1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 * Copyright 2020 Joyent, Inc.
28 * Copyright 2024 Oxide Computer Company
29 */
30 /* Copyright (c) 1990 Mentat Inc. */
31
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/timod.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/xti_inet.h>
45 #include <sys/cmn_err.h>
46 #include <sys/debug.h>
47 #include <sys/sdt.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/pattr.h>
54 #include <sys/policy.h>
55 #include <sys/priv.h>
56 #include <sys/zone.h>
57 #include <sys/sunldi.h>
58
59 #include <sys/errno.h>
60 #include <sys/signal.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/isa_defs.h>
65 #include <sys/md5.h>
66 #include <sys/random.h>
67 #include <sys/uio.h>
68 #include <sys/systm.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 #include <inet/tcp_sig.h>
77
78 #include <inet/common.h>
79 #include <inet/cc.h>
80 #include <inet/ip.h>
81 #include <inet/ip_impl.h>
82 #include <inet/ip6.h>
83 #include <inet/ip_ndp.h>
84 #include <inet/proto_set.h>
85 #include <inet/mib2.h>
86 #include <inet/optcom.h>
87 #include <inet/snmpcom.h>
88 #include <inet/kstatcom.h>
89 #include <inet/tcp.h>
90 #include <inet/tcp_impl.h>
91 #include <inet/tcp_cluster.h>
92 #include <inet/udp_impl.h>
93 #include <net/pfkeyv2.h>
94 #include <inet/ipdrop.h>
95
96 #include <inet/ipclassifier.h>
97 #include <inet/ip_ire.h>
98 #include <inet/ip_ftable.h>
99 #include <inet/ip_if.h>
100 #include <inet/ipp_common.h>
101 #include <inet/ip_rts.h>
102 #include <inet/ip_netinfo.h>
103 #include <sys/squeue_impl.h>
104 #include <sys/squeue.h>
105 #include <sys/tsol/label.h>
106 #include <sys/tsol/tnet.h>
107 #include <rpc/pmap_prot.h>
108 #include <sys/callo.h>
109
110 /*
111 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
112 *
113 * (Read the detailed design doc in PSARC case directory)
114 *
115 * The entire tcp state is contained in tcp_t and conn_t structure
116 * which are allocated in tandem using ipcl_conn_create() and passing
117 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
118 * the references on the tcp_t. The tcp_t structure is never compressed
119 * and packets always land on the correct TCP perimeter from the time
120 * eager is created till the time tcp_t dies (as such the old mentat
121 * TCP global queue is not used for detached state and no IPSEC checking
122 * is required). The global queue is still allocated to send out resets
123 * for connection which have no listeners and IP directly calls
124 * tcp_xmit_listeners_reset() which does any policy check.
125 *
126 * Protection and Synchronisation mechanism:
127 *
128 * The tcp data structure does not use any kind of lock for protecting
129 * its state but instead uses 'squeues' for mutual exclusion from various
130 * read and write side threads. To access a tcp member, the thread should
131 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
132 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
133 * can pass any tcp function having prototype of edesc_t as argument
134 * (different from traditional STREAMs model where packets come in only
135 * designated entry points). The list of functions that can be directly
136 * called via squeue are listed before the usual function prototype.
137 *
138 * Referencing:
139 *
140 * TCP is MT-Hot and we use a reference based scheme to make sure that the
141 * tcp structure doesn't disappear when its needed. When the application
142 * creates an outgoing connection or accepts an incoming connection, we
143 * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
144 * The IP reference is just a symbolic reference since ip_tcpclose()
145 * looks at tcp structure after tcp_close_output() returns which could
146 * have dropped the last TCP reference. So as long as the connection is
147 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
148 * conn_t. The classifier puts its own reference when the connection is
149 * inserted in listen or connected hash. Anytime a thread needs to enter
150 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
151 * on write side or by doing a classify on read side and then puts a
152 * reference on the conn before doing squeue_enter/tryenter/fill. For
153 * read side, the classifier itself puts the reference under fanout lock
154 * to make sure that tcp can't disappear before it gets processed. The
155 * squeue will drop this reference automatically so the called function
156 * doesn't have to do a DEC_REF.
157 *
158 * Opening a new connection:
159 *
160 * The outgoing connection open is pretty simple. tcp_open() does the
161 * work in creating the conn/tcp structure and initializing it. The
162 * squeue assignment is done based on the CPU the application
163 * is running on. So for outbound connections, processing is always done
164 * on application CPU which might be different from the incoming CPU
165 * being interrupted by the NIC. An optimal way would be to figure out
166 * the NIC <-> CPU binding at listen time, and assign the outgoing
167 * connection to the squeue attached to the CPU that will be interrupted
168 * for incoming packets (we know the NIC based on the bind IP address).
169 * This might seem like a problem if more data is going out but the
170 * fact is that in most cases the transmit is ACK driven transmit where
171 * the outgoing data normally sits on TCP's xmit queue waiting to be
172 * transmitted.
173 *
174 * Accepting a connection:
175 *
176 * This is a more interesting case because of various races involved in
177 * establishing a eager in its own perimeter. Read the meta comment on
178 * top of tcp_input_listener(). But briefly, the squeue is picked by
179 * ip_fanout based on the ring or the sender (if loopback).
180 *
181 * Closing a connection:
182 *
183 * The close is fairly straight forward. tcp_close() calls tcp_close_output()
184 * via squeue to do the close and mark the tcp as detached if the connection
185 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
186 * reference but tcp_close() drop IP's reference always. So if tcp was
187 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
188 * and 1 because it is in classifier's connected hash. This is the condition
189 * we use to determine that its OK to clean up the tcp outside of squeue
190 * when time wait expires (check the ref under fanout and conn_lock and
191 * if it is 2, remove it from fanout hash and kill it).
192 *
193 * Although close just drops the necessary references and marks the
194 * tcp_detached state, tcp_close needs to know the tcp_detached has been
195 * set (under squeue) before letting the STREAM go away (because a
196 * inbound packet might attempt to go up the STREAM while the close
197 * has happened and tcp_detached is not set). So a special lock and
198 * flag is used along with a condition variable (tcp_closelock, tcp_closed,
199 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
200 * tcp_detached.
201 *
202 * Special provisions and fast paths:
203 *
204 * We make special provisions for sockfs by marking tcp_issocket
205 * whenever we have only sockfs on top of TCP. This allows us to skip
206 * putting the tcp in acceptor hash since a sockfs listener can never
207 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
208 * since eager has already been allocated and the accept now happens
209 * on acceptor STREAM. There is a big blob of comment on top of
210 * tcp_input_listener explaining the new accept. When socket is POP'd,
211 * sockfs sends us an ioctl to mark the fact and we go back to old
212 * behaviour. Once tcp_issocket is unset, its never set for the
213 * life of that connection.
214 *
215 * IPsec notes :
216 *
217 * Since a packet is always executed on the correct TCP perimeter
218 * all IPsec processing is defered to IP including checking new
219 * connections and setting IPSEC policies for new connection. The
220 * only exception is tcp_xmit_listeners_reset() which is called
221 * directly from IP and needs to policy check to see if TH_RST
222 * can be sent out.
223 */
224
225 /*
226 * Values for squeue switch:
227 * 1: SQ_NODRAIN
228 * 2: SQ_PROCESS
229 * 3: SQ_FILL
230 */
231 int tcp_squeue_wput = 2; /* /etc/systems */
232 int tcp_squeue_flag;
233
234 /*
235 * To prevent memory hog, limit the number of entries in tcp_free_list
236 * to 1% of available memory / number of cpus
237 */
238 uint_t tcp_free_list_max_cnt = 0;
239
240 #define TIDUSZ 4096 /* transport interface data unit size */
241
242 /*
243 * Size of acceptor hash list. It has to be a power of 2 for hashing.
244 */
245 #define TCP_ACCEPTOR_FANOUT_SIZE 512
246
247 #ifdef _ILP32
248 #define TCP_ACCEPTOR_HASH(accid) \
249 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
250 #else
251 #define TCP_ACCEPTOR_HASH(accid) \
252 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
253 #endif /* _ILP32 */
254
255 /*
256 * Minimum number of connections which can be created per listener. Used
257 * when the listener connection count is in effect.
258 */
259 static uint32_t tcp_min_conn_listener = 2;
260
261 uint32_t tcp_early_abort = 30;
262
263 /* TCP Timer control structure */
264 typedef struct tcpt_s {
265 pfv_t tcpt_pfv; /* The routine we are to call */
266 tcp_t *tcpt_tcp; /* The parameter we are to pass in */
267 } tcpt_t;
268
269 /*
270 * Functions called directly via squeue having a prototype of edesc_t.
271 */
272 void tcp_input_data(void *arg, mblk_t *mp, void *arg2,
273 ip_recv_attr_t *ira);
274 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
275 ip_recv_attr_t *dummy);
276
277
278 /* Prototype for TCP functions */
279 static void tcp_random_init(void);
280 int tcp_random(void);
281 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
282 in_port_t dstport, uint_t srcid);
283 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
284 in_port_t dstport, uint32_t flowinfo,
285 uint_t srcid, uint32_t scope_id);
286 static void tcp_iss_init(tcp_t *tcp);
287 static void tcp_reinit(tcp_t *tcp);
288 static void tcp_reinit_values(tcp_t *tcp);
289
290 static int tcp_wsrv(queue_t *q);
291 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
292 static void tcp_update_zcopy(tcp_t *tcp);
293 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
294 ixa_notify_arg_t);
295 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns);
296 static void tcp_stack_fini(netstackid_t stackid, void *arg);
297
298 static int tcp_squeue_switch(int);
299
300 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
301 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
302 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
303
304 static void tcp_squeue_add(squeue_t *);
305
306 struct module_info tcp_rinfo = {
307 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
308 };
309
310 static struct module_info tcp_winfo = {
311 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
312 };
313
314 /*
315 * Entry points for TCP as a device. The normal case which supports
316 * the TCP functionality.
317 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
318 */
319 struct qinit tcp_rinitv4 = {
320 NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
321 };
322
323 struct qinit tcp_rinitv6 = {
324 NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
325 };
326
327 struct qinit tcp_winit = {
328 tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
329 };
330
331 /* Initial entry point for TCP in socket mode. */
332 struct qinit tcp_sock_winit = {
333 tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
334 };
335
336 /* TCP entry point during fallback */
337 struct qinit tcp_fallback_sock_winit = {
338 tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
339 };
340
341 /*
342 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
343 * an accept. Avoid allocating data structures since eager has already
344 * been created.
345 */
346 struct qinit tcp_acceptor_rinit = {
347 NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
348 };
349
350 struct qinit tcp_acceptor_winit = {
351 tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
352 };
353
354 /* For AF_INET aka /dev/tcp */
355 struct streamtab tcpinfov4 = {
356 &tcp_rinitv4, &tcp_winit
357 };
358
359 /* For AF_INET6 aka /dev/tcp6 */
360 struct streamtab tcpinfov6 = {
361 &tcp_rinitv6, &tcp_winit
362 };
363
364 /*
365 * Following assumes TPI alignment requirements stay along 32 bit
366 * boundaries
367 */
368 #define ROUNDUP32(x) \
369 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
370
371 /* Template for response to info request. */
372 struct T_info_ack tcp_g_t_info_ack = {
373 T_INFO_ACK, /* PRIM_type */
374 0, /* TSDU_size */
375 T_INFINITE, /* ETSDU_size */
376 T_INVALID, /* CDATA_size */
377 T_INVALID, /* DDATA_size */
378 sizeof (sin_t), /* ADDR_size */
379 0, /* OPT_size - not initialized here */
380 TIDUSZ, /* TIDU_size */
381 T_COTS_ORD, /* SERV_type */
382 TCPS_IDLE, /* CURRENT_state */
383 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
384 };
385
386 struct T_info_ack tcp_g_t_info_ack_v6 = {
387 T_INFO_ACK, /* PRIM_type */
388 0, /* TSDU_size */
389 T_INFINITE, /* ETSDU_size */
390 T_INVALID, /* CDATA_size */
391 T_INVALID, /* DDATA_size */
392 sizeof (sin6_t), /* ADDR_size */
393 0, /* OPT_size - not initialized here */
394 TIDUSZ, /* TIDU_size */
395 T_COTS_ORD, /* SERV_type */
396 TCPS_IDLE, /* CURRENT_state */
397 (XPG4_1|EXPINLINE) /* PROVIDER_flag */
398 };
399
400 /*
401 * TCP tunables related declarations. Definitions are in tcp_tunables.c
402 */
403 extern mod_prop_info_t tcp_propinfo_tbl[];
404 extern int tcp_propinfo_count;
405
406 #define IS_VMLOANED_MBLK(mp) \
407 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
408
409 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */
410
411 /*
412 * Forces all connections to obey the value of the tcps_maxpsz_multiplier
413 * tunable settable via NDD. Otherwise, the per-connection behavior is
414 * determined dynamically during tcp_set_destination(), which is the default.
415 */
416 boolean_t tcp_static_maxpsz = B_FALSE;
417
418 /*
419 * If the receive buffer size is changed, this function is called to update
420 * the upper socket layer on the new delayed receive wake up threshold.
421 */
422 static void
tcp_set_recv_threshold(tcp_t * tcp,uint32_t new_rcvthresh)423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
424 {
425 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
426
427 if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
428 conn_t *connp = tcp->tcp_connp;
429 struct sock_proto_props sopp;
430
431 /*
432 * only increase rcvthresh upto default_threshold
433 */
434 if (new_rcvthresh > default_threshold)
435 new_rcvthresh = default_threshold;
436
437 sopp.sopp_flags = SOCKOPT_RCVTHRESH;
438 sopp.sopp_rcvthresh = new_rcvthresh;
439
440 (*connp->conn_upcalls->su_set_proto_props)
441 (connp->conn_upper_handle, &sopp);
442 }
443 }
444
445 /*
446 * Figure out the value of window scale opton. Note that the rwnd is
447 * ASSUMED to be rounded up to the nearest MSS before the calculation.
448 * We cannot find the scale value and then do a round up of tcp_rwnd
449 * because the scale value may not be correct after that.
450 *
451 * Set the compiler flag to make this function inline.
452 */
453 void
tcp_set_ws_value(tcp_t * tcp)454 tcp_set_ws_value(tcp_t *tcp)
455 {
456 int i;
457 uint32_t rwnd = tcp->tcp_rwnd;
458
459 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
460 i++, rwnd >>= 1)
461 ;
462 tcp->tcp_rcv_ws = i;
463 }
464
465 /*
466 * Remove cached/latched IPsec references.
467 */
468 void
tcp_ipsec_cleanup(tcp_t * tcp)469 tcp_ipsec_cleanup(tcp_t *tcp)
470 {
471 conn_t *connp = tcp->tcp_connp;
472
473 ASSERT(connp->conn_flags & IPCL_TCPCONN);
474
475 if (connp->conn_latch != NULL) {
476 IPLATCH_REFRELE(connp->conn_latch);
477 connp->conn_latch = NULL;
478 }
479 if (connp->conn_latch_in_policy != NULL) {
480 IPPOL_REFRELE(connp->conn_latch_in_policy);
481 connp->conn_latch_in_policy = NULL;
482 }
483 if (connp->conn_latch_in_action != NULL) {
484 IPACT_REFRELE(connp->conn_latch_in_action);
485 connp->conn_latch_in_action = NULL;
486 }
487 if (connp->conn_policy != NULL) {
488 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
489 connp->conn_policy = NULL;
490 }
491 }
492
493 /*
494 * Cleaup before placing on free list.
495 * Disassociate from the netstack/tcp_stack_t since the freelist
496 * is per squeue and not per netstack.
497 */
498 void
tcp_cleanup(tcp_t * tcp)499 tcp_cleanup(tcp_t *tcp)
500 {
501 mblk_t *mp;
502 conn_t *connp = tcp->tcp_connp;
503 tcp_stack_t *tcps = tcp->tcp_tcps;
504 netstack_t *ns = tcps->tcps_netstack;
505 mblk_t *tcp_rsrv_mp;
506
507 tcp_bind_hash_remove(tcp);
508
509 /* Cleanup that which needs the netstack first */
510 tcp_ipsec_cleanup(tcp);
511 ixa_cleanup(connp->conn_ixa);
512
513 if (connp->conn_ht_iphc != NULL) {
514 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
515 connp->conn_ht_iphc = NULL;
516 connp->conn_ht_iphc_allocated = 0;
517 connp->conn_ht_iphc_len = 0;
518 connp->conn_ht_ulp = NULL;
519 connp->conn_ht_ulp_len = 0;
520 tcp->tcp_ipha = NULL;
521 tcp->tcp_ip6h = NULL;
522 tcp->tcp_tcpha = NULL;
523 }
524
525 /* We clear any IP_OPTIONS and extension headers */
526 ip_pkt_free(&connp->conn_xmit_ipp);
527
528 tcp_free(tcp);
529
530 /*
531 * Since we will bzero the entire structure, we need to
532 * remove it and reinsert it in global hash list. We
533 * know the walkers can't get to this conn because we
534 * had set CONDEMNED flag earlier and checked reference
535 * under conn_lock so walker won't pick it and when we
536 * go the ipcl_globalhash_remove() below, no walker
537 * can get to it.
538 */
539 ipcl_globalhash_remove(connp);
540
541 /* Save some state */
542 mp = tcp->tcp_timercache;
543
544 tcp_rsrv_mp = tcp->tcp_rsrv_mp;
545
546 if (connp->conn_cred != NULL) {
547 crfree(connp->conn_cred);
548 connp->conn_cred = NULL;
549 }
550 ipcl_conn_cleanup(connp);
551 connp->conn_flags = IPCL_TCPCONN;
552
553 /*
554 * Now it is safe to decrement the reference counts.
555 * This might be the last reference on the netstack
556 * in which case it will cause the freeing of the IP Instance.
557 */
558 connp->conn_netstack = NULL;
559 connp->conn_ixa->ixa_ipst = NULL;
560 netstack_rele(ns);
561 ASSERT(tcps != NULL);
562 tcp->tcp_tcps = NULL;
563
564 bzero(tcp, sizeof (tcp_t));
565
566 /* restore the state */
567 tcp->tcp_timercache = mp;
568
569 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
570
571 tcp->tcp_connp = connp;
572
573 ASSERT(connp->conn_tcp == tcp);
574 ASSERT(connp->conn_flags & IPCL_TCPCONN);
575 connp->conn_state_flags = CONN_INCIPIENT;
576 ASSERT(connp->conn_proto == IPPROTO_TCP);
577 ASSERT(connp->conn_ref == 1);
578 }
579
580 /*
581 * Adapt to the information, such as rtt and rtt_sd, provided from the
582 * DCE and IRE maintained by IP.
583 *
584 * Checks for multicast and broadcast destination address.
585 * Returns zero if ok; an errno on failure.
586 *
587 * Note that the MSS calculation here is based on the info given in
588 * the DCE and IRE. We do not do any calculation based on TCP options. They
589 * will be handled in tcp_input_data() when TCP knows which options to use.
590 *
591 * Note on how TCP gets its parameters for a connection.
592 *
593 * When a tcp_t structure is allocated, it gets all the default parameters.
594 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
595 * spipe, rpipe, ... from the route metrics. Route metric overrides the
596 * default.
597 *
598 * An incoming SYN with a multicast or broadcast destination address is dropped
599 * in ip_fanout_v4/v6.
