1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/strsun.h> 30 #include <sys/strsubr.h> 31 #include <sys/stropts.h> 32 #include <sys/strlog.h> 33 #define _SUN_TPI_VERSION 2 34 #include <sys/tihdr.h> 35 #include <sys/timod.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/cmn_err.h> 41 #include <sys/debug.h> 42 #include <sys/sdt.h> 43 #include <sys/vtrace.h> 44 #include <sys/kmem.h> 45 #include <sys/ethernet.h> 46 #include <sys/cpuvar.h> 47 #include <sys/dlpi.h> 48 #include <sys/pattr.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/zone.h> 52 #include <sys/sunldi.h> 53 54 #include <sys/errno.h> 55 #include <sys/signal.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/sockio.h> 59 #include <sys/isa_defs.h> 60 #include <sys/md5.h> 61 #include <sys/random.h> 62 #include <sys/uio.h> 63 #include <sys/systm.h> 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <netinet/ip6.h> 67 #include <netinet/icmp6.h> 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <inet/ipsec_impl.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip_impl.h> 75 #include <inet/ip6.h> 76 #include <inet/ip_ndp.h> 77 #include <inet/proto_set.h> 78 #include <inet/mib2.h> 79 #include <inet/optcom.h> 80 #include <inet/snmpcom.h> 81 #include <inet/kstatcom.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/tcp_cluster.h> 85 #include <inet/udp_impl.h> 86 #include <net/pfkeyv2.h> 87 #include <inet/ipdrop.h> 88 89 #include <inet/ipclassifier.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_if.h> 93 #include <inet/ipp_common.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_netinfo.h> 96 #include <sys/squeue_impl.h> 97 #include <sys/squeue.h> 98 #include <sys/tsol/label.h> 99 #include <sys/tsol/tnet.h> 100 #include <rpc/pmap_prot.h> 101 #include <sys/callo.h> 102 103 /* 104 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 105 * 106 * (Read the detailed design doc in PSARC case directory) 107 * 108 * The entire tcp state is contained in tcp_t and conn_t structure 109 * which are allocated in tandem using ipcl_conn_create() and passing 110 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 111 * the references on the tcp_t. The tcp_t structure is never compressed 112 * and packets always land on the correct TCP perimeter from the time 113 * eager is created till the time tcp_t dies (as such the old mentat 114 * TCP global queue is not used for detached state and no IPSEC checking 115 * is required). The global queue is still allocated to send out resets 116 * for connection which have no listeners and IP directly calls 117 * tcp_xmit_listeners_reset() which does any policy check. 118 * 119 * Protection and Synchronisation mechanism: 120 * 121 * The tcp data structure does not use any kind of lock for protecting 122 * its state but instead uses 'squeues' for mutual exclusion from various 123 * read and write side threads. To access a tcp member, the thread should 124 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 125 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 126 * can pass any tcp function having prototype of edesc_t as argument 127 * (different from traditional STREAMs model where packets come in only 128 * designated entry points). The list of functions that can be directly 129 * called via squeue are listed before the usual function prototype. 130 * 131 * Referencing: 132 * 133 * TCP is MT-Hot and we use a reference based scheme to make sure that the 134 * tcp structure doesn't disappear when its needed. When the application 135 * creates an outgoing connection or accepts an incoming connection, we 136 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 137 * The IP reference is just a symbolic reference since ip_tcpclose() 138 * looks at tcp structure after tcp_close_output() returns which could 139 * have dropped the last TCP reference. So as long as the connection is 140 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 141 * conn_t. The classifier puts its own reference when the connection is 142 * inserted in listen or connected hash. Anytime a thread needs to enter 143 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 144 * on write side or by doing a classify on read side and then puts a 145 * reference on the conn before doing squeue_enter/tryenter/fill. For 146 * read side, the classifier itself puts the reference under fanout lock 147 * to make sure that tcp can't disappear before it gets processed. The 148 * squeue will drop this reference automatically so the called function 149 * doesn't have to do a DEC_REF. 150 * 151 * Opening a new connection: 152 * 153 * The outgoing connection open is pretty simple. tcp_open() does the 154 * work in creating the conn/tcp structure and initializing it. The 155 * squeue assignment is done based on the CPU the application 156 * is running on. So for outbound connections, processing is always done 157 * on application CPU which might be different from the incoming CPU 158 * being interrupted by the NIC. An optimal way would be to figure out 159 * the NIC <-> CPU binding at listen time, and assign the outgoing 160 * connection to the squeue attached to the CPU that will be interrupted 161 * for incoming packets (we know the NIC based on the bind IP address). 162 * This might seem like a problem if more data is going out but the 163 * fact is that in most cases the transmit is ACK driven transmit where 164 * the outgoing data normally sits on TCP's xmit queue waiting to be 165 * transmitted. 166 * 167 * Accepting a connection: 168 * 169 * This is a more interesting case because of various races involved in 170 * establishing a eager in its own perimeter. Read the meta comment on 171 * top of tcp_input_listener(). But briefly, the squeue is picked by 172 * ip_fanout based on the ring or the sender (if loopback). 173 * 174 * Closing a connection: 175 * 176 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 177 * via squeue to do the close and mark the tcp as detached if the connection 178 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 179 * reference but tcp_close() drop IP's reference always. So if tcp was 180 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 181 * and 1 because it is in classifier's connected hash. This is the condition 182 * we use to determine that its OK to clean up the tcp outside of squeue 183 * when time wait expires (check the ref under fanout and conn_lock and 184 * if it is 2, remove it from fanout hash and kill it). 185 * 186 * Although close just drops the necessary references and marks the 187 * tcp_detached state, tcp_close needs to know the tcp_detached has been 188 * set (under squeue) before letting the STREAM go away (because a 189 * inbound packet might attempt to go up the STREAM while the close 190 * has happened and tcp_detached is not set). So a special lock and 191 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 192 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 193 * tcp_detached. 194 * 195 * Special provisions and fast paths: 196 * 197 * We make special provisions for sockfs by marking tcp_issocket 198 * whenever we have only sockfs on top of TCP. This allows us to skip 199 * putting the tcp in acceptor hash since a sockfs listener can never 200 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 201 * since eager has already been allocated and the accept now happens 202 * on acceptor STREAM. There is a big blob of comment on top of 203 * tcp_input_listener explaining the new accept. When socket is POP'd, 204 * sockfs sends us an ioctl to mark the fact and we go back to old 205 * behaviour. Once tcp_issocket is unset, its never set for the 206 * life of that connection. 207 * 208 * IPsec notes : 209 * 210 * Since a packet is always executed on the correct TCP perimeter 211 * all IPsec processing is defered to IP including checking new 212 * connections and setting IPSEC policies for new connection. The 213 * only exception is tcp_xmit_listeners_reset() which is called 214 * directly from IP and needs to policy check to see if TH_RST 215 * can be sent out. 216 */ 217 218 /* 219 * Values for squeue switch: 220 * 1: SQ_NODRAIN 221 * 2: SQ_PROCESS 222 * 3: SQ_FILL 223 */ 224 int tcp_squeue_wput = 2; /* /etc/systems */ 225 int tcp_squeue_flag; 226 227 /* 228 * To prevent memory hog, limit the number of entries in tcp_free_list 229 * to 1% of available memory / number of cpus 230 */ 231 uint_t tcp_free_list_max_cnt = 0; 232 233 #define TCP_XMIT_LOWATER 4096 234 #define TCP_XMIT_HIWATER 49152 235 #define TCP_RECV_LOWATER 2048 236 #define TCP_RECV_HIWATER 128000 237 238 #define TIDUSZ 4096 /* transport interface data unit size */ 239 240 /* 241 * Size of acceptor hash list. It has to be a power of 2 for hashing. 242 */ 243 #define TCP_ACCEPTOR_FANOUT_SIZE 256 244 245 #ifdef _ILP32 246 #define TCP_ACCEPTOR_HASH(accid) \ 247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 248 #else 249 #define TCP_ACCEPTOR_HASH(accid) \ 250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 251 #endif /* _ILP32 */ 252 253 /* 254 * Minimum number of connections which can be created per listener. Used 255 * when the listener connection count is in effect. 256 */ 257 static uint32_t tcp_min_conn_listener = 2; 258 259 uint32_t tcp_early_abort = 30; 260 261 /* TCP Timer control structure */ 262 typedef struct tcpt_s { 263 pfv_t tcpt_pfv; /* The routine we are to call */ 264 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 265 } tcpt_t; 266 267 /* 268 * Functions called directly via squeue having a prototype of edesc_t. 269 */ 270 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *ira); 274 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 275 ip_recv_attr_t *dummy); 276 277 278 /* Prototype for TCP functions */ 279 static void tcp_random_init(void); 280 int tcp_random(void); 281 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 282 in_port_t dstport, uint_t srcid); 283 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 284 in_port_t dstport, uint32_t flowinfo, 285 uint_t srcid, uint32_t scope_id); 286 static void tcp_iss_init(tcp_t *tcp); 287 static void tcp_reinit(tcp_t *tcp); 288 static void tcp_reinit_values(tcp_t *tcp); 289 290 static void tcp_wsrv(queue_t *q); 291 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 292 static void tcp_update_zcopy(tcp_t *tcp); 293 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 294 ixa_notify_arg_t); 295 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 296 static void tcp_stack_fini(netstackid_t stackid, void *arg); 297 298 static int tcp_squeue_switch(int); 299 300 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 301 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 302 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 303 304 static void tcp_squeue_add(squeue_t *); 305 306 struct module_info tcp_rinfo = { 307 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 308 }; 309 310 static struct module_info tcp_winfo = { 311 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 312 }; 313 314 /* 315 * Entry points for TCP as a device. The normal case which supports 316 * the TCP functionality. 317 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 318 */ 319 struct qinit tcp_rinitv4 = { 320 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 321 }; 322 323 struct qinit tcp_rinitv6 = { 324 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 325 }; 326 327 struct qinit tcp_winit = { 328 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 329 }; 330 331 /* Initial entry point for TCP in socket mode. */ 332 struct qinit tcp_sock_winit = { 333 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 334 }; 335 336 /* TCP entry point during fallback */ 337 struct qinit tcp_fallback_sock_winit = { 338 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 339 }; 340 341 /* 342 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 343 * an accept. Avoid allocating data structures since eager has already 344 * been created. 345 */ 346 struct qinit tcp_acceptor_rinit = { 347 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 348 }; 349 350 struct qinit tcp_acceptor_winit = { 351 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 352 }; 353 354 /* For AF_INET aka /dev/tcp */ 355 struct streamtab tcpinfov4 = { 356 &tcp_rinitv4, &tcp_winit 357 }; 358 359 /* For AF_INET6 aka /dev/tcp6 */ 360 struct streamtab tcpinfov6 = { 361 &tcp_rinitv6, &tcp_winit 362 }; 363 364 /* 365 * Following assumes TPI alignment requirements stay along 32 bit 366 * boundaries 367 */ 368 #define ROUNDUP32(x) \ 369 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 370 371 /* Template for response to info request. */ 372 struct T_info_ack tcp_g_t_info_ack = { 373 T_INFO_ACK, /* PRIM_type */ 374 0, /* TSDU_size */ 375 T_INFINITE, /* ETSDU_size */ 376 T_INVALID, /* CDATA_size */ 377 T_INVALID, /* DDATA_size */ 378 sizeof (sin_t), /* ADDR_size */ 379 0, /* OPT_size - not initialized here */ 380 TIDUSZ, /* TIDU_size */ 381 T_COTS_ORD, /* SERV_type */ 382 TCPS_IDLE, /* CURRENT_state */ 383 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 384 }; 385 386 struct T_info_ack tcp_g_t_info_ack_v6 = { 387 T_INFO_ACK, /* PRIM_type */ 388 0, /* TSDU_size */ 389 T_INFINITE, /* ETSDU_size */ 390 T_INVALID, /* CDATA_size */ 391 T_INVALID, /* DDATA_size */ 392 sizeof (sin6_t), /* ADDR_size */ 393 0, /* OPT_size - not initialized here */ 394 TIDUSZ, /* TIDU_size */ 395 T_COTS_ORD, /* SERV_type */ 396 TCPS_IDLE, /* CURRENT_state */ 397 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 398 }; 399 400 /* 401 * TCP tunables related declarations. Definitions are in tcp_tunables.c 402 */ 403 extern mod_prop_info_t tcp_propinfo_tbl[]; 404 extern int tcp_propinfo_count; 405 406 #define IS_VMLOANED_MBLK(mp) \ 407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 408 409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 410 411 /* 412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 413 * tunable settable via NDD. Otherwise, the per-connection behavior is 414 * determined dynamically during tcp_set_destination(), which is the default. 415 */ 416 boolean_t tcp_static_maxpsz = B_FALSE; 417 418 /* 419 * If the receive buffer size is changed, this function is called to update 420 * the upper socket layer on the new delayed receive wake up threshold. 421 */ 422 static void 423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 424 { 425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 426 427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 428 conn_t *connp = tcp->tcp_connp; 429 struct sock_proto_props sopp; 430 431 /* 432 * only increase rcvthresh upto default_threshold 433 */ 434 if (new_rcvthresh > default_threshold) 435 new_rcvthresh = default_threshold; 436 437 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 438 sopp.sopp_rcvthresh = new_rcvthresh; 439 440 (*connp->conn_upcalls->su_set_proto_props) 441 (connp->conn_upper_handle, &sopp); 442 } 443 } 444 445 /* 446 * Figure out the value of window scale opton. Note that the rwnd is 447 * ASSUMED to be rounded up to the nearest MSS before the calculation. 448 * We cannot find the scale value and then do a round up of tcp_rwnd 449 * because the scale value may not be correct after that. 450 * 451 * Set the compiler flag to make this function inline. 452 */ 453 void 454 tcp_set_ws_value(tcp_t *tcp) 455 { 456 int i; 457 uint32_t rwnd = tcp->tcp_rwnd; 458 459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 460 i++, rwnd >>= 1) 461 ; 462 tcp->tcp_rcv_ws = i; 463 } 464 465 /* 466 * Remove cached/latched IPsec references. 467 */ 468 void 469 tcp_ipsec_cleanup(tcp_t *tcp) 470 { 471 conn_t *connp = tcp->tcp_connp; 472 473 ASSERT(connp->conn_flags & IPCL_TCPCONN); 474 475 if (connp->conn_latch != NULL) { 476 IPLATCH_REFRELE(connp->conn_latch); 477 connp->conn_latch = NULL; 478 } 479 if (connp->conn_latch_in_policy != NULL) { 480 IPPOL_REFRELE(connp->conn_latch_in_policy); 481 connp->conn_latch_in_policy = NULL; 482 } 483 if (connp->conn_latch_in_action != NULL) { 484 IPACT_REFRELE(connp->conn_latch_in_action); 485 connp->conn_latch_in_action = NULL; 486 } 487 if (connp->conn_policy != NULL) { 488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 489 connp->conn_policy = NULL; 490 } 491 } 492 493 /* 494 * Cleaup before placing on free list. 495 * Disassociate from the netstack/tcp_stack_t since the freelist 496 * is per squeue and not per netstack. 497 */ 498 void 499 tcp_cleanup(tcp_t *tcp) 500 { 501 mblk_t *mp; 502 conn_t *connp = tcp->tcp_connp; 503 tcp_stack_t *tcps = tcp->tcp_tcps; 504 netstack_t *ns = tcps->tcps_netstack; 505 mblk_t *tcp_rsrv_mp; 506 507 tcp_bind_hash_remove(tcp); 508 509 /* Cleanup that which needs the netstack first */ 510 tcp_ipsec_cleanup(tcp); 511 ixa_cleanup(connp->conn_ixa); 512 513 if (connp->conn_ht_iphc != NULL) { 514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 515 connp->conn_ht_iphc = NULL; 516 connp->conn_ht_iphc_allocated = 0; 517 connp->conn_ht_iphc_len = 0; 518 connp->conn_ht_ulp = NULL; 519 connp->conn_ht_ulp_len = 0; 520 tcp->tcp_ipha = NULL; 521 tcp->tcp_ip6h = NULL; 522 tcp->tcp_tcpha = NULL; 523 } 524 525 /* We clear any IP_OPTIONS and extension headers */ 526 ip_pkt_free(&connp->conn_xmit_ipp); 527 528 tcp_free(tcp); 529 530 /* 531 * Since we will bzero the entire structure, we need to 532 * remove it and reinsert it in global hash list. We 533 * know the walkers can't get to this conn because we 534 * had set CONDEMNED flag earlier and checked reference 535 * under conn_lock so walker won't pick it and when we 536 * go the ipcl_globalhash_remove() below, no walker 537 * can get to it. 538 */ 539 ipcl_globalhash_remove(connp); 540 541 /* Save some state */ 542 mp = tcp->tcp_timercache; 543 544 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 545 546 if (connp->conn_cred != NULL) { 547 crfree(connp->conn_cred); 548 connp->conn_cred = NULL; 549 } 550 ipcl_conn_cleanup(connp); 551 connp->conn_flags = IPCL_TCPCONN; 552 553 /* 554 * Now it is safe to decrement the reference counts. 