					(void) adjmsg(mp1, urp + 1 - seg_len);
3655 					tmp_rnxt = tcp->tcp_rnxt;
3656 					tcp_input_data(connp, mp1, NULL, ira);
3657 					/*
3658 					 * If the data passed back in was not
3659 					 * processed (ie: bad ACK) sending
3660 					 * the remainder back in will cause a
3661 					 * loop. In this case, drop the
3662 					 * packet and let the sender try
3663 					 * sending a good packet.
3664 					 */
3665 					if (tmp_rnxt == tcp->tcp_rnxt) {
3666 						freemsg(mp);
3667 						return;
3668 					}
3669 				}
3670 				tcp_input_data(connp, mp, NULL, ira);
3671 				return;
3672 			}
3673 			/*
3674 			 * This segment contains only the urgent byte.  We
3675 			 * have to allocate the T_exdata_ind, if we can.
3676 			 */
3677 			if (IPCL_IS_NONSTR(connp)) {
3678 				int error;
3679 
3680 				(*sockupcalls->su_recv)
3681 				    (connp->conn_upper_handle, mp, seg_len,
3682 				    MSG_OOB, &error, NULL);
3683 				/*
3684 				 * We should never be in middle of a
3685 				 * fallback, the squeue guarantees that.
3686 				 */
3687 				ASSERT(error != EOPNOTSUPP);
3688 				mp = NULL;
3689 				goto update_ack;
3690 			} else if (!tcp->tcp_urp_mp) {
3691 				struct T_exdata_ind *tei;
3692 				mp1 = allocb(sizeof (struct T_exdata_ind),
3693 				    BPRI_MED);
3694 				if (!mp1) {
3695 					/*
3696 					 * Sigh... It'll be back.
3697 					 * Generate any MSG*MARK message now.
3698 					 */
3699 					freemsg(mp);
3700 					seg_len = 0;
3701 					if (flags & TH_SEND_URP_MARK) {
3702 
3703 
3704 						ASSERT(tcp->tcp_urp_mark_mp);
3705 						tcp->tcp_urp_mark_mp->b_flag &=
3706 						    ~MSGNOTMARKNEXT;
3707 						tcp->tcp_urp_mark_mp->b_flag |=
3708 						    MSGMARKNEXT;
3709 					}
3710 					goto ack_check;
3711 				}
3712 				mp1->b_datap->db_type = M_PROTO;
3713 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3714 				tei->PRIM_type = T_EXDATA_IND;
3715 				tei->MORE_flag = 0;
3716 				mp1->b_wptr = (uchar_t *)&tei[1];
3717 				tcp->tcp_urp_mp = mp1;
3718 #ifdef DEBUG
3719 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3720 				    "tcp_rput: allocated exdata_ind %s",
3721 				    tcp_display(tcp, NULL,
3722 				    DISP_PORT_ONLY));
3723 #endif /* DEBUG */
3724 				/*
3725 				 * There is no need to send a separate MSG*MARK
3726 				 * message since the T_EXDATA_IND will be sent
3727 				 * now.
3728 				 */
3729 				flags &= ~TH_SEND_URP_MARK;
3730 				freemsg(tcp->tcp_urp_mark_mp);
3731 				tcp->tcp_urp_mark_mp = NULL;
3732 			}
3733 			/*
3734 			 * Now we are all set.  On the next putnext upstream,
3735 			 * tcp_urp_mp will be non-NULL and will get prepended
3736 			 * to what has to be this piece containing the urgent
3737 			 * byte.  If for any reason we abort this segment below,
3738 			 * if it comes back, we will have this ready, or it
3739 			 * will get blown off in close.
3740 			 */
3741 		} else if (urp == seg_len) {
3742 			/*
3743 			 * The urgent byte is the next byte after this sequence
3744 			 * number. If this endpoint is non-STREAMS, then there
3745 			 * is nothing to do here since the socket has already
3746 			 * been notified about the urg pointer by the
3747 			 * su_signal_oob call above.
3748 			 *
3749 			 * In case of STREAMS, some more work might be needed.
3750 			 * If there is data it is marked with MSGMARKNEXT and
3751 			 * and any tcp_urp_mark_mp is discarded since it is not
3752 			 * needed. Otherwise, if the code above just allocated
3753 			 * a zero-length tcp_urp_mark_mp message, that message
3754 			 * is tagged with MSGMARKNEXT. Sending up these
3755 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3756 			 * even though the T_EXDATA_IND will not be sent up
3757 			 * until the urgent byte arrives.
3758 			 */
3759 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3760 				if (seg_len != 0) {
3761 					flags |= TH_MARKNEXT_NEEDED;
3762 					freemsg(tcp->tcp_urp_mark_mp);
3763 					tcp->tcp_urp_mark_mp = NULL;
3764 					flags &= ~TH_SEND_URP_MARK;
3765 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3766 					flags |= TH_SEND_URP_MARK;
3767 					tcp->tcp_urp_mark_mp->b_flag &=
3768 					    ~MSGNOTMARKNEXT;
3769 					tcp->tcp_urp_mark_mp->b_flag |=
3770 					    MSGMARKNEXT;
3771 				}
3772 			}
3773 #ifdef DEBUG
3774 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3775 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3776 			    seg_len, flags,
3777 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3778 #endif /* DEBUG */
3779 		}
3780 #ifdef DEBUG
3781 		else {
3782 			/* Data left until we hit mark */
3783 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3784 			    "tcp_rput: URP %d bytes left, %s",
3785 			    urp - seg_len, tcp_display(tcp, NULL,
3786 			    DISP_PORT_ONLY));
3787 		}
3788 #endif /* DEBUG */
3789 	}
3790 
3791 process_ack:
3792 	if (!(flags & TH_ACK)) {
3793 		freemsg(mp);
3794 		goto xmit_check;
3795 	}
3796 	}
3797 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3798 
3799 	if (bytes_acked > 0)
3800 		tcp->tcp_ip_forward_progress = B_TRUE;
3801 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3802 		/*
3803 		 * tcp_sendmsg() checks tcp_state without entering
3804 		 * the squeue so tcp_state should be updated before
3805 		 * sending up a connection confirmation or a new
3806 		 * connection indication.
3807 		 */
3808 		tcp->tcp_state = TCPS_ESTABLISHED;
3809 
3810 		/*
3811 		 * We are seeing the final ack in the three way
3812 		 * hand shake of a active open'ed connection
3813 		 * so we must send up a T_CONN_CON
3814 		 */
3815 		if (tcp->tcp_active_open) {
3816 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3817 				freemsg(mp);
3818 				tcp->tcp_state = TCPS_SYN_RCVD;
3819 				return;
3820 			}
3821 			/*
3822 			 * Don't fuse the loopback endpoints for
3823 			 * simultaneous active opens.
3824 			 */
3825 			if (tcp->tcp_loopback) {
3826 				TCP_STAT(tcps, tcp_fusion_unfusable);
3827 				tcp->tcp_unfusable = B_TRUE;
3828 			}
3829 			/*
3830 			 * For simultaneous active open, trace receipt of final
3831 			 * ACK as tcp:::connect-established.
3832 			 */
3833 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3834 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3835 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3836 		} else if (IPCL_IS_NONSTR(connp)) {
3837 			/*
3838 			 * 3-way handshake has completed, so notify socket
3839 			 * of the new connection.
3840 			 *
3841 			 * We are here means eager is fine but it can
3842 			 * get a TH_RST at any point between now and till
3843 			 * accept completes and disappear. We need to
3844 			 * ensure that reference to eager is valid after
3845 			 * we get out of eager's perimeter. So we do
3846 			 * an extra refhold.
3847 			 */
3848 			CONN_INC_REF(connp);
3849 
3850 			if (!tcp_newconn_notify(tcp, ira)) {
3851 				/*
3852 				 * The state-change probe for SYN_RCVD ->
3853 				 * ESTABLISHED has not fired yet. We reset
3854 				 * the state to SYN_RCVD so that future
3855 				 * state-change probes report correct state
3856 				 * transistions.
3857 				 */
3858 				tcp->tcp_state = TCPS_SYN_RCVD;
3859 				freemsg(mp);
3860 				/* notification did not go up, so drop ref */
3861 				CONN_DEC_REF(connp);
3862 				/* ... and close the eager */
3863 				ASSERT(TCP_IS_DETACHED(tcp));
3864 				(void) tcp_close_detached(tcp);
3865 				return;
3866 			}
3867 			/*
3868 			 * tcp_newconn_notify() changes conn_upcalls and
3869 			 * connp->conn_upper_handle.  Fix things now, in case
3870 			 * there's data attached to this ack.
3871 			 */
3872 			if (connp->conn_upcalls != NULL)
3873 				sockupcalls = connp->conn_upcalls;
3874 			/*
3875 			 * For passive open, trace receipt of final ACK as
3876 			 * tcp:::accept-established.
3877 			 */
3878 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3879 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3880 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3881 		} else {
3882 			/*
3883 			 * 3-way handshake complete - this is a STREAMS based
3884 			 * socket, so pass up the T_CONN_IND.
3885 			 */
3886 			tcp_t	*listener = tcp->tcp_listener;
3887 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3888 
3889 			tcp->tcp_tconnind_started = B_TRUE;
3890 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3891 			ASSERT(mp != NULL);
3892 			/*
3893 			 * We are here means eager is fine but it can
3894 			 * get a TH_RST at any point between now and till
3895 			 * accept completes and disappear. We need to
3896 			 * ensure that reference to eager is valid after
3897 			 * we get out of eager's perimeter. So we do
3898 			 * an extra refhold.
3899 			 */
3900 			CONN_INC_REF(connp);
3901 
3902 			/*
3903 			 * The listener also exists because of the refhold
3904 			 * done in tcp_input_listener. Its possible that it
3905 			 * might have closed. We will check that once we
3906 			 * get inside listeners context.
3907 			 */
3908 			CONN_INC_REF(listener->tcp_connp);
3909 			if (listener->tcp_connp->conn_sqp ==
3910 			    connp->conn_sqp) {
3911 				/*
3912 				 * We optimize by not calling an SQUEUE_ENTER
3913 				 * on the listener since we know that the
3914 				 * listener and eager squeues are the same.