600 *
601 * An incoming SYN with a multicast or broadcast source address is always
602 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
603 * conn_connect.
604 * The same logic in tcp_set_destination also serves to
605 * reject an attempt to connect to a broadcast or multicast (destination)
606 * address.
607 */
608 int
tcp_set_destination(tcp_t * tcp)609 tcp_set_destination(tcp_t *tcp)
610 {
611 uint32_t mss_max;
612 uint32_t mss;
613 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
614 conn_t *connp = tcp->tcp_connp;
615 tcp_stack_t *tcps = tcp->tcp_tcps;
616 iulp_t uinfo;
617 int error;
618 uint32_t flags;
619
620 flags = IPDF_LSO | IPDF_ZCOPY;
621 /*
622 * Make sure we have a dce for the destination to avoid dce_ident
623 * contention for connected sockets.
624 */
625 flags |= IPDF_UNIQUE_DCE;
626
627 if (!tcps->tcps_ignore_path_mtu)
628 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
629
630 /* Use conn_lock to satify ASSERT; tcp is already serialized */
631 mutex_enter(&connp->conn_lock);
632 error = conn_connect(connp, &uinfo, flags);
633 mutex_exit(&connp->conn_lock);
634 if (error != 0)
635 return (error);
636
637 error = tcp_build_hdrs(tcp);
638 if (error != 0)
639 return (error);
640
641 tcp->tcp_localnet = uinfo.iulp_localnet;
642
643 if (uinfo.iulp_rtt != 0) {
644 tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt);
645 tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd);
646 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0);
647 }
648 if (uinfo.iulp_ssthresh != 0)
649 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
650 else
651 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
652 if (uinfo.iulp_spipe > 0) {
653 connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
654 tcps->tcps_max_buf);
655 if (tcps->tcps_snd_lowat_fraction != 0) {
656 connp->conn_sndlowat = connp->conn_sndbuf /
657 tcps->tcps_snd_lowat_fraction;
658 }
659 (void) tcp_maxpsz_set(tcp, B_TRUE);
660 }
661 /*
662 * Note that up till now, acceptor always inherits receive
663 * window from the listener. But if there is a metrics
664 * associated with a host, we should use that instead of
665 * inheriting it from listener. Thus we need to pass this
666 * info back to the caller.
667 */
668 if (uinfo.iulp_rpipe > 0) {
669 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
670 tcps->tcps_max_buf);
671 }
672
673 if (uinfo.iulp_rtomax > 0) {
674 tcp->tcp_second_timer_threshold =
675 uinfo.iulp_rtomax;
676 }
677
678 /*
679 * Use the metric option settings, iulp_tstamp_ok and
680 * iulp_wscale_ok, only for active open. What this means
681 * is that if the other side uses timestamp or window
682 * scale option, TCP will also use those options. That
683 * is for passive open. If the application sets a
684 * large window, window scale is enabled regardless of
685 * the value in iulp_wscale_ok. This is the behavior
686 * since 2.6. So we keep it.
687 * The only case left in passive open processing is the
688 * check for SACK.
689 * For ECN, it should probably be like SACK. But the
690 * current value is binary, so we treat it like the other
691 * cases. The metric only controls active open.For passive
692 * open, the ndd param, tcp_ecn_permitted, controls the
693 * behavior.
694 */
695 if (!tcp_detached) {
696 /*
697 * The if check means that the following can only
698 * be turned on by the metrics only IRE, but not off.
699 */
700 if (uinfo.iulp_tstamp_ok)
701 tcp->tcp_snd_ts_ok = B_TRUE;
702 if (uinfo.iulp_wscale_ok)
703 tcp->tcp_snd_ws_ok = B_TRUE;
704 if (uinfo.iulp_sack == 2)
705 tcp->tcp_snd_sack_ok = B_TRUE;
706 if (uinfo.iulp_ecn_ok)
707 tcp->tcp_ecn_ok = B_TRUE;
708 } else {
709 /*
710 * Passive open.
711 *
712 * As above, the if check means that SACK can only be
713 * turned on by the metric only IRE.
714 */
715 if (uinfo.iulp_sack > 0) {
716 tcp->tcp_snd_sack_ok = B_TRUE;
717 }
718 }
719
720 /*
721 * XXX Note that currently, iulp_mtu can be as small as 68
722 * because of PMTUd. So tcp_mss may go to negative if combined
723 * length of all those options exceeds 28 bytes. But because
724 * of the tcp_mss_min check below, we may not have a problem if
725 * tcp_mss_min is of a reasonable value. The default is 1 so
726 * the negative problem still exists. And the check defeats PMTUd.
727 * In fact, if PMTUd finds that the MSS should be smaller than
728 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
729 * value.
730 *
731 * We do not deal with that now. All those problems related to
732 * PMTUd will be fixed later.
733 */
734 ASSERT(uinfo.iulp_mtu != 0);
735 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
736
737 /* Sanity check for MSS value. */
738 if (connp->conn_ipversion == IPV4_VERSION)
739 mss_max = tcps->tcps_mss_max_ipv4;
740 else
741 mss_max = tcps->tcps_mss_max_ipv6;
742
743 if (tcp->tcp_ipsec_overhead == 0)
744 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
745
746 mss -= tcp->tcp_ipsec_overhead;
747
748 if (mss < tcps->tcps_mss_min)
749 mss = tcps->tcps_mss_min;
750 if (mss > mss_max)
751 mss = mss_max;
752
753 /* Note that this is the maximum MSS, excluding all options. */
754 tcp->tcp_mss = mss;
755
756 /*
757 * Update the tcp connection with LSO capability.
758 */
759 tcp_update_lso(tcp, connp->conn_ixa);
760
761 /*
762 * Initialize the ISS here now that we have the full connection ID.
763 * The RFC 1948 method of initial sequence number generation requires
764 * knowledge of the full connection ID before setting the ISS.
765 */
766 tcp_iss_init(tcp);
767
768 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
769
770 /*
771 * Make sure that conn is not marked incipient
772 * for incoming connections. A blind
773 * removal of incipient flag is cheaper than
774 * check and removal.
775 */
776 mutex_enter(&connp->conn_lock);
777 connp->conn_state_flags &= ~CONN_INCIPIENT;
778 mutex_exit(&connp->conn_lock);
779 return (0);
780 }
781
782 /*
783 * tcp_clean_death / tcp_close_detached must not be called more than once
784 * on a tcp. Thus every function that potentially calls tcp_clean_death
785 * must check for the tcp state before calling tcp_clean_death.
786 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
787 * tcp_timer_handler, all check for the tcp state.
788 */
789 /* ARGSUSED */
790 void
tcp_clean_death_wrapper(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)791 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
792 ip_recv_attr_t *dummy)
793 {
794 tcp_t *tcp = ((conn_t *)arg)->conn_tcp;
795
796 freemsg(mp);
797 if (tcp->tcp_state > TCPS_BOUND)
798 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
799 }
800
801 /*
802 * We are dying for some reason. Try to do it gracefully. (May be called
803 * as writer.)
804 *
805 * Return -1 if the structure was not cleaned up (if the cleanup had to be
806 * done by a service procedure).
807 * TBD - Should the return value distinguish between the tcp_t being
808 * freed and it being reinitialized?
809 */
810 int
tcp_clean_death(tcp_t * tcp,int err)811 tcp_clean_death(tcp_t *tcp, int err)
812 {
813 mblk_t *mp;
814 queue_t *q;
815 conn_t *connp = tcp->tcp_connp;
816 tcp_stack_t *tcps = tcp->tcp_tcps;
817
818 if (tcp->tcp_fused)
819 tcp_unfuse(tcp);
820
821 if (tcp->tcp_linger_tid != 0 &&
822 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
823 tcp_stop_lingering(tcp);
824 }
825
826 ASSERT(tcp != NULL);
827 ASSERT((connp->conn_family == AF_INET &&
828 connp->conn_ipversion == IPV4_VERSION) ||
829 (connp->conn_family == AF_INET6 &&
830 (connp->conn_ipversion == IPV4_VERSION ||
831 connp->conn_ipversion == IPV6_VERSION)));
832
833 if (TCP_IS_DETACHED(tcp)) {
834 if (tcp->tcp_hard_binding) {
835 /*
836 * Its an eager that we are dealing with. We close the
837 * eager but in case a conn_ind has already gone to the
838 * listener, let tcp_accept_finish() send a discon_ind
839 * to the listener and drop the last reference. If the
840 * listener doesn't even know about the eager i.e. the
841 * conn_ind hasn't gone up, blow away the eager and drop
842 * the last reference as well. If the conn_ind has gone
843 * up, state should be BOUND. tcp_accept_finish
844 * will figure out that the connection has received a
845 * RST and will send a DISCON_IND to the application.
846 */
847 tcp_closei_local(tcp);
848 if (!tcp->tcp_tconnind_started) {
849 CONN_DEC_REF(connp);
850 } else {
851 tcp->tcp_state = TCPS_BOUND;
852 DTRACE_TCP6(state__change, void, NULL,
853 ip_xmit_attr_t *, connp->conn_ixa,
854 void, NULL, tcp_t *, tcp, void, NULL,
855 int32_t, TCPS_CLOSED);
856 }
857 } else {
858 tcp_close_detached(tcp);
859 }
860 return (0);
861 }
862
863 TCP_STAT(tcps, tcp_clean_death_nondetached);
864
865 /*
866 * The connection is dead. Decrement listener connection counter if
867 * necessary.
868 */
869 if (tcp->tcp_listen_cnt != NULL)
870 TCP_DECR_LISTEN_CNT(tcp);
871
872 /*
873 * When a connection is moved to TIME_WAIT state, the connection
874 * counter is already decremented. So no need to decrement here
875 * again. See SET_TIME_WAIT() macro.
876 */
877 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
878 tcp->tcp_state < TCPS_TIME_WAIT) {
879 TCPS_CONN_DEC(tcps);
880 }
881
882 q = connp->conn_rq;
883
884 /* Trash all inbound data */
885 if (!IPCL_IS_NONSTR(connp)) {
886 ASSERT(q != NULL);
887 flushq(q, FLUSHALL);
888 }
889
890 /*
891 * If we are at least part way open and there is error
892 * (err==0 implies no error)
893 * notify our client by a T_DISCON_IND.
894 */
895 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
896 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
897 !TCP_IS_SOCKET(tcp)) {
898 /*
899 * Send M_FLUSH according to TPI. Because sockets will
900 * (and must) ignore FLUSHR we do that only for TPI
901 * endpoints and sockets in STREAMS mode.
902 */
903 (void) putnextctl1(q, M_FLUSH, FLUSHR);
904 }
905 if (connp->conn_debug) {
906 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
907 "tcp_clean_death: discon err %d", err);
908 }
909 if (IPCL_IS_NONSTR(connp)) {
910 /* Direct socket, use upcall */
911 (*connp->conn_upcalls->su_disconnected)(
912 connp->conn_upper_handle, tcp->tcp_connid, err);
913 } else {
914 mp = mi_tpi_discon_ind(NULL, err, 0);
915 if (mp != NULL) {
916 putnext(q, mp);
917 } else {
918 if (connp->conn_debug) {
919 (void) strlog(TCP_MOD_ID, 0, 1,
920 SL_ERROR|SL_TRACE,
921 "tcp_clean_death, sending M_ERROR");
922 }
923 (void) putnextctl1(q, M_ERROR, EPROTO);
924 }
925 }
926 if (tcp->tcp_state <= TCPS_SYN_RCVD) {
927 /* SYN_SENT or SYN_RCVD */
928 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
929 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
930 /* ESTABLISHED or CLOSE_WAIT */
931 TCPS_BUMP_MIB(tcps, tcpEstabResets);
932 }
933 }
934
935 /*
936 * ESTABLISHED non-STREAMS eagers are not 'detached' because
937 * an upper handle is obtained when the SYN-ACK comes in. So it
938 * should receive the 'disconnected' upcall, but tcp_reinit should
939 * not be called since this is an eager.
940 */
941 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
942 tcp_closei_local(tcp);
943 tcp->tcp_state = TCPS_BOUND;
944 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
945 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
946 int32_t, TCPS_CLOSED);
947 return (0);
948 }
949
950 tcp_reinit(tcp);
951 if (IPCL_IS_NONSTR(connp))
952 (void) tcp_do_unbind(connp);
953
954 return (-1);
955 }
956
957 /*
958 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
959 * to expire, stop the wait and finish the close.
960 */
961 void
tcp_stop_lingering(tcp_t * tcp)962 tcp_stop_lingering(tcp_t *tcp)
963 {
964 clock_t delta = 0;
965 tcp_stack_t *tcps = tcp->tcp_tcps;
966 conn_t *connp = tcp->tcp_connp;
967
968 tcp->tcp_linger_tid = 0;
969 if (tcp->tcp_state > TCPS_LISTEN) {
970 tcp_acceptor_hash_remove(tcp);
971 mutex_enter(&tcp->tcp_non_sq_lock);
972 if (tcp->tcp_flow_stopped) {
973 tcp_clrqfull(tcp);
974 }
975 mutex_exit(&tcp->tcp_non_sq_lock);
976
977 if (tcp->tcp_timer_tid != 0) {
978 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
979 tcp->tcp_timer_tid = 0;
980 }
981 /*
982 * Need to cancel those timers which will not be used when
983 * TCP is detached. This has to be done before the conn_wq
984 * is cleared.
985 */
986 tcp_timers_stop(tcp);
987
988 tcp->tcp_detached = B_TRUE;
989 connp->conn_rq = NULL;
990 connp->conn_wq = NULL;
991
992 if (tcp->tcp_state == TCPS_TIME_WAIT) {
993 tcp_time_wait_append(tcp);
994 TCP_DBGSTAT(tcps, tcp_detach_time_wait);
995 goto finish;
996 }
997
998 /*
999 * If delta is zero the timer event wasn't executed and was
1000 * successfully canceled. In this case we need to restart it
1001 * with the minimal delta possible.
1002 */
1003 if (delta >= 0) {
1004 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1005 delta ? delta : 1);
1006 }
1007 } else {
1008 tcp_closei_local(tcp);
1009 CONN_DEC_REF(connp);
1010 }
1011 finish:
1012 tcp->tcp_detached = B_TRUE;
1013 connp->conn_rq = NULL;
1014 connp->conn_wq = NULL;
1015
1016 /* Signal closing thread that it can complete close */
1017 mutex_enter(&tcp->tcp_closelock);
1018 tcp->tcp_closed = 1;
1019 cv_signal(&tcp->tcp_closecv);
1020 mutex_exit(&tcp->tcp_closelock);
1021
1022 /* If we have an upper handle (socket), release it */
1023 if (IPCL_IS_NONSTR(connp)) {
1024 sock_upcalls_t *upcalls = connp->conn_upcalls;
1025 sock_upper_handle_t handle = connp->conn_upper_handle;
1026
1027 ASSERT(upcalls != NULL);
1028 ASSERT(upcalls->su_closed != NULL);
1029 ASSERT(handle != NULL);
1030 /*
1031 * Set these to NULL first because closed() will free upper
1032 * structures. Acquire conn_lock because an external caller
1033 * like conn_get_socket_info() will upcall if these are
1034 * non-NULL.
1035 */
1036 mutex_enter(&connp->conn_lock);
1037 connp->conn_upper_handle = NULL;
1038 connp->conn_upcalls = NULL;
1039 mutex_exit(&connp->conn_lock);
1040 upcalls->su_closed(handle);
1041 }
1042 }
1043
1044 void
tcp_close_common(conn_t * connp,int flags)1045 tcp_close_common(conn_t *connp, int flags)
1046 {
1047 tcp_t *tcp = connp->conn_tcp;
1048 mblk_t *mp = &tcp->tcp_closemp;
1049 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
1050 mblk_t *bp;
1051
1052 ASSERT(connp->conn_ref >= 2);
1053
1054 /*
1055 * Mark the conn as closing. ipsq_pending_mp_add will not
1056 * add any mp to the pending mp list, after this conn has
1057 * started closing.
1058 */
1059 mutex_enter(&connp->conn_lock);
1060 connp->conn_state_flags |= CONN_CLOSING;
1061 if (connp->conn_oper_pending_ill != NULL)
1062 conn_ioctl_cleanup_reqd = B_TRUE;
1063 CONN_INC_REF_LOCKED(connp);
1064 mutex_exit(&connp->conn_lock);
1065 tcp->tcp_closeflags = (uint8_t)flags;
1066 ASSERT(connp->conn_ref >= 3);
1067
1068 /*
1069 * tcp_closemp_used is used below without any protection of a lock
1070 * as we don't expect any one else to use it concurrently at this
1071 * point otherwise it would be a major defect.
1072 */
1073
1074 if (mp->b_prev == NULL)
1075 tcp->tcp_closemp_used = B_TRUE;
1076 else
1077 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1078 "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1079
1080 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1081
1082 /*
1083 * Cleanup any queued ioctls here. This must be done before the wq/rq
1084 * are re-written by tcp_close_output().
1085 */
1086 if (conn_ioctl_cleanup_reqd)
1087 conn_ioctl_cleanup(connp);
1088
1089 /*
1090 * As CONN_CLOSING is set, no further ioctls should be passed down to
1091 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1092 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1093 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1094 * was still in flight at the time, we wait for it here. See comments
1095 * for CONN_INC_IOCTLREF in ip.h for details.
1096 */
1097 mutex_enter(&connp->conn_lock);
1098 while (connp->conn_ioctlref > 0)
1099 cv_wait(&connp->conn_cv, &connp->conn_lock);
1100 ASSERT(connp->conn_ioctlref == 0);
1101 ASSERT(connp->conn_oper_pending_ill == NULL);
1102 mutex_exit(&connp->conn_lock);
1103
1104 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1105 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1106
1107 /*
1108 * For non-STREAMS sockets, the normal case is that the conn makes
1109 * an upcall when it's finally closed, so there is no need to wait
1110 * in the protocol. But in case of SO_LINGER the thread sleeps here
1111 * so it can properly deal with the thread being interrupted.
1112 */
1113 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1114 goto nowait;
1115
1116 mutex_enter(&tcp->tcp_closelock);
1117 while (!tcp->tcp_closed) {
1118 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1119 /*
1120 * The cv_wait_sig() was interrupted. We now do the
1121 * following:
1122 *
1123 * 1) If the endpoint was lingering, we allow this
1124 * to be interrupted by cancelling the linger timeout
1125 * and closing normally.
1126 *
1127 * 2) Revert to calling cv_wait()
1128 *
1129 * We revert to using cv_wait() to avoid an
1130 * infinite loop which can occur if the calling
1131 * thread is higher priority than the squeue worker
1132 * thread and is bound to the same cpu.
1133 */
1134 if (connp->conn_linger && connp->conn_lingertime > 0) {
1135 mutex_exit(&tcp->tcp_closelock);
1136 /* Entering squeue, bump ref count. */
1137 CONN_INC_REF(connp);
1138 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1139 SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1140 tcp_linger_interrupted, connp, NULL,
1141 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1142 mutex_enter(&tcp->tcp_closelock);
1143 }
1144 break;
1145 }
1146 }
1147 while (!tcp->tcp_closed)
1148 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1149 mutex_exit(&tcp->tcp_closelock);
1150
1151 /*
1152 * In the case of listener streams that have eagers in the q or q0
1153 * we wait for the eagers to drop their reference to us. conn_rq and
1154 * conn_wq of the eagers point to our queues. By waiting for the
1155 * refcnt to drop to 1, we are sure that the eagers have cleaned
1156 * up their queue pointers and also dropped their references to us.