555 * This might be the last reference on the netstack 556 * in which case it will cause the freeing of the IP Instance. 557 */ 558 connp->conn_netstack = NULL; 559 connp->conn_ixa->ixa_ipst = NULL; 560 netstack_rele(ns); 561 ASSERT(tcps != NULL); 562 tcp->tcp_tcps = NULL; 563 564 bzero(tcp, sizeof (tcp_t)); 565 566 /* restore the state */ 567 tcp->tcp_timercache = mp; 568 569 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 570 571 tcp->tcp_connp = connp; 572 573 ASSERT(connp->conn_tcp == tcp); 574 ASSERT(connp->conn_flags & IPCL_TCPCONN); 575 connp->conn_state_flags = CONN_INCIPIENT; 576 ASSERT(connp->conn_proto == IPPROTO_TCP); 577 ASSERT(connp->conn_ref == 1); 578 } 579 580 /* 581 * Adapt to the information, such as rtt and rtt_sd, provided from the 582 * DCE and IRE maintained by IP. 583 * 584 * Checks for multicast and broadcast destination address. 585 * Returns zero if ok; an errno on failure. 586 * 587 * Note that the MSS calculation here is based on the info given in 588 * the DCE and IRE. We do not do any calculation based on TCP options. They 589 * will be handled in tcp_input_data() when TCP knows which options to use. 590 * 591 * Note on how TCP gets its parameters for a connection. 592 * 593 * When a tcp_t structure is allocated, it gets all the default parameters. 594 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 595 * spipe, rpipe, ... from the route metrics. Route metric overrides the 596 * default. 597 * 598 * An incoming SYN with a multicast or broadcast destination address is dropped 599 * in ip_fanout_v4/v6. 600 * 601 * An incoming SYN with a multicast or broadcast source address is always 602 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 603 * conn_connect. 604 * The same logic in tcp_set_destination also serves to 605 * reject an attempt to connect to a broadcast or multicast (destination) 606 * address. 607 */ 608 int 609 tcp_set_destination(tcp_t *tcp) 610 { 611 uint32_t mss_max; 612 uint32_t mss; 613 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 614 conn_t *connp = tcp->tcp_connp; 615 tcp_stack_t *tcps = tcp->tcp_tcps; 616 iulp_t uinfo; 617 int error; 618 uint32_t flags; 619 620 flags = IPDF_LSO | IPDF_ZCOPY; 621 /* 622 * Make sure we have a dce for the destination to avoid dce_ident 623 * contention for connected sockets. 624 */ 625 flags |= IPDF_UNIQUE_DCE; 626 627 if (!tcps->tcps_ignore_path_mtu) 628 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 629 630 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 631 mutex_enter(&connp->conn_lock); 632 error = conn_connect(connp, &uinfo, flags); 633 mutex_exit(&connp->conn_lock); 634 if (error != 0) 635 return (error); 636 637 error = tcp_build_hdrs(tcp); 638 if (error != 0) 639 return (error); 640 641 tcp->tcp_localnet = uinfo.iulp_localnet; 642 643 if (uinfo.iulp_rtt != 0) { 644 clock_t rto; 645 646 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 647 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 648 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 649 tcps->tcps_rexmit_interval_extra + 650 (tcp->tcp_rtt_sa >> 5); 651 652 TCP_SET_RTO(tcp, rto); 653 } 654 if (uinfo.iulp_ssthresh != 0) 655 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 656 else 657 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 658 if (uinfo.iulp_spipe > 0) { 659 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 660 tcps->tcps_max_buf); 661 if (tcps->tcps_snd_lowat_fraction != 0) { 662 connp->conn_sndlowat = connp->conn_sndbuf / 663 tcps->tcps_snd_lowat_fraction; 664 } 665 (void) tcp_maxpsz_set(tcp, B_TRUE); 666 } 667 /* 668 * Note that up till now, acceptor always inherits receive 669 * window from the listener. But if there is a metrics 670 * associated with a host, we should use that instead of 671 * inheriting it from listener. Thus we need to pass this 672 * info back to the caller. 673 */ 674 if (uinfo.iulp_rpipe > 0) { 675 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 676 tcps->tcps_max_buf); 677 } 678 679 if (uinfo.iulp_rtomax > 0) { 680 tcp->tcp_second_timer_threshold = 681 uinfo.iulp_rtomax; 682 } 683 684 /* 685 * Use the metric option settings, iulp_tstamp_ok and 686 * iulp_wscale_ok, only for active open. What this means 687 * is that if the other side uses timestamp or window 688 * scale option, TCP will also use those options. That 689 * is for passive open. If the application sets a 690 * large window, window scale is enabled regardless of 691 * the value in iulp_wscale_ok. This is the behavior 692 * since 2.6. So we keep it. 693 * The only case left in passive open processing is the 694 * check for SACK. 695 * For ECN, it should probably be like SACK. But the 696 * current value is binary, so we treat it like the other 697 * cases. The metric only controls active open.For passive 698 * open, the ndd param, tcp_ecn_permitted, controls the 699 * behavior. 700 */ 701 if (!tcp_detached) { 702 /* 703 * The if check means that the following can only 704 * be turned on by the metrics only IRE, but not off. 705 */ 706 if (uinfo.iulp_tstamp_ok) 707 tcp->tcp_snd_ts_ok = B_TRUE; 708 if (uinfo.iulp_wscale_ok) 709 tcp->tcp_snd_ws_ok = B_TRUE; 710 if (uinfo.iulp_sack == 2) 711 tcp->tcp_snd_sack_ok = B_TRUE; 712 if (uinfo.iulp_ecn_ok) 713 tcp->tcp_ecn_ok = B_TRUE; 714 } else { 715 /* 716 * Passive open. 717 * 718 * As above, the if check means that SACK can only be 719 * turned on by the metric only IRE. 720 */ 721 if (uinfo.iulp_sack > 0) { 722 tcp->tcp_snd_sack_ok = B_TRUE; 723 } 724 } 725 726 /* 727 * XXX Note that currently, iulp_mtu can be as small as 68 728 * because of PMTUd. So tcp_mss may go to negative if combined 729 * length of all those options exceeds 28 bytes. But because 730 * of the tcp_mss_min check below, we may not have a problem if 731 * tcp_mss_min is of a reasonable value. The default is 1 so 732 * the negative problem still exists. And the check defeats PMTUd. 733 * In fact, if PMTUd finds that the MSS should be smaller than 734 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 735 * value. 736 * 737 * We do not deal with that now. All those problems related to 738 * PMTUd will be fixed later. 739 */ 740 ASSERT(uinfo.iulp_mtu != 0); 741 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 742 743 /* Sanity check for MSS value. */ 744 if (connp->conn_ipversion == IPV4_VERSION) 745 mss_max = tcps->tcps_mss_max_ipv4; 746 else 747 mss_max = tcps->tcps_mss_max_ipv6; 748 749 if (tcp->tcp_ipsec_overhead == 0) 750 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 751 752 mss -= tcp->tcp_ipsec_overhead; 753 754 if (mss < tcps->tcps_mss_min) 755 mss = tcps->tcps_mss_min; 756 if (mss > mss_max) 757 mss = mss_max; 758 759 /* Note that this is the maximum MSS, excluding all options. */ 760 tcp->tcp_mss = mss; 761 762 /* 763 * Update the tcp connection with LSO capability. 764 */ 765 tcp_update_lso(tcp, connp->conn_ixa); 766 767 /* 768 * Initialize the ISS here now that we have the full connection ID. 769 * The RFC 1948 method of initial sequence number generation requires 770 * knowledge of the full connection ID before setting the ISS. 771 */ 772 tcp_iss_init(tcp); 773 774 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 775 776 /* 777 * Make sure that conn is not marked incipient 778 * for incoming connections. A blind 779 * removal of incipient flag is cheaper than 780 * check and removal. 781 */ 782 mutex_enter(&connp->conn_lock); 783 connp->conn_state_flags &= ~CONN_INCIPIENT; 784 mutex_exit(&connp->conn_lock); 785 return (0); 786 } 787 788 /* 789 * tcp_clean_death / tcp_close_detached must not be called more than once 790 * on a tcp. Thus every function that potentially calls tcp_clean_death 791 * must check for the tcp state before calling tcp_clean_death. 792 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 793 * tcp_timer_handler, all check for the tcp state. 794 */ 795 /* ARGSUSED */ 796 void 797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 798 ip_recv_attr_t *dummy) 799 { 800 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 801 802 freemsg(mp); 803 if (tcp->tcp_state > TCPS_BOUND) 804 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 805 } 806 807 /* 808 * We are dying for some reason. Try to do it gracefully. (May be called 809 * as writer.) 810 * 811 * Return -1 if the structure was not cleaned up (if the cleanup had to be 812 * done by a service procedure). 813 * TBD - Should the return value distinguish between the tcp_t being 814 * freed and it being reinitialized? 815 */ 816 int 817 tcp_clean_death(tcp_t *tcp, int err) 818 { 819 mblk_t *mp; 820 queue_t *q; 821 conn_t *connp = tcp->tcp_connp; 822 tcp_stack_t *tcps = tcp->tcp_tcps; 823 824 if (tcp->tcp_fused) 825 tcp_unfuse(tcp); 826 827 if (tcp->tcp_linger_tid != 0 && 828 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 829 tcp_stop_lingering(tcp); 830 } 831 832 ASSERT(tcp != NULL); 833 ASSERT((connp->conn_family == AF_INET && 834 connp->conn_ipversion == IPV4_VERSION) || 835 (connp->conn_family == AF_INET6 && 836 (connp->conn_ipversion == IPV4_VERSION || 837 connp->conn_ipversion == IPV6_VERSION))); 838 839 if (TCP_IS_DETACHED(tcp)) { 840 if (tcp->tcp_hard_binding) { 841 /* 842 * Its an eager that we are dealing with. We close the 843 * eager but in case a conn_ind has already gone to the 844 * listener, let tcp_accept_finish() send a discon_ind 845 * to the listener and drop the last reference. If the 846 * listener doesn't even know about the eager i.e. the 847 * conn_ind hasn't gone up, blow away the eager and drop 848 * the last reference as well. If the conn_ind has gone 849 * up, state should be BOUND. tcp_accept_finish 850 * will figure out that the connection has received a 851 * RST and will send a DISCON_IND to the application. 852 */ 853 tcp_closei_local(tcp); 854 if (!tcp->tcp_tconnind_started) { 855 CONN_DEC_REF(connp); 856 } else { 857 tcp->tcp_state = TCPS_BOUND; 858 DTRACE_TCP6(state__change, void, NULL, 859 ip_xmit_attr_t *, connp->conn_ixa, 860 void, NULL, tcp_t *, tcp, void, NULL, 861 int32_t, TCPS_CLOSED); 862 } 863 } else { 864 tcp_close_detached(tcp); 865 } 866 return (0); 867 } 868 869 TCP_STAT(tcps, tcp_clean_death_nondetached); 870 871 /* 872 * The connection is dead. Decrement listener connection counter if 873 * necessary. 874 */ 875 if (tcp->tcp_listen_cnt != NULL) 876 TCP_DECR_LISTEN_CNT(tcp); 877 878 /* 879 * When a connection is moved to TIME_WAIT state, the connection 880 * counter is already decremented. So no need to decrement here 881 * again. See SET_TIME_WAIT() macro. 882 */ 883 if (tcp->tcp_state >= TCPS_ESTABLISHED && 884 tcp->tcp_state < TCPS_TIME_WAIT) { 885 TCPS_CONN_DEC(tcps); 886 } 887 888 q = connp->conn_rq; 889 890 /* Trash all inbound data */ 891 if (!IPCL_IS_NONSTR(connp)) { 892 ASSERT(q != NULL); 893 flushq(q, FLUSHALL); 894 } 895 896 /* 897 * If we are at least part way open and there is error 898 * (err==0 implies no error) 899 * notify our client by a T_DISCON_IND. 900 */ 901 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 902 if (tcp->tcp_state >= TCPS_ESTABLISHED && 903 !TCP_IS_SOCKET(tcp)) { 904 /* 905 * Send M_FLUSH according to TPI. Because sockets will 906 * (and must) ignore FLUSHR we do that only for TPI 907 * endpoints and sockets in STREAMS mode. 908 */ 909 (void) putnextctl1(q, M_FLUSH, FLUSHR); 910 } 911 if (connp->conn_debug) { 912 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 913 "tcp_clean_death: discon err %d", err); 914 } 915 if (IPCL_IS_NONSTR(connp)) { 916 /* Direct socket, use upcall */ 917 (*connp->conn_upcalls->su_disconnected)( 918 connp->conn_upper_handle, tcp->tcp_connid, err); 919 } else { 920 mp = mi_tpi_discon_ind(NULL, err, 0); 921 if (mp != NULL) { 922 putnext(q, mp); 923 } else { 924 if (connp->conn_debug) { 925 (void) strlog(TCP_MOD_ID, 0, 1, 926 SL_ERROR|SL_TRACE, 927 "tcp_clean_death, sending M_ERROR"); 928 } 929 (void) putnextctl1(q, M_ERROR, EPROTO); 930 } 931 } 932 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 933 /* SYN_SENT or SYN_RCVD */ 934 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 935 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 936 /* ESTABLISHED or CLOSE_WAIT */ 937 TCPS_BUMP_MIB(tcps, tcpEstabResets); 938 } 939 } 940 941 /* 942 * ESTABLISHED non-STREAMS eagers are not 'detached' because 943 * an upper handle is obtained when the SYN-ACK comes in. So it 944 * should receive the 'disconnected' upcall, but tcp_reinit should 945 * not be called since this is an eager. 946 */ 947 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 948 tcp_closei_local(tcp); 949 tcp->tcp_state = TCPS_BOUND; 950 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 951 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 952 int32_t, TCPS_CLOSED); 953 return (0); 954 } 955 956 tcp_reinit(tcp); 957 if (IPCL_IS_NONSTR(connp)) 958 (void) tcp_do_unbind(connp); 959 960 return (-1); 961 } 962 963 /* 964 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 965 * to expire, stop the wait and finish the close. 966 */ 967 void 968 tcp_stop_lingering(tcp_t *tcp) 969 { 970 clock_t delta = 0; 971 tcp_stack_t *tcps = tcp->tcp_tcps; 972 conn_t *connp = tcp->tcp_connp; 973 974 tcp->tcp_linger_tid = 0; 975 if (tcp->tcp_state > TCPS_LISTEN) { 976 tcp_acceptor_hash_remove(tcp); 977 mutex_enter(&tcp->tcp_non_sq_lock); 978 if (tcp->tcp_flow_stopped) { 979 tcp_clrqfull(tcp); 980 } 981 mutex_exit(&tcp->tcp_non_sq_lock); 982 983 if (tcp->tcp_timer_tid != 0) { 984 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 985 tcp->tcp_timer_tid = 0; 986 } 987 /* 988 * Need to cancel those timers which will not be used when 989 * TCP is detached. This has to be done before the conn_wq 990 * is cleared. 991 */ 992 tcp_timers_stop(tcp); 993 994 tcp->tcp_detached = B_TRUE; 995 connp->conn_rq = NULL; 996 connp->conn_wq = NULL; 997 998 if (tcp->tcp_state == TCPS_TIME_WAIT) { 999 tcp_time_wait_append(tcp); 1000 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 1001 goto finish; 1002 } 1003 1004 /* 1005 * If delta is zero the timer event wasn't executed and was 1006 * successfully canceled. In this case we need to restart it 1007 * with the minimal delta possible. 1008 */ 1009 if (delta >= 0) { 1010 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1011 delta ? delta : 1); 1012 } 1013 } else { 1014 tcp_closei_local(tcp); 1015 CONN_DEC_REF(connp); 1016 } 1017 finish: 1018 tcp->tcp_detached = B_TRUE; 1019 connp->conn_rq = NULL; 1020 connp->conn_wq = NULL; 1021 1022 /* Signal closing thread that it can complete close */ 1023 mutex_enter(&tcp->tcp_closelock); 1024 tcp->tcp_closed = 1; 1025 cv_signal(&tcp->tcp_closecv); 1026 mutex_exit(&tcp->tcp_closelock); 1027 1028 /* If we have an upper handle (socket), release it */ 1029 if (IPCL_IS_NONSTR(connp)) { 1030 ASSERT(connp->conn_upper_handle != NULL); 1031 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1032 connp->conn_upper_handle = NULL; 1033 connp->conn_upcalls = NULL; 1034 } 1035 } 1036 1037 void 1038 tcp_close_common(conn_t *connp, int flags) 1039 { 1040 tcp_t *tcp = connp->conn_tcp; 1041 mblk_t *mp = &tcp->tcp_closemp; 1042 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1043 mblk_t *bp; 1044 1045 ASSERT(connp->conn_ref >= 2); 1046 1047 /* 1048 * Mark the conn as closing. ipsq_pending_mp_add will not 1049 * add any mp to the pending mp list, after this conn has 1050 * started closing. 1051 */ 1052 mutex_enter(&connp->conn_lock); 1053 connp->conn_state_flags |= CONN_CLOSING; 1054 if (connp->conn_oper_pending_ill != NULL) 1055 conn_ioctl_cleanup_reqd = B_TRUE; 1056 CONN_INC_REF_LOCKED(connp); 1057 mutex_exit(&connp->conn_lock); 1058 tcp->tcp_closeflags = (uint8_t)flags; 1059 ASSERT(connp->conn_ref >= 3); 1060 1061 /* 1062 * tcp_closemp_used is used below without any protection of a lock 1063 * as we don't expect any one else to use it concurrently at this 1064 * point otherwise it would be a major defect. 1065 */ 1066 1067 if (mp->b_prev == NULL) 1068 tcp->tcp_closemp_used = B_TRUE; 1069 else 1070 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1071 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1072 1073 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1074 1075 /* 1076 * Cleanup any queued ioctls here. This must be done before the wq/rq 1077 * are re-written by tcp_close_output(). 1078 */ 1079 if (conn_ioctl_cleanup_reqd) 1080 conn_ioctl_cleanup(connp); 1081 1082 /* 1083 * As CONN_CLOSING is set, no further ioctls should be passed down to 1084 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1085 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1086 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1087 * was still in flight at the time, we wait for it here. See comments 1088 * for CONN_INC_IOCTLREF in ip.h for details. 1089 */ 1090 mutex_enter(&connp->conn_lock); 1091 while (connp->conn_ioctlref > 0) 1092 cv_wait(&connp->conn_cv, &connp->conn_lock); 1093 ASSERT(connp->conn_ioctlref == 0); 1094 ASSERT(connp->conn_oper_pending_ill == NULL); 1095 mutex_exit(&connp->conn_lock); 1096 1097 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1098 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1099 1100 /* 1101 * For non-STREAMS sockets, the normal case is that the conn makes 1102 * an upcall when it's finally closed, so there is no need to wait 1103 * in the protocol. But in case of SO_LINGER the thread sleeps here 1104 * so it can properly deal with the thread being interrupted. 