1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 546 /* 547 * Size of acceptor hash list. It has to be a power of 2 for hashing. 548 */ 549 #define TCP_ACCEPTOR_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * If there is a limit set on the number of connections allowed per each 565 * listener, the following struct is used to store that counter. This needs 566 * to be separated from the listener since the listener can go away before 567 * all the connections are gone. When the struct is allocated, tlc_cnt is set 568 * to 1. When the listener goes away, tlc_cnt is decremented by one. And 569 * the last connection (or the listener) which decrements tlc_cnt to zero 570 * frees the struct. 571 * 572 * tlc_max is the threshold value tcps_conn_listen_port. It is set when the 573 * tcp_listen_cnt_t is allocated. 574 * 575 * tlc_report_time stores the time when cmn_err() is called to report that the 576 * max has been exceeeded. Report is done at most once every 577 * TCP_TLC_REPORT_INTERVAL mins for a listener. 578 * 579 * tlc_drop stores the number of connection attempt dropped because the 580 * limit has reached. 581 */ 582 typedef struct tcp_listen_cnt_s { 583 uint32_t tlc_max; 584 uint32_t tlc_cnt; 585 int64_t tlc_report_time; 586 uint32_t tlc_drop; 587 } tcp_listen_cnt_t; 588 589 #define TCP_TLC_REPORT_INTERVAL (1 * MINUTES) 590 591 #define TCP_DECR_LISTEN_CNT(tcp) \ 592 { \ 593 ASSERT((tcp)->tcp_listen_cnt->tlc_cnt > 0); \ 594 if (atomic_add_32_nv(&(tcp)->tcp_listen_cnt->tlc_cnt, -1) == 0) \ 595 kmem_free((tcp)->tcp_listen_cnt, sizeof (tcp_listen_cnt_t)); \ 596 (tcp)->tcp_listen_cnt = NULL; \ 597 } 598 599 /* Minimum number of connections per listener. */ 600 uint32_t tcp_min_conn_listener = 2; 601 602 /* 603 * Linked list struct to store listener connection limit configuration per 604 * IP stack. 605 */ 606 typedef struct tcp_listener_s { 607 in_port_t tl_port; 608 uint32_t tl_ratio; 609 list_node_t tl_link; 610 } tcp_listener_t; 611 612 /* 613 * The shift factor applied to tcp_mss to decide if the peer sends us a 614 * valid initial receive window. By default, if the peer receive window 615 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 616 */ 617 uint32_t tcp_init_wnd_shft = 0; 618 619 /* Control whether TCP can enter defensive mode when under memory pressure. */ 620 boolean_t tcp_do_reclaim = B_TRUE; 621 622 /* 623 * When the system is under memory pressure, stack variable tcps_reclaim is 624 * true, we shorten the connection timeout abort interval to tcp_early_abort 625 * seconds. 626 */ 627 uint32_t tcp_early_abort = 30; 628 629 /* 630 * TCP options struct returned from tcp_parse_options. 631 */ 632 typedef struct tcp_opt_s { 633 uint32_t tcp_opt_mss; 634 uint32_t tcp_opt_wscale; 635 uint32_t tcp_opt_ts_val; 636 uint32_t tcp_opt_ts_ecr; 637 tcp_t *tcp; 638 } tcp_opt_t; 639 640 /* 641 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 642 */ 643 644 #ifdef _BIG_ENDIAN 645 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 646 (TCPOPT_TSTAMP << 8) | 10) 647 #else 648 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 649 (TCPOPT_NOP << 8) | TCPOPT_NOP) 650 #endif 651 652 /* 653 * Flags returned from tcp_parse_options. 654 */ 655 #define TCP_OPT_MSS_PRESENT 1 656 #define TCP_OPT_WSCALE_PRESENT 2 657 #define TCP_OPT_TSTAMP_PRESENT 4 658 #define TCP_OPT_SACK_OK_PRESENT 8 659 #define TCP_OPT_SACK_PRESENT 16 660 661 /* TCP option length */ 662 #define TCPOPT_NOP_LEN 1 663 #define TCPOPT_MAXSEG_LEN 4 664 #define TCPOPT_WS_LEN 3 665 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 666 #define TCPOPT_TSTAMP_LEN 10 667 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 668 #define TCPOPT_SACK_OK_LEN 2 669 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 670 #define TCPOPT_REAL_SACK_LEN 4 671 #define TCPOPT_MAX_SACK_LEN 36 672 #define TCPOPT_HEADER_LEN 2 673 674 /* TCP cwnd burst factor. */ 675 #define TCP_CWND_INFINITE 65535 676 #define TCP_CWND_SS 3 677 #define TCP_CWND_NORMAL 5 678 679 /* Maximum TCP initial cwin (start/restart). */ 680 #define TCP_MAX_INIT_CWND 8 681 682 /* 683 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 684 * either tcp_slow_start_initial or tcp_slow_start_after idle 685 * depending on the caller. If the upper layer has not used the 686 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 687 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 688 * If the upper layer has changed set the tcp_init_cwnd, just use 689 * it to calculate the tcp_cwnd. 690 */ 691 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 692 { \ 693 if ((tcp)->tcp_init_cwnd == 0) { \ 694 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 695 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 696 } else { \ 697 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 698 } \ 699 tcp->tcp_cwnd_cnt = 0; \ 700 } 701 702 /* TCP Timer control structure */ 703 typedef struct tcpt_s { 704 pfv_t tcpt_pfv; /* The routine we are to call */ 705 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 706 } tcpt_t; 707 708 /* 709 * Functions called directly via squeue having a prototype of edesc_t. 710 */ 711 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 712 ip_recv_attr_t *ira); 713 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 714 ip_recv_attr_t *dummy); 715 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 716 ip_recv_attr_t *dummy); 717 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 718 ip_recv_attr_t *dummy); 719 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 720 ip_recv_attr_t *dummy); 721 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 722 ip_recv_attr_t *ira); 723 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 724 ip_recv_attr_t *dummy); 725 void tcp_output(void *arg, mblk_t *mp, void *arg2, 726 ip_recv_attr_t *dummy); 727 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 728 ip_recv_attr_t *dummy); 729 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 730 ip_recv_attr_t *dummy); 731 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 732 ip_recv_attr_t *dummy); 733 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 734 ip_recv_attr_t *dummy); 735 static void tcp_send_synack(void *arg, mblk_t *mp, void *arg2, 736 ip_recv_attr_t *dummy); 737 738 739 /* Prototype for TCP functions */ 740 static void tcp_random_init(void); 741 int tcp_random(void); 742 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 743 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 744 tcp_t *eager); 745 static int tcp_set_destination(tcp_t *tcp); 746 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 747 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 748 boolean_t user_specified); 749 static void tcp_closei_local(tcp_t *tcp); 750 static void tcp_close_detached(tcp_t *tcp); 751 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 752 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 753 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 754 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 755 in_port_t dstport, uint_t srcid); 756 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 757 in_port_t dstport, uint32_t flowinfo, 758 uint_t srcid, uint32_t scope_id); 759 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 760 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 761 static char *tcp_display(tcp_t *tcp, char *, char); 762 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 763 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 764 static void tcp_eager_unlink(tcp_t *tcp); 765 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 766 int unixerr); 767 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 768 int tlierr, int unixerr); 769 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 770 cred_t *cr); 771 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 772 char *value, caddr_t cp, cred_t *cr); 773 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 774 char *value, caddr_t cp, cred_t *cr); 775 static int tcp_tpistate(tcp_t *tcp); 776 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 777 int caller_holds_lock); 778 static void tcp_bind_hash_remove(tcp_t *tcp); 779 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 780 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 781 static void tcp_acceptor_hash_remove(tcp_t *tcp); 782 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 783 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 784 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 785 static void tcp_init_values(tcp_t *tcp); 786 static void tcp_ip_notify(tcp_t *tcp); 787 static void tcp_iss_init(tcp_t *tcp); 788 static void tcp_keepalive_killer(void *arg); 789 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 790 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 791 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 792 int *do_disconnectp, int *t_errorp, int *sys_errorp); 793 static boolean_t tcp_allow_connopt_set(int level, int name); 794 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 795 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 796 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 797 tcp_stack_t *); 798 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 799 caddr_t cp, cred_t *cr); 800 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 801 caddr_t cp, cred_t *cr); 802 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 803 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 804 caddr_t cp, cred_t *cr); 805 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 806 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 807 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 808 static void tcp_reass_timer(void *arg); 809 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 810 static void tcp_reinit(tcp_t *tcp); 811 static void tcp_reinit_values(tcp_t *tcp); 812 813 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 814 static uint_t tcp_rcv_drain(tcp_t *tcp); 815 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 816 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 817 static void tcp_ss_rexmit(tcp_t *tcp); 818 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 819 ip_recv_attr_t *); 820 static void tcp_process_options(tcp_t *, tcpha_t *); 821 static void tcp_rsrv(queue_t *q); 822 static int tcp_snmp_state(tcp_t *tcp); 823 static void tcp_timer(void *arg); 824 static void tcp_timer_callback(void *); 825 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 826 boolean_t random); 827 static in_port_t tcp_get_next_priv_port(const tcp_t *); 828 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 829 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 830 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 831 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 832 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 833 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 834 static int tcp_send(tcp_t *tcp, const int mss, 835 const int total_hdr_len, const int tcp_hdr_len, 836 const int num_sack_blk, int *usable, uint_t *snxt, 837 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 838 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 839 int num_sack_blk); 840 static void tcp_wsrv(queue_t *q); 841 static int tcp_xmit_end(tcp_t *tcp); 842 static void tcp_ack_timer(void *arg); 843 static mblk_t *tcp_ack_mp(tcp_t *tcp); 844 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 845 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 846 ip_stack_t *, conn_t *); 847 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 848 uint32_t ack, int ctl); 849 static void tcp_set_rto(tcp_t *, time_t); 850 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 851 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 852 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 853 ip_recv_attr_t *); 854 static int tcp_build_hdrs(tcp_t *); 855 static void tcp_time_wait_append(tcp_t *tcp); 856 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 857 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 858 ip_recv_attr_t *ira); 859 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 860 static boolean_t tcp_zcopy_check(tcp_t *); 861 static void tcp_zcopy_notify(tcp_t *); 862 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 863 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 864 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 865 static void tcp_update_zcopy(tcp_t *tcp); 866 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 867 ixa_notify_arg_t); 868 static void tcp_rexmit_after_error(tcp_t *tcp); 869 static void tcp_send_data(tcp_t *, mblk_t *); 870 extern mblk_t *tcp_timermp_alloc(int); 871 extern void tcp_timermp_free(tcp_t *); 872 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 873 static void tcp_stop_lingering(tcp_t *tcp); 874 static void tcp_close_linger_timeout(void *arg); 875 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 876 static void tcp_stack_fini(netstackid_t stackid, void *arg); 877 static void *tcp_g_kstat_init(tcp_g_stat_t *); 878 static void tcp_g_kstat_fini(kstat_t *); 879 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 880 static void tcp_kstat_fini(netstackid_t, kstat_t *); 881 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 882 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 883 static int tcp_kstat_update(kstat_t *kp, int rw); 884 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 885 ip_recv_attr_t *ira); 886 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 887 ip_recv_attr_t *ira); 888 static int tcp_squeue_switch(int); 889 890 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 891 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 892 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 893 static int tcp_tpi_close(queue_t *, int); 894 static int tcp_tpi_close_accept(queue_t *); 895 896 static void tcp_squeue_add(squeue_t *); 897 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 898 899 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 900 901 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 902 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 903 ip_recv_attr_t *dummy); 904 905 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 906 sock_upper_handle_t, cred_t *); 907 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 908 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 909 boolean_t); 910 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 911 cred_t *, pid_t); 912 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 913 boolean_t); 914 static int tcp_do_unbind(conn_t *); 915 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 916 boolean_t); 917 918 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 919 920 static uint32_t tcp_find_listener_conf(tcp_stack_t *, in_port_t); 921 static int tcp_listener_conf_get(queue_t *, mblk_t *, caddr_t, cred_t *); 922 static int tcp_listener_conf_add(queue_t *, mblk_t *, char *, caddr_t, 923 cred_t *); 924 static int tcp_listener_conf_del(queue_t *, mblk_t *, char *, caddr_t, 925 cred_t *); 926 static void tcp_listener_conf_cleanup(tcp_stack_t *); 927 928 /* 929 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 930 * 931 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 932 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 933 * (defined in tcp.h) needs to be filled in and passed into the kernel 934 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 935 * structure contains the four-tuple of a TCP connection and a range of TCP 936 * states (specified by ac_start and ac_end). The use of wildcard addresses 937 * and ports is allowed. Connections with a matching four tuple and a state 938 * within the specified range will be aborted. The valid states for the 939 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 940 * inclusive. 941 * 942 * An application which has its connection aborted by this ioctl will receive 943 * an error that is dependent on the connection state at the time of the abort. 944 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 945 * though a RST packet has been received. If the connection state is equal to 946 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 947 * and all resources associated with the connection will be freed. 948 */ 949 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 950 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 951 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 952 ip_recv_attr_t *dummy); 953 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 954 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 955 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 956 boolean_t, tcp_stack_t *); 957 958 static struct module_info tcp_rinfo = { 959 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 960 }; 961 962 static struct module_info tcp_winfo = { 963 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 964 }; 965 966 /* 967 * Entry points for TCP as a device. The normal case which supports 968 * the TCP functionality. 969 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 970 */ 971 struct qinit tcp_rinitv4 = { 972 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 973 }; 974 975 struct qinit tcp_rinitv6 = { 976 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 977 }; 978 979 struct qinit tcp_winit = { 980 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 981 }; 982 983 /* Initial entry point for TCP in socket mode. */ 984 struct qinit tcp_sock_winit = { 985 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 986 }; 987 988 /* TCP entry point during fallback */ 989 struct qinit tcp_fallback_sock_winit = { 990 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 991 }; 992 993 /* 994 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 995 * an accept. Avoid allocating data structures since eager has already 996 * been created. 997 */ 998 struct qinit tcp_acceptor_rinit = { 999 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 1000 }; 1001 1002 struct qinit tcp_acceptor_winit = { 1003 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1004 }; 1005 1006 /* For AF_INET aka /dev/tcp */ 1007 struct streamtab tcpinfov4 = { 1008 &tcp_rinitv4, &tcp_winit 1009 }; 1010 1011 /* For AF_INET6 aka /dev/tcp6 */ 1012 struct streamtab tcpinfov6 = { 1013 &tcp_rinitv6, &tcp_winit 1014 }; 1015 1016 sock_downcalls_t sock_tcp_downcalls; 1017 1018 /* Setable only in /etc/system. Move to ndd? */ 1019 boolean_t tcp_icmp_source_quench = B_FALSE; 1020 1021 /* 1022 * Following assumes TPI alignment requirements stay along 32 bit 1023 * boundaries 1024 */ 1025 #define ROUNDUP32(x) \ 1026 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1027 1028 /* Template for response to info request. */ 1029 static struct T_info_ack tcp_g_t_info_ack = { 1030 T_INFO_ACK, /* PRIM_type */ 1031 0, /* TSDU_size */ 1032 T_INFINITE, /* ETSDU_size */ 1033 T_INVALID, /* CDATA_size */ 1034 T_INVALID, /* DDATA_size */ 1035 sizeof (sin_t), /* ADDR_size */ 1036 0, /* OPT_size - not initialized here */ 1037 TIDUSZ, /* TIDU_size */ 1038 T_COTS_ORD, /* SERV_type */ 1039 TCPS_IDLE, /* CURRENT_state */ 1040 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1041 }; 1042 1043 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1044 T_INFO_ACK, /* PRIM_type */ 1045 0, /* TSDU_size */ 1046 T_INFINITE, /* ETSDU_size */ 1047 T_INVALID, /* CDATA_size */ 1048 T_INVALID, /* DDATA_size */ 1049 sizeof (sin6_t), /* ADDR_size */ 1050 0, /* OPT_size - not initialized here */ 1051 TIDUSZ, /* TIDU_size */ 1052 T_COTS_ORD, /* SERV_type */ 1053 TCPS_IDLE, /* CURRENT_state */ 1054 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1055 }; 1056 1057 #define MS 1L 1058 #define SECONDS (1000 * MS) 1059 #define MINUTES (60 * SECONDS) 1060 #define HOURS (60 * MINUTES) 1061 #define DAYS (24 * HOURS) 1062 1063 #define PARAM_MAX (~(uint32_t)0) 1064 1065 /* Max size IP datagram is 64k - 1 */ 1066 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 1067 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 1068 /* Max of the above */ 1069 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1070 1071 /* Largest TCP port number */ 1072 #define TCP_MAX_PORT (64 * 1024 - 1) 1073 1074 /* 1075 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1076 * layer header. It has to be a multiple of 4. 1077 */ 1078 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1079 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1080 1081 #define MB (1024 * 1024) 1082 1083 /* 1084 * All of these are alterable, within the min/max values given, at run time. 1085 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1086 * per the TCP spec. 1087 */ 1088 /* BEGIN CSTYLED */ 1089 static tcpparam_t lcl_tcp_param_arr[] = { 1090 /*min max value name */ 1091 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1092 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1093 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1094 { 1, 1024, 1, "tcp_conn_req_min" }, 1095 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1096 { 128, (1<<30), 1*MB, "tcp_cwnd_max" }, 1097 { 0, 10, 0, "tcp_debug" }, 1098 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1099 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1100 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1101 { 500*MS, PARAM_MAX, 5*MINUTES, "tcp_ip_abort_interval"}, 1102 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1103 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1104 { 1, 255, 64, "tcp_ipv4_ttl"}, 1105 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1106 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1107 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1108 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1109 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1110 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1111 { 1*MS, 20*SECONDS, 1*SECONDS, "tcp_rexmit_interval_initial"}, 1112 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1113 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1114 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1115 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1116 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1117 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1118 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1119 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1120 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1121 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1122 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1123 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1124 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1125 { 8192, (1<<30), 1*MB, "tcp_max_buf"}, 1126 /* 1127 * Question: What default value should I set for tcp_strong_iss? 1128 */ 1129 { 0, 2, 1, "tcp_strong_iss"}, 1130 { 0, 65536, 20, "tcp_rtt_updates"}, 1131 { 0, 1, 1, "tcp_wscale_always"}, 1132 { 0, 1, 0, "tcp_tstamp_always"}, 1133 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1134 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1135 { 0, 16, 2, "tcp_deferred_acks_max"}, 1136 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1137 { 1, 4, 4, "tcp_slow_start_initial"}, 1138 { 0, 2, 2, "tcp_sack_permitted"}, 1139 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1140 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1141 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1142 { 0, 1, 0, "tcp_rev_src_routes"}, 1143 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1144 { 0, 16, 8, "tcp_local_dacks_max"}, 1145 { 0, 2, 1, "tcp_ecn_permitted"}, 1146 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1147 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1148 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1149 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1150 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1151 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1152 { 0, PARAM_MAX, 100*SECONDS, "tcp_reass_timeout"} 1153 }; 1154 /* END CSTYLED */ 1155 1156 /* Round up the value to the nearest mss. */ 1157 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1158 1159 /* 1160 * Set ECN capable transport (ECT) code point in IP header. 1161 * 1162 * Note that there are 2 ECT code points '01' and '10', which are called 1163 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1164 * point ECT(0) for TCP as described in RFC 2481. 1165 */ 1166 #define SET_ECT(tcp, iph) \ 1167 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1168 /* We need to clear the code point first. */ \ 1169 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1170 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1171 } else { \ 1172 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1173 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1174 } 1175 1176 /* 1177 * The format argument to pass to tcp_display(). 1178 * DISP_PORT_ONLY means that the returned string has only port info. 1179 * DISP_ADDR_AND_PORT means that the returned string also contains the 1180 * remote and local IP address. 1181 */ 1182 #define DISP_PORT_ONLY 1 1183 #define DISP_ADDR_AND_PORT 2 1184 1185 #define IS_VMLOANED_MBLK(mp) \ 1186 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1187 1188 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1189 1190 /* 1191 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1192 * tunable settable via NDD. Otherwise, the per-connection behavior is 1193 * determined dynamically during tcp_set_destination(), which is the default. 1194 */ 1195 boolean_t tcp_static_maxpsz = B_FALSE; 1196 1197 /* Setable in /etc/system */ 1198 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1199 uint32_t tcp_random_anon_port = 1; 1200 1201 /* 1202 * To reach to an eager in Q0 which can be dropped due to an incoming 1203 * new SYN request when Q0 is full, a new doubly linked list is 1204 * introduced. This list allows to select an eager from Q0 in O(1) time. 1205 * This is needed to avoid spending too much time walking through the 1206 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1207 * this new list has to be a member of Q0. 1208 * This list is headed by listener's tcp_t. When the list is empty, 1209 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1210 * of listener's tcp_t point to listener's tcp_t itself. 1211 * 1212 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1213 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1214 * These macros do not affect the eager's membership to Q0. 1215 */ 1216 1217 1218 #define MAKE_DROPPABLE(listener, eager) \ 1219 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1220 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1221 = (eager); \ 1222 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1223 (eager)->tcp_eager_next_drop_q0 = \ 1224 (listener)->tcp_eager_next_drop_q0; \ 1225 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1226 } 1227 1228 #define MAKE_UNDROPPABLE(eager) \ 1229 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1230 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1231 = (eager)->tcp_eager_prev_drop_q0; \ 1232 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1233 = (eager)->tcp_eager_next_drop_q0; \ 1234 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1235 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1236 } 1237 1238 /* 1239 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1240 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1241 * data, TCP will not respond with an ACK. RFC 793 requires that 1242 * TCP responds with an ACK for such a bogus ACK. By not following 1243 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1244 * an attacker successfully spoofs an acceptable segment to our 1245 * peer; or when our peer is "confused." 1246 */ 1247 uint32_t tcp_drop_ack_unsent_cnt = 10; 1248 1249 /* 1250 * Hook functions to enable cluster networking 1251 * On non-clustered systems these vectors must always be NULL. 1252 */ 1253 1254 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1255 sa_family_t addr_family, uint8_t *laddrp, 1256 in_port_t lport, void *args) = NULL; 1257 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1258 sa_family_t addr_family, uint8_t *laddrp, 1259 in_port_t lport, void *args) = NULL; 1260 1261 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1262 boolean_t is_outgoing, 1263 sa_family_t addr_family, 1264 uint8_t *laddrp, in_port_t lport, 1265 uint8_t *faddrp, in_port_t fport, 1266 void *args) = NULL; 1267 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1268 sa_family_t addr_family, uint8_t *laddrp, 1269 in_port_t lport, uint8_t *faddrp, 1270 in_port_t fport, void *args) = NULL; 1271 1272 1273 /* 1274 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1275 */ 1276 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1277 (err) = 0; \ 1278 if (cl_inet_connect2 != NULL) { \ 1279 /* \ 1280 * Running in cluster mode - register active connection \ 1281 * information \ 1282 */ \ 1283 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1284 if ((connp)->conn_laddr_v4 != 0) { \ 1285 (err) = (*cl_inet_connect2)( \ 1286 (connp)->conn_netstack->netstack_stackid,\ 1287 IPPROTO_TCP, is_outgoing, AF_INET, \ 1288 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1289 (in_port_t)(connp)->conn_lport, \ 1290 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1291 (in_port_t)(connp)->conn_fport, NULL); \ 1292 } \ 1293 } else { \ 1294 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1295 &(connp)->conn_laddr_v6)) { \ 1296 (err) = (*cl_inet_connect2)( \ 1297 (connp)->conn_netstack->netstack_stackid,\ 1298 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1299 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1300 (in_port_t)(connp)->conn_lport, \ 1301 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1302 (in_port_t)(connp)->conn_fport, NULL); \ 1303 } \ 1304 } \ 1305 } \ 1306 } 1307 1308 #define CL_INET_DISCONNECT(connp) { \ 1309 if (cl_inet_disconnect != NULL) { \ 1310 /* \ 1311 * Running in cluster mode - deregister active \ 1312 * connection information \ 1313 */ \ 1314 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1315 if ((connp)->conn_laddr_v4 != 0) { \ 1316 (*cl_inet_disconnect)( \ 1317 (connp)->conn_netstack->netstack_stackid,\ 1318 IPPROTO_TCP, AF_INET, \ 1319 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1320 (in_port_t)(connp)->conn_lport, \ 1321 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1322 (in_port_t)(connp)->conn_fport, NULL); \ 1323 } \ 1324 } else { \ 1325 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1326 &(connp)->conn_laddr_v6)) { \ 1327 (*cl_inet_disconnect)( \ 1328 (connp)->conn_netstack->netstack_stackid,\ 1329 IPPROTO_TCP, AF_INET6, \ 1330 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1331 (in_port_t)(connp)->conn_lport, \ 1332 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1333 (in_port_t)(connp)->conn_fport, NULL); \ 1334 } \ 1335 } \ 1336 } \ 1337 } 1338 1339 /* 1340 * Steps to do when a tcp_t moves to TIME-WAIT state. 1341 * 1342 * This connection is done, we don't need to account for it. Decrement 1343 * the listener connection counter if needed. 1344 * 1345 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 1346 * connection won't interfere with new ones. 1347 * 1348 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 1349 * the timer is handled within the context of this tcp_t. When the timer 1350 * fires, tcp_clean_death() is called. If upper layer closes the connection 1351 * during this period, tcp_time_wait_append() will be called to add this 1352 * tcp_t to the global TIME-WAIT list. Note that this means that the 1353 * actual wait time in TIME-WAIT state will be longer than the 1354 * tcps_time_wait_interval since the period before upper layer closes the 1355 * connection is not accounted for when tcp_time_wait_append() is called. 1356 * 1357 * If uppser layer has closed the connection, call tcp_time_wait_append() 1358 * directly. 1359 */ 1360 #define SET_TIME_WAIT(tcps, tcp, connp) \ 1361 { \ 1362 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 1363 if ((tcp)->tcp_listen_cnt != NULL) \ 1364 TCP_DECR_LISTEN_CNT(tcp); \ 1365 (connp)->conn_exclbind = 0; \ 1366 if (!TCP_IS_DETACHED(tcp)) { \ 1367 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 1368 } else { \ 1369 tcp_time_wait_append(tcp); \ 1370 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 1371 } \ 1372 } 1373 1374 /* 1375 * Cluster networking hook for traversing current connection list. 1376 * This routine is used to extract the current list of live connections 1377 * which must continue to to be dispatched to this node. 1378 */ 1379 int cl_tcp_walk_list(netstackid_t stack_id, 1380 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1381 1382 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1383 void *arg, tcp_stack_t *tcps); 1384 1385 static void 1386 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1387 { 1388 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1389 1390 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1391 conn_t *connp = tcp->tcp_connp; 1392 struct sock_proto_props sopp; 1393 1394 /* 1395 * only increase rcvthresh upto default_threshold 1396 */ 1397 if (new_rcvthresh > default_threshold) 1398 new_rcvthresh = default_threshold; 1399 1400 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1401 sopp.sopp_rcvthresh = new_rcvthresh; 1402 1403 (*connp->conn_upcalls->su_set_proto_props) 1404 (connp->conn_upper_handle, &sopp); 1405 } 1406 } 1407 /* 1408 * Figure out the value of window scale opton. Note that the rwnd is 1409 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1410 * We cannot find the scale value and then do a round up of tcp_rwnd 1411 * because the scale value may not be correct after that. 1412 * 1413 * Set the compiler flag to make this function inline. 1414 */ 1415 static void 1416 tcp_set_ws_value(tcp_t *tcp) 1417 { 1418 int i; 1419 uint32_t rwnd = tcp->tcp_rwnd; 1420 1421 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1422 i++, rwnd >>= 1) 1423 ; 1424 tcp->tcp_rcv_ws = i; 1425 } 1426 1427 /* 1428 * Remove a connection from the list of detached TIME_WAIT connections. 1429 * It returns B_FALSE if it can't remove the connection from the list 1430 * as the connection has already been removed from the list due to an 1431 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1432 */ 1433 static boolean_t 1434 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1435 { 1436 boolean_t locked = B_FALSE; 1437 1438 if (tcp_time_wait == NULL) { 1439 tcp_time_wait = *((tcp_squeue_priv_t **) 1440 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1441 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1442 locked = B_TRUE; 1443 } else { 1444 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1445 } 1446 1447 if (tcp->tcp_time_wait_expire == 0) { 1448 ASSERT(tcp->tcp_time_wait_next == NULL); 1449 ASSERT(tcp->tcp_time_wait_prev == NULL); 1450 if (locked) 1451 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1452 return (B_FALSE); 1453 } 1454 ASSERT(TCP_IS_DETACHED(tcp)); 1455 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1456 1457 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1458 ASSERT(tcp->tcp_time_wait_prev == NULL); 1459 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1460 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1461 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1462 NULL; 1463 } else { 1464 tcp_time_wait->tcp_time_wait_tail = NULL; 1465 } 1466 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1467 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1468 ASSERT(tcp->tcp_time_wait_next == NULL); 1469 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1470 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1471 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1472 } else { 1473 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1474 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1475 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1476 tcp->tcp_time_wait_next; 1477 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1478 tcp->tcp_time_wait_prev; 1479 } 1480 tcp->tcp_time_wait_next = NULL; 1481 tcp->tcp_time_wait_prev = NULL; 1482 tcp->tcp_time_wait_expire = 0; 1483 1484 if (locked) 1485 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1486 return (B_TRUE); 1487 } 1488 1489 /* 1490 * Add a connection to the list of detached TIME_WAIT connections 1491 * and set its time to expire. 1492 */ 1493 static void 1494 tcp_time_wait_append(tcp_t *tcp) 1495 { 1496 tcp_stack_t *tcps = tcp->tcp_tcps; 1497 tcp_squeue_priv_t *tcp_time_wait = 1498 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1499 SQPRIVATE_TCP)); 1500 1501 tcp_timers_stop(tcp); 1502 1503 /* Freed above */ 1504 ASSERT(tcp->tcp_timer_tid == 0); 1505 ASSERT(tcp->tcp_ack_tid == 0); 1506 1507 /* must have happened at the time of detaching the tcp */ 1508 ASSERT(tcp->tcp_ptpahn == NULL); 1509 ASSERT(tcp->tcp_flow_stopped == 0); 1510 ASSERT(tcp->tcp_time_wait_next == NULL); 1511 ASSERT(tcp->tcp_time_wait_prev == NULL); 1512 ASSERT(tcp->tcp_time_wait_expire == NULL); 1513 ASSERT(tcp->tcp_listener == NULL); 1514 1515 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1516 /* 1517 * The value computed below in tcp->tcp_time_wait_expire may 1518 * appear negative or wrap around. That is ok since our 1519 * interest is only in the difference between the current lbolt 1520 * value and tcp->tcp_time_wait_expire. But the value should not 1521 * be zero, since it means the tcp is not in the TIME_WAIT list. 1522 * The corresponding comparison in tcp_time_wait_collector() uses 1523 * modular arithmetic. 1524 */ 1525 tcp->tcp_time_wait_expire += 1526 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1527 if (tcp->tcp_time_wait_expire == 0) 1528 tcp->tcp_time_wait_expire = 1; 1529 1530 ASSERT(TCP_IS_DETACHED(tcp)); 1531 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1532 ASSERT(tcp->tcp_time_wait_next == NULL); 1533 ASSERT(tcp->tcp_time_wait_prev == NULL); 1534 TCP_DBGSTAT(tcps, tcp_time_wait); 1535 1536 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1537 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1538 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1539 tcp_time_wait->tcp_time_wait_head = tcp; 1540 } else { 1541 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1542 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1543 TCPS_TIME_WAIT); 1544 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1545 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1546 } 1547 tcp_time_wait->tcp_time_wait_tail = tcp; 1548 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1549 } 1550 1551 /* ARGSUSED */ 1552 void 1553 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1554 { 1555 conn_t *connp = (conn_t *)arg; 1556 tcp_t *tcp = connp->conn_tcp; 1557 tcp_stack_t *tcps = tcp->tcp_tcps; 1558 1559 ASSERT(tcp != NULL); 1560 if (tcp->tcp_state == TCPS_CLOSED) { 1561 return; 1562 } 1563 1564 ASSERT((connp->conn_family == AF_INET && 1565 connp->conn_ipversion == IPV4_VERSION) || 1566 (connp->conn_family == AF_INET6 && 1567 (connp->conn_ipversion == IPV4_VERSION || 1568 connp->conn_ipversion == IPV6_VERSION))); 1569 ASSERT(!tcp->tcp_listener); 1570 1571 TCP_STAT(tcps, tcp_time_wait_reap); 1572 ASSERT(TCP_IS_DETACHED(tcp)); 1573 1574 /* 1575 * Because they have no upstream client to rebind or tcp_close() 1576 * them later, we axe the connection here and now. 1577 */ 1578 tcp_close_detached(tcp); 1579 } 1580 1581 /* 1582 * Remove cached/latched IPsec references. 1583 */ 1584 void 1585 tcp_ipsec_cleanup(tcp_t *tcp) 1586 { 1587 conn_t *connp = tcp->tcp_connp; 1588 1589 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1590 1591 if (connp->conn_latch != NULL) { 1592 IPLATCH_REFRELE(connp->conn_latch); 1593 connp->conn_latch = NULL; 1594 } 1595 if (connp->conn_latch_in_policy != NULL) { 1596 IPPOL_REFRELE(connp->conn_latch_in_policy); 1597 connp->conn_latch_in_policy = NULL; 1598 } 1599 if (connp->conn_latch_in_action != NULL) { 1600 IPACT_REFRELE(connp->conn_latch_in_action); 1601 connp->conn_latch_in_action = NULL; 1602 } 1603 if (connp->conn_policy != NULL) { 1604 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1605 connp->conn_policy = NULL; 1606 } 1607 } 1608 1609 /* 1610 * Cleaup before placing on free list. 1611 * Disassociate from the netstack/tcp_stack_t since the freelist 1612 * is per squeue and not per netstack. 1613 */ 1614 void 1615 tcp_cleanup(tcp_t *tcp) 1616 { 1617 mblk_t *mp; 1618 tcp_sack_info_t *tcp_sack_info; 1619 conn_t *connp = tcp->tcp_connp; 1620 tcp_stack_t *tcps = tcp->tcp_tcps; 1621 netstack_t *ns = tcps->tcps_netstack; 1622 mblk_t *tcp_rsrv_mp; 1623 1624 tcp_bind_hash_remove(tcp); 1625 1626 /* Cleanup that which needs the netstack first */ 1627 tcp_ipsec_cleanup(tcp); 1628 ixa_cleanup(connp->conn_ixa); 1629 1630 if (connp->conn_ht_iphc != NULL) { 1631 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1632 connp->conn_ht_iphc = NULL; 1633 connp->conn_ht_iphc_allocated = 0; 1634 connp->conn_ht_iphc_len = 0; 1635 connp->conn_ht_ulp = NULL; 1636 connp->conn_ht_ulp_len = 0; 1637 tcp->tcp_ipha = NULL; 1638 tcp->tcp_ip6h = NULL; 1639 tcp->tcp_tcpha = NULL; 1640 } 1641 1642 /* We clear any IP_OPTIONS and extension headers */ 1643 ip_pkt_free(&connp->conn_xmit_ipp); 1644 1645 tcp_free(tcp); 1646 1647 /* Release any SSL context */ 1648 if (tcp->tcp_kssl_ent != NULL) { 1649 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1650 tcp->tcp_kssl_ent = NULL; 1651 } 1652 1653 if (tcp->tcp_kssl_ctx != NULL) { 1654 kssl_release_ctx(tcp->tcp_kssl_ctx); 1655 tcp->tcp_kssl_ctx = NULL; 1656 } 1657 tcp->tcp_kssl_pending = B_FALSE; 1658 1659 /* 1660 * Since we will bzero the entire structure, we need to 1661 * remove it and reinsert it in global hash list. We 1662 * know the walkers can't get to this conn because we 1663 * had set CONDEMNED flag earlier and checked reference 1664 * under conn_lock so walker won't pick it and when we 1665 * go the ipcl_globalhash_remove() below, no walker 1666 * can get to it. 1667 */ 1668 ipcl_globalhash_remove(connp); 1669 1670 /* Save some state */ 1671 mp = tcp->tcp_timercache; 1672 1673 tcp_sack_info = tcp->tcp_sack_info; 1674 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1675 1676 if (connp->conn_cred != NULL) { 1677 crfree(connp->conn_cred); 1678 connp->conn_cred = NULL; 1679 } 1680 ipcl_conn_cleanup(connp); 1681 connp->conn_flags = IPCL_TCPCONN; 1682 1683 /* 1684 * Now it is safe to decrement the reference counts. 1685 * This might be the last reference on the netstack 1686 * in which case it will cause the freeing of the IP Instance. 1687 */ 1688 connp->conn_netstack = NULL; 1689 connp->conn_ixa->ixa_ipst = NULL; 1690 netstack_rele(ns); 1691 ASSERT(tcps != NULL); 1692 tcp->tcp_tcps = NULL; 1693 1694 bzero(tcp, sizeof (tcp_t)); 1695 1696 /* restore the state */ 1697 tcp->tcp_timercache = mp; 1698 1699 tcp->tcp_sack_info = tcp_sack_info; 1700 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1701 1702 tcp->tcp_connp = connp; 1703 1704 ASSERT(connp->conn_tcp == tcp); 1705 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1706 connp->conn_state_flags = CONN_INCIPIENT; 1707 ASSERT(connp->conn_proto == IPPROTO_TCP); 1708 ASSERT(connp->conn_ref == 1); 1709 } 1710 1711 /* 1712 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1713 * is done forwards from the head. 1714 * This walks all stack instances since 1715 * tcp_time_wait remains global across all stacks. 1716 */ 1717 /* ARGSUSED */ 1718 void 1719 tcp_time_wait_collector(void *arg) 1720 { 1721 tcp_t *tcp; 1722 clock_t now; 1723 mblk_t *mp; 1724 conn_t *connp; 1725 kmutex_t *lock; 1726 boolean_t removed; 1727 1728 squeue_t *sqp = (squeue_t *)arg; 1729 tcp_squeue_priv_t *tcp_time_wait = 1730 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1731 1732 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1733 tcp_time_wait->tcp_time_wait_tid = 0; 1734 1735 if (tcp_time_wait->tcp_free_list != NULL && 1736 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1737 TCP_G_STAT(tcp_freelist_cleanup); 1738 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1739 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1740 tcp->tcp_time_wait_next = NULL; 1741 tcp_time_wait->tcp_free_list_cnt--; 1742 ASSERT(tcp->tcp_tcps == NULL); 1743 CONN_DEC_REF(tcp->tcp_connp); 1744 } 1745 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1746 } 1747 1748 /* 1749 * In order to reap time waits reliably, we should use a 1750 * source of time that is not adjustable by the user -- hence 1751 * the call to ddi_get_lbolt(). 1752 */ 1753 now = ddi_get_lbolt(); 1754 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1755 /* 1756 * Compare times using modular arithmetic, since 1757 * lbolt can wrapover. 1758 */ 1759 if ((now - tcp->tcp_time_wait_expire) < 0) { 1760 break; 1761 } 1762 1763 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1764 ASSERT(removed); 1765 1766 connp = tcp->tcp_connp; 1767 ASSERT(connp->conn_fanout != NULL); 1768 lock = &connp->conn_fanout->connf_lock; 1769 /* 1770 * This is essentially a TW reclaim fast path optimization for 1771 * performance where the timewait collector checks under the 1772 * fanout lock (so that no one else can get access to the 1773 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1774 * the classifier hash list. If ref count is indeed 2, we can 1775 * just remove the conn under the fanout lock and avoid 1776 * cleaning up the conn under the squeue, provided that 1777 * clustering callbacks are not enabled. If clustering is 1778 * enabled, we need to make the clustering callback before 1779 * setting the CONDEMNED flag and after dropping all locks and 1780 * so we forego this optimization and fall back to the slow 1781 * path. Also please see the comments in tcp_closei_local 1782 * regarding the refcnt logic. 1783 * 1784 * Since we are holding the tcp_time_wait_lock, its better 1785 * not to block on the fanout_lock because other connections 1786 * can't add themselves to time_wait list. So we do a 1787 * tryenter instead of mutex_enter. 1788 */ 1789 if (mutex_tryenter(lock)) { 1790 mutex_enter(&connp->conn_lock); 1791 if ((connp->conn_ref == 2) && 1792 (cl_inet_disconnect == NULL)) { 1793 ipcl_hash_remove_locked(connp, 1794 connp->conn_fanout); 1795 /* 1796 * Set the CONDEMNED flag now itself so that 1797 * the refcnt cannot increase due to any 1798 * walker. 1799 */ 1800 connp->conn_state_flags |= CONN_CONDEMNED; 1801 mutex_exit(lock); 1802 mutex_exit(&connp->conn_lock); 1803 if (tcp_time_wait->tcp_free_list_cnt < 1804 tcp_free_list_max_cnt) { 1805 /* Add to head of tcp_free_list */ 1806 mutex_exit( 1807 &tcp_time_wait->tcp_time_wait_lock); 1808 tcp_cleanup(tcp); 1809 ASSERT(connp->conn_latch == NULL); 1810 ASSERT(connp->conn_policy == NULL); 1811 ASSERT(tcp->tcp_tcps == NULL); 1812 ASSERT(connp->conn_netstack == NULL); 1813 1814 mutex_enter( 1815 &tcp_time_wait->tcp_time_wait_lock); 1816 tcp->tcp_time_wait_next = 1817 tcp_time_wait->tcp_free_list; 1818 tcp_time_wait->tcp_free_list = tcp; 1819 tcp_time_wait->tcp_free_list_cnt++; 1820 continue; 1821 } else { 1822 /* Do not add to tcp_free_list */ 1823 mutex_exit( 1824 &tcp_time_wait->tcp_time_wait_lock); 1825 tcp_bind_hash_remove(tcp); 1826 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1827 tcp_ipsec_cleanup(tcp); 1828 CONN_DEC_REF(tcp->tcp_connp); 1829 } 1830 } else { 1831 CONN_INC_REF_LOCKED(connp); 1832 mutex_exit(lock); 1833 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1834 mutex_exit(&connp->conn_lock); 1835 /* 1836 * We can reuse the closemp here since conn has 1837 * detached (otherwise we wouldn't even be in 1838 * time_wait list). tcp_closemp_used can safely 1839 * be changed without taking a lock as no other 1840 * thread can concurrently access it at this 1841 * point in the connection lifecycle. 1842 */ 1843 1844 if (tcp->tcp_closemp.b_prev == NULL) 1845 tcp->tcp_closemp_used = B_TRUE; 1846 else 1847 cmn_err(CE_PANIC, 1848 "tcp_timewait_collector: " 1849 "concurrent use of tcp_closemp: " 1850 "connp %p tcp %p\n", (void *)connp, 1851 (void *)tcp); 1852 1853 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1854 mp = &tcp->tcp_closemp; 1855 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1856 tcp_timewait_output, connp, NULL, 1857 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1858 } 1859 } else { 1860 mutex_enter(&connp->conn_lock); 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1863 mutex_exit(&connp->conn_lock); 1864 /* 1865 * We can reuse the closemp here since conn has 1866 * detached (otherwise we wouldn't even be in 1867 * time_wait list). tcp_closemp_used can safely 1868 * be changed without taking a lock as no other 1869 * thread can concurrently access it at this 1870 * point in the connection lifecycle. 1871 */ 1872 1873 if (tcp->tcp_closemp.b_prev == NULL) 1874 tcp->tcp_closemp_used = B_TRUE; 1875 else 1876 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1877 "concurrent use of tcp_closemp: " 1878 "connp %p tcp %p\n", (void *)connp, 1879 (void *)tcp); 1880 1881 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1882 mp = &tcp->tcp_closemp; 1883 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1884 tcp_timewait_output, connp, NULL, 1885 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1886 } 1887 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1888 } 1889 1890 if (tcp_time_wait->tcp_free_list != NULL) 1891 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1892 1893 tcp_time_wait->tcp_time_wait_tid = 1894 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1895 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1896 CALLOUT_FLAG_ROUNDUP); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_accept_common(). 1904 * Read the block comment on top of tcp_input_listener(). 1905 */ 1906 static void 1907 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *discon_mp = NULL; 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 tcp_stack_t *tcps = listener->tcp_tcps; 1919 conn_t *econnp; 1920 1921 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1922 tcp_err_ack(listener, mp, TPROTO, 0); 1923 return; 1924 } 1925 tcr = (struct T_conn_res *)mp->b_rptr; 1926 1927 /* 1928 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1929 * read side queue of the streams device underneath us i.e. the 1930 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1931 * look it up in the queue_hash. Under LP64 it sends down the 1932 * minor_t of the accepting endpoint. 1933 * 1934 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1935 * fanout hash lock is held. 1936 * This prevents any thread from entering the acceptor queue from 1937 * below (since it has not been hard bound yet i.e. any inbound 1938 * packets will arrive on the listener conn_t and 1939 * go through the classifier). 1940 * The CONN_INC_REF will prevent the acceptor from closing. 1941 * 1942 * XXX It is still possible for a tli application to send down data 1943 * on the accepting stream while another thread calls t_accept. 1944 * This should not be a problem for well-behaved applications since 1945 * the T_OK_ACK is sent after the queue swapping is completed. 1946 * 1947 * If the accepting fd is the same as the listening fd, avoid 1948 * queue hash lookup since that will return an eager listener in a 1949 * already established state. 1950 */ 1951 acceptor_id = tcr->ACCEPTOR_id; 1952 mutex_enter(&listener->tcp_eager_lock); 1953 if (listener->tcp_acceptor_id == acceptor_id) { 1954 eager = listener->tcp_eager_next_q; 1955 /* only count how many T_CONN_INDs so don't count q0 */ 1956 if ((listener->tcp_conn_req_cnt_q != 1) || 1957 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1958 mutex_exit(&listener->tcp_eager_lock); 1959 tcp_err_ack(listener, mp, TBADF, 0); 1960 return; 1961 } 1962 if (listener->tcp_conn_req_cnt_q0 != 0) { 1963 /* Throw away all the eagers on q0. */ 1964 tcp_eager_cleanup(listener, 1); 1965 } 1966 if (listener->tcp_syn_defense) { 1967 listener->tcp_syn_defense = B_FALSE; 1968 if (listener->tcp_ip_addr_cache != NULL) { 1969 kmem_free(listener->tcp_ip_addr_cache, 1970 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1971 listener->tcp_ip_addr_cache = NULL; 1972 } 1973 } 1974 /* 1975 * Transfer tcp_conn_req_max to the eager so that when 1976 * a disconnect occurs we can revert the endpoint to the 1977 * listen state. 1978 */ 1979 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1980 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1981 /* 1982 * Get a reference on the acceptor just like the 1983 * tcp_acceptor_hash_lookup below. 1984 */ 1985 acceptor = listener; 1986 CONN_INC_REF(acceptor->tcp_connp); 1987 } else { 1988 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1989 if (acceptor == NULL) { 1990 if (listener->tcp_connp->conn_debug) { 1991 (void) strlog(TCP_MOD_ID, 0, 1, 1992 SL_ERROR|SL_TRACE, 1993 "tcp_accept: did not find acceptor 0x%x\n", 1994 acceptor_id); 1995 } 1996 mutex_exit(&listener->tcp_eager_lock); 1997 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1998 return; 1999 } 2000 /* 2001 * Verify acceptor state. The acceptable states for an acceptor 2002 * include TCPS_IDLE and TCPS_BOUND. 2003 */ 2004 switch (acceptor->tcp_state) { 2005 case TCPS_IDLE: 2006 /* FALLTHRU */ 2007 case TCPS_BOUND: 2008 break; 2009 default: 2010 CONN_DEC_REF(acceptor->tcp_connp); 2011 mutex_exit(&listener->tcp_eager_lock); 2012 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2013 return; 2014 } 2015 } 2016 2017 /* The listener must be in TCPS_LISTEN */ 2018 if (listener->tcp_state != TCPS_LISTEN) { 2019 CONN_DEC_REF(acceptor->tcp_connp); 2020 mutex_exit(&listener->tcp_eager_lock); 2021 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2022 return; 2023 } 2024 2025 /* 2026 * Rendezvous with an eager connection request packet hanging off 2027 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2028 * tcp structure when the connection packet arrived in 2029 * tcp_input_listener(). 2030 */ 2031 seqnum = tcr->SEQ_number; 2032 eager = listener; 2033 do { 2034 eager = eager->tcp_eager_next_q; 2035 if (eager == NULL) { 2036 CONN_DEC_REF(acceptor->tcp_connp); 2037 mutex_exit(&listener->tcp_eager_lock); 2038 tcp_err_ack(listener, mp, TBADSEQ, 0); 2039 return; 2040 } 2041 } while (eager->tcp_conn_req_seqnum != seqnum); 2042 mutex_exit(&listener->tcp_eager_lock); 2043 2044 /* 2045 * At this point, both acceptor and listener have 2 ref 2046 * that they begin with. Acceptor has one additional ref 2047 * we placed in lookup while listener has 3 additional 2048 * ref for being behind the squeue (tcp_accept() is 2049 * done on listener's squeue); being in classifier hash; 2050 * and eager's ref on listener. 2051 */ 2052 ASSERT(listener->tcp_connp->conn_ref >= 5); 2053 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2054 2055 /* 2056 * The eager at this point is set in its own squeue and 2057 * could easily have been killed (tcp_accept_finish will 2058 * deal with that) because of a TH_RST so we can only 2059 * ASSERT for a single ref. 2060 */ 2061 ASSERT(eager->tcp_connp->conn_ref >= 1); 2062 2063 /* 2064 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 2065 * use it if something failed. 