1157 *
1158 * For non-STREAMS sockets we do not have to wait here; the
1159 * listener will instead make a su_closed upcall when the last
1160 * reference is dropped.
1161 */
1162 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1163 mutex_enter(&connp->conn_lock);
1164 while (connp->conn_ref != 1) {
1165 cv_wait(&connp->conn_cv, &connp->conn_lock);
1166 }
1167 mutex_exit(&connp->conn_lock);
1168 }
1169
1170 nowait:
1171 connp->conn_cpid = NOPID;
1172 }
1173
1174 /*
1175 * Called by tcp_close() routine via squeue when lingering is
1176 * interrupted by a signal.
1177 */
1178
1179 /* ARGSUSED */
1180 static void
tcp_linger_interrupted(void * arg,mblk_t * mp,void * arg2,ip_recv_attr_t * dummy)1181 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1182 {
1183 conn_t *connp = (conn_t *)arg;
1184 tcp_t *tcp = connp->conn_tcp;
1185
1186 freeb(mp);
1187 if (tcp->tcp_linger_tid != 0 &&
1188 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1189 tcp_stop_lingering(tcp);
1190 tcp->tcp_client_errno = EINTR;
1191 }
1192 }
1193
1194 /*
1195 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1196 * Some stream heads get upset if they see these later on as anything but NULL.
1197 */
1198 void
tcp_close_mpp(mblk_t ** mpp)1199 tcp_close_mpp(mblk_t **mpp)
1200 {
1201 mblk_t *mp;
1202
1203 if ((mp = *mpp) != NULL) {
1204 do {
1205 mp->b_next = NULL;
1206 mp->b_prev = NULL;
1207 } while ((mp = mp->b_cont) != NULL);
1208
1209 mp = *mpp;
1210 *mpp = NULL;
1211 freemsg(mp);
1212 }
1213 }
1214
1215 /* Do detached close. */
1216 void
tcp_close_detached(tcp_t * tcp)1217 tcp_close_detached(tcp_t *tcp)
1218 {
1219 if (tcp->tcp_fused)
1220 tcp_unfuse(tcp);
1221
1222 /*
1223 * Clustering code serializes TCP disconnect callbacks and
1224 * cluster tcp list walks by blocking a TCP disconnect callback
1225 * if a cluster tcp list walk is in progress. This ensures
1226 * accurate accounting of TCPs in the cluster code even though
1227 * the TCP list walk itself is not atomic.
1228 */
1229 tcp_closei_local(tcp);
1230 CONN_DEC_REF(tcp->tcp_connp);
1231 }
1232
1233 /*
1234 * The tcp_t is going away. Remove it from all lists and set it
1235 * to TCPS_CLOSED. The freeing up of memory is deferred until
1236 * tcp_inactive. This is needed since a thread in tcp_rput might have
1237 * done a CONN_INC_REF on this structure before it was removed from the
1238 * hashes.
1239 */
1240 void
tcp_closei_local(tcp_t * tcp)1241 tcp_closei_local(tcp_t *tcp)
1242 {
1243 conn_t *connp = tcp->tcp_connp;
1244 tcp_stack_t *tcps = tcp->tcp_tcps;
1245 int32_t oldstate;
1246
1247 if (!TCP_IS_SOCKET(tcp))
1248 tcp_acceptor_hash_remove(tcp);
1249
1250 /*
1251 * This can be called via tcp_time_wait_processing() if TCP gets a
1252 * SYN with sequence number outside the TIME-WAIT connection's
1253 * window. So we need to check for TIME-WAIT state here as the
1254 * connection counter is already decremented. See SET_TIME_WAIT()
1255 * macro
1256 */
1257 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1258 tcp->tcp_state < TCPS_TIME_WAIT) {
1259 TCPS_CONN_DEC(tcps);
1260 }
1261
1262 /*
1263 * If we are an eager connection hanging off a listener that
1264 * hasn't formally accepted the connection yet, get off its
1265 * list and blow off any data that we have accumulated.
1266 */
1267 if (tcp->tcp_listener != NULL) {
1268 tcp_t *listener = tcp->tcp_listener;
1269 mutex_enter(&listener->tcp_eager_lock);
1270 /*
1271 * tcp_tconnind_started == B_TRUE means that the
1272 * conn_ind has already gone to listener. At
1273 * this point, eager will be closed but we
1274 * leave it in listeners eager list so that
1275 * if listener decides to close without doing
1276 * accept, we can clean this up. In tcp_tli_accept
1277 * we take care of the case of accept on closed
1278 * eager.
1279 */
1280 if (!tcp->tcp_tconnind_started) {
1281 tcp_eager_unlink(tcp);
1282 mutex_exit(&listener->tcp_eager_lock);
1283 /*
1284 * We don't want to have any pointers to the
1285 * listener queue, after we have released our
1286 * reference on the listener
1287 */
1288 ASSERT(tcp->tcp_detached);
1289 connp->conn_rq = NULL;
1290 connp->conn_wq = NULL;
1291 CONN_DEC_REF(listener->tcp_connp);
1292 } else {
1293 mutex_exit(&listener->tcp_eager_lock);
1294 }
1295 }
1296
1297 /* Stop all the timers */
1298 tcp_timers_stop(tcp);
1299
1300 if (tcp->tcp_state == TCPS_LISTEN) {
1301 if (tcp->tcp_ip_addr_cache) {
1302 kmem_free((void *)tcp->tcp_ip_addr_cache,
1303 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1304 tcp->tcp_ip_addr_cache = NULL;
1305 }
1306 }
1307
1308 /* Decrement listerner connection counter if necessary. */
1309 if (tcp->tcp_listen_cnt != NULL)
1310 TCP_DECR_LISTEN_CNT(tcp);
1311
1312 mutex_enter(&tcp->tcp_non_sq_lock);
1313 if (tcp->tcp_flow_stopped)
1314 tcp_clrqfull(tcp);
1315 mutex_exit(&tcp->tcp_non_sq_lock);
1316
1317 tcp_bind_hash_remove(tcp);
1318 /*
1319 * If the tcp_time_wait_collector (which runs outside the squeue)
1320 * is trying to remove this tcp from the time wait list, we will
1321 * block in tcp_time_wait_remove while trying to acquire the
1322 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1323 * requires the ipcl_hash_remove to be ordered after the
1324 * tcp_time_wait_remove for the refcnt checks to work correctly.
1325 */
1326 if (tcp->tcp_state == TCPS_TIME_WAIT)
1327 (void) tcp_time_wait_remove(tcp, NULL);
1328 CL_INET_DISCONNECT(connp);
1329 ipcl_hash_remove(connp);
1330 oldstate = tcp->tcp_state;
1331 tcp->tcp_state = TCPS_CLOSED;
1332 /* Need to probe before ixa_cleanup() is called */
1333 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1334 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1335 int32_t, oldstate);
1336 ixa_cleanup(connp->conn_ixa);
1337
1338 /*
1339 * Mark the conn as CONDEMNED
1340 */
1341 mutex_enter(&connp->conn_lock);
1342 connp->conn_state_flags |= CONN_CONDEMNED;
1343 mutex_exit(&connp->conn_lock);
1344
1345 ASSERT(tcp->tcp_time_wait_next == NULL);
1346 ASSERT(tcp->tcp_time_wait_prev == NULL);
1347 ASSERT(tcp->tcp_time_wait_expire == 0);
1348
1349 tcp_ipsec_cleanup(tcp);
1350 }
1351
1352 /*
1353 * tcp is dying (called from ipcl_conn_destroy and error cases).
1354 * Free the tcp_t in either case.
1355 */
1356 void
tcp_free(tcp_t * tcp)1357 tcp_free(tcp_t *tcp)
1358 {
1359 mblk_t *mp;
1360 conn_t *connp = tcp->tcp_connp;
1361
1362 ASSERT(tcp != NULL);
1363 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1364
1365 connp->conn_rq = NULL;
1366 connp->conn_wq = NULL;
1367
1368 tcp_close_mpp(&tcp->tcp_xmit_head);
1369 tcp_close_mpp(&tcp->tcp_reass_head);
1370 if (tcp->tcp_rcv_list != NULL) {
1371 /* Free b_next chain */
1372 tcp_close_mpp(&tcp->tcp_rcv_list);
1373 }
1374 if ((mp = tcp->tcp_urp_mp) != NULL) {
1375 freemsg(mp);
1376 }
1377 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1378 freemsg(mp);
1379 }
1380
1381 if (tcp->tcp_fused_sigurg_mp != NULL) {
1382 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1383 freeb(tcp->tcp_fused_sigurg_mp);
1384 tcp->tcp_fused_sigurg_mp = NULL;
1385 }
1386
1387 if (tcp->tcp_ordrel_mp != NULL) {
1388 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1389 freeb(tcp->tcp_ordrel_mp);
1390 tcp->tcp_ordrel_mp = NULL;
1391 }
1392
1393 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1394 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1395
1396 if (tcp->tcp_hopopts != NULL) {
1397 mi_free(tcp->tcp_hopopts);
1398 tcp->tcp_hopopts = NULL;
1399 tcp->tcp_hopoptslen = 0;
1400 }
1401 ASSERT(tcp->tcp_hopoptslen == 0);
1402 if (tcp->tcp_dstopts != NULL) {
1403 mi_free(tcp->tcp_dstopts);
1404 tcp->tcp_dstopts = NULL;
1405 tcp->tcp_dstoptslen = 0;
1406 }
1407 ASSERT(tcp->tcp_dstoptslen == 0);
1408 if (tcp->tcp_rthdrdstopts != NULL) {
1409 mi_free(tcp->tcp_rthdrdstopts);
1410 tcp->tcp_rthdrdstopts = NULL;
1411 tcp->tcp_rthdrdstoptslen = 0;
1412 }
1413 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1414 if (tcp->tcp_rthdr != NULL) {
1415 mi_free(tcp->tcp_rthdr);
1416 tcp->tcp_rthdr = NULL;
1417 tcp->tcp_rthdrlen = 0;
1418 }
1419 ASSERT(tcp->tcp_rthdrlen == 0);
1420
1421 /*
1422 * Following is really a blowing away a union.
1423 * It happens to have exactly two members of identical size
1424 * the following code is enough.
1425 */
1426 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1427
1428 if (tcp->tcp_sig_sa_in != NULL) {
1429 tcpsig_sa_rele(tcp->tcp_sig_sa_in);
1430 tcp->tcp_sig_sa_in = NULL;
1431 }
1432 if (tcp->tcp_sig_sa_out != NULL) {
1433 tcpsig_sa_rele(tcp->tcp_sig_sa_out);
1434 tcp->tcp_sig_sa_out = NULL;
1435 }
1436
1437 /* Allow the CC algorithm to clean up after itself. */
1438 if (tcp->tcp_cc_algo != NULL && tcp->tcp_cc_algo->cb_destroy != NULL)
1439 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv);
1440
1441 /*
1442 * If this is a non-STREAM socket still holding on to an upper
1443 * handle, release it. As a result of fallback we might also see
1444 * STREAMS based conns with upper handles, in which case there is
1445 * nothing to do other than clearing the field.
1446 */
1447 if (connp->conn_upper_handle != NULL) {
1448 sock_upcalls_t *upcalls = connp->conn_upcalls;
1449 sock_upper_handle_t handle = connp->conn_upper_handle;
1450
1451 /*
1452 * Set these to NULL first because closed() will free upper
1453 * structures. Acquire conn_lock because an external caller
1454 * like conn_get_socket_info() will upcall if these are
1455 * non-NULL.
1456 */
1457 mutex_enter(&connp->conn_lock);
1458 connp->conn_upper_handle = NULL;
1459 connp->conn_upcalls = NULL;
1460 mutex_exit(&connp->conn_lock);
1461 if (IPCL_IS_NONSTR(connp)) {
1462 ASSERT(upcalls != NULL);
1463 ASSERT(upcalls->su_closed != NULL);
1464 ASSERT(handle != NULL);
1465 upcalls->su_closed(handle);
1466 tcp->tcp_detached = B_TRUE;
1467 }
1468 }
1469 }
1470
1471 /*
1472 * tcp_get_conn/tcp_free_conn
1473 *
1474 * tcp_get_conn is used to get a clean tcp connection structure.
1475 * It tries to reuse the connections put on the freelist by the
1476 * time_wait_collector failing which it goes to kmem_cache. This
1477 * way has two benefits compared to just allocating from and
1478 * freeing to kmem_cache.
1479 * 1) The time_wait_collector can free (which includes the cleanup)
1480 * outside the squeue. So when the interrupt comes, we have a clean
1481 * connection sitting in the freelist. Obviously, this buys us
1482 * performance.
1483 *
1484 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1485 * has multiple disadvantages - tying up the squeue during alloc.
1486 * But allocating the conn/tcp in IP land is also not the best since
1487 * we can't check the 'q' and 'q0' which are protected by squeue and
1488 * blindly allocate memory which might have to be freed here if we are
1489 * not allowed to accept the connection. By using the freelist and
1490 * putting the conn/tcp back in freelist, we don't pay a penalty for
1491 * allocating memory without checking 'q/q0' and freeing it if we can't
1492 * accept the connection.
1493 *
1494 * Care should be taken to put the conn back in the same squeue's freelist
1495 * from which it was allocated. Best results are obtained if conn is
1496 * allocated from listener's squeue and freed to the same. Time wait
1497 * collector will free up the freelist is the connection ends up sitting
1498 * there for too long.
1499 */
1500 conn_t *
tcp_get_conn(void * arg,tcp_stack_t * tcps)1501 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1502 {
1503 tcp_t *tcp = NULL;
1504 conn_t *connp = NULL;
1505 squeue_t *sqp = (squeue_t *)arg;
1506 tcp_squeue_priv_t *tcp_time_wait;
1507 netstack_t *ns;
1508 mblk_t *tcp_rsrv_mp = NULL;
1509
1510 tcp_time_wait =
1511 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1512
1513 mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1514 tcp = tcp_time_wait->tcp_free_list;
1515 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1516 if (tcp != NULL) {
1517 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1518 tcp_time_wait->tcp_free_list_cnt--;
1519 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1520 tcp->tcp_time_wait_next = NULL;
1521 connp = tcp->tcp_connp;
1522 connp->conn_flags |= IPCL_REUSED;
1523
1524 ASSERT(tcp->tcp_tcps == NULL);
1525 ASSERT(connp->conn_netstack == NULL);
1526 ASSERT(tcp->tcp_rsrv_mp != NULL);
1527 ns = tcps->tcps_netstack;
1528 netstack_hold(ns);
1529 connp->conn_netstack = ns;
1530 connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1531 tcp->tcp_tcps = tcps;
1532 ipcl_globalhash_insert(connp);
1533
1534 connp->conn_ixa->ixa_notify_cookie = tcp;
1535 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1536 connp->conn_recv = tcp_input_data;
1537 ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1538 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1539 return (connp);
1540 }
1541 mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1542 /*
1543 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1544 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1545 */
1546 tcp_rsrv_mp = allocb(0, BPRI_HI);
1547 if (tcp_rsrv_mp == NULL)
1548 return (NULL);
1549
1550 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1551 tcps->tcps_netstack)) == NULL) {
1552 freeb(tcp_rsrv_mp);
1553 return (NULL);
1554 }
1555
1556 tcp = connp->conn_tcp;
1557 tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1558 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1559
1560 tcp->tcp_tcps = tcps;
1561
1562 connp->conn_recv = tcp_input_data;
1563 connp->conn_recvicmp = tcp_icmp_input;
1564 connp->conn_verifyicmp = tcp_verifyicmp;
1565
1566 /*
1567 * Register tcp_notify to listen to capability changes detected by IP.
1568 * This upcall is made in the context of the call to conn_ip_output
1569 * thus it is inside the squeue.
1570 */
1571 connp->conn_ixa->ixa_notify = tcp_notify;
1572 connp->conn_ixa->ixa_notify_cookie = tcp;
1573
1574 return (connp);
1575 }
1576
1577 /*
1578 * Handle connect to IPv4 destinations, including connections for AF_INET6
1579 * sockets connecting to IPv4 mapped IPv6 destinations.
1580 * Returns zero if OK, a positive errno, or a negative TLI error.
1581 */
1582 static int
tcp_connect_ipv4(tcp_t * tcp,ipaddr_t * dstaddrp,in_port_t dstport,uint_t srcid)1583 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1584 uint_t srcid)
1585 {
1586 ipaddr_t dstaddr = *dstaddrp;
1587 uint16_t lport;
1588 conn_t *connp = tcp->tcp_connp;
1589 tcp_stack_t *tcps = tcp->tcp_tcps;
1590 int error;
1591
1592 ASSERT(connp->conn_ipversion == IPV4_VERSION);
1593
1594 /* Check for attempt to connect to INADDR_ANY */
1595 if (dstaddr == INADDR_ANY) {
1596 /*
1597 * SunOS 4.x and 4.3 BSD allow an application
1598 * to connect a TCP socket to INADDR_ANY.
1599 * When they do this, the kernel picks the
1600 * address of one interface and uses it
1601 * instead. The kernel usually ends up
1602 * picking the address of the loopback
1603 * interface. This is an undocumented feature.
1604 * However, we provide the same thing here
1605 * in order to have source and binary
1606 * compatibility with SunOS 4.x.
1607 * Update the T_CONN_REQ (sin/sin6) since it is used to
1608 * generate the T_CONN_CON.
1609 */
1610 dstaddr = htonl(INADDR_LOOPBACK);
1611 *dstaddrp = dstaddr;
1612 }
1613
1614 /* Handle __sin6_src_id if socket not bound to an IP address */
1615 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1616 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1617 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) {
1618 /* Mismatch - conn_laddr_v6 would be v6 address. */
1619 return (EADDRNOTAVAIL);
1620 }
1621 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1622 }
1623
1624 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1625 connp->conn_fport = dstport;
1626
1627 /*
1628 * At this point the remote destination address and remote port fields
1629 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1630 * have to see which state tcp was in so we can take appropriate action.
1631 */
1632 if (tcp->tcp_state == TCPS_IDLE) {
1633 /*
1634 * We support a quick connect capability here, allowing
1635 * clients to transition directly from IDLE to SYN_SENT
1636 * tcp_bindi will pick an unused port, insert the connection
1637 * in the bind hash and transition to BOUND state.
1638 */
1639 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1640 tcp, B_TRUE);
1641 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1642 B_FALSE, B_FALSE);
1643 if (lport == 0)
1644 return (-TNOADDR);
1645 }
1646
1647 /*
1648 * Lookup the route to determine a source address and the uinfo.
1649 * Setup TCP parameters based on the metrics/DCE.
1650 */
1651 error = tcp_set_destination(tcp);
1652 if (error != 0)
1653 return (error);
1654
1655 /*
1656 * Don't let an endpoint connect to itself.
1657 */
1658 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1659 connp->conn_fport == connp->conn_lport)
1660 return (-TBADADDR);
1661
1662 tcp->tcp_state = TCPS_SYN_SENT;
1663
1664 return (ipcl_conn_insert_v4(connp));
1665 }
1666
1667 /*
1668 * Handle connect to IPv6 destinations.
1669 * Returns zero if OK, a positive errno, or a negative TLI error.