1105 */ 1106 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1107 goto nowait; 1108 1109 mutex_enter(&tcp->tcp_closelock); 1110 while (!tcp->tcp_closed) { 1111 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1112 /* 1113 * The cv_wait_sig() was interrupted. We now do the 1114 * following: 1115 * 1116 * 1) If the endpoint was lingering, we allow this 1117 * to be interrupted by cancelling the linger timeout 1118 * and closing normally. 1119 * 1120 * 2) Revert to calling cv_wait() 1121 * 1122 * We revert to using cv_wait() to avoid an 1123 * infinite loop which can occur if the calling 1124 * thread is higher priority than the squeue worker 1125 * thread and is bound to the same cpu. 1126 */ 1127 if (connp->conn_linger && connp->conn_lingertime > 0) { 1128 mutex_exit(&tcp->tcp_closelock); 1129 /* Entering squeue, bump ref count. */ 1130 CONN_INC_REF(connp); 1131 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1132 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1133 tcp_linger_interrupted, connp, NULL, 1134 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1135 mutex_enter(&tcp->tcp_closelock); 1136 } 1137 break; 1138 } 1139 } 1140 while (!tcp->tcp_closed) 1141 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1142 mutex_exit(&tcp->tcp_closelock); 1143 1144 /* 1145 * In the case of listener streams that have eagers in the q or q0 1146 * we wait for the eagers to drop their reference to us. conn_rq and 1147 * conn_wq of the eagers point to our queues. By waiting for the 1148 * refcnt to drop to 1, we are sure that the eagers have cleaned 1149 * up their queue pointers and also dropped their references to us. 1150 * 1151 * For non-STREAMS sockets we do not have to wait here; the 1152 * listener will instead make a su_closed upcall when the last 1153 * reference is dropped. 1154 */ 1155 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1156 mutex_enter(&connp->conn_lock); 1157 while (connp->conn_ref != 1) { 1158 cv_wait(&connp->conn_cv, &connp->conn_lock); 1159 } 1160 mutex_exit(&connp->conn_lock); 1161 } 1162 1163 nowait: 1164 connp->conn_cpid = NOPID; 1165 } 1166 1167 /* 1168 * Called by tcp_close() routine via squeue when lingering is 1169 * interrupted by a signal. 1170 */ 1171 1172 /* ARGSUSED */ 1173 static void 1174 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1175 { 1176 conn_t *connp = (conn_t *)arg; 1177 tcp_t *tcp = connp->conn_tcp; 1178 1179 freeb(mp); 1180 if (tcp->tcp_linger_tid != 0 && 1181 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1182 tcp_stop_lingering(tcp); 1183 tcp->tcp_client_errno = EINTR; 1184 } 1185 } 1186 1187 /* 1188 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1189 * Some stream heads get upset if they see these later on as anything but NULL. 1190 */ 1191 void 1192 tcp_close_mpp(mblk_t **mpp) 1193 { 1194 mblk_t *mp; 1195 1196 if ((mp = *mpp) != NULL) { 1197 do { 1198 mp->b_next = NULL; 1199 mp->b_prev = NULL; 1200 } while ((mp = mp->b_cont) != NULL); 1201 1202 mp = *mpp; 1203 *mpp = NULL; 1204 freemsg(mp); 1205 } 1206 } 1207 1208 /* Do detached close. */ 1209 void 1210 tcp_close_detached(tcp_t *tcp) 1211 { 1212 if (tcp->tcp_fused) 1213 tcp_unfuse(tcp); 1214 1215 /* 1216 * Clustering code serializes TCP disconnect callbacks and 1217 * cluster tcp list walks by blocking a TCP disconnect callback 1218 * if a cluster tcp list walk is in progress. This ensures 1219 * accurate accounting of TCPs in the cluster code even though 1220 * the TCP list walk itself is not atomic. 1221 */ 1222 tcp_closei_local(tcp); 1223 CONN_DEC_REF(tcp->tcp_connp); 1224 } 1225 1226 /* 1227 * The tcp_t is going away. Remove it from all lists and set it 1228 * to TCPS_CLOSED. The freeing up of memory is deferred until 1229 * tcp_inactive. This is needed since a thread in tcp_rput might have 1230 * done a CONN_INC_REF on this structure before it was removed from the 1231 * hashes. 1232 */ 1233 void 1234 tcp_closei_local(tcp_t *tcp) 1235 { 1236 conn_t *connp = tcp->tcp_connp; 1237 tcp_stack_t *tcps = tcp->tcp_tcps; 1238 int32_t oldstate; 1239 1240 if (!TCP_IS_SOCKET(tcp)) 1241 tcp_acceptor_hash_remove(tcp); 1242 1243 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1244 tcp->tcp_ibsegs = 0; 1245 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1246 tcp->tcp_obsegs = 0; 1247 1248 /* 1249 * This can be called via tcp_time_wait_processing() if TCP gets a 1250 * SYN with sequence number outside the TIME-WAIT connection's 1251 * window. So we need to check for TIME-WAIT state here as the 1252 * connection counter is already decremented. See SET_TIME_WAIT() 1253 * macro 1254 */ 1255 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1256 tcp->tcp_state < TCPS_TIME_WAIT) { 1257 TCPS_CONN_DEC(tcps); 1258 } 1259 1260 /* 1261 * If we are an eager connection hanging off a listener that 1262 * hasn't formally accepted the connection yet, get off his 1263 * list and blow off any data that we have accumulated. 1264 */ 1265 if (tcp->tcp_listener != NULL) { 1266 tcp_t *listener = tcp->tcp_listener; 1267 mutex_enter(&listener->tcp_eager_lock); 1268 /* 1269 * tcp_tconnind_started == B_TRUE means that the 1270 * conn_ind has already gone to listener. At 1271 * this point, eager will be closed but we 1272 * leave it in listeners eager list so that 1273 * if listener decides to close without doing 1274 * accept, we can clean this up. In tcp_tli_accept 1275 * we take care of the case of accept on closed 1276 * eager. 1277 */ 1278 if (!tcp->tcp_tconnind_started) { 1279 tcp_eager_unlink(tcp); 1280 mutex_exit(&listener->tcp_eager_lock); 1281 /* 1282 * We don't want to have any pointers to the 1283 * listener queue, after we have released our 1284 * reference on the listener 1285 */ 1286 ASSERT(tcp->tcp_detached); 1287 connp->conn_rq = NULL; 1288 connp->conn_wq = NULL; 1289 CONN_DEC_REF(listener->tcp_connp); 1290 } else { 1291 mutex_exit(&listener->tcp_eager_lock); 1292 } 1293 } 1294 1295 /* Stop all the timers */ 1296 tcp_timers_stop(tcp); 1297 1298 if (tcp->tcp_state == TCPS_LISTEN) { 1299 if (tcp->tcp_ip_addr_cache) { 1300 kmem_free((void *)tcp->tcp_ip_addr_cache, 1301 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1302 tcp->tcp_ip_addr_cache = NULL; 1303 } 1304 } 1305 1306 /* Decrement listerner connection counter if necessary. */ 1307 if (tcp->tcp_listen_cnt != NULL) 1308 TCP_DECR_LISTEN_CNT(tcp); 1309 1310 mutex_enter(&tcp->tcp_non_sq_lock); 1311 if (tcp->tcp_flow_stopped) 1312 tcp_clrqfull(tcp); 1313 mutex_exit(&tcp->tcp_non_sq_lock); 1314 1315 tcp_bind_hash_remove(tcp); 1316 /* 1317 * If the tcp_time_wait_collector (which runs outside the squeue) 1318 * is trying to remove this tcp from the time wait list, we will 1319 * block in tcp_time_wait_remove while trying to acquire the 1320 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1321 * requires the ipcl_hash_remove to be ordered after the 1322 * tcp_time_wait_remove for the refcnt checks to work correctly. 1323 */ 1324 if (tcp->tcp_state == TCPS_TIME_WAIT) 1325 (void) tcp_time_wait_remove(tcp, NULL); 1326 CL_INET_DISCONNECT(connp); 1327 ipcl_hash_remove(connp); 1328 oldstate = tcp->tcp_state; 1329 tcp->tcp_state = TCPS_CLOSED; 1330 /* Need to probe before ixa_cleanup() is called */ 1331 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1332 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1333 int32_t, oldstate); 1334 ixa_cleanup(connp->conn_ixa); 1335 1336 /* 1337 * Mark the conn as CONDEMNED 1338 */ 1339 mutex_enter(&connp->conn_lock); 1340 connp->conn_state_flags |= CONN_CONDEMNED; 1341 mutex_exit(&connp->conn_lock); 1342 1343 ASSERT(tcp->tcp_time_wait_next == NULL); 1344 ASSERT(tcp->tcp_time_wait_prev == NULL); 1345 ASSERT(tcp->tcp_time_wait_expire == 0); 1346 1347 tcp_ipsec_cleanup(tcp); 1348 } 1349 1350 /* 1351 * tcp is dying (called from ipcl_conn_destroy and error cases). 1352 * Free the tcp_t in either case. 1353 */ 1354 void 1355 tcp_free(tcp_t *tcp) 1356 { 1357 mblk_t *mp; 1358 conn_t *connp = tcp->tcp_connp; 1359 1360 ASSERT(tcp != NULL); 1361 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1362 1363 connp->conn_rq = NULL; 1364 connp->conn_wq = NULL; 1365 1366 tcp_close_mpp(&tcp->tcp_xmit_head); 1367 tcp_close_mpp(&tcp->tcp_reass_head); 1368 if (tcp->tcp_rcv_list != NULL) { 1369 /* Free b_next chain */ 1370 tcp_close_mpp(&tcp->tcp_rcv_list); 1371 } 1372 if ((mp = tcp->tcp_urp_mp) != NULL) { 1373 freemsg(mp); 1374 } 1375 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1376 freemsg(mp); 1377 } 1378 1379 if (tcp->tcp_fused_sigurg_mp != NULL) { 1380 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1381 freeb(tcp->tcp_fused_sigurg_mp); 1382 tcp->tcp_fused_sigurg_mp = NULL; 1383 } 1384 1385 if (tcp->tcp_ordrel_mp != NULL) { 1386 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1387 freeb(tcp->tcp_ordrel_mp); 1388 tcp->tcp_ordrel_mp = NULL; 1389 } 1390 1391 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1392 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1393 1394 if (tcp->tcp_hopopts != NULL) { 1395 mi_free(tcp->tcp_hopopts); 1396 tcp->tcp_hopopts = NULL; 1397 tcp->tcp_hopoptslen = 0; 1398 } 1399 ASSERT(tcp->tcp_hopoptslen == 0); 1400 if (tcp->tcp_dstopts != NULL) { 1401 mi_free(tcp->tcp_dstopts); 1402 tcp->tcp_dstopts = NULL; 1403 tcp->tcp_dstoptslen = 0; 1404 } 1405 ASSERT(tcp->tcp_dstoptslen == 0); 1406 if (tcp->tcp_rthdrdstopts != NULL) { 1407 mi_free(tcp->tcp_rthdrdstopts); 1408 tcp->tcp_rthdrdstopts = NULL; 1409 tcp->tcp_rthdrdstoptslen = 0; 1410 } 1411 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1412 if (tcp->tcp_rthdr != NULL) { 1413 mi_free(tcp->tcp_rthdr); 1414 tcp->tcp_rthdr = NULL; 1415 tcp->tcp_rthdrlen = 0; 1416 } 1417 ASSERT(tcp->tcp_rthdrlen == 0); 1418 1419 /* 1420 * Following is really a blowing away a union. 1421 * It happens to have exactly two members of identical size 1422 * the following code is enough. 1423 */ 1424 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1425 1426 /* 1427 * If this is a non-STREAM socket still holding on to an upper 1428 * handle, release it. As a result of fallback we might also see 1429 * STREAMS based conns with upper handles, in which case there is 1430 * nothing to do other than clearing the field. 1431 */ 1432 if (connp->conn_upper_handle != NULL) { 1433 if (IPCL_IS_NONSTR(connp)) { 1434 (*connp->conn_upcalls->su_closed)( 1435 connp->conn_upper_handle); 1436 tcp->tcp_detached = B_TRUE; 1437 } 1438 connp->conn_upper_handle = NULL; 1439 connp->conn_upcalls = NULL; 1440 } 1441 } 1442 1443 /* 1444 * tcp_get_conn/tcp_free_conn 1445 * 1446 * tcp_get_conn is used to get a clean tcp connection structure. 1447 * It tries to reuse the connections put on the freelist by the 1448 * time_wait_collector failing which it goes to kmem_cache. This 1449 * way has two benefits compared to just allocating from and 1450 * freeing to kmem_cache. 1451 * 1) The time_wait_collector can free (which includes the cleanup) 1452 * outside the squeue. So when the interrupt comes, we have a clean 1453 * connection sitting in the freelist. Obviously, this buys us 1454 * performance. 1455 * 1456 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1457 * has multiple disadvantages - tying up the squeue during alloc. 1458 * But allocating the conn/tcp in IP land is also not the best since 1459 * we can't check the 'q' and 'q0' which are protected by squeue and 1460 * blindly allocate memory which might have to be freed here if we are 1461 * not allowed to accept the connection. By using the freelist and 1462 * putting the conn/tcp back in freelist, we don't pay a penalty for 1463 * allocating memory without checking 'q/q0' and freeing it if we can't 1464 * accept the connection. 1465 * 1466 * Care should be taken to put the conn back in the same squeue's freelist 1467 * from which it was allocated. Best results are obtained if conn is 1468 * allocated from listener's squeue and freed to the same. Time wait 1469 * collector will free up the freelist is the connection ends up sitting 1470 * there for too long. 1471 */ 1472 void * 1473 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1474 { 1475 tcp_t *tcp = NULL; 1476 conn_t *connp = NULL; 1477 squeue_t *sqp = (squeue_t *)arg; 1478 tcp_squeue_priv_t *tcp_time_wait; 1479 netstack_t *ns; 1480 mblk_t *tcp_rsrv_mp = NULL; 1481 1482 tcp_time_wait = 1483 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1484 1485 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1486 tcp = tcp_time_wait->tcp_free_list; 1487 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1488 if (tcp != NULL) { 1489 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1490 tcp_time_wait->tcp_free_list_cnt--; 1491 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1492 tcp->tcp_time_wait_next = NULL; 1493 connp = tcp->tcp_connp; 1494 connp->conn_flags |= IPCL_REUSED; 1495 1496 ASSERT(tcp->tcp_tcps == NULL); 1497 ASSERT(connp->conn_netstack == NULL); 1498 ASSERT(tcp->tcp_rsrv_mp != NULL); 1499 ns = tcps->tcps_netstack; 1500 netstack_hold(ns); 1501 connp->conn_netstack = ns; 1502 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1503 tcp->tcp_tcps = tcps; 1504 ipcl_globalhash_insert(connp); 1505 1506 connp->conn_ixa->ixa_notify_cookie = tcp; 1507 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1508 connp->conn_recv = tcp_input_data; 1509 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1510 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1511 return ((void *)connp); 1512 } 1513 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1514 /* 1515 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1516 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1517 */ 1518 tcp_rsrv_mp = allocb(0, BPRI_HI); 1519 if (tcp_rsrv_mp == NULL) 1520 return (NULL); 1521 1522 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1523 tcps->tcps_netstack)) == NULL) { 1524 freeb(tcp_rsrv_mp); 1525 return (NULL); 1526 } 1527 1528 tcp = connp->conn_tcp; 1529 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1530 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1531 1532 tcp->tcp_tcps = tcps; 1533 1534 connp->conn_recv = tcp_input_data; 1535 connp->conn_recvicmp = tcp_icmp_input; 1536 connp->conn_verifyicmp = tcp_verifyicmp; 1537 1538 /* 1539 * Register tcp_notify to listen to capability changes detected by IP. 1540 * This upcall is made in the context of the call to conn_ip_output 1541 * thus it is inside the squeue. 1542 */ 1543 connp->conn_ixa->ixa_notify = tcp_notify; 1544 connp->conn_ixa->ixa_notify_cookie = tcp; 1545 1546 return ((void *)connp); 1547 } 1548 1549 /* 1550 * Handle connect to IPv4 destinations, including connections for AF_INET6 1551 * sockets connecting to IPv4 mapped IPv6 destinations. 1552 * Returns zero if OK, a positive errno, or a negative TLI error. 1553 */ 1554 static int 1555 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1556 uint_t srcid) 1557 { 1558 ipaddr_t dstaddr = *dstaddrp; 1559 uint16_t lport; 1560 conn_t *connp = tcp->tcp_connp; 1561 tcp_stack_t *tcps = tcp->tcp_tcps; 1562 int error; 1563 1564 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1565 1566 /* Check for attempt to connect to INADDR_ANY */ 1567 if (dstaddr == INADDR_ANY) { 1568 /* 1569 * SunOS 4.x and 4.3 BSD allow an application 1570 * to connect a TCP socket to INADDR_ANY. 1571 * When they do this, the kernel picks the 1572 * address of one interface and uses it 1573 * instead. The kernel usually ends up 1574 * picking the address of the loopback 1575 * interface. This is an undocumented feature. 1576 * However, we provide the same thing here 1577 * in order to have source and binary 1578 * compatibility with SunOS 4.x. 1579 * Update the T_CONN_REQ (sin/sin6) since it is used to 1580 * generate the T_CONN_CON. 1581 */ 1582 dstaddr = htonl(INADDR_LOOPBACK); 1583 *dstaddrp = dstaddr; 1584 } 1585 1586 /* Handle __sin6_src_id if socket not bound to an IP address */ 1587 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1588 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1589 IPCL_ZONEID(connp), tcps->tcps_netstack); 1590 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1591 } 1592 1593 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1594 connp->conn_fport = dstport; 1595 1596 /* 1597 * At this point the remote destination address and remote port fields 1598 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1599 * have to see which state tcp was in so we can take appropriate action. 1600 */ 1601 if (tcp->tcp_state == TCPS_IDLE) { 1602 /* 1603 * We support a quick connect capability here, allowing 1604 * clients to transition directly from IDLE to SYN_SENT 1605 * tcp_bindi will pick an unused port, insert the connection 1606 * in the bind hash and transition to BOUND state. 1607 */ 1608 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1609 tcp, B_TRUE); 1610 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1611 B_FALSE, B_FALSE); 1612 if (lport == 0) 1613 return (-TNOADDR); 1614 } 1615 1616 /* 1617 * Lookup the route to determine a source address and the uinfo. 1618 * Setup TCP parameters based on the metrics/DCE. 1619 */ 1620 error = tcp_set_destination(tcp); 1621 if (error != 0) 1622 return (error); 1623 1624 /* 1625 * Don't let an endpoint connect to itself. 1626 */ 1627 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1628 connp->conn_fport == connp->conn_lport) 1629 return (-TBADADDR); 1630 1631 tcp->tcp_state = TCPS_SYN_SENT; 1632 1633 return (ipcl_conn_insert_v4(connp)); 1634 } 1635 1636 /* 1637 * Handle connect to IPv6 destinations. 