3915 				 * We are able to make this check safely only
3916 				 * because neither the eager nor the listener
3917 				 * can change its squeue. Only an active connect
3918 				 * can change its squeue
3919 				 */
3920 				tcp_send_conn_ind(listener->tcp_connp, mp,
3921 				    listener->tcp_connp->conn_sqp);
3922 				CONN_DEC_REF(listener->tcp_connp);
3923 			} else if (!tcp->tcp_loopback) {
3924 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3925 				    mp, tcp_send_conn_ind,
3926 				    listener->tcp_connp, NULL, SQ_FILL,
3927 				    SQTAG_TCP_CONN_IND);
3928 			} else {
3929 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3930 				    mp, tcp_send_conn_ind,
3931 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3932 				    SQTAG_TCP_CONN_IND);
3933 			}
3934 			/*
3935 			 * For passive open, trace receipt of final ACK as
3936 			 * tcp:::accept-established.
3937 			 */
3938 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3939 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3940 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3941 		}
3942 		TCPS_CONN_INC(tcps);
3943 
3944 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3945 		bytes_acked--;
3946 		/* SYN was acked - making progress */
3947 		tcp->tcp_ip_forward_progress = B_TRUE;
3948 
3949 		/*
3950 		 * If SYN was retransmitted, need to reset all
3951 		 * retransmission info as this segment will be
3952 		 * treated as a dup ACK.
3953 		 */
3954 		if (tcp->tcp_rexmit) {
3955 			tcp->tcp_rexmit = B_FALSE;
3956 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3957 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3958 			tcp->tcp_ms_we_have_waited = 0;
3959 			DTRACE_PROBE3(cwnd__retransmitted__syn,
3960 			    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
3961 			    uint32_t, tcp->tcp_mss);
3962 			tcp->tcp_cwnd = mss;
3963 		}
3964 
3965 		/*
3966 		 * We set the send window to zero here.
3967 		 * This is needed if there is data to be
3968 		 * processed already on the queue.
3969 		 * Later (at swnd_update label), the
3970 		 * "new_swnd > tcp_swnd" condition is satisfied
3971 		 * the XMIT_NEEDED flag is set in the current
3972 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3973 		 * called if there is already data on queue in
3974 		 * this state.
3975 		 */
3976 		tcp->tcp_swnd = 0;
3977 
3978 		if (new_swnd > tcp->tcp_max_swnd)
3979 			tcp->tcp_max_swnd = new_swnd;
3980 		tcp->tcp_swl1 = seg_seq;
3981 		tcp->tcp_swl2 = seg_ack;
3982 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3983 
3984 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
3985 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3986 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3987 		    int32_t, TCPS_SYN_RCVD);
3988 
3989 		/* Fuse when both sides are in ESTABLISHED state */
3990 		if (tcp->tcp_loopback && do_tcp_fusion)
3991 			tcp_fuse(tcp, iphdr, tcpha);
3992 
3993 	}
3994 	/* This code follows 4.4BSD-Lite2 mostly. */
3995 	if (bytes_acked < 0)
3996 		goto est;
3997 
3998 	/*
3999 	 * If TCP is ECN capable and the congestion experience bit is
4000 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
4001 	 * done once per window (or more loosely, per RTT).
4002 	 */
4003 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
4004 		tcp->tcp_cwr = B_FALSE;
4005 	if (tcp->tcp_ecn_ok && (flags & TH_ECE) && !tcp->tcp_cwr) {
4006 		cc_cong_signal(tcp, seg_ack, CC_ECN);
4007 		/*
4008 		 * If the cwnd is 0, use the timer to clock out
4009 		 * new segments.  This is required by the ECN spec.
4010 		 */
4011 		if (tcp->tcp_cwnd == 0)
4012 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4013 		tcp->tcp_cwr = B_TRUE;
4014 		/*
4015 		 * This marks the end of the current window of in
4016 		 * flight data.  That is why we don't use
4017 		 * tcp_suna + tcp_swnd.  Only data in flight can
4018 		 * provide ECN info.
4019 		 */
4020 		tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4021 	}
4022 
4023 	mp1 = tcp->tcp_xmit_head;
4024 	if (bytes_acked == 0) {
4025 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
4026 			int dupack_cnt;
4027 
4028 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
4029 			/*
4030 			 * Fast retransmit.  When we have seen exactly three
4031 			 * identical ACKs while we have unacked data
4032 			 * outstanding we take it as a hint that our peer
4033 			 * dropped something.
4034 			 *
4035 			 * If TCP is retransmitting, don't do fast retransmit.
4036 			 */
4037 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
4038 			    ! tcp->tcp_rexmit) {
4039 				/* Do Limited Transmit */
4040 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
4041 				    tcps->tcps_dupack_fast_retransmit) {
4042 					cc_ack_received(tcp, seg_ack,
4043 					    bytes_acked, CC_DUPACK);
4044 					/*
4045 					 * RFC 3042
4046 					 *
4047 					 * What we need to do is temporarily
4048 					 * increase tcp_cwnd so that new
4049 					 * data can be sent if it is allowed
4050 					 * by the receive window (tcp_rwnd).
4051 					 * tcp_wput_data() will take care of
4052 					 * the rest.
4053 					 *
4054 					 * If the connection is SACK capable,
4055 					 * only do limited xmit when there
4056 					 * is SACK info.
4057 					 *
4058 					 * Note how tcp_cwnd is incremented.
4059 					 * The first dup ACK will increase
4060 					 * it by 1 MSS.  The second dup ACK
4061 					 * will increase it by 2 MSS.  This
4062 					 * means that only 1 new segment will
4063 					 * be sent for each dup ACK.
4064 					 */
4065 					if (tcp->tcp_unsent > 0 &&
4066 					    (!tcp->tcp_snd_sack_ok ||
4067 					    (tcp->tcp_snd_sack_ok &&
4068 					    tcp->tcp_notsack_list != NULL))) {
4069 						tcp->tcp_cwnd += mss <<
4070 						    (tcp->tcp_dupack_cnt - 1);
4071 						flags |= TH_LIMIT_XMIT;
4072 					}
4073 				} else if (dupack_cnt ==
4074 				    tcps->tcps_dupack_fast_retransmit) {
4075 
4076 				/*
4077 				 * If we have reduced tcp_ssthresh
4078 				 * because of ECN, do not reduce it again
4079 				 * unless it is already one window of data
4080 				 * away.  After one window of data, tcp_cwr
4081 				 * should then be cleared.  Note that
4082 				 * for non ECN capable connection, tcp_cwr
4083 				 * should always be false.
4084 				 *
4085 				 * Adjust cwnd since the duplicate
4086 				 * ack indicates that a packet was
4087 				 * dropped (due to congestion.)
4088 				 */
4089 				if (!tcp->tcp_cwr) {
4090 					cc_cong_signal(tcp, seg_ack,
4091 					    CC_NDUPACK);
4092 					cc_ack_received(tcp, seg_ack,
4093 					    bytes_acked, CC_DUPACK);
4094 				}
4095 				if (tcp->tcp_ecn_ok) {
4096 					tcp->tcp_cwr = B_TRUE;
4097 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
4098 					tcp->tcp_ecn_cwr_sent = B_FALSE;
4099 				}
4100 
4101 				/*
4102 				 * We do Hoe's algorithm.  Refer to her
4103 				 * paper "Improving the Start-up Behavior
4104 				 * of a Congestion Control Scheme for TCP,"
4105 				 * appeared in SIGCOMM'96.
4106 				 *
4107 				 * Save highest seq no we have sent so far.
4108 				 * Be careful about the invisible FIN byte.
4109 				 */
4110 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
4111 				    (tcp->tcp_unsent == 0)) {
4112 					tcp->tcp_rexmit_max = tcp->tcp_fss;
4113 				} else {
4114 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4115 				}
4116 
4117 				/*
4118 				 * For SACK:
4119 				 * Calculate tcp_pipe, which is the
4120 				 * estimated number of bytes in
4121 				 * network.
4122 				 *
4123 				 * tcp_fack is the highest sack'ed seq num
4124 				 * TCP has received.
4125 				 *
4126 				 * tcp_pipe is explained in the above quoted
4127 				 * Fall and Floyd's paper.  tcp_fack is
4128 				 * explained in Mathis and Mahdavi's
4129 				 * "Forward Acknowledgment: Refining TCP
4130 				 * Congestion Control" in SIGCOMM '96.
4131 				 */
4132 				if (tcp->tcp_snd_sack_ok) {
4133 					if (tcp->tcp_notsack_list != NULL) {
4134 						tcp->tcp_pipe = tcp->tcp_snxt -
4135 						    tcp->tcp_fack;
4136 						tcp->tcp_sack_snxt = seg_ack;
4137 						flags |= TH_NEED_SACK_REXMIT;
4138 					} else {
4139 						/*
4140 						 * Always initialize tcp_pipe
4141 						 * even though we don't have
4142 						 * any SACK info.  If later
4143 						 * we get SACK info and
4144 						 * tcp_pipe is not initialized,
4145 						 * funny things will happen.
4146 						 */
4147 						tcp->tcp_pipe =
4148 						    tcp->tcp_cwnd_ssthresh;
4149 					}
4150 				} else {
4151 					flags |= TH_REXMIT_NEEDED;
4152 				} /* tcp_snd_sack_ok */
4153 
4154 				} else {
4155 					cc_ack_received(tcp, seg_ack,
4156 					    bytes_acked, CC_DUPACK);
4157 					/*
4158 					 * Here we perform congestion
4159 					 * avoidance, but NOT slow start.
4160 					 * This is known as the Fast
4161 					 * Recovery Algorithm.
4162 					 */
4163 					if (tcp->tcp_snd_sack_ok &&
4164 					    tcp->tcp_notsack_list != NULL) {
4165 						flags |= TH_NEED_SACK_REXMIT;
4166 						tcp->tcp_pipe -= mss;
4167 						if (tcp->tcp_pipe < 0)
4168 							tcp->tcp_pipe = 0;
4169 					} else {
4170 					/*
4171 					 * We know that one more packet has
4172 					 * left the pipe thus we can update
4173 					 * cwnd.
4174 					 */
4175 					cwnd = tcp->tcp_cwnd + mss;
4176 					if (cwnd > tcp->tcp_cwnd_max)
4177 						cwnd = tcp->tcp_cwnd_max;
4178 					DTRACE_PROBE3(cwnd__fast__recovery,
4179 					    tcp_t *, tcp,
4180 					    uint32_t, tcp->tcp_cwnd,
4181 					    uint32_t, cwnd);
4182 					tcp->tcp_cwnd = cwnd;
4183 					if (tcp->tcp_unsent > 0)
4184 						flags |= TH_XMIT_NEEDED;
4185 					}
4186 				}
4187 			}
4188 		} else if (tcp->tcp_zero_win_probe) {
4189 			/*
4190 			 * If the window has opened, need to arrange
4191 			 * to send additional data.