1670 */
1671 static int
tcp_connect_ipv6(tcp_t * tcp,in6_addr_t * dstaddrp,in_port_t dstport,uint32_t flowinfo,uint_t srcid,uint32_t scope_id)1672 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1673 uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1674 {
1675 uint16_t lport;
1676 conn_t *connp = tcp->tcp_connp;
1677 tcp_stack_t *tcps = tcp->tcp_tcps;
1678 int error;
1679
1680 ASSERT(connp->conn_family == AF_INET6);
1681
1682 /*
1683 * If we're here, it means that the destination address is a native
1684 * IPv6 address. Return an error if conn_ipversion is not IPv6. A
1685 * reason why it might not be IPv6 is if the socket was bound to an
1686 * IPv4-mapped IPv6 address.
1687 */
1688 if (connp->conn_ipversion != IPV6_VERSION)
1689 return (-TBADADDR);
1690
1691 /*
1692 * Interpret a zero destination to mean loopback.
1693 * Update the T_CONN_REQ (sin/sin6) since it is used to
1694 * generate the T_CONN_CON.
1695 */
1696 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1697 *dstaddrp = ipv6_loopback;
1698
1699 /* Handle __sin6_src_id if socket not bound to an IP address */
1700 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1701 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1702 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) {
1703 /* Mismatch - conn_laddr_v6 would be v4-mapped. */
1704 return (EADDRNOTAVAIL);
1705 }
1706 connp->conn_saddr_v6 = connp->conn_laddr_v6;
1707 }
1708
1709 /*
1710 * Take care of the scope_id now.
1711 */
1712 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1713 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1714 connp->conn_ixa->ixa_scopeid = scope_id;
1715 } else {
1716 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1717 }
1718
1719 connp->conn_flowinfo = flowinfo;
1720 connp->conn_faddr_v6 = *dstaddrp;
1721 connp->conn_fport = dstport;
1722
1723 /*
1724 * At this point the remote destination address and remote port fields
1725 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1726 * have to see which state tcp was in so we can take appropriate action.
1727 */
1728 if (tcp->tcp_state == TCPS_IDLE) {
1729 /*
1730 * We support a quick connect capability here, allowing
1731 * clients to transition directly from IDLE to SYN_SENT
1732 * tcp_bindi will pick an unused port, insert the connection
1733 * in the bind hash and transition to BOUND state.
1734 */
1735 lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1736 tcp, B_TRUE);
1737 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1738 B_FALSE, B_FALSE);
1739 if (lport == 0)
1740 return (-TNOADDR);
1741 }
1742
1743 /*
1744 * Lookup the route to determine a source address and the uinfo.
1745 * Setup TCP parameters based on the metrics/DCE.
1746 */
1747 error = tcp_set_destination(tcp);
1748 if (error != 0)
1749 return (error);
1750
1751 /*
1752 * Don't let an endpoint connect to itself.
1753 */
1754 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1755 connp->conn_fport == connp->conn_lport)
1756 return (-TBADADDR);
1757
1758 tcp->tcp_state = TCPS_SYN_SENT;
1759
1760 return (ipcl_conn_insert_v6(connp));
1761 }
1762
1763 /*
1764 * Disconnect
1765 * Note that unlike other functions this returns a positive tli error
1766 * when it fails; it never returns an errno.
1767 */
1768 static int
tcp_disconnect_common(tcp_t * tcp,t_scalar_t seqnum)1769 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1770 {
1771 conn_t *lconnp;
1772 tcp_stack_t *tcps = tcp->tcp_tcps;
1773 conn_t *connp = tcp->tcp_connp;
1774
1775 /*
1776 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1777 * when the stream is in BOUND state. Do not send a reset,
1778 * since the destination IP address is not valid, and it can
1779 * be the initialized value of all zeros (broadcast address).
1780 */
1781 if (tcp->tcp_state <= TCPS_BOUND) {
1782 if (connp->conn_debug) {
1783 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1784 "tcp_disconnect: bad state, %d", tcp->tcp_state);
1785 }
1786 return (TOUTSTATE);
1787 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1788 TCPS_CONN_DEC(tcps);
1789 }
1790
1791 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1792
1793 /*
1794 * According to TPI, for non-listeners, ignore seqnum
1795 * and disconnect.
1796 * Following interpretation of -1 seqnum is historical
1797 * and implied TPI ? (TPI only states that for T_CONN_IND,
1798 * a valid seqnum should not be -1).
1799 *
1800 * -1 means disconnect everything
1801 * regardless even on a listener.
1802 */
1803
1804 int old_state = tcp->tcp_state;
1805 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1806
1807 /*
1808 * The connection can't be on the tcp_time_wait_head list
1809 * since it is not detached.
1810 */
1811 ASSERT(tcp->tcp_time_wait_next == NULL);
1812 ASSERT(tcp->tcp_time_wait_prev == NULL);
1813 ASSERT(tcp->tcp_time_wait_expire == 0);
1814 /*
1815 * If it used to be a listener, check to make sure no one else
1816 * has taken the port before switching back to LISTEN state.
1817 */
1818 if (connp->conn_ipversion == IPV4_VERSION) {
1819 lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1820 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1821 } else {
1822 uint_t ifindex = 0;
1823
1824 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1825 ifindex = connp->conn_ixa->ixa_scopeid;
1826
1827 /* Allow conn_bound_if listeners? */
1828 lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1829 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1830 ipst);
1831 }
1832 if (tcp->tcp_conn_req_max && lconnp == NULL) {
1833 tcp->tcp_state = TCPS_LISTEN;
1834 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1835 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1836 NULL, int32_t, old_state);
1837 } else if (old_state > TCPS_BOUND) {
1838 tcp->tcp_conn_req_max = 0;
1839 tcp->tcp_state = TCPS_BOUND;
1840 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1841 connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1842 NULL, int32_t, old_state);
1843
1844 /*
1845 * If this end point is not going to become a listener,
1846 * decrement the listener connection count if
1847 * necessary. Note that we do not do this if it is
1848 * going to be a listner (the above if case) since
1849 * then it may remove the counter struct.
1850 */
1851 if (tcp->tcp_listen_cnt != NULL)
1852 TCP_DECR_LISTEN_CNT(tcp);
1853 }
1854 if (lconnp != NULL)
1855 CONN_DEC_REF(lconnp);
1856 switch (old_state) {
1857 case TCPS_SYN_SENT:
1858 case TCPS_SYN_RCVD:
1859 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1860 break;
1861 case TCPS_ESTABLISHED:
1862 case TCPS_CLOSE_WAIT:
1863 TCPS_BUMP_MIB(tcps, tcpEstabResets);
1864 break;
1865 }
1866
1867 if (tcp->tcp_fused)
1868 tcp_unfuse(tcp);
1869
1870 mutex_enter(&tcp->tcp_eager_lock);
1871 if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1872 (tcp->tcp_conn_req_cnt_q != 0)) {
1873 tcp_eager_cleanup(tcp, 0);
1874 }
1875 mutex_exit(&tcp->tcp_eager_lock);
1876
1877 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1878 tcp->tcp_rnxt, TH_RST | TH_ACK);
1879
1880 tcp_reinit(tcp);
1881
1882 return (0);
1883 } else if (!tcp_eager_blowoff(tcp, seqnum)) {
1884 return (TBADSEQ);
1885 }
1886 return (0);
1887 }
1888
1889 /*
1890 * Our client hereby directs us to reject the connection request
1891 * that tcp_input_listener() marked with 'seqnum'. Rejection consists
1892 * of sending the appropriate RST, not an ICMP error.
1893 */
1894 void
tcp_disconnect(tcp_t * tcp,mblk_t * mp)1895 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1896 {
1897 t_scalar_t seqnum;
1898 int error;
1899 conn_t *connp = tcp->tcp_connp;
1900
1901 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1902 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1903 tcp_err_ack(tcp, mp, TPROTO, 0);
1904 return;
1905 }
1906 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1907 error = tcp_disconnect_common(tcp, seqnum);
1908 if (error != 0)
1909 tcp_err_ack(tcp, mp, error, 0);
1910 else {
1911 if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1912 /* Send M_FLUSH according to TPI */
1913 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1914 }
1915 mp = mi_tpi_ok_ack_alloc(mp);
1916 if (mp != NULL)
1917 putnext(connp->conn_rq, mp);
1918 }
1919 }
1920
1921 /*
1922 * Handle reinitialization of a tcp structure.
1923 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1924 */
1925 static void
tcp_reinit(tcp_t * tcp)1926 tcp_reinit(tcp_t *tcp)
1927 {
1928 mblk_t *mp;
1929 tcp_stack_t *tcps = tcp->tcp_tcps;
1930 conn_t *connp = tcp->tcp_connp;
1931 int32_t oldstate;
1932
1933 /* tcp_reinit should never be called for detached tcp_t's */
1934 ASSERT(tcp->tcp_listener == NULL);
1935 ASSERT((connp->conn_family == AF_INET &&
1936 connp->conn_ipversion == IPV4_VERSION) ||
1937 (connp->conn_family == AF_INET6 &&
1938 (connp->conn_ipversion == IPV4_VERSION ||
1939 connp->conn_ipversion == IPV6_VERSION)));
1940
1941 /* Cancel outstanding timers */
1942 tcp_timers_stop(tcp);
1943
1944 tcp_close_mpp(&tcp->tcp_xmit_head);
1945 if (tcp->tcp_snd_zcopy_aware)
1946 tcp_zcopy_notify(tcp);
1947 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1948 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1949 mutex_enter(&tcp->tcp_non_sq_lock);
1950 if (tcp->tcp_flow_stopped &&
1951 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1952 tcp_clrqfull(tcp);
1953 }
1954 mutex_exit(&tcp->tcp_non_sq_lock);
1955 tcp_close_mpp(&tcp->tcp_reass_head);
1956 tcp->tcp_reass_tail = NULL;
1957 if (tcp->tcp_rcv_list != NULL) {
1958 /* Free b_next chain */
1959 tcp_close_mpp(&tcp->tcp_rcv_list);
1960 tcp->tcp_rcv_last_head = NULL;
1961 tcp->tcp_rcv_last_tail = NULL;
1962 tcp->tcp_rcv_cnt = 0;
1963 }
1964 tcp->tcp_rcv_last_tail = NULL;
1965
1966 if ((mp = tcp->tcp_urp_mp) != NULL) {
1967 freemsg(mp);
1968 tcp->tcp_urp_mp = NULL;
1969 }
1970 if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1971 freemsg(mp);
1972 tcp->tcp_urp_mark_mp = NULL;
1973 }
1974 if (tcp->tcp_fused_sigurg_mp != NULL) {
1975 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1976 freeb(tcp->tcp_fused_sigurg_mp);
1977 tcp->tcp_fused_sigurg_mp = NULL;
1978 }
1979 if (tcp->tcp_ordrel_mp != NULL) {
1980 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1981 freeb(tcp->tcp_ordrel_mp);
1982 tcp->tcp_ordrel_mp = NULL;
1983 }
1984
1985 /*
1986 * Following is a union with two members which are
1987 * identical types and size so the following cleanup
1988 * is enough.
1989 */
1990 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1991
1992 CL_INET_DISCONNECT(connp);
1993
1994 /*
1995 * The connection can't be on the tcp_time_wait_head list
1996 * since it is not detached.
1997 */
1998 ASSERT(tcp->tcp_time_wait_next == NULL);
1999 ASSERT(tcp->tcp_time_wait_prev == NULL);
2000 ASSERT(tcp->tcp_time_wait_expire == 0);
2001
2002 /*
2003 * Reset/preserve other values
2004 */
2005 tcp_reinit_values(tcp);
2006 ipcl_hash_remove(connp);
2007 /* Note that ixa_cred gets cleared in ixa_cleanup */
2008 ixa_cleanup(connp->conn_ixa);
2009 tcp_ipsec_cleanup(tcp);
2010
2011 connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
2012 connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
2013 oldstate = tcp->tcp_state;
2014
2015 if (tcp->tcp_conn_req_max != 0) {
2016 /*
2017 * This is the case when a TLI program uses the same
2018 * transport end point to accept a connection. This
2019 * makes the TCP both a listener and acceptor. When
2020 * this connection is closed, we need to set the state
2021 * back to TCPS_LISTEN. Make sure that the eager list
2022 * is reinitialized.
2023 *
2024 * Note that this stream is still bound to the four
2025 * tuples of the previous connection in IP. If a new
2026 * SYN with different foreign address comes in, IP will
2027 * not find it and will send it to the global queue. In
2028 * the global queue, TCP will do a tcp_lookup_listener()
2029 * to find this stream. This works because this stream
2030 * is only removed from connected hash.
2031 *
2032 */
2033 tcp->tcp_state = TCPS_LISTEN;
2034 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2035 tcp->tcp_eager_next_drop_q0 = tcp;
2036 tcp->tcp_eager_prev_drop_q0 = tcp;
2037 /*
2038 * Initially set conn_recv to tcp_input_listener_unbound to try
2039 * to pick a good squeue for the listener when the first SYN
2040 * arrives. tcp_input_listener_unbound sets it to
2041 * tcp_input_listener on that first SYN.
2042 */
2043 connp->conn_recv = tcp_input_listener_unbound;
2044
2045 connp->conn_proto = IPPROTO_TCP;
2046 connp->conn_faddr_v6 = ipv6_all_zeros;
2047 connp->conn_fport = 0;
2048
2049 (void) ipcl_bind_insert(connp);
2050 } else {
2051 tcp->tcp_state = TCPS_BOUND;
2052 }
2053
2054 /*
2055 * Initialize to default values
2056 */
2057 tcp_init_values(tcp, NULL);
2058
2059 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2060 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2061 int32_t, oldstate);
2062
2063 ASSERT(tcp->tcp_ptpbhn != NULL);
2064 tcp->tcp_rwnd = connp->conn_rcvbuf;
2065 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2066 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2067 }
2068
2069 /*
2070 * Force values to zero that need be zero.
2071 * Do not touch values asociated with the BOUND or LISTEN state
2072 * since the connection will end up in that state after the reinit.
2073 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2074 * structure!