1638 * Returns zero if OK, a positive errno, or a negative TLI error. 1639 */ 1640 static int 1641 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1642 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1643 { 1644 uint16_t lport; 1645 conn_t *connp = tcp->tcp_connp; 1646 tcp_stack_t *tcps = tcp->tcp_tcps; 1647 int error; 1648 1649 ASSERT(connp->conn_family == AF_INET6); 1650 1651 /* 1652 * If we're here, it means that the destination address is a native 1653 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1654 * reason why it might not be IPv6 is if the socket was bound to an 1655 * IPv4-mapped IPv6 address. 1656 */ 1657 if (connp->conn_ipversion != IPV6_VERSION) 1658 return (-TBADADDR); 1659 1660 /* 1661 * Interpret a zero destination to mean loopback. 1662 * Update the T_CONN_REQ (sin/sin6) since it is used to 1663 * generate the T_CONN_CON. 1664 */ 1665 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1666 *dstaddrp = ipv6_loopback; 1667 1668 /* Handle __sin6_src_id if socket not bound to an IP address */ 1669 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1670 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1671 IPCL_ZONEID(connp), tcps->tcps_netstack); 1672 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1673 } 1674 1675 /* 1676 * Take care of the scope_id now. 1677 */ 1678 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1679 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1680 connp->conn_ixa->ixa_scopeid = scope_id; 1681 } else { 1682 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1683 } 1684 1685 connp->conn_flowinfo = flowinfo; 1686 connp->conn_faddr_v6 = *dstaddrp; 1687 connp->conn_fport = dstport; 1688 1689 /* 1690 * At this point the remote destination address and remote port fields 1691 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1692 * have to see which state tcp was in so we can take appropriate action. 1693 */ 1694 if (tcp->tcp_state == TCPS_IDLE) { 1695 /* 1696 * We support a quick connect capability here, allowing 1697 * clients to transition directly from IDLE to SYN_SENT 1698 * tcp_bindi will pick an unused port, insert the connection 1699 * in the bind hash and transition to BOUND state. 1700 */ 1701 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1702 tcp, B_TRUE); 1703 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1704 B_FALSE, B_FALSE); 1705 if (lport == 0) 1706 return (-TNOADDR); 1707 } 1708 1709 /* 1710 * Lookup the route to determine a source address and the uinfo. 1711 * Setup TCP parameters based on the metrics/DCE. 1712 */ 1713 error = tcp_set_destination(tcp); 1714 if (error != 0) 1715 return (error); 1716 1717 /* 1718 * Don't let an endpoint connect to itself. 1719 */ 1720 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1721 connp->conn_fport == connp->conn_lport) 1722 return (-TBADADDR); 1723 1724 tcp->tcp_state = TCPS_SYN_SENT; 1725 1726 return (ipcl_conn_insert_v6(connp)); 1727 } 1728 1729 /* 1730 * Disconnect 1731 * Note that unlike other functions this returns a positive tli error 1732 * when it fails; it never returns an errno. 1733 */ 1734 static int 1735 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1736 { 1737 conn_t *lconnp; 1738 tcp_stack_t *tcps = tcp->tcp_tcps; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 /* 1742 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1743 * when the stream is in BOUND state. Do not send a reset, 1744 * since the destination IP address is not valid, and it can 1745 * be the initialized value of all zeros (broadcast address). 1746 */ 1747 if (tcp->tcp_state <= TCPS_BOUND) { 1748 if (connp->conn_debug) { 1749 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1750 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1751 } 1752 return (TOUTSTATE); 1753 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1754 TCPS_CONN_DEC(tcps); 1755 } 1756 1757 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1758 1759 /* 1760 * According to TPI, for non-listeners, ignore seqnum 1761 * and disconnect. 1762 * Following interpretation of -1 seqnum is historical 1763 * and implied TPI ? (TPI only states that for T_CONN_IND, 1764 * a valid seqnum should not be -1). 1765 * 1766 * -1 means disconnect everything 1767 * regardless even on a listener. 1768 */ 1769 1770 int old_state = tcp->tcp_state; 1771 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1772 1773 /* 1774 * The connection can't be on the tcp_time_wait_head list 1775 * since it is not detached. 1776 */ 1777 ASSERT(tcp->tcp_time_wait_next == NULL); 1778 ASSERT(tcp->tcp_time_wait_prev == NULL); 1779 ASSERT(tcp->tcp_time_wait_expire == 0); 1780 /* 1781 * If it used to be a listener, check to make sure no one else 1782 * has taken the port before switching back to LISTEN state. 1783 */ 1784 if (connp->conn_ipversion == IPV4_VERSION) { 1785 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1786 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1787 } else { 1788 uint_t ifindex = 0; 1789 1790 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1791 ifindex = connp->conn_ixa->ixa_scopeid; 1792 1793 /* Allow conn_bound_if listeners? */ 1794 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1795 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1796 ipst); 1797 } 1798 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1799 tcp->tcp_state = TCPS_LISTEN; 1800 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1801 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1802 NULL, int32_t, old_state); 1803 } else if (old_state > TCPS_BOUND) { 1804 tcp->tcp_conn_req_max = 0; 1805 tcp->tcp_state = TCPS_BOUND; 1806 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1807 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1808 NULL, int32_t, old_state); 1809 1810 /* 1811 * If this end point is not going to become a listener, 1812 * decrement the listener connection count if 1813 * necessary. Note that we do not do this if it is 1814 * going to be a listner (the above if case) since 1815 * then it may remove the counter struct. 1816 */ 1817 if (tcp->tcp_listen_cnt != NULL) 1818 TCP_DECR_LISTEN_CNT(tcp); 1819 } 1820 if (lconnp != NULL) 1821 CONN_DEC_REF(lconnp); 1822 switch (old_state) { 1823 case TCPS_SYN_SENT: 1824 case TCPS_SYN_RCVD: 1825 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1826 break; 1827 case TCPS_ESTABLISHED: 1828 case TCPS_CLOSE_WAIT: 1829 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1830 break; 1831 } 1832 1833 if (tcp->tcp_fused) 1834 tcp_unfuse(tcp); 1835 1836 mutex_enter(&tcp->tcp_eager_lock); 1837 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1838 (tcp->tcp_conn_req_cnt_q != 0)) { 1839 tcp_eager_cleanup(tcp, 0); 1840 } 1841 mutex_exit(&tcp->tcp_eager_lock); 1842 1843 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1844 tcp->tcp_rnxt, TH_RST | TH_ACK); 1845 1846 tcp_reinit(tcp); 1847 1848 return (0); 1849 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1850 return (TBADSEQ); 1851 } 1852 return (0); 1853 } 1854 1855 /* 1856 * Our client hereby directs us to reject the connection request 1857 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1858 * of sending the appropriate RST, not an ICMP error. 1859 */ 1860 void 1861 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1862 { 1863 t_scalar_t seqnum; 1864 int error; 1865 conn_t *connp = tcp->tcp_connp; 1866 1867 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1868 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1869 tcp_err_ack(tcp, mp, TPROTO, 0); 1870 return; 1871 } 1872 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1873 error = tcp_disconnect_common(tcp, seqnum); 1874 if (error != 0) 1875 tcp_err_ack(tcp, mp, error, 0); 1876 else { 1877 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1878 /* Send M_FLUSH according to TPI */ 1879 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1880 } 1881 mp = mi_tpi_ok_ack_alloc(mp); 1882 if (mp != NULL) 1883 putnext(connp->conn_rq, mp); 1884 } 1885 } 1886 1887 /* 1888 * Handle reinitialization of a tcp structure. 1889 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1890 */ 1891 static void 1892 tcp_reinit(tcp_t *tcp) 1893 { 1894 mblk_t *mp; 1895 tcp_stack_t *tcps = tcp->tcp_tcps; 1896 conn_t *connp = tcp->tcp_connp; 1897 int32_t oldstate; 1898 1899 /* tcp_reinit should never be called for detached tcp_t's */ 1900 ASSERT(tcp->tcp_listener == NULL); 1901 ASSERT((connp->conn_family == AF_INET && 1902 connp->conn_ipversion == IPV4_VERSION) || 1903 (connp->conn_family == AF_INET6 && 1904 (connp->conn_ipversion == IPV4_VERSION || 1905 connp->conn_ipversion == IPV6_VERSION))); 1906 1907 /* Cancel outstanding timers */ 1908 tcp_timers_stop(tcp); 1909 1910 /* 1911 * Reset everything in the state vector, after updating global 1912 * MIB data from instance counters. 1913 */ 1914 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1915 tcp->tcp_ibsegs = 0; 1916 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1917 tcp->tcp_obsegs = 0; 1918 1919 tcp_close_mpp(&tcp->tcp_xmit_head); 1920 if (tcp->tcp_snd_zcopy_aware) 1921 tcp_zcopy_notify(tcp); 1922 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1923 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1924 mutex_enter(&tcp->tcp_non_sq_lock); 1925 if (tcp->tcp_flow_stopped && 1926 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1927 tcp_clrqfull(tcp); 1928 } 1929 mutex_exit(&tcp->tcp_non_sq_lock); 1930 tcp_close_mpp(&tcp->tcp_reass_head); 1931 tcp->tcp_reass_tail = NULL; 1932 if (tcp->tcp_rcv_list != NULL) { 1933 /* Free b_next chain */ 1934 tcp_close_mpp(&tcp->tcp_rcv_list); 1935 tcp->tcp_rcv_last_head = NULL; 1936 tcp->tcp_rcv_last_tail = NULL; 1937 tcp->tcp_rcv_cnt = 0; 1938 } 1939 tcp->tcp_rcv_last_tail = NULL; 1940 1941 if ((mp = tcp->tcp_urp_mp) != NULL) { 1942 freemsg(mp); 1943 tcp->tcp_urp_mp = NULL; 1944 } 1945 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1946 freemsg(mp); 1947 tcp->tcp_urp_mark_mp = NULL; 1948 } 1949 if (tcp->tcp_fused_sigurg_mp != NULL) { 1950 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1951 freeb(tcp->tcp_fused_sigurg_mp); 1952 tcp->tcp_fused_sigurg_mp = NULL; 1953 } 1954 if (tcp->tcp_ordrel_mp != NULL) { 1955 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1956 freeb(tcp->tcp_ordrel_mp); 1957 tcp->tcp_ordrel_mp = NULL; 1958 } 1959 1960 /* 1961 * Following is a union with two members which are 1962 * identical types and size so the following cleanup 1963 * is enough. 1964 */ 1965 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1966 1967 CL_INET_DISCONNECT(connp); 1968 1969 /* 1970 * The connection can't be on the tcp_time_wait_head list 1971 * since it is not detached. 1972 */ 1973 ASSERT(tcp->tcp_time_wait_next == NULL); 1974 ASSERT(tcp->tcp_time_wait_prev == NULL); 1975 ASSERT(tcp->tcp_time_wait_expire == 0); 1976 1977 /* 1978 * Reset/preserve other values 1979 */ 1980 tcp_reinit_values(tcp); 1981 ipcl_hash_remove(connp); 1982 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1983 ixa_cleanup(connp->conn_ixa); 1984 tcp_ipsec_cleanup(tcp); 1985 1986 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1987 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1988 oldstate = tcp->tcp_state; 1989 1990 if (tcp->tcp_conn_req_max != 0) { 1991 /* 1992 * This is the case when a TLI program uses the same 1993 * transport end point to accept a connection. This 1994 * makes the TCP both a listener and acceptor. When 1995 * this connection is closed, we need to set the state 1996 * back to TCPS_LISTEN. Make sure that the eager list 1997 * is reinitialized. 1998 * 1999 * Note that this stream is still bound to the four 2000 * tuples of the previous connection in IP. If a new 2001 * SYN with different foreign address comes in, IP will 2002 * not find it and will send it to the global queue. In 2003 * the global queue, TCP will do a tcp_lookup_listener() 2004 * to find this stream. This works because this stream 2005 * is only removed from connected hash. 2006 * 2007 */ 2008 tcp->tcp_state = TCPS_LISTEN; 2009 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2010 tcp->tcp_eager_next_drop_q0 = tcp; 2011 tcp->tcp_eager_prev_drop_q0 = tcp; 2012 /* 2013 * Initially set conn_recv to tcp_input_listener_unbound to try 2014 * to pick a good squeue for the listener when the first SYN 2015 * arrives. tcp_input_listener_unbound sets it to 2016 * tcp_input_listener on that first SYN. 2017 */ 2018 connp->conn_recv = tcp_input_listener_unbound; 2019 2020 connp->conn_proto = IPPROTO_TCP; 2021 connp->conn_faddr_v6 = ipv6_all_zeros; 2022 connp->conn_fport = 0; 2023 2024 (void) ipcl_bind_insert(connp); 2025 } else { 2026 tcp->tcp_state = TCPS_BOUND; 2027 } 2028 2029 /* 2030 * Initialize to default values 2031 */ 2032 tcp_init_values(tcp, NULL); 2033 2034 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2035 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2036 int32_t, oldstate); 2037 2038 ASSERT(tcp->tcp_ptpbhn != NULL); 2039 tcp->tcp_rwnd = connp->conn_rcvbuf; 2040 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2041 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2042 } 2043 2044 /* 2045 * Force values to zero that need be zero. 2046 * Do not touch values asociated with the BOUND or LISTEN state 2047 * since the connection will end up in that state after the reinit. 2048 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2049 * structure! 2050 */ 2051 static void 2052 tcp_reinit_values(tcp) 2053 tcp_t *tcp; 2054 { 2055 tcp_stack_t *tcps = tcp->tcp_tcps; 2056 conn_t *connp = tcp->tcp_connp; 2057 2058 #ifndef lint 2059 #define DONTCARE(x) 2060 #define PRESERVE(x) 2061 #else 2062 #define DONTCARE(x) ((x) = (x)) 2063 #define PRESERVE(x) ((x) = (x)) 2064 #endif /* lint */ 2065 2066 PRESERVE(tcp->tcp_bind_hash_port); 2067 PRESERVE(tcp->tcp_bind_hash); 2068 PRESERVE(tcp->tcp_ptpbhn); 2069 PRESERVE(tcp->tcp_acceptor_hash); 2070 PRESERVE(tcp->tcp_ptpahn); 2071 2072 /* Should be ASSERT NULL on these with new code! */ 2073 ASSERT(tcp->tcp_time_wait_next == NULL); 2074 ASSERT(tcp->tcp_time_wait_prev == NULL); 2075 ASSERT(tcp->tcp_time_wait_expire == 0); 2076 PRESERVE(tcp->tcp_state); 2077 PRESERVE(connp->conn_rq); 2078 PRESERVE(connp->conn_wq); 2079 2080 ASSERT(tcp->tcp_xmit_head == NULL); 2081 ASSERT(tcp->tcp_xmit_last == NULL); 2082 ASSERT(tcp->tcp_unsent == 0); 2083 ASSERT(tcp->tcp_xmit_tail == NULL); 2084 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2085 2086 tcp->tcp_snxt = 0; /* Displayed in mib */ 2087 tcp->tcp_suna = 0; /* Displayed in mib */ 2088 tcp->tcp_swnd = 0; 2089 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2090 2091 ASSERT(tcp->tcp_ibsegs == 0); 2092 ASSERT(tcp->tcp_obsegs == 0); 2093 2094 if (connp->conn_ht_iphc != NULL) { 2095 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2096 connp->conn_ht_iphc = NULL; 2097 connp->conn_ht_iphc_allocated = 0; 2098 connp->conn_ht_iphc_len = 0; 2099 connp->conn_ht_ulp = NULL; 2100 connp->conn_ht_ulp_len = 0; 2101 tcp->tcp_ipha = NULL; 2102 tcp->tcp_ip6h = NULL; 2103 tcp->tcp_tcpha = NULL; 2104 } 2105 2106 /* We clear any IP_OPTIONS and extension headers */ 2107 ip_pkt_free(&connp->conn_xmit_ipp); 2108 2109 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2110 DONTCARE(tcp->tcp_ipha); 2111 DONTCARE(tcp->tcp_ip6h); 2112 DONTCARE(tcp->tcp_tcpha); 2113 tcp->tcp_valid_bits = 0; 2114 2115 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2116 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2117 tcp->tcp_last_rcv_lbolt = 0; 2118 2119 tcp->tcp_init_cwnd = 0; 2120 2121 tcp->tcp_urp_last_valid = 0; 2122 tcp->tcp_hard_binding = 0; 2123 2124 tcp->tcp_fin_acked = 0; 2125 tcp->tcp_fin_rcvd = 0; 2126 tcp->tcp_fin_sent = 0; 2127 tcp->tcp_ordrel_done = 0; 2128 2129 tcp->tcp_detached = 0; 2130 2131 tcp->tcp_snd_ws_ok = B_FALSE; 2132 tcp->tcp_snd_ts_ok = B_FALSE; 2133 tcp->tcp_zero_win_probe = 0; 2134 2135 tcp->tcp_loopback = 0; 2136 tcp->tcp_localnet = 0; 2137 tcp->tcp_syn_defense = 0; 2138 tcp->tcp_set_timer = 0; 2139 2140 tcp->tcp_active_open = 0; 2141 tcp->tcp_rexmit = B_FALSE; 2142 tcp->tcp_xmit_zc_clean = B_FALSE; 2143 2144 tcp->tcp_snd_sack_ok = B_FALSE; 2145 tcp->tcp_hwcksum = B_FALSE; 2146 2147 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2148 2149 tcp->tcp_conn_def_q0 = 0; 2150 tcp->tcp_ip_forward_progress = B_FALSE; 2151 tcp->tcp_ecn_ok = B_FALSE; 2152 2153 tcp->tcp_cwr = B_FALSE; 2154 tcp->tcp_ecn_echo_on = B_FALSE; 2155 tcp->tcp_is_wnd_shrnk = B_FALSE; 2156 2157 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2158 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2159 2160 tcp->tcp_rcv_ws = 0; 2161 tcp->tcp_snd_ws = 0; 2162 tcp->tcp_ts_recent = 0; 2163 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2164 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2165 tcp->tcp_initial_pmtu = 0; 2166 2167 ASSERT(tcp->tcp_reass_head == NULL); 2168 ASSERT(tcp->tcp_reass_tail == NULL); 2169 2170 tcp->tcp_cwnd_cnt = 0; 2171 2172 ASSERT(tcp->tcp_rcv_list == NULL); 2173 ASSERT(tcp->tcp_rcv_last_head == NULL); 2174 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2175 ASSERT(tcp->tcp_rcv_cnt == 0); 2176 2177 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2178 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2179 tcp->tcp_csuna = 0; 2180 2181 tcp->tcp_rto = 0; /* Displayed in MIB */ 2182 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2183 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2184 tcp->tcp_rtt_update = 0; 2185 2186 