2066 */ 2067 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 2068 sizeof (struct stroptions)), BPRI_HI); 2069 if (discon_mp == NULL) { 2070 CONN_DEC_REF(acceptor->tcp_connp); 2071 CONN_DEC_REF(eager->tcp_connp); 2072 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2073 return; 2074 } 2075 2076 econnp = eager->tcp_connp; 2077 2078 /* Hold a copy of mp, in case reallocb fails */ 2079 if ((mp1 = copymsg(mp)) == NULL) { 2080 CONN_DEC_REF(acceptor->tcp_connp); 2081 CONN_DEC_REF(eager->tcp_connp); 2082 freemsg(discon_mp); 2083 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2084 return; 2085 } 2086 2087 tcr = (struct T_conn_res *)mp1->b_rptr; 2088 2089 /* 2090 * This is an expanded version of mi_tpi_ok_ack_alloc() 2091 * which allocates a larger mblk and appends the new 2092 * local address to the ok_ack. The address is copied by 2093 * soaccept() for getsockname(). 2094 */ 2095 { 2096 int extra; 2097 2098 extra = (econnp->conn_family == AF_INET) ? 2099 sizeof (sin_t) : sizeof (sin6_t); 2100 2101 /* 2102 * Try to re-use mp, if possible. Otherwise, allocate 2103 * an mblk and return it as ok_mp. In any case, mp 2104 * is no longer usable upon return. 2105 */ 2106 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2107 CONN_DEC_REF(acceptor->tcp_connp); 2108 CONN_DEC_REF(eager->tcp_connp); 2109 freemsg(discon_mp); 2110 /* Original mp has been freed by now, so use mp1 */ 2111 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2112 return; 2113 } 2114 2115 mp = NULL; /* We should never use mp after this point */ 2116 2117 switch (extra) { 2118 case sizeof (sin_t): { 2119 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2120 2121 ok_mp->b_wptr += extra; 2122 sin->sin_family = AF_INET; 2123 sin->sin_port = econnp->conn_lport; 2124 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2125 break; 2126 } 2127 case sizeof (sin6_t): { 2128 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2129 2130 ok_mp->b_wptr += extra; 2131 sin6->sin6_family = AF_INET6; 2132 sin6->sin6_port = econnp->conn_lport; 2133 sin6->sin6_addr = econnp->conn_laddr_v6; 2134 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2135 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2136 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2137 sin6->sin6_scope_id = 2138 econnp->conn_ixa->ixa_scopeid; 2139 } else { 2140 sin6->sin6_scope_id = 0; 2141 } 2142 sin6->__sin6_src_id = 0; 2143 break; 2144 } 2145 default: 2146 break; 2147 } 2148 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2149 } 2150 2151 /* 2152 * If there are no options we know that the T_CONN_RES will 2153 * succeed. However, we can't send the T_OK_ACK upstream until 2154 * the tcp_accept_swap is done since it would be dangerous to 2155 * let the application start using the new fd prior to the swap. 2156 */ 2157 tcp_accept_swap(listener, acceptor, eager); 2158 2159 /* 2160 * tcp_accept_swap unlinks eager from listener but does not drop 2161 * the eager's reference on the listener. 2162 */ 2163 ASSERT(eager->tcp_listener == NULL); 2164 ASSERT(listener->tcp_connp->conn_ref >= 5); 2165 2166 /* 2167 * The eager is now associated with its own queue. Insert in 2168 * the hash so that the connection can be reused for a future 2169 * T_CONN_RES. 2170 */ 2171 tcp_acceptor_hash_insert(acceptor_id, eager); 2172 2173 /* 2174 * We now do the processing of options with T_CONN_RES. 2175 * We delay till now since we wanted to have queue to pass to 2176 * option processing routines that points back to the right 2177 * instance structure which does not happen until after 2178 * tcp_accept_swap(). 2179 * 2180 * Note: 2181 * The sanity of the logic here assumes that whatever options 2182 * are appropriate to inherit from listner=>eager are done 2183 * before this point, and whatever were to be overridden (or not) 2184 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2185 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2186 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2187 * This may not be true at this point in time but can be fixed 2188 * independently. This option processing code starts with 2189 * the instantiated acceptor instance and the final queue at 2190 * this point. 2191 */ 2192 2193 if (tcr->OPT_length != 0) { 2194 /* Options to process */ 2195 int t_error = 0; 2196 int sys_error = 0; 2197 int do_disconnect = 0; 2198 2199 if (tcp_conprim_opt_process(eager, mp1, 2200 &do_disconnect, &t_error, &sys_error) < 0) { 2201 eager->tcp_accept_error = 1; 2202 if (do_disconnect) { 2203 /* 2204 * An option failed which does not allow 2205 * connection to be accepted. 2206 * 2207 * We allow T_CONN_RES to succeed and 2208 * put a T_DISCON_IND on the eager queue. 2209 */ 2210 ASSERT(t_error == 0 && sys_error == 0); 2211 eager->tcp_send_discon_ind = 1; 2212 } else { 2213 ASSERT(t_error != 0); 2214 freemsg(ok_mp); 2215 /* 2216 * Original mp was either freed or set 2217 * to ok_mp above, so use mp1 instead. 2218 */ 2219 tcp_err_ack(listener, mp1, t_error, sys_error); 2220 goto finish; 2221 } 2222 } 2223 /* 2224 * Most likely success in setting options (except if 2225 * eager->tcp_send_discon_ind set). 2226 * mp1 option buffer represented by OPT_length/offset 2227 * potentially modified and contains results of setting 2228 * options at this point 2229 */ 2230 } 2231 2232 /* We no longer need mp1, since all options processing has passed */ 2233 freemsg(mp1); 2234 2235 putnext(listener->tcp_connp->conn_rq, ok_mp); 2236 2237 mutex_enter(&listener->tcp_eager_lock); 2238 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2239 tcp_t *tail; 2240 mblk_t *conn_ind; 2241 2242 /* 2243 * This path should not be executed if listener and 2244 * acceptor streams are the same. 2245 */ 2246 ASSERT(listener != acceptor); 2247 2248 tcp = listener->tcp_eager_prev_q0; 2249 /* 2250 * listener->tcp_eager_prev_q0 points to the TAIL of the 2251 * deferred T_conn_ind queue. We need to get to the head of 2252 * the queue in order to send up T_conn_ind the same order as 2253 * how the 3WHS is completed. 2254 */ 2255 while (tcp != listener) { 2256 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2257 break; 2258 else 2259 tcp = tcp->tcp_eager_prev_q0; 2260 } 2261 ASSERT(tcp != listener); 2262 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2263 ASSERT(conn_ind != NULL); 2264 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2265 2266 /* Move from q0 to q */ 2267 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2268 listener->tcp_conn_req_cnt_q0--; 2269 listener->tcp_conn_req_cnt_q++; 2270 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2271 tcp->tcp_eager_prev_q0; 2272 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2273 tcp->tcp_eager_next_q0; 2274 tcp->tcp_eager_prev_q0 = NULL; 2275 tcp->tcp_eager_next_q0 = NULL; 2276 tcp->tcp_conn_def_q0 = B_FALSE; 2277 2278 /* Make sure the tcp isn't in the list of droppables */ 2279 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2280 tcp->tcp_eager_prev_drop_q0 == NULL); 2281 2282 /* 2283 * Insert at end of the queue because sockfs sends 2284 * down T_CONN_RES in chronological order. Leaving 2285 * the older conn indications at front of the queue 2286 * helps reducing search time. 2287 */ 2288 tail = listener->tcp_eager_last_q; 2289 if (tail != NULL) 2290 tail->tcp_eager_next_q = tcp; 2291 else 2292 listener->tcp_eager_next_q = tcp; 2293 listener->tcp_eager_last_q = tcp; 2294 tcp->tcp_eager_next_q = NULL; 2295 mutex_exit(&listener->tcp_eager_lock); 2296 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2297 } else { 2298 mutex_exit(&listener->tcp_eager_lock); 2299 } 2300 2301 /* 2302 * Done with the acceptor - free it 2303 * 2304 * Note: from this point on, no access to listener should be made 2305 * as listener can be equal to acceptor. 2306 */ 2307 finish: 2308 ASSERT(acceptor->tcp_detached); 2309 acceptor->tcp_connp->conn_rq = NULL; 2310 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2311 acceptor->tcp_connp->conn_wq = NULL; 2312 (void) tcp_clean_death(acceptor, 0, 2); 2313 CONN_DEC_REF(acceptor->tcp_connp); 2314 2315 /* 2316 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2317 * 2318 * It will update the setting for sockfs/stream head and also take 2319 * care of any data that arrived before accept() wad called. 2320 * In case we already received a FIN then tcp_accept_finish will send up 2321 * the ordrel. It will also send up a window update if the window 2322 * has opened up. 2323 */ 2324 2325 /* 2326 * XXX: we currently have a problem if XTI application closes the 2327 * acceptor stream in between. This problem exists in on10-gate also 2328 * and is well know but nothing can be done short of major rewrite 2329 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2330 * eager same squeue as listener (we can distinguish non socket 2331 * listeners at the time of handling a SYN in tcp_input_listener) 2332 * and do most of the work that tcp_accept_finish does here itself 2333 * and then get behind the acceptor squeue to access the acceptor 2334 * queue. 2335 */ 2336 /* 2337 * We already have a ref on tcp so no need to do one before squeue_enter 2338 */ 2339 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2340 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2341 SQTAG_TCP_ACCEPT_FINISH); 2342 } 2343 2344 /* 2345 * Swap information between the eager and acceptor for a TLI/XTI client. 2346 * The sockfs accept is done on the acceptor stream and control goes 2347 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2348 * called. In either case, both the eager and listener are in their own 2349 * perimeter (squeue) and the code has to deal with potential race. 2350 * 2351 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2352 */ 2353 static void 2354 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2355 { 2356 conn_t *econnp, *aconnp; 2357 2358 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2359 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2360 ASSERT(!TCP_IS_SOCKET(acceptor)); 2361 ASSERT(!TCP_IS_SOCKET(eager)); 2362 ASSERT(!TCP_IS_SOCKET(listener)); 2363 2364 /* 2365 * Trusted Extensions may need to use a security label that is 2366 * different from the acceptor's label on MLP and MAC-Exempt 2367 * sockets. If this is the case, the required security label 2368 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2369 * acceptor stream refer to econnp we atomatically get that label. 2370 */ 2371 2372 acceptor->tcp_detached = B_TRUE; 2373 /* 2374 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2375 * the acceptor id. 2376 */ 2377 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2378 2379 /* remove eager from listen list... */ 2380 mutex_enter(&listener->tcp_eager_lock); 2381 tcp_eager_unlink(eager); 2382 ASSERT(eager->tcp_eager_next_q == NULL && 2383 eager->tcp_eager_last_q == NULL); 2384 ASSERT(eager->tcp_eager_next_q0 == NULL && 2385 eager->tcp_eager_prev_q0 == NULL); 2386 mutex_exit(&listener->tcp_eager_lock); 2387 2388 econnp = eager->tcp_connp; 2389 aconnp = acceptor->tcp_connp; 2390 econnp->conn_rq = aconnp->conn_rq; 2391 econnp->conn_wq = aconnp->conn_wq; 2392 econnp->conn_rq->q_ptr = econnp; 2393 econnp->conn_wq->q_ptr = econnp; 2394 2395 /* 2396 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2397 * which might be a different squeue from our peer TCP instance. 2398 * For TCP Fusion, the peer expects that whenever tcp_detached is 2399 * clear, our TCP queues point to the acceptor's queues. Thus, use 2400 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2401 * above reach global visibility prior to the clearing of tcp_detached. 2402 */ 2403 membar_producer(); 2404 eager->tcp_detached = B_FALSE; 2405 2406 ASSERT(eager->tcp_ack_tid == 0); 2407 2408 econnp->conn_dev = aconnp->conn_dev; 2409 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2410 2411 ASSERT(econnp->conn_minor_arena != NULL); 2412 if (econnp->conn_cred != NULL) 2413 crfree(econnp->conn_cred); 2414 econnp->conn_cred = aconnp->conn_cred; 2415 aconnp->conn_cred = NULL; 2416 econnp->conn_cpid = aconnp->conn_cpid; 2417 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2418 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2419 2420 econnp->conn_zoneid = aconnp->conn_zoneid; 2421 econnp->conn_allzones = aconnp->conn_allzones; 2422 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2423 2424 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2425 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2426 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2427 2428 /* Do the IPC initialization */ 2429 CONN_INC_REF(econnp); 2430 2431 /* Done with old IPC. Drop its ref on its connp */ 2432 CONN_DEC_REF(aconnp); 2433 } 2434 2435 2436 /* 2437 * Adapt to the information, such as rtt and rtt_sd, provided from the 2438 * DCE and IRE maintained by IP. 2439 * 2440 * Checks for multicast and broadcast destination address. 2441 * Returns zero if ok; an errno on failure. 2442 * 2443 * Note that the MSS calculation here is based on the info given in 2444 * the DCE and IRE. We do not do any calculation based on TCP options. They 2445 * will be handled in tcp_input_data() when TCP knows which options to use. 2446 * 2447 * Note on how TCP gets its parameters for a connection. 2448 * 2449 * When a tcp_t structure is allocated, it gets all the default parameters. 2450 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2451 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2452 * default. 2453 * 2454 * An incoming SYN with a multicast or broadcast destination address is dropped 2455 * in ip_fanout_v4/v6. 2456 * 2457 * An incoming SYN with a multicast or broadcast source address is always 2458 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2459 * conn_connect. 2460 * The same logic in tcp_set_destination also serves to 2461 * reject an attempt to connect to a broadcast or multicast (destination) 2462 * address. 2463 */ 2464 static int 2465 tcp_set_destination(tcp_t *tcp) 2466 { 2467 uint32_t mss_max; 2468 uint32_t mss; 2469 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2470 conn_t *connp = tcp->tcp_connp; 2471 tcp_stack_t *tcps = tcp->tcp_tcps; 2472 iulp_t uinfo; 2473 int error; 2474 uint32_t flags; 2475 2476 flags = IPDF_LSO | IPDF_ZCOPY; 2477 /* 2478 * Make sure we have a dce for the destination to avoid dce_ident 2479 * contention for connected sockets. 2480 */ 2481 flags |= IPDF_UNIQUE_DCE; 2482 2483 if (!tcps->tcps_ignore_path_mtu) 2484 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2485 2486 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2487 mutex_enter(&connp->conn_lock); 2488 error = conn_connect(connp, &uinfo, flags); 2489 mutex_exit(&connp->conn_lock); 2490 if (error != 0) 2491 return (error); 2492 2493 error = tcp_build_hdrs(tcp); 2494 if (error != 0) 2495 return (error); 2496 2497 tcp->tcp_localnet = uinfo.iulp_localnet; 2498 2499 if (uinfo.iulp_rtt != 0) { 2500 clock_t rto; 2501 2502 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2503 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2504 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2505 tcps->tcps_rexmit_interval_extra + 2506 (tcp->tcp_rtt_sa >> 5); 2507 2508 if (rto > tcps->tcps_rexmit_interval_max) { 2509 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2510 } else if (rto < tcps->tcps_rexmit_interval_min) { 2511 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2512 } else { 2513 tcp->tcp_rto = rto; 2514 } 2515 } 2516 if (uinfo.iulp_ssthresh != 0) 2517 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2518 else 2519 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2520 if (uinfo.iulp_spipe > 0) { 2521 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2522 tcps->tcps_max_buf); 2523 if (tcps->tcps_snd_lowat_fraction != 0) { 2524 connp->conn_sndlowat = connp->conn_sndbuf / 2525 tcps->tcps_snd_lowat_fraction; 2526 } 2527 (void) tcp_maxpsz_set(tcp, B_TRUE); 2528 } 2529 /* 2530 * Note that up till now, acceptor always inherits receive 2531 * window from the listener. But if there is a metrics 2532 * associated with a host, we should use that instead of 2533 * inheriting it from listener. Thus we need to pass this 2534 * info back to the caller. 2535 */ 2536 if (uinfo.iulp_rpipe > 0) { 2537 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2538 tcps->tcps_max_buf); 2539 } 2540 2541 if (uinfo.iulp_rtomax > 0) { 2542 tcp->tcp_second_timer_threshold = 2543 uinfo.iulp_rtomax; 2544 } 2545 2546 /* 2547 * Use the metric option settings, iulp_tstamp_ok and 2548 * iulp_wscale_ok, only for active open. What this means 2549 * is that if the other side uses timestamp or window 2550 * scale option, TCP will also use those options. That 2551 * is for passive open. If the application sets a 2552 * large window, window scale is enabled regardless of 2553 * the value in iulp_wscale_ok. This is the behavior 2554 * since 2.6. So we keep it. 2555 * The only case left in passive open processing is the 2556 * check for SACK. 2557 * For ECN, it should probably be like SACK. But the 2558 * current value is binary, so we treat it like the other 2559 * cases. The metric only controls active open.For passive 2560 * open, the ndd param, tcp_ecn_permitted, controls the 2561 * behavior. 2562 */ 2563 if (!tcp_detached) { 2564 /* 2565 * The if check means that the following can only 2566 * be turned on by the metrics only IRE, but not off. 2567 */ 2568 if (uinfo.iulp_tstamp_ok) 2569 tcp->tcp_snd_ts_ok = B_TRUE; 2570 if (uinfo.iulp_wscale_ok) 2571 tcp->tcp_snd_ws_ok = B_TRUE; 2572 if (uinfo.iulp_sack == 2) 2573 tcp->tcp_snd_sack_ok = B_TRUE; 2574 if (uinfo.iulp_ecn_ok) 2575 tcp->tcp_ecn_ok = B_TRUE; 2576 } else { 2577 /* 2578 * Passive open. 2579 * 2580 * As above, the if check means that SACK can only be 2581 * turned on by the metric only IRE. 2582 */ 2583 if (uinfo.iulp_sack > 0) { 2584 tcp->tcp_snd_sack_ok = B_TRUE; 2585 } 2586 } 2587 2588 /* 2589 * XXX Note that currently, iulp_mtu can be as small as 68 2590 * because of PMTUd. So tcp_mss may go to negative if combined 2591 * length of all those options exceeds 28 bytes. But because 2592 * of the tcp_mss_min check below, we may not have a problem if 2593 * tcp_mss_min is of a reasonable value. The default is 1 so 2594 * the negative problem still exists. And the check defeats PMTUd. 2595 * In fact, if PMTUd finds that the MSS should be smaller than 2596 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2597 * value. 2598 * 2599 * We do not deal with that now. All those problems related to 2600 * PMTUd will be fixed later. 2601 */ 2602 ASSERT(uinfo.iulp_mtu != 0); 2603 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2604 2605 /* Sanity check for MSS value. */ 2606 if (connp->conn_ipversion == IPV4_VERSION) 2607 mss_max = tcps->tcps_mss_max_ipv4; 2608 else 2609 mss_max = tcps->tcps_mss_max_ipv6; 2610 2611 if (tcp->tcp_ipsec_overhead == 0) 2612 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2613 2614 mss -= tcp->tcp_ipsec_overhead; 2615 2616 if (mss < tcps->tcps_mss_min) 2617 mss = tcps->tcps_mss_min; 2618 if (mss > mss_max) 2619 mss = mss_max; 2620 2621 /* Note that this is the maximum MSS, excluding all options. */ 2622 tcp->tcp_mss = mss; 2623 2624 /* 2625 * Update the tcp connection with LSO capability. 2626 */ 2627 tcp_update_lso(tcp, connp->conn_ixa); 2628 2629 /* 2630 * Initialize the ISS here now that we have the full connection ID. 2631 * The RFC 1948 method of initial sequence number generation requires 2632 * knowledge of the full connection ID before setting the ISS. 2633 */ 2634 tcp_iss_init(tcp); 2635 2636 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2637 2638 /* 2639 * Make sure that conn is not marked incipient 2640 * for incoming connections. A blind 2641 * removal of incipient flag is cheaper than 2642 * check and removal. 2643 */ 2644 mutex_enter(&connp->conn_lock); 2645 connp->conn_state_flags &= ~CONN_INCIPIENT; 2646 mutex_exit(&connp->conn_lock); 2647 return (0); 2648 } 2649 2650 static void 2651 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2652 { 2653 int error; 2654 conn_t *connp = tcp->tcp_connp; 2655 struct sockaddr *sa; 2656 mblk_t *mp1; 2657 struct T_bind_req *tbr; 2658 int backlog; 2659 socklen_t len; 2660 sin_t *sin; 2661 sin6_t *sin6; 2662 cred_t *cr; 2663 2664 /* 2665 * All Solaris components should pass a db_credp 2666 * for this TPI message, hence we ASSERT. 2667 * But in case there is some other M_PROTO that looks 2668 * like a TPI message sent by some other kernel 2669 * component, we check and return an error. 2670 */ 2671 cr = msg_getcred(mp, NULL); 2672 ASSERT(cr != NULL); 2673 if (cr == NULL) { 2674 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2675 return; 2676 } 2677 2678 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2679 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2680 if (connp->conn_debug) { 2681 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2682 "tcp_tpi_bind: bad req, len %u", 2683 (uint_t)(mp->b_wptr - mp->b_rptr)); 2684 } 2685 tcp_err_ack(tcp, mp, TPROTO, 0); 2686 return; 2687 } 2688 /* Make sure the largest address fits */ 2689 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2690 if (mp1 == NULL) { 2691 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2692 return; 2693 } 2694 mp = mp1; 2695 tbr = (struct T_bind_req *)mp->b_rptr; 2696 2697 backlog = tbr->CONIND_number; 2698 len = tbr->ADDR_length; 2699 2700 switch (len) { 2701 case 0: /* request for a generic port */ 2702 tbr->ADDR_offset = sizeof (struct T_bind_req); 2703 if (connp->conn_family == AF_INET) { 2704 tbr->ADDR_length = sizeof (sin_t); 2705 sin = (sin_t *)&tbr[1]; 2706 *sin = sin_null; 2707 sin->sin_family = AF_INET; 2708 sa = (struct sockaddr *)sin; 2709 len = sizeof (sin_t); 2710 mp->b_wptr = (uchar_t *)&sin[1]; 2711 } else { 2712 ASSERT(connp->conn_family == AF_INET6); 2713 tbr->ADDR_length = sizeof (sin6_t); 2714 sin6 = (sin6_t *)&tbr[1]; 2715 *sin6 = sin6_null; 2716 sin6->sin6_family = AF_INET6; 2717 sa = (struct sockaddr *)sin6; 2718 len = sizeof (sin6_t); 2719 mp->b_wptr = (uchar_t *)&sin6[1]; 2720 } 2721 break; 2722 2723 case sizeof (sin_t): /* Complete IPv4 address */ 2724 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2725 sizeof (sin_t)); 2726 break; 2727 2728 case sizeof (sin6_t): /* Complete IPv6 address */ 2729 sa = (struct sockaddr *)mi_offset_param(mp, 2730 tbr->ADDR_offset, sizeof (sin6_t)); 2731 break; 2732 2733 default: 2734 if (connp->conn_debug) { 2735 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2736 "tcp_tpi_bind: bad address length, %d", 2737 tbr->ADDR_length); 2738 } 2739 tcp_err_ack(tcp, mp, TBADADDR, 0); 2740 return; 2741 } 2742 2743 if (backlog > 0) { 2744 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2745 tbr->PRIM_type != O_T_BIND_REQ); 2746 } else { 2747 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2748 tbr->PRIM_type != O_T_BIND_REQ); 2749 } 2750 done: 2751 if (error > 0) { 2752 tcp_err_ack(tcp, mp, TSYSERR, error); 2753 } else if (error < 0) { 2754 tcp_err_ack(tcp, mp, -error, 0); 2755 } else { 2756 /* 2757 * Update port information as sockfs/tpi needs it for checking 2758 */ 2759 if (connp->conn_family == AF_INET) { 2760 sin = (sin_t *)sa; 2761 sin->sin_port = connp->conn_lport; 2762 } else { 2763 sin6 = (sin6_t *)sa; 2764 sin6->sin6_port = connp->conn_lport; 2765 } 2766 mp->b_datap->db_type = M_PCPROTO; 2767 tbr->PRIM_type = T_BIND_ACK; 2768 putnext(connp->conn_rq, mp); 2769 } 2770 } 2771 2772 /* 2773 * If the "bind_to_req_port_only" parameter is set, if the requested port 2774 * number is available, return it, If not return 0 2775 * 2776 * If "bind_to_req_port_only" parameter is not set and 2777 * If the requested port number is available, return it. If not, return 2778 * the first anonymous port we happen across. If no anonymous ports are 2779 * available, return 0. addr is the requested local address, if any. 2780 * 2781 * In either case, when succeeding update the tcp_t to record the port number 2782 * and insert it in the bind hash table. 2783 * 2784 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2785 * without setting SO_REUSEADDR. This is needed so that they 2786 * can be viewed as two independent transport protocols. 2787 */ 2788 static in_port_t 2789 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2790 int reuseaddr, boolean_t quick_connect, 2791 boolean_t bind_to_req_port_only, boolean_t user_specified) 2792 { 2793 /* number of times we have run around the loop */ 2794 int count = 0; 2795 /* maximum number of times to run around the loop */ 2796 int loopmax; 2797 conn_t *connp = tcp->tcp_connp; 2798 tcp_stack_t *tcps = tcp->tcp_tcps; 2799 2800 /* 2801 * Lookup for free addresses is done in a loop and "loopmax" 2802 * influences how long we spin in the loop 2803 */ 2804 if (bind_to_req_port_only) { 2805 /* 2806 * If the requested port is busy, don't bother to look 2807 * for a new one. Setting loop maximum count to 1 has 2808 * that effect. 2809 */ 2810 loopmax = 1; 2811 } else { 2812 /* 2813 * If the requested port is busy, look for a free one 2814 * in the anonymous port range. 2815 * Set loopmax appropriately so that one does not look 2816 * forever in the case all of the anonymous ports are in use. 2817 */ 2818 if (connp->conn_anon_priv_bind) { 2819 /* 2820 * loopmax = 2821 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2822 */ 2823 loopmax = IPPORT_RESERVED - 2824 tcps->tcps_min_anonpriv_port; 2825 } else { 2826 loopmax = (tcps->tcps_largest_anon_port - 2827 tcps->tcps_smallest_anon_port + 1); 2828 } 2829 } 2830 do { 2831 uint16_t lport; 2832 tf_t *tbf; 2833 tcp_t *ltcp; 2834 conn_t *lconnp; 2835 2836 lport = htons(port); 2837 2838 /* 2839 * Ensure that the tcp_t is not currently in the bind hash. 2840 * Hold the lock on the hash bucket to ensure that 2841 * the duplicate check plus the insertion is an atomic 2842 * operation. 2843 * 2844 * This function does an inline lookup on the bind hash list 2845 * Make sure that we access only members of tcp_t 2846 * and that we don't look at tcp_tcp, since we are not 2847 * doing a CONN_INC_REF. 2848 */ 2849 tcp_bind_hash_remove(tcp); 2850 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2851 mutex_enter(&tbf->tf_lock); 2852 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2853 ltcp = ltcp->tcp_bind_hash) { 2854 if (lport == ltcp->tcp_connp->conn_lport) 2855 break; 2856 } 2857 2858 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2859 boolean_t not_socket; 2860 boolean_t exclbind; 2861 2862 lconnp = ltcp->tcp_connp; 2863 2864 /* 2865 * On a labeled system, we must treat bindings to ports 2866 * on shared IP addresses by sockets with MAC exemption 2867 * privilege as being in all zones, as there's 2868 * otherwise no way to identify the right receiver. 2869 */ 2870 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2871 continue; 2872 2873 /* 2874 * If TCP_EXCLBIND is set for either the bound or 2875 * binding endpoint, the semantics of bind 2876 * is changed according to the following. 2877 * 2878 * spec = specified address (v4 or v6) 2879 * unspec = unspecified address (v4 or v6) 2880 * A = specified addresses are different for endpoints 2881 * 2882 * bound bind to allowed 2883 * ------------------------------------- 2884 * unspec unspec no 2885 * unspec spec no 2886 * spec unspec no 2887 * spec spec yes if A 2888 * 2889 * For labeled systems, SO_MAC_EXEMPT behaves the same 2890 * as TCP_EXCLBIND, except that zoneid is ignored. 2891 * 2892 * Note: 2893 * 2894 * 1. Because of TLI semantics, an endpoint can go 2895 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2896 * TCPS_BOUND, depending on whether it is originally 2897 * a listener or not. That is why we need to check 2898 * for states greater than or equal to TCPS_BOUND 2899 * here. 2900 * 2901 * 2. Ideally, we should only check for state equals 2902 * to TCPS_LISTEN. And the following check should be 2903 * added. 2904 * 2905 * if (ltcp->tcp_state == TCPS_LISTEN || 2906 * !reuseaddr || !lconnp->conn_reuseaddr) { 2907 * ... 2908 * } 2909 * 2910 * The semantics will be changed to this. If the 2911 * endpoint on the list is in state not equal to 2912 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2913 * set, let the bind succeed. 2914 * 2915 * Because of (1), we cannot do that for TLI 2916 * endpoints. But we can do that for socket endpoints. 2917 * If in future, we can change this going back 2918 * semantics, we can use the above check for TLI also. 2919 */ 2920 not_socket = !(TCP_IS_SOCKET(ltcp) && 2921 TCP_IS_SOCKET(tcp)); 2922 exclbind = lconnp->conn_exclbind || 2923 connp->conn_exclbind; 2924 2925 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2926 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2927 (exclbind && (not_socket || 2928 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2929 if (V6_OR_V4_INADDR_ANY( 2930 lconnp->conn_bound_addr_v6) || 2931 V6_OR_V4_INADDR_ANY(*laddr) || 2932 IN6_ARE_ADDR_EQUAL(laddr, 2933 &lconnp->conn_bound_addr_v6)) { 2934 break; 2935 } 2936 continue; 2937 } 2938 2939 /* 2940 * Check ipversion to allow IPv4 and IPv6 sockets to 2941 * have disjoint port number spaces, if *_EXCLBIND 2942 * is not set and only if the application binds to a 2943 * specific port. We use the same autoassigned port 2944 * number space for IPv4 and IPv6 sockets. 2945 */ 2946 if (connp->conn_ipversion != lconnp->conn_ipversion && 2947 bind_to_req_port_only) 2948 continue; 2949 2950 /* 2951 * Ideally, we should make sure that the source 2952 * address, remote address, and remote port in the 2953 * four tuple for this tcp-connection is unique. 2954 * However, trying to find out the local source 2955 * address would require too much code duplication 2956 * with IP, since IP needs needs to have that code 2957 * to support userland TCP implementations. 2958 */ 2959 if (quick_connect && 2960 (ltcp->tcp_state > TCPS_LISTEN) && 2961 ((connp->conn_fport != lconnp->conn_fport) || 2962 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2963 &lconnp->conn_faddr_v6))) 2964 continue; 2965 2966 if (!reuseaddr) { 2967 /* 2968 * No socket option SO_REUSEADDR. 2969 * If existing port is bound to 2970 * a non-wildcard IP address 2971 * and the requesting stream is 2972 * bound to a distinct 2973 * different IP addresses 2974 * (non-wildcard, also), keep 2975 * going. 2976 */ 2977 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2978 !V6_OR_V4_INADDR_ANY( 2979 lconnp->conn_bound_addr_v6) && 2980 !IN6_ARE_ADDR_EQUAL(laddr, 2981 &lconnp->conn_bound_addr_v6)) 2982 continue; 2983 if (ltcp->tcp_state >= TCPS_BOUND) { 2984 /* 2985 * This port is being used and 2986 * its state is >= TCPS_BOUND, 2987 * so we can't bind to it. 2988 */ 2989 break; 2990 } 2991 } else { 2992 /* 2993 * socket option SO_REUSEADDR is set on the 2994 * binding tcp_t. 2995 * 2996 * If two streams are bound to 2997 * same IP address or both addr 2998 * and bound source are wildcards 2999 * (INADDR_ANY), we want to stop 3000 * searching. 3001 * We have found a match of IP source 3002 * address and source port, which is 3003 * refused regardless of the 3004 * SO_REUSEADDR setting, so we break. 3005 */ 3006 if (IN6_ARE_ADDR_EQUAL(laddr, 3007 &lconnp->conn_bound_addr_v6) && 3008 (ltcp->tcp_state == TCPS_LISTEN || 3009 ltcp->tcp_state == TCPS_BOUND)) 3010 break; 3011 } 3012 } 3013 if (ltcp != NULL) { 3014 /* The port number is busy */ 3015 mutex_exit(&tbf->tf_lock); 3016 } else { 3017 /* 3018 * This port is ours. Insert in fanout and mark as 3019 * bound to prevent others from getting the port 3020 * number. 3021 */ 3022 tcp->tcp_state = TCPS_BOUND; 3023 connp->conn_lport = htons(port); 3024 3025 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3026 connp->conn_lport)] == tbf); 3027 tcp_bind_hash_insert(tbf, tcp, 1); 3028 3029 mutex_exit(&tbf->tf_lock); 3030 3031 /* 3032 * We don't want tcp_next_port_to_try to "inherit" 3033 * a port number supplied by the user in a bind. 3034 */ 3035 if (user_specified) 3036 return (port); 3037 3038 /* 3039 * This is the only place where tcp_next_port_to_try 3040 * is updated. After the update, it may or may not 3041 * be in the valid range. 3042 */ 3043 if (!connp->conn_anon_priv_bind) 3044 tcps->tcps_next_port_to_try = port + 1; 3045 return (port); 3046 } 3047 3048 if (connp->conn_anon_priv_bind) { 3049 port = tcp_get_next_priv_port(tcp); 3050 } else { 3051 if (count == 0 && user_specified) { 3052 /* 3053 * We may have to return an anonymous port. So 3054 * get one to start with. 3055 */ 3056 port = 3057 tcp_update_next_port( 3058 tcps->tcps_next_port_to_try, 3059 tcp, B_TRUE); 3060 user_specified = B_FALSE; 3061 } else { 3062 port = tcp_update_next_port(port + 1, tcp, 3063 B_FALSE); 3064 } 3065 } 3066 if (port == 0) 3067 break; 3068 3069 /* 3070 * Don't let this loop run forever in the case where 3071 * all of the anonymous ports are in use. 3072 */ 3073 } while (++count < loopmax); 3074 return (0); 3075 } 3076 3077 /* 3078 * tcp_clean_death / tcp_close_detached must not be called more than once 3079 * on a tcp. Thus every function that potentially calls tcp_clean_death 3080 * must check for the tcp state before calling tcp_clean_death. 3081 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 3082 * tcp_timer_handler, all check for the tcp state. 3083 */ 3084 /* ARGSUSED */ 3085 void 3086 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 3087 ip_recv_attr_t *dummy) 3088 { 3089 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3090 3091 freemsg(mp); 3092 if (tcp->tcp_state > TCPS_BOUND) 3093 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3094 ETIMEDOUT, 5); 3095 } 3096 3097 /* 3098 * We are dying for some reason. Try to do it gracefully. (May be called 3099 * as writer.) 3100 * 3101 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3102 * done by a service procedure). 3103 * TBD - Should the return value distinguish between the tcp_t being 3104 * freed and it being reinitialized? 3105 */ 3106 static int 3107 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3108 { 3109 mblk_t *mp; 3110 queue_t *q; 3111 conn_t *connp = tcp->tcp_connp; 3112 tcp_stack_t *tcps = tcp->tcp_tcps; 3113 3114 TCP_CLD_STAT(tag); 3115 3116 #if TCP_TAG_CLEAN_DEATH 3117 tcp->tcp_cleandeathtag = tag; 3118 #endif 3119 3120 if (tcp->tcp_fused) 3121 tcp_unfuse(tcp); 3122 3123 if (tcp->tcp_linger_tid != 0 && 3124 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3125 tcp_stop_lingering(tcp); 3126 } 3127 3128 ASSERT(tcp != NULL); 3129 ASSERT((connp->conn_family == AF_INET && 3130 connp->conn_ipversion == IPV4_VERSION) || 3131 (connp->conn_family == AF_INET6 && 3132 (connp->conn_ipversion == IPV4_VERSION || 3133 connp->conn_ipversion == IPV6_VERSION))); 3134 3135 if (TCP_IS_DETACHED(tcp)) { 3136 if (tcp->tcp_hard_binding) { 3137 /* 3138 * Its an eager that we are dealing with. We close the 3139 * eager but in case a conn_ind has already gone to the 3140 * listener, let tcp_accept_finish() send a discon_ind 3141 * to the listener and drop the last reference. If the 3142 * listener doesn't even know about the eager i.e. the 3143 * conn_ind hasn't gone up, blow away the eager and drop 3144 * the last reference as well. If the conn_ind has gone 3145 * up, state should be BOUND. tcp_accept_finish 3146 * will figure out that the connection has received a 3147 * RST and will send a DISCON_IND to the application. 3148 */ 3149 tcp_closei_local(tcp); 3150 if (!tcp->tcp_tconnind_started) { 3151 CONN_DEC_REF(connp); 3152 } else { 3153 tcp->tcp_state = TCPS_BOUND; 3154 } 3155 } else { 3156 tcp_close_detached(tcp); 3157 } 3158 return (0); 3159 } 3160 3161 TCP_STAT(tcps, tcp_clean_death_nondetached); 3162 3163 /* 3164 * The connection is dead. Decrement listener connection counter if 3165 * necessary. 3166 */ 3167 if (tcp->tcp_listen_cnt != NULL) 3168 TCP_DECR_LISTEN_CNT(tcp); 3169 3170 q = connp->conn_rq; 3171 3172 /* Trash all inbound data */ 3173 if (!IPCL_IS_NONSTR(connp)) { 3174 ASSERT(q != NULL); 3175 flushq(q, FLUSHALL); 3176 } 3177 3178 /* 3179 * If we are at least part way open and there is error 3180 * (err==0 implies no error) 3181 * notify our client by a T_DISCON_IND. 3182 */ 3183 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3184 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3185 !TCP_IS_SOCKET(tcp)) { 3186 /* 3187 * Send M_FLUSH according to TPI. Because sockets will 3188 * (and must) ignore FLUSHR we do that only for TPI 3189 * endpoints and sockets in STREAMS mode. 3190 */ 3191 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3192 } 3193 if (connp->conn_debug) { 3194 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3195 "tcp_clean_death: discon err %d", err); 3196 } 3197 if (IPCL_IS_NONSTR(connp)) { 3198 /* Direct socket, use upcall */ 3199 (*connp->conn_upcalls->su_disconnected)( 3200 connp->conn_upper_handle, tcp->tcp_connid, err); 3201 } else { 3202 mp = mi_tpi_discon_ind(NULL, err, 0); 3203 if (mp != NULL) { 3204 putnext(q, mp); 3205 } else { 3206 if (connp->conn_debug) { 3207 (void) strlog(TCP_MOD_ID, 0, 1, 3208 SL_ERROR|SL_TRACE, 3209 "tcp_clean_death, sending M_ERROR"); 3210 } 3211 (void) putnextctl1(q, M_ERROR, EPROTO); 3212 } 3213 } 3214 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3215 /* SYN_SENT or SYN_RCVD */ 3216 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3217 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3218 /* ESTABLISHED or CLOSE_WAIT */ 3219 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3220 } 3221 } 3222 3223 tcp_reinit(tcp); 3224 if (IPCL_IS_NONSTR(connp)) 3225 (void) tcp_do_unbind(connp); 3226 3227 return (-1); 3228 } 3229 3230 /* 3231 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3232 * to expire, stop the wait and finish the close. 3233 */ 3234 static void 3235 tcp_stop_lingering(tcp_t *tcp) 3236 { 3237 clock_t delta = 0; 3238 tcp_stack_t *tcps = tcp->tcp_tcps; 3239 conn_t *connp = tcp->tcp_connp; 3240 3241 tcp->tcp_linger_tid = 0; 3242 if (tcp->tcp_state > TCPS_LISTEN) { 3243 tcp_acceptor_hash_remove(tcp); 3244 mutex_enter(&tcp->tcp_non_sq_lock); 3245 if (tcp->tcp_flow_stopped) { 3246 tcp_clrqfull(tcp); 3247 } 3248 mutex_exit(&tcp->tcp_non_sq_lock); 3249 3250 if (tcp->tcp_timer_tid != 0) { 3251 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3252 tcp->tcp_timer_tid = 0; 3253 } 3254 /* 3255 * Need to cancel those timers which will not be used when 3256 * TCP is detached. This has to be done before the conn_wq 3257 * is cleared. 3258 */ 3259 tcp_timers_stop(tcp); 3260 3261 tcp->tcp_detached = B_TRUE; 3262 connp->conn_rq = NULL; 3263 connp->conn_wq = NULL; 3264 3265 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3266 tcp_time_wait_append(tcp); 3267 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3268 goto finish; 3269 } 3270 3271 /* 3272 * If delta is zero the timer event wasn't executed and was 3273 * successfully canceled. In this case we need to restart it 3274 * with the minimal delta possible. 3275 */ 3276 if (delta >= 0) { 3277 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3278 delta ? delta : 1); 3279 } 3280 } else { 3281 tcp_closei_local(tcp); 3282 CONN_DEC_REF(connp); 3283 } 3284 finish: 3285 /* Signal closing thread that it can complete close */ 3286 mutex_enter(&tcp->tcp_closelock); 3287 tcp->tcp_detached = B_TRUE; 3288 connp->conn_rq = NULL; 3289 connp->conn_wq = NULL; 3290 3291 tcp->tcp_closed = 1; 3292 cv_signal(&tcp->tcp_closecv); 3293 mutex_exit(&tcp->tcp_closelock); 3294 } 3295 3296 /* 3297 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3298 * expires. 3299 */ 3300 static void 3301 tcp_close_linger_timeout(void *arg) 3302 { 3303 conn_t *connp = (conn_t *)arg; 3304 tcp_t *tcp = connp->conn_tcp; 3305 3306 tcp->tcp_client_errno = ETIMEDOUT; 3307 tcp_stop_lingering(tcp); 3308 } 3309 3310 static void 3311 tcp_close_common(conn_t *connp, int flags) 3312 { 3313 tcp_t *tcp = connp->conn_tcp; 3314 mblk_t *mp = &tcp->tcp_closemp; 3315 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3316 mblk_t *bp; 3317 3318 ASSERT(connp->conn_ref >= 2); 3319 3320 /* 3321 * Mark the conn as closing. ipsq_pending_mp_add will not 3322 * add any mp to the pending mp list, after this conn has 3323 * started closing. 3324 */ 3325 mutex_enter(&connp->conn_lock); 3326 connp->conn_state_flags |= CONN_CLOSING; 3327 if (connp->conn_oper_pending_ill != NULL) 3328 conn_ioctl_cleanup_reqd = B_TRUE; 3329 CONN_INC_REF_LOCKED(connp); 3330 mutex_exit(&connp->conn_lock); 3331 tcp->tcp_closeflags = (uint8_t)flags; 3332 ASSERT(connp->conn_ref >= 3); 3333 3334 /* 3335 * tcp_closemp_used is used below without any protection of a lock 3336 * as we don't expect any one else to use it concurrently at this 3337 * point otherwise it would be a major defect. 3338 */ 3339 3340 if (mp->b_prev == NULL) 3341 tcp->tcp_closemp_used = B_TRUE; 3342 else 3343 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3344 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3345 3346 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3347 3348 /* 3349 * Cleanup any queued ioctls here. This must be done before the wq/rq 3350 * are re-written by tcp_close_output(). 3351 */ 3352 if (conn_ioctl_cleanup_reqd) 3353 conn_ioctl_cleanup(connp); 3354 3355 /* 3356 * As CONN_CLOSING is set, no further ioctls should be passed down to 3357 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 3358 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 3359 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 3360 * was still in flight at the time, we wait for it here. See comments 3361 * for CONN_INC_IOCTLREF in ip.h for details. 3362 */ 3363 mutex_enter(&connp->conn_lock); 3364 while (connp->conn_ioctlref > 0) 3365 cv_wait(&connp->conn_cv, &connp->conn_lock); 3366 ASSERT(connp->conn_ioctlref == 0); 3367 ASSERT(connp->conn_oper_pending_ill == NULL); 3368 mutex_exit(&connp->conn_lock); 3369 3370 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3371 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3372 3373 mutex_enter(&tcp->tcp_closelock); 3374 while (!tcp->tcp_closed) { 3375 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3376 /* 3377 * The cv_wait_sig() was interrupted. We now do the 3378 * following: 3379 * 3380 * 1) If the endpoint was lingering, we allow this 3381 * to be interrupted by cancelling the linger timeout 3382 * and closing normally. 3383 * 3384 * 2) Revert to calling cv_wait() 3385 * 3386 * We revert to using cv_wait() to avoid an 3387 * infinite loop which can occur if the calling 3388 * thread is higher priority than the squeue worker 3389 * thread and is bound to the same cpu. 3390 */ 3391 if (connp->conn_linger && connp->conn_lingertime > 0) { 3392 mutex_exit(&tcp->tcp_closelock); 3393 /* Entering squeue, bump ref count. */ 3394 CONN_INC_REF(connp); 3395 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3396 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3397 tcp_linger_interrupted, connp, NULL, 3398 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3399 mutex_enter(&tcp->tcp_closelock); 3400 } 3401 break; 3402 } 3403 } 3404 while (!tcp->tcp_closed) 3405 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3406 mutex_exit(&tcp->tcp_closelock); 3407 3408 /* 3409 * In the case of listener streams that have eagers in the q or q0 3410 * we wait for the eagers to drop their reference to us. conn_rq and 3411 * conn_wq of the eagers point to our queues. By waiting for the 3412 * refcnt to drop to 1, we are sure that the eagers have cleaned 3413 * up their queue pointers and also dropped their references to us. 3414 */ 3415 if (tcp->tcp_wait_for_eagers) { 3416 mutex_enter(&connp->conn_lock); 3417 while (connp->conn_ref != 1) { 3418 cv_wait(&connp->conn_cv, &connp->conn_lock); 3419 } 3420 mutex_exit(&connp->conn_lock); 3421 } 3422 3423 connp->conn_cpid = NOPID; 3424 } 3425 3426 static int 3427 tcp_tpi_close(queue_t *q, int flags) 3428 { 3429 conn_t *connp; 3430 3431 ASSERT(WR(q)->q_next == NULL); 3432 3433 if (flags & SO_FALLBACK) { 3434 /* 3435 * stream is being closed while in fallback 3436 * simply free the resources that were allocated 3437 */ 3438 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3439 qprocsoff(q); 3440 goto done; 3441 } 3442 3443 connp = Q_TO_CONN(q); 3444 /* 3445 * We are being closed as /dev/tcp or /dev/tcp6. 3446 */ 3447 tcp_close_common(connp, flags); 3448 3449 qprocsoff(q); 3450 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3451 3452 /* 3453 * Drop IP's reference on the conn. This is the last reference 3454 * on the connp if the state was less than established. If the 3455 * connection has gone into timewait state, then we will have 3456 * one ref for the TCP and one more ref (total of two) for the 3457 * classifier connected hash list (a timewait connections stays 3458 * in connected hash till closed). 3459 * 3460 * We can't assert the references because there might be other 3461 * transient reference places because of some walkers or queued 3462 * packets in squeue for the timewait state. 3463 */ 3464 CONN_DEC_REF(connp); 3465 done: 3466 q->q_ptr = WR(q)->q_ptr = NULL; 3467 return (0); 3468 } 3469 3470 static int 3471 tcp_tpi_close_accept(queue_t *q) 3472 { 3473 vmem_t *minor_arena; 3474 dev_t conn_dev; 3475 3476 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3477 3478 /* 3479 * We had opened an acceptor STREAM for sockfs which is 3480 * now being closed due to some error. 3481 */ 3482 qprocsoff(q); 3483 3484 minor_arena = (vmem_t *)WR(q)->q_ptr; 3485 conn_dev = (dev_t)RD(q)->q_ptr; 3486 ASSERT(minor_arena != NULL); 3487 ASSERT(conn_dev != 0); 3488 inet_minor_free(minor_arena, conn_dev); 3489 q->q_ptr = WR(q)->q_ptr = NULL; 3490 return (0); 3491 } 3492 3493 /* 3494 * Called by tcp_close() routine via squeue when lingering is 3495 * interrupted by a signal. 3496 */ 3497 3498 /* ARGSUSED */ 3499 static void 3500 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3501 { 3502 conn_t *connp = (conn_t *)arg; 3503 tcp_t *tcp = connp->conn_tcp; 3504 3505 freeb(mp); 3506 if (tcp->tcp_linger_tid != 0 && 3507 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3508 tcp_stop_lingering(tcp); 3509 tcp->tcp_client_errno = EINTR; 3510 } 3511 } 3512 3513 /* 3514 * Called by streams close routine via squeues when our client blows off her 3515 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3516 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3517 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3518 * acked. 3519 * 3520 * NOTE: tcp_close potentially returns error when lingering. 3521 * However, the stream head currently does not pass these errors 3522 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3523 * errors to the application (from tsleep()) and not errors 3524 * like ECONNRESET caused by receiving a reset packet. 3525 */ 3526 3527 /* ARGSUSED */ 3528 static void 3529 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3530 { 3531 char *msg; 3532 conn_t *connp = (conn_t *)arg; 3533 tcp_t *tcp = connp->conn_tcp; 3534 clock_t delta = 0; 3535 tcp_stack_t *tcps = tcp->tcp_tcps; 3536 3537 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3538 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3539 3540 mutex_enter(&tcp->tcp_eager_lock); 3541 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3542 /* Cleanup for listener */ 3543 tcp_eager_cleanup(tcp, 0); 3544 tcp->tcp_wait_for_eagers = 1; 3545 } 3546 mutex_exit(&tcp->tcp_eager_lock); 3547 3548 tcp->tcp_lso = B_FALSE; 3549 3550 msg = NULL; 3551 switch (tcp->tcp_state) { 3552 case TCPS_CLOSED: 3553 case TCPS_IDLE: 3554 case TCPS_BOUND: 3555 case TCPS_LISTEN: 3556 break; 3557 case TCPS_SYN_SENT: 3558 msg = "tcp_close, during connect"; 3559 break; 3560 case TCPS_SYN_RCVD: 3561 /* 3562 * Close during the connect 3-way handshake 3563 * but here there may or may not be pending data 3564 * already on queue. Process almost same as in 3565 * the ESTABLISHED state. 3566 */ 3567 /* FALLTHRU */ 3568 default: 3569 if (tcp->tcp_fused) 3570 tcp_unfuse(tcp); 3571 3572 /* 3573 * If SO_LINGER has set a zero linger time, abort the 3574 * connection with a reset. 3575 */ 3576 if (connp->conn_linger && connp->conn_lingertime == 0) { 3577 msg = "tcp_close, zero lingertime"; 3578 break; 3579 } 3580 3581 /* 3582 * Abort connection if there is unread data queued. 3583 */ 3584 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3585 msg = "tcp_close, unread data"; 3586 break; 3587 } 3588 /* 3589 * We have done a qwait() above which could have possibly 3590 * drained more messages in turn causing transition to a 3591 * different state. Check whether we have to do the rest 3592 * of the processing or not. 3593 */ 3594 if (tcp->tcp_state <= TCPS_LISTEN) 3595 break; 3596 3597 /* 3598 * Transmit the FIN before detaching the tcp_t. 3599 * After tcp_detach returns this queue/perimeter 3600 * no longer owns the tcp_t thus others can modify it. 3601 */ 3602 (void) tcp_xmit_end(tcp); 3603 3604 /* 3605 * If lingering on close then wait until the fin is acked, 3606 * the SO_LINGER time passes, or a reset is sent/received. 3607 */ 3608 if (connp->conn_linger && connp->conn_lingertime > 0 && 3609 !(tcp->tcp_fin_acked) && 3610 tcp->tcp_state >= TCPS_ESTABLISHED) { 3611 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3612 tcp->tcp_client_errno = EWOULDBLOCK; 3613 } else if (tcp->tcp_client_errno == 0) { 3614 3615 ASSERT(tcp->tcp_linger_tid == 0); 3616 3617 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3618 tcp_close_linger_timeout, 3619 connp->conn_lingertime * hz); 3620 3621 /* tcp_close_linger_timeout will finish close */ 3622 if (tcp->tcp_linger_tid == 0) 3623 tcp->tcp_client_errno = ENOSR; 3624 else 3625 return; 3626 } 3627 3628 /* 3629 * Check if we need to detach or just close 3630 * the instance. 3631 */ 3632 if (tcp->tcp_state <= TCPS_LISTEN) 3633 break; 3634 } 3635 3636 /* 3637 * Make sure that no other thread will access the conn_rq of 3638 * this instance (through lookups etc.) as conn_rq will go 3639 * away shortly. 3640 */ 3641 tcp_acceptor_hash_remove(tcp); 3642 3643 mutex_enter(&tcp->tcp_non_sq_lock); 3644 if (tcp->tcp_flow_stopped) { 3645 tcp_clrqfull(tcp); 3646 } 3647 mutex_exit(&tcp->tcp_non_sq_lock); 3648 3649 if (tcp->tcp_timer_tid != 0) { 3650 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3651 tcp->tcp_timer_tid = 0; 3652 } 3653 /* 3654 * Need to cancel those timers which will not be used when 3655 * TCP is detached. This has to be done before the conn_wq 3656 * is set to NULL. 3657 */ 3658 tcp_timers_stop(tcp); 3659 3660 tcp->tcp_detached = B_TRUE; 3661 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3662 tcp_time_wait_append(tcp); 3663 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3664 ASSERT(connp->conn_ref >= 3); 3665 goto finish; 3666 } 3667 3668 /* 3669 * If delta is zero the timer event wasn't executed and was 3670 * successfully canceled. In this case we need to restart it 3671 * with the minimal delta possible. 3672 */ 3673 if (delta >= 0) 3674 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3675 delta ? delta : 1); 3676 3677 ASSERT(connp->conn_ref >= 3); 3678 goto finish; 3679 } 3680 3681 /* Detach did not complete. Still need to remove q from stream. */ 3682 if (msg) { 3683 if (tcp->tcp_state == TCPS_ESTABLISHED || 3684 tcp->tcp_state == TCPS_CLOSE_WAIT) 3685 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3686 if (tcp->tcp_state == TCPS_SYN_SENT || 3687 tcp->tcp_state == TCPS_SYN_RCVD) 3688 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3689 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3690 } 3691 3692 tcp_closei_local(tcp); 3693 CONN_DEC_REF(connp); 3694 ASSERT(connp->conn_ref >= 2); 3695 3696 finish: 3697 mutex_enter(&tcp->tcp_closelock); 3698 /* 3699 * Don't change the queues in the case of a listener that has 3700 * eagers in its q or q0. It could surprise the eagers. 3701 * Instead wait for the eagers outside the squeue. 3702 */ 3703 if (!tcp->tcp_wait_for_eagers) { 3704 tcp->tcp_detached = B_TRUE; 3705 connp->conn_rq = NULL; 3706 connp->conn_wq = NULL; 3707 } 3708 3709 /* Signal tcp_close() to finish closing. */ 3710 tcp->tcp_closed = 1; 3711 cv_signal(&tcp->tcp_closecv); 3712 mutex_exit(&tcp->tcp_closelock); 3713 } 3714 3715 /* 3716 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3717 * Some stream heads get upset if they see these later on as anything but NULL. 3718 */ 3719 static void 3720 tcp_close_mpp(mblk_t **mpp) 3721 { 3722 mblk_t *mp; 3723 3724 if ((mp = *mpp) != NULL) { 3725 do { 3726 mp->b_next = NULL; 3727 mp->b_prev = NULL; 3728 } while ((mp = mp->b_cont) != NULL); 3729 3730 mp = *mpp; 3731 *mpp = NULL; 3732 freemsg(mp); 3733 } 3734 } 3735 3736 /* Do detached close. */ 3737 static void 3738 tcp_close_detached(tcp_t *tcp) 3739 { 3740 if (tcp->tcp_fused) 3741 tcp_unfuse(tcp); 3742 3743 /* 3744 * Clustering code serializes TCP disconnect callbacks and 3745 * cluster tcp list walks by blocking a TCP disconnect callback 3746 * if a cluster tcp list walk is in progress. This ensures 3747 * accurate accounting of TCPs in the cluster code even though 3748 * the TCP list walk itself is not atomic. 3749 */ 3750 tcp_closei_local(tcp); 3751 CONN_DEC_REF(tcp->tcp_connp); 3752 } 3753 3754 /* 3755 * Stop all TCP timers, and free the timer mblks if requested. 3756 */ 3757 void 3758 tcp_timers_stop(tcp_t *tcp) 3759 { 3760 if (tcp->tcp_timer_tid != 0) { 3761 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3762 tcp->tcp_timer_tid = 0; 3763 } 3764 if (tcp->tcp_ka_tid != 0) { 3765 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3766 tcp->tcp_ka_tid = 0; 3767 } 3768 if (tcp->tcp_ack_tid != 0) { 3769 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3770 tcp->tcp_ack_tid = 0; 3771 } 3772 if (tcp->tcp_push_tid != 0) { 3773 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3774 tcp->tcp_push_tid = 0; 3775 } 3776 if (tcp->tcp_reass_tid != 0) { 3777 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 3778 tcp->tcp_reass_tid = 0; 3779 } 3780 } 3781 3782 /* 3783 * The tcp_t is going away. Remove it from all lists and set it 3784 * to TCPS_CLOSED. The freeing up of memory is deferred until 3785 * tcp_inactive. This is needed since a thread in tcp_rput might have 3786 * done a CONN_INC_REF on this structure before it was removed from the 3787 * hashes. 3788 */ 3789 static void 3790 tcp_closei_local(tcp_t *tcp) 3791 { 3792 conn_t *connp = tcp->tcp_connp; 3793 tcp_stack_t *tcps = tcp->tcp_tcps; 3794 3795 if (!TCP_IS_SOCKET(tcp)) 3796 tcp_acceptor_hash_remove(tcp); 3797 3798 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3799 tcp->tcp_ibsegs = 0; 3800 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3801 tcp->tcp_obsegs = 0; 3802 3803 /* 3804 * If we are an eager connection hanging off a listener that 3805 * hasn't formally accepted the connection yet, get off his 3806 * list and blow off any data that we have accumulated. 3807 */ 3808 if (tcp->tcp_listener != NULL) { 3809 tcp_t *listener = tcp->tcp_listener; 3810 mutex_enter(&listener->tcp_eager_lock); 3811 /* 3812 * tcp_tconnind_started == B_TRUE means that the 3813 * conn_ind has already gone to listener. At 3814 * this point, eager will be closed but we 3815 * leave it in listeners eager list so that 3816 * if listener decides to close without doing 3817 * accept, we can clean this up. In tcp_tli_accept 3818 * we take care of the case of accept on closed 3819 * eager. 