2075 */
2076 static void
tcp_reinit_values(tcp_t * tcp)2077 tcp_reinit_values(tcp_t *tcp)
2078 {
2079 tcp_stack_t *tcps = tcp->tcp_tcps;
2080 conn_t *connp = tcp->tcp_connp;
2081
2082 #define DONTCARE(x)
2083 #define PRESERVE(x)
2084
2085 PRESERVE(tcp->tcp_bind_hash_port);
2086 PRESERVE(tcp->tcp_bind_hash);
2087 PRESERVE(tcp->tcp_ptpbhn);
2088 PRESERVE(tcp->tcp_acceptor_hash);
2089 PRESERVE(tcp->tcp_ptpahn);
2090
2091 /* Should be ASSERT NULL on these with new code! */
2092 ASSERT(tcp->tcp_time_wait_next == NULL);
2093 ASSERT(tcp->tcp_time_wait_prev == NULL);
2094 ASSERT(tcp->tcp_time_wait_expire == 0);
2095 PRESERVE(tcp->tcp_state);
2096 PRESERVE(connp->conn_rq);
2097 PRESERVE(connp->conn_wq);
2098
2099 ASSERT(tcp->tcp_xmit_head == NULL);
2100 ASSERT(tcp->tcp_xmit_last == NULL);
2101 ASSERT(tcp->tcp_unsent == 0);
2102 ASSERT(tcp->tcp_xmit_tail == NULL);
2103 ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2104
2105 tcp->tcp_snxt = 0; /* Displayed in mib */
2106 tcp->tcp_suna = 0; /* Displayed in mib */
2107 tcp->tcp_swnd = 0;
2108 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */
2109
2110 if (connp->conn_ht_iphc != NULL) {
2111 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2112 connp->conn_ht_iphc = NULL;
2113 connp->conn_ht_iphc_allocated = 0;
2114 connp->conn_ht_iphc_len = 0;
2115 connp->conn_ht_ulp = NULL;
2116 connp->conn_ht_ulp_len = 0;
2117 tcp->tcp_ipha = NULL;
2118 tcp->tcp_ip6h = NULL;
2119 tcp->tcp_tcpha = NULL;
2120 }
2121
2122 /* We clear any IP_OPTIONS and extension headers */
2123 ip_pkt_free(&connp->conn_xmit_ipp);
2124
2125 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */
2126 DONTCARE(tcp->tcp_ipha);
2127 DONTCARE(tcp->tcp_ip6h);
2128 DONTCARE(tcp->tcp_tcpha);
2129 tcp->tcp_valid_bits = 0;
2130
2131 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */
2132 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */
2133 tcp->tcp_last_rcv_lbolt = 0;
2134
2135 tcp->tcp_init_cwnd = 0;
2136
2137 tcp->tcp_urp_last_valid = 0;
2138 tcp->tcp_hard_binding = 0;
2139
2140 tcp->tcp_fin_acked = 0;
2141 tcp->tcp_fin_rcvd = 0;
2142 tcp->tcp_fin_sent = 0;
2143 tcp->tcp_ordrel_done = 0;
2144
2145 tcp->tcp_detached = 0;
2146
2147 tcp->tcp_snd_ws_ok = B_FALSE;
2148 tcp->tcp_snd_ts_ok = B_FALSE;
2149 tcp->tcp_zero_win_probe = 0;
2150
2151 tcp->tcp_loopback = 0;
2152 tcp->tcp_localnet = 0;
2153 tcp->tcp_syn_defense = 0;
2154 tcp->tcp_set_timer = 0;
2155
2156 tcp->tcp_active_open = 0;
2157 tcp->tcp_rexmit = B_FALSE;
2158 tcp->tcp_xmit_zc_clean = B_FALSE;
2159
2160 tcp->tcp_snd_sack_ok = B_FALSE;
2161 tcp->tcp_hwcksum = B_FALSE;
2162
2163 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */
2164
2165 tcp->tcp_conn_def_q0 = 0;
2166 tcp->tcp_ip_forward_progress = B_FALSE;
2167 tcp->tcp_ecn_ok = B_FALSE;
2168
2169 tcp->tcp_cwr = B_FALSE;
2170 tcp->tcp_ecn_echo_on = B_FALSE;
2171 tcp->tcp_is_wnd_shrnk = B_FALSE;
2172
2173 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2174 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2175
2176 tcp->tcp_rcv_ws = 0;
2177 tcp->tcp_snd_ws = 0;
2178 tcp->tcp_ts_recent = 0;
2179 tcp->tcp_rnxt = 0; /* Displayed in mib */
2180 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */
2181 tcp->tcp_initial_pmtu = 0;
2182
2183 ASSERT(tcp->tcp_reass_head == NULL);
2184 ASSERT(tcp->tcp_reass_tail == NULL);
2185
2186 tcp->tcp_cwnd_cnt = 0;
2187
2188 ASSERT(tcp->tcp_rcv_list == NULL);
2189 ASSERT(tcp->tcp_rcv_last_head == NULL);
2190 ASSERT(tcp->tcp_rcv_last_tail == NULL);
2191 ASSERT(tcp->tcp_rcv_cnt == 0);
2192
2193 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2194 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */
2195 tcp->tcp_csuna = 0;
2196
2197 tcp->tcp_rto = 0; /* Displayed in MIB */
2198 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */
2199 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */
2200 tcp->tcp_rtt_update = 0;
2201 tcp->tcp_rtt_sum = 0;
2202 tcp->tcp_rtt_cnt = 0;
2203
2204 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2205 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2206
2207 tcp->tcp_rack = 0; /* Displayed in mib */
2208 tcp->tcp_rack_cnt = 0;
2209 tcp->tcp_rack_cur_max = 0;
2210 tcp->tcp_rack_abs_max = 0;
2211
2212 tcp->tcp_max_swnd = 0;
2213
2214 ASSERT(tcp->tcp_listener == NULL);
2215
2216 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */
2217 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */
2218 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */
2219 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */
2220
2221 ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2222 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2223 PRESERVE(tcp->tcp_conn_req_max);
2224 PRESERVE(tcp->tcp_conn_req_seqnum);
2225
2226 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2227 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2228 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2229 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2230
2231 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */
2232 ASSERT(tcp->tcp_urp_mp == NULL);
2233 ASSERT(tcp->tcp_urp_mark_mp == NULL);
2234 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2235
2236 ASSERT(tcp->tcp_eager_next_q == NULL);
2237 ASSERT(tcp->tcp_eager_last_q == NULL);
2238 ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2239 tcp->tcp_eager_prev_q0 == NULL) ||
2240 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2241 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2242
2243 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2244 tcp->tcp_eager_prev_drop_q0 == NULL) ||
2245 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2246
2247 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */
2248 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */
2249 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */
2250
2251 tcp->tcp_client_errno = 0;
2252
2253 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */
2254
2255 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */
2256
2257 PRESERVE(connp->conn_bound_addr_v6);
2258 tcp->tcp_last_sent_len = 0;
2259 tcp->tcp_dupack_cnt = 0;
2260
2261 connp->conn_fport = 0; /* Displayed in MIB */
2262 PRESERVE(connp->conn_lport);
2263
2264 PRESERVE(tcp->tcp_acceptor_lockp);
2265
2266 ASSERT(tcp->tcp_ordrel_mp == NULL);
2267 PRESERVE(tcp->tcp_acceptor_id);
2268 DONTCARE(tcp->tcp_ipsec_overhead);
2269
2270 PRESERVE(connp->conn_family);
2271 /* Remove any remnants of mapped address binding */
2272 if (connp->conn_family == AF_INET6) {
2273 connp->conn_ipversion = IPV6_VERSION;
2274 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2275 } else {
2276 connp->conn_ipversion = IPV4_VERSION;
2277 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2278 }
2279
2280 connp->conn_bound_if = 0;
2281 connp->conn_recv_ancillary.crb_all = 0;
2282 tcp->tcp_recvifindex = 0;
2283 tcp->tcp_recvhops = 0;
2284 tcp->tcp_closed = 0;
2285 if (tcp->tcp_hopopts != NULL) {
2286 mi_free(tcp->tcp_hopopts);
2287 tcp->tcp_hopopts = NULL;
2288 tcp->tcp_hopoptslen = 0;
2289 }
2290 ASSERT(tcp->tcp_hopoptslen == 0);
2291 if (tcp->tcp_dstopts != NULL) {
2292 mi_free(tcp->tcp_dstopts);
2293 tcp->tcp_dstopts = NULL;
2294 tcp->tcp_dstoptslen = 0;
2295 }
2296 ASSERT(tcp->tcp_dstoptslen == 0);
2297 if (tcp->tcp_rthdrdstopts != NULL) {
2298 mi_free(tcp->tcp_rthdrdstopts);
2299 tcp->tcp_rthdrdstopts = NULL;
2300 tcp->tcp_rthdrdstoptslen = 0;
2301 }
2302 ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2303 if (tcp->tcp_rthdr != NULL) {
2304 mi_free(tcp->tcp_rthdr);
2305 tcp->tcp_rthdr = NULL;
2306 tcp->tcp_rthdrlen = 0;
2307 }
2308 ASSERT(tcp->tcp_rthdrlen == 0);
2309
2310 /* Reset fusion-related fields */
2311 tcp->tcp_fused = B_FALSE;
2312 tcp->tcp_unfusable = B_FALSE;
2313 tcp->tcp_fused_sigurg = B_FALSE;
2314 tcp->tcp_loopback_peer = NULL;
2315
2316 tcp->tcp_lso = B_FALSE;
2317
2318 tcp->tcp_in_ack_unsent = 0;
2319 tcp->tcp_cork = B_FALSE;
2320 tcp->tcp_tconnind_started = B_FALSE;
2321
2322 PRESERVE(tcp->tcp_squeue_bytes);
2323
2324 tcp->tcp_closemp_used = B_FALSE;
2325
2326 PRESERVE(tcp->tcp_rsrv_mp);
2327 PRESERVE(tcp->tcp_rsrv_mp_lock);
2328
2329 #ifdef DEBUG
2330 DONTCARE(tcp->tcmp_stk[0]);
2331 #endif
2332
2333 PRESERVE(tcp->tcp_connid);
2334
2335 if (tcp->tcp_sig_sa_in != NULL) {
2336 tcpsig_sa_rele(tcp->tcp_sig_sa_in);
2337 tcp->tcp_sig_sa_in = NULL;
2338 }
2339 if (tcp->tcp_sig_sa_out != NULL) {
2340 tcpsig_sa_rele(tcp->tcp_sig_sa_out);
2341 tcp->tcp_sig_sa_out = NULL;
2342 }
2343
2344 ASSERT(tcp->tcp_listen_cnt == NULL);
2345 ASSERT(tcp->tcp_reass_tid == 0);
2346
2347 /* Allow the CC algorithm to clean up after itself. */
2348 if (tcp->tcp_cc_algo->cb_destroy != NULL)
2349 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv);
2350 tcp->tcp_cc_algo = NULL;
2351
2352 #undef DONTCARE
2353 #undef PRESERVE
2354 }
2355
2356 /*
2357 * Initialize the various fields in tcp_t. If parent (the listener) is non
2358 * NULL, certain values will be inheritted from it.
2359 */
2360 void
tcp_init_values(tcp_t * tcp,tcp_t * parent)2361 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2362 {
2363 tcp_stack_t *tcps = tcp->tcp_tcps;
2364 conn_t *connp = tcp->tcp_connp;
2365
2366 ASSERT((connp->conn_family == AF_INET &&
2367 connp->conn_ipversion == IPV4_VERSION) ||
2368 (connp->conn_family == AF_INET6 &&
2369 (connp->conn_ipversion == IPV4_VERSION ||
2370 connp->conn_ipversion == IPV6_VERSION)));
2371
2372 tcp->tcp_ccv.type = IPPROTO_TCP;
2373 tcp->tcp_ccv.ccvc.tcp = tcp;
2374
2375 if (parent == NULL) {
2376 tcp->tcp_cc_algo = tcps->tcps_default_cc_algo;
2377
2378 tcp->tcp_naglim = tcps->tcps_naglim_def;
2379
2380 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2381 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2382 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2383
2384 tcp->tcp_first_ctimer_threshold =
2385 tcps->tcps_ip_notify_cinterval;
2386 tcp->tcp_second_ctimer_threshold =
2387 tcps->tcps_ip_abort_cinterval;
2388 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2389 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2390
2391 tcp->tcp_fin_wait_2_flush_interval =
2392 tcps->tcps_fin_wait_2_flush_interval;
2393
2394 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2395 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2396 tcp->tcp_ka_cnt = 0;
2397 tcp->tcp_ka_rinterval = 0;
2398
2399 /*
2400 * Default value of tcp_init_cwnd is 0, so no need to set here
2401 * if parent is NULL. But we need to inherit it from parent.
2402 */
2403 } else {
2404 /* Inherit various TCP parameters from the parent. */
2405 tcp->tcp_cc_algo = parent->tcp_cc_algo;
2406
2407 tcp->tcp_naglim = parent->tcp_naglim;
2408
2409 tcp->tcp_rto_initial = parent->tcp_rto_initial;
2410 tcp->tcp_rto_min = parent->tcp_rto_min;
2411 tcp->tcp_rto_max = parent->tcp_rto_max;
2412
2413 tcp->tcp_first_ctimer_threshold =
2414 parent->tcp_first_ctimer_threshold;
2415 tcp->tcp_second_ctimer_threshold =
2416 parent->tcp_second_ctimer_threshold;
2417 tcp->tcp_first_timer_threshold =
2418 parent->tcp_first_timer_threshold;
2419 tcp->tcp_second_timer_threshold =
2420 parent->tcp_second_timer_threshold;
2421
2422 tcp->tcp_fin_wait_2_flush_interval =
2423 parent->tcp_fin_wait_2_flush_interval;
2424 tcp->tcp_quickack = parent->tcp_quickack;
2425 tcp->tcp_md5sig = parent->tcp_md5sig;
2426
2427 tcp->tcp_ka_interval = parent->tcp_ka_interval;
2428 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2429 tcp->tcp_ka_cnt = parent->tcp_ka_cnt;
2430 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval;
2431
2432 tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2433 }
2434
2435 if (tcp->tcp_cc_algo->cb_init != NULL)
2436 VERIFY(tcp->tcp_cc_algo->cb_init(&tcp->tcp_ccv) == 0);
2437
2438 /*
2439 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2440 * will be close to tcp_rexmit_interval_initial. By doing this, we
2441 * allow the algorithm to adjust slowly to large fluctuations of RTT
2442 * during first few transmissions of a connection as seen in slow
2443 * links.
2444 */
2445 tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2;
2446 tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1;
2447 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps,
2448 tcps->tcps_conn_grace_period);
2449
2450 tcp->tcp_timer_backoff = 0;
2451 tcp->tcp_ms_we_have_waited = 0;
2452 tcp->tcp_last_recv_time = ddi_get_lbolt();
2453 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2454 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2455
2456 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2457
2458 /* NOTE: ISS is now set in tcp_set_destination(). */
2459
2460 /* Reset fusion-related fields */
2461 tcp->tcp_fused = B_FALSE;
2462 tcp->tcp_unfusable = B_FALSE;
2463 tcp->tcp_fused_sigurg = B_FALSE;
2464 tcp->tcp_loopback_peer = NULL;
2465
2466 /* We rebuild the header template on the next connect/conn_request */
2467
2468 connp->conn_mlp_type = mlptSingle;
2469
2470 /*
2471 * Init the window scale to the max so tcp_rwnd_set() won't pare
2472 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2473 */
2474 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2475 tcp->tcp_rwnd = connp->conn_rcvbuf;
2476
2477 tcp->tcp_cork = B_FALSE;
2478 /*
2479 * Init the tcp_debug option if it wasn't already set. This value
2480 * determines whether TCP
2481 * calls strlog() to print out debug messages. Doing this
2482 * initialization here means that this value is not inherited thru
2483 * tcp_reinit().
2484 */
2485 if (!connp->conn_debug)
2486 connp->conn_debug = tcps->tcps_dbg;
2487 }
2488
2489 /*
2490 * Update the TCP connection according to change of PMTU.
2491 *
2492 * Path MTU might have changed by either increase or decrease, so need to
2493 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2494 * or negative MSS, since tcp_mss_set() will do it.
2495 */
2496 void
tcp_update_pmtu(tcp_t * tcp,boolean_t decrease_only)2497 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2498 {
2499 uint32_t pmtu;
2500 int32_t mss;
2501 conn_t *connp = tcp->tcp_connp;
2502 ip_xmit_attr_t *ixa = connp->conn_ixa;
2503 iaflags_t ixaflags;
2504
2505 if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2506 return;
2507
2508 if (tcp->tcp_state < TCPS_ESTABLISHED)
2509 return;
2510
2511 /*
2512 * Always call ip_get_pmtu() to make sure that IP has updated
2513 * ixa_flags properly.
2514 */
2515 pmtu = ip_get_pmtu(ixa);
2516 ixaflags = ixa->ixa_flags;
2517
2518 /*
2519 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2520 * IPsec overhead if applied. Make sure to use the most recent
2521 * IPsec information.
2522 */
2523 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2524
2525 /*
2526 * Nothing to change, so just return.
2527 */
2528 if (mss == tcp->tcp_mss)
2529 return;
2530
2531 /*
2532 * Currently, for ICMP errors, only PMTU decrease is handled.
2533 */
2534 if (mss > tcp->tcp_mss && decrease_only)
2535 return;
2536
2537 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2538
2539 /*
2540 * Update ixa_fragsize and ixa_pmtu.
2541 */
2542 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2543
2544 /*
2545 * Adjust MSS and all relevant variables.
2546 */
2547 tcp_mss_set(tcp, mss);
2548
2549 /*
2550 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2551 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2552 * has a (potentially different) min size we do the same. Make sure to
2553 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2554 * fragment the packet.
2555 *
2556 * LSO over IPv6 can not be fragmented. So need to disable LSO
2557 * when IPv6 fragmentation is needed.
2558 */
2559 if (mss < tcp->tcp_tcps->tcps_mss_min)
2560 ixaflags |= IXAF_PMTU_TOO_SMALL;
2561
2562 if (ixaflags & IXAF_PMTU_TOO_SMALL)
2563 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2564
2565 if ((connp->conn_ipversion == IPV4_VERSION) &&
2566 !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2567 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2568 }
2569 ixa->ixa_flags = ixaflags;
2570 }
2571
2572 int
tcp_maxpsz_set(tcp_t * tcp,boolean_t set_maxblk)2573 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2574 {
2575 conn_t *connp = tcp->tcp_connp;
2576 queue_t *q = connp->conn_rq;
2577 int32_t mss = tcp->tcp_mss;
2578 int maxpsz;
2579
2580 if (TCP_IS_DETACHED(tcp))
2581 return (mss);
2582 if (tcp->tcp_fused) {
2583 maxpsz = tcp_fuse_maxpsz(tcp);
2584 mss = INFPSZ;
2585 } else if (tcp->tcp_maxpsz_multiplier == 0) {
2586 /*
2587 * Set the sd_qn_maxpsz according to the socket send buffer
2588 * size, and sd_maxblk to INFPSZ (-1). This will essentially
2589 * instruct the stream head to copyin user data into contiguous
2590 * kernel-allocated buffers without breaking it up into smaller
2591 * chunks. We round up the buffer size to the nearest SMSS.
2592 */
2593 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2594 mss = INFPSZ;
2595 } else {
2596 /*
2597 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2598 * (and a multiple of the mss). This instructs the stream
2599 * head to break down larger than SMSS writes into SMSS-
2600 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2601 */
2602 maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2603 if (maxpsz > connp->conn_sndbuf / 2) {
2604 maxpsz = connp->conn_sndbuf / 2;
2605 /* Round up to nearest mss */
2606 maxpsz = MSS_ROUNDUP(maxpsz, mss);
2607 }
2608 }
2609
2610 (void) proto_set_maxpsz(q, connp, maxpsz);
2611 if (!(IPCL_IS_NONSTR(connp)))
2612 connp->conn_wq->q_maxpsz = maxpsz;
2613 if (set_maxblk)
2614 (void) proto_set_tx_maxblk(q, connp, mss);
2615 return (mss);
2616 }
2617
2618 /* For /dev/tcp aka AF_INET open */
2619 static int
tcp_openv4(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2620 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2621 {
2622 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2623 }
2624
2625 /* For /dev/tcp6 aka AF_INET6 open */
2626 static int
tcp_openv6(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)2627 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2628 {
2629 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2630 }
2631
2632 conn_t *
tcp_create_common(cred_t * credp,boolean_t isv6,boolean_t issocket,int * errorp)2633 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2634 int *errorp)
2635 {
2636 tcp_t *tcp = NULL;
2637 conn_t *connp;
2638 zoneid_t zoneid;
2639 tcp_stack_t *tcps;
2640 squeue_t *sqp;
2641
2642 ASSERT(errorp != NULL);
2643 /*
2644 * Find the proper zoneid and netstack.
2645 */
2646 /*
2647 * Special case for install: miniroot needs to be able to
2648 * access files via NFS as though it were always in the
2649 * global zone.
2650 */
2651 if (credp == kcred && nfs_global_client_only != 0) {
2652 zoneid = GLOBAL_ZONEID;
2653 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2654 netstack_tcp;
2655 ASSERT(tcps != NULL);
2656 } else {
2657 netstack_t *ns;
2658 int err;
2659
2660 if ((err = secpolicy_basic_net_access(credp)) != 0) {
2661 *errorp = err;
2662 return (NULL);
2663 }
2664
2665 ns = netstack_find_by_cred(credp);
2666 ASSERT(ns != NULL);
2667 tcps = ns->netstack_tcp;
2668 ASSERT(tcps != NULL);
2669
2670 /*
2671 * For exclusive stacks we set the zoneid to zero
2672 * to make TCP operate as if in the global zone.
2673 */
2674 if (tcps->tcps_netstack->netstack_stackid !=
2675 GLOBAL_NETSTACKID)
2676 zoneid = GLOBAL_ZONEID;
2677 else
2678 zoneid = crgetzoneid(credp);
2679 }
2680
2681 sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2682 connp = tcp_get_conn(sqp, tcps);
2683 /*
2684 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2685 * so we drop it by one.
2686 */
2687 netstack_rele(tcps->tcps_netstack);
2688 if (connp == NULL) {
2689 *errorp = ENOSR;
2690 return (NULL);
2691 }
2692 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2693
2694 connp->conn_sqp = sqp;
2695 connp->conn_initial_sqp = connp->conn_sqp;
2696 connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2697 tcp = connp->conn_tcp;
2698
2699 /*
2700 * Besides asking IP to set the checksum for us, have conn_ip_output
2701 * to do the following checks when necessary:
2702 *
2703 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2704 * IXAF_VERIFY_PMTU: verify PMTU changes
2705 * IXAF_VERIFY_LSO: verify LSO capability changes
2706 */
2707 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2708 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2709
2710 if (!tcps->tcps_dev_flow_ctl)
2711 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2712
2713 if (isv6) {
2714 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2715 connp->conn_ipversion = IPV6_VERSION;
2716 connp->conn_family = AF_INET6;
2717 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2718 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2719 } else {
2720 connp->conn_ipversion = IPV4_VERSION;
2721 connp->conn_family = AF_INET;
2722 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2723 connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2724 }
2725 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2726
2727 crhold(credp);
2728 connp->conn_cred = credp;
2729 connp->conn_cpid = curproc->p_pid;
2730 connp->conn_open_time = ddi_get_lbolt64();
2731
2732 /* Cache things in the ixa without any refhold */
2733 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2734 connp->conn_ixa->ixa_cred = credp;
2735 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2736
2737 connp->conn_zoneid = zoneid;
2738 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2739 connp->conn_ixa->ixa_zoneid = zoneid;
2740 connp->conn_mlp_type = mlptSingle;
2741 ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2742 ASSERT(tcp->tcp_tcps == tcps);
2743
2744 /*
2745 * If the caller has the process-wide flag set, then default to MAC
2746 * exempt mode. This allows read-down to unlabeled hosts.