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2187 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2188 2189 tcp->tcp_rack = 0; /* Displayed in mib */ 2190 tcp->tcp_rack_cnt = 0; 2191 tcp->tcp_rack_cur_max = 0; 2192 tcp->tcp_rack_abs_max = 0; 2193 2194 tcp->tcp_max_swnd = 0; 2195 2196 ASSERT(tcp->tcp_listener == NULL); 2197 2198 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2199 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2200 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2201 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2202 2203 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2204 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2205 PRESERVE(tcp->tcp_conn_req_max); 2206 PRESERVE(tcp->tcp_conn_req_seqnum); 2207 2208 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2209 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2210 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2211 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2212 2213 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2214 ASSERT(tcp->tcp_urp_mp == NULL); 2215 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2216 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2217 2218 ASSERT(tcp->tcp_eager_next_q == NULL); 2219 ASSERT(tcp->tcp_eager_last_q == NULL); 2220 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2221 tcp->tcp_eager_prev_q0 == NULL) || 2222 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2223 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2224 2225 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2226 tcp->tcp_eager_prev_drop_q0 == NULL) || 2227 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2228 2229 tcp->tcp_client_errno = 0; 2230 2231 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2232 2233 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2234 2235 PRESERVE(connp->conn_bound_addr_v6); 2236 tcp->tcp_last_sent_len = 0; 2237 tcp->tcp_dupack_cnt = 0; 2238 2239 connp->conn_fport = 0; /* Displayed in MIB */ 2240 PRESERVE(connp->conn_lport); 2241 2242 PRESERVE(tcp->tcp_acceptor_lockp); 2243 2244 ASSERT(tcp->tcp_ordrel_mp == NULL); 2245 PRESERVE(tcp->tcp_acceptor_id); 2246 DONTCARE(tcp->tcp_ipsec_overhead); 2247 2248 PRESERVE(connp->conn_family); 2249 /* Remove any remnants of mapped address binding */ 2250 if (connp->conn_family == AF_INET6) { 2251 connp->conn_ipversion = IPV6_VERSION; 2252 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2253 } else { 2254 connp->conn_ipversion = IPV4_VERSION; 2255 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2256 } 2257 2258 connp->conn_bound_if = 0; 2259 connp->conn_recv_ancillary.crb_all = 0; 2260 tcp->tcp_recvifindex = 0; 2261 tcp->tcp_recvhops = 0; 2262 tcp->tcp_closed = 0; 2263 if (tcp->tcp_hopopts != NULL) { 2264 mi_free(tcp->tcp_hopopts); 2265 tcp->tcp_hopopts = NULL; 2266 tcp->tcp_hopoptslen = 0; 2267 } 2268 ASSERT(tcp->tcp_hopoptslen == 0); 2269 if (tcp->tcp_dstopts != NULL) { 2270 mi_free(tcp->tcp_dstopts); 2271 tcp->tcp_dstopts = NULL; 2272 tcp->tcp_dstoptslen = 0; 2273 } 2274 ASSERT(tcp->tcp_dstoptslen == 0); 2275 if (tcp->tcp_rthdrdstopts != NULL) { 2276 mi_free(tcp->tcp_rthdrdstopts); 2277 tcp->tcp_rthdrdstopts = NULL; 2278 tcp->tcp_rthdrdstoptslen = 0; 2279 } 2280 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2281 if (tcp->tcp_rthdr != NULL) { 2282 mi_free(tcp->tcp_rthdr); 2283 tcp->tcp_rthdr = NULL; 2284 tcp->tcp_rthdrlen = 0; 2285 } 2286 ASSERT(tcp->tcp_rthdrlen == 0); 2287 2288 /* Reset fusion-related fields */ 2289 tcp->tcp_fused = B_FALSE; 2290 tcp->tcp_unfusable = B_FALSE; 2291 tcp->tcp_fused_sigurg = B_FALSE; 2292 tcp->tcp_loopback_peer = NULL; 2293 2294 tcp->tcp_lso = B_FALSE; 2295 2296 tcp->tcp_in_ack_unsent = 0; 2297 tcp->tcp_cork = B_FALSE; 2298 tcp->tcp_tconnind_started = B_FALSE; 2299 2300 PRESERVE(tcp->tcp_squeue_bytes); 2301 2302 tcp->tcp_closemp_used = B_FALSE; 2303 2304 PRESERVE(tcp->tcp_rsrv_mp); 2305 PRESERVE(tcp->tcp_rsrv_mp_lock); 2306 2307 #ifdef DEBUG 2308 DONTCARE(tcp->tcmp_stk[0]); 2309 #endif 2310 2311 PRESERVE(tcp->tcp_connid); 2312 2313 ASSERT(tcp->tcp_listen_cnt == NULL); 2314 ASSERT(tcp->tcp_reass_tid == 0); 2315 2316 #undef DONTCARE 2317 #undef PRESERVE 2318 } 2319 2320 /* 2321 * Initialize the various fields in tcp_t. If parent (the listener) is non 2322 * NULL, certain values will be inheritted from it. 2323 */ 2324 void 2325 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2326 { 2327 tcp_stack_t *tcps = tcp->tcp_tcps; 2328 conn_t *connp = tcp->tcp_connp; 2329 clock_t rto; 2330 2331 ASSERT((connp->conn_family == AF_INET && 2332 connp->conn_ipversion == IPV4_VERSION) || 2333 (connp->conn_family == AF_INET6 && 2334 (connp->conn_ipversion == IPV4_VERSION || 2335 connp->conn_ipversion == IPV6_VERSION))); 2336 2337 if (parent == NULL) { 2338 tcp->tcp_naglim = tcps->tcps_naglim_def; 2339 2340 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2341 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2342 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2343 2344 tcp->tcp_first_ctimer_threshold = 2345 tcps->tcps_ip_notify_cinterval; 2346 tcp->tcp_second_ctimer_threshold = 2347 tcps->tcps_ip_abort_cinterval; 2348 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2349 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2350 2351 tcp->tcp_fin_wait_2_flush_interval = 2352 tcps->tcps_fin_wait_2_flush_interval; 2353 2354 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2355 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2356 2357 /* 2358 * Default value of tcp_init_cwnd is 0, so no need to set here 2359 * if parent is NULL. But we need to inherit it from parent. 2360 */ 2361 } else { 2362 /* Inherit various TCP parameters from the parent. */ 2363 tcp->tcp_naglim = parent->tcp_naglim; 2364 2365 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2366 tcp->tcp_rto_min = parent->tcp_rto_min; 2367 tcp->tcp_rto_max = parent->tcp_rto_max; 2368 2369 tcp->tcp_first_ctimer_threshold = 2370 parent->tcp_first_ctimer_threshold; 2371 tcp->tcp_second_ctimer_threshold = 2372 parent->tcp_second_ctimer_threshold; 2373 tcp->tcp_first_timer_threshold = 2374 parent->tcp_first_timer_threshold; 2375 tcp->tcp_second_timer_threshold = 2376 parent->tcp_second_timer_threshold; 2377 2378 tcp->tcp_fin_wait_2_flush_interval = 2379 parent->tcp_fin_wait_2_flush_interval; 2380 2381 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2382 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2383 2384 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2385 } 2386 2387 /* 2388 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2389 * will be close to tcp_rexmit_interval_initial. By doing this, we 2390 * allow the algorithm to adjust slowly to large fluctuations of RTT 2391 * during first few transmissions of a connection as seen in slow 2392 * links. 2393 */ 2394 tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2; 2395 tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1; 2396 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2397 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 2398 tcps->tcps_conn_grace_period; 2399 TCP_SET_RTO(tcp, rto); 2400 2401 tcp->tcp_timer_backoff = 0; 2402 tcp->tcp_ms_we_have_waited = 0; 2403 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2404 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2405 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2406 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 2407 2408 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2409 2410 /* NOTE: ISS is now set in tcp_set_destination(). */ 2411 2412 /* Reset fusion-related fields */ 2413 tcp->tcp_fused = B_FALSE; 2414 tcp->tcp_unfusable = B_FALSE; 2415 tcp->tcp_fused_sigurg = B_FALSE; 2416 tcp->tcp_loopback_peer = NULL; 2417 2418 /* We rebuild the header template on the next connect/conn_request */ 2419 2420 connp->conn_mlp_type = mlptSingle; 2421 2422 /* 2423 * Init the window scale to the max so tcp_rwnd_set() won't pare 2424 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2425 */ 2426 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2427 tcp->tcp_rwnd = connp->conn_rcvbuf; 2428 2429 tcp->tcp_cork = B_FALSE; 2430 /* 2431 * Init the tcp_debug option if it wasn't already set. This value 2432 * determines whether TCP 2433 * calls strlog() to print out debug messages. Doing this 2434 * initialization here means that this value is not inherited thru 2435 * tcp_reinit(). 2436 */ 2437 if (!connp->conn_debug) 2438 connp->conn_debug = tcps->tcps_dbg; 2439 } 2440 2441 /* 2442 * Update the TCP connection according to change of PMTU. 2443 * 2444 * Path MTU might have changed by either increase or decrease, so need to 2445 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2446 * or negative MSS, since tcp_mss_set() will do it. 2447 */ 2448 void 2449 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2450 { 2451 uint32_t pmtu; 2452 int32_t mss; 2453 conn_t *connp = tcp->tcp_connp; 2454 ip_xmit_attr_t *ixa = connp->conn_ixa; 2455 iaflags_t ixaflags; 2456 2457 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2458 return; 2459 2460 if (tcp->tcp_state < TCPS_ESTABLISHED) 2461 return; 2462 2463 /* 2464 * Always call ip_get_pmtu() to make sure that IP has updated 2465 * ixa_flags properly. 2466 */ 2467 pmtu = ip_get_pmtu(ixa); 2468 ixaflags = ixa->ixa_flags; 2469 2470 /* 2471 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2472 * IPsec overhead if applied. Make sure to use the most recent 2473 * IPsec information. 2474 */ 2475 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2476 2477 /* 2478 * Nothing to change, so just return. 2479 */ 2480 if (mss == tcp->tcp_mss) 2481 return; 2482 2483 /* 2484 * Currently, for ICMP errors, only PMTU decrease is handled. 2485 */ 2486 if (mss > tcp->tcp_mss && decrease_only) 2487 return; 2488 2489 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2490 2491 /* 2492 * Update ixa_fragsize and ixa_pmtu. 2493 */ 2494 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2495 2496 /* 2497 * Adjust MSS and all relevant variables. 2498 */ 2499 tcp_mss_set(tcp, mss); 2500 2501 /* 2502 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2503 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2504 * has a (potentially different) min size we do the same. Make sure to 2505 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2506 * fragment the packet. 2507 * 2508 * LSO over IPv6 can not be fragmented. So need to disable LSO 2509 * when IPv6 fragmentation is needed. 2510 */ 2511 if (mss < tcp->tcp_tcps->tcps_mss_min) 2512 ixaflags |= IXAF_PMTU_TOO_SMALL; 2513 2514 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2515 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2516 2517 if ((connp->conn_ipversion == IPV4_VERSION) && 2518 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2519 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2520 } 2521 ixa->ixa_flags = ixaflags; 2522 } 2523 2524 int 2525 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2526 { 2527 conn_t *connp = tcp->tcp_connp; 2528 queue_t *q = connp->conn_rq; 2529 int32_t mss = tcp->tcp_mss; 2530 int maxpsz; 2531 2532 if (TCP_IS_DETACHED(tcp)) 2533 return (mss); 2534 if (tcp->tcp_fused) { 2535 maxpsz = tcp_fuse_maxpsz(tcp); 2536 mss = INFPSZ; 2537 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2538 /* 2539 * Set the sd_qn_maxpsz according to the socket send buffer 2540 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2541 * instruct the stream head to copyin user data into contiguous 2542 * kernel-allocated buffers without breaking it up into smaller 2543 * chunks. We round up the buffer size to the nearest SMSS. 2544 */ 2545 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2546 mss = INFPSZ; 2547 } else { 2548 /* 2549 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2550 * (and a multiple of the mss). This instructs the stream 2551 * head to break down larger than SMSS writes into SMSS- 2552 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2553 */ 2554 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2555 if (maxpsz > connp->conn_sndbuf / 2) { 2556 maxpsz = connp->conn_sndbuf / 2; 2557 /* Round up to nearest mss */ 2558 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2559 } 2560 } 2561 2562 (void) proto_set_maxpsz(q, connp, maxpsz); 2563 if (!(IPCL_IS_NONSTR(connp))) 2564 connp->conn_wq->q_maxpsz = maxpsz; 2565 if (set_maxblk) 2566 (void) proto_set_tx_maxblk(q, connp, mss); 2567 return (mss); 2568 } 2569 2570 /* For /dev/tcp aka AF_INET open */ 2571 static int 2572 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2573 { 2574 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2575 } 2576 2577 /* For /dev/tcp6 aka AF_INET6 open */ 2578 static int 2579 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2580 { 2581 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2582 } 2583 2584 conn_t * 2585 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2586 int *errorp) 2587 { 2588 tcp_t *tcp = NULL; 2589 conn_t *connp; 2590 zoneid_t zoneid; 2591 tcp_stack_t *tcps; 2592 squeue_t *sqp; 2593 2594 ASSERT(errorp != NULL); 2595 /* 2596 * Find the proper zoneid and netstack. 2597 */ 2598 /* 2599 * Special case for install: miniroot needs to be able to 2600 * access files via NFS as though it were always in the 2601 * global zone. 2602 */ 2603 if (credp == kcred && nfs_global_client_only != 0) { 2604 zoneid = GLOBAL_ZONEID; 2605 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2606 netstack_tcp; 2607 ASSERT(tcps != NULL); 2608 } else { 2609 netstack_t *ns; 2610 int err; 2611 2612 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2613 *errorp = err; 2614 return (NULL); 2615 } 2616 2617 ns = netstack_find_by_cred(credp); 2618 ASSERT(ns != NULL); 2619 tcps = ns->netstack_tcp; 2620 ASSERT(tcps != NULL); 2621 2622 /* 2623 * For exclusive stacks we set the zoneid to zero 2624 * to make TCP operate as if in the global zone. 2625 */ 2626 if (tcps->tcps_netstack->netstack_stackid != 2627 GLOBAL_NETSTACKID) 2628 zoneid = GLOBAL_ZONEID; 2629 else 2630 zoneid = crgetzoneid(credp); 2631 } 2632 2633 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2634 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2635 /* 2636 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2637 * so we drop it by one. 2638 */ 2639 netstack_rele(tcps->tcps_netstack); 2640 if (connp == NULL) { 2641 *errorp = ENOSR; 2642 return (NULL); 2643 } 2644 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2645 2646 connp->conn_sqp = sqp; 2647 connp->conn_initial_sqp = connp->conn_sqp; 2648 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2649 tcp = connp->conn_tcp; 2650 2651 /* 2652 * Besides asking IP to set the checksum for us, have conn_ip_output 2653 * to do the following checks when necessary: 2654 * 2655 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2656 * IXAF_VERIFY_PMTU: verify PMTU changes 2657 * IXAF_VERIFY_LSO: verify LSO capability changes 2658 */ 2659 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2660 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2661 2662 if (!tcps->tcps_dev_flow_ctl) 2663 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2664 2665 if (isv6) { 2666 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2667 connp->conn_ipversion = IPV6_VERSION; 2668 connp->conn_family = AF_INET6; 2669 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2670 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2671 } else { 2672 connp->conn_ipversion = IPV4_VERSION; 2673 connp->conn_family = AF_INET; 2674 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2675 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2676 } 2677 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2678 2679 crhold(credp); 2680 connp->conn_cred = credp; 2681 connp->conn_cpid = curproc->p_pid; 2682 connp->conn_open_time = ddi_get_lbolt64(); 2683 2684 /* Cache things in the ixa without any refhold */ 2685 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2686 connp->conn_ixa->ixa_cred = credp; 2687 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2688 2689 connp->conn_zoneid = zoneid; 2690 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2691 connp->conn_ixa->ixa_zoneid = zoneid; 2692 connp->conn_mlp_type = mlptSingle; 2693 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2694 ASSERT(tcp->tcp_tcps == tcps); 2695 2696 /* 2697 * If the caller has the process-wide flag set, then default to MAC 2698 * exempt mode. This allows read-down to unlabeled hosts. 2699 */ 2700 if (getpflags(NET_MAC_AWARE, credp) != 0) 2701 connp->conn_mac_mode = CONN_MAC_AWARE; 2702 2703 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2704 2705 if (issocket) { 2706 tcp->tcp_issocket = 1; 2707 } 2708 2709 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2710 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2711 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2712 connp->conn_so_type = SOCK_STREAM; 2713 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2714 tcps->tcps_wroff_xtra; 2715 2716 SOCK_CONNID_INIT(tcp->tcp_connid); 2717 /* DTrace ignores this - it isn't a tcp:::state-change */ 2718 tcp->tcp_state = TCPS_IDLE; 2719 tcp_init_values(tcp, NULL); 2720 return (connp); 2721 } 2722 2723 static int 2724 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2725 boolean_t isv6) 2726 { 2727 tcp_t *tcp = NULL; 2728 conn_t *connp = NULL; 2729 int err; 2730 vmem_t *minor_arena = NULL; 2731 dev_t conn_dev; 2732 boolean_t issocket; 2733 2734 if (q->q_ptr != NULL) 2735 return (0); 2736 2737 if (sflag == MODOPEN) 2738 return (EINVAL); 2739 2740 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2741 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2742 minor_arena = ip_minor_arena_la; 2743 } else { 2744 /* 2745 * Either minor numbers in the large arena were exhausted 2746 * or a non socket application is doing the open. 2747 * Try to allocate from the small arena. 