3820 */ 3821 if (!tcp->tcp_tconnind_started) { 3822 tcp_eager_unlink(tcp); 3823 mutex_exit(&listener->tcp_eager_lock); 3824 /* 3825 * We don't want to have any pointers to the 3826 * listener queue, after we have released our 3827 * reference on the listener 3828 */ 3829 ASSERT(tcp->tcp_detached); 3830 connp->conn_rq = NULL; 3831 connp->conn_wq = NULL; 3832 CONN_DEC_REF(listener->tcp_connp); 3833 } else { 3834 mutex_exit(&listener->tcp_eager_lock); 3835 } 3836 } 3837 3838 /* Stop all the timers */ 3839 tcp_timers_stop(tcp); 3840 3841 if (tcp->tcp_state == TCPS_LISTEN) { 3842 if (tcp->tcp_ip_addr_cache) { 3843 kmem_free((void *)tcp->tcp_ip_addr_cache, 3844 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3845 tcp->tcp_ip_addr_cache = NULL; 3846 } 3847 } 3848 3849 /* Decrement listerner connection counter if necessary. */ 3850 if (tcp->tcp_listen_cnt != NULL) 3851 TCP_DECR_LISTEN_CNT(tcp); 3852 3853 mutex_enter(&tcp->tcp_non_sq_lock); 3854 if (tcp->tcp_flow_stopped) 3855 tcp_clrqfull(tcp); 3856 mutex_exit(&tcp->tcp_non_sq_lock); 3857 3858 tcp_bind_hash_remove(tcp); 3859 /* 3860 * If the tcp_time_wait_collector (which runs outside the squeue) 3861 * is trying to remove this tcp from the time wait list, we will 3862 * block in tcp_time_wait_remove while trying to acquire the 3863 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3864 * requires the ipcl_hash_remove to be ordered after the 3865 * tcp_time_wait_remove for the refcnt checks to work correctly. 3866 */ 3867 if (tcp->tcp_state == TCPS_TIME_WAIT) 3868 (void) tcp_time_wait_remove(tcp, NULL); 3869 CL_INET_DISCONNECT(connp); 3870 ipcl_hash_remove(connp); 3871 ixa_cleanup(connp->conn_ixa); 3872 3873 /* 3874 * Mark the conn as CONDEMNED 3875 */ 3876 mutex_enter(&connp->conn_lock); 3877 connp->conn_state_flags |= CONN_CONDEMNED; 3878 mutex_exit(&connp->conn_lock); 3879 3880 ASSERT(tcp->tcp_time_wait_next == NULL); 3881 ASSERT(tcp->tcp_time_wait_prev == NULL); 3882 ASSERT(tcp->tcp_time_wait_expire == 0); 3883 tcp->tcp_state = TCPS_CLOSED; 3884 3885 /* Release any SSL context */ 3886 if (tcp->tcp_kssl_ent != NULL) { 3887 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3888 tcp->tcp_kssl_ent = NULL; 3889 } 3890 if (tcp->tcp_kssl_ctx != NULL) { 3891 kssl_release_ctx(tcp->tcp_kssl_ctx); 3892 tcp->tcp_kssl_ctx = NULL; 3893 } 3894 tcp->tcp_kssl_pending = B_FALSE; 3895 3896 tcp_ipsec_cleanup(tcp); 3897 } 3898 3899 /* 3900 * tcp is dying (called from ipcl_conn_destroy and error cases). 3901 * Free the tcp_t in either case. 3902 */ 3903 void 3904 tcp_free(tcp_t *tcp) 3905 { 3906 mblk_t *mp; 3907 conn_t *connp = tcp->tcp_connp; 3908 3909 ASSERT(tcp != NULL); 3910 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3911 3912 connp->conn_rq = NULL; 3913 connp->conn_wq = NULL; 3914 3915 tcp_close_mpp(&tcp->tcp_xmit_head); 3916 tcp_close_mpp(&tcp->tcp_reass_head); 3917 if (tcp->tcp_rcv_list != NULL) { 3918 /* Free b_next chain */ 3919 tcp_close_mpp(&tcp->tcp_rcv_list); 3920 } 3921 if ((mp = tcp->tcp_urp_mp) != NULL) { 3922 freemsg(mp); 3923 } 3924 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3925 freemsg(mp); 3926 } 3927 3928 if (tcp->tcp_fused_sigurg_mp != NULL) { 3929 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3930 freeb(tcp->tcp_fused_sigurg_mp); 3931 tcp->tcp_fused_sigurg_mp = NULL; 3932 } 3933 3934 if (tcp->tcp_ordrel_mp != NULL) { 3935 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3936 freeb(tcp->tcp_ordrel_mp); 3937 tcp->tcp_ordrel_mp = NULL; 3938 } 3939 3940 if (tcp->tcp_sack_info != NULL) { 3941 if (tcp->tcp_notsack_list != NULL) { 3942 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3943 tcp); 3944 } 3945 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3946 } 3947 3948 if (tcp->tcp_hopopts != NULL) { 3949 mi_free(tcp->tcp_hopopts); 3950 tcp->tcp_hopopts = NULL; 3951 tcp->tcp_hopoptslen = 0; 3952 } 3953 ASSERT(tcp->tcp_hopoptslen == 0); 3954 if (tcp->tcp_dstopts != NULL) { 3955 mi_free(tcp->tcp_dstopts); 3956 tcp->tcp_dstopts = NULL; 3957 tcp->tcp_dstoptslen = 0; 3958 } 3959 ASSERT(tcp->tcp_dstoptslen == 0); 3960 if (tcp->tcp_rthdrdstopts != NULL) { 3961 mi_free(tcp->tcp_rthdrdstopts); 3962 tcp->tcp_rthdrdstopts = NULL; 3963 tcp->tcp_rthdrdstoptslen = 0; 3964 } 3965 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3966 if (tcp->tcp_rthdr != NULL) { 3967 mi_free(tcp->tcp_rthdr); 3968 tcp->tcp_rthdr = NULL; 3969 tcp->tcp_rthdrlen = 0; 3970 } 3971 ASSERT(tcp->tcp_rthdrlen == 0); 3972 3973 /* 3974 * Following is really a blowing away a union. 3975 * It happens to have exactly two members of identical size 3976 * the following code is enough. 3977 */ 3978 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3979 } 3980 3981 3982 /* 3983 * Put a connection confirmation message upstream built from the 3984 * address/flowid information with the conn and iph. Report our success or 3985 * failure. 3986 */ 3987 static boolean_t 3988 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3989 mblk_t **defermp, ip_recv_attr_t *ira) 3990 { 3991 sin_t sin; 3992 sin6_t sin6; 3993 mblk_t *mp; 3994 char *optp = NULL; 3995 int optlen = 0; 3996 conn_t *connp = tcp->tcp_connp; 3997 3998 if (defermp != NULL) 3999 *defermp = NULL; 4000 4001 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4002 /* 4003 * Return in T_CONN_CON results of option negotiation through 4004 * the T_CONN_REQ. Note: If there is an real end-to-end option 4005 * negotiation, then what is received from remote end needs 4006 * to be taken into account but there is no such thing (yet?) 4007 * in our TCP/IP. 4008 * Note: We do not use mi_offset_param() here as 4009 * tcp_opts_conn_req contents do not directly come from 4010 * an application and are either generated in kernel or 4011 * from user input that was already verified. 4012 */ 4013 mp = tcp->tcp_conn.tcp_opts_conn_req; 4014 optp = (char *)(mp->b_rptr + 4015 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4016 optlen = (int) 4017 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4018 } 4019 4020 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4021 4022 /* packet is IPv4 */ 4023 if (connp->conn_family == AF_INET) { 4024 sin = sin_null; 4025 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4026 sin.sin_port = connp->conn_fport; 4027 sin.sin_family = AF_INET; 4028 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4029 (int)sizeof (sin_t), optp, optlen); 4030 } else { 4031 sin6 = sin6_null; 4032 sin6.sin6_addr = connp->conn_faddr_v6; 4033 sin6.sin6_port = connp->conn_fport; 4034 sin6.sin6_family = AF_INET6; 4035 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4036 (int)sizeof (sin6_t), optp, optlen); 4037 4038 } 4039 } else { 4040 ip6_t *ip6h = (ip6_t *)iphdr; 4041 4042 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4043 ASSERT(connp->conn_family == AF_INET6); 4044 sin6 = sin6_null; 4045 sin6.sin6_addr = connp->conn_faddr_v6; 4046 sin6.sin6_port = connp->conn_fport; 4047 sin6.sin6_family = AF_INET6; 4048 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4049 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4050 (int)sizeof (sin6_t), optp, optlen); 4051 } 4052 4053 if (!mp) 4054 return (B_FALSE); 4055 4056 mblk_copycred(mp, idmp); 4057 4058 if (defermp == NULL) { 4059 conn_t *connp = tcp->tcp_connp; 4060 if (IPCL_IS_NONSTR(connp)) { 4061 (*connp->conn_upcalls->su_connected) 4062 (connp->conn_upper_handle, tcp->tcp_connid, 4063 ira->ira_cred, ira->ira_cpid); 4064 freemsg(mp); 4065 } else { 4066 if (ira->ira_cred != NULL) { 4067 /* So that getpeerucred works for TPI sockfs */ 4068 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 4069 } 4070 putnext(connp->conn_rq, mp); 4071 } 4072 } else { 4073 *defermp = mp; 4074 } 4075 4076 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4077 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4078 return (B_TRUE); 4079 } 4080 4081 /* 4082 * Defense for the SYN attack - 4083 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4084 * one from the list of droppable eagers. This list is a subset of q0. 4085 * see comments before the definition of MAKE_DROPPABLE(). 4086 * 2. Don't drop a SYN request before its first timeout. This gives every 4087 * request at least til the first timeout to complete its 3-way handshake. 4088 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4089 * requests currently on the queue that has timed out. This will be used 4090 * as an indicator of whether an attack is under way, so that appropriate 4091 * actions can be taken. (It's incremented in tcp_timer() and decremented 4092 * either when eager goes into ESTABLISHED, or gets freed up.) 4093 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4094 * # of timeout drops back to <= q0len/32 => SYN alert off 4095 */ 4096 static boolean_t 4097 tcp_drop_q0(tcp_t *tcp) 4098 { 4099 tcp_t *eager; 4100 mblk_t *mp; 4101 tcp_stack_t *tcps = tcp->tcp_tcps; 4102 4103 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4104 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4105 4106 /* Pick oldest eager from the list of droppable eagers */ 4107 eager = tcp->tcp_eager_prev_drop_q0; 4108 4109 /* If list is empty. return B_FALSE */ 4110 if (eager == tcp) { 4111 return (B_FALSE); 4112 } 4113 4114 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4115 if ((mp = allocb(0, BPRI_HI)) == NULL) 4116 return (B_FALSE); 4117 4118 /* 4119 * Take this eager out from the list of droppable eagers since we are 4120 * going to drop it. 4121 */ 4122 MAKE_UNDROPPABLE(eager); 4123 4124 if (tcp->tcp_connp->conn_debug) { 4125 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4126 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4127 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4128 tcp->tcp_conn_req_cnt_q0, 4129 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4130 } 4131 4132 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4133 4134 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4135 CONN_INC_REF(eager->tcp_connp); 4136 4137 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4138 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 4139 SQ_FILL, SQTAG_TCP_DROP_Q0); 4140 4141 return (B_TRUE); 4142 } 4143 4144 /* 4145 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4146 */ 4147 static mblk_t * 4148 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4149 ip_recv_attr_t *ira) 4150 { 4151 tcp_t *ltcp = lconnp->conn_tcp; 4152 tcp_t *tcp = connp->conn_tcp; 4153 mblk_t *tpi_mp; 4154 ipha_t *ipha; 4155 ip6_t *ip6h; 4156 sin6_t sin6; 4157 uint_t ifindex = ira->ira_ruifindex; 4158 tcp_stack_t *tcps = tcp->tcp_tcps; 4159 4160 if (ira->ira_flags & IRAF_IS_IPV4) { 4161 ipha = (ipha_t *)mp->b_rptr; 4162 4163 connp->conn_ipversion = IPV4_VERSION; 4164 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4165 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4166 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4167 4168 sin6 = sin6_null; 4169 sin6.sin6_addr = connp->conn_faddr_v6; 4170 sin6.sin6_port = connp->conn_fport; 4171 sin6.sin6_family = AF_INET6; 4172 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4173 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4174 4175 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4176 sin6_t sin6d; 4177 4178 sin6d = sin6_null; 4179 sin6d.sin6_addr = connp->conn_laddr_v6; 4180 sin6d.sin6_port = connp->conn_lport; 4181 sin6d.sin6_family = AF_INET; 4182 tpi_mp = mi_tpi_extconn_ind(NULL, 4183 (char *)&sin6d, sizeof (sin6_t), 4184 (char *)&tcp, 4185 (t_scalar_t)sizeof (intptr_t), 4186 (char *)&sin6d, sizeof (sin6_t), 4187 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4188 } else { 4189 tpi_mp = mi_tpi_conn_ind(NULL, 4190 (char *)&sin6, sizeof (sin6_t), 4191 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4192 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4193 } 4194 } else { 4195 ip6h = (ip6_t *)mp->b_rptr; 4196 4197 connp->conn_ipversion = IPV6_VERSION; 4198 connp->conn_laddr_v6 = ip6h->ip6_dst; 4199 connp->conn_faddr_v6 = ip6h->ip6_src; 4200 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4201 4202 sin6 = sin6_null; 4203 sin6.sin6_addr = connp->conn_faddr_v6; 4204 sin6.sin6_port = connp->conn_fport; 4205 sin6.sin6_family = AF_INET6; 4206 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4207 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4208 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4209 4210 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4211 /* Pass up the scope_id of remote addr */ 4212 sin6.sin6_scope_id = ifindex; 4213 } else { 4214 sin6.sin6_scope_id = 0; 4215 } 4216 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4217 sin6_t sin6d; 4218 4219 sin6d = sin6_null; 4220 sin6.sin6_addr = connp->conn_laddr_v6; 4221 sin6d.sin6_port = connp->conn_lport; 4222 sin6d.sin6_family = AF_INET6; 4223 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4224 sin6d.sin6_scope_id = ifindex; 4225 4226 tpi_mp = mi_tpi_extconn_ind(NULL, 4227 (char *)&sin6d, sizeof (sin6_t), 4228 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4229 (char *)&sin6d, sizeof (sin6_t), 4230 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4231 } else { 4232 tpi_mp = mi_tpi_conn_ind(NULL, 4233 (char *)&sin6, sizeof (sin6_t), 4234 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4235 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4236 } 4237 } 4238 4239 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4240 return (tpi_mp); 4241 } 4242 4243 /* Handle a SYN on an AF_INET socket */ 4244 mblk_t * 4245 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4246 ip_recv_attr_t *ira) 4247 { 4248 tcp_t *ltcp = lconnp->conn_tcp; 4249 tcp_t *tcp = connp->conn_tcp; 4250 sin_t sin; 4251 mblk_t *tpi_mp = NULL; 4252 tcp_stack_t *tcps = tcp->tcp_tcps; 4253 ipha_t *ipha; 4254 4255 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4256 ipha = (ipha_t *)mp->b_rptr; 4257 4258 connp->conn_ipversion = IPV4_VERSION; 4259 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4260 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4261 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4262 4263 sin = sin_null; 4264 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4265 sin.sin_port = connp->conn_fport; 4266 sin.sin_family = AF_INET; 4267 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4268 sin_t sind; 4269 4270 sind = sin_null; 4271 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4272 sind.sin_port = connp->conn_lport; 4273 sind.sin_family = AF_INET; 4274 tpi_mp = mi_tpi_extconn_ind(NULL, 4275 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4276 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4277 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4278 } else { 4279 tpi_mp = mi_tpi_conn_ind(NULL, 4280 (char *)&sin, sizeof (sin_t), 4281 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4282 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4283 } 4284 4285 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4286 return (tpi_mp); 4287 } 4288 4289 /* 4290 * tcp_get_conn/tcp_free_conn 4291 * 4292 * tcp_get_conn is used to get a clean tcp connection structure. 4293 * It tries to reuse the connections put on the freelist by the 4294 * time_wait_collector failing which it goes to kmem_cache. This 4295 * way has two benefits compared to just allocating from and 4296 * freeing to kmem_cache. 4297 * 1) The time_wait_collector can free (which includes the cleanup) 4298 * outside the squeue. So when the interrupt comes, we have a clean 4299 * connection sitting in the freelist. Obviously, this buys us 4300 * performance. 4301 * 4302 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4303 * has multiple disadvantages - tying up the squeue during alloc. 4304 * But allocating the conn/tcp in IP land is also not the best since 4305 * we can't check the 'q' and 'q0' which are protected by squeue and 4306 * blindly allocate memory which might have to be freed here if we are 4307 * not allowed to accept the connection. By using the freelist and 4308 * putting the conn/tcp back in freelist, we don't pay a penalty for 4309 * allocating memory without checking 'q/q0' and freeing it if we can't 4310 * accept the connection. 4311 * 4312 * Care should be taken to put the conn back in the same squeue's freelist 4313 * from which it was allocated. Best results are obtained if conn is 4314 * allocated from listener's squeue and freed to the same. Time wait 4315 * collector will free up the freelist is the connection ends up sitting 4316 * there for too long. 4317 */ 4318 void * 4319 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4320 { 4321 tcp_t *tcp = NULL; 4322 conn_t *connp = NULL; 4323 squeue_t *sqp = (squeue_t *)arg; 4324 tcp_squeue_priv_t *tcp_time_wait; 4325 netstack_t *ns; 4326 mblk_t *tcp_rsrv_mp = NULL; 4327 4328 tcp_time_wait = 4329 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4330 4331 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4332 tcp = tcp_time_wait->tcp_free_list; 4333 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4334 if (tcp != NULL) { 4335 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4336 tcp_time_wait->tcp_free_list_cnt--; 4337 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4338 tcp->tcp_time_wait_next = NULL; 4339 connp = tcp->tcp_connp; 4340 connp->conn_flags |= IPCL_REUSED; 4341 4342 ASSERT(tcp->tcp_tcps == NULL); 4343 ASSERT(connp->conn_netstack == NULL); 4344 ASSERT(tcp->tcp_rsrv_mp != NULL); 4345 ns = tcps->tcps_netstack; 4346 netstack_hold(ns); 4347 connp->conn_netstack = ns; 4348 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4349 tcp->tcp_tcps = tcps; 4350 ipcl_globalhash_insert(connp); 4351 4352 connp->conn_ixa->ixa_notify_cookie = tcp; 4353 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4354 connp->conn_recv = tcp_input_data; 4355 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4356 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4357 return ((void *)connp); 4358 } 4359 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4360 /* 4361 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4362 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4363 */ 4364 tcp_rsrv_mp = allocb(0, BPRI_HI); 4365 if (tcp_rsrv_mp == NULL) 4366 return (NULL); 4367 4368 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4369 tcps->tcps_netstack)) == NULL) { 4370 freeb(tcp_rsrv_mp); 4371 return (NULL); 4372 } 4373 4374 tcp = connp->conn_tcp; 4375 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4376 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4377 4378 tcp->tcp_tcps = tcps; 4379 4380 connp->conn_recv = tcp_input_data; 4381 connp->conn_recvicmp = tcp_icmp_input; 4382 connp->conn_verifyicmp = tcp_verifyicmp; 4383 4384 /* 4385 * Register tcp_notify to listen to capability changes detected by IP. 4386 * This upcall is made in the context of the call to conn_ip_output 4387 * thus it is inside the squeue. 4388 */ 4389 connp->conn_ixa->ixa_notify = tcp_notify; 4390 connp->conn_ixa->ixa_notify_cookie = tcp; 4391 4392 return ((void *)connp); 4393 } 4394 4395 /* BEGIN CSTYLED */ 4396 /* 4397 * 4398 * The sockfs ACCEPT path: 4399 * ======================= 4400 * 4401 * The eager is now established in its own perimeter as soon as SYN is 4402 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4403 * completes the accept processing on the acceptor STREAM. The sending 4404 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4405 * listener but a TLI/XTI listener completes the accept processing 4406 * on the listener perimeter. 4407 * 4408 * Common control flow for 3 way handshake: 4409 * ---------------------------------------- 4410 * 4411 * incoming SYN (listener perimeter) -> tcp_input_listener() 4412 * 4413 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4414 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4415 * 4416 * Sockfs ACCEPT Path: 4417 * ------------------- 4418 * 4419 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4420 * as STREAM entry point) 4421 * 4422 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4423 * 4424 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4425 * association (we are not behind eager's squeue but sockfs is protecting us 4426 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4427 * is changed to point at tcp_wput(). 4428 * 4429 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4430 * listener (done on listener's perimeter). 4431 * 4432 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4433 * accept. 4434 * 4435 * TLI/XTI client ACCEPT path: 4436 * --------------------------- 4437 * 4438 * soaccept() sends T_CONN_RES on the listener STREAM. 4439 * 4440 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4441 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4442 * 4443 * Locks: 4444 * ====== 4445 * 4446 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4447 * and listeners->tcp_eager_next_q. 4448 * 4449 * Referencing: 4450 * ============ 4451 * 4452 * 1) We start out in tcp_input_listener by eager placing a ref on 4453 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4454 * 4455 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4456 * doing so we place a ref on the eager. This ref is finally dropped at the 4457 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4458 * reference is dropped by the squeue framework. 4459 * 4460 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4461 * 4462 * The reference must be released by the same entity that added the reference 4463 * In the above scheme, the eager is the entity that adds and releases the 4464 * references. Note that tcp_accept_finish executes in the squeue of the eager 4465 * (albeit after it is attached to the acceptor stream). Though 1. executes 4466 * in the listener's squeue, the eager is nascent at this point and the 4467 * reference can be considered to have been added on behalf of the eager. 4468 * 4469 * Eager getting a Reset or listener closing: 4470 * ========================================== 4471 * 4472 * Once the listener and eager are linked, the listener never does the unlink. 4473 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4474 * a message on all eager perimeter. The eager then does the unlink, clears 4475 * any pointers to the listener's queue and drops the reference to the 4476 * listener. The listener waits in tcp_close outside the squeue until its 4477 * refcount has dropped to 1. This ensures that the listener has waited for 4478 * all eagers to clear their association with the listener. 4479 * 4480 * Similarly, if eager decides to go away, it can unlink itself and close. 4481 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4482 * the reference to eager is still valid because of the extra ref we put 4483 * in tcp_send_conn_ind. 4484 * 4485 * Listener can always locate the eager under the protection 4486 * of the listener->tcp_eager_lock, and then do a refhold 4487 * on the eager during the accept processing. 4488 * 4489 * The acceptor stream accesses the eager in the accept processing 4490 * based on the ref placed on eager before sending T_conn_ind. 4491 * The only entity that can negate this refhold is a listener close 4492 * which is mutually exclusive with an active acceptor stream. 4493 * 4494 * Eager's reference on the listener 4495 * =================================== 4496 * 4497 * If the accept happens (even on a closed eager) the eager drops its 4498 * reference on the listener at the start of tcp_accept_finish. If the 4499 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4500 * the reference is dropped in tcp_closei_local. If the listener closes, 4501 * the reference is dropped in tcp_eager_kill. In all cases the reference 4502 * is dropped while executing in the eager's context (squeue). 4503 */ 4504 /* END CSTYLED */ 4505 4506 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4507 4508 /* 4509 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4510 * tcp_input_data will not see any packets for listeners since the listener 4511 * has conn_recv set to tcp_input_listener. 4512 */ 4513 /* ARGSUSED */ 4514 void 4515 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4516 { 4517 tcpha_t *tcpha; 4518 uint32_t seg_seq; 4519 tcp_t *eager; 4520 int err; 4521 conn_t *econnp = NULL; 4522 squeue_t *new_sqp; 4523 mblk_t *mp1; 4524 uint_t ip_hdr_len; 4525 conn_t *lconnp = (conn_t *)arg; 4526 tcp_t *listener = lconnp->conn_tcp; 4527 tcp_stack_t *tcps = listener->tcp_tcps; 4528 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4529 uint_t flags; 4530 mblk_t *tpi_mp; 4531 uint_t ifindex = ira->ira_ruifindex; 4532 boolean_t tlc_set = B_FALSE; 4533 4534 ip_hdr_len = ira->ira_ip_hdr_length; 4535 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4536 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4537 4538 if (!(flags & TH_SYN)) { 4539 if ((flags & TH_RST) || (flags & TH_URG)) { 4540 freemsg(mp); 4541 return; 4542 } 4543 if (flags & TH_ACK) { 4544 /* Note this executes in listener's squeue */ 4545 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4546 return; 4547 } 4548 4549 freemsg(mp); 4550 return; 4551 } 4552 4553 if (listener->tcp_state != TCPS_LISTEN) 4554 goto error2; 4555 4556 ASSERT(IPCL_IS_BOUND(lconnp)); 4557 4558 mutex_enter(&listener->tcp_eager_lock); 4559 4560 /* 4561 * The system is under memory pressure, so we need to do our part 4562 * to relieve the pressure. So we only accept new request if there 4563 * is nothing waiting to be accepted or waiting to complete the 3-way 4564 * handshake. This means that busy listener will not get too many 4565 * new requests which they cannot handle in time while non-busy 4566 * listener is still functioning properly. 4567 */ 4568 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 4569 listener->tcp_conn_req_cnt_q0 > 0)) { 4570 mutex_exit(&listener->tcp_eager_lock); 4571 TCP_STAT(tcps, tcp_listen_mem_drop); 4572 goto error2; 4573 } 4574 4575 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4576 mutex_exit(&listener->tcp_eager_lock); 4577 TCP_STAT(tcps, tcp_listendrop); 4578 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4579 if (lconnp->conn_debug) { 4580 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4581 "tcp_input_listener: listen backlog (max=%d) " 4582 "overflow (%d pending) on %s", 4583 listener->tcp_conn_req_max, 4584 listener->tcp_conn_req_cnt_q, 4585 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4586 } 4587 goto error2; 4588 } 4589 4590 if (listener->tcp_conn_req_cnt_q0 >= 4591 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4592 /* 4593 * Q0 is full. Drop a pending half-open req from the queue 4594 * to make room for the new SYN req. Also mark the time we 4595 * drop a SYN. 4596 * 4597 * A more aggressive defense against SYN attack will 4598 * be to set the "tcp_syn_defense" flag now. 4599 */ 4600 TCP_STAT(tcps, tcp_listendropq0); 4601 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4602 if (!tcp_drop_q0(listener)) { 4603 mutex_exit(&listener->tcp_eager_lock); 4604 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4605 if (lconnp->conn_debug) { 4606 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4607 "tcp_input_listener: listen half-open " 4608 "queue (max=%d) full (%d pending) on %s", 4609 tcps->tcps_conn_req_max_q0, 4610 listener->tcp_conn_req_cnt_q0, 4611 tcp_display(listener, NULL, 4612 DISP_PORT_ONLY)); 4613 } 4614 goto error2; 4615 } 4616 } 4617 4618 /* 4619 * Enforce the limit set on the number of connections per listener. 4620 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 4621 * for comparison. 4622 */ 4623 if (listener->tcp_listen_cnt != NULL) { 4624 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 4625 int64_t now; 4626 4627 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 4628 mutex_exit(&listener->tcp_eager_lock); 4629 now = ddi_get_lbolt64(); 4630 atomic_add_32(&tlc->tlc_cnt, -1); 4631 TCP_STAT(tcps, tcp_listen_cnt_drop); 4632 tlc->tlc_drop++; 4633 if (now - tlc->tlc_report_time > 4634 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 4635 zcmn_err(lconnp->conn_zoneid, CE_WARN, 4636 "Listener (port %d) connection max (%u) " 4637 "reached: %u attempts dropped total\n", 4638 ntohs(listener->tcp_connp->conn_lport), 4639 tlc->tlc_max, tlc->tlc_drop); 4640 tlc->tlc_report_time = now; 4641 } 4642 goto error2; 4643 } 4644 tlc_set = B_TRUE; 4645 } 4646 4647 mutex_exit(&listener->tcp_eager_lock); 4648 4649 /* 4650 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4651 * or based on the ring (for packets from GLD). Otherwise it is 4652 * set based on lbolt i.e., a somewhat random number. 4653 */ 4654 ASSERT(ira->ira_sqp != NULL); 4655 new_sqp = ira->ira_sqp; 4656 4657 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4658 if (econnp == NULL) 4659 goto error2; 4660 4661 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4662 econnp->conn_sqp = new_sqp; 4663 econnp->conn_initial_sqp = new_sqp; 4664 econnp->conn_ixa->ixa_sqp = new_sqp; 4665 4666 econnp->conn_fport = tcpha->tha_lport; 4667 econnp->conn_lport = tcpha->tha_fport; 4668 4669 err = conn_inherit_parent(lconnp, econnp); 4670 if (err != 0) 4671 goto error3; 4672 4673 /* We already know the laddr of the new connection is ours */ 4674 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 4675 4676 ASSERT(OK_32PTR(mp->b_rptr)); 4677 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4678 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4679 4680 if (lconnp->conn_family == AF_INET) { 4681 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4682 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4683 } else { 4684 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4685 } 4686 4687 if (tpi_mp == NULL) 4688 goto error3; 4689 4690 eager = econnp->conn_tcp; 4691 eager->tcp_detached = B_TRUE; 4692 SOCK_CONNID_INIT(eager->tcp_connid); 4693 4694 tcp_init_values(eager); 4695 4696 ASSERT((econnp->conn_ixa->ixa_flags & 4697 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4698 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4699 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4700 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4701 4702 if (!tcps->tcps_dev_flow_ctl) 4703 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4704 4705 /* Prepare for diffing against previous packets */ 4706 eager->tcp_recvifindex = 0; 4707 eager->tcp_recvhops = 0xffffffffU; 4708 4709 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4710 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4711 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4712 econnp->conn_incoming_ifindex = ifindex; 4713 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4714 econnp->conn_ixa->ixa_scopeid = ifindex; 4715 } 4716 } 4717 4718 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4719 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4720 tcps->tcps_rev_src_routes) { 4721 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4722 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4723 4724 /* Source routing option copyover (reverse it) */ 4725 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4726 if (err != 0) { 4727 freemsg(tpi_mp); 4728 goto error3; 4729 } 4730 ip_pkt_source_route_reverse_v4(ipp); 4731 } 4732 4733 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4734 ASSERT(!eager->tcp_tconnind_started); 4735 /* 4736 * If the SYN came with a credential, it's a loopback packet or a 4737 * labeled packet; attach the credential to the TPI message. 4738 */ 4739 if (ira->ira_cred != NULL) 4740 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4741 4742 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4743 4744 /* Inherit the listener's SSL protection state */ 4745 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4746 kssl_hold_ent(eager->tcp_kssl_ent); 4747 eager->tcp_kssl_pending = B_TRUE; 4748 } 4749 4750 /* Inherit the listener's non-STREAMS flag */ 4751 if (IPCL_IS_NONSTR(lconnp)) { 4752 econnp->conn_flags |= IPCL_NONSTR; 4753 } 4754 4755 ASSERT(eager->tcp_ordrel_mp == NULL); 4756 4757 if (!IPCL_IS_NONSTR(econnp)) { 4758 /* 4759 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4760 * at close time, we will always have that to send up. 4761 * Otherwise, we need to do special handling in case the 4762 * allocation fails at that time. 4763 */ 4764 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4765 goto error3; 4766 } 4767 /* 4768 * Now that the IP addresses and ports are setup in econnp we 4769 * can do the IPsec policy work. 4770 */ 4771 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4772 if (lconnp->conn_policy != NULL) { 4773 /* 4774 * Inherit the policy from the listener; use 4775 * actions from ira 4776 */ 4777 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4778 CONN_DEC_REF(econnp); 4779 freemsg(mp); 4780 goto error3; 4781 } 4782 } 4783 } 4784 4785 /* Inherit various TCP parameters from the listener */ 4786 eager->tcp_naglim = listener->tcp_naglim; 4787 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4788 eager->tcp_second_timer_threshold = 4789 listener->tcp_second_timer_threshold; 4790 eager->tcp_first_ctimer_threshold = 4791 listener->tcp_first_ctimer_threshold; 4792 eager->tcp_second_ctimer_threshold = 4793 listener->tcp_second_ctimer_threshold; 4794 4795 /* 4796 * tcp_set_destination() may set tcp_rwnd according to the route 4797 * metrics. If it does not, the eager's receive window will be set 4798 * to the listener's receive window later in this function. 4799 */ 4800 eager->tcp_rwnd = 0; 4801 4802 /* 4803 * Inherit listener's tcp_init_cwnd. Need to do this before 4804 * calling tcp_process_options() which set the initial cwnd. 4805 */ 4806 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4807 4808 if (is_system_labeled()) { 4809 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4810 4811 ASSERT(ira->ira_tsl != NULL); 4812 /* Discard any old label */ 4813 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4814 ASSERT(ixa->ixa_tsl != NULL); 4815 label_rele(ixa->ixa_tsl); 4816 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4817 ixa->ixa_tsl = NULL; 4818 } 4819 if ((lconnp->conn_mlp_type != mlptSingle || 4820 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4821 ira->ira_tsl != NULL) { 4822 /* 4823 * If this is an MLP connection or a MAC-Exempt 4824 * connection with an unlabeled node, packets are to be 4825 * exchanged using the security label of the received 4826 * SYN packet instead of the server application's label. 4827 * tsol_check_dest called from ip_set_destination 4828 * might later update TSF_UNLABELED by replacing 4829 * ixa_tsl with a new label. 4830 */ 4831 label_hold(ira->ira_tsl); 4832 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4833 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4834 econnp, ts_label_t *, ixa->ixa_tsl) 4835 } else { 4836 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4837 DTRACE_PROBE2(syn_accept, conn_t *, 4838 econnp, ts_label_t *, ixa->ixa_tsl) 4839 } 4840 /* 4841 * conn_connect() called from tcp_set_destination will verify 4842 * the destination is allowed to receive packets at the 4843 * security label of the SYN-ACK we are generating. As part of 4844 * that, tsol_check_dest() may create a new effective label for 4845 * this connection. 4846 * Finally conn_connect() will call conn_update_label. 4847 * All that remains for TCP to do is to call 4848 * conn_build_hdr_template which is done as part of 4849 * tcp_set_destination. 4850 */ 4851 } 4852 4853 /* 4854 * Since we will clear tcp_listener before we clear tcp_detached 4855 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4856 * so we can tell a TCP_DETACHED_NONEAGER apart. 4857 */ 4858 eager->tcp_hard_binding = B_TRUE; 4859 4860 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4861 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4862 4863 CL_INET_CONNECT(econnp, B_FALSE, err); 4864 if (err != 0) { 4865 tcp_bind_hash_remove(eager); 4866 goto error3; 4867 } 4868 4869 /* 4870 * No need to check for multicast destination since ip will only pass 4871 * up multicasts to those that have expressed interest 4872 * TODO: what about rejecting broadcasts? 4873 * Also check that source is not a multicast or broadcast address. 4874 */ 4875 eager->tcp_state = TCPS_SYN_RCVD; 4876 SOCK_CONNID_BUMP(eager->tcp_connid); 4877 4878 /* 4879 * Adapt our mss, ttl, ... based on the remote address. 4880 */ 4881 4882 if (tcp_set_destination(eager) != 0) { 4883 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4884 /* Undo the bind_hash_insert */ 4885 tcp_bind_hash_remove(eager); 4886 goto error3; 4887 } 4888 4889 /* Process all TCP options. */ 4890 tcp_process_options(eager, tcpha); 4891 4892 /* Is the other end ECN capable? */ 4893 if (tcps->tcps_ecn_permitted >= 1 && 4894 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4895 eager->tcp_ecn_ok = B_TRUE; 4896 } 4897 4898 /* 4899 * The listener's conn_rcvbuf should be the default window size or a 4900 * window size changed via SO_RCVBUF option. First round up the 4901 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4902 * scale option value if needed. Call tcp_rwnd_set() to finish the 4903 * setting. 4904 * 4905 * Note if there is a rpipe metric associated with the remote host, 4906 * we should not inherit receive window size from listener. 4907 */ 4908 eager->tcp_rwnd = MSS_ROUNDUP( 4909 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4910 eager->tcp_rwnd), eager->tcp_mss); 4911 if (eager->tcp_snd_ws_ok) 4912 tcp_set_ws_value(eager); 4913 /* 4914 * Note that this is the only place tcp_rwnd_set() is called for 4915 * accepting a connection. We need to call it here instead of 4916 * after the 3-way handshake because we need to tell the other 4917 * side our rwnd in the SYN-ACK segment. 4918 */ 4919 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4920 4921 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4922 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4923 4924 ASSERT(econnp->conn_rcvbuf != 0 && 4925 econnp->conn_rcvbuf == eager->tcp_rwnd); 4926 4927 /* Put a ref on the listener for the eager. */ 4928 CONN_INC_REF(lconnp); 4929 mutex_enter(&listener->tcp_eager_lock); 4930 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4931 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4932 listener->tcp_eager_next_q0 = eager; 4933 eager->tcp_eager_prev_q0 = listener; 4934 4935 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4936 eager->tcp_listener = listener; 4937 eager->tcp_saved_listener = listener; 4938 4939 /* 4940 * Set tcp_listen_cnt so that when the connection is done, the counter 4941 * is decremented. 4942 */ 4943 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 4944 4945 /* 4946 * Tag this detached tcp vector for later retrieval 4947 * by our listener client in tcp_accept(). 4948 */ 4949 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4950 listener->tcp_conn_req_cnt_q0++; 4951 if (++listener->tcp_conn_req_seqnum == -1) { 4952 /* 4953 * -1 is "special" and defined in TPI as something 4954 * that should never be used in T_CONN_IND 4955 */ 4956 ++listener->tcp_conn_req_seqnum; 4957 } 4958 mutex_exit(&listener->tcp_eager_lock); 4959 4960 if (listener->tcp_syn_defense) { 4961 /* Don't drop the SYN that comes from a good IP source */ 4962 ipaddr_t *addr_cache; 4963 4964 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4965 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4966 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4967 eager->tcp_dontdrop = B_TRUE; 4968 } 4969 } 4970 4971 /* 4972 * We need to insert the eager in its own perimeter but as soon 4973 * as we do that, we expose the eager to the classifier and 4974 * should not touch any field outside the eager's perimeter. 4975 * So do all the work necessary before inserting the eager 4976 * in its own perimeter. Be optimistic that conn_connect() 4977 * will succeed but undo everything if it fails. 4978 */ 4979 seg_seq = ntohl(tcpha->tha_seq); 4980 eager->tcp_irs = seg_seq; 4981 eager->tcp_rack = seg_seq; 4982 eager->tcp_rnxt = seg_seq + 1; 4983 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4984 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4985 eager->tcp_state = TCPS_SYN_RCVD; 4986 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4987 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4988 if (mp1 == NULL) { 4989 /* 4990 * Increment the ref count as we are going to 4991 * enqueueing an mp in squeue 4992 */ 4993 CONN_INC_REF(econnp); 4994 goto error; 4995 } 4996 4997 /* 4998 * We need to start the rto timer. In normal case, we start 4999 * the timer after sending the packet on the wire (or at 5000 * least believing that packet was sent by waiting for 5001 * conn_ip_output() to return). Since this is the first packet 5002 * being sent on the wire for the eager, our initial tcp_rto 5003 * is at least tcp_rexmit_interval_min which is a fairly 5004 * large value to allow the algorithm to adjust slowly to large 5005 * fluctuations of RTT during first few transmissions. 5006 * 5007 * Starting the timer first and then sending the packet in this 5008 * case shouldn't make much difference since tcp_rexmit_interval_min 5009 * is of the order of several 100ms and starting the timer 5010 * first and then sending the packet will result in difference 5011 * of few micro seconds. 5012 * 5013 * Without this optimization, we are forced to hold the fanout 5014 * lock across the ipcl_bind_insert() and sending the packet 5015 * so that we don't race against an incoming packet (maybe RST) 5016 * for this eager. 5017 * 5018 * It is necessary to acquire an extra reference on the eager 5019 * at this point and hold it until after tcp_send_data() to 5020 * ensure against an eager close race. 5021 */ 5022 5023 CONN_INC_REF(econnp); 5024 5025 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5026 5027 /* 5028 * Insert the eager in its own perimeter now. We are ready to deal 5029 * with any packets on eager. 5030 */ 5031 if (ipcl_conn_insert(econnp) != 0) 5032 goto error; 5033 5034 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 5035 freemsg(mp); 5036 /* 5037 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 5038 * only used by one thread at a time. 5039 */ 5040 if (econnp->conn_sqp == lconnp->conn_sqp) { 5041 (void) conn_ip_output(mp1, econnp->conn_ixa); 5042 CONN_DEC_REF(econnp); 5043 } else { 5044 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 5045 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 5046 } 5047 return; 5048 error: 5049 freemsg(mp1); 5050 eager->tcp_closemp_used = B_TRUE; 5051 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5052 mp1 = &eager->tcp_closemp; 5053 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5054 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5055 5056 /* 5057 * If a connection already exists, send the mp to that connections so 5058 * that it can be appropriately dealt with. 5059 */ 5060 ipst = tcps->tcps_netstack->netstack_ip; 5061 5062 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 5063 if (!IPCL_IS_CONNECTED(econnp)) { 5064 /* 5065 * Something bad happened. ipcl_conn_insert() 5066 * failed because a connection already existed 5067 * in connected hash but we can't find it 5068 * anymore (someone blew it away). Just 5069 * free this message and hopefully remote 5070 * will retransmit at which time the SYN can be 5071 * treated as a new connection or dealth with 5072 * a TH_RST if a connection already exists. 5073 */ 5074 CONN_DEC_REF(econnp); 5075 freemsg(mp); 5076 } else { 5077 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 5078 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5079 } 5080 } else { 5081 /* Nobody wants this packet */ 5082 freemsg(mp); 5083 } 5084 return; 5085 error3: 5086 CONN_DEC_REF(econnp); 5087 error2: 5088 freemsg(mp); 5089 if (tlc_set) 5090 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 5091 } 5092 5093 /* ARGSUSED2 */ 5094 void 5095 tcp_send_synack(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5096 { 5097 conn_t *econnp = (conn_t *)arg; 5098 tcp_t *tcp = econnp->conn_tcp; 5099 5100 /* Guard against a RST having blown it away while on the squeue */ 5101 if (tcp->tcp_state == TCPS_CLOSED) { 5102 freemsg(mp); 5103 return; 5104 } 5105 5106 (void) conn_ip_output(mp, econnp->conn_ixa); 5107 } 5108 5109 /* 5110 * In an ideal case of vertical partition in NUMA architecture, its 5111 * beneficial to have the listener and all the incoming connections 5112 * tied to the same squeue. The other constraint is that incoming 5113 * connections should be tied to the squeue attached to interrupted 5114 * CPU for obvious locality reason so this leaves the listener to 5115 * be tied to the same squeue. Our only problem is that when listener 5116 * is binding, the CPU that will get interrupted by the NIC whose 5117 * IP address the listener is binding to is not even known. So 5118 * the code below allows us to change that binding at the time the 5119 * CPU is interrupted by virtue of incoming connection's squeue. 5120 * 5121 * This is usefull only in case of a listener bound to a specific IP 5122 * address. For other kind of listeners, they get bound the 5123 * very first time and there is no attempt to rebind them. 5124 */ 5125 void 5126 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 5127 ip_recv_attr_t *ira) 5128 { 5129 conn_t *connp = (conn_t *)arg; 5130 squeue_t *sqp = (squeue_t *)arg2; 5131 squeue_t *new_sqp; 5132 uint32_t conn_flags; 5133 5134 /* 5135 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 5136 * or based on the ring (for packets from GLD). Otherwise it is 5137 * set based on lbolt i.e., a somewhat random number. 5138 */ 5139 ASSERT(ira->ira_sqp != NULL); 5140 new_sqp = ira->ira_sqp; 5141 5142 if (connp->conn_fanout == NULL) 5143 goto done; 5144 5145 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5146 mutex_enter(&connp->conn_fanout->connf_lock); 5147 mutex_enter(&connp->conn_lock); 5148 /* 5149 * No one from read or write side can access us now 5150 * except for already queued packets on this squeue. 5151 * But since we haven't changed the squeue yet, they 5152 * can't execute. If they are processed after we have 5153 * changed the squeue, they are sent back to the 5154 * correct squeue down below. 5155 * But a listner close can race with processing of 5156 * incoming SYN. If incoming SYN processing changes 5157 * the squeue then the listener close which is waiting 5158 * to enter the squeue would operate on the wrong 5159 * squeue. Hence we don't change the squeue here unless 5160 * the refcount is exactly the minimum refcount. The 5161 * minimum refcount of 4 is counted as - 1 each for 5162 * TCP and IP, 1 for being in the classifier hash, and 5163 * 1 for the mblk being processed. 5164 */ 5165 5166 if (connp->conn_ref != 4 || 5167 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5168 mutex_exit(&connp->conn_lock); 5169 mutex_exit(&connp->conn_fanout->connf_lock); 5170 goto done; 5171 } 5172 if (connp->conn_sqp != new_sqp) { 5173 while (connp->conn_sqp != new_sqp) 5174 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5175 /* No special MT issues for outbound ixa_sqp hint */ 5176 connp->conn_ixa->ixa_sqp = new_sqp; 5177 } 5178 5179 do { 5180 conn_flags = connp->conn_flags; 5181 conn_flags |= IPCL_FULLY_BOUND; 5182 (void) cas32(&connp->conn_flags, connp->conn_flags, 5183 conn_flags); 5184 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5185 5186 mutex_exit(&connp->conn_fanout->connf_lock); 5187 mutex_exit(&connp->conn_lock); 5188 5189 /* 5190 * Assume we have picked a good squeue for the listener. Make 5191 * subsequent SYNs not try to change the squeue. 5192 */ 5193 connp->conn_recv = tcp_input_listener; 5194 } 5195 5196 done: 5197 if (connp->conn_sqp != sqp) { 5198 CONN_INC_REF(connp); 5199 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5200 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5201 } else { 5202 tcp_input_listener(connp, mp, sqp, ira); 5203 } 5204 } 5205 5206 /* 5207 * Successful connect request processing begins when our client passes 5208 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 5209 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 5210 * 5211 * After various error checks are completed, tcp_tpi_connect() lays 5212 * the target address and port into the composite header template. 5213 * Then we ask IP for information, including a source address if we didn't 5214 * already have one. Finally we prepare to send the SYN packet, and then 5215 * send up the T_OK_ACK reply message. 5216 */ 5217 static void 5218 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5219 { 5220 sin_t *sin; 5221 struct T_conn_req *tcr; 5222 struct sockaddr *sa; 5223 socklen_t len; 5224 int error; 5225 cred_t *cr; 5226 pid_t cpid; 5227 conn_t *connp = tcp->tcp_connp; 5228 queue_t *q = connp->conn_wq; 5229 5230 /* 5231 * All Solaris components should pass a db_credp 5232 * for this TPI message, hence we ASSERT. 5233 * But in case there is some other M_PROTO that looks 5234 * like a TPI message sent by some other kernel 5235 * component, we check and return an error. 5236 */ 5237 cr = msg_getcred(mp, &cpid); 5238 ASSERT(cr != NULL); 5239 if (cr == NULL) { 5240 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5241 return; 5242 } 5243 5244 tcr = (struct T_conn_req *)mp->b_rptr; 5245 5246 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5247 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5248 tcp_err_ack(tcp, mp, TPROTO, 0); 5249 return; 5250 } 5251 5252 /* 5253 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5254 * will always have that to send up. Otherwise, we need to do 5255 * special handling in case the allocation fails at that time. 5256 * If the end point is TPI, the tcp_t can be reused and the 5257 * tcp_ordrel_mp may be allocated already. 5258 */ 5259 if (tcp->tcp_ordrel_mp == NULL) { 5260 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5261 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5262 return; 5263 } 5264 } 5265 5266 /* 5267 * Determine packet type based on type of address passed in 5268 * the request should contain an IPv4 or IPv6 address. 5269 * Make sure that address family matches the type of 5270 * family of the address passed down. 5271 */ 5272 switch (tcr->DEST_length) { 5273 default: 5274 tcp_err_ack(tcp, mp, TBADADDR, 0); 5275 return; 5276 5277 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5278 /* 5279 * XXX: The check for valid DEST_length was not there 5280 * in earlier releases and some buggy 5281 * TLI apps (e.g Sybase) got away with not feeding 5282 * in sin_zero part of address. 5283 * We allow that bug to keep those buggy apps humming. 5284 * Test suites require the check on DEST_length. 5285 * We construct a new mblk with valid DEST_length 5286 * free the original so the rest of the code does 5287 * not have to keep track of this special shorter 5288 * length address case. 5289 */ 5290 mblk_t *nmp; 5291 struct T_conn_req *ntcr; 5292 sin_t *nsin; 5293 5294 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5295 tcr->OPT_length, BPRI_HI); 5296 if (nmp == NULL) { 5297 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5298 return; 5299 } 5300 ntcr = (struct T_conn_req *)nmp->b_rptr; 5301 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5302 ntcr->PRIM_type = T_CONN_REQ; 5303 ntcr->DEST_length = sizeof (sin_t); 5304 ntcr->DEST_offset = sizeof (struct T_conn_req); 5305 5306 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5307 *nsin = sin_null; 5308 /* Get pointer to shorter address to copy from original mp */ 5309 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5310 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5311 if (sin == NULL || !OK_32PTR((char *)sin)) { 5312 freemsg(nmp); 5313 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5314 return; 5315 } 5316 nsin->sin_family = sin->sin_family; 5317 nsin->sin_port = sin->sin_port; 5318 nsin->sin_addr = sin->sin_addr; 5319 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5320 nmp->b_wptr = (uchar_t *)&nsin[1]; 5321 if (tcr->OPT_length != 0) { 5322 ntcr->OPT_length = tcr->OPT_length; 5323 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5324 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5325 (uchar_t *)ntcr + ntcr->OPT_offset, 5326 tcr->OPT_length); 5327 nmp->b_wptr += tcr->OPT_length; 5328 } 5329 freemsg(mp); /* original mp freed */ 5330 mp = nmp; /* re-initialize original variables */ 5331 tcr = ntcr; 5332 } 5333 /* FALLTHRU */ 5334 5335 case sizeof (sin_t): 5336 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5337 sizeof (sin_t)); 5338 len = sizeof (sin_t); 5339 break; 5340 5341 case sizeof (sin6_t): 5342 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5343 sizeof (sin6_t)); 5344 len = sizeof (sin6_t); 5345 break; 5346 } 5347 5348 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5349 if (error != 0) { 5350 tcp_err_ack(tcp, mp, TSYSERR, error); 5351 return; 5352 } 5353 5354 /* 5355 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5356 * should key on their sequence number and cut them loose. 5357 */ 5358 5359 /* 5360 * If options passed in, feed it for verification and handling 5361 */ 5362 if (tcr->OPT_length != 0) { 5363 mblk_t *ok_mp; 5364 mblk_t *discon_mp; 5365 mblk_t *conn_opts_mp; 5366 int t_error, sys_error, do_disconnect; 5367 5368 conn_opts_mp = NULL; 5369 5370 if (tcp_conprim_opt_process(tcp, mp, 5371 &do_disconnect, &t_error, &sys_error) < 0) { 5372 if (do_disconnect) { 5373 ASSERT(t_error == 0 && sys_error == 0); 5374 discon_mp = mi_tpi_discon_ind(NULL, 5375 ECONNREFUSED, 0); 5376 if (!discon_mp) { 5377 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5378 TSYSERR, ENOMEM); 5379 return; 5380 } 5381 ok_mp = mi_tpi_ok_ack_alloc(mp); 5382 if (!ok_mp) { 5383 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5384 TSYSERR, ENOMEM); 5385 return; 5386 } 5387 qreply(q, ok_mp); 5388 qreply(q, discon_mp); /* no flush! */ 5389 } else { 5390 ASSERT(t_error != 0); 5391 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5392 sys_error); 5393 } 5394 return; 5395 } 5396 /* 5397 * Success in setting options, the mp option buffer represented 5398 * by OPT_length/offset has been potentially modified and 5399 * contains results of option processing. We copy it in 5400 * another mp to save it for potentially influencing returning 5401 * it in T_CONN_CONN. 5402 */ 5403 if (tcr->OPT_length != 0) { /* there are resulting options */ 5404 conn_opts_mp = copyb(mp); 5405 if (!conn_opts_mp) { 5406 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5407 TSYSERR, ENOMEM); 5408 return; 5409 } 5410 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5411 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5412 /* 5413 * Note: 5414 * These resulting option negotiation can include any 5415 * end-to-end negotiation options but there no such 5416 * thing (yet?) in our TCP/IP. 5417 */ 5418 } 5419 } 5420 5421 /* call the non-TPI version */ 5422 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5423 if (error < 0) { 5424 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5425 } else if (error > 0) { 5426 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5427 } else { 5428 mp = mi_tpi_ok_ack_alloc(mp); 5429 } 5430 5431 /* 5432 * Note: Code below is the "failure" case 5433 */ 5434 /* return error ack and blow away saved option results if any */ 5435 connect_failed: 5436 if (mp != NULL) 5437 putnext(connp->conn_rq, mp); 5438 else { 5439 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5440 TSYSERR, ENOMEM); 5441 } 5442 } 5443 5444 /* 5445 * Handle connect to IPv4 destinations, including connections for AF_INET6 5446 * sockets connecting to IPv4 mapped IPv6 destinations. 