2747 */
2748 if (getpflags(NET_MAC_AWARE, credp) != 0)
2749 connp->conn_mac_mode = CONN_MAC_AWARE;
2750
2751 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2752
2753 if (issocket) {
2754 tcp->tcp_issocket = 1;
2755 }
2756
2757 connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2758 connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2759 if (tcps->tcps_snd_lowat_fraction != 0) {
2760 connp->conn_sndlowat = connp->conn_sndbuf /
2761 tcps->tcps_snd_lowat_fraction;
2762 } else {
2763 connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2764 }
2765 connp->conn_so_type = SOCK_STREAM;
2766 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2767 tcps->tcps_wroff_xtra;
2768
2769 SOCK_CONNID_INIT(tcp->tcp_connid);
2770 /* DTrace ignores this - it isn't a tcp:::state-change */
2771 tcp->tcp_state = TCPS_IDLE;
2772 tcp_init_values(tcp, NULL);
2773 return (connp);
2774 }
2775
2776 static int
tcp_open(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp,boolean_t isv6)2777 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2778 boolean_t isv6)
2779 {
2780 tcp_t *tcp = NULL;
2781 conn_t *connp = NULL;
2782 int err;
2783 vmem_t *minor_arena = NULL;
2784 dev_t conn_dev;
2785 boolean_t issocket;
2786
2787 if (q->q_ptr != NULL)
2788 return (0);
2789
2790 if (sflag == MODOPEN)
2791 return (EINVAL);
2792
2793 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2794 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2795 minor_arena = ip_minor_arena_la;
2796 } else {
2797 /*
2798 * Either minor numbers in the large arena were exhausted
2799 * or a non socket application is doing the open.
2800 * Try to allocate from the small arena.
2801 */
2802 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2803 return (EBUSY);
2804 }
2805 minor_arena = ip_minor_arena_sa;
2806 }
2807
2808 ASSERT(minor_arena != NULL);
2809
2810 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2811
2812 if (flag & SO_FALLBACK) {
2813 /*
2814 * Non streams socket needs a stream to fallback to
2815 */
2816 RD(q)->q_ptr = (void *)conn_dev;
2817 WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2818 WR(q)->q_ptr = (void *)minor_arena;
2819 qprocson(q);
2820 return (0);
2821 } else if (flag & SO_ACCEPTOR) {
2822 q->q_qinfo = &tcp_acceptor_rinit;
2823 /*
2824 * the conn_dev and minor_arena will be subsequently used by
2825 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2826 * the minor device number for this connection from the q_ptr.
2827 */
2828 RD(q)->q_ptr = (void *)conn_dev;
2829 WR(q)->q_qinfo = &tcp_acceptor_winit;
2830 WR(q)->q_ptr = (void *)minor_arena;
2831 qprocson(q);
2832 return (0);
2833 }
2834
2835 issocket = flag & SO_SOCKSTR;
2836 connp = tcp_create_common(credp, isv6, issocket, &err);
2837
2838 if (connp == NULL) {
2839 inet_minor_free(minor_arena, conn_dev);
2840 q->q_ptr = WR(q)->q_ptr = NULL;
2841 return (err);
2842 }
2843
2844 connp->conn_rq = q;
2845 connp->conn_wq = WR(q);
2846 q->q_ptr = WR(q)->q_ptr = connp;
2847
2848 connp->conn_dev = conn_dev;
2849 connp->conn_minor_arena = minor_arena;
2850
2851 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2852 ASSERT(WR(q)->q_qinfo == &tcp_winit);
2853
2854 tcp = connp->conn_tcp;
2855
2856 if (issocket) {
2857 WR(q)->q_qinfo = &tcp_sock_winit;
2858 } else {
2859 #ifdef _ILP32
2860 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2861 #else
2862 tcp->tcp_acceptor_id = conn_dev;
2863 #endif /* _ILP32 */
2864 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2865 }
2866
2867 /*
2868 * Put the ref for TCP. Ref for IP was already put
2869 * by ipcl_conn_create. Also Make the conn_t globally
2870 * visible to walkers
2871 */
2872 mutex_enter(&connp->conn_lock);
2873 CONN_INC_REF_LOCKED(connp);
2874 ASSERT(connp->conn_ref == 2);
2875 connp->conn_state_flags &= ~CONN_INCIPIENT;
2876 mutex_exit(&connp->conn_lock);
2877
2878 qprocson(q);
2879 return (0);
2880 }
2881
2882 /*
2883 * Build/update the tcp header template (in conn_ht_iphc) based on
2884 * conn_xmit_ipp. The headers include ip6_t, any extension
2885 * headers, and the maximum size tcp header (to avoid reallocation
2886 * on the fly for additional tcp options).
2887 *
2888 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2889 * Returns failure if can't allocate memory.
2890 */
2891 int
tcp_build_hdrs(tcp_t * tcp)2892 tcp_build_hdrs(tcp_t *tcp)
2893 {
2894 tcp_stack_t *tcps = tcp->tcp_tcps;
2895 conn_t *connp = tcp->tcp_connp;
2896 char buf[TCP_MAX_HDR_LENGTH];
2897 uint_t buflen;
2898 uint_t ulplen = TCP_MIN_HEADER_LENGTH;
2899 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2900 tcpha_t *tcpha;
2901 uint32_t cksum;
2902 int error;
2903
2904 /*
2905 * We might be called after the connection is set up, and we might
2906 * have TS options already in the TCP header. Thus we save any
2907 * existing tcp header.
2908 */
2909 buflen = connp->conn_ht_ulp_len;
2910 if (buflen != 0) {
2911 bcopy(connp->conn_ht_ulp, buf, buflen);
2912 extralen -= buflen - ulplen;
2913 ulplen = buflen;
2914 }
2915
2916 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2917 mutex_enter(&connp->conn_lock);
2918 error = conn_build_hdr_template(connp, ulplen, extralen,
2919 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2920 mutex_exit(&connp->conn_lock);
2921 if (error != 0)
2922 return (error);
2923
2924 /*
2925 * Any routing header/option has been massaged. The checksum difference
2926 * is stored in conn_sum for later use.
2927 */
2928 tcpha = (tcpha_t *)connp->conn_ht_ulp;
2929 tcp->tcp_tcpha = tcpha;
2930
2931 /* restore any old tcp header */
2932 if (buflen != 0) {
2933 bcopy(buf, connp->conn_ht_ulp, buflen);
2934 } else {
2935 tcpha->tha_sum = 0;
2936 tcpha->tha_urp = 0;
2937 tcpha->tha_ack = 0;
2938 tcpha->tha_offset_and_reserved = (5 << 4);
2939 tcpha->tha_lport = connp->conn_lport;
2940 tcpha->tha_fport = connp->conn_fport;
2941 }
2942
2943 /*
2944 * IP wants our header length in the checksum field to
2945 * allow it to perform a single pseudo-header+checksum
2946 * calculation on behalf of TCP.
2947 * Include the adjustment for a source route once IP_OPTIONS is set.
2948 */
2949 cksum = sizeof (tcpha_t) + connp->conn_sum;
2950 cksum = (cksum >> 16) + (cksum & 0xFFFF);
2951 ASSERT(cksum < 0x10000);
2952 tcpha->tha_sum = htons(cksum);
2953
2954 if (connp->conn_ipversion == IPV4_VERSION)
2955 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2956 else
2957 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2958
2959 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2960 connp->conn_wroff) {
2961 connp->conn_wroff = connp->conn_ht_iphc_allocated +
2962 tcps->tcps_wroff_xtra;
2963 (void) proto_set_tx_wroff(connp->conn_rq, connp,
2964 connp->conn_wroff);
2965 }
2966 return (0);
2967 }
2968
2969 /*
2970 * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2971 * We do not allow the receive window to shrink. After setting rwnd,
2972 * set the flow control hiwat of the stream.
2973 *
2974 * This function is called in 2 cases:
2975 *
2976 * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2977 * connection (passive open) and in tcp_input_data() for active connect.
2978 * This is called after tcp_mss_set() when the desired MSS value is known.
2979 * This makes sure that our window size is a mutiple of the other side's
2980 * MSS.
2981 * 2) Handling SO_RCVBUF option.
2982 *
2983 * It is ASSUMED that the requested size is a multiple of the current MSS.
2984 *
2985 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2986 * user requests so.
2987 */
2988 int
tcp_rwnd_set(tcp_t * tcp,uint32_t rwnd)2989 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2990 {
2991 uint32_t mss = tcp->tcp_mss;
2992 uint32_t old_max_rwnd;
2993 uint32_t max_transmittable_rwnd;
2994 boolean_t tcp_detached = TCP_IS_DETACHED(tcp);
2995 tcp_stack_t *tcps = tcp->tcp_tcps;
2996 conn_t *connp = tcp->tcp_connp;
2997
2998 /*
2999 * Insist on a receive window that is at least
3000 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
3001 * funny TCP interactions of Nagle algorithm, SWS avoidance
3002 * and delayed acknowledgement.
3003 */
3004 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
3005
3006 if (tcp->tcp_fused) {
3007 size_t sth_hiwat;
3008 tcp_t *peer_tcp = tcp->tcp_loopback_peer;
3009
3010 ASSERT(peer_tcp != NULL);
3011 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
3012 if (!tcp_detached) {
3013 (void) proto_set_rx_hiwat(connp->conn_rq, connp,
3014 sth_hiwat);
3015 tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
3016 }
3017
3018 /* Caller could have changed tcp_rwnd; update tha_win */
3019 if (tcp->tcp_tcpha != NULL) {
3020 tcp->tcp_tcpha->tha_win =
3021 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3022 }
3023 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3024 tcp->tcp_cwnd_max = rwnd;
3025
3026 /*
3027 * In the fusion case, the maxpsz stream head value of
3028 * our peer is set according to its send buffer size
3029 * and our receive buffer size; since the latter may
3030 * have changed we need to update the peer's maxpsz.
3031 */
3032 (void) tcp_maxpsz_set(peer_tcp, B_TRUE);
3033 return (sth_hiwat);
3034 }
3035
3036 if (tcp_detached)
3037 old_max_rwnd = tcp->tcp_rwnd;
3038 else
3039 old_max_rwnd = connp->conn_rcvbuf;
3040
3041
3042 /*
3043 * If window size info has already been exchanged, TCP should not
3044 * shrink the window. Shrinking window is doable if done carefully.
3045 * We may add that support later. But so far there is not a real
3046 * need to do that.
3047 */
3048 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
3049 /* MSS may have changed, do a round up again. */
3050 rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
3051 }
3052
3053 /*
3054 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3055 * can be applied even before the window scale option is decided.
3056 */
3057 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3058 if (rwnd > max_transmittable_rwnd) {
3059 rwnd = max_transmittable_rwnd -
3060 (max_transmittable_rwnd % mss);
3061 if (rwnd < mss)
3062 rwnd = max_transmittable_rwnd;
3063 /*
3064 * If we're over the limit we may have to back down tcp_rwnd.
3065 * The increment below won't work for us. So we set all three
3066 * here and the increment below will have no effect.
3067 */
3068 tcp->tcp_rwnd = old_max_rwnd = rwnd;
3069 }
3070 if (tcp->tcp_localnet) {
3071 tcp->tcp_rack_abs_max =
3072 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3073 } else {
3074 /*
3075 * For a remote host on a different subnet (through a router),
3076 * we ack every other packet to be conforming to RFC1122.
3077 * tcp_deferred_acks_max is default to 2.
3078 */
3079 tcp->tcp_rack_abs_max =
3080 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3081 }
3082 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3083 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3084 else
3085 tcp->tcp_rack_cur_max = 0;
3086 /*
3087 * Increment the current rwnd by the amount the maximum grew (we
3088 * can not overwrite it since we might be in the middle of a
3089 * connection.)
3090 */
3091 tcp->tcp_rwnd += rwnd - old_max_rwnd;
3092 connp->conn_rcvbuf = rwnd;
3093
3094 /* Are we already connected? */
3095 if (tcp->tcp_tcpha != NULL) {
3096 tcp->tcp_tcpha->tha_win =
3097 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3098 }
3099
3100 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3101 tcp->tcp_cwnd_max = rwnd;
3102
3103 if (tcp_detached)
3104 return (rwnd);
3105
3106 tcp_set_recv_threshold(tcp, rwnd >> 3);
3107
3108 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3109 return (rwnd);
3110 }
3111
3112 int
tcp_do_unbind(conn_t * connp)3113 tcp_do_unbind(conn_t *connp)
3114 {
3115 tcp_t *tcp = connp->conn_tcp;
3116 int32_t oldstate;
3117
3118 switch (tcp->tcp_state) {
3119 case TCPS_BOUND:
3120 case TCPS_LISTEN:
3121 break;
3122 default:
3123 return (-TOUTSTATE);
3124 }
3125
3126 /*
3127 * Need to clean up all the eagers since after the unbind, segments
3128 * will no longer be delivered to this listener stream.
3129 */
3130 mutex_enter(&tcp->tcp_eager_lock);
3131 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3132 tcp_eager_cleanup(tcp, 0);
3133 }
3134 mutex_exit(&tcp->tcp_eager_lock);
3135
3136 /* Clean up the listener connection counter if necessary. */
3137 if (tcp->tcp_listen_cnt != NULL)
3138 TCP_DECR_LISTEN_CNT(tcp);
3139 connp->conn_laddr_v6 = ipv6_all_zeros;
3140 connp->conn_saddr_v6 = ipv6_all_zeros;
3141 tcp_bind_hash_remove(tcp);
3142 oldstate = tcp->tcp_state;
3143 tcp->tcp_state = TCPS_IDLE;
3144 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3145 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3146 int32_t, oldstate);
3147
3148 ip_unbind(connp);
3149 bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3150
3151 return (0);
3152 }
3153
3154 /*
3155 * Collect protocol properties to send to the upper handle.
3156 */
3157 void
tcp_get_proto_props(tcp_t * tcp,struct sock_proto_props * sopp)3158 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3159 {
3160 conn_t *connp = tcp->tcp_connp;
3161
3162 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3163 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3164
3165 sopp->sopp_rxhiwat = tcp->tcp_fused ?
3166 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3167 connp->conn_rcvbuf;
3168 /*
3169 * Determine what write offset value to use depending on SACK and
3170 * whether the endpoint is fused or not.
3171 */
3172 if (tcp->tcp_fused) {
3173 ASSERT(tcp->tcp_loopback);
3174 ASSERT(tcp->tcp_loopback_peer != NULL);
3175 /*
3176 * For fused tcp loopback, set the stream head's write
3177 * offset value to zero since we won't be needing any room
3178 * for TCP/IP headers. This would also improve performance
3179 * since it would reduce the amount of work done by kmem.
3180 * Non-fused tcp loopback case is handled separately below.
3181 */
3182 sopp->sopp_wroff = 0;
3183 /*
3184 * Update the peer's transmit parameters according to
3185 * our recently calculated high water mark value.
3186 */
3187 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3188 } else if (tcp->tcp_snd_sack_ok) {
3189 sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3190 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3191 } else {
3192 sopp->sopp_wroff = connp->conn_ht_iphc_len +
3193 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3194 }
3195
3196 if (tcp->tcp_loopback) {
3197 sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3198 sopp->sopp_loopback = B_TRUE;
3199 }
3200 }
3201
3202 /*
3203 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3204 */
3205 boolean_t
tcp_zcopy_check(tcp_t * tcp)3206 tcp_zcopy_check(tcp_t *tcp)
3207 {
3208 conn_t *connp = tcp->tcp_connp;
3209 ip_xmit_attr_t *ixa = connp->conn_ixa;
3210 boolean_t zc_enabled = B_FALSE;
3211 tcp_stack_t *tcps = tcp->tcp_tcps;
3212
3213 if (do_tcpzcopy == 2)
3214 zc_enabled = B_TRUE;
3215 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3216 zc_enabled = B_TRUE;
3217
3218 tcp->tcp_snd_zcopy_on = zc_enabled;
3219 if (!TCP_IS_DETACHED(tcp)) {
3220 if (zc_enabled) {
3221 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3222 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3223 ZCVMSAFE);
3224 TCP_STAT(tcps, tcp_zcopy_on);
3225 } else {
3226 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3227 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3228 ZCVMUNSAFE);
3229 TCP_STAT(tcps, tcp_zcopy_off);
3230 }
3231 }
3232 return (zc_enabled);
3233 }
3234
3235 /*
3236 * Backoff from a zero-copy message by copying data to a new allocated
3237 * message and freeing the original desballoca'ed segmapped message.
3238 *
3239 * This function is called by following two callers:
3240 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3241 * the origial desballoca'ed message and notify sockfs. This is in re-
3242 * transmit state.
3243 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3244 * to be copied to new message.
3245 */
3246 mblk_t *
tcp_zcopy_backoff(tcp_t * tcp,mblk_t * bp,boolean_t fix_xmitlist)3247 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3248 {
3249 mblk_t *nbp;
3250 mblk_t *head = NULL;
3251 mblk_t *tail = NULL;
3252 tcp_stack_t *tcps = tcp->tcp_tcps;
3253
3254 ASSERT(bp != NULL);
3255 while (bp != NULL) {
3256 if (IS_VMLOANED_MBLK(bp)) {
3257 TCP_STAT(tcps, tcp_zcopy_backoff);
3258 if ((nbp = copyb(bp)) == NULL) {
3259 tcp->tcp_xmit_zc_clean = B_FALSE;
3260 if (tail != NULL)
3261 tail->b_cont = bp;
3262 return ((head == NULL) ? bp : head);
3263 }
3264
3265 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3266 if (fix_xmitlist)
3267 tcp_zcopy_notify(tcp);
3268 else
3269 nbp->b_datap->db_struioflag |=
3270 STRUIO_ZCNOTIFY;
3271 }
3272 nbp->b_cont = bp->b_cont;
3273
3274 /*
3275 * Copy saved information and adjust tcp_xmit_tail
3276 * if needed.
3277 */
3278 if (fix_xmitlist) {
3279 nbp->b_prev = bp->b_prev;
3280 nbp->b_next = bp->b_next;
3281
3282 if (tcp->tcp_xmit_tail == bp)
3283 tcp->tcp_xmit_tail = nbp;
3284 }
3285
3286 /* Free the original message. */
3287 bp->b_prev = NULL;
3288 bp->b_next = NULL;
3289 freeb(bp);
3290
3291 bp = nbp;
3292 }
3293
3294 if (head == NULL) {
3295 head = bp;
3296 }
3297 if (tail == NULL) {
3298 tail = bp;
3299 } else {
3300 tail->b_cont = bp;
3301 tail = bp;
3302 }
3303
3304 /* Move forward. */
3305 bp = bp->b_cont;
3306 }
3307
3308 if (fix_xmitlist) {
3309 tcp->tcp_xmit_last = tail;
3310 tcp->tcp_xmit_zc_clean = B_TRUE;
3311 }
3312
3313 return (head);
3314 }
3315
3316 void
tcp_zcopy_notify(tcp_t * tcp)3317 tcp_zcopy_notify(tcp_t *tcp)
3318 {
3319 struct stdata *stp;
3320 conn_t *connp;
3321
3322 if (tcp->tcp_detached)
3323 return;
3324 connp = tcp->tcp_connp;
3325 if (IPCL_IS_NONSTR(connp)) {
3326 (*connp->conn_upcalls->su_zcopy_notify)
3327 (connp->conn_upper_handle);
3328 return;
3329 }
3330 stp = STREAM(connp->conn_rq);
3331 mutex_enter(&stp->sd_lock);
3332 stp->sd_flag |= STZCNOTIFY;
3333 cv_broadcast(&stp->sd_zcopy_wait);
3334 mutex_exit(&stp->sd_lock);
3335 }
3336
3337 /*
3338 * Update the TCP connection according to change of LSO capability.