2748 */ 2749 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2750 return (EBUSY); 2751 } 2752 minor_arena = ip_minor_arena_sa; 2753 } 2754 2755 ASSERT(minor_arena != NULL); 2756 2757 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2758 2759 if (flag & SO_FALLBACK) { 2760 /* 2761 * Non streams socket needs a stream to fallback to 2762 */ 2763 RD(q)->q_ptr = (void *)conn_dev; 2764 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2765 WR(q)->q_ptr = (void *)minor_arena; 2766 qprocson(q); 2767 return (0); 2768 } else if (flag & SO_ACCEPTOR) { 2769 q->q_qinfo = &tcp_acceptor_rinit; 2770 /* 2771 * the conn_dev and minor_arena will be subsequently used by 2772 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2773 * the minor device number for this connection from the q_ptr. 2774 */ 2775 RD(q)->q_ptr = (void *)conn_dev; 2776 WR(q)->q_qinfo = &tcp_acceptor_winit; 2777 WR(q)->q_ptr = (void *)minor_arena; 2778 qprocson(q); 2779 return (0); 2780 } 2781 2782 issocket = flag & SO_SOCKSTR; 2783 connp = tcp_create_common(credp, isv6, issocket, &err); 2784 2785 if (connp == NULL) { 2786 inet_minor_free(minor_arena, conn_dev); 2787 q->q_ptr = WR(q)->q_ptr = NULL; 2788 return (err); 2789 } 2790 2791 connp->conn_rq = q; 2792 connp->conn_wq = WR(q); 2793 q->q_ptr = WR(q)->q_ptr = connp; 2794 2795 connp->conn_dev = conn_dev; 2796 connp->conn_minor_arena = minor_arena; 2797 2798 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2799 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2800 2801 tcp = connp->conn_tcp; 2802 2803 if (issocket) { 2804 WR(q)->q_qinfo = &tcp_sock_winit; 2805 } else { 2806 #ifdef _ILP32 2807 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2808 #else 2809 tcp->tcp_acceptor_id = conn_dev; 2810 #endif /* _ILP32 */ 2811 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2812 } 2813 2814 /* 2815 * Put the ref for TCP. Ref for IP was already put 2816 * by ipcl_conn_create. Also Make the conn_t globally 2817 * visible to walkers 2818 */ 2819 mutex_enter(&connp->conn_lock); 2820 CONN_INC_REF_LOCKED(connp); 2821 ASSERT(connp->conn_ref == 2); 2822 connp->conn_state_flags &= ~CONN_INCIPIENT; 2823 mutex_exit(&connp->conn_lock); 2824 2825 qprocson(q); 2826 return (0); 2827 } 2828 2829 /* 2830 * Build/update the tcp header template (in conn_ht_iphc) based on 2831 * conn_xmit_ipp. The headers include ip6_t, any extension 2832 * headers, and the maximum size tcp header (to avoid reallocation 2833 * on the fly for additional tcp options). 2834 * 2835 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2836 * Returns failure if can't allocate memory. 2837 */ 2838 int 2839 tcp_build_hdrs(tcp_t *tcp) 2840 { 2841 tcp_stack_t *tcps = tcp->tcp_tcps; 2842 conn_t *connp = tcp->tcp_connp; 2843 char buf[TCP_MAX_HDR_LENGTH]; 2844 uint_t buflen; 2845 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2846 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2847 tcpha_t *tcpha; 2848 uint32_t cksum; 2849 int error; 2850 2851 /* 2852 * We might be called after the connection is set up, and we might 2853 * have TS options already in the TCP header. Thus we save any 2854 * existing tcp header. 2855 */ 2856 buflen = connp->conn_ht_ulp_len; 2857 if (buflen != 0) { 2858 bcopy(connp->conn_ht_ulp, buf, buflen); 2859 extralen -= buflen - ulplen; 2860 ulplen = buflen; 2861 } 2862 2863 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2864 mutex_enter(&connp->conn_lock); 2865 error = conn_build_hdr_template(connp, ulplen, extralen, 2866 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2867 mutex_exit(&connp->conn_lock); 2868 if (error != 0) 2869 return (error); 2870 2871 /* 2872 * Any routing header/option has been massaged. The checksum difference 2873 * is stored in conn_sum for later use. 2874 */ 2875 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2876 tcp->tcp_tcpha = tcpha; 2877 2878 /* restore any old tcp header */ 2879 if (buflen != 0) { 2880 bcopy(buf, connp->conn_ht_ulp, buflen); 2881 } else { 2882 tcpha->tha_sum = 0; 2883 tcpha->tha_urp = 0; 2884 tcpha->tha_ack = 0; 2885 tcpha->tha_offset_and_reserved = (5 << 4); 2886 tcpha->tha_lport = connp->conn_lport; 2887 tcpha->tha_fport = connp->conn_fport; 2888 } 2889 2890 /* 2891 * IP wants our header length in the checksum field to 2892 * allow it to perform a single pseudo-header+checksum 2893 * calculation on behalf of TCP. 2894 * Include the adjustment for a source route once IP_OPTIONS is set. 2895 */ 2896 cksum = sizeof (tcpha_t) + connp->conn_sum; 2897 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2898 ASSERT(cksum < 0x10000); 2899 tcpha->tha_sum = htons(cksum); 2900 2901 if (connp->conn_ipversion == IPV4_VERSION) 2902 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2903 else 2904 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2905 2906 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2907 connp->conn_wroff) { 2908 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2909 tcps->tcps_wroff_xtra; 2910 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2911 connp->conn_wroff); 2912 } 2913 return (0); 2914 } 2915 2916 /* 2917 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2918 * We do not allow the receive window to shrink. After setting rwnd, 2919 * set the flow control hiwat of the stream. 2920 * 2921 * This function is called in 2 cases: 2922 * 2923 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2924 * connection (passive open) and in tcp_input_data() for active connect. 2925 * This is called after tcp_mss_set() when the desired MSS value is known. 2926 * This makes sure that our window size is a mutiple of the other side's 2927 * MSS. 2928 * 2) Handling SO_RCVBUF option. 2929 * 2930 * It is ASSUMED that the requested size is a multiple of the current MSS. 2931 * 2932 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2933 * user requests so. 2934 */ 2935 int 2936 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2937 { 2938 uint32_t mss = tcp->tcp_mss; 2939 uint32_t old_max_rwnd; 2940 uint32_t max_transmittable_rwnd; 2941 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2942 tcp_stack_t *tcps = tcp->tcp_tcps; 2943 conn_t *connp = tcp->tcp_connp; 2944 2945 /* 2946 * Insist on a receive window that is at least 2947 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2948 * funny TCP interactions of Nagle algorithm, SWS avoidance 2949 * and delayed acknowledgement. 2950 */ 2951 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2952 2953 if (tcp->tcp_fused) { 2954 size_t sth_hiwat; 2955 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2956 2957 ASSERT(peer_tcp != NULL); 2958 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2959 if (!tcp_detached) { 2960 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2961 sth_hiwat); 2962 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2963 } 2964 2965 /* Caller could have changed tcp_rwnd; update tha_win */ 2966 if (tcp->tcp_tcpha != NULL) { 2967 tcp->tcp_tcpha->tha_win = 2968 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2969 } 2970 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2971 tcp->tcp_cwnd_max = rwnd; 2972 2973 /* 2974 * In the fusion case, the maxpsz stream head value of 2975 * our peer is set according to its send buffer size 2976 * and our receive buffer size; since the latter may 2977 * have changed we need to update the peer's maxpsz. 2978 */ 2979 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2980 return (sth_hiwat); 2981 } 2982 2983 if (tcp_detached) 2984 old_max_rwnd = tcp->tcp_rwnd; 2985 else 2986 old_max_rwnd = connp->conn_rcvbuf; 2987 2988 2989 /* 2990 * If window size info has already been exchanged, TCP should not 2991 * shrink the window. Shrinking window is doable if done carefully. 2992 * We may add that support later. But so far there is not a real 2993 * need to do that. 2994 */ 2995 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 2996 /* MSS may have changed, do a round up again. */ 2997 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 2998 } 2999 3000 /* 3001 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3002 * can be applied even before the window scale option is decided. 3003 */ 3004 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3005 if (rwnd > max_transmittable_rwnd) { 3006 rwnd = max_transmittable_rwnd - 3007 (max_transmittable_rwnd % mss); 3008 if (rwnd < mss) 3009 rwnd = max_transmittable_rwnd; 3010 /* 3011 * If we're over the limit we may have to back down tcp_rwnd. 3012 * The increment below won't work for us. So we set all three 3013 * here and the increment below will have no effect. 3014 */ 3015 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3016 } 3017 if (tcp->tcp_localnet) { 3018 tcp->tcp_rack_abs_max = 3019 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3020 } else { 3021 /* 3022 * For a remote host on a different subnet (through a router), 3023 * we ack every other packet to be conforming to RFC1122. 3024 * tcp_deferred_acks_max is default to 2. 3025 */ 3026 tcp->tcp_rack_abs_max = 3027 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3028 } 3029 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3030 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3031 else 3032 tcp->tcp_rack_cur_max = 0; 3033 /* 3034 * Increment the current rwnd by the amount the maximum grew (we 3035 * can not overwrite it since we might be in the middle of a 3036 * connection.) 3037 */ 3038 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3039 connp->conn_rcvbuf = rwnd; 3040 3041 /* Are we already connected? */ 3042 if (tcp->tcp_tcpha != NULL) { 3043 tcp->tcp_tcpha->tha_win = 3044 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3045 } 3046 3047 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3048 tcp->tcp_cwnd_max = rwnd; 3049 3050 if (tcp_detached) 3051 return (rwnd); 3052 3053 tcp_set_recv_threshold(tcp, rwnd >> 3); 3054 3055 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3056 return (rwnd); 3057 } 3058 3059 int 3060 tcp_do_unbind(conn_t *connp) 3061 { 3062 tcp_t *tcp = connp->conn_tcp; 3063 int32_t oldstate; 3064 3065 switch (tcp->tcp_state) { 3066 case TCPS_BOUND: 3067 case TCPS_LISTEN: 3068 break; 3069 default: 3070 return (-TOUTSTATE); 3071 } 3072 3073 /* 3074 * Need to clean up all the eagers since after the unbind, segments 3075 * will no longer be delivered to this listener stream. 3076 */ 3077 mutex_enter(&tcp->tcp_eager_lock); 3078 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3079 tcp_eager_cleanup(tcp, 0); 3080 } 3081 mutex_exit(&tcp->tcp_eager_lock); 3082 3083 /* Clean up the listener connection counter if necessary. */ 3084 if (tcp->tcp_listen_cnt != NULL) 3085 TCP_DECR_LISTEN_CNT(tcp); 3086 connp->conn_laddr_v6 = ipv6_all_zeros; 3087 connp->conn_saddr_v6 = ipv6_all_zeros; 3088 tcp_bind_hash_remove(tcp); 3089 oldstate = tcp->tcp_state; 3090 tcp->tcp_state = TCPS_IDLE; 3091 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3092 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3093 int32_t, oldstate); 3094 3095 ip_unbind(connp); 3096 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3097 3098 return (0); 3099 } 3100 3101 /* 3102 * Collect protocol properties to send to the upper handle. 3103 */ 3104 void 3105 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3106 { 3107 conn_t *connp = tcp->tcp_connp; 3108 3109 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3110 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3111 3112 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3113 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3114 connp->conn_rcvbuf; 3115 /* 3116 * Determine what write offset value to use depending on SACK and 3117 * whether the endpoint is fused or not. 3118 */ 3119 if (tcp->tcp_fused) { 3120 ASSERT(tcp->tcp_loopback); 3121 ASSERT(tcp->tcp_loopback_peer != NULL); 3122 /* 3123 * For fused tcp loopback, set the stream head's write 3124 * offset value to zero since we won't be needing any room 3125 * for TCP/IP headers. This would also improve performance 3126 * since it would reduce the amount of work done by kmem. 3127 * Non-fused tcp loopback case is handled separately below. 3128 */ 3129 sopp->sopp_wroff = 0; 3130 /* 3131 * Update the peer's transmit parameters according to 3132 * our recently calculated high water mark value. 3133 */ 3134 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3135 } else if (tcp->tcp_snd_sack_ok) { 3136 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3137 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3138 } else { 3139 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3140 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3141 } 3142 3143 if (tcp->tcp_loopback) { 3144 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3145 sopp->sopp_loopback = B_TRUE; 3146 } 3147 } 3148 3149 /* 3150 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3151 */ 3152 boolean_t 3153 tcp_zcopy_check(tcp_t *tcp) 3154 { 3155 conn_t *connp = tcp->tcp_connp; 3156 ip_xmit_attr_t *ixa = connp->conn_ixa; 3157 boolean_t zc_enabled = B_FALSE; 3158 tcp_stack_t *tcps = tcp->tcp_tcps; 3159 3160 if (do_tcpzcopy == 2) 3161 zc_enabled = B_TRUE; 3162 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3163 zc_enabled = B_TRUE; 3164 3165 tcp->tcp_snd_zcopy_on = zc_enabled; 3166 if (!TCP_IS_DETACHED(tcp)) { 3167 if (zc_enabled) { 3168 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3169 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3170 ZCVMSAFE); 3171 TCP_STAT(tcps, tcp_zcopy_on); 3172 } else { 3173 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3174 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3175 ZCVMUNSAFE); 3176 TCP_STAT(tcps, tcp_zcopy_off); 3177 } 3178 } 3179 return (zc_enabled); 3180 } 3181 3182 /* 3183 * Backoff from a zero-copy message by copying data to a new allocated 3184 * message and freeing the original desballoca'ed segmapped message. 3185 * 3186 * This function is called by following two callers: 3187 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3188 * the origial desballoca'ed message and notify sockfs. This is in re- 3189 * transmit state. 3190 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3191 * to be copied to new message. 3192 */ 3193 mblk_t * 3194 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3195 { 3196 mblk_t *nbp; 3197 mblk_t *head = NULL; 3198 mblk_t *tail = NULL; 3199 tcp_stack_t *tcps = tcp->tcp_tcps; 3200 3201 ASSERT(bp != NULL); 3202 while (bp != NULL) { 3203 if (IS_VMLOANED_MBLK(bp)) { 3204 TCP_STAT(tcps, tcp_zcopy_backoff); 3205 if ((nbp = copyb(bp)) == NULL) { 3206 tcp->tcp_xmit_zc_clean = B_FALSE; 3207 if (tail != NULL) 3208 tail->b_cont = bp; 3209 return ((head == NULL) ? bp : head); 3210 } 3211 3212 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3213 if (fix_xmitlist) 3214 tcp_zcopy_notify(tcp); 3215 else 3216 nbp->b_datap->db_struioflag |= 3217 STRUIO_ZCNOTIFY; 3218 } 3219 nbp->b_cont = bp->b_cont; 3220 3221 /* 3222 * Copy saved information and adjust tcp_xmit_tail 3223 * if needed. 3224 */ 3225 if (fix_xmitlist) { 3226 nbp->b_prev = bp->b_prev; 3227 nbp->b_next = bp->b_next; 3228 3229 if (tcp->tcp_xmit_tail == bp) 3230 tcp->tcp_xmit_tail = nbp; 3231 } 3232 3233 /* Free the original message. */ 3234 bp->b_prev = NULL; 3235 bp->b_next = NULL; 3236 freeb(bp); 3237 3238 bp = nbp; 3239 } 3240 3241 if (head == NULL) { 3242 head = bp; 3243 } 3244 if (tail == NULL) { 3245 tail = bp; 3246 } else { 3247 tail->b_cont = bp; 3248 tail = bp; 3249 } 3250 3251 /* Move forward. */ 3252 bp = bp->b_cont; 3253 } 3254 3255 if (fix_xmitlist) { 3256 tcp->tcp_xmit_last = tail; 3257 tcp->tcp_xmit_zc_clean = B_TRUE; 3258 } 3259 3260 return (head); 3261 } 3262 3263 void 3264 tcp_zcopy_notify(tcp_t *tcp) 3265 { 3266 struct stdata *stp; 3267 conn_t *connp; 3268 3269 if (tcp->tcp_detached) 3270 return; 3271 connp = tcp->tcp_connp; 3272 if (IPCL_IS_NONSTR(connp)) { 3273 (*connp->conn_upcalls->su_zcopy_notify) 3274 (connp->conn_upper_handle); 3275 return; 3276 } 3277 stp = STREAM(connp->conn_rq); 3278 mutex_enter(&stp->sd_lock); 3279 stp->sd_flag |= STZCNOTIFY; 3280 cv_broadcast(&stp->sd_zcopy_wait); 3281 mutex_exit(&stp->sd_lock); 3282 } 3283 3284 /* 3285 * Update the TCP connection according to change of LSO capability. 3286 */ 3287 static void 3288 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3289 { 3290 /* 3291 * We check against IPv4 header length to preserve the old behavior 3292 * of only enabling LSO when there are no IP options. 3293 * But this restriction might not be necessary at all. Before removing 3294 * it, need to verify how LSO is handled for source routing case, with 3295 * which IP does software checksum. 3296 * 3297 * For IPv6, whenever any extension header is needed, LSO is supressed. 3298 */ 3299 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3300 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3301 return; 3302 3303 /* 3304 * Either the LSO capability newly became usable, or it has changed. 3305 */ 3306 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3307 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3308 3309 ASSERT(lsoc->ill_lso_max > 0); 3310 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3311 3312 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3313 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3314 3315 /* 3316 * If LSO to be enabled, notify the STREAM header with larger 3317 * data block. 