4192 			 */
4193 			if (new_swnd != 0) {
4194 				/* tcp_suna != tcp_snxt */
4195 				/* Packet contains a window update */
4196 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4197 				tcp->tcp_zero_win_probe = 0;
4198 				tcp->tcp_timer_backoff = 0;
4199 				tcp->tcp_ms_we_have_waited = 0;
4200 
4201 				/*
4202 				 * Transmit starting with tcp_suna since
4203 				 * the one byte probe is not ack'ed.
4204 				 * If TCP has sent more than one identical
4205 				 * probe, tcp_rexmit will be set.  That means
4206 				 * tcp_ss_rexmit() will send out the one
4207 				 * byte along with new data.  Otherwise,
4208 				 * fake the retransmission.
4209 				 */
4210 				flags |= TH_XMIT_NEEDED;
4211 				if (!tcp->tcp_rexmit) {
4212 					tcp->tcp_rexmit = B_TRUE;
4213 					tcp->tcp_dupack_cnt = 0;
4214 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4215 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4216 				}
4217 			}
4218 		}
4219 		goto swnd_update;
4220 	}
4221 
4222 	/*
4223 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4224 	 * If the ACK value acks something that we have not yet sent, it might
4225 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4226 	 * other side.
4227 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4228 	 * state is handled above, so we can always just drop the segment and
4229 	 * send an ACK here.
4230 	 *
4231 	 * In the case where the peer shrinks the window, we see the new window
4232 	 * update, but all the data sent previously is queued up by the peer.
4233 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4234 	 * number, which was already sent, and within window, is recorded.
4235 	 * tcp_snxt is then updated.
4236 	 *
4237 	 * If the window has previously shrunk, and an ACK for data not yet
4238 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4239 	 * the ACK is for data within the window at the time the window was
4240 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4241 	 * the sequence number ACK'ed.
4242 	 *
4243 	 * If the ACK covers all the data sent at the time the window was
4244 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4245 	 *
4246 	 * Should we send ACKs in response to ACK only segments?
4247 	 */
4248 
4249 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4250 		if ((tcp->tcp_is_wnd_shrnk) &&
4251 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4252 			uint32_t data_acked_ahead_snxt;
4253 
4254 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4255 			tcp_update_xmit_tail(tcp, seg_ack);
4256 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4257 		} else {
4258 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4259 			/* drop the received segment */
4260 			freemsg(mp);
4261 
4262 			/*
4263 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4264 			 * greater than 0, check if the number of such
4265 			 * bogus ACks is greater than that count.  If yes,
4266 			 * don't send back any ACK.  This prevents TCP from
4267 			 * getting into an ACK storm if somehow an attacker
4268 			 * successfully spoofs an acceptable segment to our
4269 			 * peer.  If this continues (count > 2 X threshold),
4270 			 * we should abort this connection.
4271 			 */
4272 			if (tcp_drop_ack_unsent_cnt > 0 &&
4273 			    ++tcp->tcp_in_ack_unsent >
4274 			    tcp_drop_ack_unsent_cnt) {
4275 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4276 				if (tcp->tcp_in_ack_unsent > 2 *
4277 				    tcp_drop_ack_unsent_cnt) {
4278 					(void) tcp_clean_death(tcp, EPROTO);
4279 				}
4280 				return;
4281 			}
4282 			mp = tcp_ack_mp(tcp);
4283 			if (mp != NULL) {
4284 				TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
4285 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4286 				tcp_send_data(tcp, mp);
4287 			}
4288 			return;
4289 		}
4290 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4291 	    tcp->tcp_snxt_shrunk)) {
4292 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4293 	}
4294 
4295 	/*
4296 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4297 	 * blocks that are covered by this ACK.
4298 	 */
4299 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4300 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4301 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4302 	}
4303 
4304 	/*
4305 	 * If we got an ACK after fast retransmit, check to see
4306 	 * if it is a partial ACK.  If it is not and the congestion
4307 	 * window was inflated to account for the other side's
4308 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4309 	 */
4310 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4311 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4312 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4313 			tcp->tcp_dupack_cnt = 0;
4314 
4315 			cc_post_recovery(tcp, seg_ack);
4316 
4317 			tcp->tcp_rexmit_max = seg_ack;
4318 
4319 			/*
4320 			 * Remove all notsack info to avoid confusion with
4321 			 * the next fast retrasnmit/recovery phase.
4322 			 */
4323 			if (tcp->tcp_snd_sack_ok) {
4324 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4325 				    tcp);
4326 			}
4327 		} else {
4328 			if (tcp->tcp_snd_sack_ok &&
4329 			    tcp->tcp_notsack_list != NULL) {
4330 				flags |= TH_NEED_SACK_REXMIT;
4331 				tcp->tcp_pipe -= mss;
4332 				if (tcp->tcp_pipe < 0)
4333 					tcp->tcp_pipe = 0;
4334 			} else {
4335 				/*
4336 				 * Hoe's algorithm:
4337 				 *
4338 				 * Retransmit the unack'ed segment and
4339 				 * restart fast recovery.  Note that we
4340 				 * need to scale back tcp_cwnd to the
4341 				 * original value when we started fast
4342 				 * recovery.  This is to prevent overly
4343 				 * aggressive behaviour in sending new
4344 				 * segments.
4345 				 */
4346 				cwnd = tcp->tcp_cwnd_ssthresh +
4347 				    tcps->tcps_dupack_fast_retransmit * mss;
4348 				DTRACE_PROBE3(cwnd__fast__retransmit__part__ack,
4349 				    tcp_t *, tcp, uint32_t, tcp->tcp_cwnd,
4350 				    uint32_t, cwnd);
4351 				tcp->tcp_cwnd = cwnd;
4352 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4353 				flags |= TH_REXMIT_NEEDED;
4354 			}
4355 		}
4356 	} else {
4357 		tcp->tcp_dupack_cnt = 0;
4358 		if (tcp->tcp_rexmit) {
4359 			/*
4360 			 * TCP is retranmitting.  If the ACK ack's all
4361 			 * outstanding data, update tcp_rexmit_max and
4362 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4363 			 * to the correct value.
4364 			 *
4365 			 * Note that SEQ_LEQ() is used.  This is to avoid
4366 			 * unnecessary fast retransmit caused by dup ACKs
4367 			 * received when TCP does slow start retransmission
4368 			 * after a time out.  During this phase, TCP may
4369 			 * send out segments which are already received.
4370 			 * This causes dup ACKs to be sent back.
4371 			 */
4372 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4373 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4374 					tcp->tcp_rexmit_nxt = seg_ack;
4375 				}
4376 				if (seg_ack != tcp->tcp_rexmit_max) {
4377 					flags |= TH_XMIT_NEEDED;
4378 				}
4379 			} else {
4380 				tcp->tcp_rexmit = B_FALSE;
4381 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4382 			}
4383 			tcp->tcp_ms_we_have_waited = 0;
4384 		}
4385 	}
4386 
4387 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4388 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4389 	tcp->tcp_suna = seg_ack;
4390 	if (tcp->tcp_zero_win_probe != 0) {
4391 		tcp->tcp_zero_win_probe = 0;
4392 		tcp->tcp_timer_backoff = 0;
4393 	}
4394 
4395 	/*
4396 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4397 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4398 	 * will not reach here.
4399 	 */
4400 	if (mp1 == NULL) {
4401 		goto fin_acked;
4402 	}
4403 
4404 	/*
4405 	 * Update the congestion window.
4406 	 *
4407 	 * If TCP is not ECN capable or TCP is ECN capable but the
4408 	 * congestion experience bit is not set, increase the tcp_cwnd as
4409 	 * usual.
4410 	 */
4411 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4412 		if (IN_RECOVERY(tcp->tcp_ccv.flags)) {
4413 			EXIT_RECOVERY(tcp->tcp_ccv.flags);
4414 		}
4415 		cc_ack_received(tcp, seg_ack, bytes_acked, CC_ACK);
4416 	}
4417 
4418 	/* See if the latest urgent data has been acknowledged */
4419 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4420 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4421 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4422 
4423 	/*
4424 	 * Update the RTT estimates. Note that we don't use the TCP
4425 	 * timestamp option to calculate RTT even if one is present. This is
4426 	 * because the timestamp option's resolution (CPU tick) is
4427 	 * too coarse to measure modern datacenter networks' microsecond
4428 	 * latencies. The timestamp field's resolution is limited by its
4429 	 * 4-byte width (see RFC1323), and since we always store a
4430 	 * high-resolution nanosecond presision timestamp along with the data,
4431 	 * there is no point to ever using the timestamp option.
4432 	 */
4433 	if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4434 		/*
4435 		 * An ACK sequence we haven't seen before, so get the RTT
4436 		 * and update the RTO. But first check if the timestamp is
4437 		 * valid to use.
4438 		 */
4439 		if ((mp1->b_next != NULL) &&
4440 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) {
4441 			tcp_set_rto(tcp, gethrtime() -
4442 			    (hrtime_t)(intptr_t)mp1->b_prev);
4443 		} else {
4444 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4445 		}
4446 
4447 		/* Remeber the last sequence to be ACKed */
4448 		tcp->tcp_csuna = seg_ack;
4449 		if (tcp->tcp_set_timer == 1) {
4450 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4451 			tcp->tcp_set_timer = 0;
4452 		}
4453 	} else {
4454 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4455 	}
4456 
4457 	/* Eat acknowledged bytes off the xmit queue. */
4458 	for (;;) {
4459 		mblk_t	*mp2;
4460 		uchar_t	*wptr;
4461 
4462 		wptr = mp1->b_wptr;
4463 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4464 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4465 		if (bytes_acked < 0) {
4466 			mp1->b_rptr = wptr + bytes_acked;
4467 			/*
4468 			 * Set a new timestamp if all the bytes timed by the
4469 			 * old timestamp have been ack'ed.