5447 * Returns zero if OK, a positive errno, or a negative TLI error. 5448 */ 5449 static int 5450 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5451 uint_t srcid) 5452 { 5453 ipaddr_t dstaddr = *dstaddrp; 5454 uint16_t lport; 5455 conn_t *connp = tcp->tcp_connp; 5456 tcp_stack_t *tcps = tcp->tcp_tcps; 5457 int error; 5458 5459 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5460 5461 /* Check for attempt to connect to INADDR_ANY */ 5462 if (dstaddr == INADDR_ANY) { 5463 /* 5464 * SunOS 4.x and 4.3 BSD allow an application 5465 * to connect a TCP socket to INADDR_ANY. 5466 * When they do this, the kernel picks the 5467 * address of one interface and uses it 5468 * instead. The kernel usually ends up 5469 * picking the address of the loopback 5470 * interface. This is an undocumented feature. 5471 * However, we provide the same thing here 5472 * in order to have source and binary 5473 * compatibility with SunOS 4.x. 5474 * Update the T_CONN_REQ (sin/sin6) since it is used to 5475 * generate the T_CONN_CON. 5476 */ 5477 dstaddr = htonl(INADDR_LOOPBACK); 5478 *dstaddrp = dstaddr; 5479 } 5480 5481 /* Handle __sin6_src_id if socket not bound to an IP address */ 5482 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5483 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5484 IPCL_ZONEID(connp), tcps->tcps_netstack); 5485 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5486 } 5487 5488 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5489 connp->conn_fport = dstport; 5490 5491 /* 5492 * At this point the remote destination address and remote port fields 5493 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5494 * have to see which state tcp was in so we can take appropriate action. 5495 */ 5496 if (tcp->tcp_state == TCPS_IDLE) { 5497 /* 5498 * We support a quick connect capability here, allowing 5499 * clients to transition directly from IDLE to SYN_SENT 5500 * tcp_bindi will pick an unused port, insert the connection 5501 * in the bind hash and transition to BOUND state. 5502 */ 5503 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5504 tcp, B_TRUE); 5505 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5506 B_FALSE, B_FALSE); 5507 if (lport == 0) 5508 return (-TNOADDR); 5509 } 5510 5511 /* 5512 * Lookup the route to determine a source address and the uinfo. 5513 * Setup TCP parameters based on the metrics/DCE. 5514 */ 5515 error = tcp_set_destination(tcp); 5516 if (error != 0) 5517 return (error); 5518 5519 /* 5520 * Don't let an endpoint connect to itself. 5521 */ 5522 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5523 connp->conn_fport == connp->conn_lport) 5524 return (-TBADADDR); 5525 5526 tcp->tcp_state = TCPS_SYN_SENT; 5527 5528 return (ipcl_conn_insert_v4(connp)); 5529 } 5530 5531 /* 5532 * Handle connect to IPv6 destinations. 5533 * Returns zero if OK, a positive errno, or a negative TLI error. 5534 */ 5535 static int 5536 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5537 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5538 { 5539 uint16_t lport; 5540 conn_t *connp = tcp->tcp_connp; 5541 tcp_stack_t *tcps = tcp->tcp_tcps; 5542 int error; 5543 5544 ASSERT(connp->conn_family == AF_INET6); 5545 5546 /* 5547 * If we're here, it means that the destination address is a native 5548 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5549 * reason why it might not be IPv6 is if the socket was bound to an 5550 * IPv4-mapped IPv6 address. 5551 */ 5552 if (connp->conn_ipversion != IPV6_VERSION) 5553 return (-TBADADDR); 5554 5555 /* 5556 * Interpret a zero destination to mean loopback. 5557 * Update the T_CONN_REQ (sin/sin6) since it is used to 5558 * generate the T_CONN_CON. 5559 */ 5560 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5561 *dstaddrp = ipv6_loopback; 5562 5563 /* Handle __sin6_src_id if socket not bound to an IP address */ 5564 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5565 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5566 IPCL_ZONEID(connp), tcps->tcps_netstack); 5567 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5568 } 5569 5570 /* 5571 * Take care of the scope_id now. 5572 */ 5573 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5574 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5575 connp->conn_ixa->ixa_scopeid = scope_id; 5576 } else { 5577 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5578 } 5579 5580 connp->conn_flowinfo = flowinfo; 5581 connp->conn_faddr_v6 = *dstaddrp; 5582 connp->conn_fport = dstport; 5583 5584 /* 5585 * At this point the remote destination address and remote port fields 5586 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5587 * have to see which state tcp was in so we can take appropriate action. 5588 */ 5589 if (tcp->tcp_state == TCPS_IDLE) { 5590 /* 5591 * We support a quick connect capability here, allowing 5592 * clients to transition directly from IDLE to SYN_SENT 5593 * tcp_bindi will pick an unused port, insert the connection 5594 * in the bind hash and transition to BOUND state. 5595 */ 5596 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5597 tcp, B_TRUE); 5598 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5599 B_FALSE, B_FALSE); 5600 if (lport == 0) 5601 return (-TNOADDR); 5602 } 5603 5604 /* 5605 * Lookup the route to determine a source address and the uinfo. 5606 * Setup TCP parameters based on the metrics/DCE. 5607 */ 5608 error = tcp_set_destination(tcp); 5609 if (error != 0) 5610 return (error); 5611 5612 /* 5613 * Don't let an endpoint connect to itself. 5614 */ 5615 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5616 connp->conn_fport == connp->conn_lport) 5617 return (-TBADADDR); 5618 5619 tcp->tcp_state = TCPS_SYN_SENT; 5620 5621 return (ipcl_conn_insert_v6(connp)); 5622 } 5623 5624 /* 5625 * Disconnect 5626 * Note that unlike other functions this returns a positive tli error 5627 * when it fails; it never returns an errno. 5628 */ 5629 static int 5630 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5631 { 5632 conn_t *lconnp; 5633 tcp_stack_t *tcps = tcp->tcp_tcps; 5634 conn_t *connp = tcp->tcp_connp; 5635 5636 /* 5637 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5638 * when the stream is in BOUND state. Do not send a reset, 5639 * since the destination IP address is not valid, and it can 5640 * be the initialized value of all zeros (broadcast address). 5641 */ 5642 if (tcp->tcp_state <= TCPS_BOUND) { 5643 if (connp->conn_debug) { 5644 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5645 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5646 } 5647 return (TOUTSTATE); 5648 } 5649 5650 5651 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5652 5653 /* 5654 * According to TPI, for non-listeners, ignore seqnum 5655 * and disconnect. 5656 * Following interpretation of -1 seqnum is historical 5657 * and implied TPI ? (TPI only states that for T_CONN_IND, 5658 * a valid seqnum should not be -1). 5659 * 5660 * -1 means disconnect everything 5661 * regardless even on a listener. 5662 */ 5663 5664 int old_state = tcp->tcp_state; 5665 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5666 5667 /* 5668 * The connection can't be on the tcp_time_wait_head list 5669 * since it is not detached. 5670 */ 5671 ASSERT(tcp->tcp_time_wait_next == NULL); 5672 ASSERT(tcp->tcp_time_wait_prev == NULL); 5673 ASSERT(tcp->tcp_time_wait_expire == 0); 5674 /* 5675 * If it used to be a listener, check to make sure no one else 5676 * has taken the port before switching back to LISTEN state. 5677 */ 5678 if (connp->conn_ipversion == IPV4_VERSION) { 5679 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5680 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5681 } else { 5682 uint_t ifindex = 0; 5683 5684 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5685 ifindex = connp->conn_ixa->ixa_scopeid; 5686 5687 /* Allow conn_bound_if listeners? */ 5688 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5689 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5690 ipst); 5691 } 5692 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5693 tcp->tcp_state = TCPS_LISTEN; 5694 } else if (old_state > TCPS_BOUND) { 5695 tcp->tcp_conn_req_max = 0; 5696 tcp->tcp_state = TCPS_BOUND; 5697 5698 /* 5699 * If this end point is not going to become a listener, 5700 * decrement the listener connection count if 5701 * necessary. Note that we do not do this if it is 5702 * going to be a listner (the above if case) since 5703 * then it may remove the counter struct. 5704 */ 5705 if (tcp->tcp_listen_cnt != NULL) 5706 TCP_DECR_LISTEN_CNT(tcp); 5707 } 5708 if (lconnp != NULL) 5709 CONN_DEC_REF(lconnp); 5710 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5711 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5712 } else if (old_state == TCPS_ESTABLISHED || 5713 old_state == TCPS_CLOSE_WAIT) { 5714 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5715 } 5716 5717 if (tcp->tcp_fused) 5718 tcp_unfuse(tcp); 5719 5720 mutex_enter(&tcp->tcp_eager_lock); 5721 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5722 (tcp->tcp_conn_req_cnt_q != 0)) { 5723 tcp_eager_cleanup(tcp, 0); 5724 } 5725 mutex_exit(&tcp->tcp_eager_lock); 5726 5727 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5728 tcp->tcp_rnxt, TH_RST | TH_ACK); 5729 5730 tcp_reinit(tcp); 5731 5732 return (0); 5733 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5734 return (TBADSEQ); 5735 } 5736 return (0); 5737 } 5738 5739 /* 5740 * Our client hereby directs us to reject the connection request 5741 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5742 * of sending the appropriate RST, not an ICMP error. 5743 */ 5744 static void 5745 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5746 { 5747 t_scalar_t seqnum; 5748 int error; 5749 conn_t *connp = tcp->tcp_connp; 5750 5751 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5752 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5753 tcp_err_ack(tcp, mp, TPROTO, 0); 5754 return; 5755 } 5756 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5757 error = tcp_disconnect_common(tcp, seqnum); 5758 if (error != 0) 5759 tcp_err_ack(tcp, mp, error, 0); 5760 else { 5761 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5762 /* Send M_FLUSH according to TPI */ 5763 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5764 } 5765 mp = mi_tpi_ok_ack_alloc(mp); 5766 if (mp != NULL) 5767 putnext(connp->conn_rq, mp); 5768 } 5769 } 5770 5771 /* 5772 * Diagnostic routine used to return a string associated with the tcp state. 5773 * Note that if the caller does not supply a buffer, it will use an internal 5774 * static string. This means that if multiple threads call this function at 5775 * the same time, output can be corrupted... Note also that this function 5776 * does not check the size of the supplied buffer. The caller has to make 5777 * sure that it is big enough. 5778 */ 5779 static char * 5780 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5781 { 5782 char buf1[30]; 5783 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5784 char *buf; 5785 char *cp; 5786 in6_addr_t local, remote; 5787 char local_addrbuf[INET6_ADDRSTRLEN]; 5788 char remote_addrbuf[INET6_ADDRSTRLEN]; 5789 conn_t *connp; 5790 5791 if (sup_buf != NULL) 5792 buf = sup_buf; 5793 else 5794 buf = priv_buf; 5795 5796 if (tcp == NULL) 5797 return ("NULL_TCP"); 5798 5799 connp = tcp->tcp_connp; 5800 switch (tcp->tcp_state) { 5801 case TCPS_CLOSED: 5802 cp = "TCP_CLOSED"; 5803 break; 5804 case TCPS_IDLE: 5805 cp = "TCP_IDLE"; 5806 break; 5807 case TCPS_BOUND: 5808 cp = "TCP_BOUND"; 5809 break; 5810 case TCPS_LISTEN: 5811 cp = "TCP_LISTEN"; 5812 break; 5813 case TCPS_SYN_SENT: 5814 cp = "TCP_SYN_SENT"; 5815 break; 5816 case TCPS_SYN_RCVD: 5817 cp = "TCP_SYN_RCVD"; 5818 break; 5819 case TCPS_ESTABLISHED: 5820 cp = "TCP_ESTABLISHED"; 5821 break; 5822 case TCPS_CLOSE_WAIT: 5823 cp = "TCP_CLOSE_WAIT"; 5824 break; 5825 case TCPS_FIN_WAIT_1: 5826 cp = "TCP_FIN_WAIT_1"; 5827 break; 5828 case TCPS_CLOSING: 5829 cp = "TCP_CLOSING"; 5830 break; 5831 case TCPS_LAST_ACK: 5832 cp = "TCP_LAST_ACK"; 5833 break; 5834 case TCPS_FIN_WAIT_2: 5835 cp = "TCP_FIN_WAIT_2"; 5836 break; 5837 case TCPS_TIME_WAIT: 5838 cp = "TCP_TIME_WAIT"; 5839 break; 5840 default: 5841 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5842 cp = buf1; 5843 break; 5844 } 5845 switch (format) { 5846 case DISP_ADDR_AND_PORT: 5847 if (connp->conn_ipversion == IPV4_VERSION) { 5848 /* 5849 * Note that we use the remote address in the tcp_b 5850 * structure. This means that it will print out 5851 * the real destination address, not the next hop's 5852 * address if source routing is used. 5853 */ 5854 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5855 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5856 5857 } else { 5858 local = connp->conn_laddr_v6; 5859 remote = connp->conn_faddr_v6; 5860 } 5861 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5862 sizeof (local_addrbuf)); 5863 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5864 sizeof (remote_addrbuf)); 5865 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5866 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5867 ntohs(connp->conn_fport), cp); 5868 break; 5869 case DISP_PORT_ONLY: 5870 default: 5871 (void) mi_sprintf(buf, "[%u, %u] %s", 5872 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5873 break; 5874 } 5875 5876 return (buf); 5877 } 5878 5879 /* 5880 * Called via squeue to get on to eager's perimeter. It sends a 5881 * TH_RST if eager is in the fanout table. The listener wants the 5882 * eager to disappear either by means of tcp_eager_blowoff() or 5883 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5884 * called (via squeue) if the eager cannot be inserted in the 5885 * fanout table in tcp_input_listener(). 5886 */ 5887 /* ARGSUSED */ 5888 void 5889 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5890 { 5891 conn_t *econnp = (conn_t *)arg; 5892 tcp_t *eager = econnp->conn_tcp; 5893 tcp_t *listener = eager->tcp_listener; 5894 5895 /* 5896 * We could be called because listener is closing. Since 5897 * the eager was using listener's queue's, we avoid 5898 * using the listeners queues from now on. 5899 */ 5900 ASSERT(eager->tcp_detached); 5901 econnp->conn_rq = NULL; 5902 econnp->conn_wq = NULL; 5903 5904 /* 5905 * An eager's conn_fanout will be NULL if it's a duplicate 5906 * for an existing 4-tuples in the conn fanout table. 5907 * We don't want to send an RST out in such case. 5908 */ 5909 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5910 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5911 eager, eager->tcp_snxt, 0, TH_RST); 5912 } 5913 5914 /* We are here because listener wants this eager gone */ 5915 if (listener != NULL) { 5916 mutex_enter(&listener->tcp_eager_lock); 5917 tcp_eager_unlink(eager); 5918 if (eager->tcp_tconnind_started) { 5919 /* 5920 * The eager has sent a conn_ind up to the 5921 * listener but listener decides to close 5922 * instead. We need to drop the extra ref 5923 * placed on eager in tcp_input_data() before 5924 * sending the conn_ind to listener. 5925 */ 5926 CONN_DEC_REF(econnp); 5927 } 5928 mutex_exit(&listener->tcp_eager_lock); 5929 CONN_DEC_REF(listener->tcp_connp); 5930 } 5931 5932 if (eager->tcp_state != TCPS_CLOSED) 5933 tcp_close_detached(eager); 5934 } 5935 5936 /* 5937 * Reset any eager connection hanging off this listener marked 5938 * with 'seqnum' and then reclaim it's resources. 5939 */ 5940 static boolean_t 5941 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5942 { 5943 tcp_t *eager; 5944 mblk_t *mp; 5945 tcp_stack_t *tcps = listener->tcp_tcps; 5946 5947 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5948 eager = listener; 5949 mutex_enter(&listener->tcp_eager_lock); 5950 do { 5951 eager = eager->tcp_eager_next_q; 5952 if (eager == NULL) { 5953 mutex_exit(&listener->tcp_eager_lock); 5954 return (B_FALSE); 5955 } 5956 } while (eager->tcp_conn_req_seqnum != seqnum); 5957 5958 if (eager->tcp_closemp_used) { 5959 mutex_exit(&listener->tcp_eager_lock); 5960 return (B_TRUE); 5961 } 5962 eager->tcp_closemp_used = B_TRUE; 5963 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5964 CONN_INC_REF(eager->tcp_connp); 5965 mutex_exit(&listener->tcp_eager_lock); 5966 mp = &eager->tcp_closemp; 5967 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5968 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5969 return (B_TRUE); 5970 } 5971 5972 /* 5973 * Reset any eager connection hanging off this listener 5974 * and then reclaim it's resources. 5975 */ 5976 static void 5977 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5978 { 5979 tcp_t *eager; 5980 mblk_t *mp; 5981 tcp_stack_t *tcps = listener->tcp_tcps; 5982 5983 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5984 5985 if (!q0_only) { 5986 /* First cleanup q */ 5987 TCP_STAT(tcps, tcp_eager_blowoff_q); 5988 eager = listener->tcp_eager_next_q; 5989 while (eager != NULL) { 5990 if (!eager->tcp_closemp_used) { 5991 eager->tcp_closemp_used = B_TRUE; 5992 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5993 CONN_INC_REF(eager->tcp_connp); 5994 mp = &eager->tcp_closemp; 5995 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5996 tcp_eager_kill, eager->tcp_connp, NULL, 5997 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5998 } 5999 eager = eager->tcp_eager_next_q; 6000 } 6001 } 6002 /* Then cleanup q0 */ 6003 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6004 eager = listener->tcp_eager_next_q0; 6005 while (eager != listener) { 6006 if (!eager->tcp_closemp_used) { 6007 eager->tcp_closemp_used = B_TRUE; 6008 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6009 CONN_INC_REF(eager->tcp_connp); 6010 mp = &eager->tcp_closemp; 6011 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6012 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 6013 SQTAG_TCP_EAGER_CLEANUP_Q0); 6014 } 6015 eager = eager->tcp_eager_next_q0; 6016 } 6017 } 6018 6019 /* 6020 * If we are an eager connection hanging off a listener that hasn't 6021 * formally accepted the connection yet, get off his list and blow off 6022 * any data that we have accumulated. 6023 */ 6024 static void 6025 tcp_eager_unlink(tcp_t *tcp) 6026 { 6027 tcp_t *listener = tcp->tcp_listener; 6028 6029 ASSERT(listener != NULL); 6030 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6031 if (tcp->tcp_eager_next_q0 != NULL) { 6032 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6033 6034 /* Remove the eager tcp from q0 */ 6035 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6036 tcp->tcp_eager_prev_q0; 6037 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6038 tcp->tcp_eager_next_q0; 6039 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6040 listener->tcp_conn_req_cnt_q0--; 6041 6042 tcp->tcp_eager_next_q0 = NULL; 6043 tcp->tcp_eager_prev_q0 = NULL; 6044 6045 /* 6046 * Take the eager out, if it is in the list of droppable 6047 * eagers. 6048 */ 6049 MAKE_UNDROPPABLE(tcp); 6050 6051 if (tcp->tcp_syn_rcvd_timeout != 0) { 6052 /* we have timed out before */ 6053 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6054 listener->tcp_syn_rcvd_timeout--; 6055 } 6056 } else { 6057 tcp_t **tcpp = &listener->tcp_eager_next_q; 6058 tcp_t *prev = NULL; 6059 6060 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6061 if (tcpp[0] == tcp) { 6062 if (listener->tcp_eager_last_q == tcp) { 6063 /* 6064 * If we are unlinking the last 6065 * element on the list, adjust 6066 * tail pointer. Set tail pointer 6067 * to nil when list is empty. 6068 */ 6069 ASSERT(tcp->tcp_eager_next_q == NULL); 6070 if (listener->tcp_eager_last_q == 6071 listener->tcp_eager_next_q) { 6072 listener->tcp_eager_last_q = 6073 NULL; 6074 } else { 6075 /* 6076 * We won't get here if there 6077 * is only one eager in the 6078 * list. 6079 */ 6080 ASSERT(prev != NULL); 6081 listener->tcp_eager_last_q = 6082 prev; 6083 } 6084 } 6085 tcpp[0] = tcp->tcp_eager_next_q; 6086 tcp->tcp_eager_next_q = NULL; 6087 tcp->tcp_eager_last_q = NULL; 6088 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6089 listener->tcp_conn_req_cnt_q--; 6090 break; 6091 } 6092 prev = tcpp[0]; 6093 } 6094 } 6095 tcp->tcp_listener = NULL; 6096 } 6097 6098 /* Shorthand to generate and send TPI error acks to our client */ 6099 static void 6100 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6101 { 6102 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6103 putnext(tcp->tcp_connp->conn_rq, mp); 6104 } 6105 6106 /* Shorthand to generate and send TPI error acks to our client */ 6107 static void 6108 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6109 int t_error, int sys_error) 6110 { 6111 struct T_error_ack *teackp; 6112 6113 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6114 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6115 teackp = (struct T_error_ack *)mp->b_rptr; 6116 teackp->ERROR_prim = primitive; 6117 teackp->TLI_error = t_error; 6118 teackp->UNIX_error = sys_error; 6119 putnext(tcp->tcp_connp->conn_rq, mp); 6120 } 6121 } 6122 6123 /* 6124 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6125 * but instead the code relies on: 6126 * - the fact that the address of the array and its size never changes 6127 * - the atomic assignment of the elements of the array 6128 */ 6129 /* ARGSUSED */ 6130 static int 6131 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6132 { 6133 int i; 6134 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6135 6136 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6137 if (tcps->tcps_g_epriv_ports[i] != 0) 6138 (void) mi_mpprintf(mp, "%d ", 6139 tcps->tcps_g_epriv_ports[i]); 6140 } 6141 return (0); 6142 } 6143 6144 /* 6145 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6146 * threads from changing it at the same time. 6147 */ 6148 /* ARGSUSED */ 6149 static int 6150 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6151 cred_t *cr) 6152 { 6153 long new_value; 6154 int i; 6155 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6156 6157 /* 6158 * Fail the request if the new value does not lie within the 6159 * port number limits. 6160 */ 6161 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6162 new_value <= 0 || new_value >= 65536) { 6163 return (EINVAL); 6164 } 6165 6166 mutex_enter(&tcps->tcps_epriv_port_lock); 6167 /* Check if the value is already in the list */ 6168 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6169 if (new_value == tcps->tcps_g_epriv_ports[i]) { 6170 mutex_exit(&tcps->tcps_epriv_port_lock); 6171 return (EEXIST); 6172 } 6173 } 6174 /* Find an empty slot */ 6175 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6176 if (tcps->tcps_g_epriv_ports[i] == 0) 6177 break; 6178 } 6179 if (i == tcps->tcps_g_num_epriv_ports) { 6180 mutex_exit(&tcps->tcps_epriv_port_lock); 6181 return (EOVERFLOW); 6182 } 6183 /* Set the new value */ 6184 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 6185 mutex_exit(&tcps->tcps_epriv_port_lock); 6186 return (0); 6187 } 6188 6189 /* 6190 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6191 * threads from changing it at the same time. 6192 */ 6193 /* ARGSUSED */ 6194 static int 6195 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6196 cred_t *cr) 6197 { 6198 long new_value; 6199 int i; 6200 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 6201 6202 /* 6203 * Fail the request if the new value does not lie within the 6204 * port number limits. 6205 */ 6206 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6207 new_value >= 65536) { 6208 return (EINVAL); 6209 } 6210 6211 mutex_enter(&tcps->tcps_epriv_port_lock); 6212 /* Check that the value is already in the list */ 6213 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 6214 if (tcps->tcps_g_epriv_ports[i] == new_value) 6215 break; 6216 } 6217 if (i == tcps->tcps_g_num_epriv_ports) { 6218 mutex_exit(&tcps->tcps_epriv_port_lock); 6219 return (ESRCH); 6220 } 6221 /* Clear the value */ 6222 tcps->tcps_g_epriv_ports[i] = 0; 6223 mutex_exit(&tcps->tcps_epriv_port_lock); 6224 return (0); 6225 } 6226 6227 /* Return the TPI/TLI equivalent of our current tcp_state */ 6228 static int 6229 tcp_tpistate(tcp_t *tcp) 6230 { 6231 switch (tcp->tcp_state) { 6232 case TCPS_IDLE: 6233 return (TS_UNBND); 6234 case TCPS_LISTEN: 6235 /* 6236 * Return whether there are outstanding T_CONN_IND waiting 6237 * for the matching T_CONN_RES. Therefore don't count q0. 6238 */ 6239 if (tcp->tcp_conn_req_cnt_q > 0) 6240 return (TS_WRES_CIND); 6241 else 6242 return (TS_IDLE); 6243 case TCPS_BOUND: 6244 return (TS_IDLE); 6245 case TCPS_SYN_SENT: 6246 return (TS_WCON_CREQ); 6247 case TCPS_SYN_RCVD: 6248 /* 6249 * Note: assumption: this has to the active open SYN_RCVD. 6250 * The passive instance is detached in SYN_RCVD stage of 6251 * incoming connection processing so we cannot get request 6252 * for T_info_ack on it. 6253 */ 6254 return (TS_WACK_CRES); 6255 case TCPS_ESTABLISHED: 6256 return (TS_DATA_XFER); 6257 case TCPS_CLOSE_WAIT: 6258 return (TS_WREQ_ORDREL); 6259 case TCPS_FIN_WAIT_1: 6260 return (TS_WIND_ORDREL); 6261 case TCPS_FIN_WAIT_2: 6262 return (TS_WIND_ORDREL); 6263 6264 case TCPS_CLOSING: 6265 case TCPS_LAST_ACK: 6266 case TCPS_TIME_WAIT: 6267 case TCPS_CLOSED: 6268 /* 6269 * Following TS_WACK_DREQ7 is a rendition of "not 6270 * yet TS_IDLE" TPI state. There is no best match to any 6271 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6272 * choose a value chosen that will map to TLI/XTI level 6273 * state of TSTATECHNG (state is process of changing) which 6274 * captures what this dummy state represents. 6275 */ 6276 return (TS_WACK_DREQ7); 6277 default: 6278 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6279 tcp->tcp_state, tcp_display(tcp, NULL, 6280 DISP_PORT_ONLY)); 6281 return (TS_UNBND); 6282 } 6283 } 6284 6285 static void 6286 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6287 { 6288 tcp_stack_t *tcps = tcp->tcp_tcps; 6289 conn_t *connp = tcp->tcp_connp; 6290 6291 if (connp->conn_family == AF_INET6) 6292 *tia = tcp_g_t_info_ack_v6; 6293 else 6294 *tia = tcp_g_t_info_ack; 6295 tia->CURRENT_state = tcp_tpistate(tcp); 6296 tia->OPT_size = tcp_max_optsize; 6297 if (tcp->tcp_mss == 0) { 6298 /* Not yet set - tcp_open does not set mss */ 6299 if (connp->conn_ipversion == IPV4_VERSION) 6300 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6301 else 6302 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6303 } else { 6304 tia->TIDU_size = tcp->tcp_mss; 6305 } 6306 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6307 } 6308 6309 static void 6310 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6311 t_uscalar_t cap_bits1) 6312 { 6313 tcap->CAP_bits1 = 0; 6314 6315 if (cap_bits1 & TC1_INFO) { 6316 tcp_copy_info(&tcap->INFO_ack, tcp); 6317 tcap->CAP_bits1 |= TC1_INFO; 6318 } 6319 6320 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6321 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6322 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6323 } 6324 6325 } 6326 6327 /* 6328 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6329 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6330 * tcp_g_t_info_ack. The current state of the stream is copied from 6331 * tcp_state. 6332 */ 6333 static void 6334 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6335 { 6336 t_uscalar_t cap_bits1; 6337 struct T_capability_ack *tcap; 6338 6339 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6340 freemsg(mp); 6341 return; 6342 } 6343 6344 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6345 6346 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6347 mp->b_datap->db_type, T_CAPABILITY_ACK); 6348 if (mp == NULL) 6349 return; 6350 6351 tcap = (struct T_capability_ack *)mp->b_rptr; 6352 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6353 6354 putnext(tcp->tcp_connp->conn_rq, mp); 6355 } 6356 6357 /* 6358 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6359 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6360 * The current state of the stream is copied from tcp_state. 6361 */ 6362 static void 6363 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6364 { 6365 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6366 T_INFO_ACK); 6367 if (!mp) { 6368 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6369 return; 6370 } 6371 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6372 putnext(tcp->tcp_connp->conn_rq, mp); 6373 } 6374 6375 /* Respond to the TPI addr request */ 6376 static void 6377 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6378 { 6379 struct sockaddr *sa; 6380 mblk_t *ackmp; 6381 struct T_addr_ack *taa; 6382 conn_t *connp = tcp->tcp_connp; 6383 uint_t addrlen; 6384 6385 /* Make it large enough for worst case */ 6386 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6387 2 * sizeof (sin6_t), 1); 6388 if (ackmp == NULL) { 6389 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6390 return; 6391 } 6392 6393 taa = (struct T_addr_ack *)ackmp->b_rptr; 6394 6395 bzero(taa, sizeof (struct T_addr_ack)); 6396 ackmp->b_wptr = (uchar_t *)&taa[1]; 6397 6398 taa->PRIM_type = T_ADDR_ACK; 6399 ackmp->b_datap->db_type = M_PCPROTO; 6400 6401 if (connp->conn_family == AF_INET) 6402 addrlen = sizeof (sin_t); 6403 else 6404 addrlen = sizeof (sin6_t); 6405 6406 /* 6407 * Note: Following code assumes 32 bit alignment of basic 6408 * data structures like sin_t and struct T_addr_ack. 6409 */ 6410 if (tcp->tcp_state >= TCPS_BOUND) { 6411 /* 6412 * Fill in local address first 6413 */ 6414 taa->LOCADDR_offset = sizeof (*taa); 6415 taa->LOCADDR_length = addrlen; 6416 sa = (struct sockaddr *)&taa[1]; 6417 (void) conn_getsockname(connp, sa, &addrlen); 6418 ackmp->b_wptr += addrlen; 6419 } 6420 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6421 /* 6422 * Fill in Remote address 6423 */ 6424 taa->REMADDR_length = addrlen; 6425 /* assumed 32-bit alignment */ 6426 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6427 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6428 (void) conn_getpeername(connp, sa, &addrlen); 6429 ackmp->b_wptr += addrlen; 6430 } 6431 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6432 putnext(tcp->tcp_connp->conn_rq, ackmp); 6433 } 6434 6435 /* 6436 * Handle reinitialization of a tcp structure. 6437 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6438 */ 6439 static void 6440 tcp_reinit(tcp_t *tcp) 6441 { 6442 mblk_t *mp; 6443 tcp_stack_t *tcps = tcp->tcp_tcps; 6444 conn_t *connp = tcp->tcp_connp; 6445 6446 TCP_STAT(tcps, tcp_reinit_calls); 6447 6448 /* tcp_reinit should never be called for detached tcp_t's */ 6449 ASSERT(tcp->tcp_listener == NULL); 6450 ASSERT((connp->conn_family == AF_INET && 6451 connp->conn_ipversion == IPV4_VERSION) || 6452 (connp->conn_family == AF_INET6 && 6453 (connp->conn_ipversion == IPV4_VERSION || 6454 connp->conn_ipversion == IPV6_VERSION))); 6455 6456 /* Cancel outstanding timers */ 6457 tcp_timers_stop(tcp); 6458 6459 /* 6460 * Reset everything in the state vector, after updating global 6461 * MIB data from instance counters. 6462 */ 6463 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6464 tcp->tcp_ibsegs = 0; 6465 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6466 tcp->tcp_obsegs = 0; 6467 6468 tcp_close_mpp(&tcp->tcp_xmit_head); 6469 if (tcp->tcp_snd_zcopy_aware) 6470 tcp_zcopy_notify(tcp); 6471 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6472 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6473 mutex_enter(&tcp->tcp_non_sq_lock); 6474 if (tcp->tcp_flow_stopped && 6475 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6476 tcp_clrqfull(tcp); 6477 } 6478 mutex_exit(&tcp->tcp_non_sq_lock); 6479 tcp_close_mpp(&tcp->tcp_reass_head); 6480 tcp->tcp_reass_tail = NULL; 6481 if (tcp->tcp_rcv_list != NULL) { 6482 /* Free b_next chain */ 6483 tcp_close_mpp(&tcp->tcp_rcv_list); 6484 tcp->tcp_rcv_last_head = NULL; 6485 tcp->tcp_rcv_last_tail = NULL; 6486 tcp->tcp_rcv_cnt = 0; 6487 } 6488 tcp->tcp_rcv_last_tail = NULL; 6489 6490 if ((mp = tcp->tcp_urp_mp) != NULL) { 6491 freemsg(mp); 6492 tcp->tcp_urp_mp = NULL; 6493 } 6494 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6495 freemsg(mp); 6496 tcp->tcp_urp_mark_mp = NULL; 6497 } 6498 if (tcp->tcp_fused_sigurg_mp != NULL) { 6499 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6500 freeb(tcp->tcp_fused_sigurg_mp); 6501 tcp->tcp_fused_sigurg_mp = NULL; 6502 } 6503 if (tcp->tcp_ordrel_mp != NULL) { 6504 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6505 freeb(tcp->tcp_ordrel_mp); 6506 tcp->tcp_ordrel_mp = NULL; 6507 } 6508 6509 /* 6510 * Following is a union with two members which are 6511 * identical types and size so the following cleanup 6512 * is enough. 6513 */ 6514 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6515 6516 CL_INET_DISCONNECT(connp); 6517 6518 /* 6519 * The connection can't be on the tcp_time_wait_head list 6520 * since it is not detached. 6521 */ 6522 ASSERT(tcp->tcp_time_wait_next == NULL); 6523 ASSERT(tcp->tcp_time_wait_prev == NULL); 6524 ASSERT(tcp->tcp_time_wait_expire == 0); 6525 6526 if (tcp->tcp_kssl_pending) { 6527 tcp->tcp_kssl_pending = B_FALSE; 6528 6529 /* Don't reset if the initialized by bind. */ 6530 if (tcp->tcp_kssl_ent != NULL) { 6531 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6532 KSSL_NO_PROXY); 6533 } 6534 } 6535 if (tcp->tcp_kssl_ctx != NULL) { 6536 kssl_release_ctx(tcp->tcp_kssl_ctx); 6537 tcp->tcp_kssl_ctx = NULL; 6538 } 6539 6540 /* 6541 * Reset/preserve other values 6542 */ 6543 tcp_reinit_values(tcp); 6544 ipcl_hash_remove(connp); 6545 ixa_cleanup(connp->conn_ixa); 6546 tcp_ipsec_cleanup(tcp); 6547 6548 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6549 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6550 6551 if (tcp->tcp_conn_req_max != 0) { 6552 /* 6553 * This is the case when a TLI program uses the same 6554 * transport end point to accept a connection. This 6555 * makes the TCP both a listener and acceptor. When 6556 * this connection is closed, we need to set the state 6557 * back to TCPS_LISTEN. Make sure that the eager list 6558 * is reinitialized. 6559 * 6560 * Note that this stream is still bound to the four 6561 * tuples of the previous connection in IP. If a new 6562 * SYN with different foreign address comes in, IP will 6563 * not find it and will send it to the global queue. In 6564 * the global queue, TCP will do a tcp_lookup_listener() 6565 * to find this stream. This works because this stream 6566 * is only removed from connected hash. 6567 * 6568 */ 6569 tcp->tcp_state = TCPS_LISTEN; 6570 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6571 tcp->tcp_eager_next_drop_q0 = tcp; 6572 tcp->tcp_eager_prev_drop_q0 = tcp; 6573 /* 6574 * Initially set conn_recv to tcp_input_listener_unbound to try 6575 * to pick a good squeue for the listener when the first SYN 6576 * arrives. tcp_input_listener_unbound sets it to 6577 * tcp_input_listener on that first SYN. 6578 */ 6579 connp->conn_recv = tcp_input_listener_unbound; 6580 6581 connp->conn_proto = IPPROTO_TCP; 6582 connp->conn_faddr_v6 = ipv6_all_zeros; 6583 connp->conn_fport = 0; 6584 6585 (void) ipcl_bind_insert(connp); 6586 } else { 6587 tcp->tcp_state = TCPS_BOUND; 6588 } 6589 6590 /* 6591 * Initialize to default values 6592 */ 6593 tcp_init_values(tcp); 6594 6595 ASSERT(tcp->tcp_ptpbhn != NULL); 6596 tcp->tcp_rwnd = connp->conn_rcvbuf; 6597 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6598 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6599 } 6600 6601 /* 6602 * Force values to zero that need be zero. 6603 * Do not touch values asociated with the BOUND or LISTEN state 6604 * since the connection will end up in that state after the reinit. 6605 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6606 * structure! 6607 */ 6608 static void 6609 tcp_reinit_values(tcp) 6610 tcp_t *tcp; 6611 { 6612 tcp_stack_t *tcps = tcp->tcp_tcps; 6613 conn_t *connp = tcp->tcp_connp; 6614 6615 #ifndef lint 6616 #define DONTCARE(x) 6617 #define PRESERVE(x) 6618 #else 6619 #define DONTCARE(x) ((x) = (x)) 6620 #define PRESERVE(x) ((x) = (x)) 6621 #endif /* lint */ 6622 6623 PRESERVE(tcp->tcp_bind_hash_port); 6624 PRESERVE(tcp->tcp_bind_hash); 6625 PRESERVE(tcp->tcp_ptpbhn); 6626 PRESERVE(tcp->tcp_acceptor_hash); 6627 PRESERVE(tcp->tcp_ptpahn); 6628 6629 /* Should be ASSERT NULL on these with new code! */ 6630 ASSERT(tcp->tcp_time_wait_next == NULL); 6631 ASSERT(tcp->tcp_time_wait_prev == NULL); 6632 ASSERT(tcp->tcp_time_wait_expire == 0); 6633 PRESERVE(tcp->tcp_state); 6634 PRESERVE(connp->conn_rq); 6635 PRESERVE(connp->conn_wq); 6636 6637 ASSERT(tcp->tcp_xmit_head == NULL); 6638 ASSERT(tcp->tcp_xmit_last == NULL); 6639 ASSERT(tcp->tcp_unsent == 0); 6640 ASSERT(tcp->tcp_xmit_tail == NULL); 6641 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6642 6643 tcp->tcp_snxt = 0; /* Displayed in mib */ 6644 tcp->tcp_suna = 0; /* Displayed in mib */ 6645 tcp->tcp_swnd = 0; 6646 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6647 6648 ASSERT(tcp->tcp_ibsegs == 0); 6649 ASSERT(tcp->tcp_obsegs == 0); 6650 6651 if (connp->conn_ht_iphc != NULL) { 6652 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6653 connp->conn_ht_iphc = NULL; 6654 connp->conn_ht_iphc_allocated = 0; 6655 connp->conn_ht_iphc_len = 0; 6656 connp->conn_ht_ulp = NULL; 6657 connp->conn_ht_ulp_len = 0; 6658 tcp->tcp_ipha = NULL; 6659 tcp->tcp_ip6h = NULL; 6660 tcp->tcp_tcpha = NULL; 6661 } 6662 6663 /* We clear any IP_OPTIONS and extension headers */ 6664 ip_pkt_free(&connp->conn_xmit_ipp); 6665 6666 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6667 DONTCARE(tcp->tcp_ipha); 6668 DONTCARE(tcp->tcp_ip6h); 6669 DONTCARE(tcp->tcp_tcpha); 6670 tcp->tcp_valid_bits = 0; 6671 6672 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6673 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6674 tcp->tcp_last_rcv_lbolt = 0; 6675 6676 tcp->tcp_init_cwnd = 0; 6677 6678 tcp->tcp_urp_last_valid = 0; 6679 tcp->tcp_hard_binding = 0; 6680 6681 tcp->tcp_fin_acked = 0; 6682 tcp->tcp_fin_rcvd = 0; 6683 tcp->tcp_fin_sent = 0; 6684 tcp->tcp_ordrel_done = 0; 6685 6686 tcp->tcp_detached = 0; 6687 6688 tcp->tcp_snd_ws_ok = B_FALSE; 6689 tcp->tcp_snd_ts_ok = B_FALSE; 6690 tcp->tcp_zero_win_probe = 0; 6691 6692 tcp->tcp_loopback = 0; 6693 tcp->tcp_localnet = 0; 6694 tcp->tcp_syn_defense = 0; 6695 tcp->tcp_set_timer = 0; 6696 6697 tcp->tcp_active_open = 0; 6698 tcp->tcp_rexmit = B_FALSE; 6699 tcp->tcp_xmit_zc_clean = B_FALSE; 6700 6701 tcp->tcp_snd_sack_ok = B_FALSE; 6702 tcp->tcp_hwcksum = B_FALSE; 6703 6704 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6705 6706 tcp->tcp_conn_def_q0 = 0; 6707 tcp->tcp_ip_forward_progress = B_FALSE; 6708 tcp->tcp_ecn_ok = B_FALSE; 6709 6710 tcp->tcp_cwr = B_FALSE; 6711 tcp->tcp_ecn_echo_on = B_FALSE; 6712 tcp->tcp_is_wnd_shrnk = B_FALSE; 6713 6714 if (tcp->tcp_sack_info != NULL) { 6715 if (tcp->tcp_notsack_list != NULL) { 6716 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6717 tcp); 6718 } 6719 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6720 tcp->tcp_sack_info = NULL; 6721 } 6722 6723 tcp->tcp_rcv_ws = 0; 6724 tcp->tcp_snd_ws = 0; 6725 tcp->tcp_ts_recent = 0; 6726 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6727 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6728 tcp->tcp_initial_pmtu = 0; 6729 6730 ASSERT(tcp->tcp_reass_head == NULL); 6731 ASSERT(tcp->tcp_reass_tail == NULL); 6732 6733 tcp->tcp_cwnd_cnt = 0; 6734 6735 ASSERT(tcp->tcp_rcv_list == NULL); 6736 ASSERT(tcp->tcp_rcv_last_head == NULL); 6737 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6738 ASSERT(tcp->tcp_rcv_cnt == 0); 6739 6740 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6741 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6742 tcp->tcp_csuna = 0; 6743 6744 tcp->tcp_rto = 0; /* Displayed in MIB */ 6745 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6746 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6747 tcp->tcp_rtt_update = 0; 6748 6749 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6750 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6751 6752 tcp->tcp_rack = 0; /* Displayed in mib */ 6753 tcp->tcp_rack_cnt = 0; 6754 tcp->tcp_rack_cur_max = 0; 6755 tcp->tcp_rack_abs_max = 0; 6756 6757 tcp->tcp_max_swnd = 0; 6758 6759 ASSERT(tcp->tcp_listener == NULL); 6760 6761 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6762 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6763 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6764 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6765 6766 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6767 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6768 PRESERVE(tcp->tcp_conn_req_max); 6769 PRESERVE(tcp->tcp_conn_req_seqnum); 6770 6771 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6772 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6773 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6774 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6775 6776 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6777 ASSERT(tcp->tcp_urp_mp == NULL); 6778 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6779 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6780 6781 ASSERT(tcp->tcp_eager_next_q == NULL); 6782 ASSERT(tcp->tcp_eager_last_q == NULL); 6783 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6784 tcp->tcp_eager_prev_q0 == NULL) || 6785 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6786 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6787 6788 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6789 tcp->tcp_eager_prev_drop_q0 == NULL) || 6790 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6791 6792 tcp->tcp_client_errno = 0; 6793 6794 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6795 6796 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6797 6798 PRESERVE(connp->conn_bound_addr_v6); 6799 tcp->tcp_last_sent_len = 0; 6800 tcp->tcp_dupack_cnt = 0; 6801 6802 connp->conn_fport = 0; /* Displayed in MIB */ 6803 PRESERVE(connp->conn_lport); 6804 6805 PRESERVE(tcp->tcp_acceptor_lockp); 6806 6807 ASSERT(tcp->tcp_ordrel_mp == NULL); 6808 PRESERVE(tcp->tcp_acceptor_id); 6809 DONTCARE(tcp->tcp_ipsec_overhead); 6810 6811 PRESERVE(connp->conn_family); 6812 /* Remove any remnants of mapped address binding */ 6813 if (connp->conn_family == AF_INET6) { 6814 connp->conn_ipversion = IPV6_VERSION; 6815 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6816 } else { 6817 connp->conn_ipversion = IPV4_VERSION; 6818 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6819 } 6820 6821 connp->conn_bound_if = 0; 6822 connp->conn_recv_ancillary.crb_all = 0; 6823 tcp->tcp_recvifindex = 0; 6824 tcp->tcp_recvhops = 0; 6825 tcp->tcp_closed = 0; 6826 tcp->tcp_cleandeathtag = 0; 6827 if (tcp->tcp_hopopts != NULL) { 6828 mi_free(tcp->tcp_hopopts); 6829 tcp->tcp_hopopts = NULL; 6830 tcp->tcp_hopoptslen = 0; 6831 } 6832 ASSERT(tcp->tcp_hopoptslen == 0); 6833 if (tcp->tcp_dstopts != NULL) { 6834 mi_free(tcp->tcp_dstopts); 6835 tcp->tcp_dstopts = NULL; 6836 tcp->tcp_dstoptslen = 0; 6837 } 6838 ASSERT(tcp->tcp_dstoptslen == 0); 6839 if (tcp->tcp_rthdrdstopts != NULL) { 6840 mi_free(tcp->tcp_rthdrdstopts); 6841 tcp->tcp_rthdrdstopts = NULL; 6842 tcp->tcp_rthdrdstoptslen = 0; 6843 } 6844 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6845 if (tcp->tcp_rthdr != NULL) { 6846 mi_free(tcp->tcp_rthdr); 6847 tcp->tcp_rthdr = NULL; 6848 tcp->tcp_rthdrlen = 0; 6849 } 6850 ASSERT(tcp->tcp_rthdrlen == 0); 6851 6852 /* Reset fusion-related fields */ 6853 tcp->tcp_fused = B_FALSE; 6854 tcp->tcp_unfusable = B_FALSE; 6855 tcp->tcp_fused_sigurg = B_FALSE; 6856 tcp->tcp_loopback_peer = NULL; 6857 6858 tcp->tcp_lso = B_FALSE; 6859 6860 tcp->tcp_in_ack_unsent = 0; 6861 tcp->tcp_cork = B_FALSE; 6862 tcp->tcp_tconnind_started = B_FALSE; 6863 6864 PRESERVE(tcp->tcp_squeue_bytes); 6865 6866 ASSERT(tcp->tcp_kssl_ctx == NULL); 6867 ASSERT(!tcp->tcp_kssl_pending); 6868 PRESERVE(tcp->tcp_kssl_ent); 6869 6870 tcp->tcp_closemp_used = B_FALSE; 6871 6872 PRESERVE(tcp->tcp_rsrv_mp); 6873 PRESERVE(tcp->tcp_rsrv_mp_lock); 6874 6875 #ifdef DEBUG 6876 DONTCARE(tcp->tcmp_stk[0]); 6877 #endif 6878 6879 PRESERVE(tcp->tcp_connid); 6880 6881 ASSERT(tcp->tcp_listen_cnt == NULL); 6882 ASSERT(tcp->tcp_reass_tid == 0); 6883 6884 #undef DONTCARE 6885 #undef PRESERVE 6886 } 6887 6888 static void 6889 tcp_init_values(tcp_t *tcp) 6890 { 6891 tcp_stack_t *tcps = tcp->tcp_tcps; 6892 conn_t *connp = tcp->tcp_connp; 6893 6894 ASSERT((connp->conn_family == AF_INET && 6895 connp->conn_ipversion == IPV4_VERSION) || 6896 (connp->conn_family == AF_INET6 && 6897 (connp->conn_ipversion == IPV4_VERSION || 6898 connp->conn_ipversion == IPV6_VERSION))); 6899 6900 /* 6901 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6902 * will be close to tcp_rexmit_interval_initial. By doing this, we 6903 * allow the algorithm to adjust slowly to large fluctuations of RTT 6904 * during first few transmissions of a connection as seen in slow 6905 * links. 6906 */ 6907 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6908 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6909 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6910 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6911 tcps->tcps_conn_grace_period; 6912 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6913 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6914 tcp->tcp_timer_backoff = 0; 6915 tcp->tcp_ms_we_have_waited = 0; 6916 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6917 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6918 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6919 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6920 6921 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6922 6923 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6924 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6925 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6926 /* 6927 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6928 * passive open. 6929 */ 6930 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6931 6932 tcp->tcp_naglim = tcps->tcps_naglim_def; 6933 6934 /* NOTE: ISS is now set in tcp_set_destination(). */ 6935 6936 /* Reset fusion-related fields */ 6937 tcp->tcp_fused = B_FALSE; 6938 tcp->tcp_unfusable = B_FALSE; 6939 tcp->tcp_fused_sigurg = B_FALSE; 6940 tcp->tcp_loopback_peer = NULL; 6941 6942 /* We rebuild the header template on the next connect/conn_request */ 6943 6944 connp->conn_mlp_type = mlptSingle; 6945 6946 /* 6947 * Init the window scale to the max so tcp_rwnd_set() won't pare 6948 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6949 */ 6950 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6951 tcp->tcp_rwnd = connp->conn_rcvbuf; 6952 6953 tcp->tcp_cork = B_FALSE; 6954 /* 6955 * Init the tcp_debug option if it wasn't already set. This value 6956 * determines whether TCP 6957 * calls strlog() to print out debug messages. Doing this 6958 * initialization here means that this value is not inherited thru 6959 * tcp_reinit(). 6960 */ 6961 if (!connp->conn_debug) 6962 connp->conn_debug = tcps->tcps_dbg; 6963 6964 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6965 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6966 } 6967 6968 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6969 #define ICMP_MIN_TCP_HDR 8 6970 6971 /* 6972 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6973 * passed up by IP. The message is always received on the correct tcp_t. 6974 * Assumes that IP has pulled up everything up to and including the ICMP header. 6975 */ 6976 /* ARGSUSED2 */ 6977 static void 6978 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6979 { 6980 conn_t *connp = (conn_t *)arg1; 6981 icmph_t *icmph; 6982 ipha_t *ipha; 6983 int iph_hdr_length; 6984 tcpha_t *tcpha; 6985 uint32_t seg_seq; 6986 tcp_t *tcp = connp->conn_tcp; 6987 6988 /* Assume IP provides aligned packets */ 6989 ASSERT(OK_32PTR(mp->b_rptr)); 6990 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6991 6992 /* 6993 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6994 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6995 */ 6996 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6997 tcp_icmp_error_ipv6(tcp, mp, ira); 6998 return; 6999 } 7000 7001 /* Skip past the outer IP and ICMP headers */ 7002 iph_hdr_length = ira->ira_ip_hdr_length; 7003 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7004 /* 7005 * If we don't have the correct outer IP header length 7006 * or if we don't have a complete inner IP header 7007 * drop it. 7008 */ 7009 if (iph_hdr_length < sizeof (ipha_t) || 7010 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7011 noticmpv4: 7012 freemsg(mp); 7013 return; 7014 } 7015 ipha = (ipha_t *)&icmph[1]; 7016 7017 /* Skip past the inner IP and find the ULP header */ 7018 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7019 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 7020 /* 7021 * If we don't have the correct inner IP header length or if the ULP 7022 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7023 * bytes of TCP header, drop it. 7024 */ 7025 if (iph_hdr_length < sizeof (ipha_t) || 7026 ipha->ipha_protocol != IPPROTO_TCP || 7027 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7028 goto noticmpv4; 7029 } 7030 7031 seg_seq = ntohl(tcpha->tha_seq); 7032 switch (icmph->icmph_type) { 7033 case ICMP_DEST_UNREACHABLE: 7034 switch (icmph->icmph_code) { 7035 case ICMP_FRAGMENTATION_NEEDED: 7036 /* 7037 * Update Path MTU, then try to send something out. 7038 */ 7039 tcp_update_pmtu(tcp, B_TRUE); 7040 tcp_rexmit_after_error(tcp); 7041 break; 7042 case ICMP_PORT_UNREACHABLE: 7043 case ICMP_PROTOCOL_UNREACHABLE: 7044 switch (tcp->tcp_state) { 7045 case TCPS_SYN_SENT: 7046 case TCPS_SYN_RCVD: 7047 /* 7048 * ICMP can snipe away incipient 7049 * TCP connections as long as 7050 * seq number is same as initial 7051 * send seq number. 7052 */ 7053 if (seg_seq == tcp->tcp_iss) { 7054 (void) tcp_clean_death(tcp, 7055 ECONNREFUSED, 6); 7056 } 7057 break; 7058 } 7059 break; 7060 case ICMP_HOST_UNREACHABLE: 7061 case ICMP_NET_UNREACHABLE: 7062 /* Record the error in case we finally time out. */ 7063 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 7064 tcp->tcp_client_errno = EHOSTUNREACH; 7065 else 7066 tcp->tcp_client_errno = ENETUNREACH; 7067 if (tcp->tcp_state == TCPS_SYN_RCVD) { 7068 if (tcp->tcp_listener != NULL && 7069 tcp->tcp_listener->tcp_syn_defense) { 7070 /* 7071 * Ditch the half-open connection if we 7072 * suspect a SYN attack is under way. 7073 */ 7074 (void) tcp_clean_death(tcp, 7075 tcp->tcp_client_errno, 7); 7076 } 7077 } 7078 break; 7079 default: 7080 break; 7081 } 7082 break; 7083 case ICMP_SOURCE_QUENCH: { 7084 /* 7085 * use a global boolean to control 7086 * whether TCP should respond to ICMP_SOURCE_QUENCH. 7087 * The default is false. 7088 */ 7089 if (tcp_icmp_source_quench) { 7090 /* 7091 * Reduce the sending rate as if we got a 7092 * retransmit timeout 7093 */ 7094 uint32_t npkt; 7095 7096 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 7097 tcp->tcp_mss; 7098 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 7099 tcp->tcp_cwnd = tcp->tcp_mss; 7100 tcp->tcp_cwnd_cnt = 0; 7101 } 7102 break; 7103 } 7104 } 7105 freemsg(mp); 7106 } 7107 7108 /* 7109 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 7110 * change. But it can refer to fields like tcp_suna and tcp_snxt. 7111 * 7112 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 7113 * error messages received by IP. The message is always received on the correct 7114 * tcp_t. 7115 */ 7116 /* ARGSUSED */ 7117 static boolean_t 7118 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 7119 ip_recv_attr_t *ira) 7120 { 7121 tcpha_t *tcpha = (tcpha_t *)arg2; 7122 uint32_t seq = ntohl(tcpha->tha_seq); 7123 tcp_t *tcp = connp->conn_tcp; 7124 7125 /* 7126 * TCP sequence number contained in payload of the ICMP error message 7127 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 7128 * the message is either a stale ICMP error, or an attack from the 7129 * network. Fail the verification. 7130 */ 7131 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 7132 return (B_FALSE); 7133 7134 /* For "too big" we also check the ignore flag */ 7135 if (ira->ira_flags & IRAF_IS_IPV4) { 7136 ASSERT(icmph != NULL); 7137 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 7138 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 7139 tcp->tcp_tcps->tcps_ignore_path_mtu) 7140 return (B_FALSE); 7141 } else { 7142 ASSERT(icmp6 != NULL); 7143 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 7144 tcp->tcp_tcps->tcps_ignore_path_mtu) 7145 return (B_FALSE); 7146 } 7147 return (B_TRUE); 7148 } 7149 7150 /* 7151 * Update the TCP connection according to change of PMTU. 7152 * 7153 * Path MTU might have changed by either increase or decrease, so need to 7154 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 7155 * or negative MSS, since tcp_mss_set() will do it. 7156 */ 7157 static void 7158 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 7159 { 7160 uint32_t pmtu; 7161 int32_t mss; 7162 conn_t *connp = tcp->tcp_connp; 7163 ip_xmit_attr_t *ixa = connp->conn_ixa; 7164 iaflags_t ixaflags; 7165 7166 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 7167 return; 7168 7169 if (tcp->tcp_state < TCPS_ESTABLISHED) 7170 return; 7171 7172 /* 7173 * Always call ip_get_pmtu() to make sure that IP has updated 7174 * ixa_flags properly. 7175 */ 7176 pmtu = ip_get_pmtu(ixa); 7177 ixaflags = ixa->ixa_flags; 7178 7179 /* 7180 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 7181 * IPsec overhead if applied. Make sure to use the most recent 7182 * IPsec information. 7183 */ 7184 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 7185 7186 /* 7187 * Nothing to change, so just return. 7188 */ 7189 if (mss == tcp->tcp_mss) 7190 return; 7191 7192 /* 7193 * Currently, for ICMP errors, only PMTU decrease is handled. 7194 */ 7195 if (mss > tcp->tcp_mss && decrease_only) 7196 return; 7197 7198 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 7199 7200 /* 7201 * Update ixa_fragsize and ixa_pmtu. 7202 */ 7203 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 7204 7205 /* 7206 * Adjust MSS and all relevant variables. 7207 */ 7208 tcp_mss_set(tcp, mss); 7209 7210 /* 7211 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 7212 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 7213 * has a (potentially different) min size we do the same. Make sure to 7214 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 7215 * fragment the packet. 7216 * 7217 * LSO over IPv6 can not be fragmented. So need to disable LSO 7218 * when IPv6 fragmentation is needed. 