3318 */ 3319 if (!tcp->tcp_lso) 3320 tcp->tcp_maxpsz_multiplier = 0; 3321 3322 tcp->tcp_lso = B_TRUE; 3323 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3324 } else { /* LSO capability is not usable any more. */ 3325 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3326 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3327 3328 /* 3329 * If LSO to be disabled, notify the STREAM header with smaller 3330 * data block. And need to restore fragsize to PMTU. 3331 */ 3332 if (tcp->tcp_lso) { 3333 tcp->tcp_maxpsz_multiplier = 3334 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3335 ixa->ixa_fragsize = ixa->ixa_pmtu; 3336 tcp->tcp_lso = B_FALSE; 3337 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3338 } 3339 } 3340 3341 (void) tcp_maxpsz_set(tcp, B_TRUE); 3342 } 3343 3344 /* 3345 * Update the TCP connection according to change of ZEROCOPY capability. 3346 */ 3347 static void 3348 tcp_update_zcopy(tcp_t *tcp) 3349 { 3350 conn_t *connp = tcp->tcp_connp; 3351 tcp_stack_t *tcps = tcp->tcp_tcps; 3352 3353 if (tcp->tcp_snd_zcopy_on) { 3354 tcp->tcp_snd_zcopy_on = B_FALSE; 3355 if (!TCP_IS_DETACHED(tcp)) { 3356 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3357 ZCVMUNSAFE); 3358 TCP_STAT(tcps, tcp_zcopy_off); 3359 } 3360 } else { 3361 tcp->tcp_snd_zcopy_on = B_TRUE; 3362 if (!TCP_IS_DETACHED(tcp)) { 3363 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3364 ZCVMSAFE); 3365 TCP_STAT(tcps, tcp_zcopy_on); 3366 } 3367 } 3368 } 3369 3370 /* 3371 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3372 * so it's safe to update the TCP connection. 3373 */ 3374 /* ARGSUSED1 */ 3375 static void 3376 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3377 ixa_notify_arg_t narg) 3378 { 3379 tcp_t *tcp = (tcp_t *)arg; 3380 conn_t *connp = tcp->tcp_connp; 3381 3382 switch (ntype) { 3383 case IXAN_LSO: 3384 tcp_update_lso(tcp, connp->conn_ixa); 3385 break; 3386 case IXAN_PMTU: 3387 tcp_update_pmtu(tcp, B_FALSE); 3388 break; 3389 case IXAN_ZCOPY: 3390 tcp_update_zcopy(tcp); 3391 break; 3392 default: 3393 break; 3394 } 3395 } 3396 3397 /* 3398 * The TCP write service routine should never be called... 3399 */ 3400 /* ARGSUSED */ 3401 static void 3402 tcp_wsrv(queue_t *q) 3403 { 3404 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3405 3406 TCP_STAT(tcps, tcp_wsrv_called); 3407 } 3408 3409 /* 3410 * Hash list lookup routine for tcp_t structures. 3411 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3412 */ 3413 tcp_t * 3414 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3415 { 3416 tf_t *tf; 3417 tcp_t *tcp; 3418 3419 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3420 mutex_enter(&tf->tf_lock); 3421 for (tcp = tf->tf_tcp; tcp != NULL; 3422 tcp = tcp->tcp_acceptor_hash) { 3423 if (tcp->tcp_acceptor_id == id) { 3424 CONN_INC_REF(tcp->tcp_connp); 3425 mutex_exit(&tf->tf_lock); 3426 return (tcp); 3427 } 3428 } 3429 mutex_exit(&tf->tf_lock); 3430 return (NULL); 3431 } 3432 3433 /* 3434 * Hash list insertion routine for tcp_t structures. 3435 */ 3436 void 3437 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3438 { 3439 tf_t *tf; 3440 tcp_t **tcpp; 3441 tcp_t *tcpnext; 3442 tcp_stack_t *tcps = tcp->tcp_tcps; 3443 3444 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3445 3446 if (tcp->tcp_ptpahn != NULL) 3447 tcp_acceptor_hash_remove(tcp); 3448 tcpp = &tf->tf_tcp; 3449 mutex_enter(&tf->tf_lock); 3450 tcpnext = tcpp[0]; 3451 if (tcpnext) 3452 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3453 tcp->tcp_acceptor_hash = tcpnext; 3454 tcp->tcp_ptpahn = tcpp; 3455 tcpp[0] = tcp; 3456 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3457 mutex_exit(&tf->tf_lock); 3458 } 3459 3460 /* 3461 * Hash list removal routine for tcp_t structures. 3462 */ 3463 void 3464 tcp_acceptor_hash_remove(tcp_t *tcp) 3465 { 3466 tcp_t *tcpnext; 3467 kmutex_t *lockp; 3468 3469 /* 3470 * Extract the lock pointer in case there are concurrent 3471 * hash_remove's for this instance. 3472 */ 3473 lockp = tcp->tcp_acceptor_lockp; 3474 3475 if (tcp->tcp_ptpahn == NULL) 3476 return; 3477 3478 ASSERT(lockp != NULL); 3479 mutex_enter(lockp); 3480 if (tcp->tcp_ptpahn) { 3481 tcpnext = tcp->tcp_acceptor_hash; 3482 if (tcpnext) { 3483 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3484 tcp->tcp_acceptor_hash = NULL; 3485 } 3486 *tcp->tcp_ptpahn = tcpnext; 3487 tcp->tcp_ptpahn = NULL; 3488 } 3489 mutex_exit(lockp); 3490 tcp->tcp_acceptor_lockp = NULL; 3491 } 3492 3493 /* 3494 * Type three generator adapted from the random() function in 4.4 BSD: 3495 */ 3496 3497 /* 3498 * Copyright (c) 1983, 1993 3499 * The Regents of the University of California. All rights reserved. 3500 * 3501 * Redistribution and use in source and binary forms, with or without 3502 * modification, are permitted provided that the following conditions 3503 * are met: 3504 * 1. Redistributions of source code must retain the above copyright 3505 * notice, this list of conditions and the following disclaimer. 3506 * 2. Redistributions in binary form must reproduce the above copyright 3507 * notice, this list of conditions and the following disclaimer in the 3508 * documentation and/or other materials provided with the distribution. 3509 * 3. All advertising materials mentioning features or use of this software 3510 * must display the following acknowledgement: 3511 * This product includes software developed by the University of 3512 * California, Berkeley and its contributors. 3513 * 4. Neither the name of the University nor the names of its contributors 3514 * may be used to endorse or promote products derived from this software 3515 * without specific prior written permission. 3516 * 3517 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3518 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3519 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3520 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3521 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3522 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3523 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3524 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3525 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3526 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3527 * SUCH DAMAGE. 3528 */ 3529 3530 /* Type 3 -- x**31 + x**3 + 1 */ 3531 #define DEG_3 31 3532 #define SEP_3 3 3533 3534 3535 /* Protected by tcp_random_lock */ 3536 static int tcp_randtbl[DEG_3 + 1]; 3537 3538 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3539 static int *tcp_random_rptr = &tcp_randtbl[1]; 3540 3541 static int *tcp_random_state = &tcp_randtbl[1]; 3542 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3543 3544 kmutex_t tcp_random_lock; 3545 3546 void 3547 tcp_random_init(void) 3548 { 3549 int i; 3550 hrtime_t hrt; 3551 time_t wallclock; 3552 uint64_t result; 3553 3554 /* 3555 * Use high-res timer and current time for seed. Gethrtime() returns 3556 * a longlong, which may contain resolution down to nanoseconds. 3557 * The current time will either be a 32-bit or a 64-bit quantity. 3558 * XOR the two together in a 64-bit result variable. 3559 * Convert the result to a 32-bit value by multiplying the high-order 3560 * 32-bits by the low-order 32-bits. 3561 */ 3562 3563 hrt = gethrtime(); 3564 (void) drv_getparm(TIME, &wallclock); 3565 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3566 mutex_enter(&tcp_random_lock); 3567 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3568 (result & 0xffffffff); 3569 3570 for (i = 1; i < DEG_3; i++) 3571 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3572 + 12345; 3573 tcp_random_fptr = &tcp_random_state[SEP_3]; 3574 tcp_random_rptr = &tcp_random_state[0]; 3575 mutex_exit(&tcp_random_lock); 3576 for (i = 0; i < 10 * DEG_3; i++) 3577 (void) tcp_random(); 3578 } 3579 3580 /* 3581 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3582 * This range is selected to be approximately centered on TCP_ISS / 2, 3583 * and easy to compute. We get this value by generating a 32-bit random 3584 * number, selecting out the high-order 17 bits, and then adding one so 3585 * that we never return zero. 3586 */ 3587 int 3588 tcp_random(void) 3589 { 3590 int i; 3591 3592 mutex_enter(&tcp_random_lock); 3593 *tcp_random_fptr += *tcp_random_rptr; 3594 3595 /* 3596 * The high-order bits are more random than the low-order bits, 3597 * so we select out the high-order 17 bits and add one so that 3598 * we never return zero. 3599 */ 3600 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3601 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3602 tcp_random_fptr = tcp_random_state; 3603 ++tcp_random_rptr; 3604 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3605 tcp_random_rptr = tcp_random_state; 3606 3607 mutex_exit(&tcp_random_lock); 3608 return (i); 3609 } 3610 3611 /* 3612 * Split this function out so that if the secret changes, I'm okay. 3613 * 3614 * Initialize the tcp_iss_cookie and tcp_iss_key. 3615 */ 3616 3617 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3618 3619 void 3620 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3621 { 3622 struct { 3623 int32_t current_time; 3624 uint32_t randnum; 3625 uint16_t pad; 3626 uint8_t ether[6]; 3627 uint8_t passwd[PASSWD_SIZE]; 3628 } tcp_iss_cookie; 3629 time_t t; 3630 3631 /* 3632 * Start with the current absolute time. 3633 */ 3634 (void) drv_getparm(TIME, &t); 3635 tcp_iss_cookie.current_time = t; 3636 3637 /* 3638 * XXX - Need a more random number per RFC 1750, not this crap. 3639 * OTOH, if what follows is pretty random, then I'm in better shape. 3640 */ 3641 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3642 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3643 3644 /* 3645 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3646 * as a good template. 3647 */ 3648 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3649 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3650 3651 /* 3652 * The pass-phrase. Normally this is supplied by user-called NDD. 3653 */ 3654 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3655 3656 /* 3657 * See 4010593 if this section becomes a problem again, 3658 * but the local ethernet address is useful here. 3659 */ 3660 (void) localetheraddr(NULL, 3661 (struct ether_addr *)&tcp_iss_cookie.ether); 3662 3663 /* 3664 * Hash 'em all together. The MD5Final is called per-connection. 3665 */ 3666 mutex_enter(&tcps->tcps_iss_key_lock); 3667 MD5Init(&tcps->tcps_iss_key); 3668 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3669 sizeof (tcp_iss_cookie)); 3670 mutex_exit(&tcps->tcps_iss_key_lock); 3671 } 3672 3673 /* 3674 * Called by IP when IP is loaded into the kernel 3675 */ 3676 void 3677 tcp_ddi_g_init(void) 3678 { 3679 tcp_timercache = kmem_cache_create("tcp_timercache", 3680 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3681 NULL, NULL, NULL, NULL, NULL, 0); 3682 3683 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3684 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3685 3686 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3687 3688 /* Initialize the random number generator */ 3689 tcp_random_init(); 3690 3691 /* A single callback independently of how many netstacks we have */ 3692 ip_squeue_init(tcp_squeue_add); 3693 3694 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3695 3696 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3697 3698 /* 3699 * We want to be informed each time a stack is created or 3700 * destroyed in the kernel, so we can maintain the 3701 * set of tcp_stack_t's. 3702 */ 3703 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3704 } 3705 3706 3707 #define INET_NAME "ip" 3708 3709 /* 3710 * Initialize the TCP stack instance. 3711 */ 3712 static void * 3713 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3714 { 3715 tcp_stack_t *tcps; 3716 int i; 3717 int error = 0; 3718 major_t major; 3719 size_t arrsz; 3720 3721 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3722 tcps->tcps_netstack = ns; 3723 3724 /* Initialize locks */ 3725 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3726 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3727 3728 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3729 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3730 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3731 tcps->tcps_min_anonpriv_port = 512; 3732 3733 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3734 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3735 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3736 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3737 3738 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3739 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3740 MUTEX_DEFAULT, NULL); 3741 } 3742 3743 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3744 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3745 MUTEX_DEFAULT, NULL); 3746 } 3747 3748 /* TCP's IPsec code calls the packet dropper. */ 3749 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3750 3751 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3752 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3753 KM_SLEEP); 3754 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3755 3756 /* 3757 * Note: To really walk the device tree you need the devinfo 3758 * pointer to your device which is only available after probe/attach. 3759 * The following is safe only because it uses ddi_root_node() 3760 */ 3761 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3762 tcp_opt_obj.odb_opt_arr_cnt); 3763 3764 /* 3765 * Initialize RFC 1948 secret values. This will probably be reset once 3766 * by the boot scripts. 3767 * 3768 * Use NULL name, as the name is caught by the new lockstats. 3769 * 3770 * Initialize with some random, non-guessable string, like the global 3771 * T_INFO_ACK. 3772 */ 3773 3774 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3775 sizeof (tcp_g_t_info_ack), tcps); 3776 3777 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3778 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3779 3780 major = mod_name_to_major(INET_NAME); 3781 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3782 ASSERT(error == 0); 3783 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3784 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3785 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 3786 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3787 3788 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3789 tcps->tcps_reclaim = B_FALSE; 3790 tcps->tcps_reclaim_tid = 0; 3791 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3792 3793 /* 3794 * ncpus is the current number of CPUs, which can be bigger than 3795 * boot_ncpus. But we don't want to use ncpus to allocate all the 3796 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3797 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3798 * there are many CPUs as we will be adding them 1 by 1. 3799 * 3800 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3801 * are not freed until the stack is going away. So there is no need 3802 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3803 */ 3804 mutex_enter(&cpu_lock); 3805 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3806 mutex_exit(&cpu_lock); 3807 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3808 KM_SLEEP); 3809 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3810 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3811 KM_SLEEP); 3812 } 3813 3814 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3815 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3816 offsetof(tcp_listener_t, tl_link)); 3817 3818 return (tcps); 3819 } 3820 3821 /* 3822 * Called when the IP module is about to be unloaded. 3823 */ 3824 void 3825 tcp_ddi_g_destroy(void) 3826 { 3827 tcp_g_kstat_fini(tcp_g_kstat); 3828 tcp_g_kstat = NULL; 3829 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3830 3831 mutex_destroy(&tcp_random_lock); 3832 3833 kmem_cache_destroy(tcp_timercache); 3834 kmem_cache_destroy(tcp_notsack_blk_cache); 3835 3836 netstack_unregister(NS_TCP); 3837 } 3838 3839 /* 3840 * Free the TCP stack instance. 3841 */ 3842 static void 3843 tcp_stack_fini(netstackid_t stackid, void *arg) 3844 { 3845 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3846 int i; 3847 3848 freeb(tcps->tcps_ixa_cleanup_mp); 3849 tcps->tcps_ixa_cleanup_mp = NULL; 3850 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 3851 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3852 3853 /* 3854 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3855 * the timer. 3856 */ 3857 mutex_enter(&tcps->tcps_reclaim_lock); 3858 tcps->tcps_reclaim = B_FALSE; 3859 mutex_exit(&tcps->tcps_reclaim_lock); 3860 if (tcps->tcps_reclaim_tid != 0) 3861 (void) untimeout(tcps->tcps_reclaim_tid); 3862 mutex_destroy(&tcps->tcps_reclaim_lock); 3863 3864 tcp_listener_conf_cleanup(tcps); 3865 3866 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3867 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3868 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3869 3870 kmem_free(tcps->tcps_propinfo_tbl, 3871 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3872 tcps->tcps_propinfo_tbl = NULL; 3873 3874 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3875 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3876 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3877 } 3878 3879 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3880 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3881 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3882 } 3883 3884 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3885 tcps->tcps_bind_fanout = NULL; 3886 3887 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3888 TCP_ACCEPTOR_FANOUT_SIZE); 3889 tcps->tcps_acceptor_fanout = NULL; 3890 3891 mutex_destroy(&tcps->tcps_iss_key_lock); 3892 mutex_destroy(&tcps->tcps_epriv_port_lock); 3893 3894 ip_drop_unregister(&tcps->tcps_dropper); 3895 3896 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3897 tcps->tcps_kstat = NULL; 3898 3899 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3900 tcps->tcps_mibkp = NULL; 3901 3902 ldi_ident_release(tcps->tcps_ldi_ident); 3903 kmem_free(tcps, sizeof (*tcps)); 3904 } 3905 3906 /* 3907 * Generate ISS, taking into account NDD changes may happen halfway through. 