4470 			 */
4471 			if (SEQ_GT(seg_ack,
4472 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4473 				mp1->b_prev =
4474 				    (mblk_t *)(intptr_t)gethrtime();
4475 				mp1->b_next = NULL;
4476 			}
4477 			break;
4478 		}
4479 		mp1->b_next = NULL;
4480 		mp1->b_prev = NULL;
4481 		mp2 = mp1;
4482 		mp1 = mp1->b_cont;
4483 
4484 		/*
4485 		 * This notification is required for some zero-copy
4486 		 * clients to maintain a copy semantic. After the data
4487 		 * is ack'ed, client is safe to modify or reuse the buffer.
4488 		 */
4489 		if (tcp->tcp_snd_zcopy_aware &&
4490 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4491 			tcp_zcopy_notify(tcp);
4492 		freeb(mp2);
4493 		if (bytes_acked == 0) {
4494 			if (mp1 == NULL) {
4495 				/* Everything is ack'ed, clear the tail. */
4496 				tcp->tcp_xmit_tail = NULL;
4497 				/*
4498 				 * Cancel the timer unless we are still
4499 				 * waiting for an ACK for the FIN packet.
4500 				 */
4501 				if (tcp->tcp_timer_tid != 0 &&
4502 				    tcp->tcp_snxt == tcp->tcp_suna) {
4503 					(void) TCP_TIMER_CANCEL(tcp,
4504 					    tcp->tcp_timer_tid);
4505 					tcp->tcp_timer_tid = 0;
4506 				}
4507 				goto pre_swnd_update;
4508 			}
4509 			if (mp2 != tcp->tcp_xmit_tail)
4510 				break;
4511 			tcp->tcp_xmit_tail = mp1;
4512 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4513 			    (uintptr_t)INT_MAX);
4514 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4515 			    mp1->b_rptr);
4516 			break;
4517 		}
4518 		if (mp1 == NULL) {
4519 			/*
4520 			 * More was acked but there is nothing more
4521 			 * outstanding.  This means that the FIN was
4522 			 * just acked or that we're talking to a clown.
4523 			 */
4524 fin_acked:
4525 			ASSERT(tcp->tcp_fin_sent);
4526 			tcp->tcp_xmit_tail = NULL;
4527 			if (tcp->tcp_fin_sent) {
4528 				/* FIN was acked - making progress */
4529 				if (!tcp->tcp_fin_acked)
4530 					tcp->tcp_ip_forward_progress = B_TRUE;
4531 				tcp->tcp_fin_acked = B_TRUE;
4532 				if (tcp->tcp_linger_tid != 0 &&
4533 				    TCP_TIMER_CANCEL(tcp,
4534 				    tcp->tcp_linger_tid) >= 0) {
4535 					tcp_stop_lingering(tcp);
4536 					freemsg(mp);
4537 					mp = NULL;
4538 				}
4539 			} else {
4540 				/*
4541 				 * We should never get here because
4542 				 * we have already checked that the
4543 				 * number of bytes ack'ed should be
4544 				 * smaller than or equal to what we
4545 				 * have sent so far (it is the
4546 				 * acceptability check of the ACK).
4547 				 * We can only get here if the send
4548 				 * queue is corrupted.
4549 				 *
4550 				 * Terminate the connection and
4551 				 * panic the system.  It is better
4552 				 * for us to panic instead of
4553 				 * continuing to avoid other disaster.
4554 				 */
4555 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4556 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4557 				panic("Memory corruption "
4558 				    "detected for connection %s.",
4559 				    tcp_display(tcp, NULL,
4560 				    DISP_ADDR_AND_PORT));
4561 				/*NOTREACHED*/
4562 			}
4563 			goto pre_swnd_update;
4564 		}
4565 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4566 	}
4567 	if (tcp->tcp_unsent) {
4568 		flags |= TH_XMIT_NEEDED;
4569 	}
4570 pre_swnd_update:
4571 	tcp->tcp_xmit_head = mp1;
4572 swnd_update:
4573 	/*
4574 	 * The following check is different from most other implementations.
4575 	 * For bi-directional transfer, when segments are dropped, the
4576 	 * "normal" check will not accept a window update in those
4577 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4578 	 * segments which are outside receiver's window.  As TCP accepts
4579 	 * the ack in those retransmitted segments, if the window update in
4580 	 * the same segment is not accepted, TCP will incorrectly calculates
4581 	 * that it can send more segments.  This can create a deadlock
4582 	 * with the receiver if its window becomes zero.
4583 	 */
4584 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4585 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4586 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4587 		/*
4588 		 * The criteria for update is:
4589 		 *
4590 		 * 1. the segment acknowledges some data.  Or
4591 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4592 		 * 3. the segment is not old and the advertised window is
4593 		 * larger than the previous advertised window.
4594 		 */
4595 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4596 			flags |= TH_XMIT_NEEDED;
4597 		tcp->tcp_swnd = new_swnd;
4598 		if (new_swnd > tcp->tcp_max_swnd)
4599 			tcp->tcp_max_swnd = new_swnd;
4600 		tcp->tcp_swl1 = seg_seq;
4601 		tcp->tcp_swl2 = seg_ack;
4602 	}
4603 est:
4604 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4605 
4606 		switch (tcp->tcp_state) {
4607 		case TCPS_FIN_WAIT_1:
4608 			if (tcp->tcp_fin_acked) {
4609 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4610 				DTRACE_TCP6(state__change, void, NULL,
4611 				    ip_xmit_attr_t *, connp->conn_ixa,
4612 				    void, NULL, tcp_t *, tcp, void, NULL,
4613 				    int32_t, TCPS_FIN_WAIT_1);
4614 				/*
4615 				 * We implement the non-standard BSD/SunOS
4616 				 * FIN_WAIT_2 flushing algorithm.
4617 				 * If there is no user attached to this
4618 				 * TCP endpoint, then this TCP struct
4619 				 * could hang around forever in FIN_WAIT_2
4620 				 * state if the peer forgets to send us
4621 				 * a FIN.  To prevent this, we wait only
4622 				 * 2*MSL (a convenient time value) for
4623 				 * the FIN to arrive.  If it doesn't show up,
4624 				 * we flush the TCP endpoint.  This algorithm,
4625 				 * though a violation of RFC-793, has worked
4626 				 * for over 10 years in BSD systems.
4627 				 * Note: SunOS 4.x waits 675 seconds before
4628 				 * flushing the FIN_WAIT_2 connection.
4629 				 */
4630 				TCP_TIMER_RESTART(tcp,
4631 				    tcp->tcp_fin_wait_2_flush_interval);
4632 			}
4633 			break;
4634 		case TCPS_FIN_WAIT_2:
4635 			break;	/* Shutdown hook? */
4636 		case TCPS_LAST_ACK:
4637 			freemsg(mp);
4638 			if (tcp->tcp_fin_acked) {
4639 				(void) tcp_clean_death(tcp, 0);
4640 				return;
4641 			}
4642 			goto xmit_check;
4643 		case TCPS_CLOSING:
4644 			if (tcp->tcp_fin_acked) {
4645 				SET_TIME_WAIT(tcps, tcp, connp);
4646 				DTRACE_TCP6(state__change, void, NULL,
4647 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4648 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4649 				    TCPS_CLOSING);
4650 			}
4651 			/*FALLTHRU*/
4652 		case TCPS_CLOSE_WAIT:
4653 			freemsg(mp);
4654 			goto xmit_check;
4655 		default:
4656 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4657 			break;
4658 		}
4659 	}
4660 	if (flags & TH_FIN) {
4661 		/* Make sure we ack the fin */
4662 		flags |= TH_ACK_NEEDED;
4663 		if (!tcp->tcp_fin_rcvd) {
4664 			tcp->tcp_fin_rcvd = B_TRUE;
4665 			tcp->tcp_rnxt++;
4666 			tcpha = tcp->tcp_tcpha;
4667 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4668 
4669 			/*
4670 			 * Generate the ordrel_ind at the end unless the
4671 			 * conn is detached or it is a STREAMS based eager.
4672 			 * In the eager case we defer the notification until
4673 			 * tcp_accept_finish has run.
4674 			 */
4675 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4676 			    (tcp->tcp_listener == NULL &&
4677 			    !tcp->tcp_hard_binding)))
4678 				flags |= TH_ORDREL_NEEDED;
4679 			switch (tcp->tcp_state) {
4680 			case TCPS_SYN_RCVD:
4681 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4682 				DTRACE_TCP6(state__change, void, NULL,
4683 				    ip_xmit_attr_t *, connp->conn_ixa,
4684 				    void, NULL, tcp_t *, tcp, void, NULL,
4685 				    int32_t, TCPS_SYN_RCVD);
4686 				/* Keepalive? */
4687 				break;
4688 			case TCPS_ESTABLISHED:
4689 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4690 				DTRACE_TCP6(state__change, void, NULL,
4691 				    ip_xmit_attr_t *, connp->conn_ixa,
4692 				    void, NULL, tcp_t *, tcp, void, NULL,
4693 				    int32_t, TCPS_ESTABLISHED);
4694 				/* Keepalive? */
4695 				break;
4696 			case TCPS_FIN_WAIT_1:
4697 				if (!tcp->tcp_fin_acked) {
4698 					tcp->tcp_state = TCPS_CLOSING;
4699 					DTRACE_TCP6(state__change, void, NULL,
4700 					    ip_xmit_attr_t *, connp->conn_ixa,
4701 					    void, NULL, tcp_t *, tcp, void,
4702 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4703 					break;
4704 				}
4705 				/* FALLTHRU */
4706 			case TCPS_FIN_WAIT_2:
4707 				SET_TIME_WAIT(tcps, tcp, connp);
4708 				DTRACE_TCP6(state__change, void, NULL,
4709 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4710 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4711 				    TCPS_FIN_WAIT_2);
4712 				if (seg_len) {
4713 					/*
4714 					 * implies data piggybacked on FIN.
4715 					 * break to handle data.
4716 					 */
4717 					break;
4718 				}
4719 				freemsg(mp);
4720 				goto ack_check;
4721 			}
4722 		}
4723 	}
4724 	if (mp == NULL)
4725 		goto xmit_check;
4726 	if (seg_len == 0) {
4727 		freemsg(mp);
4728 		goto xmit_check;
4729 	}
4730 	if (mp->b_rptr == mp->b_wptr) {
4731 		/*
4732 		 * The header has been consumed, so we remove the
4733 		 * zero-length mblk here.