7219 */ 7220 if (mss < tcp->tcp_tcps->tcps_mss_min) 7221 ixaflags |= IXAF_PMTU_TOO_SMALL; 7222 7223 if (ixaflags & IXAF_PMTU_TOO_SMALL) 7224 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 7225 7226 if ((connp->conn_ipversion == IPV4_VERSION) && 7227 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 7228 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7229 } 7230 ixa->ixa_flags = ixaflags; 7231 } 7232 7233 /* 7234 * Do slow start retransmission after ICMP errors of PMTU changes. 7235 */ 7236 static void 7237 tcp_rexmit_after_error(tcp_t *tcp) 7238 { 7239 /* 7240 * All sent data has been acknowledged or no data left to send, just 7241 * to return. 7242 */ 7243 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7244 (tcp->tcp_xmit_head == NULL)) 7245 return; 7246 7247 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7248 tcp->tcp_rexmit_max = tcp->tcp_fss; 7249 else 7250 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7251 7252 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7253 tcp->tcp_rexmit = B_TRUE; 7254 tcp->tcp_dupack_cnt = 0; 7255 tcp->tcp_snd_burst = TCP_CWND_SS; 7256 tcp_ss_rexmit(tcp); 7257 } 7258 7259 /* 7260 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7261 * error messages passed up by IP. 7262 * Assumes that IP has pulled up all the extension headers as well 7263 * as the ICMPv6 header. 7264 */ 7265 static void 7266 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7267 { 7268 icmp6_t *icmp6; 7269 ip6_t *ip6h; 7270 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7271 tcpha_t *tcpha; 7272 uint8_t *nexthdrp; 7273 uint32_t seg_seq; 7274 7275 /* 7276 * Verify that we have a complete IP header. 7277 */ 7278 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7279 7280 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7281 ip6h = (ip6_t *)&icmp6[1]; 7282 /* 7283 * Verify if we have a complete ICMP and inner IP header. 7284 */ 7285 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7286 noticmpv6: 7287 freemsg(mp); 7288 return; 7289 } 7290 7291 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7292 goto noticmpv6; 7293 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7294 /* 7295 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7296 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7297 * packet. 7298 */ 7299 if ((*nexthdrp != IPPROTO_TCP) || 7300 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7301 goto noticmpv6; 7302 } 7303 7304 seg_seq = ntohl(tcpha->tha_seq); 7305 switch (icmp6->icmp6_type) { 7306 case ICMP6_PACKET_TOO_BIG: 7307 /* 7308 * Update Path MTU, then try to send something out. 7309 */ 7310 tcp_update_pmtu(tcp, B_TRUE); 7311 tcp_rexmit_after_error(tcp); 7312 break; 7313 case ICMP6_DST_UNREACH: 7314 switch (icmp6->icmp6_code) { 7315 case ICMP6_DST_UNREACH_NOPORT: 7316 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7317 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7318 (seg_seq == tcp->tcp_iss)) { 7319 (void) tcp_clean_death(tcp, 7320 ECONNREFUSED, 8); 7321 } 7322 break; 7323 case ICMP6_DST_UNREACH_ADMIN: 7324 case ICMP6_DST_UNREACH_NOROUTE: 7325 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7326 case ICMP6_DST_UNREACH_ADDR: 7327 /* Record the error in case we finally time out. */ 7328 tcp->tcp_client_errno = EHOSTUNREACH; 7329 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7330 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7331 (seg_seq == tcp->tcp_iss)) { 7332 if (tcp->tcp_listener != NULL && 7333 tcp->tcp_listener->tcp_syn_defense) { 7334 /* 7335 * Ditch the half-open connection if we 7336 * suspect a SYN attack is under way. 7337 */ 7338 (void) tcp_clean_death(tcp, 7339 tcp->tcp_client_errno, 9); 7340 } 7341 } 7342 7343 7344 break; 7345 default: 7346 break; 7347 } 7348 break; 7349 case ICMP6_PARAM_PROB: 7350 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7351 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7352 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7353 (uchar_t *)nexthdrp) { 7354 if (tcp->tcp_state == TCPS_SYN_SENT || 7355 tcp->tcp_state == TCPS_SYN_RCVD) { 7356 (void) tcp_clean_death(tcp, 7357 ECONNREFUSED, 10); 7358 } 7359 break; 7360 } 7361 break; 7362 7363 case ICMP6_TIME_EXCEEDED: 7364 default: 7365 break; 7366 } 7367 freemsg(mp); 7368 } 7369 7370 /* 7371 * Notify IP that we are having trouble with this connection. IP should 7372 * make note so it can potentially use a different IRE. 7373 */ 7374 static void 7375 tcp_ip_notify(tcp_t *tcp) 7376 { 7377 conn_t *connp = tcp->tcp_connp; 7378 ire_t *ire; 7379 7380 /* 7381 * Note: in the case of source routing we want to blow away the 7382 * route to the first source route hop. 7383 */ 7384 ire = connp->conn_ixa->ixa_ire; 7385 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7386 if (ire->ire_ipversion == IPV4_VERSION) { 7387 /* 7388 * As per RFC 1122, we send an RTM_LOSING to inform 7389 * routing protocols. 7390 */ 7391 ip_rts_change(RTM_LOSING, ire->ire_addr, 7392 ire->ire_gateway_addr, ire->ire_mask, 7393 connp->conn_laddr_v4, 0, 0, 0, 7394 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7395 ire->ire_ipst); 7396 } 7397 (void) ire_no_good(ire); 7398 } 7399 } 7400 7401 #pragma inline(tcp_send_data) 7402 7403 /* 7404 * Timer callback routine for keepalive probe. We do a fake resend of 7405 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7406 * check to see if we have heard anything from the other end for the last 7407 * RTO period. If we have, set the timer to expire for another 7408 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7409 * RTO << 1 and check again when it expires. Keep exponentially increasing 7410 * the timeout if we have not heard from the other side. If for more than 7411 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7412 * kill the connection unless the keepalive abort threshold is 0. In 7413 * that case, we will probe "forever." 7414 */ 7415 static void 7416 tcp_keepalive_killer(void *arg) 7417 { 7418 mblk_t *mp; 7419 conn_t *connp = (conn_t *)arg; 7420 tcp_t *tcp = connp->conn_tcp; 7421 int32_t firetime; 7422 int32_t idletime; 7423 int32_t ka_intrvl; 7424 tcp_stack_t *tcps = tcp->tcp_tcps; 7425 7426 tcp->tcp_ka_tid = 0; 7427 7428 if (tcp->tcp_fused) 7429 return; 7430 7431 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7432 ka_intrvl = tcp->tcp_ka_interval; 7433 7434 /* 7435 * Keepalive probe should only be sent if the application has not 7436 * done a close on the connection. 7437 */ 7438 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7439 return; 7440 } 7441 /* Timer fired too early, restart it. */ 7442 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7443 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7444 MSEC_TO_TICK(ka_intrvl)); 7445 return; 7446 } 7447 7448 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7449 /* 7450 * If we have not heard from the other side for a long 7451 * time, kill the connection unless the keepalive abort 7452 * threshold is 0. In that case, we will probe "forever." 7453 */ 7454 if (tcp->tcp_ka_abort_thres != 0 && 7455 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7456 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7457 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7458 tcp->tcp_client_errno : ETIMEDOUT, 11); 7459 return; 7460 } 7461 7462 if (tcp->tcp_snxt == tcp->tcp_suna && 7463 idletime >= ka_intrvl) { 7464 /* Fake resend of last ACKed byte. */ 7465 mblk_t *mp1 = allocb(1, BPRI_LO); 7466 7467 if (mp1 != NULL) { 7468 *mp1->b_wptr++ = '\0'; 7469 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7470 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7471 freeb(mp1); 7472 /* 7473 * if allocation failed, fall through to start the 7474 * timer back. 7475 */ 7476 if (mp != NULL) { 7477 tcp_send_data(tcp, mp); 7478 BUMP_MIB(&tcps->tcps_mib, 7479 tcpTimKeepaliveProbe); 7480 if (tcp->tcp_ka_last_intrvl != 0) { 7481 int max; 7482 /* 7483 * We should probe again at least 7484 * in ka_intrvl, but not more than 7485 * tcp_rexmit_interval_max. 7486 */ 7487 max = tcps->tcps_rexmit_interval_max; 7488 firetime = MIN(ka_intrvl - 1, 7489 tcp->tcp_ka_last_intrvl << 1); 7490 if (firetime > max) 7491 firetime = max; 7492 } else { 7493 firetime = tcp->tcp_rto; 7494 } 7495 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7496 tcp_keepalive_killer, 7497 MSEC_TO_TICK(firetime)); 7498 tcp->tcp_ka_last_intrvl = firetime; 7499 return; 7500 } 7501 } 7502 } else { 7503 tcp->tcp_ka_last_intrvl = 0; 7504 } 7505 7506 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7507 if ((firetime = ka_intrvl - idletime) < 0) { 7508 firetime = ka_intrvl; 7509 } 7510 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7511 MSEC_TO_TICK(firetime)); 7512 } 7513 7514 int 7515 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7516 { 7517 conn_t *connp = tcp->tcp_connp; 7518 queue_t *q = connp->conn_rq; 7519 int32_t mss = tcp->tcp_mss; 7520 int maxpsz; 7521 7522 if (TCP_IS_DETACHED(tcp)) 7523 return (mss); 7524 if (tcp->tcp_fused) { 7525 maxpsz = tcp_fuse_maxpsz(tcp); 7526 mss = INFPSZ; 7527 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7528 /* 7529 * Set the sd_qn_maxpsz according to the socket send buffer 7530 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7531 * instruct the stream head to copyin user data into contiguous 7532 * kernel-allocated buffers without breaking it up into smaller 7533 * chunks. We round up the buffer size to the nearest SMSS. 7534 */ 7535 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7536 if (tcp->tcp_kssl_ctx == NULL) 7537 mss = INFPSZ; 7538 else 7539 mss = SSL3_MAX_RECORD_LEN; 7540 } else { 7541 /* 7542 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7543 * (and a multiple of the mss). This instructs the stream 7544 * head to break down larger than SMSS writes into SMSS- 7545 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7546 */ 7547 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7548 if (maxpsz > connp->conn_sndbuf / 2) { 7549 maxpsz = connp->conn_sndbuf / 2; 7550 /* Round up to nearest mss */ 7551 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7552 } 7553 } 7554 7555 (void) proto_set_maxpsz(q, connp, maxpsz); 7556 if (!(IPCL_IS_NONSTR(connp))) 7557 connp->conn_wq->q_maxpsz = maxpsz; 7558 if (set_maxblk) 7559 (void) proto_set_tx_maxblk(q, connp, mss); 7560 return (mss); 7561 } 7562 7563 /* 7564 * Extract option values from a tcp header. We put any found values into the 7565 * tcpopt struct and return a bitmask saying which options were found. 7566 */ 7567 static int 7568 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7569 { 7570 uchar_t *endp; 7571 int len; 7572 uint32_t mss; 7573 uchar_t *up = (uchar_t *)tcpha; 7574 int found = 0; 7575 int32_t sack_len; 7576 tcp_seq sack_begin, sack_end; 7577 tcp_t *tcp; 7578 7579 endp = up + TCP_HDR_LENGTH(tcpha); 7580 up += TCP_MIN_HEADER_LENGTH; 7581 while (up < endp) { 7582 len = endp - up; 7583 switch (*up) { 7584 case TCPOPT_EOL: 7585 break; 7586 7587 case TCPOPT_NOP: 7588 up++; 7589 continue; 7590 7591 case TCPOPT_MAXSEG: 7592 if (len < TCPOPT_MAXSEG_LEN || 7593 up[1] != TCPOPT_MAXSEG_LEN) 7594 break; 7595 7596 mss = BE16_TO_U16(up+2); 7597 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7598 tcpopt->tcp_opt_mss = mss; 7599 found |= TCP_OPT_MSS_PRESENT; 7600 7601 up += TCPOPT_MAXSEG_LEN; 7602 continue; 7603 7604 case TCPOPT_WSCALE: 7605 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7606 break; 7607 7608 if (up[2] > TCP_MAX_WINSHIFT) 7609 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7610 else 7611 tcpopt->tcp_opt_wscale = up[2]; 7612 found |= TCP_OPT_WSCALE_PRESENT; 7613 7614 up += TCPOPT_WS_LEN; 7615 continue; 7616 7617 case TCPOPT_SACK_PERMITTED: 7618 if (len < TCPOPT_SACK_OK_LEN || 7619 up[1] != TCPOPT_SACK_OK_LEN) 7620 break; 7621 found |= TCP_OPT_SACK_OK_PRESENT; 7622 up += TCPOPT_SACK_OK_LEN; 7623 continue; 7624 7625 case TCPOPT_SACK: 7626 if (len <= 2 || up[1] <= 2 || len < up[1]) 7627 break; 7628 7629 /* If TCP is not interested in SACK blks... */ 7630 if ((tcp = tcpopt->tcp) == NULL) { 7631 up += up[1]; 7632 continue; 7633 } 7634 sack_len = up[1] - TCPOPT_HEADER_LEN; 7635 up += TCPOPT_HEADER_LEN; 7636 7637 /* 7638 * If the list is empty, allocate one and assume 7639 * nothing is sack'ed. 7640 */ 7641 ASSERT(tcp->tcp_sack_info != NULL); 7642 if (tcp->tcp_notsack_list == NULL) { 7643 tcp_notsack_update(&(tcp->tcp_notsack_list), 7644 tcp->tcp_suna, tcp->tcp_snxt, 7645 &(tcp->tcp_num_notsack_blk), 7646 &(tcp->tcp_cnt_notsack_list)); 7647 7648 /* 7649 * Make sure tcp_notsack_list is not NULL. 7650 * This happens when kmem_alloc(KM_NOSLEEP) 7651 * returns NULL. 7652 */ 7653 if (tcp->tcp_notsack_list == NULL) { 7654 up += sack_len; 7655 continue; 7656 } 7657 tcp->tcp_fack = tcp->tcp_suna; 7658 } 7659 7660 while (sack_len > 0) { 7661 if (up + 8 > endp) { 7662 up = endp; 7663 break; 7664 } 7665 sack_begin = BE32_TO_U32(up); 7666 up += 4; 7667 sack_end = BE32_TO_U32(up); 7668 up += 4; 7669 sack_len -= 8; 7670 /* 7671 * Bounds checking. Make sure the SACK 7672 * info is within tcp_suna and tcp_snxt. 7673 * If this SACK blk is out of bound, ignore 7674 * it but continue to parse the following 7675 * blks. 7676 */ 7677 if (SEQ_LEQ(sack_end, sack_begin) || 7678 SEQ_LT(sack_begin, tcp->tcp_suna) || 7679 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7680 continue; 7681 } 7682 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7683 sack_begin, sack_end, 7684 &(tcp->tcp_num_notsack_blk), 7685 &(tcp->tcp_cnt_notsack_list)); 7686 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7687 tcp->tcp_fack = sack_end; 7688 } 7689 } 7690 found |= TCP_OPT_SACK_PRESENT; 7691 continue; 7692 7693 case TCPOPT_TSTAMP: 7694 if (len < TCPOPT_TSTAMP_LEN || 7695 up[1] != TCPOPT_TSTAMP_LEN) 7696 break; 7697 7698 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7699 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7700 7701 found |= TCP_OPT_TSTAMP_PRESENT; 7702 7703 up += TCPOPT_TSTAMP_LEN; 7704 continue; 7705 7706 default: 7707 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7708 break; 7709 up += up[1]; 7710 continue; 7711 } 7712 break; 7713 } 7714 return (found); 7715 } 7716 7717 /* 7718 * Set the MSS associated with a particular tcp based on its current value, 7719 * and a new one passed in. Observe minimums and maximums, and reset other 7720 * state variables that we want to view as multiples of MSS. 7721 * 7722 * The value of MSS could be either increased or descreased. 7723 */ 7724 static void 7725 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7726 { 7727 uint32_t mss_max; 7728 tcp_stack_t *tcps = tcp->tcp_tcps; 7729 conn_t *connp = tcp->tcp_connp; 7730 7731 if (connp->conn_ipversion == IPV4_VERSION) 7732 mss_max = tcps->tcps_mss_max_ipv4; 7733 else 7734 mss_max = tcps->tcps_mss_max_ipv6; 7735 7736 if (mss < tcps->tcps_mss_min) 7737 mss = tcps->tcps_mss_min; 7738 if (mss > mss_max) 7739 mss = mss_max; 7740 /* 7741 * Unless naglim has been set by our client to 7742 * a non-mss value, force naglim to track mss. 7743 * This can help to aggregate small writes. 7744 */ 7745 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7746 tcp->tcp_naglim = mss; 7747 /* 7748 * TCP should be able to buffer at least 4 MSS data for obvious 7749 * performance reason. 7750 */ 7751 if ((mss << 2) > connp->conn_sndbuf) 7752 connp->conn_sndbuf = mss << 2; 7753 7754 /* 7755 * Set the send lowater to at least twice of MSS. 7756 */ 7757 if ((mss << 1) > connp->conn_sndlowat) 7758 connp->conn_sndlowat = mss << 1; 7759 7760 /* 7761 * Update tcp_cwnd according to the new value of MSS. Keep the 7762 * previous ratio to preserve the transmit rate. 7763 */ 7764 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7765 tcp->tcp_cwnd_cnt = 0; 7766 7767 tcp->tcp_mss = mss; 7768 (void) tcp_maxpsz_set(tcp, B_TRUE); 7769 } 7770 7771 /* For /dev/tcp aka AF_INET open */ 7772 static int 7773 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7774 { 7775 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7776 } 7777 7778 /* For /dev/tcp6 aka AF_INET6 open */ 7779 static int 7780 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7781 { 7782 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7783 } 7784 7785 static conn_t * 7786 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7787 int *errorp) 7788 { 7789 tcp_t *tcp = NULL; 7790 conn_t *connp; 7791 zoneid_t zoneid; 7792 tcp_stack_t *tcps; 7793 squeue_t *sqp; 7794 7795 ASSERT(errorp != NULL); 7796 /* 7797 * Find the proper zoneid and netstack. 7798 */ 7799 /* 7800 * Special case for install: miniroot needs to be able to 7801 * access files via NFS as though it were always in the 7802 * global zone. 7803 */ 7804 if (credp == kcred && nfs_global_client_only != 0) { 7805 zoneid = GLOBAL_ZONEID; 7806 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7807 netstack_tcp; 7808 ASSERT(tcps != NULL); 7809 } else { 7810 netstack_t *ns; 7811 int err; 7812 7813 if ((err = secpolicy_basic_net_access(credp)) != 0) { 7814 *errorp = err; 7815 return (NULL); 7816 } 7817 7818 ns = netstack_find_by_cred(credp); 7819 ASSERT(ns != NULL); 7820 tcps = ns->netstack_tcp; 7821 ASSERT(tcps != NULL); 7822 7823 /* 7824 * For exclusive stacks we set the zoneid to zero 7825 * to make TCP operate as if in the global zone. 7826 */ 7827 if (tcps->tcps_netstack->netstack_stackid != 7828 GLOBAL_NETSTACKID) 7829 zoneid = GLOBAL_ZONEID; 7830 else 7831 zoneid = crgetzoneid(credp); 7832 } 7833 7834 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7835 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7836 /* 7837 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7838 * so we drop it by one. 7839 */ 7840 netstack_rele(tcps->tcps_netstack); 7841 if (connp == NULL) { 7842 *errorp = ENOSR; 7843 return (NULL); 7844 } 7845 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7846 7847 connp->conn_sqp = sqp; 7848 connp->conn_initial_sqp = connp->conn_sqp; 7849 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7850 tcp = connp->conn_tcp; 7851 7852 /* 7853 * Besides asking IP to set the checksum for us, have conn_ip_output 7854 * to do the following checks when necessary: 7855 * 7856 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7857 * IXAF_VERIFY_PMTU: verify PMTU changes 7858 * IXAF_VERIFY_LSO: verify LSO capability changes 7859 */ 7860 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7861 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7862 7863 if (!tcps->tcps_dev_flow_ctl) 7864 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7865 7866 if (isv6) { 7867 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7868 connp->conn_ipversion = IPV6_VERSION; 7869 connp->conn_family = AF_INET6; 7870 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7871 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7872 } else { 7873 connp->conn_ipversion = IPV4_VERSION; 7874 connp->conn_family = AF_INET; 7875 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7876 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7877 } 7878 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7879 7880 crhold(credp); 7881 connp->conn_cred = credp; 7882 connp->conn_cpid = curproc->p_pid; 7883 connp->conn_open_time = ddi_get_lbolt64(); 7884 7885 connp->conn_zoneid = zoneid; 7886 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7887 connp->conn_ixa->ixa_zoneid = zoneid; 7888 connp->conn_mlp_type = mlptSingle; 7889 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7890 ASSERT(tcp->tcp_tcps == tcps); 7891 7892 /* 7893 * If the caller has the process-wide flag set, then default to MAC 7894 * exempt mode. This allows read-down to unlabeled hosts. 7895 */ 7896 if (getpflags(NET_MAC_AWARE, credp) != 0) 7897 connp->conn_mac_mode = CONN_MAC_AWARE; 7898 7899 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7900 7901 if (issocket) { 7902 tcp->tcp_issocket = 1; 7903 } 7904 7905 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7906 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7907 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7908 connp->conn_so_type = SOCK_STREAM; 7909 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7910 tcps->tcps_wroff_xtra; 7911 7912 SOCK_CONNID_INIT(tcp->tcp_connid); 7913 tcp->tcp_state = TCPS_IDLE; 7914 tcp_init_values(tcp); 7915 return (connp); 7916 } 7917 7918 static int 7919 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7920 boolean_t isv6) 7921 { 7922 tcp_t *tcp = NULL; 7923 conn_t *connp = NULL; 7924 int err; 7925 vmem_t *minor_arena = NULL; 7926 dev_t conn_dev; 7927 boolean_t issocket; 7928 7929 if (q->q_ptr != NULL) 7930 return (0); 7931 7932 if (sflag == MODOPEN) 7933 return (EINVAL); 7934 7935 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7936 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7937 minor_arena = ip_minor_arena_la; 7938 } else { 7939 /* 7940 * Either minor numbers in the large arena were exhausted 7941 * or a non socket application is doing the open. 7942 * Try to allocate from the small arena. 7943 */ 7944 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7945 return (EBUSY); 7946 } 7947 minor_arena = ip_minor_arena_sa; 7948 } 7949 7950 ASSERT(minor_arena != NULL); 7951 7952 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7953 7954 if (flag & SO_FALLBACK) { 7955 /* 7956 * Non streams socket needs a stream to fallback to 7957 */ 7958 RD(q)->q_ptr = (void *)conn_dev; 7959 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7960 WR(q)->q_ptr = (void *)minor_arena; 7961 qprocson(q); 7962 return (0); 7963 } else if (flag & SO_ACCEPTOR) { 7964 q->q_qinfo = &tcp_acceptor_rinit; 7965 /* 7966 * the conn_dev and minor_arena will be subsequently used by 7967 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7968 * the minor device number for this connection from the q_ptr. 7969 */ 7970 RD(q)->q_ptr = (void *)conn_dev; 7971 WR(q)->q_qinfo = &tcp_acceptor_winit; 7972 WR(q)->q_ptr = (void *)minor_arena; 7973 qprocson(q); 7974 return (0); 7975 } 7976 7977 issocket = flag & SO_SOCKSTR; 7978 connp = tcp_create_common(credp, isv6, issocket, &err); 7979 7980 if (connp == NULL) { 7981 inet_minor_free(minor_arena, conn_dev); 7982 q->q_ptr = WR(q)->q_ptr = NULL; 7983 return (err); 7984 } 7985 7986 connp->conn_rq = q; 7987 connp->conn_wq = WR(q); 7988 q->q_ptr = WR(q)->q_ptr = connp; 7989 7990 connp->conn_dev = conn_dev; 7991 connp->conn_minor_arena = minor_arena; 7992 7993 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7994 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7995 7996 tcp = connp->conn_tcp; 7997 7998 if (issocket) { 7999 WR(q)->q_qinfo = &tcp_sock_winit; 8000 } else { 8001 #ifdef _ILP32 8002 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 8003 #else 8004 tcp->tcp_acceptor_id = conn_dev; 8005 #endif /* _ILP32 */ 8006 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 8007 } 8008 8009 /* 8010 * Put the ref for TCP. Ref for IP was already put 8011 * by ipcl_conn_create. Also Make the conn_t globally 8012 * visible to walkers 8013 */ 8014 mutex_enter(&connp->conn_lock); 8015 CONN_INC_REF_LOCKED(connp); 8016 ASSERT(connp->conn_ref == 2); 8017 connp->conn_state_flags &= ~CONN_INCIPIENT; 8018 mutex_exit(&connp->conn_lock); 8019 8020 qprocson(q); 8021 return (0); 8022 } 8023 8024 /* 8025 * Some TCP options can be "set" by requesting them in the option 8026 * buffer. This is needed for XTI feature test though we do not 8027 * allow it in general. We interpret that this mechanism is more 8028 * applicable to OSI protocols and need not be allowed in general. 8029 * This routine filters out options for which it is not allowed (most) 8030 * and lets through those (few) for which it is. [ The XTI interface 8031 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 8032 * ever implemented will have to be allowed here ]. 8033 */ 8034 static boolean_t 8035 tcp_allow_connopt_set(int level, int name) 8036 { 8037 8038 switch (level) { 8039 case IPPROTO_TCP: 8040 switch (name) { 8041 case TCP_NODELAY: 8042 return (B_TRUE); 8043 default: 8044 return (B_FALSE); 8045 } 8046 /*NOTREACHED*/ 8047 default: 8048 return (B_FALSE); 8049 } 8050 /*NOTREACHED*/ 8051 } 8052 8053 /* 8054 * This routine gets default values of certain options whose default 8055 * values are maintained by protocol specific code 8056 */ 8057 /* ARGSUSED */ 8058 int 8059 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 8060 { 8061 int32_t *i1 = (int32_t *)ptr; 8062 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 8063 8064 switch (level) { 8065 case IPPROTO_TCP: 8066 switch (name) { 8067 case TCP_NOTIFY_THRESHOLD: 8068 *i1 = tcps->tcps_ip_notify_interval; 8069 break; 8070 case TCP_ABORT_THRESHOLD: 8071 *i1 = tcps->tcps_ip_abort_interval; 8072 break; 8073 case TCP_CONN_NOTIFY_THRESHOLD: 8074 *i1 = tcps->tcps_ip_notify_cinterval; 8075 break; 8076 case TCP_CONN_ABORT_THRESHOLD: 8077 *i1 = tcps->tcps_ip_abort_cinterval; 8078 break; 8079 default: 8080 return (-1); 8081 } 8082 break; 8083 case IPPROTO_IP: 8084 switch (name) { 8085 case IP_TTL: 8086 *i1 = tcps->tcps_ipv4_ttl; 8087 break; 8088 default: 8089 return (-1); 8090 } 8091 break; 8092 case IPPROTO_IPV6: 8093 switch (name) { 8094 case IPV6_UNICAST_HOPS: 8095 *i1 = tcps->tcps_ipv6_hoplimit; 8096 break; 8097 default: 8098 return (-1); 8099 } 8100 break; 8101 default: 8102 return (-1); 8103 } 8104 return (sizeof (int)); 8105 } 8106 8107 /* 8108 * TCP routine to get the values of options. 8109 */ 8110 static int 8111 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 8112 { 8113 int *i1 = (int *)ptr; 8114 tcp_t *tcp = connp->conn_tcp; 8115 conn_opt_arg_t coas; 8116 int retval; 8117 8118 coas.coa_connp = connp; 8119 coas.coa_ixa = connp->conn_ixa; 8120 coas.coa_ipp = &connp->conn_xmit_ipp; 8121 coas.coa_ancillary = B_FALSE; 8122 coas.coa_changed = 0; 8123 8124 switch (level) { 8125 case SOL_SOCKET: 8126 switch (name) { 8127 case SO_SND_COPYAVOID: 8128 *i1 = tcp->tcp_snd_zcopy_on ? 8129 SO_SND_COPYAVOID : 0; 8130 return (sizeof (int)); 8131 case SO_ACCEPTCONN: 8132 *i1 = (tcp->tcp_state == TCPS_LISTEN); 8133 return (sizeof (int)); 8134 } 8135 break; 8136 case IPPROTO_TCP: 8137 switch (name) { 8138 case TCP_NODELAY: 8139 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 8140 return (sizeof (int)); 8141 case TCP_MAXSEG: 8142 *i1 = tcp->tcp_mss; 8143 return (sizeof (int)); 8144 case TCP_NOTIFY_THRESHOLD: 8145 *i1 = (int)tcp->tcp_first_timer_threshold; 8146 return (sizeof (int)); 8147 case TCP_ABORT_THRESHOLD: 8148 *i1 = tcp->tcp_second_timer_threshold; 8149 return (sizeof (int)); 8150 case TCP_CONN_NOTIFY_THRESHOLD: 8151 *i1 = tcp->tcp_first_ctimer_threshold; 8152 return (sizeof (int)); 8153 case TCP_CONN_ABORT_THRESHOLD: 8154 *i1 = tcp->tcp_second_ctimer_threshold; 8155 return (sizeof (int)); 8156 case TCP_INIT_CWND: 8157 *i1 = tcp->tcp_init_cwnd; 8158 return (sizeof (int)); 8159 case TCP_KEEPALIVE_THRESHOLD: 8160 *i1 = tcp->tcp_ka_interval; 8161 return (sizeof (int)); 8162 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8163 *i1 = tcp->tcp_ka_abort_thres; 8164 return (sizeof (int)); 8165 case TCP_CORK: 8166 *i1 = tcp->tcp_cork; 8167 return (sizeof (int)); 8168 } 8169 break; 8170 case IPPROTO_IP: 8171 if (connp->conn_family != AF_INET) 8172 return (-1); 8173 switch (name) { 8174 case IP_OPTIONS: 8175 case T_IP_OPTIONS: 8176 /* Caller ensures enough space */ 8177 return (ip_opt_get_user(connp, ptr)); 8178 default: 8179 break; 8180 } 8181 break; 8182 8183 case IPPROTO_IPV6: 8184 /* 8185 * IPPROTO_IPV6 options are only supported for sockets 8186 * that are using IPv6 on the wire. 8187 */ 8188 if (connp->conn_ipversion != IPV6_VERSION) { 8189 return (-1); 8190 } 8191 switch (name) { 8192 case IPV6_PATHMTU: 8193 if (tcp->tcp_state < TCPS_ESTABLISHED) 8194 return (-1); 8195 break; 8196 } 8197 break; 8198 } 8199 mutex_enter(&connp->conn_lock); 8200 retval = conn_opt_get(&coas, level, name, ptr); 8201 mutex_exit(&connp->conn_lock); 8202 return (retval); 8203 } 8204 8205 /* 8206 * TCP routine to get the values of options. 8207 */ 8208 int 8209 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 8210 { 8211 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 8212 } 8213 8214 /* returns UNIX error, the optlen is a value-result arg */ 8215 int 8216 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8217 void *optvalp, socklen_t *optlen, cred_t *cr) 8218 { 8219 conn_t *connp = (conn_t *)proto_handle; 8220 squeue_t *sqp = connp->conn_sqp; 8221 int error; 8222 t_uscalar_t max_optbuf_len; 8223 void *optvalp_buf; 8224 int len; 8225 8226 ASSERT(connp->conn_upper_handle != NULL); 8227 8228 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 8229 tcp_opt_obj.odb_opt_des_arr, 8230 tcp_opt_obj.odb_opt_arr_cnt, 8231 B_FALSE, B_TRUE, cr); 8232 if (error != 0) { 8233 if (error < 0) { 8234 error = proto_tlitosyserr(-error); 8235 } 8236 return (error); 8237 } 8238 8239 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 8240 8241 error = squeue_synch_enter(sqp, connp, NULL); 8242 if (error == ENOMEM) { 8243 kmem_free(optvalp_buf, max_optbuf_len); 8244 return (ENOMEM); 8245 } 8246 8247 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8248 squeue_synch_exit(sqp, connp); 8249 8250 if (len == -1) { 8251 kmem_free(optvalp_buf, max_optbuf_len); 8252 return (EINVAL); 8253 } 8254 8255 /* 8256 * update optlen and copy option value 8257 */ 8258 t_uscalar_t size = MIN(len, *optlen); 8259 8260 bcopy(optvalp_buf, optvalp, size); 8261 bcopy(&size, optlen, sizeof (size)); 8262 8263 kmem_free(optvalp_buf, max_optbuf_len); 8264 return (0); 8265 } 8266 8267 /* 8268 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8269 * Parameters are assumed to be verified by the caller. 8270 */ 8271 /* ARGSUSED */ 8272 int 8273 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8274 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8275 void *thisdg_attrs, cred_t *cr) 8276 { 8277 tcp_t *tcp = connp->conn_tcp; 8278 int *i1 = (int *)invalp; 8279 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8280 boolean_t checkonly; 8281 int reterr; 8282 tcp_stack_t *tcps = tcp->tcp_tcps; 8283 conn_opt_arg_t coas; 8284 8285 coas.coa_connp = connp; 8286 coas.coa_ixa = connp->conn_ixa; 8287 coas.coa_ipp = &connp->conn_xmit_ipp; 8288 coas.coa_ancillary = B_FALSE; 8289 coas.coa_changed = 0; 8290 8291 switch (optset_context) { 8292 case SETFN_OPTCOM_CHECKONLY: 8293 checkonly = B_TRUE; 8294 /* 8295 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8296 * inlen != 0 implies value supplied and 8297 * we have to "pretend" to set it. 8298 * inlen == 0 implies that there is no 8299 * value part in T_CHECK request and just validation 8300 * done elsewhere should be enough, we just return here. 8301 */ 8302 if (inlen == 0) { 8303 *outlenp = 0; 8304 return (0); 8305 } 8306 break; 8307 case SETFN_OPTCOM_NEGOTIATE: 8308 checkonly = B_FALSE; 8309 break; 8310 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8311 case SETFN_CONN_NEGOTIATE: 8312 checkonly = B_FALSE; 8313 /* 8314 * Negotiating local and "association-related" options 8315 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8316 * primitives is allowed by XTI, but we choose 8317 * to not implement this style negotiation for Internet 8318 * protocols (We interpret it is a must for OSI world but 8319 * optional for Internet protocols) for all options. 8320 * [ Will do only for the few options that enable test 8321 * suites that our XTI implementation of this feature 8322 * works for transports that do allow it ] 8323 */ 8324 if (!tcp_allow_connopt_set(level, name)) { 8325 *outlenp = 0; 8326 return (EINVAL); 8327 } 8328 break; 8329 default: 8330 /* 8331 * We should never get here 8332 */ 8333 *outlenp = 0; 8334 return (EINVAL); 8335 } 8336 8337 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8338 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8339 8340 /* 8341 * For TCP, we should have no ancillary data sent down 8342 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8343 * has to be zero. 8344 */ 8345 ASSERT(thisdg_attrs == NULL); 8346 8347 /* 8348 * For fixed length options, no sanity check 8349 * of passed in length is done. It is assumed *_optcom_req() 8350 * routines do the right thing. 8351 */ 8352 switch (level) { 8353 case SOL_SOCKET: 8354 switch (name) { 8355 case SO_KEEPALIVE: 8356 if (checkonly) { 8357 /* check only case */ 8358 break; 8359 } 8360 8361 if (!onoff) { 8362 if (connp->conn_keepalive) { 8363 if (tcp->tcp_ka_tid != 0) { 8364 (void) TCP_TIMER_CANCEL(tcp, 8365 tcp->tcp_ka_tid); 8366 tcp->tcp_ka_tid = 0; 8367 } 8368 connp->conn_keepalive = 0; 8369 } 8370 break; 8371 } 8372 if (!connp->conn_keepalive) { 8373 /* Crank up the keepalive timer */ 8374 tcp->tcp_ka_last_intrvl = 0; 8375 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8376 tcp_keepalive_killer, 8377 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8378 connp->conn_keepalive = 1; 8379 } 8380 break; 8381 case SO_SNDBUF: { 8382 if (*i1 > tcps->tcps_max_buf) { 8383 *outlenp = 0; 8384 return (ENOBUFS); 8385 } 8386 if (checkonly) 8387 break; 8388 8389 connp->conn_sndbuf = *i1; 8390 if (tcps->tcps_snd_lowat_fraction != 0) { 8391 connp->conn_sndlowat = connp->conn_sndbuf / 8392 tcps->tcps_snd_lowat_fraction; 8393 } 8394 (void) tcp_maxpsz_set(tcp, B_TRUE); 8395 /* 8396 * If we are flow-controlled, recheck the condition. 8397 * There are apps that increase SO_SNDBUF size when 8398 * flow-controlled (EWOULDBLOCK), and expect the flow 8399 * control condition to be lifted right away. 8400 */ 8401 mutex_enter(&tcp->tcp_non_sq_lock); 8402 if (tcp->tcp_flow_stopped && 8403 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8404 tcp_clrqfull(tcp); 8405 } 8406 mutex_exit(&tcp->tcp_non_sq_lock); 8407 *outlenp = inlen; 8408 return (0); 8409 } 8410 case SO_RCVBUF: 8411 if (*i1 > tcps->tcps_max_buf) { 8412 *outlenp = 0; 8413 return (ENOBUFS); 8414 } 8415 /* Silently ignore zero */ 8416 if (!checkonly && *i1 != 0) { 8417 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8418 (void) tcp_rwnd_set(tcp, *i1); 8419 } 8420 /* 8421 * XXX should we return the rwnd here 8422 * and tcp_opt_get ? 8423 */ 8424 *outlenp = inlen; 8425 return (0); 8426 case SO_SND_COPYAVOID: 8427 if (!checkonly) { 8428 if (tcp->tcp_loopback || 8429 (tcp->tcp_kssl_ctx != NULL) || 8430 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8431 *outlenp = 0; 8432 return (EOPNOTSUPP); 8433 } 8434 tcp->tcp_snd_zcopy_aware = 1; 8435 } 8436 *outlenp = inlen; 8437 return (0); 8438 } 8439 break; 8440 case IPPROTO_TCP: 8441 switch (name) { 8442 case TCP_NODELAY: 8443 if (!checkonly) 8444 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8445 break; 8446 case TCP_NOTIFY_THRESHOLD: 8447 if (!checkonly) 8448 tcp->tcp_first_timer_threshold = *i1; 8449 break; 8450 case TCP_ABORT_THRESHOLD: 8451 if (!checkonly) 8452 tcp->tcp_second_timer_threshold = *i1; 8453 break; 8454 case TCP_CONN_NOTIFY_THRESHOLD: 8455 if (!checkonly) 8456 tcp->tcp_first_ctimer_threshold = *i1; 8457 break; 8458 case TCP_CONN_ABORT_THRESHOLD: 8459 if (!checkonly) 8460 tcp->tcp_second_ctimer_threshold = *i1; 8461 break; 8462 case TCP_RECVDSTADDR: 8463 if (tcp->tcp_state > TCPS_LISTEN) { 8464 *outlenp = 0; 8465 return (EOPNOTSUPP); 8466 } 8467 /* Setting done in conn_opt_set */ 8468 break; 8469 case TCP_INIT_CWND: { 8470 uint32_t init_cwnd = *((uint32_t *)invalp); 8471 8472 if (checkonly) 8473 break; 8474 8475 /* 8476 * Only allow socket with network configuration 8477 * privilege to set the initial cwnd to be larger 8478 * than allowed by RFC 3390. 8479 */ 8480 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8481 tcp->tcp_init_cwnd = init_cwnd; 8482 break; 8483 } 8484 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8485 *outlenp = 0; 8486 return (reterr); 8487 } 8488 if (init_cwnd > TCP_MAX_INIT_CWND) { 8489 *outlenp = 0; 8490 return (EINVAL); 8491 } 8492 tcp->tcp_init_cwnd = init_cwnd; 8493 break; 8494 } 8495 case TCP_KEEPALIVE_THRESHOLD: 8496 if (checkonly) 8497 break; 8498 8499 if (*i1 < tcps->tcps_keepalive_interval_low || 8500 *i1 > tcps->tcps_keepalive_interval_high) { 8501 *outlenp = 0; 8502 return (EINVAL); 8503 } 8504 if (*i1 != tcp->tcp_ka_interval) { 8505 tcp->tcp_ka_interval = *i1; 8506 /* 8507 * Check if we need to restart the 8508 * keepalive timer. 8509 */ 8510 if (tcp->tcp_ka_tid != 0) { 8511 ASSERT(connp->conn_keepalive); 8512 (void) TCP_TIMER_CANCEL(tcp, 8513 tcp->tcp_ka_tid); 8514 tcp->tcp_ka_last_intrvl = 0; 8515 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8516 tcp_keepalive_killer, 8517 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8518 } 8519 } 8520 break; 8521 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8522 if (!checkonly) { 8523 if (*i1 < 8524 tcps->tcps_keepalive_abort_interval_low || 8525 *i1 > 8526 tcps->tcps_keepalive_abort_interval_high) { 8527 *outlenp = 0; 8528 return (EINVAL); 8529 } 8530 tcp->tcp_ka_abort_thres = *i1; 8531 } 8532 break; 8533 case TCP_CORK: 8534 if (!checkonly) { 8535 /* 8536 * if tcp->tcp_cork was set and is now 8537 * being unset, we have to make sure that 8538 * the remaining data gets sent out. Also 8539 * unset tcp->tcp_cork so that tcp_wput_data() 8540 * can send data even if it is less than mss 8541 */ 8542 if (tcp->tcp_cork && onoff == 0 && 8543 tcp->tcp_unsent > 0) { 8544 tcp->tcp_cork = B_FALSE; 8545 tcp_wput_data(tcp, NULL, B_FALSE); 8546 } 8547 tcp->tcp_cork = onoff; 8548 } 8549 break; 8550 default: 8551 break; 8552 } 8553 break; 8554 case IPPROTO_IP: 8555 if (connp->conn_family != AF_INET) { 8556 *outlenp = 0; 8557 return (EINVAL); 8558 } 8559 switch (name) { 8560 case IP_SEC_OPT: 8561 /* 8562 * We should not allow policy setting after 8563 * we start listening for connections. 8564 */ 8565 if (tcp->tcp_state == TCPS_LISTEN) { 8566 return (EINVAL); 8567 } 8568 break; 8569 } 8570 break; 8571 case IPPROTO_IPV6: 8572 /* 8573 * IPPROTO_IPV6 options are only supported for sockets 8574 * that are using IPv6 on the wire. 8575 */ 8576 if (connp->conn_ipversion != IPV6_VERSION) { 8577 *outlenp = 0; 8578 return (EINVAL); 8579 } 8580 8581 switch (name) { 8582 case IPV6_RECVPKTINFO: 8583 if (!checkonly) { 8584 /* Force it to be sent up with the next msg */ 8585 tcp->tcp_recvifindex = 0; 8586 } 8587 break; 8588 case IPV6_RECVTCLASS: 8589 if (!checkonly) { 8590 /* Force it to be sent up with the next msg */ 8591 tcp->tcp_recvtclass = 0xffffffffU; 8592 } 8593 break; 8594 case IPV6_RECVHOPLIMIT: 8595 if (!checkonly) { 8596 /* Force it to be sent up with the next msg */ 8597 tcp->tcp_recvhops = 0xffffffffU; 8598 } 8599 break; 8600 case IPV6_PKTINFO: 8601 /* This is an extra check for TCP */ 8602 if (inlen == sizeof (struct in6_pktinfo)) { 8603 struct in6_pktinfo *pkti; 8604 8605 pkti = (struct in6_pktinfo *)invalp; 8606 /* 8607 * RFC 3542 states that ipi6_addr must be 8608 * the unspecified address when setting the 8609 * IPV6_PKTINFO sticky socket option on a 8610 * TCP socket. 8611 */ 8612 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8613 return (EINVAL); 8614 } 8615 break; 8616 case IPV6_SEC_OPT: 8617 /* 8618 * We should not allow policy setting after 8619 * we start listening for connections. 8620 */ 8621 if (tcp->tcp_state == TCPS_LISTEN) { 8622 return (EINVAL); 8623 } 8624 break; 8625 } 8626 break; 8627 } 8628 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8629 checkonly, cr); 8630 if (reterr != 0) { 8631 *outlenp = 0; 8632 return (reterr); 8633 } 8634 8635 /* 8636 * Common case of OK return with outval same as inval 8637 */ 8638 if (invalp != outvalp) { 8639 /* don't trust bcopy for identical src/dst */ 8640 (void) bcopy(invalp, outvalp, inlen); 8641 } 8642 *outlenp = inlen; 8643 8644 if (coas.coa_changed & COA_HEADER_CHANGED) { 8645 /* If we are connected we rebuilt the headers */ 8646 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8647 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8648 reterr = tcp_build_hdrs(tcp); 8649 if (reterr != 0) 8650 return (reterr); 8651 } 8652 } 8653 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8654 in6_addr_t nexthop; 8655 8656 /* 8657 * If we are connected we re-cache the information. 8658 * We ignore errors to preserve BSD behavior. 8659 * Note that we don't redo IPsec policy lookup here 8660 * since the final destination (or source) didn't change. 8661 */ 8662 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8663 &connp->conn_faddr_v6, &nexthop); 8664 8665 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8666 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8667 (void) ip_attr_connect(connp, connp->conn_ixa, 8668 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8669 &nexthop, connp->conn_fport, NULL, NULL, 8670 IPDF_VERIFY_DST); 8671 } 8672 } 8673 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8674 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8675 } 8676 if (coas.coa_changed & COA_WROFF_CHANGED) { 8677 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8678 tcps->tcps_wroff_xtra; 8679 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8680 connp->conn_wroff); 8681 } 8682 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8683 if (IPCL_IS_NONSTR(connp)) 8684 proto_set_rx_oob_opt(connp, onoff); 8685 } 8686 return (0); 8687 } 8688 8689 /* ARGSUSED */ 8690 int 8691 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8692 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8693 void *thisdg_attrs, cred_t *cr) 8694 { 8695 conn_t *connp = Q_TO_CONN(q); 8696 8697 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8698 outlenp, outvalp, thisdg_attrs, cr)); 8699 } 8700 8701 int 8702 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8703 const void *optvalp, socklen_t optlen, cred_t *cr) 8704 { 8705 conn_t *connp = (conn_t *)proto_handle; 8706 squeue_t *sqp = connp->conn_sqp; 8707 int error; 8708 8709 ASSERT(connp->conn_upper_handle != NULL); 8710 /* 8711 * Entering the squeue synchronously can result in a context switch, 8712 * which can cause a rather sever performance degradation. So we try to 8713 * handle whatever options we can without entering the squeue. 8714 */ 8715 if (level == IPPROTO_TCP) { 8716 switch (option_name) { 8717 case TCP_NODELAY: 8718 if (optlen != sizeof (int32_t)) 8719 return (EINVAL); 8720 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8721 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8722 connp->conn_tcp->tcp_mss; 8723 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8724 return (0); 8725 default: 8726 break; 8727 } 8728 } 8729 8730 error = squeue_synch_enter(sqp, connp, NULL); 8731 if (error == ENOMEM) { 8732 return (ENOMEM); 8733 } 8734 8735 error = proto_opt_check(level, option_name, optlen, NULL, 8736 tcp_opt_obj.odb_opt_des_arr, 8737 tcp_opt_obj.odb_opt_arr_cnt, 8738 B_TRUE, B_FALSE, cr); 8739 8740 if (error != 0) { 8741 if (error < 0) { 8742 error = proto_tlitosyserr(-error); 8743 } 8744 squeue_synch_exit(sqp, connp); 8745 return (error); 8746 } 8747 8748 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8749 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8750 NULL, cr); 8751 squeue_synch_exit(sqp, connp); 8752 8753 ASSERT(error >= 0); 8754 8755 return (error); 8756 } 8757 8758 /* 8759 * Build/update the tcp header template (in conn_ht_iphc) based on 8760 * conn_xmit_ipp. The headers include ip6_t, any extension 8761 * headers, and the maximum size tcp header (to avoid reallocation 8762 * on the fly for additional tcp options). 8763 * 8764 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8765 * Returns failure if can't allocate memory. 8766 */ 8767 static int 8768 tcp_build_hdrs(tcp_t *tcp) 8769 { 8770 tcp_stack_t *tcps = tcp->tcp_tcps; 8771 conn_t *connp = tcp->tcp_connp; 8772 char buf[TCP_MAX_HDR_LENGTH]; 8773 uint_t buflen; 8774 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8775 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8776 tcpha_t *tcpha; 8777 uint32_t cksum; 8778 int error; 8779 8780 /* 8781 * We might be called after the connection is set up, and we might 8782 * have TS options already in the TCP header. Thus we save any 8783 * existing tcp header. 8784 */ 8785 buflen = connp->conn_ht_ulp_len; 8786 if (buflen != 0) { 8787 bcopy(connp->conn_ht_ulp, buf, buflen); 8788 extralen -= buflen - ulplen; 8789 ulplen = buflen; 8790 } 8791 8792 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8793 mutex_enter(&connp->conn_lock); 8794 error = conn_build_hdr_template(connp, ulplen, extralen, 8795 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8796 mutex_exit(&connp->conn_lock); 8797 if (error != 0) 8798 return (error); 8799 8800 /* 8801 * Any routing header/option has been massaged. The checksum difference 8802 * is stored in conn_sum for later use. 8803 */ 8804 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8805 tcp->tcp_tcpha = tcpha; 8806 8807 /* restore any old tcp header */ 8808 if (buflen != 0) { 8809 bcopy(buf, connp->conn_ht_ulp, buflen); 8810 } else { 8811 tcpha->tha_sum = 0; 8812 tcpha->tha_urp = 0; 8813 tcpha->tha_ack = 0; 8814 tcpha->tha_offset_and_reserved = (5 << 4); 8815 tcpha->tha_lport = connp->conn_lport; 8816 tcpha->tha_fport = connp->conn_fport; 8817 } 8818 8819 /* 8820 * IP wants our header length in the checksum field to 8821 * allow it to perform a single pseudo-header+checksum 8822 * calculation on behalf of TCP. 8823 * Include the adjustment for a source route once IP_OPTIONS is set. 8824 */ 8825 cksum = sizeof (tcpha_t) + connp->conn_sum; 8826 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8827 ASSERT(cksum < 0x10000); 8828 tcpha->tha_sum = htons(cksum); 8829 8830 if (connp->conn_ipversion == IPV4_VERSION) 8831 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8832 else 8833 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8834 8835 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8836 connp->conn_wroff) { 8837 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8838 tcps->tcps_wroff_xtra; 8839 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8840 connp->conn_wroff); 8841 } 8842 return (0); 8843 } 8844 8845 /* Get callback routine passed to nd_load by tcp_param_register */ 8846 /* ARGSUSED */ 8847 static int 8848 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8849 { 8850 tcpparam_t *tcppa = (tcpparam_t *)cp; 8851 8852 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8853 return (0); 8854 } 8855 8856 /* 8857 * Walk through the param array specified registering each element with the 8858 * named dispatch handler. 8859 */ 8860 static boolean_t 8861 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8862 { 8863 for (; cnt-- > 0; tcppa++) { 8864 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8865 if (!nd_load(ndp, tcppa->tcp_param_name, 8866 tcp_param_get, tcp_param_set, 8867 (caddr_t)tcppa)) { 8868 nd_free(ndp); 8869 return (B_FALSE); 8870 } 8871 } 8872 } 8873 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8874 KM_SLEEP); 8875 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8876 sizeof (tcpparam_t)); 8877 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8878 tcp_param_get, tcp_param_set_aligned, 8879 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8880 nd_free(ndp); 8881 return (B_FALSE); 8882 } 8883 if (!nd_load(ndp, "tcp_extra_priv_ports", 8884 tcp_extra_priv_ports_get, NULL, NULL)) { 8885 nd_free(ndp); 8886 return (B_FALSE); 8887 } 8888 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8889 NULL, tcp_extra_priv_ports_add, NULL)) { 8890 nd_free(ndp); 8891 return (B_FALSE); 8892 } 8893 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8894 NULL, tcp_extra_priv_ports_del, NULL)) { 8895 nd_free(ndp); 8896 return (B_FALSE); 8897 } 8898 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8899 tcp_1948_phrase_set, NULL)) { 8900 nd_free(ndp); 8901 return (B_FALSE); 8902 } 8903 8904 8905 if (!nd_load(ndp, "tcp_listener_limit_conf", 8906 tcp_listener_conf_get, NULL, NULL)) { 8907 nd_free(ndp); 8908 return (B_FALSE); 8909 } 8910 if (!nd_load(ndp, "tcp_listener_limit_conf_add", 8911 NULL, tcp_listener_conf_add, NULL)) { 8912 nd_free(ndp); 8913 return (B_FALSE); 8914 } 8915 if (!nd_load(ndp, "tcp_listener_limit_conf_del", 8916 NULL, tcp_listener_conf_del, NULL)) { 8917 nd_free(ndp); 8918 return (B_FALSE); 8919 } 8920 8921 /* 8922 * Dummy ndd variables - only to convey obsolescence information 8923 * through printing of their name (no get or set routines) 8924 * XXX Remove in future releases ? 8925 */ 8926 if (!nd_load(ndp, 8927 "tcp_close_wait_interval(obsoleted - " 8928 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8929 nd_free(ndp); 8930 return (B_FALSE); 8931 } 8932 return (B_TRUE); 8933 } 8934 8935 /* ndd set routine for tcp_wroff_xtra. */ 8936 /* ARGSUSED */ 8937 static int 8938 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8939 cred_t *cr) 8940 { 8941 long new_value; 8942 tcpparam_t *tcppa = (tcpparam_t *)cp; 8943 8944 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8945 new_value < tcppa->tcp_param_min || 8946 new_value > tcppa->tcp_param_max) { 8947 return (EINVAL); 8948 } 8949 /* 8950 * Need to make sure new_value is a multiple of 4. If it is not, 8951 * round it up. For future 64 bit requirement, we actually make it 8952 * a multiple of 8. 8953 */ 8954 if (new_value & 0x7) { 8955 new_value = (new_value & ~0x7) + 0x8; 8956 } 8957 tcppa->tcp_param_val = new_value; 8958 return (0); 8959 } 8960 8961 /* Set callback routine passed to nd_load by tcp_param_register */ 8962 /* ARGSUSED */ 8963 static int 8964 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8965 { 8966 long new_value; 8967 tcpparam_t *tcppa = (tcpparam_t *)cp; 8968 8969 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8970 new_value < tcppa->tcp_param_min || 8971 new_value > tcppa->tcp_param_max) { 8972 return (EINVAL); 8973 } 8974 tcppa->tcp_param_val = new_value; 8975 return (0); 8976 } 8977 8978 static void 8979 tcp_reass_timer(void *arg) 8980 { 8981 conn_t *connp = (conn_t *)arg; 8982 tcp_t *tcp = connp->conn_tcp; 8983 8984 tcp->tcp_reass_tid = 0; 8985 if (tcp->tcp_reass_head == NULL) 8986 return; 8987 ASSERT(tcp->tcp_reass_tail != NULL); 8988 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 8989 tcp_sack_remove(tcp->tcp_sack_list, 8990 TCP_REASS_END(tcp->tcp_reass_tail), &tcp->tcp_num_sack_blk); 8991 } 8992 tcp_close_mpp(&tcp->tcp_reass_head); 8993 tcp->tcp_reass_tail = NULL; 8994 } 8995 8996 /* 8997 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8998 * is filled, return as much as we can. The message passed in may be 8999 * multi-part, chained using b_cont. "start" is the starting sequence 9000 * number for this piece. 9001 */ 9002 static mblk_t * 9003 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 9004 { 9005 uint32_t end; 9006 mblk_t *mp1; 9007 mblk_t *mp2; 9008 mblk_t *next_mp; 9009 uint32_t u1; 9010 tcp_stack_t *tcps = tcp->tcp_tcps; 9011 9012 9013 /* Walk through all the new pieces. */ 9014 do { 9015 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 9016 (uintptr_t)INT_MAX); 9017 end = start + (int)(mp->b_wptr - mp->b_rptr); 9018 next_mp = mp->b_cont; 9019 if (start == end) { 9020 /* Empty. Blast it. */ 9021 freeb(mp); 9022 continue; 9023 } 9024 mp->b_cont = NULL; 9025 TCP_REASS_SET_SEQ(mp, start); 9026 TCP_REASS_SET_END(mp, end); 9027 mp1 = tcp->tcp_reass_tail; 9028 if (!mp1) { 9029 tcp->tcp_reass_tail = mp; 9030 tcp->tcp_reass_head = mp; 9031 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9032 UPDATE_MIB(&tcps->tcps_mib, 9033 tcpInDataUnorderBytes, end - start); 9034 continue; 9035 } 9036 /* New stuff completely beyond tail? */ 9037 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 9038 /* Link it on end. */ 9039 mp1->b_cont = mp; 9040 tcp->tcp_reass_tail = mp; 9041 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 9042 UPDATE_MIB(&tcps->tcps_mib, 9043 tcpInDataUnorderBytes, end - start); 9044 continue; 9045 } 9046 mp1 = tcp->tcp_reass_head; 9047 u1 = TCP_REASS_SEQ(mp1); 9048 /* New stuff at the front? */ 9049 if (SEQ_LT(start, u1)) { 9050 /* Yes... Check for overlap. */ 9051 mp->b_cont = mp1; 9052 tcp->tcp_reass_head = mp; 9053 tcp_reass_elim_overlap(tcp, mp); 9054 continue; 9055 } 9056 /* 9057 * The new piece fits somewhere between the head and tail. 9058 * We find our slot, where mp1 precedes us and mp2 trails. 9059 */ 9060 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 9061 u1 = TCP_REASS_SEQ(mp2); 9062 if (SEQ_LEQ(start, u1)) 9063 break; 9064 } 9065 /* Link ourselves in */ 9066 mp->b_cont = mp2; 9067 mp1->b_cont = mp; 9068 9069 /* Trim overlap with following mblk(s) first */ 9070 tcp_reass_elim_overlap(tcp, mp); 9071 9072 /* Trim overlap with preceding mblk */ 9073 tcp_reass_elim_overlap(tcp, mp1); 9074 9075 } while (start = end, mp = next_mp); 9076 mp1 = tcp->tcp_reass_head; 9077 /* Anything ready to go? */ 9078 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 9079 return (NULL); 9080 /* Eat what we can off the queue */ 9081 for (;;) { 9082 mp = mp1->b_cont; 9083 end = TCP_REASS_END(mp1); 9084 TCP_REASS_SET_SEQ(mp1, 0); 9085 TCP_REASS_SET_END(mp1, 0); 9086 if (!mp) { 9087 tcp->tcp_reass_tail = NULL; 9088 break; 9089 } 9090 if (end != TCP_REASS_SEQ(mp)) { 9091 mp1->b_cont = NULL; 9092 break; 9093 } 9094 mp1 = mp; 9095 } 9096 mp1 = tcp->tcp_reass_head; 9097 tcp->tcp_reass_head = mp; 9098 return (mp1); 9099 } 9100 9101 /* Eliminate any overlap that mp may have over later mblks */ 9102 static void 9103 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 9104 { 9105 uint32_t end; 9106 mblk_t *mp1; 9107 uint32_t u1; 9108 tcp_stack_t *tcps = tcp->tcp_tcps; 9109 9110 end = TCP_REASS_END(mp); 9111 while ((mp1 = mp->b_cont) != NULL) { 9112 u1 = TCP_REASS_SEQ(mp1); 9113 if (!SEQ_GT(end, u1)) 9114 break; 9115 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 9116 mp->b_wptr -= end - u1; 9117 TCP_REASS_SET_END(mp, u1); 9118 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 9119 UPDATE_MIB(&tcps->tcps_mib, 9120 tcpInDataPartDupBytes, end - u1); 9121 break; 9122 } 9123 mp->b_cont = mp1->b_cont; 9124 TCP_REASS_SET_SEQ(mp1, 0); 9125 TCP_REASS_SET_END(mp1, 0); 9126 freeb(mp1); 9127 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 9128 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 9129 } 9130 if (!mp1) 9131 tcp->tcp_reass_tail = mp; 9132 } 9133 9134 static uint_t 9135 tcp_rwnd_reopen(tcp_t *tcp) 9136 { 9137 uint_t ret = 0; 9138 uint_t thwin; 9139 conn_t *connp = tcp->tcp_connp; 9140 9141 /* Learn the latest rwnd information that we sent to the other side. */ 9142 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 9143 << tcp->tcp_rcv_ws; 9144 /* This is peer's calculated send window (our receive window). */ 9145 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 9146 /* 9147 * Increase the receive window to max. But we need to do receiver 9148 * SWS avoidance. This means that we need to check the increase of 9149 * of receive window is at least 1 MSS. 9150 */ 9151 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 9152 /* 9153 * If the window that the other side knows is less than max 9154 * deferred acks segments, send an update immediately. 