3339 */
3340 static void
tcp_update_lso(tcp_t * tcp,ip_xmit_attr_t * ixa)3341 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3342 {
3343 /*
3344 * We check against IPv4 header length to preserve the old behavior
3345 * of only enabling LSO when there are no IP options.
3346 * But this restriction might not be necessary at all. Before removing
3347 * it, need to verify how LSO is handled for source routing case, with
3348 * which IP does software checksum.
3349 *
3350 * For IPv6, whenever any extension header is needed, LSO is supressed.
3351 */
3352 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3353 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3354 return;
3355
3356 /*
3357 * Either the LSO capability newly became usable, or it has changed.
3358 */
3359 if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3360 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab;
3361 uint_t lso_max = (ixa->ixa_flags & IXAF_IS_IPV4) ?
3362 lsoc->ill_lso_max_tcpv4 : lsoc->ill_lso_max_tcpv6;
3363
3364 ASSERT3U(lso_max, >, 0);
3365 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lso_max);
3366
3367 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3368 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3369
3370 /*
3371 * If LSO to be enabled, notify the STREAM header with larger
3372 * data block.
3373 */
3374 if (!tcp->tcp_lso)
3375 tcp->tcp_maxpsz_multiplier = 0;
3376
3377 tcp->tcp_lso = B_TRUE;
3378 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3379 } else { /* LSO capability is not usable any more. */
3380 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3381 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3382
3383 /*
3384 * If LSO to be disabled, notify the STREAM header with smaller
3385 * data block. And need to restore fragsize to PMTU.
3386 */
3387 if (tcp->tcp_lso) {
3388 tcp->tcp_maxpsz_multiplier =
3389 tcp->tcp_tcps->tcps_maxpsz_multiplier;
3390 ixa->ixa_fragsize = ixa->ixa_pmtu;
3391 tcp->tcp_lso = B_FALSE;
3392 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3393 }
3394 }
3395
3396 (void) tcp_maxpsz_set(tcp, B_TRUE);
3397 }
3398
3399 /*
3400 * Update the TCP connection according to change of ZEROCOPY capability.
3401 */
3402 static void
tcp_update_zcopy(tcp_t * tcp)3403 tcp_update_zcopy(tcp_t *tcp)
3404 {
3405 conn_t *connp = tcp->tcp_connp;
3406 tcp_stack_t *tcps = tcp->tcp_tcps;
3407
3408 if (tcp->tcp_snd_zcopy_on) {
3409 tcp->tcp_snd_zcopy_on = B_FALSE;
3410 if (!TCP_IS_DETACHED(tcp)) {
3411 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3412 ZCVMUNSAFE);
3413 TCP_STAT(tcps, tcp_zcopy_off);
3414 }
3415 } else {
3416 tcp->tcp_snd_zcopy_on = B_TRUE;
3417 if (!TCP_IS_DETACHED(tcp)) {
3418 (void) proto_set_tx_copyopt(connp->conn_rq, connp,
3419 ZCVMSAFE);
3420 TCP_STAT(tcps, tcp_zcopy_on);
3421 }
3422 }
3423 }
3424
3425 /*
3426 * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3427 * so it's safe to update the TCP connection.
3428 */
3429 /* ARGSUSED1 */
3430 static void
tcp_notify(void * arg,ip_xmit_attr_t * ixa,ixa_notify_type_t ntype,ixa_notify_arg_t narg)3431 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3432 ixa_notify_arg_t narg)
3433 {
3434 tcp_t *tcp = (tcp_t *)arg;
3435 conn_t *connp = tcp->tcp_connp;
3436
3437 switch (ntype) {
3438 case IXAN_LSO:
3439 tcp_update_lso(tcp, connp->conn_ixa);
3440 break;
3441 case IXAN_PMTU:
3442 tcp_update_pmtu(tcp, B_FALSE);
3443 break;
3444 case IXAN_ZCOPY:
3445 tcp_update_zcopy(tcp);
3446 break;
3447 default:
3448 break;
3449 }
3450 }
3451
3452 /*
3453 * The TCP write service routine should never be called...
3454 */
3455 /* ARGSUSED */
3456 static int
tcp_wsrv(queue_t * q)3457 tcp_wsrv(queue_t *q)
3458 {
3459 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps;
3460
3461 TCP_STAT(tcps, tcp_wsrv_called);
3462 return (0);
3463 }
3464
3465 /*
3466 * Hash list lookup routine for tcp_t structures.
3467 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3468 */
3469 tcp_t *
tcp_acceptor_hash_lookup(t_uscalar_t id,tcp_stack_t * tcps)3470 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3471 {
3472 tf_t *tf;
3473 tcp_t *tcp;
3474
3475 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3476 mutex_enter(&tf->tf_lock);
3477 for (tcp = tf->tf_tcp; tcp != NULL;
3478 tcp = tcp->tcp_acceptor_hash) {
3479 if (tcp->tcp_acceptor_id == id) {
3480 CONN_INC_REF(tcp->tcp_connp);
3481 mutex_exit(&tf->tf_lock);
3482 return (tcp);
3483 }
3484 }
3485 mutex_exit(&tf->tf_lock);
3486 return (NULL);
3487 }
3488
3489 /*
3490 * Hash list insertion routine for tcp_t structures.
3491 */
3492 void
tcp_acceptor_hash_insert(t_uscalar_t id,tcp_t * tcp)3493 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3494 {
3495 tf_t *tf;
3496 tcp_t **tcpp;
3497 tcp_t *tcpnext;
3498 tcp_stack_t *tcps = tcp->tcp_tcps;
3499
3500 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3501
3502 if (tcp->tcp_ptpahn != NULL)
3503 tcp_acceptor_hash_remove(tcp);
3504 tcpp = &tf->tf_tcp;
3505 mutex_enter(&tf->tf_lock);
3506 tcpnext = tcpp[0];
3507 if (tcpnext)
3508 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3509 tcp->tcp_acceptor_hash = tcpnext;
3510 tcp->tcp_ptpahn = tcpp;
3511 tcpp[0] = tcp;
3512 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */
3513 mutex_exit(&tf->tf_lock);
3514 }
3515
3516 /*
3517 * Hash list removal routine for tcp_t structures.
3518 */
3519 void
tcp_acceptor_hash_remove(tcp_t * tcp)3520 tcp_acceptor_hash_remove(tcp_t *tcp)
3521 {
3522 tcp_t *tcpnext;
3523 kmutex_t *lockp;
3524
3525 /*
3526 * Extract the lock pointer in case there are concurrent
3527 * hash_remove's for this instance.
3528 */
3529 lockp = tcp->tcp_acceptor_lockp;
3530
3531 if (tcp->tcp_ptpahn == NULL)
3532 return;
3533
3534 ASSERT(lockp != NULL);
3535 mutex_enter(lockp);
3536 if (tcp->tcp_ptpahn) {
3537 tcpnext = tcp->tcp_acceptor_hash;
3538 if (tcpnext) {
3539 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3540 tcp->tcp_acceptor_hash = NULL;
3541 }
3542 *tcp->tcp_ptpahn = tcpnext;
3543 tcp->tcp_ptpahn = NULL;
3544 }
3545 mutex_exit(lockp);
3546 tcp->tcp_acceptor_lockp = NULL;
3547 }
3548
3549 /*
3550 * Type three generator adapted from the random() function in 4.4 BSD:
3551 */
3552
3553 /*
3554 * Copyright (c) 1983, 1993
3555 * The Regents of the University of California. All rights reserved.
3556 *
3557 * Redistribution and use in source and binary forms, with or without
3558 * modification, are permitted provided that the following conditions
3559 * are met:
3560 * 1. Redistributions of source code must retain the above copyright
3561 * notice, this list of conditions and the following disclaimer.
3562 * 2. Redistributions in binary form must reproduce the above copyright
3563 * notice, this list of conditions and the following disclaimer in the
3564 * documentation and/or other materials provided with the distribution.
3565 * 3. All advertising materials mentioning features or use of this software
3566 * must display the following acknowledgement:
3567 * This product includes software developed by the University of
3568 * California, Berkeley and its contributors.
3569 * 4. Neither the name of the University nor the names of its contributors
3570 * may be used to endorse or promote products derived from this software
3571 * without specific prior written permission.
3572 *
3573 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3574 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3575 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3576 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3577 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3578 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3579 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3580 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3581 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3582 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3583 * SUCH DAMAGE.
3584 */
3585
3586 /* Type 3 -- x**31 + x**3 + 1 */
3587 #define DEG_3 31
3588 #define SEP_3 3
3589
3590
3591 /* Protected by tcp_random_lock */
3592 static int tcp_randtbl[DEG_3 + 1];
3593
3594 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3595 static int *tcp_random_rptr = &tcp_randtbl[1];
3596
3597 static int *tcp_random_state = &tcp_randtbl[1];
3598 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3599
3600 kmutex_t tcp_random_lock;
3601
3602 void
tcp_random_init(void)3603 tcp_random_init(void)
3604 {
3605 int i;
3606 hrtime_t hrt;
3607 time_t wallclock;
3608 uint64_t result;
3609
3610 /*
3611 * Use high-res timer and current time for seed. Gethrtime() returns
3612 * a longlong, which may contain resolution down to nanoseconds.
3613 * The current time will either be a 32-bit or a 64-bit quantity.
3614 * XOR the two together in a 64-bit result variable.
3615 * Convert the result to a 32-bit value by multiplying the high-order
3616 * 32-bits by the low-order 32-bits.
3617 */
3618
3619 hrt = gethrtime();
3620 (void) drv_getparm(TIME, &wallclock);
3621 result = (uint64_t)wallclock ^ (uint64_t)hrt;
3622 mutex_enter(&tcp_random_lock);
3623 tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3624 (result & 0xffffffff);
3625
3626 for (i = 1; i < DEG_3; i++)
3627 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3628 + 12345;
3629 tcp_random_fptr = &tcp_random_state[SEP_3];
3630 tcp_random_rptr = &tcp_random_state[0];
3631 mutex_exit(&tcp_random_lock);
3632 for (i = 0; i < 10 * DEG_3; i++)
3633 (void) tcp_random();
3634 }
3635
3636 /*
3637 * tcp_random: Return a random number in the range [1 - (128K + 1)].
3638 * This range is selected to be approximately centered on TCP_ISS / 2,
3639 * and easy to compute. We get this value by generating a 32-bit random
3640 * number, selecting out the high-order 17 bits, and then adding one so
3641 * that we never return zero.
3642 */
3643 int
tcp_random(void)3644 tcp_random(void)
3645 {
3646 int i;
3647
3648 mutex_enter(&tcp_random_lock);
3649 *tcp_random_fptr += *tcp_random_rptr;
3650
3651 /*
3652 * The high-order bits are more random than the low-order bits,
3653 * so we select out the high-order 17 bits and add one so that
3654 * we never return zero.
3655 */
3656 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3657 if (++tcp_random_fptr >= tcp_random_end_ptr) {
3658 tcp_random_fptr = tcp_random_state;
3659 ++tcp_random_rptr;
3660 } else if (++tcp_random_rptr >= tcp_random_end_ptr)
3661 tcp_random_rptr = tcp_random_state;
3662
3663 mutex_exit(&tcp_random_lock);
3664 return (i);
3665 }
3666
3667 /*
3668 * Split this function out so that if the secret changes, I'm okay.
3669 *
3670 * Initialize the tcp_iss_cookie and tcp_iss_key.
3671 */
3672
3673 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */
3674
3675 void
tcp_iss_key_init(uint8_t * phrase,int len,tcp_stack_t * tcps)3676 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3677 {
3678 struct {
3679 int32_t current_time;
3680 uint32_t randnum;
3681 uint16_t pad;
3682 uint8_t ether[6];
3683 uint8_t passwd[PASSWD_SIZE];
3684 } tcp_iss_cookie;
3685 time_t t;
3686
3687 /*
3688 * Start with the current absolute time.
3689 */
3690 (void) drv_getparm(TIME, &t);
3691 tcp_iss_cookie.current_time = t;
3692
3693 /*
3694 * XXX - Need a more random number per RFC 1750, not this crap.
3695 * OTOH, if what follows is pretty random, then I'm in better shape.
3696 */
3697 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3698 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */
3699
3700 /*
3701 * The cpu_type_info is pretty non-random. Ugggh. It does serve
3702 * as a good template.
3703 */
3704 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3705 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3706
3707 /*
3708 * The pass-phrase. Normally this is supplied by user-called NDD.
3709 */
3710 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3711
3712 /*
3713 * See 4010593 if this section becomes a problem again,
3714 * but the local ethernet address is useful here.
3715 */
3716 (void) localetheraddr(NULL,
3717 (struct ether_addr *)&tcp_iss_cookie.ether);
3718
3719 /*
3720 * Hash 'em all together. The MD5Final is called per-connection.
3721 */
3722 mutex_enter(&tcps->tcps_iss_key_lock);
3723 MD5Init(&tcps->tcps_iss_key);
3724 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3725 sizeof (tcp_iss_cookie));
3726 mutex_exit(&tcps->tcps_iss_key_lock);
3727 }
3728
3729 /*
3730 * Called by IP when IP is loaded into the kernel
3731 */
3732 void
tcp_ddi_g_init(void)3733 tcp_ddi_g_init(void)
3734 {
3735 tcp_timercache = kmem_cache_create("tcp_timercache",
3736 sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3737 NULL, NULL, NULL, NULL, NULL, 0);
3738
3739 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3740 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3741
3742 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3743
3744 /* Initialize the random number generator */
3745 tcp_random_init();
3746
3747 /* A single callback independently of how many netstacks we have */
3748 ip_squeue_init(tcp_squeue_add);
3749
3750 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3751
3752 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3753
3754 /*
3755 * We want to be informed each time a stack is created or
3756 * destroyed in the kernel, so we can maintain the
3757 * set of tcp_stack_t's.
3758 */
3759 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3760 }
3761
3762
3763 #define INET_NAME "ip"
3764
3765 /*
3766 * Initialize the TCP stack instance.
3767 */
3768 static void *
tcp_stack_init(netstackid_t stackid,netstack_t * ns)3769 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3770 {
3771 tcp_stack_t *tcps;
3772 int i;
3773 int error = 0;
3774 major_t major;
3775 size_t arrsz;
3776
3777 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3778 tcps->tcps_netstack = ns;
3779
3780 /* Initialize locks */
3781 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3782 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3783
3784 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3785 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3786 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3787 tcps->tcps_min_anonpriv_port = 512;
3788
3789 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3790 TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3791 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3792 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3793
3794 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3795 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3796 MUTEX_DEFAULT, NULL);
3797 }
3798
3799 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3800 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3801 MUTEX_DEFAULT, NULL);
3802 }
3803
3804 /* TCP's IPsec code calls the packet dropper. */
3805 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3806
3807 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3808 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3809 KM_SLEEP);
3810 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3811
3812 /*
3813 * Note: To really walk the device tree you need the devinfo
3814 * pointer to your device which is only available after probe/attach.
3815 * The following is safe only because it uses ddi_root_node()
3816 */
3817 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3818 tcp_opt_obj.odb_opt_arr_cnt);
3819
3820 /*
3821 * Initialize RFC 1948 secret values. This will probably be reset once
3822 * by the boot scripts.
3823 *
3824 * Use NULL name, as the name is caught by the new lockstats.
3825 *
3826 * Initialize with some random, non-guessable string, like the global
3827 * T_INFO_ACK.
3828 */
3829
3830 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3831 sizeof (tcp_g_t_info_ack), tcps);
3832
3833 tcps->tcps_kstat = tcp_kstat2_init(stackid);
3834 tcps->tcps_mibkp = tcp_kstat_init(stackid);
3835
3836 major = mod_name_to_major(INET_NAME);
3837 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3838 ASSERT(error == 0);
3839 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3840 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3841 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL);
3842 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL);
3843 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3844
3845 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3846 tcps->tcps_reclaim = B_FALSE;
3847 tcps->tcps_reclaim_tid = 0;
3848 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3849
3850 /*
3851 * ncpus is the current number of CPUs, which can be bigger than
3852 * boot_ncpus. But we don't want to use ncpus to allocate all the
3853 * tcp_stats_cpu_t at system boot up time since it will be 1. While
3854 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3855 * there are many CPUs as we will be adding them 1 by 1.
3856 *
3857 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3858 * are not freed until the stack is going away. So there is no need
3859 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3860 */
3861 mutex_enter(&cpu_lock);
3862 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3863 mutex_exit(&cpu_lock);
3864 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *),
3865 KM_SLEEP);
3866 for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3867 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3868 KM_SLEEP);
3869 }
3870
3871 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3872 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3873 offsetof(tcp_listener_t, tl_link));
3874
3875 tcps->tcps_default_cc_algo = cc_load_algo(CC_DEFAULT_ALGO_NAME);
3876 VERIFY3P(tcps->tcps_default_cc_algo, !=, NULL);
3877
3878 tcpsig_init(tcps);
3879
3880 return (tcps);
3881 }
3882
3883 /*
3884 * Called when the IP module is about to be unloaded.
3885 */
3886 void
tcp_ddi_g_destroy(void)3887 tcp_ddi_g_destroy(void)
3888 {
3889 tcp_g_kstat_fini(tcp_g_kstat);
3890 tcp_g_kstat = NULL;
3891 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3892
3893 mutex_destroy(&tcp_random_lock);
3894
3895 kmem_cache_destroy(tcp_timercache);
3896 kmem_cache_destroy(tcp_notsack_blk_cache);
3897
3898 netstack_unregister(NS_TCP);
3899 }
3900
3901 /*
3902 * Free the TCP stack instance.
3903 */
3904 static void
tcp_stack_fini(netstackid_t stackid,void * arg)3905 tcp_stack_fini(netstackid_t stackid, void *arg)
3906 {
3907 tcp_stack_t *tcps = (tcp_stack_t *)arg;
3908 int i;
3909
3910 freeb(tcps->tcps_ixa_cleanup_mp);
3911 tcps->tcps_ixa_cleanup_mp = NULL;
3912 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv);
3913 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv);
3914 mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3915
3916 /*
3917 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3918 * the timer.
3919 */
3920 mutex_enter(&tcps->tcps_reclaim_lock);
3921 tcps->tcps_reclaim = B_FALSE;
3922 mutex_exit(&tcps->tcps_reclaim_lock);
3923 if (tcps->tcps_reclaim_tid != 0)
3924 (void) untimeout(tcps->tcps_reclaim_tid);
3925 mutex_destroy(&tcps->tcps_reclaim_lock);
3926
3927 tcp_listener_conf_cleanup(tcps);
3928
3929 for (i = 0; i < tcps->tcps_sc_cnt; i++)
3930 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3931 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3932
3933 kmem_free(tcps->tcps_propinfo_tbl,
3934 tcp_propinfo_count * sizeof (mod_prop_info_t));
3935 tcps->tcps_propinfo_tbl = NULL;
3936
3937 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3938 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3939 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3940 }
3941
3942 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3943 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3944 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3945 }
3946
3947 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3948 tcps->tcps_bind_fanout = NULL;
3949
3950 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3951 TCP_ACCEPTOR_FANOUT_SIZE);
3952 tcps->tcps_acceptor_fanout = NULL;
3953
3954 mutex_destroy(&tcps->tcps_iss_key_lock);
3955 mutex_destroy(&tcps->tcps_epriv_port_lock);
3956
3957 ip_drop_unregister(&tcps->tcps_dropper);
3958
3959 tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3960 tcps->tcps_kstat = NULL;
3961
3962 tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3963 tcps->tcps_mibkp = NULL;
3964
3965 tcpsig_fini(tcps);
3966
3967 ldi_ident_release(tcps->tcps_ldi_ident);
3968 kmem_free(tcps, sizeof (*tcps));
3969 }
3970
3971 /*
3972 * Generate ISS, taking into account NDD changes may happen halfway through.