4734 		 */
4735 		mp1 = mp;
4736 		mp = mp->b_cont;
4737 		freeb(mp1);
4738 	}
4739 update_ack:
4740 	tcpha = tcp->tcp_tcpha;
4741 	tcp->tcp_rack_cnt++;
4742 	{
4743 		uint32_t cur_max;
4744 
4745 		cur_max = tcp->tcp_rack_cur_max;
4746 		if (tcp->tcp_rack_cnt >= cur_max) {
4747 			/*
4748 			 * We have more unacked data than we should - send
4749 			 * an ACK now.
4750 			 */
4751 			flags |= TH_ACK_NEEDED;
4752 			cur_max++;
4753 			if (cur_max > tcp->tcp_rack_abs_max)
4754 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4755 			else
4756 				tcp->tcp_rack_cur_max = cur_max;
4757 		} else if (TCP_IS_DETACHED(tcp)) {
4758 			/* We don't have an ACK timer for detached TCP. */
4759 			flags |= TH_ACK_NEEDED;
4760 		} else if (seg_len < mss) {
4761 			/*
4762 			 * If we get a segment that is less than an mss, and we
4763 			 * already have unacknowledged data, and the amount
4764 			 * unacknowledged is not a multiple of mss, then we
4765 			 * better generate an ACK now.  Otherwise, this may be
4766 			 * the tail piece of a transaction, and we would rather
4767 			 * wait for the response.
4768 			 */
4769 			uint32_t udif;
4770 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4771 			    (uintptr_t)INT_MAX);
4772 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4773 			if (udif && (udif % mss))
4774 				flags |= TH_ACK_NEEDED;
4775 			else
4776 				flags |= TH_ACK_TIMER_NEEDED;
4777 		} else {
4778 			/* Start delayed ack timer */
4779 			flags |= TH_ACK_TIMER_NEEDED;
4780 		}
4781 	}
4782 	tcp->tcp_rnxt += seg_len;
4783 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4784 
4785 	if (mp == NULL)
4786 		goto xmit_check;
4787 
4788 	/* Update SACK list */
4789 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4790 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4791 		    &(tcp->tcp_num_sack_blk));
4792 	}
4793 
4794 	if (tcp->tcp_urp_mp) {
4795 		tcp->tcp_urp_mp->b_cont = mp;
4796 		mp = tcp->tcp_urp_mp;
4797 		tcp->tcp_urp_mp = NULL;
4798 		/* Ready for a new signal. */
4799 		tcp->tcp_urp_last_valid = B_FALSE;
4800 #ifdef DEBUG
4801 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4802 		    "tcp_rput: sending exdata_ind %s",
4803 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4804 #endif /* DEBUG */
4805 	}
4806 
4807 	/*
4808 	 * Check for ancillary data changes compared to last segment.
4809 	 */
4810 	if (connp->conn_recv_ancillary.crb_all != 0) {
4811 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4812 		if (mp == NULL)
4813 			return;
4814 	}
4815 
4816 	if (IPCL_IS_NONSTR(connp)) {
4817 		/*
4818 		 * Non-STREAMS socket
4819 		 */
4820 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4821 		int error;
4822 
4823 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4824 		    mp, seg_len, 0, &error, &push) <= 0) {
4825 			/*
4826 			 * We should never be in middle of a
4827 			 * fallback, the squeue guarantees that.
4828 			 */
4829 			ASSERT(error != EOPNOTSUPP);
4830 			if (error == ENOSPC)
4831 				tcp->tcp_rwnd -= seg_len;
4832 		} else if (push) {
4833 			/* PUSH bit set and sockfs is not flow controlled */
4834 			flags |= tcp_rwnd_reopen(tcp);
4835 		}
4836 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4837 		/*
4838 		 * Side queue inbound data until the accept happens.
4839 		 * tcp_accept/tcp_rput drains this when the accept happens.
4840 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4841 		 * T_EXDATA_IND) it is queued on b_next.
4842 		 * XXX Make urgent data use this. Requires:
4843 		 *	Removing tcp_listener check for TH_URG
4844 		 *	Making M_PCPROTO and MARK messages skip the eager case
4845 		 */
4846 
4847 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4848 	} else {
4849 		/* Active STREAMS socket */
4850 		if (mp->b_datap->db_type != M_DATA ||
4851 		    (flags & TH_MARKNEXT_NEEDED)) {
4852 			if (tcp->tcp_rcv_list != NULL) {
4853 				flags |= tcp_rcv_drain(tcp);
4854 			}
4855 			ASSERT(tcp->tcp_rcv_list == NULL ||
4856 			    tcp->tcp_fused_sigurg);
4857 
4858 			if (flags & TH_MARKNEXT_NEEDED) {
4859 #ifdef DEBUG
4860 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4861 				    "tcp_rput: sending MSGMARKNEXT %s",
4862 				    tcp_display(tcp, NULL,
4863 				    DISP_PORT_ONLY));
4864 #endif /* DEBUG */
4865 				mp->b_flag |= MSGMARKNEXT;
4866 				flags &= ~TH_MARKNEXT_NEEDED;
4867 			}
4868 
4869 			if (is_system_labeled())
4870 				tcp_setcred_data(mp, ira);
4871 
4872 			putnext(connp->conn_rq, mp);
4873 			if (!canputnext(connp->conn_rq))
4874 				tcp->tcp_rwnd -= seg_len;
4875 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4876 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4877 			if (tcp->tcp_rcv_list != NULL) {
4878 				/*
4879 				 * Enqueue the new segment first and then
4880 				 * call tcp_rcv_drain() to send all data
4881 				 * up.  The other way to do this is to
4882 				 * send all queued data up and then call
4883 				 * putnext() to send the new segment up.
4884 				 * This way can remove the else part later
4885 				 * on.
4886 				 *
4887 				 * We don't do this to avoid one more call to
4888 				 * canputnext() as tcp_rcv_drain() needs to
4889 				 * call canputnext().
4890 				 */
4891 				tcp_rcv_enqueue(tcp, mp, seg_len,
4892 				    ira->ira_cred);
4893 				flags |= tcp_rcv_drain(tcp);
4894 			} else {
4895 				if (is_system_labeled())
4896 					tcp_setcred_data(mp, ira);
4897 
4898 				putnext(connp->conn_rq, mp);
4899 				if (!canputnext(connp->conn_rq))
4900 					tcp->tcp_rwnd -= seg_len;
4901 			}
4902 		} else {
4903 			/*
4904 			 * Enqueue all packets when processing an mblk
4905 			 * from the co queue and also enqueue normal packets.
4906 			 */
4907 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4908 		}
4909 		/*
4910 		 * Make sure the timer is running if we have data waiting
4911 		 * for a push bit. This provides resiliency against
4912 		 * implementations that do not correctly generate push bits.
4913 		 */
4914 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4915 			/*
4916 			 * The connection may be closed at this point, so don't
4917 			 * do anything for a detached tcp.
4918 			 */
4919 			if (!TCP_IS_DETACHED(tcp))
4920 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4921 				    tcp_push_timer,
4922 				    tcps->tcps_push_timer_interval);
4923 		}
4924 	}
4925 
4926 xmit_check:
4927 	/* Is there anything left to do? */
4928 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4929 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4930 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4931 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4932 		goto done;
4933 
4934 	/* Any transmit work to do and a non-zero window? */
4935 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4936 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4937 		if (flags & TH_REXMIT_NEEDED) {
4938 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4939 
4940 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4941 			if (snd_size > mss)
4942 				snd_size = mss;
4943 			if (snd_size > tcp->tcp_swnd)
4944 				snd_size = tcp->tcp_swnd;
4945 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4946 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4947 			    B_TRUE);
4948 
4949 			if (mp1 != NULL) {
4950 				tcp->tcp_xmit_head->b_prev =
4951 				    (mblk_t *)(intptr_t)gethrtime();
4952 				tcp->tcp_csuna = tcp->tcp_snxt;
4953 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4954 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4955 				    snd_size);
4956 				tcp->tcp_cs.tcp_out_retrans_segs++;
4957 				tcp->tcp_cs.tcp_out_retrans_bytes += snd_size;
4958 				tcp_send_data(tcp, mp1);
4959 			}
4960 		}
4961 		if (flags & TH_NEED_SACK_REXMIT) {
4962 			tcp_sack_rexmit(tcp, &flags);
4963 		}
4964 		/*
4965 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4966 		 * out new segment.  Note that tcp_rexmit should not be
4967 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4968 		 */
4969 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4970 			if (!tcp->tcp_rexmit) {
4971 				tcp_wput_data(tcp, NULL, B_FALSE);
4972 			} else {
4973 				tcp_ss_rexmit(tcp);
4974 			}
4975 		}
4976 		/*
4977 		 * Adjust tcp_cwnd back to normal value after sending
4978 		 * new data segments.
4979 		 */
4980 		if (flags & TH_LIMIT_XMIT) {
4981 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4982 			/*
4983 			 * This will restart the timer.  Restarting the
4984 			 * timer is used to avoid a timeout before the
4985 			 * limited transmitted segment's ACK gets back.
4986 			 */
4987 			if (tcp->tcp_xmit_head != NULL) {
4988 				tcp->tcp_xmit_head->b_prev =
4989 				    (mblk_t *)(intptr_t)gethrtime();
4990 			}
4991 		}
4992 
4993 		/* Anything more to do? */
4994 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4995 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4996 			goto done;
4997 	}
4998 ack_check:
4999 	if (flags & TH_SEND_URP_MARK) {
5000 		ASSERT(tcp->tcp_urp_mark_mp);
5001 		ASSERT(!IPCL_IS_NONSTR(connp));
5002 		/*
5003 		 * Send up any queued data and then send the mark message
5004 		 */
5005 		if (tcp->tcp_rcv_list != NULL) {
5006 			flags |= tcp_rcv_drain(tcp);
5007 
5008 		}
5009 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5010 		mp1 = tcp->tcp_urp_mark_mp;
5011 		tcp->tcp_urp_mark_mp = NULL;
5012 		if (is_system_labeled())
5013 			tcp_setcred_data(mp1, ira);
5014 
5015 		putnext(connp->conn_rq, mp1);
5016 #ifdef DEBUG
5017 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
5018 		    "tcp_rput: sending zero-length %s %s",
5019 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
5020 		    "MSGNOTMARKNEXT"),
5021 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5022 #endif /* DEBUG */
5023 		flags &= ~TH_SEND_URP_MARK;
5024 	}
5025 	if (flags & TH_ACK_NEEDED) {
5026 		/*
5027 		 * Time to send an ack for some reason.