9155 */ 9156 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 9157 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 9158 ret = TH_ACK_NEEDED; 9159 } 9160 tcp->tcp_rwnd = connp->conn_rcvbuf; 9161 } 9162 return (ret); 9163 } 9164 9165 /* 9166 * Send up all messages queued on tcp_rcv_list. 9167 */ 9168 static uint_t 9169 tcp_rcv_drain(tcp_t *tcp) 9170 { 9171 mblk_t *mp; 9172 uint_t ret = 0; 9173 #ifdef DEBUG 9174 uint_t cnt = 0; 9175 #endif 9176 queue_t *q = tcp->tcp_connp->conn_rq; 9177 9178 /* Can't drain on an eager connection */ 9179 if (tcp->tcp_listener != NULL) 9180 return (ret); 9181 9182 /* Can't be a non-STREAMS connection */ 9183 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 9184 9185 /* No need for the push timer now. */ 9186 if (tcp->tcp_push_tid != 0) { 9187 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 9188 tcp->tcp_push_tid = 0; 9189 } 9190 9191 /* 9192 * Handle two cases here: we are currently fused or we were 9193 * previously fused and have some urgent data to be delivered 9194 * upstream. The latter happens because we either ran out of 9195 * memory or were detached and therefore sending the SIGURG was 9196 * deferred until this point. In either case we pass control 9197 * over to tcp_fuse_rcv_drain() since it may need to complete 9198 * some work. 9199 */ 9200 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 9201 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 9202 tcp->tcp_fused_sigurg_mp != NULL); 9203 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 9204 &tcp->tcp_fused_sigurg_mp)) 9205 return (ret); 9206 } 9207 9208 while ((mp = tcp->tcp_rcv_list) != NULL) { 9209 tcp->tcp_rcv_list = mp->b_next; 9210 mp->b_next = NULL; 9211 #ifdef DEBUG 9212 cnt += msgdsize(mp); 9213 #endif 9214 /* Does this need SSL processing first? */ 9215 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 9216 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 9217 mblk_t *, mp); 9218 tcp_kssl_input(tcp, mp, NULL); 9219 continue; 9220 } 9221 putnext(q, mp); 9222 } 9223 #ifdef DEBUG 9224 ASSERT(cnt == tcp->tcp_rcv_cnt); 9225 #endif 9226 tcp->tcp_rcv_last_head = NULL; 9227 tcp->tcp_rcv_last_tail = NULL; 9228 tcp->tcp_rcv_cnt = 0; 9229 9230 if (canputnext(q)) 9231 return (tcp_rwnd_reopen(tcp)); 9232 9233 return (ret); 9234 } 9235 9236 /* 9237 * Queue data on tcp_rcv_list which is a b_next chain. 9238 * tcp_rcv_last_head/tail is the last element of this chain. 9239 * Each element of the chain is a b_cont chain. 9240 * 9241 * M_DATA messages are added to the current element. 9242 * Other messages are added as new (b_next) elements. 9243 */ 9244 void 9245 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 9246 { 9247 ASSERT(seg_len == msgdsize(mp)); 9248 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 9249 9250 if (is_system_labeled()) { 9251 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 9252 /* 9253 * Provide for protocols above TCP such as RPC. NOPID leaves 9254 * db_cpid unchanged. 9255 * The cred could have already been set. 9256 */ 9257 if (cr != NULL) 9258 mblk_setcred(mp, cr, NOPID); 9259 } 9260 9261 if (tcp->tcp_rcv_list == NULL) { 9262 ASSERT(tcp->tcp_rcv_last_head == NULL); 9263 tcp->tcp_rcv_list = mp; 9264 tcp->tcp_rcv_last_head = mp; 9265 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 9266 tcp->tcp_rcv_last_tail->b_cont = mp; 9267 } else { 9268 tcp->tcp_rcv_last_head->b_next = mp; 9269 tcp->tcp_rcv_last_head = mp; 9270 } 9271 9272 while (mp->b_cont) 9273 mp = mp->b_cont; 9274 9275 tcp->tcp_rcv_last_tail = mp; 9276 tcp->tcp_rcv_cnt += seg_len; 9277 tcp->tcp_rwnd -= seg_len; 9278 } 9279 9280 /* The minimum of smoothed mean deviation in RTO calculation. */ 9281 #define TCP_SD_MIN 400 9282 9283 /* 9284 * Set RTO for this connection. The formula is from Jacobson and Karels' 9285 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9286 * are the same as those in Appendix A.2 of that paper. 9287 * 9288 * m = new measurement 9289 * sa = smoothed RTT average (8 * average estimates). 9290 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9291 */ 9292 static void 9293 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9294 { 9295 long m = TICK_TO_MSEC(rtt); 9296 clock_t sa = tcp->tcp_rtt_sa; 9297 clock_t sv = tcp->tcp_rtt_sd; 9298 clock_t rto; 9299 tcp_stack_t *tcps = tcp->tcp_tcps; 9300 9301 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9302 tcp->tcp_rtt_update++; 9303 9304 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9305 if (sa != 0) { 9306 /* 9307 * Update average estimator: 9308 * new rtt = 7/8 old rtt + 1/8 Error 9309 */ 9310 9311 /* m is now Error in estimate. */ 9312 m -= sa >> 3; 9313 if ((sa += m) <= 0) { 9314 /* 9315 * Don't allow the smoothed average to be negative. 9316 * We use 0 to denote reinitialization of the 9317 * variables. 9318 */ 9319 sa = 1; 9320 } 9321 9322 /* 9323 * Update deviation estimator: 9324 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9325 */ 9326 if (m < 0) 9327 m = -m; 9328 m -= sv >> 2; 9329 sv += m; 9330 } else { 9331 /* 9332 * This follows BSD's implementation. So the reinitialized 9333 * RTO is 3 * m. We cannot go less than 2 because if the 9334 * link is bandwidth dominated, doubling the window size 9335 * during slow start means doubling the RTT. We want to be 9336 * more conservative when we reinitialize our estimates. 3 9337 * is just a convenient number. 9338 */ 9339 sa = m << 3; 9340 sv = m << 1; 9341 } 9342 if (sv < TCP_SD_MIN) { 9343 /* 9344 * We do not know that if sa captures the delay ACK 9345 * effect as in a long train of segments, a receiver 9346 * does not delay its ACKs. So set the minimum of sv 9347 * to be TCP_SD_MIN, which is default to 400 ms, twice 9348 * of BSD DATO. That means the minimum of mean 9349 * deviation is 100 ms. 9350 * 9351 */ 9352 sv = TCP_SD_MIN; 9353 } 9354 tcp->tcp_rtt_sa = sa; 9355 tcp->tcp_rtt_sd = sv; 9356 /* 9357 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9358 * 9359 * Add tcp_rexmit_interval extra in case of extreme environment 9360 * where the algorithm fails to work. The default value of 9361 * tcp_rexmit_interval_extra should be 0. 9362 * 9363 * As we use a finer grained clock than BSD and update 9364 * RTO for every ACKs, add in another .25 of RTT to the 9365 * deviation of RTO to accomodate burstiness of 1/4 of 9366 * window size. 9367 */ 9368 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9369 9370 if (rto > tcps->tcps_rexmit_interval_max) { 9371 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9372 } else if (rto < tcps->tcps_rexmit_interval_min) { 9373 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9374 } else { 9375 tcp->tcp_rto = rto; 9376 } 9377 9378 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9379 tcp->tcp_timer_backoff = 0; 9380 } 9381 9382 /* 9383 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9384 * send queue which starts at the given sequence number. If the given 9385 * sequence number is equal to last valid sequence number (tcp_snxt), the 9386 * returned mblk is the last valid mblk, and off is set to the length of 9387 * that mblk. 9388 * 9389 * send queue which starts at the given seq. no. 9390 * 9391 * Parameters: 9392 * tcp_t *tcp: the tcp instance pointer. 9393 * uint32_t seq: the starting seq. no of the requested segment. 9394 * int32_t *off: after the execution, *off will be the offset to 9395 * the returned mblk which points to the requested seq no. 9396 * It is the caller's responsibility to send in a non-null off. 9397 * 9398 * Return: 9399 * A mblk_t pointer pointing to the requested segment in send queue. 9400 */ 9401 static mblk_t * 9402 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9403 { 9404 int32_t cnt; 9405 mblk_t *mp; 9406 9407 /* Defensive coding. Make sure we don't send incorrect data. */ 9408 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9409 return (NULL); 9410 9411 cnt = seq - tcp->tcp_suna; 9412 mp = tcp->tcp_xmit_head; 9413 while (cnt > 0 && mp != NULL) { 9414 cnt -= mp->b_wptr - mp->b_rptr; 9415 if (cnt <= 0) { 9416 cnt += mp->b_wptr - mp->b_rptr; 9417 break; 9418 } 9419 mp = mp->b_cont; 9420 } 9421 ASSERT(mp != NULL); 9422 *off = cnt; 9423 return (mp); 9424 } 9425 9426 /* 9427 * This function handles all retransmissions if SACK is enabled for this 9428 * connection. First it calculates how many segments can be retransmitted 9429 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9430 * segments. A segment is eligible if sack_cnt for that segment is greater 9431 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9432 * all eligible segments, it checks to see if TCP can send some new segments 9433 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9434 * 9435 * Parameters: 9436 * tcp_t *tcp: the tcp structure of the connection. 9437 * uint_t *flags: in return, appropriate value will be set for 9438 * tcp_input_data(). 9439 */ 9440 static void 9441 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9442 { 9443 notsack_blk_t *notsack_blk; 9444 int32_t usable_swnd; 9445 int32_t mss; 9446 uint32_t seg_len; 9447 mblk_t *xmit_mp; 9448 tcp_stack_t *tcps = tcp->tcp_tcps; 9449 9450 ASSERT(tcp->tcp_sack_info != NULL); 9451 ASSERT(tcp->tcp_notsack_list != NULL); 9452 ASSERT(tcp->tcp_rexmit == B_FALSE); 9453 9454 /* Defensive coding in case there is a bug... */ 9455 if (tcp->tcp_notsack_list == NULL) { 9456 return; 9457 } 9458 notsack_blk = tcp->tcp_notsack_list; 9459 mss = tcp->tcp_mss; 9460 9461 /* 9462 * Limit the num of outstanding data in the network to be 9463 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9464 */ 9465 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9466 9467 /* At least retransmit 1 MSS of data. */ 9468 if (usable_swnd <= 0) { 9469 usable_swnd = mss; 9470 } 9471 9472 /* Make sure no new RTT samples will be taken. */ 9473 tcp->tcp_csuna = tcp->tcp_snxt; 9474 9475 notsack_blk = tcp->tcp_notsack_list; 9476 while (usable_swnd > 0) { 9477 mblk_t *snxt_mp, *tmp_mp; 9478 tcp_seq begin = tcp->tcp_sack_snxt; 9479 tcp_seq end; 9480 int32_t off; 9481 9482 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9483 if (SEQ_GT(notsack_blk->end, begin) && 9484 (notsack_blk->sack_cnt >= 9485 tcps->tcps_dupack_fast_retransmit)) { 9486 end = notsack_blk->end; 9487 if (SEQ_LT(begin, notsack_blk->begin)) { 9488 begin = notsack_blk->begin; 9489 } 9490 break; 9491 } 9492 } 9493 /* 9494 * All holes are filled. Manipulate tcp_cwnd to send more 9495 * if we can. Note that after the SACK recovery, tcp_cwnd is 9496 * set to tcp_cwnd_ssthresh. 9497 */ 9498 if (notsack_blk == NULL) { 9499 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9500 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9501 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9502 ASSERT(tcp->tcp_cwnd > 0); 9503 return; 9504 } else { 9505 usable_swnd = usable_swnd / mss; 9506 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9507 MAX(usable_swnd * mss, mss); 9508 *flags |= TH_XMIT_NEEDED; 9509 return; 9510 } 9511 } 9512 9513 /* 9514 * Note that we may send more than usable_swnd allows here 9515 * because of round off, but no more than 1 MSS of data. 9516 */ 9517 seg_len = end - begin; 9518 if (seg_len > mss) 9519 seg_len = mss; 9520 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9521 ASSERT(snxt_mp != NULL); 9522 /* This should not happen. Defensive coding again... */ 9523 if (snxt_mp == NULL) { 9524 return; 9525 } 9526 9527 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9528 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9529 if (xmit_mp == NULL) 9530 return; 9531 9532 usable_swnd -= seg_len; 9533 tcp->tcp_pipe += seg_len; 9534 tcp->tcp_sack_snxt = begin + seg_len; 9535 9536 tcp_send_data(tcp, xmit_mp); 9537 9538 /* 9539 * Update the send timestamp to avoid false retransmission. 9540 */ 9541 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9542 9543 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9544 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9545 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9546 /* 9547 * Update tcp_rexmit_max to extend this SACK recovery phase. 9548 * This happens when new data sent during fast recovery is 9549 * also lost. If TCP retransmits those new data, it needs 9550 * to extend SACK recover phase to avoid starting another 9551 * fast retransmit/recovery unnecessarily. 9552 */ 9553 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9554 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9555 } 9556 } 9557 } 9558 9559 /* 9560 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9561 * or ICMP errors. 9562 * 9563 * To limit the number of duplicate segments, we limit the number of segment 9564 * to be sent in one time to tcp_snd_burst, the burst variable. 9565 */ 9566 static void 9567 tcp_ss_rexmit(tcp_t *tcp) 9568 { 9569 uint32_t snxt; 9570 uint32_t smax; 9571 int32_t win; 9572 int32_t mss; 9573 int32_t off; 9574 int32_t burst = tcp->tcp_snd_burst; 9575 mblk_t *snxt_mp; 9576 tcp_stack_t *tcps = tcp->tcp_tcps; 9577 9578 /* 9579 * Note that tcp_rexmit can be set even though TCP has retransmitted 9580 * all unack'ed segments. 9581 */ 9582 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9583 smax = tcp->tcp_rexmit_max; 9584 snxt = tcp->tcp_rexmit_nxt; 9585 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9586 snxt = tcp->tcp_suna; 9587 } 9588 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9589 win -= snxt - tcp->tcp_suna; 9590 mss = tcp->tcp_mss; 9591 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9592 9593 while (SEQ_LT(snxt, smax) && (win > 0) && 9594 (burst > 0) && (snxt_mp != NULL)) { 9595 mblk_t *xmit_mp; 9596 mblk_t *old_snxt_mp = snxt_mp; 9597 uint32_t cnt = mss; 9598 9599 if (win < cnt) { 9600 cnt = win; 9601 } 9602 if (SEQ_GT(snxt + cnt, smax)) { 9603 cnt = smax - snxt; 9604 } 9605 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9606 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9607 if (xmit_mp == NULL) 9608 return; 9609 9610 tcp_send_data(tcp, xmit_mp); 9611 9612 snxt += cnt; 9613 win -= cnt; 9614 /* 9615 * Update the send timestamp to avoid false 9616 * retransmission. 9617 */ 9618 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9619 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9620 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9621 9622 tcp->tcp_rexmit_nxt = snxt; 9623 burst--; 9624 } 9625 /* 9626 * If we have transmitted all we have at the time 9627 * we started the retranmission, we can leave 9628 * the rest of the job to tcp_wput_data(). But we 9629 * need to check the send window first. If the 9630 * win is not 0, go on with tcp_wput_data(). 9631 */ 9632 if (SEQ_LT(snxt, smax) || win == 0) { 9633 return; 9634 } 9635 } 9636 /* Only call tcp_wput_data() if there is data to be sent. */ 9637 if (tcp->tcp_unsent) { 9638 tcp_wput_data(tcp, NULL, B_FALSE); 9639 } 9640 } 9641 9642 /* 9643 * Process all TCP option in SYN segment. Note that this function should 9644 * be called after tcp_set_destination() is called so that the necessary info 9645 * from IRE is already set in the tcp structure. 9646 * 9647 * This function sets up the correct tcp_mss value according to the 9648 * MSS option value and our header size. It also sets up the window scale 9649 * and timestamp values, and initialize SACK info blocks. But it does not 9650 * change receive window size after setting the tcp_mss value. The caller 9651 * should do the appropriate change. 9652 */ 9653 void 9654 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9655 { 9656 int options; 9657 tcp_opt_t tcpopt; 9658 uint32_t mss_max; 9659 char *tmp_tcph; 9660 tcp_stack_t *tcps = tcp->tcp_tcps; 9661 conn_t *connp = tcp->tcp_connp; 9662 9663 tcpopt.tcp = NULL; 9664 options = tcp_parse_options(tcpha, &tcpopt); 9665 9666 /* 9667 * Process MSS option. Note that MSS option value does not account 9668 * for IP or TCP options. This means that it is equal to MTU - minimum 9669 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9670 * IPv6. 9671 */ 9672 if (!(options & TCP_OPT_MSS_PRESENT)) { 9673 if (connp->conn_ipversion == IPV4_VERSION) 9674 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9675 else 9676 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9677 } else { 9678 if (connp->conn_ipversion == IPV4_VERSION) 9679 mss_max = tcps->tcps_mss_max_ipv4; 9680 else 9681 mss_max = tcps->tcps_mss_max_ipv6; 9682 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9683 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9684 else if (tcpopt.tcp_opt_mss > mss_max) 9685 tcpopt.tcp_opt_mss = mss_max; 9686 } 9687 9688 /* Process Window Scale option. */ 9689 if (options & TCP_OPT_WSCALE_PRESENT) { 9690 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9691 tcp->tcp_snd_ws_ok = B_TRUE; 9692 } else { 9693 tcp->tcp_snd_ws = B_FALSE; 9694 tcp->tcp_snd_ws_ok = B_FALSE; 9695 tcp->tcp_rcv_ws = B_FALSE; 9696 } 9697 9698 /* Process Timestamp option. */ 9699 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9700 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9701 tmp_tcph = (char *)tcp->tcp_tcpha; 9702 9703 tcp->tcp_snd_ts_ok = B_TRUE; 9704 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9705 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9706 ASSERT(OK_32PTR(tmp_tcph)); 9707 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9708 9709 /* Fill in our template header with basic timestamp option. */ 9710 tmp_tcph += connp->conn_ht_ulp_len; 9711 tmp_tcph[0] = TCPOPT_NOP; 9712 tmp_tcph[1] = TCPOPT_NOP; 9713 tmp_tcph[2] = TCPOPT_TSTAMP; 9714 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9715 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9716 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9717 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9718 } else { 9719 tcp->tcp_snd_ts_ok = B_FALSE; 9720 } 9721 9722 /* 9723 * Process SACK options. If SACK is enabled for this connection, 9724 * then allocate the SACK info structure. Note the following ways 9725 * when tcp_snd_sack_ok is set to true. 9726 * 9727 * For active connection: in tcp_set_destination() called in 9728 * tcp_connect(). 9729 * 9730 * For passive connection: in tcp_set_destination() called in 9731 * tcp_input_listener(). 9732 * 9733 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9734 * That check makes sure that if we did not send a SACK OK option, 9735 * we will not enable SACK for this connection even though the other 9736 * side sends us SACK OK option. For active connection, the SACK 9737 * info structure has already been allocated. So we need to free 9738 * it if SACK is disabled. 9739 */ 9740 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9741 (tcp->tcp_snd_sack_ok || 9742 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9743 /* This should be true only in the passive case. */ 9744 if (tcp->tcp_sack_info == NULL) { 9745 ASSERT(TCP_IS_DETACHED(tcp)); 9746 tcp->tcp_sack_info = 9747 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9748 } 9749 if (tcp->tcp_sack_info == NULL) { 9750 tcp->tcp_snd_sack_ok = B_FALSE; 9751 } else { 9752 tcp->tcp_snd_sack_ok = B_TRUE; 9753 if (tcp->tcp_snd_ts_ok) { 9754 tcp->tcp_max_sack_blk = 3; 9755 } else { 9756 tcp->tcp_max_sack_blk = 4; 9757 } 9758 } 9759 } else { 9760 /* 9761 * Resetting tcp_snd_sack_ok to B_FALSE so that 9762 * no SACK info will be used for this 9763 * connection. This assumes that SACK usage 9764 * permission is negotiated. This may need 9765 * to be changed once this is clarified. 9766 */ 9767 if (tcp->tcp_sack_info != NULL) { 9768 ASSERT(tcp->tcp_notsack_list == NULL); 9769 kmem_cache_free(tcp_sack_info_cache, 9770 tcp->tcp_sack_info); 9771 tcp->tcp_sack_info = NULL; 9772 } 9773 tcp->tcp_snd_sack_ok = B_FALSE; 9774 } 9775 9776 /* 9777 * Now we know the exact TCP/IP header length, subtract 9778 * that from tcp_mss to get our side's MSS. 9779 */ 9780 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9781 9782 /* 9783 * Here we assume that the other side's header size will be equal to 9784 * our header size. We calculate the real MSS accordingly. Need to 9785 * take into additional stuffs IPsec puts in. 9786 * 9787 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9788 */ 9789 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9790 tcp->tcp_ipsec_overhead - 9791 ((connp->conn_ipversion == IPV4_VERSION ? 9792 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9793 9794 /* 9795 * Set MSS to the smaller one of both ends of the connection. 9796 * We should not have called tcp_mss_set() before, but our 9797 * side of the MSS should have been set to a proper value 9798 * by tcp_set_destination(). tcp_mss_set() will also set up the 9799 * STREAM head parameters properly. 9800 * 9801 * If we have a larger-than-16-bit window but the other side 9802 * didn't want to do window scale, tcp_rwnd_set() will take 9803 * care of that. 9804 */ 9805 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9806 9807 /* 9808 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9809 * updated properly. 9810 */ 9811 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9812 } 9813 9814 /* 9815 * Sends the T_CONN_IND to the listener. The caller calls this 9816 * functions via squeue to get inside the listener's perimeter 9817 * once the 3 way hand shake is done a T_CONN_IND needs to be 9818 * sent. As an optimization, the caller can call this directly 9819 * if listener's perimeter is same as eager's. 9820 */ 9821 /* ARGSUSED */ 9822 void 9823 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9824 { 9825 conn_t *lconnp = (conn_t *)arg; 9826 tcp_t *listener = lconnp->conn_tcp; 9827 tcp_t *tcp; 9828 struct T_conn_ind *conn_ind; 9829 ipaddr_t *addr_cache; 9830 boolean_t need_send_conn_ind = B_FALSE; 9831 tcp_stack_t *tcps = listener->tcp_tcps; 9832 9833 /* retrieve the eager */ 9834 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9835 ASSERT(conn_ind->OPT_offset != 0 && 9836 conn_ind->OPT_length == sizeof (intptr_t)); 9837 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9838 conn_ind->OPT_length); 9839 9840 /* 9841 * TLI/XTI applications will get confused by 9842 * sending eager as an option since it violates 9843 * the option semantics. So remove the eager as 9844 * option since TLI/XTI app doesn't need it anyway. 9845 */ 9846 if (!TCP_IS_SOCKET(listener)) { 9847 conn_ind->OPT_length = 0; 9848 conn_ind->OPT_offset = 0; 9849 } 9850 if (listener->tcp_state != TCPS_LISTEN) { 9851 /* 9852 * If listener has closed, it would have caused a 9853 * a cleanup/blowoff to happen for the eager. We 9854 * just need to return. 9855 */ 9856 freemsg(mp); 9857 return; 9858 } 9859 9860 9861 /* 9862 * if the conn_req_q is full defer passing up the 9863 * T_CONN_IND until space is availabe after t_accept() 9864 * processing 9865 */ 9866 mutex_enter(&listener->tcp_eager_lock); 9867 9868 /* 9869 * Take the eager out, if it is in the list of droppable eagers 9870 * as we are here because the 3W handshake is over. 9871 */ 9872 MAKE_UNDROPPABLE(tcp); 9873 9874 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9875 tcp_t *tail; 9876 9877 /* 9878 * The eager already has an extra ref put in tcp_input_data 9879 * so that it stays till accept comes back even though it 9880 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9881 */ 9882 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9883 listener->tcp_conn_req_cnt_q0--; 9884 listener->tcp_conn_req_cnt_q++; 9885 9886 /* Move from SYN_RCVD to ESTABLISHED list */ 9887 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9888 tcp->tcp_eager_prev_q0; 9889 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9890 tcp->tcp_eager_next_q0; 9891 tcp->tcp_eager_prev_q0 = NULL; 9892 tcp->tcp_eager_next_q0 = NULL; 9893 9894 /* 9895 * Insert at end of the queue because sockfs 9896 * sends down T_CONN_RES in chronological 9897 * order. Leaving the older conn indications 9898 * at front of the queue helps reducing search 9899 * time. 9900 */ 9901 tail = listener->tcp_eager_last_q; 9902 if (tail != NULL) 9903 tail->tcp_eager_next_q = tcp; 9904 else 9905 listener->tcp_eager_next_q = tcp; 9906 listener->tcp_eager_last_q = tcp; 9907 tcp->tcp_eager_next_q = NULL; 9908 /* 9909 * Delay sending up the T_conn_ind until we are 9910 * done with the eager. Once we have have sent up 9911 * the T_conn_ind, the accept can potentially complete 9912 * any time and release the refhold we have on the eager. 9913 */ 9914 need_send_conn_ind = B_TRUE; 9915 } else { 9916 /* 9917 * Defer connection on q0 and set deferred 9918 * connection bit true 9919 */ 9920 tcp->tcp_conn_def_q0 = B_TRUE; 9921 9922 /* take tcp out of q0 ... */ 9923 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9924 tcp->tcp_eager_next_q0; 9925 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9926 tcp->tcp_eager_prev_q0; 9927 9928 /* ... and place it at the end of q0 */ 9929 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9930 tcp->tcp_eager_next_q0 = listener; 9931 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9932 listener->tcp_eager_prev_q0 = tcp; 9933 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9934 } 9935 9936 /* we have timed out before */ 9937 if (tcp->tcp_syn_rcvd_timeout != 0) { 9938 tcp->tcp_syn_rcvd_timeout = 0; 9939 listener->tcp_syn_rcvd_timeout--; 9940 if (listener->tcp_syn_defense && 9941 listener->tcp_syn_rcvd_timeout <= 9942 (tcps->tcps_conn_req_max_q0 >> 5) && 9943 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9944 listener->tcp_last_rcv_lbolt)) { 9945 /* 9946 * Turn off the defense mode if we 9947 * believe the SYN attack is over. 9948 */ 9949 listener->tcp_syn_defense = B_FALSE; 9950 if (listener->tcp_ip_addr_cache) { 9951 kmem_free((void *)listener->tcp_ip_addr_cache, 9952 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9953 listener->tcp_ip_addr_cache = NULL; 9954 } 9955 } 9956 } 9957 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9958 if (addr_cache != NULL) { 9959 /* 9960 * We have finished a 3-way handshake with this 9961 * remote host. This proves the IP addr is good. 9962 * Cache it! 9963 */ 9964 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9965 tcp->tcp_connp->conn_faddr_v4; 9966 } 9967 mutex_exit(&listener->tcp_eager_lock); 9968 if (need_send_conn_ind) 9969 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9970 } 9971 9972 /* 9973 * Send the newconn notification to ulp. The eager is blown off if the 9974 * notification fails. 9975 */ 9976 static void 9977 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9978 { 9979 if (IPCL_IS_NONSTR(lconnp)) { 9980 cred_t *cr; 9981 pid_t cpid = NOPID; 9982 9983 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9984 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9985 lconnp->conn_tcp); 9986 9987 cr = msg_getcred(mp, &cpid); 9988 9989 /* Keep the message around in case of a fallback to TPI */ 9990 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9991 /* 9992 * Notify the ULP about the newconn. It is guaranteed that no 9993 * tcp_accept() call will be made for the eager if the 9994 * notification fails, so it's safe to blow it off in that 9995 * case. 9996 * 9997 * The upper handle will be assigned when tcp_accept() is 9998 * called. 9999 */ 10000 if ((*lconnp->conn_upcalls->su_newconn) 10001 (lconnp->conn_upper_handle, 10002 (sock_lower_handle_t)econnp, 10003 &sock_tcp_downcalls, cr, cpid, 10004 &econnp->conn_upcalls) == NULL) { 10005 /* Failed to allocate a socket */ 10006 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 10007 tcpEstabResets); 10008 (void) tcp_eager_blowoff(lconnp->conn_tcp, 10009 econnp->conn_tcp->tcp_conn_req_seqnum); 10010 } 10011 } else { 10012 putnext(lconnp->conn_rq, mp); 10013 } 10014 } 10015 10016 /* 10017 * Handle a packet that has been reclassified by TCP. 10018 * This function drops the ref on connp that the caller had. 10019 */ 10020 static void 10021 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 10022 { 10023 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 10024 10025 if (connp->conn_incoming_ifindex != 0 && 10026 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 10027 freemsg(mp); 10028 CONN_DEC_REF(connp); 10029 return; 10030 } 10031 10032 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 10033 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 10034 ip6_t *ip6h; 10035 ipha_t *ipha; 10036 10037 if (ira->ira_flags & IRAF_IS_IPV4) { 10038 ipha = (ipha_t *)mp->b_rptr; 10039 ip6h = NULL; 10040 } else { 10041 ipha = NULL; 10042 ip6h = (ip6_t *)mp->b_rptr; 10043 } 10044 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 10045 if (mp == NULL) { 10046 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 10047 /* Note that mp is NULL */ 10048 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 10049 CONN_DEC_REF(connp); 10050 return; 10051 } 10052 } 10053 10054 if (IPCL_IS_TCP(connp)) { 10055 /* 10056 * do not drain, certain use cases can blow 10057 * the stack 10058 */ 10059 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10060 connp->conn_recv, connp, ira, 10061 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 10062 } else { 10063 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 10064 (connp->conn_recv)(connp, mp, NULL, 10065 ira); 10066 CONN_DEC_REF(connp); 10067 } 10068 10069 } 10070 10071 boolean_t tcp_outbound_squeue_switch = B_FALSE; 10072 10073 /* 10074 * Handle M_DATA messages from IP. Its called directly from IP via 10075 * squeue for received IP packets. 10076 * 10077 * The first argument is always the connp/tcp to which the mp belongs. 10078 * There are no exceptions to this rule. The caller has already put 10079 * a reference on this connp/tcp and once tcp_input_data() returns, 10080 * the squeue will do the refrele. 10081 * 10082 * The TH_SYN for the listener directly go to tcp_input_listener via 10083 * squeue. ICMP errors go directly to tcp_icmp_input(). 10084 * 10085 * sqp: NULL = recursive, sqp != NULL means called from squeue 10086 */ 10087 void 10088 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 10089 { 10090 int32_t bytes_acked; 10091 int32_t gap; 10092 mblk_t *mp1; 10093 uint_t flags; 10094 uint32_t new_swnd = 0; 10095 uchar_t *iphdr; 10096 uchar_t *rptr; 10097 int32_t rgap; 10098 uint32_t seg_ack; 10099 int seg_len; 10100 uint_t ip_hdr_len; 10101 uint32_t seg_seq; 10102 tcpha_t *tcpha; 10103 int urp; 10104 tcp_opt_t tcpopt; 10105 ip_pkt_t ipp; 10106 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 10107 uint32_t cwnd; 10108 uint32_t add; 10109 int npkt; 10110 int mss; 10111 conn_t *connp = (conn_t *)arg; 10112 squeue_t *sqp = (squeue_t *)arg2; 10113 tcp_t *tcp = connp->conn_tcp; 10114 tcp_stack_t *tcps = tcp->tcp_tcps; 10115 10116 /* 10117 * RST from fused tcp loopback peer should trigger an unfuse. 10118 */ 10119 if (tcp->tcp_fused) { 10120 TCP_STAT(tcps, tcp_fusion_aborted); 10121 tcp_unfuse(tcp); 10122 } 10123 10124 iphdr = mp->b_rptr; 10125 rptr = mp->b_rptr; 10126 ASSERT(OK_32PTR(rptr)); 10127 10128 ip_hdr_len = ira->ira_ip_hdr_length; 10129 if (connp->conn_recv_ancillary.crb_all != 0) { 10130 /* 10131 * Record packet information in the ip_pkt_t 10132 */ 10133 ipp.ipp_fields = 0; 10134 if (ira->ira_flags & IRAF_IS_IPV4) { 10135 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 10136 B_FALSE); 10137 } else { 10138 uint8_t nexthdrp; 10139 10140 /* 10141 * IPv6 packets can only be received by applications 10142 * that are prepared to receive IPv6 addresses. 10143 * The IP fanout must ensure this. 10144 */ 10145 ASSERT(connp->conn_family == AF_INET6); 10146 10147 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 10148 &nexthdrp); 10149 ASSERT(nexthdrp == IPPROTO_TCP); 10150 10151 /* Could have caused a pullup? */ 10152 iphdr = mp->b_rptr; 10153 rptr = mp->b_rptr; 10154 } 10155 } 10156 ASSERT(DB_TYPE(mp) == M_DATA); 10157 ASSERT(mp->b_next == NULL); 10158 10159 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10160 seg_seq = ntohl(tcpha->tha_seq); 10161 seg_ack = ntohl(tcpha->tha_ack); 10162 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 10163 seg_len = (int)(mp->b_wptr - rptr) - 10164 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 10165 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 10166 do { 10167 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 10168 (uintptr_t)INT_MAX); 10169 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 10170 } while ((mp1 = mp1->b_cont) != NULL && 10171 mp1->b_datap->db_type == M_DATA); 10172 } 10173 10174 if (tcp->tcp_state == TCPS_TIME_WAIT) { 10175 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 10176 seg_len, tcpha, ira); 10177 return; 10178 } 10179 10180 if (sqp != NULL) { 10181 /* 10182 * This is the correct place to update tcp_last_recv_time. Note 10183 * that it is also updated for tcp structure that belongs to 10184 * global and listener queues which do not really need updating. 10185 * But that should not cause any harm. And it is updated for 10186 * all kinds of incoming segments, not only for data segments. 10187 */ 10188 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 10189 } 10190 10191 flags = (unsigned int)tcpha->tha_flags & 0xFF; 10192 10193 BUMP_LOCAL(tcp->tcp_ibsegs); 10194 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10195 10196 if ((flags & TH_URG) && sqp != NULL) { 10197 /* 10198 * TCP can't handle urgent pointers that arrive before 10199 * the connection has been accept()ed since it can't 10200 * buffer OOB data. Discard segment if this happens. 10201 * 10202 * We can't just rely on a non-null tcp_listener to indicate 10203 * that the accept() has completed since unlinking of the 10204 * eager and completion of the accept are not atomic. 10205 * tcp_detached, when it is not set (B_FALSE) indicates 10206 * that the accept() has completed. 10207 * 10208 * Nor can it reassemble urgent pointers, so discard 10209 * if it's not the next segment expected. 10210 * 10211 * Otherwise, collapse chain into one mblk (discard if 10212 * that fails). This makes sure the headers, retransmitted 10213 * data, and new data all are in the same mblk. 10214 */ 10215 ASSERT(mp != NULL); 10216 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 10217 freemsg(mp); 10218 return; 10219 } 10220 /* Update pointers into message */ 10221 iphdr = rptr = mp->b_rptr; 10222 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 10223 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 10224 /* 10225 * Since we can't handle any data with this urgent 10226 * pointer that is out of sequence, we expunge 10227 * the data. This allows us to still register 10228 * the urgent mark and generate the M_PCSIG, 10229 * which we can do. 10230 */ 10231 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10232 seg_len = 0; 10233 } 10234 } 10235 10236 switch (tcp->tcp_state) { 10237 case TCPS_SYN_SENT: 10238 if (connp->conn_final_sqp == NULL && 10239 tcp_outbound_squeue_switch && sqp != NULL) { 10240 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 10241 connp->conn_final_sqp = sqp; 10242 if (connp->conn_final_sqp != connp->conn_sqp) { 10243 DTRACE_PROBE1(conn__final__sqp__switch, 10244 conn_t *, connp); 10245 CONN_INC_REF(connp); 10246 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 10247 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 10248 tcp_input_data, connp, ira, ip_squeue_flag, 10249 SQTAG_CONNECT_FINISH); 10250 return; 10251 } 10252 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 10253 } 10254 if (flags & TH_ACK) { 10255 /* 10256 * Note that our stack cannot send data before a 10257 * connection is established, therefore the 10258 * following check is valid. Otherwise, it has 10259 * to be changed. 10260 */ 10261 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 10262 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10263 freemsg(mp); 10264 if (flags & TH_RST) 10265 return; 10266 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 10267 tcp, seg_ack, 0, TH_RST); 10268 return; 10269 } 10270 ASSERT(tcp->tcp_suna + 1 == seg_ack); 10271 } 10272 if (flags & TH_RST) { 10273 freemsg(mp); 10274 if (flags & TH_ACK) 10275 (void) tcp_clean_death(tcp, 10276 ECONNREFUSED, 13); 10277 return; 10278 } 10279 if (!(flags & TH_SYN)) { 10280 freemsg(mp); 10281 return; 10282 } 10283 10284 /* Process all TCP options. */ 10285 tcp_process_options(tcp, tcpha); 10286 /* 10287 * The following changes our rwnd to be a multiple of the 10288 * MIN(peer MSS, our MSS) for performance reason. 10289 */ 10290 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10291 tcp->tcp_mss)); 10292 10293 /* Is the other end ECN capable? */ 10294 if (tcp->tcp_ecn_ok) { 10295 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10296 tcp->tcp_ecn_ok = B_FALSE; 10297 } 10298 } 10299 /* 10300 * Clear ECN flags because it may interfere with later 10301 * processing. 10302 */ 10303 flags &= ~(TH_ECE|TH_CWR); 10304 10305 tcp->tcp_irs = seg_seq; 10306 tcp->tcp_rack = seg_seq; 10307 tcp->tcp_rnxt = seg_seq + 1; 10308 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10309 if (!TCP_IS_DETACHED(tcp)) { 10310 /* Allocate room for SACK options if needed. */ 10311 connp->conn_wroff = connp->conn_ht_iphc_len; 10312 if (tcp->tcp_snd_sack_ok) 10313 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10314 if (!tcp->tcp_loopback) 10315 connp->conn_wroff += tcps->tcps_wroff_xtra; 10316 10317 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10318 connp->conn_wroff); 10319 } 10320 if (flags & TH_ACK) { 10321 /* 10322 * If we can't get the confirmation upstream, pretend 10323 * we didn't even see this one. 10324 * 10325 * XXX: how can we pretend we didn't see it if we 10326 * have updated rnxt et. al. 10327 * 10328 * For loopback we defer sending up the T_CONN_CON 10329 * until after some checks below. 10330 */ 10331 mp1 = NULL; 10332 /* 10333 * tcp_sendmsg() checks tcp_state without entering 10334 * the squeue so tcp_state should be updated before 10335 * sending up connection confirmation 10336 */ 10337 tcp->tcp_state = TCPS_ESTABLISHED; 10338 if (!tcp_conn_con(tcp, iphdr, mp, 10339 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10340 tcp->tcp_state = TCPS_SYN_SENT; 10341 freemsg(mp); 10342 return; 10343 } 10344 /* SYN was acked - making progress */ 10345 tcp->tcp_ip_forward_progress = B_TRUE; 10346 10347 /* One for the SYN */ 10348 tcp->tcp_suna = tcp->tcp_iss + 1; 10349 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10350 10351 /* 10352 * If SYN was retransmitted, need to reset all 10353 * retransmission info. This is because this 10354 * segment will be treated as a dup ACK. 10355 */ 10356 if (tcp->tcp_rexmit) { 10357 tcp->tcp_rexmit = B_FALSE; 10358 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10359 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10360 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10361 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10362 tcp->tcp_ms_we_have_waited = 0; 10363 10364 /* 10365 * Set tcp_cwnd back to 1 MSS, per 10366 * recommendation from 10367 * draft-floyd-incr-init-win-01.txt, 10368 * Increasing TCP's Initial Window. 10369 */ 10370 tcp->tcp_cwnd = tcp->tcp_mss; 10371 } 10372 10373 tcp->tcp_swl1 = seg_seq; 10374 tcp->tcp_swl2 = seg_ack; 10375 10376 new_swnd = ntohs(tcpha->tha_win); 10377 tcp->tcp_swnd = new_swnd; 10378 if (new_swnd > tcp->tcp_max_swnd) 10379 tcp->tcp_max_swnd = new_swnd; 10380 10381 /* 10382 * Always send the three-way handshake ack immediately 10383 * in order to make the connection complete as soon as 10384 * possible on the accepting host. 10385 */ 10386 flags |= TH_ACK_NEEDED; 10387 10388 /* 10389 * Special case for loopback. At this point we have 10390 * received SYN-ACK from the remote endpoint. In 10391 * order to ensure that both endpoints reach the 10392 * fused state prior to any data exchange, the final 10393 * ACK needs to be sent before we indicate T_CONN_CON 10394 * to the module upstream. 10395 */ 10396 if (tcp->tcp_loopback) { 10397 mblk_t *ack_mp; 10398 10399 ASSERT(!tcp->tcp_unfusable); 10400 ASSERT(mp1 != NULL); 10401 /* 10402 * For loopback, we always get a pure SYN-ACK 10403 * and only need to send back the final ACK 10404 * with no data (this is because the other 10405 * tcp is ours and we don't do T/TCP). This 10406 * final ACK triggers the passive side to 10407 * perform fusion in ESTABLISHED state. 10408 */ 10409 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10410 if (tcp->tcp_ack_tid != 0) { 10411 (void) TCP_TIMER_CANCEL(tcp, 10412 tcp->tcp_ack_tid); 10413 tcp->tcp_ack_tid = 0; 10414 } 10415 tcp_send_data(tcp, ack_mp); 10416 BUMP_LOCAL(tcp->tcp_obsegs); 10417 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10418 10419 if (!IPCL_IS_NONSTR(connp)) { 10420 /* Send up T_CONN_CON */ 10421 if (ira->ira_cred != NULL) { 10422 mblk_setcred(mp1, 10423 ira->ira_cred, 10424 ira->ira_cpid); 10425 } 10426 putnext(connp->conn_rq, mp1); 10427 } else { 10428 (*connp->conn_upcalls-> 10429 su_connected) 10430 (connp->conn_upper_handle, 10431 tcp->tcp_connid, 10432 ira->ira_cred, 10433 ira->ira_cpid); 10434 freemsg(mp1); 10435 } 10436 10437 freemsg(mp); 10438 return; 10439 } 10440 /* 10441 * Forget fusion; we need to handle more 10442 * complex cases below. Send the deferred 10443 * T_CONN_CON message upstream and proceed 10444 * as usual. Mark this tcp as not capable 10445 * of fusion. 10446 */ 10447 TCP_STAT(tcps, tcp_fusion_unfusable); 10448 tcp->tcp_unfusable = B_TRUE; 10449 if (!IPCL_IS_NONSTR(connp)) { 10450 if (ira->ira_cred != NULL) { 10451 mblk_setcred(mp1, ira->ira_cred, 10452 ira->ira_cpid); 10453 } 10454 putnext(connp->conn_rq, mp1); 10455 } else { 10456 (*connp->conn_upcalls->su_connected) 10457 (connp->conn_upper_handle, 10458 tcp->tcp_connid, ira->ira_cred, 10459 ira->ira_cpid); 10460 freemsg(mp1); 10461 } 10462 } 10463 10464 /* 10465 * Check to see if there is data to be sent. If 10466 * yes, set the transmit flag. Then check to see 10467 * if received data processing needs to be done. 10468 * If not, go straight to xmit_check. This short 10469 * cut is OK as we don't support T/TCP. 10470 */ 10471 if (tcp->tcp_unsent) 10472 flags |= TH_XMIT_NEEDED; 10473 10474 if (seg_len == 0 && !(flags & TH_URG)) { 10475 freemsg(mp); 10476 goto xmit_check; 10477 } 10478 10479 flags &= ~TH_SYN; 10480 seg_seq++; 10481 break; 10482 } 10483 tcp->tcp_state = TCPS_SYN_RCVD; 10484 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10485 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10486 if (mp1 != NULL) { 10487 tcp_send_data(tcp, mp1); 10488 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10489 } 10490 freemsg(mp); 10491 return; 10492 case TCPS_SYN_RCVD: 10493 if (flags & TH_ACK) { 10494 /* 10495 * In this state, a SYN|ACK packet is either bogus 10496 * because the other side must be ACKing our SYN which 10497 * indicates it has seen the ACK for their SYN and 10498 * shouldn't retransmit it or we're crossing SYNs 10499 * on active open. 10500 */ 10501 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10502 freemsg(mp); 10503 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10504 tcp, seg_ack, 0, TH_RST); 10505 return; 10506 } 10507 /* 10508 * NOTE: RFC 793 pg. 72 says this should be 10509 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10510 * but that would mean we have an ack that ignored 10511 * our SYN. 10512 */ 10513 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10514 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10515 freemsg(mp); 10516 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10517 tcp, seg_ack, 0, TH_RST); 10518 return; 10519 } 10520 /* 10521 * No sane TCP stack will send such a small window 10522 * without receiving any data. Just drop this invalid 10523 * ACK. We also shorten the abort timeout in case 10524 * this is an attack. 10525 */ 10526 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 10527 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 10528 freemsg(mp); 10529 TCP_STAT(tcps, tcp_zwin_ack_syn); 10530 tcp->tcp_second_ctimer_threshold = 10531 tcp_early_abort * SECONDS; 10532 return; 10533 } 10534 } 10535 break; 10536 case TCPS_LISTEN: 10537 /* 10538 * Only a TLI listener can come through this path when a 10539 * acceptor is going back to be a listener and a packet 10540 * for the acceptor hits the classifier. For a socket 10541 * listener, this can never happen because a listener 10542 * can never accept connection on itself and hence a 10543 * socket acceptor can not go back to being a listener. 10544 */ 10545 ASSERT(!TCP_IS_SOCKET(tcp)); 10546 /*FALLTHRU*/ 10547 case TCPS_CLOSED: 10548 case TCPS_BOUND: { 10549 conn_t *new_connp; 10550 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10551 10552 /* 10553 * Don't accept any input on a closed tcp as this TCP logically 10554 * does not exist on the system. Don't proceed further with 10555 * this TCP. For instance, this packet could trigger another 10556 * close of this tcp which would be disastrous for tcp_refcnt. 10557 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10558 * be called at most once on a TCP. In this case we need to 10559 * refeed the packet into the classifier and figure out where 10560 * the packet should go. 10561 */ 10562 new_connp = ipcl_classify(mp, ira, ipst); 10563 if (new_connp != NULL) { 10564 /* Drops ref on new_connp */ 10565 tcp_reinput(new_connp, mp, ira, ipst); 10566 return; 10567 } 10568 /* We failed to classify. For now just drop the packet */ 10569 freemsg(mp); 10570 return; 10571 } 10572 case TCPS_IDLE: 10573 /* 10574 * Handle the case where the tcp_clean_death() has happened 10575 * on a connection (application hasn't closed yet) but a packet 10576 * was already queued on squeue before tcp_clean_death() 10577 * was processed. Calling tcp_clean_death() twice on same 10578 * connection can result in weird behaviour. 10579 */ 10580 freemsg(mp); 10581 return; 10582 default: 10583 break; 10584 } 10585 10586 /* 10587 * Already on the correct queue/perimeter. 10588 * If this is a detached connection and not an eager 10589 * connection hanging off a listener then new data 10590 * (past the FIN) will cause a reset. 10591 * We do a special check here where it 10592 * is out of the main line, rather than check 10593 * if we are detached every time we see new 10594 * data down below. 10595 */ 10596 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10597 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10598 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10599 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10600 10601 freemsg(mp); 10602 /* 10603 * This could be an SSL closure alert. We're detached so just 10604 * acknowledge it this last time. 10605 */ 10606 if (tcp->tcp_kssl_ctx != NULL) { 10607 kssl_release_ctx(tcp->tcp_kssl_ctx); 10608 tcp->tcp_kssl_ctx = NULL; 10609 10610 tcp->tcp_rnxt += seg_len; 10611 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10612 flags |= TH_ACK_NEEDED; 10613 goto ack_check; 10614 } 10615 10616 tcp_xmit_ctl("new data when detached", tcp, 10617 tcp->tcp_snxt, 0, TH_RST); 10618 (void) tcp_clean_death(tcp, EPROTO, 12); 10619 return; 10620 } 10621 10622 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10623 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10624 new_swnd = ntohs(tcpha->tha_win) << 10625 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10626 10627 if (tcp->tcp_snd_ts_ok) { 10628 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10629 /* 10630 * This segment is not acceptable. 10631 * Drop it and send back an ACK. 10632 */ 10633 freemsg(mp); 10634 flags |= TH_ACK_NEEDED; 10635 goto ack_check; 10636 } 10637 } else if (tcp->tcp_snd_sack_ok) { 10638 ASSERT(tcp->tcp_sack_info != NULL); 10639 tcpopt.tcp = tcp; 10640 /* 10641 * SACK info in already updated in tcp_parse_options. Ignore 10642 * all other TCP options... 10643 */ 10644 (void) tcp_parse_options(tcpha, &tcpopt); 10645 } 10646 try_again:; 10647 mss = tcp->tcp_mss; 10648 gap = seg_seq - tcp->tcp_rnxt; 10649 rgap = tcp->tcp_rwnd - (gap + seg_len); 10650 /* 10651 * gap is the amount of sequence space between what we expect to see 10652 * and what we got for seg_seq. A positive value for gap means 10653 * something got lost. A negative value means we got some old stuff. 10654 */ 10655 if (gap < 0) { 10656 /* Old stuff present. Is the SYN in there? */ 10657 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10658 (seg_len != 0)) { 10659 flags &= ~TH_SYN; 10660 seg_seq++; 10661 urp--; 10662 /* Recompute the gaps after noting the SYN. */ 10663 goto try_again; 10664 } 10665 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10666 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10667 (seg_len > -gap ? -gap : seg_len)); 10668 /* Remove the old stuff from seg_len. */ 10669 seg_len += gap; 10670 /* 10671 * Anything left? 10672 * Make sure to check for unack'd FIN when rest of data 10673 * has been previously ack'd. 10674 */ 10675 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10676 /* 10677 * Resets are only valid if they lie within our offered 10678 * window. If the RST bit is set, we just ignore this 10679 * segment. 10680 */ 10681 if (flags & TH_RST) { 10682 freemsg(mp); 10683 return; 10684 } 10685 10686 /* 10687 * The arriving of dup data packets indicate that we 10688 * may have postponed an ack for too long, or the other 10689 * side's RTT estimate is out of shape. Start acking 10690 * more often. 10691 */ 10692 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10693 tcp->tcp_rack_cnt >= 1 && 10694 tcp->tcp_rack_abs_max > 2) { 10695 tcp->tcp_rack_abs_max--; 10696 } 10697 tcp->tcp_rack_cur_max = 1; 10698 10699 /* 10700 * This segment is "unacceptable". None of its 10701 * sequence space lies within our advertized window. 10702 * 10703 * Adjust seg_len to the original value for tracing. 10704 */ 10705 seg_len -= gap; 10706 if (connp->conn_debug) { 10707 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10708 "tcp_rput: unacceptable, gap %d, rgap %d, " 10709 "flags 0x%x, seg_seq %u, seg_ack %u, " 10710 "seg_len %d, rnxt %u, snxt %u, %s", 10711 gap, rgap, flags, seg_seq, seg_ack, 10712 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10713 tcp_display(tcp, NULL, 10714 DISP_ADDR_AND_PORT)); 10715 } 10716 10717 /* 10718 * Arrange to send an ACK in response to the 10719 * unacceptable segment per RFC 793 page 69. There 10720 * is only one small difference between ours and the 10721 * acceptability test in the RFC - we accept ACK-only 10722 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10723 * will be generated. 10724 * 10725 * Note that we have to ACK an ACK-only packet at least 10726 * for stacks that send 0-length keep-alives with 10727 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10728 * section 4.2.3.6. As long as we don't ever generate 10729 * an unacceptable packet in response to an incoming 10730 * packet that is unacceptable, it should not cause 10731 * "ACK wars". 10732 */ 10733 flags |= TH_ACK_NEEDED; 10734 10735 /* 10736 * Continue processing this segment in order to use the 10737 * ACK information it contains, but skip all other 10738 * sequence-number processing. Processing the ACK 10739 * information is necessary in order to 10740 * re-synchronize connections that may have lost 10741 * synchronization. 10742 * 10743 * We clear seg_len and flag fields related to 10744 * sequence number processing as they are not 10745 * to be trusted for an unacceptable segment. 10746 */ 10747 seg_len = 0; 10748 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10749 goto process_ack; 10750 } 10751 10752 /* Fix seg_seq, and chew the gap off the front. */ 10753 seg_seq = tcp->tcp_rnxt; 10754 urp += gap; 10755 do { 10756 mblk_t *mp2; 10757 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10758 (uintptr_t)UINT_MAX); 10759 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10760 if (gap > 0) { 10761 mp->b_rptr = mp->b_wptr - gap; 10762 break; 10763 } 10764 mp2 = mp; 10765 mp = mp->b_cont; 10766 freeb(mp2); 10767 } while (gap < 0); 10768 /* 10769 * If the urgent data has already been acknowledged, we 10770 * should ignore TH_URG below 10771 */ 10772 if (urp < 0) 10773 flags &= ~TH_URG; 10774 } 10775 /* 10776 * rgap is the amount of stuff received out of window. A negative 10777 * value is the amount out of window. 10778 */ 10779 if (rgap < 0) { 10780 mblk_t *mp2; 10781 10782 if (tcp->tcp_rwnd == 0) { 10783 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10784 } else { 10785 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10786 UPDATE_MIB(&tcps->tcps_mib, 10787 tcpInDataPastWinBytes, -rgap); 10788 } 10789 10790 /* 10791 * seg_len does not include the FIN, so if more than 10792 * just the FIN is out of window, we act like we don't 10793 * see it. (If just the FIN is out of window, rgap 10794 * will be zero and we will go ahead and acknowledge 10795 * the FIN.) 10796 */ 10797 flags &= ~TH_FIN; 10798 10799 /* Fix seg_len and make sure there is something left. */ 10800 seg_len += rgap; 10801 if (seg_len <= 0) { 10802 /* 10803 * Resets are only valid if they lie within our offered 10804 * window. If the RST bit is set, we just ignore this 10805 * segment. 10806 */ 10807 if (flags & TH_RST) { 10808 freemsg(mp); 10809 return; 10810 } 10811 10812 /* Per RFC 793, we need to send back an ACK. */ 10813 flags |= TH_ACK_NEEDED; 10814 10815 /* 10816 * Send SIGURG as soon as possible i.e. even 10817 * if the TH_URG was delivered in a window probe 10818 * packet (which will be unacceptable). 10819 * 10820 * We generate a signal if none has been generated 10821 * for this connection or if this is a new urgent 10822 * byte. Also send a zero-length "unmarked" message 10823 * to inform SIOCATMARK that this is not the mark. 10824 * 10825 * tcp_urp_last_valid is cleared when the T_exdata_ind 10826 * is sent up. This plus the check for old data 10827 * (gap >= 0) handles the wraparound of the sequence 10828 * number space without having to always track the 10829 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10830 * this max in its rcv_up variable). 10831 * 10832 * This prevents duplicate SIGURGS due to a "late" 10833 * zero-window probe when the T_EXDATA_IND has already 10834 * been sent up. 10835 */ 10836 if ((flags & TH_URG) && 10837 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10838 tcp->tcp_urp_last))) { 10839 if (IPCL_IS_NONSTR(connp)) { 10840 if (!TCP_IS_DETACHED(tcp)) { 10841 (*connp->conn_upcalls-> 10842 su_signal_oob) 10843 (connp->conn_upper_handle, 10844 urp); 10845 } 10846 } else { 10847 mp1 = allocb(0, BPRI_MED); 10848 if (mp1 == NULL) { 10849 freemsg(mp); 10850 return; 10851 } 10852 if (!TCP_IS_DETACHED(tcp) && 10853 !putnextctl1(connp->conn_rq, 10854 M_PCSIG, SIGURG)) { 10855 /* Try again on the rexmit. */ 10856 freemsg(mp1); 10857 freemsg(mp); 10858 return; 10859 } 10860 /* 10861 * If the next byte would be the mark 10862 * then mark with MARKNEXT else mark 10863 * with NOTMARKNEXT. 