3908 * (If the iss is not zero, set it.) 3909 */ 3910 3911 static void 3912 tcp_iss_init(tcp_t *tcp) 3913 { 3914 MD5_CTX context; 3915 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3916 uint32_t answer[4]; 3917 tcp_stack_t *tcps = tcp->tcp_tcps; 3918 conn_t *connp = tcp->tcp_connp; 3919 3920 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 3921 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3922 switch (tcps->tcps_strong_iss) { 3923 case 2: 3924 mutex_enter(&tcps->tcps_iss_key_lock); 3925 context = tcps->tcps_iss_key; 3926 mutex_exit(&tcps->tcps_iss_key_lock); 3927 arg.ports = connp->conn_ports; 3928 arg.src = connp->conn_laddr_v6; 3929 arg.dst = connp->conn_faddr_v6; 3930 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3931 MD5Final((uchar_t *)answer, &context); 3932 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3933 /* 3934 * Now that we've hashed into a unique per-connection sequence 3935 * space, add a random increment per strong_iss == 1. So I 3936 * guess we'll have to... 3937 */ 3938 /* FALLTHRU */ 3939 case 1: 3940 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3941 break; 3942 default: 3943 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 3944 break; 3945 } 3946 tcp->tcp_valid_bits = TCP_ISS_VALID; 3947 tcp->tcp_fss = tcp->tcp_iss - 1; 3948 tcp->tcp_suna = tcp->tcp_iss; 3949 tcp->tcp_snxt = tcp->tcp_iss + 1; 3950 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3951 tcp->tcp_csuna = tcp->tcp_snxt; 3952 } 3953 3954 /* 3955 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3956 * on the specified backing STREAMS q. Note, the caller may make the 3957 * decision to call based on the tcp_t.tcp_flow_stopped value which 3958 * when check outside the q's lock is only an advisory check ... 3959 */ 3960 void 3961 tcp_setqfull(tcp_t *tcp) 3962 { 3963 tcp_stack_t *tcps = tcp->tcp_tcps; 3964 conn_t *connp = tcp->tcp_connp; 3965 3966 if (tcp->tcp_closed) 3967 return; 3968 3969 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3970 if (tcp->tcp_flow_stopped) 3971 TCP_STAT(tcps, tcp_flwctl_on); 3972 } 3973 3974 void 3975 tcp_clrqfull(tcp_t *tcp) 3976 { 3977 conn_t *connp = tcp->tcp_connp; 3978 3979 if (tcp->tcp_closed) 3980 return; 3981 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3982 } 3983 3984 static int 3985 tcp_squeue_switch(int val) 3986 { 3987 int rval = SQ_FILL; 3988 3989 switch (val) { 3990 case 1: 3991 rval = SQ_NODRAIN; 3992 break; 3993 case 2: 3994 rval = SQ_PROCESS; 3995 break; 3996 default: 3997 break; 3998 } 3999 return (rval); 4000 } 4001 4002 /* 4003 * This is called once for each squeue - globally for all stack 4004 * instances. 4005 */ 4006 static void 4007 tcp_squeue_add(squeue_t *sqp) 4008 { 4009 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4010 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4011 4012 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4013 if (tcp_free_list_max_cnt == 0) { 4014 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4015 max_ncpus : boot_max_ncpus); 4016 4017 /* 4018 * Limit number of entries to 1% of availble memory / tcp_ncpus 4019 */ 4020 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4021 (tcp_ncpus * sizeof (tcp_t) * 100); 4022 } 4023 tcp_time_wait->tcp_free_list_cnt = 0; 4024 } 4025 /* 4026 * Return unix error is tli error is TSYSERR, otherwise return a negative 4027 * tli error. 4028 */ 4029 int 4030 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4031 boolean_t bind_to_req_port_only) 4032 { 4033 int error; 4034 tcp_t *tcp = connp->conn_tcp; 4035 4036 if (tcp->tcp_state >= TCPS_BOUND) { 4037 if (connp->conn_debug) { 4038 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4039 "tcp_bind: bad state, %d", tcp->tcp_state); 4040 } 4041 return (-TOUTSTATE); 4042 } 4043 4044 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4045 if (error != 0) 4046 return (error); 4047 4048 ASSERT(tcp->tcp_state == TCPS_BOUND); 4049 tcp->tcp_conn_req_max = 0; 4050 return (0); 4051 } 4052 4053 /* 4054 * If the return value from this function is positive, it's a UNIX error. 4055 * Otherwise, if it's negative, then the absolute value is a TLI error. 4056 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4057 */ 4058 int 4059 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4060 cred_t *cr, pid_t pid) 4061 { 4062 tcp_t *tcp = connp->conn_tcp; 4063 sin_t *sin = (sin_t *)sa; 4064 sin6_t *sin6 = (sin6_t *)sa; 4065 ipaddr_t *dstaddrp; 4066 in_port_t dstport; 4067 uint_t srcid; 4068 int error; 4069 uint32_t mss; 4070 mblk_t *syn_mp; 4071 tcp_stack_t *tcps = tcp->tcp_tcps; 4072 int32_t oldstate; 4073 ip_xmit_attr_t *ixa = connp->conn_ixa; 4074 4075 oldstate = tcp->tcp_state; 4076 4077 switch (len) { 4078 default: 4079 /* 4080 * Should never happen 4081 */ 4082 return (EINVAL); 4083 4084 case sizeof (sin_t): 4085 sin = (sin_t *)sa; 4086 if (sin->sin_port == 0) { 4087 return (-TBADADDR); 4088 } 4089 if (connp->conn_ipv6_v6only) { 4090 return (EAFNOSUPPORT); 4091 } 4092 break; 4093 4094 case sizeof (sin6_t): 4095 sin6 = (sin6_t *)sa; 4096 if (sin6->sin6_port == 0) { 4097 return (-TBADADDR); 4098 } 4099 break; 4100 } 4101 /* 4102 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4103 * make sure that the conn_ipversion is IPV4_VERSION. We 4104 * need to this before we call tcp_bindi() so that the port lookup 4105 * code will look for ports in the correct port space (IPv4 and 4106 * IPv6 have separate port spaces). 4107 */ 4108 if (connp->conn_family == AF_INET6 && 4109 connp->conn_ipversion == IPV6_VERSION && 4110 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4111 if (connp->conn_ipv6_v6only) 4112 return (EADDRNOTAVAIL); 4113 4114 connp->conn_ipversion = IPV4_VERSION; 4115 } 4116 4117 switch (tcp->tcp_state) { 4118 case TCPS_LISTEN: 4119 /* 4120 * Listening sockets are not allowed to issue connect(). 4121 */ 4122 if (IPCL_IS_NONSTR(connp)) 4123 return (EOPNOTSUPP); 4124 /* FALLTHRU */ 4125 case TCPS_IDLE: 4126 /* 4127 * We support quick connect, refer to comments in 4128 * tcp_connect_*() 4129 */ 4130 /* FALLTHRU */ 4131 case TCPS_BOUND: 4132 break; 4133 default: 4134 return (-TOUTSTATE); 4135 } 4136 4137 /* 4138 * We update our cred/cpid based on the caller of connect 4139 */ 4140 if (connp->conn_cred != cr) { 4141 crhold(cr); 4142 crfree(connp->conn_cred); 4143 connp->conn_cred = cr; 4144 } 4145 connp->conn_cpid = pid; 4146 4147 /* Cache things in the ixa without any refhold */ 4148 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4149 ixa->ixa_cred = cr; 4150 ixa->ixa_cpid = pid; 4151 if (is_system_labeled()) { 4152 /* We need to restart with a label based on the cred */ 4153 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4154 } 4155 4156 if (connp->conn_family == AF_INET6) { 4157 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4158 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4159 sin6->sin6_port, sin6->sin6_flowinfo, 4160 sin6->__sin6_src_id, sin6->sin6_scope_id); 4161 } else { 4162 /* 4163 * Destination adress is mapped IPv6 address. 4164 * Source bound address should be unspecified or 4165 * IPv6 mapped address as well. 4166 */ 4167 if (!IN6_IS_ADDR_UNSPECIFIED( 4168 &connp->conn_bound_addr_v6) && 4169 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4170 return (EADDRNOTAVAIL); 4171 } 4172 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4173 dstport = sin6->sin6_port; 4174 srcid = sin6->__sin6_src_id; 4175 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4176 srcid); 4177 } 4178 } else { 4179 dstaddrp = &sin->sin_addr.s_addr; 4180 dstport = sin->sin_port; 4181 srcid = 0; 4182 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4183 } 4184 4185 if (error != 0) 4186 goto connect_failed; 4187 4188 CL_INET_CONNECT(connp, B_TRUE, error); 4189 if (error != 0) 4190 goto connect_failed; 4191 4192 /* connect succeeded */ 4193 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4194 tcp->tcp_active_open = 1; 4195 4196 /* 4197 * tcp_set_destination() does not adjust for TCP/IP header length. 4198 */ 4199 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4200 4201 /* 4202 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4203 * to the nearest MSS. 4204 * 4205 * We do the round up here because we need to get the interface MTU 4206 * first before we can do the round up. 4207 */ 4208 tcp->tcp_rwnd = connp->conn_rcvbuf; 4209 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4210 tcps->tcps_recv_hiwat_minmss * mss); 4211 connp->conn_rcvbuf = tcp->tcp_rwnd; 4212 tcp_set_ws_value(tcp); 4213 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4214 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4215 tcp->tcp_snd_ws_ok = B_TRUE; 4216 4217 /* 4218 * Set tcp_snd_ts_ok to true 4219 * so that tcp_xmit_mp will 4220 * include the timestamp 4221 * option in the SYN segment. 4222 */ 4223 if (tcps->tcps_tstamp_always || 4224 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4225 tcp->tcp_snd_ts_ok = B_TRUE; 4226 } 4227 4228 /* 4229 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4230 * the SACK metric is set. So here we just check the per stack SACK 4231 * permitted param. 4232 */ 4233 if (tcps->tcps_sack_permitted == 2) { 4234 ASSERT(tcp->tcp_num_sack_blk == 0); 4235 ASSERT(tcp->tcp_notsack_list == NULL); 4236 tcp->tcp_snd_sack_ok = B_TRUE; 4237 } 4238 4239 /* 4240 * Should we use ECN? Note that the current 4241 * default value (SunOS 5.9) of tcp_ecn_permitted 4242 * is 1. The reason for doing this is that there 4243 * are equipments out there that will drop ECN 4244 * enabled IP packets. Setting it to 1 avoids 4245 * compatibility problems. 4246 */ 4247 if (tcps->tcps_ecn_permitted == 2) 4248 tcp->tcp_ecn_ok = B_TRUE; 4249 4250 /* Trace change from BOUND -> SYN_SENT here */ 4251 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4252 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4253 int32_t, TCPS_BOUND); 4254 4255 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4256 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4257 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4258 if (syn_mp != NULL) { 4259 /* 4260 * We must bump the generation before sending the syn 4261 * to ensure that we use the right generation in case 4262 * this thread issues a "connected" up call. 4263 */ 4264 SOCK_CONNID_BUMP(tcp->tcp_connid); 4265 /* 4266 * DTrace sending the first SYN as a 4267 * tcp:::connect-request event. 4268 */ 4269 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4270 ip_xmit_attr_t *, connp->conn_ixa, 4271 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4272 tcph_t *, 4273 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4274 tcp_send_data(tcp, syn_mp); 4275 } 4276 4277 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4278 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4279 return (0); 4280 4281 connect_failed: 4282 connp->conn_faddr_v6 = ipv6_all_zeros; 4283 connp->conn_fport = 0; 4284 tcp->tcp_state = oldstate; 4285 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4286 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4287 return (error); 4288 } 4289 4290 int 4291 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4292 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4293 { 4294 tcp_t *tcp = connp->conn_tcp; 4295 int error = 0; 4296 tcp_stack_t *tcps = tcp->tcp_tcps; 4297 int32_t oldstate; 4298 4299 /* All Solaris components should pass a cred for this operation. */ 4300 ASSERT(cr != NULL); 4301 4302 if (tcp->tcp_state >= TCPS_BOUND) { 4303 if ((tcp->tcp_state == TCPS_BOUND || 4304 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4305 /* 4306 * Handle listen() increasing backlog. 4307 * This is more "liberal" then what the TPI spec 4308 * requires but is needed to avoid a t_unbind 4309 * when handling listen() since the port number 4310 * might be "stolen" between the unbind and bind. 4311 */ 4312 goto do_listen; 4313 } 4314 if (connp->conn_debug) { 4315 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4316 "tcp_listen: bad state, %d", tcp->tcp_state); 4317 } 4318 return (-TOUTSTATE); 4319 } else { 4320 if (sa == NULL) { 4321 sin6_t addr; 4322 sin_t *sin; 4323 sin6_t *sin6; 4324 4325 ASSERT(IPCL_IS_NONSTR(connp)); 4326 /* Do an implicit bind: Request for a generic port. */ 4327 if (connp->conn_family == AF_INET) { 4328 len = sizeof (sin_t); 4329 sin = (sin_t *)&addr; 4330 *sin = sin_null; 4331 sin->sin_family = AF_INET; 4332 } else { 4333 ASSERT(connp->conn_family == AF_INET6); 4334 len = sizeof (sin6_t); 4335 sin6 = (sin6_t *)&addr; 4336 *sin6 = sin6_null; 4337 sin6->sin6_family = AF_INET6; 4338 } 4339 sa = (struct sockaddr *)&addr; 4340 } 4341 4342 error = tcp_bind_check(connp, sa, len, cr, 4343 bind_to_req_port_only); 4344 if (error) 4345 return (error); 4346 /* Fall through and do the fanout insertion */ 4347 } 4348 4349 do_listen: 4350 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4351 tcp->tcp_conn_req_max = backlog; 4352 if (tcp->tcp_conn_req_max) { 4353 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4354 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4355 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4356 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4357 /* 4358 * If this is a listener, do not reset the eager list 4359 * and other stuffs. Note that we don't check if the 4360 * existing eager list meets the new tcp_conn_req_max 4361 * requirement. 4362 */ 4363 if (tcp->tcp_state != TCPS_LISTEN) { 4364 tcp->tcp_state = TCPS_LISTEN; 4365 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4366 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4367 void, NULL, int32_t, TCPS_BOUND); 4368 /* Initialize the chain. Don't need the eager_lock */ 4369 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4370 tcp->tcp_eager_next_drop_q0 = tcp; 4371 tcp->tcp_eager_prev_drop_q0 = tcp; 4372 tcp->tcp_second_ctimer_threshold = 4373 tcps->tcps_ip_abort_linterval; 4374 } 4375 } 4376 4377 /* 4378 * We need to make sure that the conn_recv is set to a non-null 4379 * value before we insert the conn into the classifier table. 4380 * This is to avoid a race with an incoming packet which does an 4381 * ipcl_classify(). 4382 * We initially set it to tcp_input_listener_unbound to try to 4383 * pick a good squeue for the listener when the first SYN arrives. 4384 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4385 * first SYN. 4386 */ 4387 connp->conn_recv = tcp_input_listener_unbound; 4388 4389 /* Insert the listener in the classifier table */ 4390 error = ip_laddr_fanout_insert(connp); 4391 if (error != 0) { 4392 /* Undo the bind - release the port number */ 4393 oldstate = tcp->tcp_state; 4394 tcp->tcp_state = TCPS_IDLE; 4395 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4396 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4397 int32_t, oldstate); 4398 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4399 4400 connp->conn_laddr_v6 = ipv6_all_zeros; 4401 connp->conn_saddr_v6 = ipv6_all_zeros; 4402 connp->conn_ports = 0; 4403 4404 if (connp->conn_anon_port) { 4405 zone_t *zone; 4406 4407 zone = crgetzone(cr); 4408 connp->conn_anon_port = B_FALSE; 4409 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4410 connp->conn_proto, connp->conn_lport, B_FALSE); 4411 } 4412 connp->conn_mlp_type = mlptSingle; 4413 4414 tcp_bind_hash_remove(tcp); 4415 return (error); 4416 } else { 4417 /* 4418 * If there is a connection limit, allocate and initialize 4419 * the counter struct. Note that since listen can be called 4420 * multiple times, the struct may have been allready allocated. 4421 */ 4422 if (!list_is_empty(&tcps->tcps_listener_conf) && 4423 tcp->tcp_listen_cnt == NULL) { 4424 tcp_listen_cnt_t *tlc; 4425 uint32_t ratio; 4426 4427 ratio = tcp_find_listener_conf(tcps, 4428 ntohs(connp->conn_lport)); 4429 if (ratio != 0) { 4430 uint32_t mem_ratio, tot_buf; 4431 4432 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4433 KM_SLEEP); 4434 /* 4435 * Calculate the connection limit based on 4436 * the configured ratio and maxusers. Maxusers 4437 * are calculated based on memory size, 4438 * ~ 1 user per MB. Note that the conn_rcvbuf 4439 * and conn_sndbuf may change after a 4440 * connection is accepted. So what we have 4441 * is only an approximation. 4442 */ 4443 if ((tot_buf = connp->conn_rcvbuf + 4444 connp->conn_sndbuf) < MB) { 4445 mem_ratio = MB / tot_buf; 4446 tlc->tlc_max = maxusers / ratio * 4447 mem_ratio; 4448 } else { 4449 mem_ratio = tot_buf / MB; 4450 tlc->tlc_max = maxusers / ratio / 4451 mem_ratio; 4452 } 4453 /* At least we should allow two connections! */ 4454 if (tlc->tlc_max <= tcp_min_conn_listener) 4455 tlc->tlc_max = tcp_min_conn_listener; 4456 tlc->tlc_cnt = 1; 4457 tlc->tlc_drop = 0; 4458 tcp->tcp_listen_cnt = tlc; 4459 } 4460 } 4461 } 4462 return (error); 4463 } 4464