5028 		 */
5029 		mp1 = tcp_ack_mp(tcp);
5030 
5031 		if (mp1 != NULL) {
5032 			tcp_send_data(tcp, mp1);
5033 			TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
5034 			TCPS_BUMP_MIB(tcps, tcpOutAck);
5035 		}
5036 		if (tcp->tcp_ack_tid != 0) {
5037 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
5038 			tcp->tcp_ack_tid = 0;
5039 		}
5040 	}
5041 	if (flags & TH_ACK_TIMER_NEEDED) {
5042 		/*
5043 		 * Arrange for deferred ACK or push wait timeout.
5044 		 * Start timer if it is not already running.
5045 		 */
5046 		if (tcp->tcp_ack_tid == 0) {
5047 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
5048 			    tcp->tcp_localnet ?
5049 			    tcps->tcps_local_dack_interval :
5050 			    tcps->tcps_deferred_ack_interval);
5051 		}
5052 	}
5053 	if (flags & TH_ORDREL_NEEDED) {
5054 		/*
5055 		 * Notify upper layer about an orderly release. If this is
5056 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
5057 		 * we send up an ordrel_ind, unless this is an eager, in which
5058 		 * case the ordrel will be sent when tcp_accept_finish runs.
5059 		 * Note that for non-STREAMS we make an upcall even if it is an
5060 		 * eager, because we have an upper handle to send it to.
5061 		 */
5062 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
5063 		ASSERT(!tcp->tcp_detached);
5064 
5065 		if (IPCL_IS_NONSTR(connp)) {
5066 			ASSERT(tcp->tcp_ordrel_mp == NULL);
5067 			tcp->tcp_ordrel_done = B_TRUE;
5068 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
5069 			    SOCK_OPCTL_SHUT_RECV, 0);
5070 			goto done;
5071 		}
5072 
5073 		if (tcp->tcp_rcv_list != NULL) {
5074 			/*
5075 			 * Push any mblk(s) enqueued from co processing.
5076 			 */
5077 			flags |= tcp_rcv_drain(tcp);
5078 		}
5079 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
5080 
5081 		mp1 = tcp->tcp_ordrel_mp;
5082 		tcp->tcp_ordrel_mp = NULL;
5083 		tcp->tcp_ordrel_done = B_TRUE;
5084 		putnext(connp->conn_rq, mp1);
5085 	}
5086 done:
5087 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5088 }
5089 
5090 /*
5091  * Attach ancillary data to a received TCP segments for the
5092  * ancillary pieces requested by the application that are
5093  * different than they were in the previous data segment.
5094  *
5095  * Save the "current" values once memory allocation is ok so that
5096  * when memory allocation fails we can just wait for the next data segment.
5097  */
5098 static mblk_t *
5099 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5100     ip_recv_attr_t *ira)
5101 {
5102 	struct T_optdata_ind *todi;
5103 	int optlen;
5104 	uchar_t *optptr;
5105 	struct T_opthdr *toh;
5106 	crb_t addflag;	/* Which pieces to add */
5107 	mblk_t *mp1;
5108 	conn_t	*connp = tcp->tcp_connp;
5109 
5110 	optlen = 0;
5111 	addflag.crb_all = 0;
5112 
5113 	/* If app asked for TOS and it has changed ... */
5114 	if (connp->conn_recv_ancillary.crb_recvtos &&
5115 	    ipp->ipp_type_of_service != tcp->tcp_recvtos &&
5116 	    (ira->ira_flags & IRAF_IS_IPV4)) {
5117 		optlen += sizeof (struct T_opthdr) +
5118 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5119 		addflag.crb_recvtos = 1;
5120 	}
5121 	/* If app asked for pktinfo and the index has changed ... */
5122 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5123 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5124 		optlen += sizeof (struct T_opthdr) +
5125 		    sizeof (struct in6_pktinfo);
5126 		addflag.crb_ip_recvpktinfo = 1;
5127 	}
5128 	/* If app asked for hoplimit and it has changed ... */
5129 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5130 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5131 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5132 		addflag.crb_ipv6_recvhoplimit = 1;
5133 	}
5134 	/* If app asked for tclass and it has changed ... */
5135 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5136 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5137 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5138 		addflag.crb_ipv6_recvtclass = 1;
5139 	}
5140 
5141 	/*
5142 	 * If app asked for hop-by-hop headers and it has changed ...
5143 	 * For security labels, note that (1) security labels can't change on
5144 	 * a connected socket at all, (2) we're connected to at most one peer,
5145 	 * (3) if anything changes, then it must be some other extra option.
5146 	 */
5147 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5148 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5149 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5150 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5151 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5152 		addflag.crb_ipv6_recvhopopts = 1;
5153 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5154 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5155 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5156 			return (mp);
5157 	}
5158 	/* If app asked for dst headers before routing headers ... */
5159 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5160 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5161 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5162 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5163 		optlen += sizeof (struct T_opthdr) +
5164 		    ipp->ipp_rthdrdstoptslen;
5165 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5166 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5167 		    &tcp->tcp_rthdrdstoptslen,
5168 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5169 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5170 			return (mp);
5171 	}
5172 	/* If app asked for routing headers and it has changed ... */
5173 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5174 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5175 	    (ipp->ipp_fields & IPPF_RTHDR),
5176 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5177 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5178 		addflag.crb_ipv6_recvrthdr = 1;
5179 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5180 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5181 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5182 			return (mp);
5183 	}
5184 	/* If app asked for dest headers and it has changed ... */
5185 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5186 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5187 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5188 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5189 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5190 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5191 		addflag.crb_ipv6_recvdstopts = 1;
5192 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5193 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5194 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5195 			return (mp);
5196 	}
5197 
5198 	if (optlen == 0) {
5199 		/* Nothing to add */
5200 		return (mp);
5201 	}
5202 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5203 	if (mp1 == NULL) {
5204 		/*
5205 		 * Defer sending ancillary data until the next TCP segment
5206 		 * arrives.
5207 		 */
5208 		return (mp);
5209 	}
5210 	mp1->b_cont = mp;
5211 	mp = mp1;
5212 	mp->b_wptr += sizeof (*todi) + optlen;
5213 	mp->b_datap->db_type = M_PROTO;
5214 	todi = (struct T_optdata_ind *)mp->b_rptr;
5215 	todi->PRIM_type = T_OPTDATA_IND;
5216 	todi->DATA_flag = 1;	/* MORE data */
5217 	todi->OPT_length = optlen;
5218 	todi->OPT_offset = sizeof (*todi);
5219 	optptr = (uchar_t *)&todi[1];
5220 
5221 	/* If app asked for TOS and it has changed ... */
5222 	if (addflag.crb_recvtos) {
5223 		toh = (struct T_opthdr *)optptr;
5224 		toh->level = IPPROTO_IP;
5225 		toh->name = IP_RECVTOS;
5226 		toh->len = sizeof (*toh) +
5227 		    P2ROUNDUP(sizeof (uint8_t), __TPI_ALIGN_SIZE);
5228 		toh->status = 0;
5229 		optptr += sizeof (*toh);
5230 		*(uint8_t *)optptr = ipp->ipp_type_of_service;
5231 		optptr = (uchar_t *)toh + toh->len;
5232 		ASSERT(__TPI_TOPT_ISALIGNED(optptr));
5233 		/* Save as "last" value */
5234 		tcp->tcp_recvtos = ipp->ipp_type_of_service;
5235 	}
5236 
5237 	/*
5238 	 * If app asked for pktinfo and the index has changed ...
5239 	 * Note that the local address never changes for the connection.
5240 	 */
5241 	if (addflag.crb_ip_recvpktinfo) {
5242 		struct in6_pktinfo *pkti;
5243 		uint_t ifindex;
5244 
5245 		ifindex = ira->ira_ruifindex;
5246 		toh = (struct T_opthdr *)optptr;
5247 		toh->level = IPPROTO_IPV6;
5248 		toh->name = IPV6_PKTINFO;
5249 		toh->len = sizeof (*toh) + sizeof (*pkti);
5250 		toh->status = 0;
5251 		optptr += sizeof (*toh);
5252 		pkti = (struct in6_pktinfo *)optptr;
5253 		pkti->ipi6_addr = connp->conn_laddr_v6;
5254 		pkti->ipi6_ifindex = ifindex;
5255 		optptr += sizeof (*pkti);
5256 		ASSERT(OK_32PTR(optptr));
5257 		/* Save as "last" value */
5258 		tcp->tcp_recvifindex = ifindex;
5259 	}
5260 	/* If app asked for hoplimit and it has changed ... */
5261 	if (addflag.crb_ipv6_recvhoplimit) {
5262 		toh = (struct T_opthdr *)optptr;
5263 		toh->level = IPPROTO_IPV6;
5264 		toh->name = IPV6_HOPLIMIT;
5265 		toh->len = sizeof (*toh) + sizeof (uint_t);
5266 		toh->status = 0;
5267 		optptr += sizeof (*toh);
5268 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5269 		optptr += sizeof (uint_t);
5270 		ASSERT(OK_32PTR(optptr));
5271 		/* Save as "last" value */
5272 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5273 	}
5274 	/* If app asked for tclass and it has changed ... */
5275 	if (addflag.crb_ipv6_recvtclass) {
5276 		toh = (struct T_opthdr *)optptr;
5277 		toh->level = IPPROTO_IPV6;
5278 		toh->name = IPV6_TCLASS;
5279 		toh->len = sizeof (*toh) + sizeof (uint_t);
5280 		toh->status = 0;
5281 		optptr += sizeof (*toh);
5282 		*(uint_t *)optptr = ipp->ipp_tclass;
5283 		optptr += sizeof (uint_t);
5284 		ASSERT(OK_32PTR(optptr));
5285 		/* Save as "last" value */
5286 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5287 	}
5288 	if (addflag.crb_ipv6_recvhopopts) {
5289 		toh = (struct T_opthdr *)optptr;
5290 		toh->level = IPPROTO_IPV6;
5291 		toh->name = IPV6_HOPOPTS;
5292 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5293 		toh->status = 0;
5294 		optptr += sizeof (*toh);
5295 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5296 		optptr += ipp->ipp_hopoptslen;
5297 		ASSERT(OK_32PTR(optptr));
5298 		/* Save as last value */
5299 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5300 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5301 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5302 	}
5303 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5304 		toh = (struct T_opthdr *)optptr;
5305 		toh->level = IPPROTO_IPV6;
5306 		toh->name = IPV6_RTHDRDSTOPTS;
5307 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5308 		toh->status = 0;
5309 		optptr += sizeof (*toh);
5310 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5311 		optptr += ipp->ipp_rthdrdstoptslen;
5312 		ASSERT(OK_32PTR(optptr));
5313 		/* Save as last value */
5314 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5315 		    &tcp->tcp_rthdrdstoptslen,
5316 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5317 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5318 	}
5319 	if (addflag.crb_ipv6_recvrthdr) {
5320 		toh = (struct T_opthdr *)optptr;
5321 		toh->level = IPPROTO_IPV6;
5322 		toh->name = IPV6_RTHDR;
5323 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5324 		toh->status = 0;
5325 		optptr += sizeof (*toh);
5326 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5327 		optptr += ipp->ipp_rthdrlen;
5328 		ASSERT(OK_32PTR(optptr));
5329 		/* Save as last value */
5330 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5331 		    (ipp->ipp_fields & IPPF_RTHDR),
5332 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5333 	}
5334 	if (addflag.crb_ipv6_recvdstopts) {
5335 		toh = (struct T_opthdr *)optptr;
5336 		toh->level = IPPROTO_IPV6;
5337 		toh->name = IPV6_DSTOPTS;
5338 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5339 		toh->status = 0;
5340 		optptr += sizeof (*toh);
5341 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5342 		optptr += ipp->ipp_dstoptslen;
5343 		ASSERT(OK_32PTR(optptr));
5344 		/* Save as last value */
5345 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5346 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5347 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5348 	}
5349 	ASSERT(optptr == mp->b_wptr);
5350 	return (mp);
5351 }
5352 
5353 /* The minimum of smoothed mean deviation in RTO calculation (nsec). */
5354 #define	TCP_SD_MIN	400000000
5355 
5356 /*
5357  * Set RTO for this connection based on a new round-trip time measurement.