10864 */ 10865 if (gap == 0 && urp == 0) 10866 mp1->b_flag |= MSGMARKNEXT; 10867 else 10868 mp1->b_flag |= MSGNOTMARKNEXT; 10869 freemsg(tcp->tcp_urp_mark_mp); 10870 tcp->tcp_urp_mark_mp = mp1; 10871 flags |= TH_SEND_URP_MARK; 10872 } 10873 tcp->tcp_urp_last_valid = B_TRUE; 10874 tcp->tcp_urp_last = urp + seg_seq; 10875 } 10876 /* 10877 * If this is a zero window probe, continue to 10878 * process the ACK part. But we need to set seg_len 10879 * to 0 to avoid data processing. Otherwise just 10880 * drop the segment and send back an ACK. 10881 */ 10882 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10883 flags &= ~(TH_SYN | TH_URG); 10884 seg_len = 0; 10885 goto process_ack; 10886 } else { 10887 freemsg(mp); 10888 goto ack_check; 10889 } 10890 } 10891 /* Pitch out of window stuff off the end. */ 10892 rgap = seg_len; 10893 mp2 = mp; 10894 do { 10895 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10896 (uintptr_t)INT_MAX); 10897 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10898 if (rgap < 0) { 10899 mp2->b_wptr += rgap; 10900 if ((mp1 = mp2->b_cont) != NULL) { 10901 mp2->b_cont = NULL; 10902 freemsg(mp1); 10903 } 10904 break; 10905 } 10906 } while ((mp2 = mp2->b_cont) != NULL); 10907 } 10908 ok:; 10909 /* 10910 * TCP should check ECN info for segments inside the window only. 10911 * Therefore the check should be done here. 10912 */ 10913 if (tcp->tcp_ecn_ok) { 10914 if (flags & TH_CWR) { 10915 tcp->tcp_ecn_echo_on = B_FALSE; 10916 } 10917 /* 10918 * Note that both ECN_CE and CWR can be set in the 10919 * same segment. In this case, we once again turn 10920 * on ECN_ECHO. 10921 */ 10922 if (connp->conn_ipversion == IPV4_VERSION) { 10923 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10924 10925 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10926 tcp->tcp_ecn_echo_on = B_TRUE; 10927 } 10928 } else { 10929 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10930 10931 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10932 htonl(IPH_ECN_CE << 20)) { 10933 tcp->tcp_ecn_echo_on = B_TRUE; 10934 } 10935 } 10936 } 10937 10938 /* 10939 * Check whether we can update tcp_ts_recent. This test is 10940 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10941 * Extensions for High Performance: An Update", Internet Draft. 10942 */ 10943 if (tcp->tcp_snd_ts_ok && 10944 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10945 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10946 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10947 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10948 } 10949 10950 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10951 /* 10952 * FIN in an out of order segment. We record this in 10953 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10954 * Clear the FIN so that any check on FIN flag will fail. 10955 * Remember that FIN also counts in the sequence number 10956 * space. So we need to ack out of order FIN only segments. 10957 */ 10958 if (flags & TH_FIN) { 10959 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10960 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10961 flags &= ~TH_FIN; 10962 flags |= TH_ACK_NEEDED; 10963 } 10964 if (seg_len > 0) { 10965 /* Fill in the SACK blk list. */ 10966 if (tcp->tcp_snd_sack_ok) { 10967 ASSERT(tcp->tcp_sack_info != NULL); 10968 tcp_sack_insert(tcp->tcp_sack_list, 10969 seg_seq, seg_seq + seg_len, 10970 &(tcp->tcp_num_sack_blk)); 10971 } 10972 10973 /* 10974 * Attempt reassembly and see if we have something 10975 * ready to go. 10976 */ 10977 mp = tcp_reass(tcp, mp, seg_seq); 10978 /* Always ack out of order packets */ 10979 flags |= TH_ACK_NEEDED | TH_PUSH; 10980 if (mp) { 10981 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10982 (uintptr_t)INT_MAX); 10983 seg_len = mp->b_cont ? msgdsize(mp) : 10984 (int)(mp->b_wptr - mp->b_rptr); 10985 seg_seq = tcp->tcp_rnxt; 10986 /* 10987 * A gap is filled and the seq num and len 10988 * of the gap match that of a previously 10989 * received FIN, put the FIN flag back in. 10990 */ 10991 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10992 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10993 flags |= TH_FIN; 10994 tcp->tcp_valid_bits &= 10995 ~TCP_OFO_FIN_VALID; 10996 } 10997 if (tcp->tcp_reass_tid != 0) { 10998 (void) TCP_TIMER_CANCEL(tcp, 10999 tcp->tcp_reass_tid); 11000 /* 11001 * Restart the timer if there is still 11002 * data in the reassembly queue. 11003 */ 11004 if (tcp->tcp_reass_head != NULL) { 11005 tcp->tcp_reass_tid = TCP_TIMER( 11006 tcp, tcp_reass_timer, 11007 MSEC_TO_TICK( 11008 tcps->tcps_reass_timeout)); 11009 } else { 11010 tcp->tcp_reass_tid = 0; 11011 } 11012 } 11013 } else { 11014 /* 11015 * Keep going even with NULL mp. 11016 * There may be a useful ACK or something else 11017 * we don't want to miss. 11018 * 11019 * But TCP should not perform fast retransmit 11020 * because of the ack number. TCP uses 11021 * seg_len == 0 to determine if it is a pure 11022 * ACK. And this is not a pure ACK. 11023 */ 11024 seg_len = 0; 11025 ofo_seg = B_TRUE; 11026 11027 if (tcps->tcps_reass_timeout != 0 && 11028 tcp->tcp_reass_tid == 0) { 11029 tcp->tcp_reass_tid = TCP_TIMER(tcp, 11030 tcp_reass_timer, MSEC_TO_TICK( 11031 tcps->tcps_reass_timeout)); 11032 } 11033 } 11034 } 11035 } else if (seg_len > 0) { 11036 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 11037 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 11038 /* 11039 * If an out of order FIN was received before, and the seq 11040 * num and len of the new segment match that of the FIN, 11041 * put the FIN flag back in. 11042 */ 11043 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 11044 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 11045 flags |= TH_FIN; 11046 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 11047 } 11048 } 11049 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 11050 if (flags & TH_RST) { 11051 freemsg(mp); 11052 switch (tcp->tcp_state) { 11053 case TCPS_SYN_RCVD: 11054 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 11055 break; 11056 case TCPS_ESTABLISHED: 11057 case TCPS_FIN_WAIT_1: 11058 case TCPS_FIN_WAIT_2: 11059 case TCPS_CLOSE_WAIT: 11060 (void) tcp_clean_death(tcp, ECONNRESET, 15); 11061 break; 11062 case TCPS_CLOSING: 11063 case TCPS_LAST_ACK: 11064 (void) tcp_clean_death(tcp, 0, 16); 11065 break; 11066 default: 11067 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11068 (void) tcp_clean_death(tcp, ENXIO, 17); 11069 break; 11070 } 11071 return; 11072 } 11073 if (flags & TH_SYN) { 11074 /* 11075 * See RFC 793, Page 71 11076 * 11077 * The seq number must be in the window as it should 11078 * be "fixed" above. If it is outside window, it should 11079 * be already rejected. Note that we allow seg_seq to be 11080 * rnxt + rwnd because we want to accept 0 window probe. 11081 */ 11082 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 11083 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 11084 freemsg(mp); 11085 /* 11086 * If the ACK flag is not set, just use our snxt as the 11087 * seq number of the RST segment. 11088 */ 11089 if (!(flags & TH_ACK)) { 11090 seg_ack = tcp->tcp_snxt; 11091 } 11092 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 11093 TH_RST|TH_ACK); 11094 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11095 (void) tcp_clean_death(tcp, ECONNRESET, 18); 11096 return; 11097 } 11098 /* 11099 * urp could be -1 when the urp field in the packet is 0 11100 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 11101 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 11102 */ 11103 if (flags & TH_URG && urp >= 0) { 11104 if (!tcp->tcp_urp_last_valid || 11105 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 11106 /* 11107 * Non-STREAMS sockets handle the urgent data a litte 11108 * differently from STREAMS based sockets. There is no 11109 * need to mark any mblks with the MSG{NOT,}MARKNEXT 11110 * flags to keep SIOCATMARK happy. Instead a 11111 * su_signal_oob upcall is made to update the mark. 11112 * Neither is a T_EXDATA_IND mblk needed to be 11113 * prepended to the urgent data. The urgent data is 11114 * delivered using the su_recv upcall, where we set 11115 * the MSG_OOB flag to indicate that it is urg data. 11116 * 11117 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 11118 * are used by non-STREAMS sockets. 11119 */ 11120 if (IPCL_IS_NONSTR(connp)) { 11121 if (!TCP_IS_DETACHED(tcp)) { 11122 (*connp->conn_upcalls->su_signal_oob) 11123 (connp->conn_upper_handle, urp); 11124 } 11125 } else { 11126 /* 11127 * If we haven't generated the signal yet for 11128 * this urgent pointer value, do it now. Also, 11129 * send up a zero-length M_DATA indicating 11130 * whether or not this is the mark. The latter 11131 * is not needed when a T_EXDATA_IND is sent up. 11132 * However, if there are allocation failures 11133 * this code relies on the sender retransmitting 11134 * and the socket code for determining the mark 11135 * should not block waiting for the peer to 11136 * transmit. Thus, for simplicity we always 11137 * send up the mark indication. 11138 */ 11139 mp1 = allocb(0, BPRI_MED); 11140 if (mp1 == NULL) { 11141 freemsg(mp); 11142 return; 11143 } 11144 if (!TCP_IS_DETACHED(tcp) && 11145 !putnextctl1(connp->conn_rq, M_PCSIG, 11146 SIGURG)) { 11147 /* Try again on the rexmit. */ 11148 freemsg(mp1); 11149 freemsg(mp); 11150 return; 11151 } 11152 /* 11153 * Mark with NOTMARKNEXT for now. 11154 * The code below will change this to MARKNEXT 11155 * if we are at the mark. 11156 * 11157 * If there are allocation failures (e.g. in 11158 * dupmsg below) the next time tcp_input_data 11159 * sees the urgent segment it will send up the 11160 * MSGMARKNEXT message. 11161 */ 11162 mp1->b_flag |= MSGNOTMARKNEXT; 11163 freemsg(tcp->tcp_urp_mark_mp); 11164 tcp->tcp_urp_mark_mp = mp1; 11165 flags |= TH_SEND_URP_MARK; 11166 #ifdef DEBUG 11167 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11168 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 11169 "last %x, %s", 11170 seg_seq, urp, tcp->tcp_urp_last, 11171 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11172 #endif /* DEBUG */ 11173 } 11174 tcp->tcp_urp_last_valid = B_TRUE; 11175 tcp->tcp_urp_last = urp + seg_seq; 11176 } else if (tcp->tcp_urp_mark_mp != NULL) { 11177 /* 11178 * An allocation failure prevented the previous 11179 * tcp_input_data from sending up the allocated 11180 * MSG*MARKNEXT message - send it up this time 11181 * around. 11182 */ 11183 flags |= TH_SEND_URP_MARK; 11184 } 11185 11186 /* 11187 * If the urgent byte is in this segment, make sure that it is 11188 * all by itself. This makes it much easier to deal with the 11189 * possibility of an allocation failure on the T_exdata_ind. 11190 * Note that seg_len is the number of bytes in the segment, and 11191 * urp is the offset into the segment of the urgent byte. 11192 * urp < seg_len means that the urgent byte is in this segment. 11193 */ 11194 if (urp < seg_len) { 11195 if (seg_len != 1) { 11196 uint32_t tmp_rnxt; 11197 /* 11198 * Break it up and feed it back in. 11199 * Re-attach the IP header. 11200 */ 11201 mp->b_rptr = iphdr; 11202 if (urp > 0) { 11203 /* 11204 * There is stuff before the urgent 11205 * byte. 11206 */ 11207 mp1 = dupmsg(mp); 11208 if (!mp1) { 11209 /* 11210 * Trim from urgent byte on. 11211 * The rest will come back. 11212 */ 11213 (void) adjmsg(mp, 11214 urp - seg_len); 11215 tcp_input_data(connp, 11216 mp, NULL, ira); 11217 return; 11218 } 11219 (void) adjmsg(mp1, urp - seg_len); 11220 /* Feed this piece back in. */ 11221 tmp_rnxt = tcp->tcp_rnxt; 11222 tcp_input_data(connp, mp1, NULL, ira); 11223 /* 11224 * If the data passed back in was not 11225 * processed (ie: bad ACK) sending 11226 * the remainder back in will cause a 11227 * loop. In this case, drop the 11228 * packet and let the sender try 11229 * sending a good packet. 11230 */ 11231 if (tmp_rnxt == tcp->tcp_rnxt) { 11232 freemsg(mp); 11233 return; 11234 } 11235 } 11236 if (urp != seg_len - 1) { 11237 uint32_t tmp_rnxt; 11238 /* 11239 * There is stuff after the urgent 11240 * byte. 11241 */ 11242 mp1 = dupmsg(mp); 11243 if (!mp1) { 11244 /* 11245 * Trim everything beyond the 11246 * urgent byte. The rest will 11247 * come back. 11248 */ 11249 (void) adjmsg(mp, 11250 urp + 1 - seg_len); 11251 tcp_input_data(connp, 11252 mp, NULL, ira); 11253 return; 11254 } 11255 (void) adjmsg(mp1, urp + 1 - seg_len); 11256 tmp_rnxt = tcp->tcp_rnxt; 11257 tcp_input_data(connp, mp1, NULL, ira); 11258 /* 11259 * If the data passed back in was not 11260 * processed (ie: bad ACK) sending 11261 * the remainder back in will cause a 11262 * loop. In this case, drop the 11263 * packet and let the sender try 11264 * sending a good packet. 11265 */ 11266 if (tmp_rnxt == tcp->tcp_rnxt) { 11267 freemsg(mp); 11268 return; 11269 } 11270 } 11271 tcp_input_data(connp, mp, NULL, ira); 11272 return; 11273 } 11274 /* 11275 * This segment contains only the urgent byte. We 11276 * have to allocate the T_exdata_ind, if we can. 11277 */ 11278 if (IPCL_IS_NONSTR(connp)) { 11279 int error; 11280 11281 (*connp->conn_upcalls->su_recv) 11282 (connp->conn_upper_handle, mp, seg_len, 11283 MSG_OOB, &error, NULL); 11284 /* 11285 * We should never be in middle of a 11286 * fallback, the squeue guarantees that. 11287 */ 11288 ASSERT(error != EOPNOTSUPP); 11289 mp = NULL; 11290 goto update_ack; 11291 } else if (!tcp->tcp_urp_mp) { 11292 struct T_exdata_ind *tei; 11293 mp1 = allocb(sizeof (struct T_exdata_ind), 11294 BPRI_MED); 11295 if (!mp1) { 11296 /* 11297 * Sigh... It'll be back. 11298 * Generate any MSG*MARK message now. 11299 */ 11300 freemsg(mp); 11301 seg_len = 0; 11302 if (flags & TH_SEND_URP_MARK) { 11303 11304 11305 ASSERT(tcp->tcp_urp_mark_mp); 11306 tcp->tcp_urp_mark_mp->b_flag &= 11307 ~MSGNOTMARKNEXT; 11308 tcp->tcp_urp_mark_mp->b_flag |= 11309 MSGMARKNEXT; 11310 } 11311 goto ack_check; 11312 } 11313 mp1->b_datap->db_type = M_PROTO; 11314 tei = (struct T_exdata_ind *)mp1->b_rptr; 11315 tei->PRIM_type = T_EXDATA_IND; 11316 tei->MORE_flag = 0; 11317 mp1->b_wptr = (uchar_t *)&tei[1]; 11318 tcp->tcp_urp_mp = mp1; 11319 #ifdef DEBUG 11320 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11321 "tcp_rput: allocated exdata_ind %s", 11322 tcp_display(tcp, NULL, 11323 DISP_PORT_ONLY)); 11324 #endif /* DEBUG */ 11325 /* 11326 * There is no need to send a separate MSG*MARK 11327 * message since the T_EXDATA_IND will be sent 11328 * now. 11329 */ 11330 flags &= ~TH_SEND_URP_MARK; 11331 freemsg(tcp->tcp_urp_mark_mp); 11332 tcp->tcp_urp_mark_mp = NULL; 11333 } 11334 /* 11335 * Now we are all set. On the next putnext upstream, 11336 * tcp_urp_mp will be non-NULL and will get prepended 11337 * to what has to be this piece containing the urgent 11338 * byte. If for any reason we abort this segment below, 11339 * if it comes back, we will have this ready, or it 11340 * will get blown off in close. 11341 */ 11342 } else if (urp == seg_len) { 11343 /* 11344 * The urgent byte is the next byte after this sequence 11345 * number. If this endpoint is non-STREAMS, then there 11346 * is nothing to do here since the socket has already 11347 * been notified about the urg pointer by the 11348 * su_signal_oob call above. 11349 * 11350 * In case of STREAMS, some more work might be needed. 11351 * If there is data it is marked with MSGMARKNEXT and 11352 * and any tcp_urp_mark_mp is discarded since it is not 11353 * needed. Otherwise, if the code above just allocated 11354 * a zero-length tcp_urp_mark_mp message, that message 11355 * is tagged with MSGMARKNEXT. Sending up these 11356 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11357 * even though the T_EXDATA_IND will not be sent up 11358 * until the urgent byte arrives. 11359 */ 11360 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11361 if (seg_len != 0) { 11362 flags |= TH_MARKNEXT_NEEDED; 11363 freemsg(tcp->tcp_urp_mark_mp); 11364 tcp->tcp_urp_mark_mp = NULL; 11365 flags &= ~TH_SEND_URP_MARK; 11366 } else if (tcp->tcp_urp_mark_mp != NULL) { 11367 flags |= TH_SEND_URP_MARK; 11368 tcp->tcp_urp_mark_mp->b_flag &= 11369 ~MSGNOTMARKNEXT; 11370 tcp->tcp_urp_mark_mp->b_flag |= 11371 MSGMARKNEXT; 11372 } 11373 } 11374 #ifdef DEBUG 11375 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11376 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11377 seg_len, flags, 11378 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11379 #endif /* DEBUG */ 11380 } 11381 #ifdef DEBUG 11382 else { 11383 /* Data left until we hit mark */ 11384 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11385 "tcp_rput: URP %d bytes left, %s", 11386 urp - seg_len, tcp_display(tcp, NULL, 11387 DISP_PORT_ONLY)); 11388 } 11389 #endif /* DEBUG */ 11390 } 11391 11392 process_ack: 11393 if (!(flags & TH_ACK)) { 11394 freemsg(mp); 11395 goto xmit_check; 11396 } 11397 } 11398 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11399 11400 if (bytes_acked > 0) 11401 tcp->tcp_ip_forward_progress = B_TRUE; 11402 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11403 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11404 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11405 /* 3-way handshake complete - pass up the T_CONN_IND */ 11406 tcp_t *listener = tcp->tcp_listener; 11407 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11408 11409 tcp->tcp_tconnind_started = B_TRUE; 11410 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11411 /* 11412 * We are here means eager is fine but it can 11413 * get a TH_RST at any point between now and till 11414 * accept completes and disappear. We need to 11415 * ensure that reference to eager is valid after 11416 * we get out of eager's perimeter. So we do 11417 * an extra refhold. 11418 */ 11419 CONN_INC_REF(connp); 11420 11421 /* 11422 * The listener also exists because of the refhold 11423 * done in tcp_input_listener. Its possible that it 11424 * might have closed. We will check that once we 11425 * get inside listeners context. 11426 */ 11427 CONN_INC_REF(listener->tcp_connp); 11428 if (listener->tcp_connp->conn_sqp == 11429 connp->conn_sqp) { 11430 /* 11431 * We optimize by not calling an SQUEUE_ENTER 11432 * on the listener since we know that the 11433 * listener and eager squeues are the same. 11434 * We are able to make this check safely only 11435 * because neither the eager nor the listener 11436 * can change its squeue. Only an active connect 11437 * can change its squeue 11438 */ 11439 tcp_send_conn_ind(listener->tcp_connp, mp, 11440 listener->tcp_connp->conn_sqp); 11441 CONN_DEC_REF(listener->tcp_connp); 11442 } else if (!tcp->tcp_loopback) { 11443 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11444 mp, tcp_send_conn_ind, 11445 listener->tcp_connp, NULL, SQ_FILL, 11446 SQTAG_TCP_CONN_IND); 11447 } else { 11448 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11449 mp, tcp_send_conn_ind, 11450 listener->tcp_connp, NULL, SQ_PROCESS, 11451 SQTAG_TCP_CONN_IND); 11452 } 11453 } 11454 11455 /* 11456 * We are seeing the final ack in the three way 11457 * hand shake of a active open'ed connection 11458 * so we must send up a T_CONN_CON 11459 * 11460 * tcp_sendmsg() checks tcp_state without entering 11461 * the squeue so tcp_state should be updated before 11462 * sending up connection confirmation. 11463 */ 11464 tcp->tcp_state = TCPS_ESTABLISHED; 11465 if (tcp->tcp_active_open) { 11466 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11467 freemsg(mp); 11468 tcp->tcp_state = TCPS_SYN_RCVD; 11469 return; 11470 } 11471 /* 11472 * Don't fuse the loopback endpoints for 11473 * simultaneous active opens. 11474 */ 11475 if (tcp->tcp_loopback) { 11476 TCP_STAT(tcps, tcp_fusion_unfusable); 11477 tcp->tcp_unfusable = B_TRUE; 11478 } 11479 } 11480 11481 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11482 bytes_acked--; 11483 /* SYN was acked - making progress */ 11484 tcp->tcp_ip_forward_progress = B_TRUE; 11485 11486 /* 11487 * If SYN was retransmitted, need to reset all 11488 * retransmission info as this segment will be 11489 * treated as a dup ACK. 11490 */ 11491 if (tcp->tcp_rexmit) { 11492 tcp->tcp_rexmit = B_FALSE; 11493 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11494 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11495 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11496 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11497 tcp->tcp_ms_we_have_waited = 0; 11498 tcp->tcp_cwnd = mss; 11499 } 11500 11501 /* 11502 * We set the send window to zero here. 11503 * This is needed if there is data to be 11504 * processed already on the queue. 11505 * Later (at swnd_update label), the 11506 * "new_swnd > tcp_swnd" condition is satisfied 11507 * the XMIT_NEEDED flag is set in the current 11508 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11509 * called if there is already data on queue in 11510 * this state. 11511 */ 11512 tcp->tcp_swnd = 0; 11513 11514 if (new_swnd > tcp->tcp_max_swnd) 11515 tcp->tcp_max_swnd = new_swnd; 11516 tcp->tcp_swl1 = seg_seq; 11517 tcp->tcp_swl2 = seg_ack; 11518 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11519 11520 /* Fuse when both sides are in ESTABLISHED state */ 11521 if (tcp->tcp_loopback && do_tcp_fusion) 11522 tcp_fuse(tcp, iphdr, tcpha); 11523 11524 } 11525 /* This code follows 4.4BSD-Lite2 mostly. */ 11526 if (bytes_acked < 0) 11527 goto est; 11528 11529 /* 11530 * If TCP is ECN capable and the congestion experience bit is 11531 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11532 * done once per window (or more loosely, per RTT). 11533 */ 11534 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11535 tcp->tcp_cwr = B_FALSE; 11536 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11537 if (!tcp->tcp_cwr) { 11538 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11539 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11540 tcp->tcp_cwnd = npkt * mss; 11541 /* 11542 * If the cwnd is 0, use the timer to clock out 11543 * new segments. This is required by the ECN spec. 11544 */ 11545 if (npkt == 0) { 11546 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11547 /* 11548 * This makes sure that when the ACK comes 11549 * back, we will increase tcp_cwnd by 1 MSS. 11550 */ 11551 tcp->tcp_cwnd_cnt = 0; 11552 } 11553 tcp->tcp_cwr = B_TRUE; 11554 /* 11555 * This marks the end of the current window of in 11556 * flight data. That is why we don't use 11557 * tcp_suna + tcp_swnd. Only data in flight can 11558 * provide ECN info. 11559 */ 11560 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11561 tcp->tcp_ecn_cwr_sent = B_FALSE; 11562 } 11563 } 11564 11565 mp1 = tcp->tcp_xmit_head; 11566 if (bytes_acked == 0) { 11567 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11568 int dupack_cnt; 11569 11570 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11571 /* 11572 * Fast retransmit. When we have seen exactly three 11573 * identical ACKs while we have unacked data 11574 * outstanding we take it as a hint that our peer 11575 * dropped something. 11576 * 11577 * If TCP is retransmitting, don't do fast retransmit. 11578 */ 11579 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11580 ! tcp->tcp_rexmit) { 11581 /* Do Limited Transmit */ 11582 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11583 tcps->tcps_dupack_fast_retransmit) { 11584 /* 11585 * RFC 3042 11586 * 11587 * What we need to do is temporarily 11588 * increase tcp_cwnd so that new 11589 * data can be sent if it is allowed 11590 * by the receive window (tcp_rwnd). 11591 * tcp_wput_data() will take care of 11592 * the rest. 11593 * 11594 * If the connection is SACK capable, 11595 * only do limited xmit when there 11596 * is SACK info. 11597 * 11598 * Note how tcp_cwnd is incremented. 11599 * The first dup ACK will increase 11600 * it by 1 MSS. The second dup ACK 11601 * will increase it by 2 MSS. This 11602 * means that only 1 new segment will 11603 * be sent for each dup ACK. 11604 */ 11605 if (tcp->tcp_unsent > 0 && 11606 (!tcp->tcp_snd_sack_ok || 11607 (tcp->tcp_snd_sack_ok && 11608 tcp->tcp_notsack_list != NULL))) { 11609 tcp->tcp_cwnd += mss << 11610 (tcp->tcp_dupack_cnt - 1); 11611 flags |= TH_LIMIT_XMIT; 11612 } 11613 } else if (dupack_cnt == 11614 tcps->tcps_dupack_fast_retransmit) { 11615 11616 /* 11617 * If we have reduced tcp_ssthresh 11618 * because of ECN, do not reduce it again 11619 * unless it is already one window of data 11620 * away. After one window of data, tcp_cwr 11621 * should then be cleared. Note that 11622 * for non ECN capable connection, tcp_cwr 11623 * should always be false. 11624 * 11625 * Adjust cwnd since the duplicate 11626 * ack indicates that a packet was 11627 * dropped (due to congestion.) 11628 */ 11629 if (!tcp->tcp_cwr) { 11630 npkt = ((tcp->tcp_snxt - 11631 tcp->tcp_suna) >> 1) / mss; 11632 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11633 mss; 11634 tcp->tcp_cwnd = (npkt + 11635 tcp->tcp_dupack_cnt) * mss; 11636 } 11637 if (tcp->tcp_ecn_ok) { 11638 tcp->tcp_cwr = B_TRUE; 11639 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11640 tcp->tcp_ecn_cwr_sent = B_FALSE; 11641 } 11642 11643 /* 11644 * We do Hoe's algorithm. Refer to her 11645 * paper "Improving the Start-up Behavior 11646 * of a Congestion Control Scheme for TCP," 11647 * appeared in SIGCOMM'96. 11648 * 11649 * Save highest seq no we have sent so far. 11650 * Be careful about the invisible FIN byte. 11651 */ 11652 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11653 (tcp->tcp_unsent == 0)) { 11654 tcp->tcp_rexmit_max = tcp->tcp_fss; 11655 } else { 11656 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11657 } 11658 11659 /* 11660 * Do not allow bursty traffic during. 11661 * fast recovery. Refer to Fall and Floyd's 11662 * paper "Simulation-based Comparisons of 11663 * Tahoe, Reno and SACK TCP" (in CCR?) 11664 * This is a best current practise. 11665 */ 11666 tcp->tcp_snd_burst = TCP_CWND_SS; 11667 11668 /* 11669 * For SACK: 11670 * Calculate tcp_pipe, which is the 11671 * estimated number of bytes in 11672 * network. 11673 * 11674 * tcp_fack is the highest sack'ed seq num 11675 * TCP has received. 11676 * 11677 * tcp_pipe is explained in the above quoted 11678 * Fall and Floyd's paper. tcp_fack is 11679 * explained in Mathis and Mahdavi's 11680 * "Forward Acknowledgment: Refining TCP 11681 * Congestion Control" in SIGCOMM '96. 11682 */ 11683 if (tcp->tcp_snd_sack_ok) { 11684 ASSERT(tcp->tcp_sack_info != NULL); 11685 if (tcp->tcp_notsack_list != NULL) { 11686 tcp->tcp_pipe = tcp->tcp_snxt - 11687 tcp->tcp_fack; 11688 tcp->tcp_sack_snxt = seg_ack; 11689 flags |= TH_NEED_SACK_REXMIT; 11690 } else { 11691 /* 11692 * Always initialize tcp_pipe 11693 * even though we don't have 11694 * any SACK info. If later 11695 * we get SACK info and 11696 * tcp_pipe is not initialized, 11697 * funny things will happen. 11698 */ 11699 tcp->tcp_pipe = 11700 tcp->tcp_cwnd_ssthresh; 11701 } 11702 } else { 11703 flags |= TH_REXMIT_NEEDED; 11704 } /* tcp_snd_sack_ok */ 11705 11706 } else { 11707 /* 11708 * Here we perform congestion 11709 * avoidance, but NOT slow start. 11710 * This is known as the Fast 11711 * Recovery Algorithm. 11712 */ 11713 if (tcp->tcp_snd_sack_ok && 11714 tcp->tcp_notsack_list != NULL) { 11715 flags |= TH_NEED_SACK_REXMIT; 11716 tcp->tcp_pipe -= mss; 11717 if (tcp->tcp_pipe < 0) 11718 tcp->tcp_pipe = 0; 11719 } else { 11720 /* 11721 * We know that one more packet has 11722 * left the pipe thus we can update 11723 * cwnd. 11724 */ 11725 cwnd = tcp->tcp_cwnd + mss; 11726 if (cwnd > tcp->tcp_cwnd_max) 11727 cwnd = tcp->tcp_cwnd_max; 11728 tcp->tcp_cwnd = cwnd; 11729 if (tcp->tcp_unsent > 0) 11730 flags |= TH_XMIT_NEEDED; 11731 } 11732 } 11733 } 11734 } else if (tcp->tcp_zero_win_probe) { 11735 /* 11736 * If the window has opened, need to arrange 11737 * to send additional data. 11738 */ 11739 if (new_swnd != 0) { 11740 /* tcp_suna != tcp_snxt */ 11741 /* Packet contains a window update */ 11742 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11743 tcp->tcp_zero_win_probe = 0; 11744 tcp->tcp_timer_backoff = 0; 11745 tcp->tcp_ms_we_have_waited = 0; 11746 11747 /* 11748 * Transmit starting with tcp_suna since 11749 * the one byte probe is not ack'ed. 11750 * If TCP has sent more than one identical 11751 * probe, tcp_rexmit will be set. That means 11752 * tcp_ss_rexmit() will send out the one 11753 * byte along with new data. Otherwise, 11754 * fake the retransmission. 11755 */ 11756 flags |= TH_XMIT_NEEDED; 11757 if (!tcp->tcp_rexmit) { 11758 tcp->tcp_rexmit = B_TRUE; 11759 tcp->tcp_dupack_cnt = 0; 11760 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11761 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11762 } 11763 } 11764 } 11765 goto swnd_update; 11766 } 11767 11768 /* 11769 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11770 * If the ACK value acks something that we have not yet sent, it might 11771 * be an old duplicate segment. Send an ACK to re-synchronize the 11772 * other side. 11773 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11774 * state is handled above, so we can always just drop the segment and 11775 * send an ACK here. 11776 * 11777 * In the case where the peer shrinks the window, we see the new window 11778 * update, but all the data sent previously is queued up by the peer. 11779 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11780 * number, which was already sent, and within window, is recorded. 11781 * tcp_snxt is then updated. 11782 * 11783 * If the window has previously shrunk, and an ACK for data not yet 11784 * sent, according to tcp_snxt is recieved, it may still be valid. If 11785 * the ACK is for data within the window at the time the window was 11786 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11787 * the sequence number ACK'ed. 11788 * 11789 * If the ACK covers all the data sent at the time the window was 11790 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11791 * 11792 * Should we send ACKs in response to ACK only segments? 11793 */ 11794 11795 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11796 if ((tcp->tcp_is_wnd_shrnk) && 11797 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11798 uint32_t data_acked_ahead_snxt; 11799 11800 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11801 tcp_update_xmit_tail(tcp, seg_ack); 11802 tcp->tcp_unsent -= data_acked_ahead_snxt; 11803 } else { 11804 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11805 /* drop the received segment */ 11806 freemsg(mp); 11807 11808 /* 11809 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11810 * greater than 0, check if the number of such 11811 * bogus ACks is greater than that count. If yes, 11812 * don't send back any ACK. This prevents TCP from 11813 * getting into an ACK storm if somehow an attacker 11814 * successfully spoofs an acceptable segment to our 11815 * peer. If this continues (count > 2 X threshold), 11816 * we should abort this connection. 11817 */ 11818 if (tcp_drop_ack_unsent_cnt > 0 && 11819 ++tcp->tcp_in_ack_unsent > 11820 tcp_drop_ack_unsent_cnt) { 11821 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11822 if (tcp->tcp_in_ack_unsent > 2 * 11823 tcp_drop_ack_unsent_cnt) { 11824 (void) tcp_clean_death(tcp, EPROTO, 20); 11825 } 11826 return; 11827 } 11828 mp = tcp_ack_mp(tcp); 11829 if (mp != NULL) { 11830 BUMP_LOCAL(tcp->tcp_obsegs); 11831 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11832 tcp_send_data(tcp, mp); 11833 } 11834 return; 11835 } 11836 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11837 tcp->tcp_snxt_shrunk)) { 11838 tcp->tcp_is_wnd_shrnk = B_FALSE; 11839 } 11840 11841 /* 11842 * TCP gets a new ACK, update the notsack'ed list to delete those 11843 * blocks that are covered by this ACK. 11844 */ 11845 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11846 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11847 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11848 } 11849 11850 /* 11851 * If we got an ACK after fast retransmit, check to see 11852 * if it is a partial ACK. If it is not and the congestion 11853 * window was inflated to account for the other side's 11854 * cached packets, retract it. If it is, do Hoe's algorithm. 11855 */ 11856 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11857 ASSERT(tcp->tcp_rexmit == B_FALSE); 11858 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11859 tcp->tcp_dupack_cnt = 0; 11860 /* 11861 * Restore the orig tcp_cwnd_ssthresh after 11862 * fast retransmit phase. 11863 */ 11864 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11865 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11866 } 11867 tcp->tcp_rexmit_max = seg_ack; 11868 tcp->tcp_cwnd_cnt = 0; 11869 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11870 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11871 11872 /* 11873 * Remove all notsack info to avoid confusion with 11874 * the next fast retrasnmit/recovery phase. 11875 */ 11876 if (tcp->tcp_snd_sack_ok && 11877 tcp->tcp_notsack_list != NULL) { 11878 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11879 tcp); 11880 } 11881 } else { 11882 if (tcp->tcp_snd_sack_ok && 11883 tcp->tcp_notsack_list != NULL) { 11884 flags |= TH_NEED_SACK_REXMIT; 11885 tcp->tcp_pipe -= mss; 11886 if (tcp->tcp_pipe < 0) 11887 tcp->tcp_pipe = 0; 11888 } else { 11889 /* 11890 * Hoe's algorithm: 11891 * 11892 * Retransmit the unack'ed segment and 11893 * restart fast recovery. Note that we 11894 * need to scale back tcp_cwnd to the 11895 * original value when we started fast 11896 * recovery. This is to prevent overly 11897 * aggressive behaviour in sending new 11898 * segments. 11899 */ 11900 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11901 tcps->tcps_dupack_fast_retransmit * mss; 11902 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11903 flags |= TH_REXMIT_NEEDED; 11904 } 11905 } 11906 } else { 11907 tcp->tcp_dupack_cnt = 0; 11908 if (tcp->tcp_rexmit) { 11909 /* 11910 * TCP is retranmitting. If the ACK ack's all 11911 * outstanding data, update tcp_rexmit_max and 11912 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11913 * to the correct value. 11914 * 11915 * Note that SEQ_LEQ() is used. This is to avoid 11916 * unnecessary fast retransmit caused by dup ACKs 11917 * received when TCP does slow start retransmission 11918 * after a time out. During this phase, TCP may 11919 * send out segments which are already received. 11920 * This causes dup ACKs to be sent back. 11921 */ 11922 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11923 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11924 tcp->tcp_rexmit_nxt = seg_ack; 11925 } 11926 if (seg_ack != tcp->tcp_rexmit_max) { 11927 flags |= TH_XMIT_NEEDED; 11928 } 11929 } else { 11930 tcp->tcp_rexmit = B_FALSE; 11931 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11932 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11933 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11934 } 11935 tcp->tcp_ms_we_have_waited = 0; 11936 } 11937 } 11938 11939 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11940 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11941 tcp->tcp_suna = seg_ack; 11942 if (tcp->tcp_zero_win_probe != 0) { 11943 tcp->tcp_zero_win_probe = 0; 11944 tcp->tcp_timer_backoff = 0; 11945 } 11946 11947 /* 11948 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11949 * Note that it cannot be the SYN being ack'ed. The code flow 11950 * will not reach here. 11951 */ 11952 if (mp1 == NULL) { 11953 goto fin_acked; 11954 } 11955 11956 /* 11957 * Update the congestion window. 11958 * 11959 * If TCP is not ECN capable or TCP is ECN capable but the 11960 * congestion experience bit is not set, increase the tcp_cwnd as 11961 * usual. 11962 */ 11963 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11964 cwnd = tcp->tcp_cwnd; 11965 add = mss; 11966 11967 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11968 /* 11969 * This is to prevent an increase of less than 1 MSS of 11970 * tcp_cwnd. With partial increase, tcp_wput_data() 11971 * may send out tinygrams in order to preserve mblk 11972 * boundaries. 11973 * 11974 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11975 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11976 * increased by 1 MSS for every RTTs. 11977 */ 11978 if (tcp->tcp_cwnd_cnt <= 0) { 11979 tcp->tcp_cwnd_cnt = cwnd + add; 11980 } else { 11981 tcp->tcp_cwnd_cnt -= add; 11982 add = 0; 11983 } 11984 } 11985 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11986 } 11987 11988 /* See if the latest urgent data has been acknowledged */ 11989 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11990 SEQ_GT(seg_ack, tcp->tcp_urg)) 11991 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11992 11993 /* Can we update the RTT estimates? */ 11994 if (tcp->tcp_snd_ts_ok) { 11995 /* Ignore zero timestamp echo-reply. */ 11996 if (tcpopt.tcp_opt_ts_ecr != 0) { 11997 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11998 (int32_t)tcpopt.tcp_opt_ts_ecr); 11999 } 12000 12001 /* If needed, restart the timer. */ 12002 if (tcp->tcp_set_timer == 1) { 12003 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12004 tcp->tcp_set_timer = 0; 12005 } 12006 /* 12007 * Update tcp_csuna in case the other side stops sending 12008 * us timestamps. 12009 */ 12010 tcp->tcp_csuna = tcp->tcp_snxt; 12011 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 12012 /* 12013 * An ACK sequence we haven't seen before, so get the RTT 12014 * and update the RTO. But first check if the timestamp is 12015 * valid to use. 12016 */ 12017 if ((mp1->b_next != NULL) && 12018 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 12019 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 12020 (int32_t)(intptr_t)mp1->b_prev); 12021 else 12022 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12023 12024 /* Remeber the last sequence to be ACKed */ 12025 tcp->tcp_csuna = seg_ack; 12026 if (tcp->tcp_set_timer == 1) { 12027 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12028 tcp->tcp_set_timer = 0; 12029 } 12030 } else { 12031 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 12032 } 12033 12034 /* Eat acknowledged bytes off the xmit queue. */ 12035 for (;;) { 12036 mblk_t *mp2; 12037 uchar_t *wptr; 12038 12039 wptr = mp1->b_wptr; 12040 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 12041 bytes_acked -= (int)(wptr - mp1->b_rptr); 12042 if (bytes_acked < 0) { 12043 mp1->b_rptr = wptr + bytes_acked; 12044 /* 12045 * Set a new timestamp if all the bytes timed by the 12046 * old timestamp have been ack'ed. 12047 */ 12048 if (SEQ_GT(seg_ack, 12049 (uint32_t)(uintptr_t)(mp1->b_next))) { 12050 mp1->b_prev = 12051 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 12052 mp1->b_next = NULL; 12053 } 12054 break; 12055 } 12056 mp1->b_next = NULL; 12057 mp1->b_prev = NULL; 12058 mp2 = mp1; 12059 mp1 = mp1->b_cont; 12060 12061 /* 12062 * This notification is required for some zero-copy 12063 * clients to maintain a copy semantic. After the data 12064 * is ack'ed, client is safe to modify or reuse the buffer. 12065 */ 12066 if (tcp->tcp_snd_zcopy_aware && 12067 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 12068 tcp_zcopy_notify(tcp); 12069 freeb(mp2); 12070 if (bytes_acked == 0) { 12071 if (mp1 == NULL) { 12072 /* Everything is ack'ed, clear the tail. */ 12073 tcp->tcp_xmit_tail = NULL; 12074 /* 12075 * Cancel the timer unless we are still 12076 * waiting for an ACK for the FIN packet. 12077 */ 12078 if (tcp->tcp_timer_tid != 0 && 12079 tcp->tcp_snxt == tcp->tcp_suna) { 12080 (void) TCP_TIMER_CANCEL(tcp, 12081 tcp->tcp_timer_tid); 12082 tcp->tcp_timer_tid = 0; 12083 } 12084 goto pre_swnd_update; 12085 } 12086 if (mp2 != tcp->tcp_xmit_tail) 12087 break; 12088 tcp->tcp_xmit_tail = mp1; 12089 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12090 (uintptr_t)INT_MAX); 12091 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 12092 mp1->b_rptr); 12093 break; 12094 } 12095 if (mp1 == NULL) { 12096 /* 12097 * More was acked but there is nothing more 12098 * outstanding. This means that the FIN was 12099 * just acked or that we're talking to a clown. 12100 */ 12101 fin_acked: 12102 ASSERT(tcp->tcp_fin_sent); 12103 tcp->tcp_xmit_tail = NULL; 12104 if (tcp->tcp_fin_sent) { 12105 /* FIN was acked - making progress */ 12106 if (!tcp->tcp_fin_acked) 12107 tcp->tcp_ip_forward_progress = B_TRUE; 12108 tcp->tcp_fin_acked = B_TRUE; 12109 if (tcp->tcp_linger_tid != 0 && 12110 TCP_TIMER_CANCEL(tcp, 12111 tcp->tcp_linger_tid) >= 0) { 12112 tcp_stop_lingering(tcp); 12113 freemsg(mp); 12114 mp = NULL; 12115 } 12116 } else { 12117 /* 12118 * We should never get here because 12119 * we have already checked that the 12120 * number of bytes ack'ed should be 12121 * smaller than or equal to what we 12122 * have sent so far (it is the 12123 * acceptability check of the ACK). 12124 * We can only get here if the send 12125 * queue is corrupted. 12126 * 12127 * Terminate the connection and 12128 * panic the system. It is better 12129 * for us to panic instead of 12130 * continuing to avoid other disaster. 12131 */ 12132 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 12133 tcp->tcp_rnxt, TH_RST|TH_ACK); 12134 panic("Memory corruption " 12135 "detected for connection %s.", 12136 tcp_display(tcp, NULL, 12137 DISP_ADDR_AND_PORT)); 12138 /*NOTREACHED*/ 12139 } 12140 goto pre_swnd_update; 12141 } 12142 ASSERT(mp2 != tcp->tcp_xmit_tail); 12143 } 12144 if (tcp->tcp_unsent) { 12145 flags |= TH_XMIT_NEEDED; 12146 } 12147 pre_swnd_update: 12148 tcp->tcp_xmit_head = mp1; 12149 swnd_update: 12150 /* 12151 * The following check is different from most other implementations. 12152 * For bi-directional transfer, when segments are dropped, the 12153 * "normal" check will not accept a window update in those 12154 * retransmitted segemnts. Failing to do that, TCP may send out 12155 * segments which are outside receiver's window. As TCP accepts 12156 * the ack in those retransmitted segments, if the window update in 12157 * the same segment is not accepted, TCP will incorrectly calculates 12158 * that it can send more segments. This can create a deadlock 12159 * with the receiver if its window becomes zero. 12160 */ 12161 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 12162 SEQ_LT(tcp->tcp_swl1, seg_seq) || 12163 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 12164 /* 12165 * The criteria for update is: 12166 * 12167 * 1. the segment acknowledges some data. Or 12168 * 2. the segment is new, i.e. it has a higher seq num. Or 12169 * 3. the segment is not old and the advertised window is 12170 * larger than the previous advertised window. 12171 */ 12172 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 12173 flags |= TH_XMIT_NEEDED; 12174 tcp->tcp_swnd = new_swnd; 12175 if (new_swnd > tcp->tcp_max_swnd) 12176 tcp->tcp_max_swnd = new_swnd; 12177 tcp->tcp_swl1 = seg_seq; 12178 tcp->tcp_swl2 = seg_ack; 12179 } 12180 est: 12181 if (tcp->tcp_state > TCPS_ESTABLISHED) { 12182 12183 switch (tcp->tcp_state) { 12184 case TCPS_FIN_WAIT_1: 12185 if (tcp->tcp_fin_acked) { 12186 tcp->tcp_state = TCPS_FIN_WAIT_2; 12187 /* 12188 * We implement the non-standard BSD/SunOS 12189 * FIN_WAIT_2 flushing algorithm. 12190 * If there is no user attached to this 12191 * TCP endpoint, then this TCP struct 12192 * could hang around forever in FIN_WAIT_2 12193 * state if the peer forgets to send us 12194 * a FIN. To prevent this, we wait only 12195 * 2*MSL (a convenient time value) for 12196 * the FIN to arrive. If it doesn't show up, 12197 * we flush the TCP endpoint. This algorithm, 12198 * though a violation of RFC-793, has worked 12199 * for over 10 years in BSD systems. 12200 * Note: SunOS 4.x waits 675 seconds before 12201 * flushing the FIN_WAIT_2 connection. 12202 */ 12203 TCP_TIMER_RESTART(tcp, 12204 tcps->tcps_fin_wait_2_flush_interval); 12205 } 12206 break; 12207 case TCPS_FIN_WAIT_2: 12208 break; /* Shutdown hook? */ 12209 case TCPS_LAST_ACK: 12210 freemsg(mp); 12211 if (tcp->tcp_fin_acked) { 12212 (void) tcp_clean_death(tcp, 0, 19); 12213 return; 12214 } 12215 goto xmit_check; 12216 case TCPS_CLOSING: 12217 if (tcp->tcp_fin_acked) 12218 SET_TIME_WAIT(tcps, tcp, connp); 12219 /*FALLTHRU*/ 12220 case TCPS_CLOSE_WAIT: 12221 freemsg(mp); 12222 goto xmit_check; 12223 default: 12224 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12225 break; 12226 } 12227 } 12228 if (flags & TH_FIN) { 12229 /* Make sure we ack the fin */ 12230 flags |= TH_ACK_NEEDED; 12231 if (!tcp->tcp_fin_rcvd) { 12232 tcp->tcp_fin_rcvd = B_TRUE; 12233 tcp->tcp_rnxt++; 12234 tcpha = tcp->tcp_tcpha; 12235 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12236 12237 /* 12238 * Generate the ordrel_ind at the end unless we 12239 * are an eager guy. 12240 * In the eager case tcp_rsrv will do this when run 12241 * after tcp_accept is done. 12242 */ 12243 if (tcp->tcp_listener == NULL && 12244 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 12245 flags |= TH_ORDREL_NEEDED; 12246 switch (tcp->tcp_state) { 12247 case TCPS_SYN_RCVD: 12248 case TCPS_ESTABLISHED: 12249 tcp->tcp_state = TCPS_CLOSE_WAIT; 12250 /* Keepalive? */ 12251 break; 12252 case TCPS_FIN_WAIT_1: 12253 if (!tcp->tcp_fin_acked) { 12254 tcp->tcp_state = TCPS_CLOSING; 12255 break; 12256 } 12257 /* FALLTHRU */ 12258 case TCPS_FIN_WAIT_2: 12259 SET_TIME_WAIT(tcps, tcp, connp); 12260 if (seg_len) { 12261 /* 12262 * implies data piggybacked on FIN. 12263 * break to handle data. 12264 */ 12265 break; 12266 } 12267 freemsg(mp); 12268 goto ack_check; 12269 } 12270 } 12271 } 12272 if (mp == NULL) 12273 goto xmit_check; 12274 if (seg_len == 0) { 12275 freemsg(mp); 12276 goto xmit_check; 12277 } 12278 if (mp->b_rptr == mp->b_wptr) { 12279 /* 12280 * The header has been consumed, so we remove the 12281 * zero-length mblk here. 12282 */ 12283 mp1 = mp; 12284 mp = mp->b_cont; 12285 freeb(mp1); 12286 } 12287 update_ack: 12288 tcpha = tcp->tcp_tcpha; 12289 tcp->tcp_rack_cnt++; 12290 { 12291 uint32_t cur_max; 12292 12293 cur_max = tcp->tcp_rack_cur_max; 12294 if (tcp->tcp_rack_cnt >= cur_max) { 12295 /* 12296 * We have more unacked data than we should - send 12297 * an ACK now. 12298 */ 12299 flags |= TH_ACK_NEEDED; 12300 cur_max++; 12301 if (cur_max > tcp->tcp_rack_abs_max) 12302 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12303 else 12304 tcp->tcp_rack_cur_max = cur_max; 12305 } else if (TCP_IS_DETACHED(tcp)) { 12306 /* We don't have an ACK timer for detached TCP. */ 12307 flags |= TH_ACK_NEEDED; 12308 } else if (seg_len < mss) { 12309 /* 12310 * If we get a segment that is less than an mss, and we 12311 * already have unacknowledged data, and the amount 12312 * unacknowledged is not a multiple of mss, then we 12313 * better generate an ACK now. Otherwise, this may be 12314 * the tail piece of a transaction, and we would rather 12315 * wait for the response. 12316 */ 12317 uint32_t udif; 12318 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12319 (uintptr_t)INT_MAX); 12320 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12321 if (udif && (udif % mss)) 12322 flags |= TH_ACK_NEEDED; 12323 else 12324 flags |= TH_ACK_TIMER_NEEDED; 12325 } else { 12326 /* Start delayed ack timer */ 12327 flags |= TH_ACK_TIMER_NEEDED; 12328 } 12329 } 12330 tcp->tcp_rnxt += seg_len; 12331 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12332 12333 if (mp == NULL) 12334 goto xmit_check; 12335 12336 /* Update SACK list */ 12337 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12338 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12339 &(tcp->tcp_num_sack_blk)); 12340 } 12341 12342 if (tcp->tcp_urp_mp) { 12343 tcp->tcp_urp_mp->b_cont = mp; 12344 mp = tcp->tcp_urp_mp; 12345 tcp->tcp_urp_mp = NULL; 12346 /* Ready for a new signal. */ 12347 tcp->tcp_urp_last_valid = B_FALSE; 12348 #ifdef DEBUG 12349 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12350 "tcp_rput: sending exdata_ind %s", 12351 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12352 #endif /* DEBUG */ 12353 } 12354 12355 /* 12356 * Check for ancillary data changes compared to last segment. 12357 */ 12358 if (connp->conn_recv_ancillary.crb_all != 0) { 12359 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12360 if (mp == NULL) 12361 return; 12362 } 12363 12364 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12365 /* 12366 * Side queue inbound data until the accept happens. 12367 * tcp_accept/tcp_rput drains this when the accept happens. 12368 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12369 * T_EXDATA_IND) it is queued on b_next. 12370 * XXX Make urgent data use this. Requires: 12371 * Removing tcp_listener check for TH_URG 12372 * Making M_PCPROTO and MARK messages skip the eager case 12373 */ 12374 12375 if (tcp->tcp_kssl_pending) { 12376 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12377 mblk_t *, mp); 12378 tcp_kssl_input(tcp, mp, ira->ira_cred); 12379 } else { 12380 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12381 } 12382 } else if (IPCL_IS_NONSTR(connp)) { 12383 /* 12384 * Non-STREAMS socket 12385 * 12386 * Note that no KSSL processing is done here, because 12387 * KSSL is not supported for non-STREAMS sockets. 12388 */ 12389 boolean_t push = flags & (TH_PUSH|TH_FIN); 12390 int error; 12391 12392 if ((*connp->conn_upcalls->su_recv)( 12393 connp->conn_upper_handle, 12394 mp, seg_len, 0, &error, &push) <= 0) { 12395 /* 12396 * We should never be in middle of a 12397 * fallback, the squeue guarantees that. 12398 */ 12399 ASSERT(error != EOPNOTSUPP); 12400 if (error == ENOSPC) 12401 tcp->tcp_rwnd -= seg_len; 12402 } else if (push) { 12403 /* PUSH bit set and sockfs is not flow controlled */ 12404 flags |= tcp_rwnd_reopen(tcp); 12405 } 12406 } else { 12407 /* STREAMS socket */ 12408 if (mp->b_datap->db_type != M_DATA || 12409 (flags & TH_MARKNEXT_NEEDED)) { 12410 if (tcp->tcp_rcv_list != NULL) { 12411 flags |= tcp_rcv_drain(tcp); 12412 } 12413 ASSERT(tcp->tcp_rcv_list == NULL || 12414 tcp->tcp_fused_sigurg); 12415 12416 if (flags & TH_MARKNEXT_NEEDED) { 12417 #ifdef DEBUG 12418 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12419 "tcp_rput: sending MSGMARKNEXT %s", 12420 tcp_display(tcp, NULL, 12421 DISP_PORT_ONLY)); 12422 #endif /* DEBUG */ 12423 mp->b_flag |= MSGMARKNEXT; 12424 flags &= ~TH_MARKNEXT_NEEDED; 12425 } 12426 12427 /* Does this need SSL processing first? */ 12428 if ((tcp->tcp_kssl_ctx != NULL) && 12429 (DB_TYPE(mp) == M_DATA)) { 12430 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12431 mblk_t *, mp); 12432 tcp_kssl_input(tcp, mp, ira->ira_cred); 12433 } else { 12434 if (is_system_labeled()) 12435 tcp_setcred_data(mp, ira); 12436 12437 putnext(connp->conn_rq, mp); 12438 if (!canputnext(connp->conn_rq)) 12439 tcp->tcp_rwnd -= seg_len; 12440 } 12441 } else if ((tcp->tcp_kssl_ctx != NULL) && 12442 (DB_TYPE(mp) == M_DATA)) { 12443 /* Does this need SSL processing first? */ 12444 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12445 tcp_kssl_input(tcp, mp, ira->ira_cred); 12446 } else if ((flags & (TH_PUSH|TH_FIN)) || 12447 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12448 if (tcp->tcp_rcv_list != NULL) { 12449 /* 12450 * Enqueue the new segment first and then 12451 * call tcp_rcv_drain() to send all data 12452 * up. The other way to do this is to 12453 * send all queued data up and then call 12454 * putnext() to send the new segment up. 12455 * This way can remove the else part later 12456 * on. 12457 * 12458 * We don't do this to avoid one more call to 12459 * canputnext() as tcp_rcv_drain() needs to 12460 * call canputnext(). 12461 */ 12462 tcp_rcv_enqueue(tcp, mp, seg_len, 12463 ira->ira_cred); 12464 flags |= tcp_rcv_drain(tcp); 12465 } else { 12466 if (is_system_labeled()) 12467 tcp_setcred_data(mp, ira); 12468 12469 putnext(connp->conn_rq, mp); 12470 if (!canputnext(connp->conn_rq)) 12471 tcp->tcp_rwnd -= seg_len; 12472 } 12473 } else { 12474 /* 12475 * Enqueue all packets when processing an mblk 12476 * from the co queue and also enqueue normal packets. 12477 */ 12478 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12479 } 12480 /* 12481 * Make sure the timer is running if we have data waiting 12482 * for a push bit. This provides resiliency against 12483 * implementations that do not correctly generate push bits. 12484 */ 12485 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12486 /* 12487 * The connection may be closed at this point, so don't 12488 * do anything for a detached tcp. 12489 */ 12490 if (!TCP_IS_DETACHED(tcp)) 12491 tcp->tcp_push_tid = TCP_TIMER(tcp, 12492 tcp_push_timer, 12493 MSEC_TO_TICK( 12494 tcps->tcps_push_timer_interval)); 12495 } 12496 } 12497 12498 xmit_check: 12499 /* Is there anything left to do? */ 12500 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12501 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12502 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12503 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12504 goto done; 12505 12506 /* Any transmit work to do and a non-zero window? */ 12507 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12508 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12509 if (flags & TH_REXMIT_NEEDED) { 12510 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12511 12512 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12513 if (snd_size > mss) 12514 snd_size = mss; 12515 if (snd_size > tcp->tcp_swnd) 12516 snd_size = tcp->tcp_swnd; 12517 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12518 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12519 B_TRUE); 12520 12521 if (mp1 != NULL) { 12522 tcp->tcp_xmit_head->b_prev = 12523 (mblk_t *)LBOLT_FASTPATH; 12524 tcp->tcp_csuna = tcp->tcp_snxt; 12525 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12526 UPDATE_MIB(&tcps->tcps_mib, 12527 tcpRetransBytes, snd_size); 12528 tcp_send_data(tcp, mp1); 12529 } 12530 } 12531 if (flags & TH_NEED_SACK_REXMIT) { 12532 tcp_sack_rxmit(tcp, &flags); 12533 } 12534 /* 12535 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12536 * out new segment. Note that tcp_rexmit should not be 12537 * set, otherwise TH_LIMIT_XMIT should not be set. 12538 */ 12539 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12540 if (!tcp->tcp_rexmit) { 12541 tcp_wput_data(tcp, NULL, B_FALSE); 12542 } else { 12543 tcp_ss_rexmit(tcp); 12544 } 12545 } 12546 /* 12547 * Adjust tcp_cwnd back to normal value after sending 12548 * new data segments. 12549 */ 12550 if (flags & TH_LIMIT_XMIT) { 12551 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12552 /* 12553 * This will restart the timer. Restarting the 12554 * timer is used to avoid a timeout before the 12555 * limited transmitted segment's ACK gets back. 12556 */ 12557 if (tcp->tcp_xmit_head != NULL) 12558 tcp->tcp_xmit_head->b_prev = 12559 (mblk_t *)LBOLT_FASTPATH; 12560 } 12561 12562 /* Anything more to do? */ 12563 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12564 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12565 goto done; 12566 } 12567 ack_check: 12568 if (flags & TH_SEND_URP_MARK) { 12569 ASSERT(tcp->tcp_urp_mark_mp); 12570 ASSERT(!IPCL_IS_NONSTR(connp)); 12571 /* 12572 * Send up any queued data and then send the mark message 12573 */ 12574 if (tcp->tcp_rcv_list != NULL) { 12575 flags |= tcp_rcv_drain(tcp); 12576 12577 } 12578 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12579 mp1 = tcp->tcp_urp_mark_mp; 12580 tcp->tcp_urp_mark_mp = NULL; 12581 if (is_system_labeled()) 12582 tcp_setcred_data(mp1, ira); 12583 12584 putnext(connp->conn_rq, mp1); 12585 #ifdef DEBUG 12586 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12587 "tcp_rput: sending zero-length %s %s", 12588 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12589 "MSGNOTMARKNEXT"), 12590 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12591 #endif /* DEBUG */ 12592 flags &= ~TH_SEND_URP_MARK; 12593 } 12594 if (flags & TH_ACK_NEEDED) { 12595 /* 12596 * Time to send an ack for some reason. 