3973 * (If the iss is not zero, set it.)
3974 */
3975
3976 static void
tcp_iss_init(tcp_t * tcp)3977 tcp_iss_init(tcp_t *tcp)
3978 {
3979 MD5_CTX context;
3980 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3981 uint32_t answer[4];
3982 tcp_stack_t *tcps = tcp->tcp_tcps;
3983 conn_t *connp = tcp->tcp_connp;
3984
3985 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1);
3986 tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3987 switch (tcps->tcps_strong_iss) {
3988 case 2:
3989 mutex_enter(&tcps->tcps_iss_key_lock);
3990 context = tcps->tcps_iss_key;
3991 mutex_exit(&tcps->tcps_iss_key_lock);
3992 arg.ports = connp->conn_ports;
3993 arg.src = connp->conn_laddr_v6;
3994 arg.dst = connp->conn_faddr_v6;
3995 MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3996 MD5Final((uchar_t *)answer, &context);
3997 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3998 /*
3999 * Now that we've hashed into a unique per-connection sequence
4000 * space, add a random increment per strong_iss == 1. So I
4001 * guess we'll have to...
4002 */
4003 /* FALLTHRU */
4004 case 1:
4005 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
4006 break;
4007 default:
4008 tcp->tcp_iss += (uint32_t)gethrestime_sec() *
4009 tcps->tcps_iss_incr;
4010 break;
4011 }
4012 tcp->tcp_valid_bits = TCP_ISS_VALID;
4013 tcp->tcp_fss = tcp->tcp_iss - 1;
4014 tcp->tcp_suna = tcp->tcp_iss;
4015 tcp->tcp_snxt = tcp->tcp_iss + 1;
4016 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4017 tcp->tcp_csuna = tcp->tcp_snxt;
4018 }
4019
4020 /*
4021 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
4022 * on the specified backing STREAMS q. Note, the caller may make the
4023 * decision to call based on the tcp_t.tcp_flow_stopped value which
4024 * when check outside the q's lock is only an advisory check ...
4025 */
4026 void
tcp_setqfull(tcp_t * tcp)4027 tcp_setqfull(tcp_t *tcp)
4028 {
4029 tcp_stack_t *tcps = tcp->tcp_tcps;
4030 conn_t *connp = tcp->tcp_connp;
4031
4032 if (tcp->tcp_closed)
4033 return;
4034
4035 conn_setqfull(connp, &tcp->tcp_flow_stopped);
4036 if (tcp->tcp_flow_stopped)
4037 TCP_STAT(tcps, tcp_flwctl_on);
4038 }
4039
4040 void
tcp_clrqfull(tcp_t * tcp)4041 tcp_clrqfull(tcp_t *tcp)
4042 {
4043 conn_t *connp = tcp->tcp_connp;
4044
4045 if (tcp->tcp_closed)
4046 return;
4047 conn_clrqfull(connp, &tcp->tcp_flow_stopped);
4048 }
4049
4050 static int
tcp_squeue_switch(int val)4051 tcp_squeue_switch(int val)
4052 {
4053 int rval = SQ_FILL;
4054
4055 switch (val) {
4056 case 1:
4057 rval = SQ_NODRAIN;
4058 break;
4059 case 2:
4060 rval = SQ_PROCESS;
4061 break;
4062 default:
4063 break;
4064 }
4065 return (rval);
4066 }
4067
4068 /*
4069 * This is called once for each squeue - globally for all stack
4070 * instances.
4071 */
4072 static void
tcp_squeue_add(squeue_t * sqp)4073 tcp_squeue_add(squeue_t *sqp)
4074 {
4075 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4076 sizeof (tcp_squeue_priv_t), KM_SLEEP);
4077
4078 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4079 if (tcp_free_list_max_cnt == 0) {
4080 int tcp_ncpus = ((boot_max_ncpus == -1) ?
4081 max_ncpus : boot_max_ncpus);
4082
4083 /*
4084 * Limit number of entries to 1% of availble memory / tcp_ncpus
4085 */
4086 tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4087 (tcp_ncpus * sizeof (tcp_t) * 100);
4088 }
4089 tcp_time_wait->tcp_free_list_cnt = 0;
4090 }
4091 /*
4092 * Return unix error is tli error is TSYSERR, otherwise return a negative
4093 * tli error.
4094 */
4095 int
tcp_do_bind(conn_t * connp,struct sockaddr * sa,socklen_t len,cred_t * cr,boolean_t bind_to_req_port_only)4096 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4097 boolean_t bind_to_req_port_only)
4098 {
4099 int error;
4100 tcp_t *tcp = connp->conn_tcp;
4101
4102 if (tcp->tcp_state >= TCPS_BOUND) {
4103 if (connp->conn_debug) {
4104 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4105 "tcp_bind: bad state, %d", tcp->tcp_state);
4106 }
4107 return (-TOUTSTATE);
4108 }
4109
4110 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4111 if (error != 0)
4112 return (error);
4113
4114 ASSERT(tcp->tcp_state == TCPS_BOUND);
4115 tcp->tcp_conn_req_max = 0;
4116 return (0);
4117 }
4118
4119 /*
4120 * If the return value from this function is positive, it's a UNIX error.
4121 * Otherwise, if it's negative, then the absolute value is a TLI error.
4122 * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4123 */
4124 int
tcp_do_connect(conn_t * connp,const struct sockaddr * sa,socklen_t len,cred_t * cr,pid_t pid)4125 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4126 cred_t *cr, pid_t pid)
4127 {
4128 tcp_t *tcp = connp->conn_tcp;
4129 sin_t *sin = (sin_t *)sa;
4130 sin6_t *sin6 = (sin6_t *)sa;
4131 ipaddr_t *dstaddrp;
4132 in_port_t dstport;
4133 uint_t srcid;
4134 int error;
4135 uint32_t mss;
4136 mblk_t *syn_mp;
4137 tcp_stack_t *tcps = tcp->tcp_tcps;
4138 int32_t oldstate;
4139 ip_xmit_attr_t *ixa = connp->conn_ixa;
4140
4141 oldstate = tcp->tcp_state;
4142
4143 switch (len) {
4144 default:
4145 /*
4146 * Should never happen
4147 */
4148 return (EINVAL);
4149
4150 case sizeof (sin_t):
4151 sin = (sin_t *)sa;
4152 if (sin->sin_port == 0) {
4153 return (-TBADADDR);
4154 }
4155 if (connp->conn_ipv6_v6only) {
4156 return (EAFNOSUPPORT);
4157 }
4158 break;
4159
4160 case sizeof (sin6_t):
4161 sin6 = (sin6_t *)sa;
4162 if (sin6->sin6_port == 0) {
4163 return (-TBADADDR);
4164 }
4165 break;
4166 }
4167 /*
4168 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4169 * make sure that the conn_ipversion is IPV4_VERSION. We
4170 * need to this before we call tcp_bindi() so that the port lookup
4171 * code will look for ports in the correct port space (IPv4 and
4172 * IPv6 have separate port spaces).
4173 */
4174 if (connp->conn_family == AF_INET6 &&
4175 connp->conn_ipversion == IPV6_VERSION &&
4176 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4177 if (connp->conn_ipv6_v6only)
4178 return (EADDRNOTAVAIL);
4179
4180 connp->conn_ipversion = IPV4_VERSION;
4181 }
4182
4183 switch (tcp->tcp_state) {
4184 case TCPS_LISTEN:
4185 /*
4186 * Listening sockets are not allowed to issue connect().
4187 */
4188 if (IPCL_IS_NONSTR(connp))
4189 return (EOPNOTSUPP);
4190 /* FALLTHRU */
4191 case TCPS_IDLE:
4192 /*
4193 * We support quick connect, refer to comments in
4194 * tcp_connect_*()
4195 */
4196 /* FALLTHRU */
4197 case TCPS_BOUND:
4198 break;
4199 default:
4200 return (-TOUTSTATE);
4201 }
4202
4203 /*
4204 * We update our cred/cpid based on the caller of connect
4205 */
4206 if (connp->conn_cred != cr) {
4207 crhold(cr);
4208 crfree(connp->conn_cred);
4209 connp->conn_cred = cr;
4210 }
4211 connp->conn_cpid = pid;
4212
4213 /* Cache things in the ixa without any refhold */
4214 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4215 ixa->ixa_cred = cr;
4216 ixa->ixa_cpid = pid;
4217 if (is_system_labeled()) {
4218 /* We need to restart with a label based on the cred */
4219 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4220 }
4221
4222 if (connp->conn_family == AF_INET6) {
4223 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4224 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4225 sin6->sin6_port, sin6->sin6_flowinfo,
4226 sin6->__sin6_src_id, sin6->sin6_scope_id);
4227 } else {
4228 /*
4229 * Destination adress is mapped IPv6 address.
4230 * Source bound address should be unspecified or
4231 * IPv6 mapped address as well.
4232 */
4233 if (!IN6_IS_ADDR_UNSPECIFIED(
4234 &connp->conn_bound_addr_v6) &&
4235 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4236 return (EADDRNOTAVAIL);
4237 }
4238 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4239 dstport = sin6->sin6_port;
4240 srcid = sin6->__sin6_src_id;
4241 error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4242 srcid);
4243 }
4244 } else {
4245 dstaddrp = &sin->sin_addr.s_addr;
4246 dstport = sin->sin_port;
4247 srcid = 0;
4248 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4249 }
4250
4251 if (error != 0)
4252 goto connect_failed;
4253
4254 CL_INET_CONNECT(connp, B_TRUE, error);
4255 if (error != 0)
4256 goto connect_failed;
4257
4258 /* connect succeeded */
4259 TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4260 tcp->tcp_active_open = 1;
4261
4262 /*
4263 * tcp_set_destination() does not adjust for TCP/IP header length.
4264 */
4265 mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4266
4267 /*
4268 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4269 * to the nearest MSS.
4270 *
4271 * We do the round up here because we need to get the interface MTU
4272 * first before we can do the round up.
4273 */
4274 tcp->tcp_rwnd = connp->conn_rcvbuf;
4275 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4276 tcps->tcps_recv_hiwat_minmss * mss);
4277 connp->conn_rcvbuf = tcp->tcp_rwnd;
4278 tcp_set_ws_value(tcp);
4279 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4280 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4281 tcp->tcp_snd_ws_ok = B_TRUE;
4282
4283 /*
4284 * Set tcp_snd_ts_ok to true
4285 * so that tcp_xmit_mp will
4286 * include the timestamp
4287 * option in the SYN segment.
4288 */
4289 if (tcps->tcps_tstamp_always ||
4290 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4291 tcp->tcp_snd_ts_ok = B_TRUE;
4292 }
4293
4294 /*
4295 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4296 * the SACK metric is set. So here we just check the per stack SACK
4297 * permitted param.
4298 */
4299 if (tcps->tcps_sack_permitted == 2) {
4300 ASSERT(tcp->tcp_num_sack_blk == 0);
4301 ASSERT(tcp->tcp_notsack_list == NULL);
4302 tcp->tcp_snd_sack_ok = B_TRUE;
4303 }
4304
4305 /*
4306 * Should we use ECN? Note that the current
4307 * default value (SunOS 5.9) of tcp_ecn_permitted
4308 * is 1. The reason for doing this is that there
4309 * are equipments out there that will drop ECN
4310 * enabled IP packets. Setting it to 1 avoids
4311 * compatibility problems.
4312 */
4313 if (tcps->tcps_ecn_permitted == 2)
4314 tcp->tcp_ecn_ok = B_TRUE;
4315
4316 /* Trace change from BOUND -> SYN_SENT here */
4317 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4318 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4319 int32_t, TCPS_BOUND);
4320
4321 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4322 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4323 tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4324 if (syn_mp != NULL) {
4325 /*
4326 * We must bump the generation before sending the syn
4327 * to ensure that we use the right generation in case
4328 * this thread issues a "connected" up call.
4329 */
4330 SOCK_CONNID_BUMP(tcp->tcp_connid);
4331 /*
4332 * DTrace sending the first SYN as a
4333 * tcp:::connect-request event.
4334 */
4335 DTRACE_TCP5(connect__request, mblk_t *, NULL,
4336 ip_xmit_attr_t *, connp->conn_ixa,
4337 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4338 tcph_t *,
4339 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4340 tcp_send_data(tcp, syn_mp);
4341 }
4342
4343 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4344 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4345 return (0);
4346
4347 connect_failed:
4348 connp->conn_faddr_v6 = ipv6_all_zeros;
4349 connp->conn_fport = 0;
4350 tcp->tcp_state = oldstate;
4351 if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4352 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4353 return (error);
4354 }
4355
4356 int
tcp_do_listen(conn_t * connp,struct sockaddr * sa,socklen_t len,int backlog,cred_t * cr,boolean_t bind_to_req_port_only)4357 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4358 int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4359 {
4360 tcp_t *tcp = connp->conn_tcp;
4361 int error = 0;
4362 tcp_stack_t *tcps = tcp->tcp_tcps;
4363 int32_t oldstate;
4364
4365 /* All Solaris components should pass a cred for this operation. */
4366 ASSERT(cr != NULL);
4367
4368 if (tcp->tcp_state >= TCPS_BOUND) {
4369 if ((tcp->tcp_state == TCPS_BOUND ||
4370 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4371 /*
4372 * Handle listen() increasing backlog.
4373 * This is more "liberal" then what the TPI spec
4374 * requires but is needed to avoid a t_unbind
4375 * when handling listen() since the port number
4376 * might be "stolen" between the unbind and bind.
4377 */
4378 goto do_listen;
4379 }
4380 if (connp->conn_debug) {
4381 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4382 "tcp_listen: bad state, %d", tcp->tcp_state);
4383 }
4384 return (-TOUTSTATE);
4385 } else {
4386 sin6_t addr;
4387 sin_t *sin;
4388 sin6_t *sin6;
4389
4390 if (sa == NULL) {
4391 ASSERT(IPCL_IS_NONSTR(connp));
4392 /* Do an implicit bind: Request for a generic port. */
4393 if (connp->conn_family == AF_INET) {
4394 len = sizeof (sin_t);
4395 sin = (sin_t *)&addr;
4396 *sin = sin_null;
4397 sin->sin_family = AF_INET;
4398 } else {
4399 ASSERT(connp->conn_family == AF_INET6);
4400 len = sizeof (sin6_t);
4401 sin6 = (sin6_t *)&addr;
4402 *sin6 = sin6_null;
4403 sin6->sin6_family = AF_INET6;
4404 }
4405 sa = (struct sockaddr *)&addr;
4406 }
4407
4408 error = tcp_bind_check(connp, sa, len, cr,
4409 bind_to_req_port_only);
4410 if (error)
4411 return (error);
4412 /* Fall through and do the fanout insertion */
4413 }
4414
4415 do_listen:
4416 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4417 tcp->tcp_conn_req_max = backlog;
4418 if (tcp->tcp_conn_req_max) {
4419 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4420 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4421 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4422 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4423 /*
4424 * If this is a listener, do not reset the eager list
4425 * and other stuffs. Note that we don't check if the
4426 * existing eager list meets the new tcp_conn_req_max
4427 * requirement.
4428 */
4429 if (tcp->tcp_state != TCPS_LISTEN) {
4430 tcp->tcp_state = TCPS_LISTEN;
4431 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4432 connp->conn_ixa, void, NULL, tcp_t *, tcp,
4433 void, NULL, int32_t, TCPS_BOUND);
4434 /* Initialize the chain. Don't need the eager_lock */
4435 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4436 tcp->tcp_eager_next_drop_q0 = tcp;
4437 tcp->tcp_eager_prev_drop_q0 = tcp;
4438 tcp->tcp_second_ctimer_threshold =
4439 tcps->tcps_ip_abort_linterval;
4440 }
4441 }
4442
4443 /*
4444 * We need to make sure that the conn_recv is set to a non-null
4445 * value before we insert the conn into the classifier table.
4446 * This is to avoid a race with an incoming packet which does an
4447 * ipcl_classify().
4448 * We initially set it to tcp_input_listener_unbound to try to
4449 * pick a good squeue for the listener when the first SYN arrives.
4450 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4451 * first SYN.
4452 */
4453 connp->conn_recv = tcp_input_listener_unbound;
4454
4455 /* Insert the listener in the classifier table */
4456 error = ip_laddr_fanout_insert(connp);
4457 if (error != 0) {
4458 /* Undo the bind - release the port number */
4459 oldstate = tcp->tcp_state;
4460 tcp->tcp_state = TCPS_IDLE;
4461 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4462 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4463 int32_t, oldstate);
4464 connp->conn_bound_addr_v6 = ipv6_all_zeros;
4465
4466 connp->conn_laddr_v6 = ipv6_all_zeros;
4467 connp->conn_saddr_v6 = ipv6_all_zeros;
4468 connp->conn_ports = 0;
4469
4470 if (connp->conn_anon_port) {
4471 zone_t *zone;
4472
4473 zone = crgetzone(cr);
4474 connp->conn_anon_port = B_FALSE;
4475 (void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4476 connp->conn_proto, connp->conn_lport, B_FALSE);
4477 }
4478 connp->conn_mlp_type = mlptSingle;
4479
4480 tcp_bind_hash_remove(tcp);
4481 return (error);
4482 } else {
4483 /*
4484 * If there is a connection limit, allocate and initialize
4485 * the counter struct. Note that since listen can be called
4486 * multiple times, the struct may have been allready allocated.
4487 */
4488 if (!list_is_empty(&tcps->tcps_listener_conf) &&
4489 tcp->tcp_listen_cnt == NULL) {
4490 tcp_listen_cnt_t *tlc;
4491 uint32_t ratio;
4492
4493 ratio = tcp_find_listener_conf(tcps,
4494 ntohs(connp->conn_lport));
4495 if (ratio != 0) {
4496 uint32_t mem_ratio, tot_buf;
4497
4498 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4499 KM_SLEEP);
4500 /*
4501 * Calculate the connection limit based on
4502 * the configured ratio and maxusers. Maxusers
4503 * are calculated based on memory size,
4504 * ~ 1 user per MB. Note that the conn_rcvbuf
4505 * and conn_sndbuf may change after a
4506 * connection is accepted. So what we have
4507 * is only an approximation.
4508 */
4509 if ((tot_buf = connp->conn_rcvbuf +
4510 connp->conn_sndbuf) < MB) {
4511 mem_ratio = MB / tot_buf;
4512 tlc->tlc_max = maxusers / ratio *
4513 mem_ratio;
4514 } else {
4515 mem_ratio = tot_buf / MB;
4516 tlc->tlc_max = maxusers / ratio /
4517 mem_ratio;
4518 }
4519 /* At least we should allow two connections! */
4520 if (tlc->tlc_max <= tcp_min_conn_listener)
4521 tlc->tlc_max = tcp_min_conn_listener;
4522 tlc->tlc_cnt = 1;
4523 tlc->tlc_drop = 0;
4524 tcp->tcp_listen_cnt = tlc;
4525 }
4526 }
4527 }
4528 return (error);
4529 }
4530