5358  * The formula is from Jacobson and Karels' "Congestion Avoidance and Control"
5359  * in SIGCOMM '88.  The variable names are the same as those in Appendix A.2
5360  * of that paper.
5361  *
5362  * m = new measurement
5363  * sa = smoothed RTT average (8 * average estimates).
5364  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5365  */
5366 static void
5367 tcp_set_rto(tcp_t *tcp, hrtime_t rtt)
5368 {
5369 	hrtime_t m = rtt;
5370 	hrtime_t sa = tcp->tcp_rtt_sa;
5371 	hrtime_t sv = tcp->tcp_rtt_sd;
5372 	tcp_stack_t *tcps = tcp->tcp_tcps;
5373 
5374 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5375 	tcp->tcp_rtt_update++;
5376 	tcp->tcp_rtt_sum += m;
5377 	tcp->tcp_rtt_cnt++;
5378 
5379 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5380 	if (sa != 0) {
5381 		/*
5382 		 * Update average estimator (see section 2.3 of RFC6298):
5383 		 *	SRTT = 7/8 SRTT + 1/8 rtt
5384 		 *
5385 		 * We maintain tcp_rtt_sa as 8 * SRTT, so this reduces to:
5386 		 *	tcp_rtt_sa = 7 * SRTT + rtt
5387 		 *	tcp_rtt_sa = 7 * (tcp_rtt_sa / 8) + rtt
5388 		 *	tcp_rtt_sa = tcp_rtt_sa - (tcp_rtt_sa / 8) + rtt
5389 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 8))
5390 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa / 2^3))
5391 		 *	tcp_rtt_sa = tcp_rtt_sa + (rtt - (tcp_rtt_sa >> 3))
5392 		 *
5393 		 * (rtt - tcp_rtt_sa / 8) is simply the difference
5394 		 * between the new rtt measurement and the existing smoothed
5395 		 * RTT average. This is referred to as "Error" in subsequent
5396 		 * calculations.
5397 		 */
5398 
5399 		/* m is now Error. */
5400 		m -= sa >> 3;
5401 		if ((sa += m) <= 0) {
5402 			/*
5403 			 * Don't allow the smoothed average to be negative.
5404 			 * We use 0 to denote reinitialization of the
5405 			 * variables.
5406 			 */
5407 			sa = 1;
5408 		}
5409 
5410 		/*
5411 		 * Update deviation estimator:
5412 		 *  mdev = 3/4 mdev + 1/4 abs(Error)
5413 		 *
5414 		 * We maintain tcp_rtt_sd as 4 * mdev, so this reduces to:
5415 		 *  tcp_rtt_sd = 3 * mdev + abs(Error)
5416 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 4) + abs(Error)
5417 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd / 2^2) + abs(Error)
5418 		 *  tcp_rtt_sd = tcp_rtt_sd - (tcp_rtt_sd >> 2) + abs(Error)
5419 		 */
5420 		if (m < 0)
5421 			m = -m;
5422 		m -= sv >> 2;
5423 		sv += m;
5424 	} else {
5425 		/*
5426 		 * This follows BSD's implementation.  So the reinitialized
5427 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5428 		 * link is bandwidth dominated, doubling the window size
5429 		 * during slow start means doubling the RTT.  We want to be
5430 		 * more conservative when we reinitialize our estimates.  3
5431 		 * is just a convenient number.
5432 		 */
5433 		sa = m << 3;
5434 		sv = m << 1;
5435 	}
5436 	if (sv < TCP_SD_MIN) {
5437 		/*
5438 		 * Since a receiver doesn't delay its ACKs during a long run of
5439 		 * segments, sa may not have captured the effect of delayed ACK
5440 		 * timeouts on the RTT.  To make sure we always account for the
5441 		 * possible delay (and avoid the unnecessary retransmission),
5442 		 * TCP_SD_MIN is set to 400ms, twice the delayed ACK timeout of
5443 		 * 200ms on older SunOS/BSD systems and modern Windows systems
5444 		 * (as of 2019).  This means that the minimum possible mean
5445 		 * deviation is 100 ms.
5446 		 */
5447 		sv = TCP_SD_MIN;
5448 	}
5449 	tcp->tcp_rtt_sa = sa;
5450 	tcp->tcp_rtt_sd = sv;
5451 
5452 	tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
5453 
5454 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5455 	tcp->tcp_timer_backoff = 0;
5456 }
5457 
5458 /*
5459  * On a labeled system we have some protocols above TCP, such as RPC, which
5460  * appear to assume that every mblk in a chain has a db_credp.
5461  */
5462 static void
5463 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5464 {
5465 	ASSERT(is_system_labeled());
5466 	ASSERT(ira->ira_cred != NULL);
5467 
5468 	while (mp != NULL) {
5469 		mblk_setcred(mp, ira->ira_cred, NOPID);
5470 		mp = mp->b_cont;
5471 	}
5472 }
5473 
5474 uint_t
5475 tcp_rwnd_reopen(tcp_t *tcp)
5476 {
5477 	uint_t ret = 0;
5478 	uint_t thwin;
5479 	conn_t *connp = tcp->tcp_connp;
5480 
5481 	/* Learn the latest rwnd information that we sent to the other side. */
5482 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5483 	    << tcp->tcp_rcv_ws;
5484 	/* This is peer's calculated send window (our receive window). */
5485 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5486 	/*
5487 	 * Increase the receive window to max.  But we need to do receiver
5488 	 * SWS avoidance.  This means that we need to check the increase of
5489 	 * of receive window is at least 1 MSS.
5490 	 */
5491 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5492 		/*
5493 		 * If the window that the other side knows is less than max
5494 		 * deferred acks segments, send an update immediately.
5495 		 */
5496 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5497 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5498 			ret = TH_ACK_NEEDED;
5499 		}
5500 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5501 	}
5502 	return (ret);
5503 }
5504 
5505 /*
5506  * Handle a packet that has been reclassified by TCP.
5507  * This function drops the ref on connp that the caller had.
5508  */
5509 void
5510 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5511 {
5512 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5513 
5514 	if (connp->conn_incoming_ifindex != 0 &&
5515 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5516 		freemsg(mp);
5517 		CONN_DEC_REF(connp);
5518 		return;
5519 	}
5520 
5521 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5522 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5523 		ip6_t *ip6h;
5524 		ipha_t *ipha;
5525 
5526 		if (ira->ira_flags & IRAF_IS_IPV4) {
5527 			ipha = (ipha_t *)mp->b_rptr;
5528 			ip6h = NULL;
5529 		} else {
5530 			ipha = NULL;
5531 			ip6h = (ip6_t *)mp->b_rptr;
5532 		}
5533 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5534 		if (mp == NULL) {
5535 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5536 			/* Note that mp is NULL */
5537 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5538 			CONN_DEC_REF(connp);
5539 			return;
5540 		}
5541 	}
5542 
5543 	if (IPCL_IS_TCP(connp)) {
5544 		/*
5545 		 * do not drain, certain use cases can blow
5546 		 * the stack
5547 		 */
5548 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5549 		    connp->conn_recv, connp, ira,
5550 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5551 	} else {
5552 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5553 		(connp->conn_recv)(connp, mp, NULL,
5554 		    ira);
5555 		CONN_DEC_REF(connp);
5556 	}
5557 
5558 }
5559 
5560 /* ARGSUSED */
5561 static void
5562 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5563 {
5564 	conn_t	*connp = (conn_t *)arg;
5565 	tcp_t	*tcp = connp->conn_tcp;
5566 	queue_t	*q = connp->conn_rq;
5567 
5568 	ASSERT(!IPCL_IS_NONSTR(connp));
5569 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5570 	tcp->tcp_rsrv_mp = mp;
5571 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5572 
5573 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5574 		return;
5575 	}
5576 
5577 	if (tcp->tcp_fused) {
5578 		tcp_fuse_backenable(tcp);
5579 		return;
5580 	}
5581 
5582 	if (canputnext(q)) {
5583 		/* Not flow-controlled, open rwnd */
5584 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5585 
5586 		/*
5587 		 * Send back a window update immediately if TCP is above
5588 		 * ESTABLISHED state and the increase of the rcv window
5589 		 * that the other side knows is at least 1 MSS after flow
5590 		 * control is lifted.
5591 		 */
5592 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5593 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5594 			tcp_xmit_ctl(NULL, tcp,
5595 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5596 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5597 		}
5598 	}
5599 }
5600 
5601 /*
5602  * The read side service routine is called mostly when we get back-enabled as a
5603  * result of flow control relief.  Since we don't actually queue anything in
5604  * TCP, we have no data to send out of here.  What we do is clear the receive
5605  * window, and send out a window update.
5606  */
5607 int
5608 tcp_rsrv(queue_t *q)
5609 {
5610 	conn_t		*connp = Q_TO_CONN(q);
5611 	tcp_t		*tcp = connp->conn_tcp;
5612 	mblk_t		*mp;
5613 
5614 	/* No code does a putq on the read side */
5615 	ASSERT(q->q_first == NULL);
5616 
5617 	/*
5618 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5619 	 * been run.  So just return.
5620 	 */
5621 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5622 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5623 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5624 		return (0);
5625 	}
5626 	tcp->tcp_rsrv_mp = NULL;
5627 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5628 
5629 	CONN_INC_REF(connp);
5630 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5631 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5632 	return (0);
5633 }
5634 
5635 /* At minimum we need 8 bytes in the TCP header for the lookup */
5636 #define	ICMP_MIN_TCP_HDR	8
5637 
5638 /*
5639  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5640  * passed up by IP. The message is always received on the correct tcp_t.
5641  * Assumes that IP has pulled up everything up to and including the ICMP header.
5642  */
5643 /* ARGSUSED2 */
5644 void
5645 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5646 {
5647 	conn_t		*connp = (conn_t *)arg1;
5648 	icmph_t		*icmph;
5649 	ipha_t		*ipha;
5650 	int		iph_hdr_length;
5651 	tcpha_t		*tcpha;
5652 	uint32_t	seg_seq;
5653 	tcp_t		*tcp = connp->conn_tcp;
5654 
5655 	/* Assume IP provides aligned packets */
5656 	ASSERT(OK_32PTR(mp->b_rptr));
5657 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5658 
5659 	/*
5660 	 * It's possible we have a closed, but not yet destroyed, TCP
5661 	 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5662 	 * in the closed state, so don't take any chances and drop the packet.
5663 	 */
5664 	if (tcp->tcp_state == TCPS_CLOSED) {
5665 		freemsg(mp);
5666 		return;
5667 	}
5668 
5669 	/*
5670 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5671 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5672 	 */
5673 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5674 		tcp_icmp_error_ipv6(tcp, mp, ira);
5675 		return;
5676 	}
5677 
5678 	/* Skip past the outer IP and ICMP headers */
5679 	iph_hdr_length = ira->ira_ip_hdr_length;
5680 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5681 	/*
5682 	 * If we don't have the correct outer IP header length
5683 	 * or if we don't have a complete inner IP header
5684 	 * drop it.
5685 	 */
5686 	if (iph_hdr_length < sizeof (ipha_t) ||
5687 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5688 noticmpv4:
5689 		freemsg(mp);
5690 		return;
5691 	}
5692 	ipha = (ipha_t *)&icmph[1];
5693 
5694 	/* Skip past the inner IP and find the ULP header */
5695 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5696 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5697 	/*
5698 	 * If we don't have the correct inner IP header length or if the ULP
5699 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5700 	 * bytes of TCP header, drop it.
5701 	 */
5702 	if (iph_hdr_length < sizeof (ipha_t) ||
5703 	    ipha->ipha_protocol != IPPROTO_TCP ||
5704 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5705 		goto noticmpv4;
5706 	}
5707 
5708 	seg_seq = ntohl(tcpha->tha_seq);
5709 	switch (icmph->icmph_type) {
5710 	case ICMP_DEST_UNREACHABLE:
5711 		switch (icmph->icmph_code) {
5712 		case ICMP_FRAGMENTATION_NEEDED:
5713 			/*
5714 			 * Update Path MTU, then try to send something out.
5715 			 */
5716 			tcp_update_pmtu(tcp, B_TRUE);
5717 			tcp_rexmit_after_error(tcp);
5718 			break;
5719 		case ICMP_PORT_UNREACHABLE:
5720 		case ICMP_PROTOCOL_UNREACHABLE:
5721 			switch (tcp->tcp_state) {
5722 			case TCPS_SYN_SENT:
5723 			case TCPS_SYN_RCVD:
5724 				/*
5725 				 * ICMP can snipe away incipient
5726 				 * TCP connections as long as
5727 				 * seq number is same as initial
5728 				 * send seq number.
5729 				 */
5730 				if (seg_seq == tcp->tcp_iss) {
5731 					(void) tcp_clean_death(tcp,
5732 					    ECONNREFUSED);
5733 				}
5734 				break;
5735 			}
5736 			break;
5737 		case ICMP_HOST_UNREACHABLE:
5738 		case ICMP_NET_UNREACHABLE:
5739 			/* Record the error in case we finally time out. */
5740 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5741 				tcp->tcp_client_errno = EHOSTUNREACH;
5742 			else
5743 				tcp->tcp_client_errno = ENETUNREACH;
5744 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5745 				if (tcp->tcp_listener != NULL &&
5746 				    tcp->tcp_listener->tcp_syn_defense) {
5747 					/*
5748 					 * Ditch the half-open connection if we
5749 					 * suspect a SYN attack is under way.
5750 					 */
5751 					(void) tcp_clean_death(tcp,
5752 					    tcp->tcp_client_errno);
5753 				}
5754 			}
5755 			break;
5756 		default:
5757 			break;
5758 		}
5759 		break;
5760 	case ICMP_SOURCE_QUENCH: {
5761 		/*
5762 		 * use a global boolean to control
5763 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5764 		 * The default is false.
5765 		 */
5766 		if (tcp_icmp_source_quench) {
5767 			/*
5768 			 * Reduce the sending rate as if we got a
5769 			 * retransmit timeout
5770 			 */
5771 			uint32_t npkt;
5772 
5773 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5774 			    tcp->tcp_mss;
5775 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5776 
5777 			DTRACE_PROBE3(cwnd__source__quench, tcp_t *, tcp,
5778 			    uint32_t, tcp->tcp_cwnd,
5779 			    uint32_t, tcp->tcp_mss);
5780 			tcp->tcp_cwnd = tcp->tcp_mss;
5781 			tcp->tcp_cwnd_cnt = 0;
5782 		}
5783 		break;
5784 	}
5785 	}
5786 	freemsg(mp);
5787 }
5788 
5789 /*
5790  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5791  * error messages passed up by IP.
5792  * Assumes that IP has pulled up all the extension headers as well
5793  * as the ICMPv6 header.
5794  */
5795 static void
5796 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5797 {
5798 	icmp6_t		*icmp6;
5799 	ip6_t		*ip6h;
5800 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5801 	tcpha_t		*tcpha;
5802 	uint8_t		*nexthdrp;
5803 	uint32_t	seg_seq;
5804 
5805 	/*
5806 	 * Verify that we have a complete IP header.
5807 	 */
5808 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5809 
5810 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5811 	ip6h = (ip6_t *)&icmp6[1];
5812 	/*
5813 	 * Verify if we have a complete ICMP and inner IP header.
5814 	 */
5815 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5816 noticmpv6:
5817 		freemsg(mp);
5818 		return;
5819 	}
5820 
5821 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5822 		goto noticmpv6;
5823 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5824 	/*
5825 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5826 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5827 	 * packet.
5828 	 */
5829 	if ((*nexthdrp != IPPROTO_TCP) ||
5830 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5831 		goto noticmpv6;
5832 	}
5833 
5834 	seg_seq = ntohl(tcpha->tha_seq);
5835 	switch (icmp6->icmp6_type) {
5836 	case ICMP6_PACKET_TOO_BIG:
5837 		/*
5838 		 * Update Path MTU, then try to send something out.
5839 		 */
5840 		tcp_update_pmtu(tcp, B_TRUE);
5841 		tcp_rexmit_after_error(tcp);
5842 		break;
5843 	case ICMP6_DST_UNREACH:
5844 		switch (icmp6->icmp6_code) {
5845 		case ICMP6_DST_UNREACH_NOPORT:
5846 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5847 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5848 			    (seg_seq == tcp->tcp_iss)) {
5849 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5850 			}
5851 			break;
5852 		case ICMP6_DST_UNREACH_ADMIN:
5853 		case ICMP6_DST_UNREACH_NOROUTE:
5854 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5855 		case ICMP6_DST_UNREACH_ADDR:
5856 			/* Record the error in case we finally time out. */
5857 			tcp->tcp_client_errno = EHOSTUNREACH;
5858 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5859 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5860 			    (seg_seq == tcp->tcp_iss)) {
5861 				if (tcp->tcp_listener != NULL &&
5862 				    tcp->tcp_listener->tcp_syn_defense) {
5863 					/*
5864 					 * Ditch the half-open connection if we
5865 					 * suspect a SYN attack is under way.
5866 					 */
5867 					(void) tcp_clean_death(tcp,
5868 					    tcp->tcp_client_errno);
5869 				}
5870 			}
5871 
5872 
5873 			break;
5874 		default:
5875 			break;
5876 		}
5877 		break;
5878 	case ICMP6_PARAM_PROB:
5879 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5880 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5881 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5882 		    (uchar_t *)nexthdrp) {
5883 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5884 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5885 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5886 			}
5887 			break;
5888 		}
5889 		break;
5890 
5891 	case ICMP6_TIME_EXCEEDED:
5892 	default:
5893 		break;
5894 	}
5895 	freemsg(mp);
5896 }
5897 
5898 /*
5899  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5900  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5901  *
5902  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5903  * error messages received by IP. The message is always received on the correct
5904  * tcp_t.
5905  */
5906 /* ARGSUSED */
5907 boolean_t
5908 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5909     ip_recv_attr_t *ira)
5910 {
5911 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5912 	uint32_t	seq = ntohl(tcpha->tha_seq);
5913 	tcp_t		*tcp = connp->conn_tcp;
5914 
5915 	/*
5916 	 * TCP sequence number contained in payload of the ICMP error message
5917 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5918 	 * the message is either a stale ICMP error, or an attack from the
5919 	 * network. Fail the verification.
5920 	 */
5921 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5922 		return (B_FALSE);
5923 
5924 	/* For "too big" we also check the ignore flag */
5925 	if (ira->ira_flags & IRAF_IS_IPV4) {
5926 		ASSERT(icmph != NULL);
5927 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5928 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5929 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5930 			return (B_FALSE);
5931 	} else {
5932 		ASSERT(icmp6 != NULL);
5933 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5934 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5935 			return (B_FALSE);
5936 	}
5937 	return (B_TRUE);
5938 }
5939