12597 */ 12598 mp1 = tcp_ack_mp(tcp); 12599 12600 if (mp1 != NULL) { 12601 tcp_send_data(tcp, mp1); 12602 BUMP_LOCAL(tcp->tcp_obsegs); 12603 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12604 } 12605 if (tcp->tcp_ack_tid != 0) { 12606 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12607 tcp->tcp_ack_tid = 0; 12608 } 12609 } 12610 if (flags & TH_ACK_TIMER_NEEDED) { 12611 /* 12612 * Arrange for deferred ACK or push wait timeout. 12613 * Start timer if it is not already running. 12614 */ 12615 if (tcp->tcp_ack_tid == 0) { 12616 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12617 MSEC_TO_TICK(tcp->tcp_localnet ? 12618 (clock_t)tcps->tcps_local_dack_interval : 12619 (clock_t)tcps->tcps_deferred_ack_interval)); 12620 } 12621 } 12622 if (flags & TH_ORDREL_NEEDED) { 12623 /* 12624 * Send up the ordrel_ind unless we are an eager guy. 12625 * In the eager case tcp_rsrv will do this when run 12626 * after tcp_accept is done. 12627 */ 12628 ASSERT(tcp->tcp_listener == NULL); 12629 ASSERT(!tcp->tcp_detached); 12630 12631 if (IPCL_IS_NONSTR(connp)) { 12632 ASSERT(tcp->tcp_ordrel_mp == NULL); 12633 tcp->tcp_ordrel_done = B_TRUE; 12634 (*connp->conn_upcalls->su_opctl) 12635 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12636 goto done; 12637 } 12638 12639 if (tcp->tcp_rcv_list != NULL) { 12640 /* 12641 * Push any mblk(s) enqueued from co processing. 12642 */ 12643 flags |= tcp_rcv_drain(tcp); 12644 } 12645 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12646 12647 mp1 = tcp->tcp_ordrel_mp; 12648 tcp->tcp_ordrel_mp = NULL; 12649 tcp->tcp_ordrel_done = B_TRUE; 12650 putnext(connp->conn_rq, mp1); 12651 } 12652 done: 12653 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12654 } 12655 12656 /* 12657 * This routine adjusts next-to-send sequence number variables, in the 12658 * case where the reciever has shrunk it's window. 12659 */ 12660 static void 12661 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12662 { 12663 mblk_t *xmit_tail; 12664 int32_t offset; 12665 12666 tcp->tcp_snxt = snxt; 12667 12668 /* Get the mblk, and the offset in it, as per the shrunk window */ 12669 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12670 ASSERT(xmit_tail != NULL); 12671 tcp->tcp_xmit_tail = xmit_tail; 12672 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12673 xmit_tail->b_rptr - offset; 12674 } 12675 12676 /* 12677 * This function does PAWS protection check. Returns B_TRUE if the 12678 * segment passes the PAWS test, else returns B_FALSE. 12679 */ 12680 boolean_t 12681 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12682 { 12683 uint8_t flags; 12684 int options; 12685 uint8_t *up; 12686 conn_t *connp = tcp->tcp_connp; 12687 12688 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12689 /* 12690 * If timestamp option is aligned nicely, get values inline, 12691 * otherwise call general routine to parse. Only do that 12692 * if timestamp is the only option. 12693 */ 12694 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12695 TCPOPT_REAL_TS_LEN && 12696 OK_32PTR((up = ((uint8_t *)tcpha) + 12697 TCP_MIN_HEADER_LENGTH)) && 12698 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12699 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12700 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12701 12702 options = TCP_OPT_TSTAMP_PRESENT; 12703 } else { 12704 if (tcp->tcp_snd_sack_ok) { 12705 tcpoptp->tcp = tcp; 12706 } else { 12707 tcpoptp->tcp = NULL; 12708 } 12709 options = tcp_parse_options(tcpha, tcpoptp); 12710 } 12711 12712 if (options & TCP_OPT_TSTAMP_PRESENT) { 12713 /* 12714 * Do PAWS per RFC 1323 section 4.2. Accept RST 12715 * regardless of the timestamp, page 18 RFC 1323.bis. 12716 */ 12717 if ((flags & TH_RST) == 0 && 12718 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12719 tcp->tcp_ts_recent)) { 12720 if (TSTMP_LT(LBOLT_FASTPATH64, 12721 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12722 /* This segment is not acceptable. */ 12723 return (B_FALSE); 12724 } else { 12725 /* 12726 * Connection has been idle for 12727 * too long. Reset the timestamp 12728 * and assume the segment is valid. 12729 */ 12730 tcp->tcp_ts_recent = 12731 tcpoptp->tcp_opt_ts_val; 12732 } 12733 } 12734 } else { 12735 /* 12736 * If we don't get a timestamp on every packet, we 12737 * figure we can't really trust 'em, so we stop sending 12738 * and parsing them. 12739 */ 12740 tcp->tcp_snd_ts_ok = B_FALSE; 12741 12742 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12743 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12744 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12745 /* 12746 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12747 * doing a slow start here so as to not to lose on the 12748 * transfer rate built up so far. 12749 */ 12750 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12751 if (tcp->tcp_snd_sack_ok) { 12752 ASSERT(tcp->tcp_sack_info != NULL); 12753 tcp->tcp_max_sack_blk = 4; 12754 } 12755 } 12756 return (B_TRUE); 12757 } 12758 12759 /* 12760 * Attach ancillary data to a received TCP segments for the 12761 * ancillary pieces requested by the application that are 12762 * different than they were in the previous data segment. 12763 * 12764 * Save the "current" values once memory allocation is ok so that 12765 * when memory allocation fails we can just wait for the next data segment. 12766 */ 12767 static mblk_t * 12768 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12769 ip_recv_attr_t *ira) 12770 { 12771 struct T_optdata_ind *todi; 12772 int optlen; 12773 uchar_t *optptr; 12774 struct T_opthdr *toh; 12775 crb_t addflag; /* Which pieces to add */ 12776 mblk_t *mp1; 12777 conn_t *connp = tcp->tcp_connp; 12778 12779 optlen = 0; 12780 addflag.crb_all = 0; 12781 /* If app asked for pktinfo and the index has changed ... */ 12782 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12783 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12784 optlen += sizeof (struct T_opthdr) + 12785 sizeof (struct in6_pktinfo); 12786 addflag.crb_ip_recvpktinfo = 1; 12787 } 12788 /* If app asked for hoplimit and it has changed ... */ 12789 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12790 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12791 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12792 addflag.crb_ipv6_recvhoplimit = 1; 12793 } 12794 /* If app asked for tclass and it has changed ... */ 12795 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12796 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12797 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12798 addflag.crb_ipv6_recvtclass = 1; 12799 } 12800 /* 12801 * If app asked for hopbyhop headers and it has changed ... 12802 * For security labels, note that (1) security labels can't change on 12803 * a connected socket at all, (2) we're connected to at most one peer, 12804 * (3) if anything changes, then it must be some other extra option. 12805 */ 12806 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12807 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12808 (ipp->ipp_fields & IPPF_HOPOPTS), 12809 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12810 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12811 addflag.crb_ipv6_recvhopopts = 1; 12812 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12813 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12814 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12815 return (mp); 12816 } 12817 /* If app asked for dst headers before routing headers ... */ 12818 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12819 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12820 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12821 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12822 optlen += sizeof (struct T_opthdr) + 12823 ipp->ipp_rthdrdstoptslen; 12824 addflag.crb_ipv6_recvrthdrdstopts = 1; 12825 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12826 &tcp->tcp_rthdrdstoptslen, 12827 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12828 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12829 return (mp); 12830 } 12831 /* If app asked for routing headers and it has changed ... */ 12832 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12833 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12834 (ipp->ipp_fields & IPPF_RTHDR), 12835 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12836 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12837 addflag.crb_ipv6_recvrthdr = 1; 12838 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12839 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12840 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12841 return (mp); 12842 } 12843 /* If app asked for dest headers and it has changed ... */ 12844 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12845 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12846 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12847 (ipp->ipp_fields & IPPF_DSTOPTS), 12848 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12849 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12850 addflag.crb_ipv6_recvdstopts = 1; 12851 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12852 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12853 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12854 return (mp); 12855 } 12856 12857 if (optlen == 0) { 12858 /* Nothing to add */ 12859 return (mp); 12860 } 12861 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12862 if (mp1 == NULL) { 12863 /* 12864 * Defer sending ancillary data until the next TCP segment 12865 * arrives. 12866 */ 12867 return (mp); 12868 } 12869 mp1->b_cont = mp; 12870 mp = mp1; 12871 mp->b_wptr += sizeof (*todi) + optlen; 12872 mp->b_datap->db_type = M_PROTO; 12873 todi = (struct T_optdata_ind *)mp->b_rptr; 12874 todi->PRIM_type = T_OPTDATA_IND; 12875 todi->DATA_flag = 1; /* MORE data */ 12876 todi->OPT_length = optlen; 12877 todi->OPT_offset = sizeof (*todi); 12878 optptr = (uchar_t *)&todi[1]; 12879 /* 12880 * If app asked for pktinfo and the index has changed ... 12881 * Note that the local address never changes for the connection. 12882 */ 12883 if (addflag.crb_ip_recvpktinfo) { 12884 struct in6_pktinfo *pkti; 12885 uint_t ifindex; 12886 12887 ifindex = ira->ira_ruifindex; 12888 toh = (struct T_opthdr *)optptr; 12889 toh->level = IPPROTO_IPV6; 12890 toh->name = IPV6_PKTINFO; 12891 toh->len = sizeof (*toh) + sizeof (*pkti); 12892 toh->status = 0; 12893 optptr += sizeof (*toh); 12894 pkti = (struct in6_pktinfo *)optptr; 12895 pkti->ipi6_addr = connp->conn_laddr_v6; 12896 pkti->ipi6_ifindex = ifindex; 12897 optptr += sizeof (*pkti); 12898 ASSERT(OK_32PTR(optptr)); 12899 /* Save as "last" value */ 12900 tcp->tcp_recvifindex = ifindex; 12901 } 12902 /* If app asked for hoplimit and it has changed ... */ 12903 if (addflag.crb_ipv6_recvhoplimit) { 12904 toh = (struct T_opthdr *)optptr; 12905 toh->level = IPPROTO_IPV6; 12906 toh->name = IPV6_HOPLIMIT; 12907 toh->len = sizeof (*toh) + sizeof (uint_t); 12908 toh->status = 0; 12909 optptr += sizeof (*toh); 12910 *(uint_t *)optptr = ipp->ipp_hoplimit; 12911 optptr += sizeof (uint_t); 12912 ASSERT(OK_32PTR(optptr)); 12913 /* Save as "last" value */ 12914 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12915 } 12916 /* If app asked for tclass and it has changed ... */ 12917 if (addflag.crb_ipv6_recvtclass) { 12918 toh = (struct T_opthdr *)optptr; 12919 toh->level = IPPROTO_IPV6; 12920 toh->name = IPV6_TCLASS; 12921 toh->len = sizeof (*toh) + sizeof (uint_t); 12922 toh->status = 0; 12923 optptr += sizeof (*toh); 12924 *(uint_t *)optptr = ipp->ipp_tclass; 12925 optptr += sizeof (uint_t); 12926 ASSERT(OK_32PTR(optptr)); 12927 /* Save as "last" value */ 12928 tcp->tcp_recvtclass = ipp->ipp_tclass; 12929 } 12930 if (addflag.crb_ipv6_recvhopopts) { 12931 toh = (struct T_opthdr *)optptr; 12932 toh->level = IPPROTO_IPV6; 12933 toh->name = IPV6_HOPOPTS; 12934 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12935 toh->status = 0; 12936 optptr += sizeof (*toh); 12937 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12938 optptr += ipp->ipp_hopoptslen; 12939 ASSERT(OK_32PTR(optptr)); 12940 /* Save as last value */ 12941 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12942 (ipp->ipp_fields & IPPF_HOPOPTS), 12943 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12944 } 12945 if (addflag.crb_ipv6_recvrthdrdstopts) { 12946 toh = (struct T_opthdr *)optptr; 12947 toh->level = IPPROTO_IPV6; 12948 toh->name = IPV6_RTHDRDSTOPTS; 12949 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12950 toh->status = 0; 12951 optptr += sizeof (*toh); 12952 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12953 optptr += ipp->ipp_rthdrdstoptslen; 12954 ASSERT(OK_32PTR(optptr)); 12955 /* Save as last value */ 12956 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12957 &tcp->tcp_rthdrdstoptslen, 12958 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12959 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12960 } 12961 if (addflag.crb_ipv6_recvrthdr) { 12962 toh = (struct T_opthdr *)optptr; 12963 toh->level = IPPROTO_IPV6; 12964 toh->name = IPV6_RTHDR; 12965 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12966 toh->status = 0; 12967 optptr += sizeof (*toh); 12968 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12969 optptr += ipp->ipp_rthdrlen; 12970 ASSERT(OK_32PTR(optptr)); 12971 /* Save as last value */ 12972 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12973 (ipp->ipp_fields & IPPF_RTHDR), 12974 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12975 } 12976 if (addflag.crb_ipv6_recvdstopts) { 12977 toh = (struct T_opthdr *)optptr; 12978 toh->level = IPPROTO_IPV6; 12979 toh->name = IPV6_DSTOPTS; 12980 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12981 toh->status = 0; 12982 optptr += sizeof (*toh); 12983 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12984 optptr += ipp->ipp_dstoptslen; 12985 ASSERT(OK_32PTR(optptr)); 12986 /* Save as last value */ 12987 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12988 (ipp->ipp_fields & IPPF_DSTOPTS), 12989 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12990 } 12991 ASSERT(optptr == mp->b_wptr); 12992 return (mp); 12993 } 12994 12995 /* ARGSUSED */ 12996 static void 12997 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12998 { 12999 conn_t *connp = (conn_t *)arg; 13000 tcp_t *tcp = connp->conn_tcp; 13001 queue_t *q = connp->conn_rq; 13002 tcp_stack_t *tcps = tcp->tcp_tcps; 13003 13004 ASSERT(!IPCL_IS_NONSTR(connp)); 13005 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13006 tcp->tcp_rsrv_mp = mp; 13007 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13008 13009 TCP_STAT(tcps, tcp_rsrv_calls); 13010 13011 if (TCP_IS_DETACHED(tcp) || q == NULL) { 13012 return; 13013 } 13014 13015 if (tcp->tcp_fused) { 13016 tcp_fuse_backenable(tcp); 13017 return; 13018 } 13019 13020 if (canputnext(q)) { 13021 /* Not flow-controlled, open rwnd */ 13022 tcp->tcp_rwnd = connp->conn_rcvbuf; 13023 13024 /* 13025 * Send back a window update immediately if TCP is above 13026 * ESTABLISHED state and the increase of the rcv window 13027 * that the other side knows is at least 1 MSS after flow 13028 * control is lifted. 13029 */ 13030 if (tcp->tcp_state >= TCPS_ESTABLISHED && 13031 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 13032 tcp_xmit_ctl(NULL, tcp, 13033 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 13034 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 13035 } 13036 } 13037 } 13038 13039 /* 13040 * The read side service routine is called mostly when we get back-enabled as a 13041 * result of flow control relief. Since we don't actually queue anything in 13042 * TCP, we have no data to send out of here. What we do is clear the receive 13043 * window, and send out a window update. 13044 */ 13045 static void 13046 tcp_rsrv(queue_t *q) 13047 { 13048 conn_t *connp = Q_TO_CONN(q); 13049 tcp_t *tcp = connp->conn_tcp; 13050 mblk_t *mp; 13051 13052 /* No code does a putq on the read side */ 13053 ASSERT(q->q_first == NULL); 13054 13055 /* 13056 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 13057 * been run. So just return. 13058 */ 13059 mutex_enter(&tcp->tcp_rsrv_mp_lock); 13060 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 13061 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13062 return; 13063 } 13064 tcp->tcp_rsrv_mp = NULL; 13065 mutex_exit(&tcp->tcp_rsrv_mp_lock); 13066 13067 CONN_INC_REF(connp); 13068 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 13069 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 13070 } 13071 13072 /* 13073 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 13074 * We do not allow the receive window to shrink. After setting rwnd, 13075 * set the flow control hiwat of the stream. 13076 * 13077 * This function is called in 2 cases: 13078 * 13079 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 13080 * connection (passive open) and in tcp_input_data() for active connect. 13081 * This is called after tcp_mss_set() when the desired MSS value is known. 13082 * This makes sure that our window size is a mutiple of the other side's 13083 * MSS. 13084 * 2) Handling SO_RCVBUF option. 13085 * 13086 * It is ASSUMED that the requested size is a multiple of the current MSS. 13087 * 13088 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 13089 * user requests so. 13090 */ 13091 int 13092 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 13093 { 13094 uint32_t mss = tcp->tcp_mss; 13095 uint32_t old_max_rwnd; 13096 uint32_t max_transmittable_rwnd; 13097 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 13098 tcp_stack_t *tcps = tcp->tcp_tcps; 13099 conn_t *connp = tcp->tcp_connp; 13100 13101 /* 13102 * Insist on a receive window that is at least 13103 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 13104 * funny TCP interactions of Nagle algorithm, SWS avoidance 13105 * and delayed acknowledgement. 13106 */ 13107 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 13108 13109 if (tcp->tcp_fused) { 13110 size_t sth_hiwat; 13111 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 13112 13113 ASSERT(peer_tcp != NULL); 13114 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 13115 if (!tcp_detached) { 13116 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 13117 sth_hiwat); 13118 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 13119 } 13120 13121 /* Caller could have changed tcp_rwnd; update tha_win */ 13122 if (tcp->tcp_tcpha != NULL) { 13123 tcp->tcp_tcpha->tha_win = 13124 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13125 } 13126 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13127 tcp->tcp_cwnd_max = rwnd; 13128 13129 /* 13130 * In the fusion case, the maxpsz stream head value of 13131 * our peer is set according to its send buffer size 13132 * and our receive buffer size; since the latter may 13133 * have changed we need to update the peer's maxpsz. 13134 */ 13135 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 13136 return (sth_hiwat); 13137 } 13138 13139 if (tcp_detached) 13140 old_max_rwnd = tcp->tcp_rwnd; 13141 else 13142 old_max_rwnd = connp->conn_rcvbuf; 13143 13144 13145 /* 13146 * If window size info has already been exchanged, TCP should not 13147 * shrink the window. Shrinking window is doable if done carefully. 13148 * We may add that support later. But so far there is not a real 13149 * need to do that. 13150 */ 13151 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 13152 /* MSS may have changed, do a round up again. */ 13153 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 13154 } 13155 13156 /* 13157 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 13158 * can be applied even before the window scale option is decided. 13159 */ 13160 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 13161 if (rwnd > max_transmittable_rwnd) { 13162 rwnd = max_transmittable_rwnd - 13163 (max_transmittable_rwnd % mss); 13164 if (rwnd < mss) 13165 rwnd = max_transmittable_rwnd; 13166 /* 13167 * If we're over the limit we may have to back down tcp_rwnd. 13168 * The increment below won't work for us. So we set all three 13169 * here and the increment below will have no effect. 13170 */ 13171 tcp->tcp_rwnd = old_max_rwnd = rwnd; 13172 } 13173 if (tcp->tcp_localnet) { 13174 tcp->tcp_rack_abs_max = 13175 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 13176 } else { 13177 /* 13178 * For a remote host on a different subnet (through a router), 13179 * we ack every other packet to be conforming to RFC1122. 13180 * tcp_deferred_acks_max is default to 2. 13181 */ 13182 tcp->tcp_rack_abs_max = 13183 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 13184 } 13185 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 13186 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 13187 else 13188 tcp->tcp_rack_cur_max = 0; 13189 /* 13190 * Increment the current rwnd by the amount the maximum grew (we 13191 * can not overwrite it since we might be in the middle of a 13192 * connection.) 13193 */ 13194 tcp->tcp_rwnd += rwnd - old_max_rwnd; 13195 connp->conn_rcvbuf = rwnd; 13196 13197 /* Are we already connected? */ 13198 if (tcp->tcp_tcpha != NULL) { 13199 tcp->tcp_tcpha->tha_win = 13200 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 13201 } 13202 13203 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 13204 tcp->tcp_cwnd_max = rwnd; 13205 13206 if (tcp_detached) 13207 return (rwnd); 13208 13209 tcp_set_recv_threshold(tcp, rwnd >> 3); 13210 13211 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 13212 return (rwnd); 13213 } 13214 13215 /* 13216 * Return SNMP stuff in buffer in mpdata. 13217 */ 13218 mblk_t * 13219 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 13220 { 13221 mblk_t *mpdata; 13222 mblk_t *mp_conn_ctl = NULL; 13223 mblk_t *mp_conn_tail; 13224 mblk_t *mp_attr_ctl = NULL; 13225 mblk_t *mp_attr_tail; 13226 mblk_t *mp6_conn_ctl = NULL; 13227 mblk_t *mp6_conn_tail; 13228 mblk_t *mp6_attr_ctl = NULL; 13229 mblk_t *mp6_attr_tail; 13230 struct opthdr *optp; 13231 mib2_tcpConnEntry_t tce; 13232 mib2_tcp6ConnEntry_t tce6; 13233 mib2_transportMLPEntry_t mlp; 13234 connf_t *connfp; 13235 int i; 13236 boolean_t ispriv; 13237 zoneid_t zoneid; 13238 int v4_conn_idx; 13239 int v6_conn_idx; 13240 conn_t *connp = Q_TO_CONN(q); 13241 tcp_stack_t *tcps; 13242 ip_stack_t *ipst; 13243 mblk_t *mp2ctl; 13244 13245 /* 13246 * make a copy of the original message 13247 */ 13248 mp2ctl = copymsg(mpctl); 13249 13250 if (mpctl == NULL || 13251 (mpdata = mpctl->b_cont) == NULL || 13252 (mp_conn_ctl = copymsg(mpctl)) == NULL || 13253 (mp_attr_ctl = copymsg(mpctl)) == NULL || 13254 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 13255 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 13256 freemsg(mp_conn_ctl); 13257 freemsg(mp_attr_ctl); 13258 freemsg(mp6_conn_ctl); 13259 freemsg(mp6_attr_ctl); 13260 freemsg(mpctl); 13261 freemsg(mp2ctl); 13262 return (NULL); 13263 } 13264 13265 ipst = connp->conn_netstack->netstack_ip; 13266 tcps = connp->conn_netstack->netstack_tcp; 13267 13268 /* build table of connections -- need count in fixed part */ 13269 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 13270 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 13271 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 13272 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 13273 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 13274 13275 ispriv = 13276 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 13277 zoneid = Q_TO_CONN(q)->conn_zoneid; 13278 13279 v4_conn_idx = v6_conn_idx = 0; 13280 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 13281 13282 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 13283 ipst = tcps->tcps_netstack->netstack_ip; 13284 13285 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 13286 13287 connp = NULL; 13288 13289 while ((connp = 13290 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 13291 tcp_t *tcp; 13292 boolean_t needattr; 13293 13294 if (connp->conn_zoneid != zoneid) 13295 continue; /* not in this zone */ 13296 13297 tcp = connp->conn_tcp; 13298 UPDATE_MIB(&tcps->tcps_mib, 13299 tcpHCInSegs, tcp->tcp_ibsegs); 13300 tcp->tcp_ibsegs = 0; 13301 UPDATE_MIB(&tcps->tcps_mib, 13302 tcpHCOutSegs, tcp->tcp_obsegs); 13303 tcp->tcp_obsegs = 0; 13304 13305 tce6.tcp6ConnState = tce.tcpConnState = 13306 tcp_snmp_state(tcp); 13307 if (tce.tcpConnState == MIB2_TCP_established || 13308 tce.tcpConnState == MIB2_TCP_closeWait) 13309 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13310 13311 needattr = B_FALSE; 13312 bzero(&mlp, sizeof (mlp)); 13313 if (connp->conn_mlp_type != mlptSingle) { 13314 if (connp->conn_mlp_type == mlptShared || 13315 connp->conn_mlp_type == mlptBoth) 13316 mlp.tme_flags |= MIB2_TMEF_SHARED; 13317 if (connp->conn_mlp_type == mlptPrivate || 13318 connp->conn_mlp_type == mlptBoth) 13319 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13320 needattr = B_TRUE; 13321 } 13322 if (connp->conn_anon_mlp) { 13323 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13324 needattr = B_TRUE; 13325 } 13326 switch (connp->conn_mac_mode) { 13327 case CONN_MAC_DEFAULT: 13328 break; 13329 case CONN_MAC_AWARE: 13330 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13331 needattr = B_TRUE; 13332 break; 13333 case CONN_MAC_IMPLICIT: 13334 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13335 needattr = B_TRUE; 13336 break; 13337 } 13338 if (connp->conn_ixa->ixa_tsl != NULL) { 13339 ts_label_t *tsl; 13340 13341 tsl = connp->conn_ixa->ixa_tsl; 13342 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13343 mlp.tme_doi = label2doi(tsl); 13344 mlp.tme_label = *label2bslabel(tsl); 13345 needattr = B_TRUE; 13346 } 13347 13348 /* Create a message to report on IPv6 entries */ 13349 if (connp->conn_ipversion == IPV6_VERSION) { 13350 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13351 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13352 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13353 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13354 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13355 tce6.tcp6ConnIfIndex = 13356 connp->conn_ixa->ixa_scopeid; 13357 } else { 13358 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13359 } 13360 /* Don't want just anybody seeing these... */ 13361 if (ispriv) { 13362 tce6.tcp6ConnEntryInfo.ce_snxt = 13363 tcp->tcp_snxt; 13364 tce6.tcp6ConnEntryInfo.ce_suna = 13365 tcp->tcp_suna; 13366 tce6.tcp6ConnEntryInfo.ce_rnxt = 13367 tcp->tcp_rnxt; 13368 tce6.tcp6ConnEntryInfo.ce_rack = 13369 tcp->tcp_rack; 13370 } else { 13371 /* 13372 * Netstat, unfortunately, uses this to 13373 * get send/receive queue sizes. How to fix? 13374 * Why not compute the difference only? 13375 */ 13376 tce6.tcp6ConnEntryInfo.ce_snxt = 13377 tcp->tcp_snxt - tcp->tcp_suna; 13378 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13379 tce6.tcp6ConnEntryInfo.ce_rnxt = 13380 tcp->tcp_rnxt - tcp->tcp_rack; 13381 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13382 } 13383 13384 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13385 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13386 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13387 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13388 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13389 13390 tce6.tcp6ConnCreationProcess = 13391 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13392 connp->conn_cpid; 13393 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13394 13395 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13396 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13397 13398 mlp.tme_connidx = v6_conn_idx++; 13399 if (needattr) 13400 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13401 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13402 } 13403 /* 13404 * Create an IPv4 table entry for IPv4 entries and also 13405 * for IPv6 entries which are bound to in6addr_any 13406 * but don't have IPV6_V6ONLY set. 13407 * (i.e. anything an IPv4 peer could connect to) 13408 */ 13409 if (connp->conn_ipversion == IPV4_VERSION || 13410 (tcp->tcp_state <= TCPS_LISTEN && 13411 !connp->conn_ipv6_v6only && 13412 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13413 if (connp->conn_ipversion == IPV6_VERSION) { 13414 tce.tcpConnRemAddress = INADDR_ANY; 13415 tce.tcpConnLocalAddress = INADDR_ANY; 13416 } else { 13417 tce.tcpConnRemAddress = 13418 connp->conn_faddr_v4; 13419 tce.tcpConnLocalAddress = 13420 connp->conn_laddr_v4; 13421 } 13422 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13423 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13424 /* Don't want just anybody seeing these... */ 13425 if (ispriv) { 13426 tce.tcpConnEntryInfo.ce_snxt = 13427 tcp->tcp_snxt; 13428 tce.tcpConnEntryInfo.ce_suna = 13429 tcp->tcp_suna; 13430 tce.tcpConnEntryInfo.ce_rnxt = 13431 tcp->tcp_rnxt; 13432 tce.tcpConnEntryInfo.ce_rack = 13433 tcp->tcp_rack; 13434 } else { 13435 /* 13436 * Netstat, unfortunately, uses this to 13437 * get send/receive queue sizes. How 13438 * to fix? 13439 * Why not compute the difference only? 13440 */ 13441 tce.tcpConnEntryInfo.ce_snxt = 13442 tcp->tcp_snxt - tcp->tcp_suna; 13443 tce.tcpConnEntryInfo.ce_suna = 0; 13444 tce.tcpConnEntryInfo.ce_rnxt = 13445 tcp->tcp_rnxt - tcp->tcp_rack; 13446 tce.tcpConnEntryInfo.ce_rack = 0; 13447 } 13448 13449 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13450 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13451 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13452 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13453 tce.tcpConnEntryInfo.ce_state = 13454 tcp->tcp_state; 13455 13456 tce.tcpConnCreationProcess = 13457 (connp->conn_cpid < 0) ? 13458 MIB2_UNKNOWN_PROCESS : 13459 connp->conn_cpid; 13460 tce.tcpConnCreationTime = connp->conn_open_time; 13461 13462 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13463 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13464 13465 mlp.tme_connidx = v4_conn_idx++; 13466 if (needattr) 13467 (void) snmp_append_data2( 13468 mp_attr_ctl->b_cont, 13469 &mp_attr_tail, (char *)&mlp, 13470 sizeof (mlp)); 13471 } 13472 } 13473 } 13474 13475 /* fixed length structure for IPv4 and IPv6 counters */ 13476 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13477 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13478 sizeof (mib2_tcp6ConnEntry_t)); 13479 /* synchronize 32- and 64-bit counters */ 13480 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13481 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13482 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13483 optp->level = MIB2_TCP; 13484 optp->name = 0; 13485 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13486 sizeof (tcps->tcps_mib)); 13487 optp->len = msgdsize(mpdata); 13488 qreply(q, mpctl); 13489 13490 /* table of connections... */ 13491 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13492 sizeof (struct T_optmgmt_ack)]; 13493 optp->level = MIB2_TCP; 13494 optp->name = MIB2_TCP_CONN; 13495 optp->len = msgdsize(mp_conn_ctl->b_cont); 13496 qreply(q, mp_conn_ctl); 13497 13498 /* table of MLP attributes... */ 13499 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13500 sizeof (struct T_optmgmt_ack)]; 13501 optp->level = MIB2_TCP; 13502 optp->name = EXPER_XPORT_MLP; 13503 optp->len = msgdsize(mp_attr_ctl->b_cont); 13504 if (optp->len == 0) 13505 freemsg(mp_attr_ctl); 13506 else 13507 qreply(q, mp_attr_ctl); 13508 13509 /* table of IPv6 connections... */ 13510 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13511 sizeof (struct T_optmgmt_ack)]; 13512 optp->level = MIB2_TCP6; 13513 optp->name = MIB2_TCP6_CONN; 13514 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13515 qreply(q, mp6_conn_ctl); 13516 13517 /* table of IPv6 MLP attributes... */ 13518 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13519 sizeof (struct T_optmgmt_ack)]; 13520 optp->level = MIB2_TCP6; 13521 optp->name = EXPER_XPORT_MLP; 13522 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13523 if (optp->len == 0) 13524 freemsg(mp6_attr_ctl); 13525 else 13526 qreply(q, mp6_attr_ctl); 13527 return (mp2ctl); 13528 } 13529 13530 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13531 /* ARGSUSED */ 13532 int 13533 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13534 { 13535 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13536 13537 switch (level) { 13538 case MIB2_TCP: 13539 switch (name) { 13540 case 13: 13541 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13542 return (0); 13543 /* TODO: delete entry defined by tce */ 13544 return (1); 13545 default: 13546 return (0); 13547 } 13548 default: 13549 return (1); 13550 } 13551 } 13552 13553 /* Translate TCP state to MIB2 TCP state. */ 13554 static int 13555 tcp_snmp_state(tcp_t *tcp) 13556 { 13557 if (tcp == NULL) 13558 return (0); 13559 13560 switch (tcp->tcp_state) { 13561 case TCPS_CLOSED: 13562 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13563 case TCPS_BOUND: 13564 return (MIB2_TCP_closed); 13565 case TCPS_LISTEN: 13566 return (MIB2_TCP_listen); 13567 case TCPS_SYN_SENT: 13568 return (MIB2_TCP_synSent); 13569 case TCPS_SYN_RCVD: 13570 return (MIB2_TCP_synReceived); 13571 case TCPS_ESTABLISHED: 13572 return (MIB2_TCP_established); 13573 case TCPS_CLOSE_WAIT: 13574 return (MIB2_TCP_closeWait); 13575 case TCPS_FIN_WAIT_1: 13576 return (MIB2_TCP_finWait1); 13577 case TCPS_CLOSING: 13578 return (MIB2_TCP_closing); 13579 case TCPS_LAST_ACK: 13580 return (MIB2_TCP_lastAck); 13581 case TCPS_FIN_WAIT_2: 13582 return (MIB2_TCP_finWait2); 13583 case TCPS_TIME_WAIT: 13584 return (MIB2_TCP_timeWait); 13585 default: 13586 return (0); 13587 } 13588 } 13589 13590 /* 13591 * tcp_timer is the timer service routine. It handles the retransmission, 13592 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13593 * from the state of the tcp instance what kind of action needs to be done 13594 * at the time it is called. 13595 */ 13596 static void 13597 tcp_timer(void *arg) 13598 { 13599 mblk_t *mp; 13600 clock_t first_threshold; 13601 clock_t second_threshold; 13602 clock_t ms; 13603 uint32_t mss; 13604 conn_t *connp = (conn_t *)arg; 13605 tcp_t *tcp = connp->conn_tcp; 13606 tcp_stack_t *tcps = tcp->tcp_tcps; 13607 13608 tcp->tcp_timer_tid = 0; 13609 13610 if (tcp->tcp_fused) 13611 return; 13612 13613 first_threshold = tcp->tcp_first_timer_threshold; 13614 second_threshold = tcp->tcp_second_timer_threshold; 13615 switch (tcp->tcp_state) { 13616 case TCPS_IDLE: 13617 case TCPS_BOUND: 13618 case TCPS_LISTEN: 13619 return; 13620 case TCPS_SYN_RCVD: { 13621 tcp_t *listener = tcp->tcp_listener; 13622 13623 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13624 /* it's our first timeout */ 13625 tcp->tcp_syn_rcvd_timeout = 1; 13626 mutex_enter(&listener->tcp_eager_lock); 13627 listener->tcp_syn_rcvd_timeout++; 13628 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13629 /* 13630 * Make this eager available for drop if we 13631 * need to drop one to accomodate a new 13632 * incoming SYN request. 13633 */ 13634 MAKE_DROPPABLE(listener, tcp); 13635 } 13636 if (!listener->tcp_syn_defense && 13637 (listener->tcp_syn_rcvd_timeout > 13638 (tcps->tcps_conn_req_max_q0 >> 2)) && 13639 (tcps->tcps_conn_req_max_q0 > 200)) { 13640 /* We may be under attack. Put on a defense. */ 13641 listener->tcp_syn_defense = B_TRUE; 13642 cmn_err(CE_WARN, "High TCP connect timeout " 13643 "rate! System (port %d) may be under a " 13644 "SYN flood attack!", 13645 ntohs(listener->tcp_connp->conn_lport)); 13646 13647 listener->tcp_ip_addr_cache = kmem_zalloc( 13648 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13649 KM_NOSLEEP); 13650 } 13651 mutex_exit(&listener->tcp_eager_lock); 13652 } else if (listener != NULL) { 13653 mutex_enter(&listener->tcp_eager_lock); 13654 tcp->tcp_syn_rcvd_timeout++; 13655 if (tcp->tcp_syn_rcvd_timeout > 1 && 13656 !tcp->tcp_closemp_used) { 13657 /* 13658 * This is our second timeout. Put the tcp in 13659 * the list of droppable eagers to allow it to 13660 * be dropped, if needed. We don't check 13661 * whether tcp_dontdrop is set or not to 13662 * protect ourselve from a SYN attack where a 13663 * remote host can spoof itself as one of the 13664 * good IP source and continue to hold 13665 * resources too long. 13666 */ 13667 MAKE_DROPPABLE(listener, tcp); 13668 } 13669 mutex_exit(&listener->tcp_eager_lock); 13670 } 13671 } 13672 /* FALLTHRU */ 13673 case TCPS_SYN_SENT: 13674 first_threshold = tcp->tcp_first_ctimer_threshold; 13675 second_threshold = tcp->tcp_second_ctimer_threshold; 13676 break; 13677 case TCPS_ESTABLISHED: 13678 case TCPS_FIN_WAIT_1: 13679 case TCPS_CLOSING: 13680 case TCPS_CLOSE_WAIT: 13681 case TCPS_LAST_ACK: 13682 /* If we have data to rexmit */ 13683 if (tcp->tcp_suna != tcp->tcp_snxt) { 13684 clock_t time_to_wait; 13685 13686 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13687 if (!tcp->tcp_xmit_head) 13688 break; 13689 time_to_wait = ddi_get_lbolt() - 13690 (clock_t)tcp->tcp_xmit_head->b_prev; 13691 time_to_wait = tcp->tcp_rto - 13692 TICK_TO_MSEC(time_to_wait); 13693 /* 13694 * If the timer fires too early, 1 clock tick earlier, 13695 * restart the timer. 13696 */ 13697 if (time_to_wait > msec_per_tick) { 13698 TCP_STAT(tcps, tcp_timer_fire_early); 13699 TCP_TIMER_RESTART(tcp, time_to_wait); 13700 return; 13701 } 13702 /* 13703 * When we probe zero windows, we force the swnd open. 13704 * If our peer acks with a closed window swnd will be 13705 * set to zero by tcp_rput(). As long as we are 13706 * receiving acks tcp_rput will 13707 * reset 'tcp_ms_we_have_waited' so as not to trip the 13708 * first and second interval actions. NOTE: the timer 13709 * interval is allowed to continue its exponential 13710 * backoff. 13711 */ 13712 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13713 if (connp->conn_debug) { 13714 (void) strlog(TCP_MOD_ID, 0, 1, 13715 SL_TRACE, "tcp_timer: zero win"); 13716 } 13717 } else { 13718 /* 13719 * After retransmission, we need to do 13720 * slow start. Set the ssthresh to one 13721 * half of current effective window and 13722 * cwnd to one MSS. Also reset 13723 * tcp_cwnd_cnt. 13724 * 13725 * Note that if tcp_ssthresh is reduced because 13726 * of ECN, do not reduce it again unless it is 13727 * already one window of data away (tcp_cwr 13728 * should then be cleared) or this is a 13729 * timeout for a retransmitted segment. 13730 */ 13731 uint32_t npkt; 13732 13733 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13734 npkt = ((tcp->tcp_timer_backoff ? 13735 tcp->tcp_cwnd_ssthresh : 13736 tcp->tcp_snxt - 13737 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13738 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13739 tcp->tcp_mss; 13740 } 13741 tcp->tcp_cwnd = tcp->tcp_mss; 13742 tcp->tcp_cwnd_cnt = 0; 13743 if (tcp->tcp_ecn_ok) { 13744 tcp->tcp_cwr = B_TRUE; 13745 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13746 tcp->tcp_ecn_cwr_sent = B_FALSE; 13747 } 13748 } 13749 break; 13750 } 13751 /* 13752 * We have something to send yet we cannot send. The 13753 * reason can be: 13754 * 13755 * 1. Zero send window: we need to do zero window probe. 13756 * 2. Zero cwnd: because of ECN, we need to "clock out 13757 * segments. 13758 * 3. SWS avoidance: receiver may have shrunk window, 13759 * reset our knowledge. 13760 * 13761 * Note that condition 2 can happen with either 1 or 13762 * 3. But 1 and 3 are exclusive. 13763 */ 13764 if (tcp->tcp_unsent != 0) { 13765 /* 13766 * Should not hold the zero-copy messages for too long. 13767 */ 13768 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13769 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13770 tcp->tcp_xmit_head, B_TRUE); 13771 13772 if (tcp->tcp_cwnd == 0) { 13773 /* 13774 * Set tcp_cwnd to 1 MSS so that a 13775 * new segment can be sent out. We 13776 * are "clocking out" new data when 13777 * the network is really congested. 13778 */ 13779 ASSERT(tcp->tcp_ecn_ok); 13780 tcp->tcp_cwnd = tcp->tcp_mss; 13781 } 13782 if (tcp->tcp_swnd == 0) { 13783 /* Extend window for zero window probe */ 13784 tcp->tcp_swnd++; 13785 tcp->tcp_zero_win_probe = B_TRUE; 13786 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13787 } else { 13788 /* 13789 * Handle timeout from sender SWS avoidance. 13790 * Reset our knowledge of the max send window 13791 * since the receiver might have reduced its 13792 * receive buffer. Avoid setting tcp_max_swnd 13793 * to one since that will essentially disable 13794 * the SWS checks. 13795 * 13796 * Note that since we don't have a SWS 13797 * state variable, if the timeout is set 13798 * for ECN but not for SWS, this 13799 * code will also be executed. This is 13800 * fine as tcp_max_swnd is updated 13801 * constantly and it will not affect 13802 * anything. 13803 */ 13804 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13805 } 13806 tcp_wput_data(tcp, NULL, B_FALSE); 13807 return; 13808 } 13809 /* Is there a FIN that needs to be to re retransmitted? */ 13810 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13811 !tcp->tcp_fin_acked) 13812 break; 13813 /* Nothing to do, return without restarting timer. */ 13814 TCP_STAT(tcps, tcp_timer_fire_miss); 13815 return; 13816 case TCPS_FIN_WAIT_2: 13817 /* 13818 * User closed the TCP endpoint and peer ACK'ed our FIN. 13819 * We waited some time for for peer's FIN, but it hasn't 13820 * arrived. We flush the connection now to avoid 13821 * case where the peer has rebooted. 13822 */ 13823 if (TCP_IS_DETACHED(tcp)) { 13824 (void) tcp_clean_death(tcp, 0, 23); 13825 } else { 13826 TCP_TIMER_RESTART(tcp, 13827 tcps->tcps_fin_wait_2_flush_interval); 13828 } 13829 return; 13830 case TCPS_TIME_WAIT: 13831 (void) tcp_clean_death(tcp, 0, 24); 13832 return; 13833 default: 13834 if (connp->conn_debug) { 13835 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13836 "tcp_timer: strange state (%d) %s", 13837 tcp->tcp_state, tcp_display(tcp, NULL, 13838 DISP_PORT_ONLY)); 13839 } 13840 return; 13841 } 13842 13843 /* 13844 * If the system is under memory pressure or the max number of 13845 * connections have been established for the listener, be more 13846 * aggressive in aborting connections. 13847 */ 13848 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 13849 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 13850 second_threshold = tcp_early_abort * SECONDS; 13851 } 13852 13853 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13854 /* 13855 * Should not hold the zero-copy messages for too long. 13856 */ 13857 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13858 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13859 tcp->tcp_xmit_head, B_TRUE); 13860 13861 /* 13862 * For zero window probe, we need to send indefinitely, 13863 * unless we have not heard from the other side for some 13864 * time... 13865 */ 13866 if ((tcp->tcp_zero_win_probe == 0) || 13867 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13868 second_threshold)) { 13869 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13870 /* 13871 * If TCP is in SYN_RCVD state, send back a 13872 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13873 * should be zero in TCPS_SYN_RCVD state. 13874 */ 13875 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13876 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13877 "in SYN_RCVD", 13878 tcp, tcp->tcp_snxt, 13879 tcp->tcp_rnxt, TH_RST | TH_ACK); 13880 } 13881 (void) tcp_clean_death(tcp, 13882 tcp->tcp_client_errno ? 13883 tcp->tcp_client_errno : ETIMEDOUT, 25); 13884 return; 13885 } else { 13886 /* 13887 * If the system is under memory pressure, we also 13888 * abort connection in zero window probing. 13889 */ 13890 if (tcps->tcps_reclaim) { 13891 (void) tcp_clean_death(tcp, 13892 tcp->tcp_client_errno ? 13893 tcp->tcp_client_errno : ETIMEDOUT, 25); 13894 return; 13895 } 13896 /* 13897 * Set tcp_ms_we_have_waited to second_threshold 13898 * so that in next timeout, we will do the above 13899 * check (ddi_get_lbolt() - tcp_last_recv_time). 13900 * This is also to avoid overflow. 13901 * 13902 * We don't need to decrement tcp_timer_backoff 13903 * to avoid overflow because it will be decremented 13904 * later if new timeout value is greater than 13905 * tcp_rexmit_interval_max. In the case when 13906 * tcp_rexmit_interval_max is greater than 13907 * second_threshold, it means that we will wait 13908 * longer than second_threshold to send the next 13909 * window probe. 13910 */ 13911 tcp->tcp_ms_we_have_waited = second_threshold; 13912 } 13913 } else if (ms > first_threshold) { 13914 /* 13915 * Should not hold the zero-copy messages for too long. 13916 */ 13917 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13918 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13919 tcp->tcp_xmit_head, B_TRUE); 13920 13921 /* 13922 * We have been retransmitting for too long... The RTT 13923 * we calculated is probably incorrect. Reinitialize it. 13924 * Need to compensate for 0 tcp_rtt_sa. Reset 13925 * tcp_rtt_update so that we won't accidentally cache a 13926 * bad value. But only do this if this is not a zero 13927 * window probe. 13928 */ 13929 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13930 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13931 (tcp->tcp_rtt_sa >> 5); 13932 tcp->tcp_rtt_sa = 0; 13933 tcp_ip_notify(tcp); 13934 tcp->tcp_rtt_update = 0; 13935 } 13936 } 13937 tcp->tcp_timer_backoff++; 13938 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13939 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13940 tcps->tcps_rexmit_interval_min) { 13941 /* 13942 * This means the original RTO is tcp_rexmit_interval_min. 13943 * So we will use tcp_rexmit_interval_min as the RTO value 13944 * and do the backoff. 13945 */ 13946 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13947 } else { 13948 ms <<= tcp->tcp_timer_backoff; 13949 } 13950 if (ms > tcps->tcps_rexmit_interval_max) { 13951 ms = tcps->tcps_rexmit_interval_max; 13952 /* 13953 * ms is at max, decrement tcp_timer_backoff to avoid 13954 * overflow. 13955 */ 13956 tcp->tcp_timer_backoff--; 13957 } 13958 tcp->tcp_ms_we_have_waited += ms; 13959 if (tcp->tcp_zero_win_probe == 0) { 13960 tcp->tcp_rto = ms; 13961 } 13962 TCP_TIMER_RESTART(tcp, ms); 13963 /* 13964 * This is after a timeout and tcp_rto is backed off. Set 13965 * tcp_set_timer to 1 so that next time RTO is updated, we will 13966 * restart the timer with a correct value. 13967 */ 13968 tcp->tcp_set_timer = 1; 13969 mss = tcp->tcp_snxt - tcp->tcp_suna; 13970 if (mss > tcp->tcp_mss) 13971 mss = tcp->tcp_mss; 13972 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13973 mss = tcp->tcp_swnd; 13974 13975 if ((mp = tcp->tcp_xmit_head) != NULL) 13976 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13977 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13978 B_TRUE); 13979 13980 /* 13981 * When slow start after retransmission begins, start with 13982 * this seq no. tcp_rexmit_max marks the end of special slow 13983 * start phase. tcp_snd_burst controls how many segments 13984 * can be sent because of an ack. 13985 */ 13986 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13987 tcp->tcp_snd_burst = TCP_CWND_SS; 13988 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13989 (tcp->tcp_unsent == 0)) { 13990 tcp->tcp_rexmit_max = tcp->tcp_fss; 13991 } else { 13992 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13993 } 13994 tcp->tcp_rexmit = B_TRUE; 13995 tcp->tcp_dupack_cnt = 0; 13996 13997 /* 13998 * Remove all rexmit SACK blk to start from fresh. 13999 */ 14000 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 14001 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 14002 if (mp == NULL) { 14003 return; 14004 } 14005 14006 tcp->tcp_csuna = tcp->tcp_snxt; 14007 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 14008 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 14009 tcp_send_data(tcp, mp); 14010 14011 } 14012 14013 static int 14014 tcp_do_unbind(conn_t *connp) 14015 { 14016 tcp_t *tcp = connp->conn_tcp; 14017 14018 switch (tcp->tcp_state) { 14019 case TCPS_BOUND: 14020 case TCPS_LISTEN: 14021 break; 14022 default: 14023 return (-TOUTSTATE); 14024 } 14025 14026 /* 14027 * Need to clean up all the eagers since after the unbind, segments 14028 * will no longer be delivered to this listener stream. 14029 */ 14030 mutex_enter(&tcp->tcp_eager_lock); 14031 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 14032 tcp_eager_cleanup(tcp, 0); 14033 } 14034 mutex_exit(&tcp->tcp_eager_lock); 14035 14036 /* Clean up the listener connection counter if necessary. */ 14037 if (tcp->tcp_listen_cnt != NULL) 14038 TCP_DECR_LISTEN_CNT(tcp); 14039 connp->conn_laddr_v6 = ipv6_all_zeros; 14040 connp->conn_saddr_v6 = ipv6_all_zeros; 14041 tcp_bind_hash_remove(tcp); 14042 tcp->tcp_state = TCPS_IDLE; 14043 14044 ip_unbind(connp); 14045 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 14046 14047 return (0); 14048 } 14049 14050 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 14051 static void 14052 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 14053 { 14054 conn_t *connp = tcp->tcp_connp; 14055 int error; 14056 14057 error = tcp_do_unbind(connp); 14058 if (error > 0) { 14059 tcp_err_ack(tcp, mp, TSYSERR, error); 14060 } else if (error < 0) { 14061 tcp_err_ack(tcp, mp, -error, 0); 14062 } else { 14063 /* Send M_FLUSH according to TPI */ 14064 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 14065 14066 mp = mi_tpi_ok_ack_alloc(mp); 14067 if (mp != NULL) 14068 putnext(connp->conn_rq, mp); 14069 } 14070 } 14071 14072 /* 14073 * Don't let port fall into the privileged range. 14074 * Since the extra privileged ports can be arbitrary we also 14075 * ensure that we exclude those from consideration. 14076 * tcp_g_epriv_ports is not sorted thus we loop over it until 14077 * there are no changes. 14078 * 14079 * Note: No locks are held when inspecting tcp_g_*epriv_ports 14080 * but instead the code relies on: 14081 * - the fact that the address of the array and its size never changes 14082 * - the atomic assignment of the elements of the array 14083 * 14084 * Returns 0 if there are no more ports available. 14085 * 14086 * TS note: skip multilevel ports. 14087 */ 14088 static in_port_t 14089 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 14090 { 14091 int i; 14092 boolean_t restart = B_FALSE; 14093 tcp_stack_t *tcps = tcp->tcp_tcps; 14094 14095 if (random && tcp_random_anon_port != 0) { 14096 (void) random_get_pseudo_bytes((uint8_t *)&port, 14097 sizeof (in_port_t)); 14098 /* 14099 * Unless changed by a sys admin, the smallest anon port 14100 * is 32768 and the largest anon port is 65535. It is 14101 * very likely (50%) for the random port to be smaller 14102 * than the smallest anon port. When that happens, 14103 * add port % (anon port range) to the smallest anon 14104 * port to get the random port. It should fall into the 14105 * valid anon port range. 14106 */ 14107 if (port < tcps->tcps_smallest_anon_port) { 14108 port = tcps->tcps_smallest_anon_port + 14109 port % (tcps->tcps_largest_anon_port - 14110 tcps->tcps_smallest_anon_port); 14111 } 14112 } 14113 14114 retry: 14115 if (port < tcps->tcps_smallest_anon_port) 14116 port = (in_port_t)tcps->tcps_smallest_anon_port; 14117 14118 if (port > tcps->tcps_largest_anon_port) { 14119 if (restart) 14120 return (0); 14121 restart = B_TRUE; 14122 port = (in_port_t)tcps->tcps_smallest_anon_port; 14123 } 14124 14125 if (port < tcps->tcps_smallest_nonpriv_port) 14126 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 14127 14128 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 14129 if (port == tcps->tcps_g_epriv_ports[i]) { 14130 port++; 14131 /* 14132 * Make sure whether the port is in the 14133 * valid range. 14134 */ 14135 goto retry; 14136 } 14137 } 14138 if (is_system_labeled() && 14139 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 14140 IPPROTO_TCP, B_TRUE)) != 0) { 14141 port = i; 14142 goto retry; 14143 } 14144 return (port); 14145 } 14146 14147 /* 14148 * Return the next anonymous port in the privileged port range for 14149 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 14150 * downwards. This is the same behavior as documented in the userland 14151 * library call rresvport(3N). 14152 * 14153 * TS note: skip multilevel ports. 14154 */ 14155 static in_port_t 14156 tcp_get_next_priv_port(const tcp_t *tcp) 14157 { 14158 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 14159 in_port_t nextport; 14160 boolean_t restart = B_FALSE; 14161 tcp_stack_t *tcps = tcp->tcp_tcps; 14162 retry: 14163 if (next_priv_port < tcps->tcps_min_anonpriv_port || 14164 next_priv_port >= IPPORT_RESERVED) { 14165 next_priv_port = IPPORT_RESERVED - 1; 14166 if (restart) 14167 return (0); 14168 restart = B_TRUE; 14169 } 14170 if (is_system_labeled() && 14171 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 14172 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 14173 next_priv_port = nextport; 14174 goto retry; 14175 } 14176 return (next_priv_port--); 14177 } 14178 14179 /* The write side r/w procedure. */ 14180 14181 #if CCS_STATS 14182 struct { 14183 struct { 14184 int64_t count, bytes; 14185 } tot, hit; 14186 } wrw_stats; 14187 #endif 14188 14189 /* 14190 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 14191 * messages. 14192 */ 14193 /* ARGSUSED */ 14194 static void 14195 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14196 { 14197 conn_t *connp = (conn_t *)arg; 14198 tcp_t *tcp = connp->conn_tcp; 14199 14200 ASSERT(DB_TYPE(mp) != M_IOCTL); 14201 /* 14202 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 14203 * Once the close starts, streamhead and sockfs will not let any data 14204 * packets come down (close ensures that there are no threads using the 14205 * queue and no new threads will come down) but since qprocsoff() 14206 * hasn't happened yet, a M_FLUSH or some non data message might 14207 * get reflected back (in response to our own FLUSHRW) and get 14208 * processed after tcp_close() is done. The conn would still be valid 14209 * because a ref would have added but we need to check the state 14210 * before actually processing the packet. 14211 */ 14212 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 14213 freemsg(mp); 14214 return; 14215 } 14216 14217 switch (DB_TYPE(mp)) { 14218 case M_IOCDATA: 14219 tcp_wput_iocdata(tcp, mp); 14220 break; 14221 case M_FLUSH: 14222 tcp_wput_flush(tcp, mp); 14223 break; 14224 default: 14225 ip_wput_nondata(connp->conn_wq, mp); 14226 break; 14227 } 14228 } 14229 14230 /* 14231 * The TCP fast path write put procedure. 14232 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 14233 */ 14234 /* ARGSUSED */ 14235 void 14236 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14237 { 14238 int len; 14239 int hdrlen; 14240 int plen; 14241 mblk_t *mp1; 14242 uchar_t *rptr; 14243 uint32_t snxt; 14244 tcpha_t *tcpha; 14245 struct datab *db; 14246 uint32_t suna; 14247 uint32_t mss; 14248 ipaddr_t *dst; 14249 ipaddr_t *src; 14250 uint32_t sum; 14251 int usable; 14252 conn_t *connp = (conn_t *)arg; 14253 tcp_t *tcp = connp->conn_tcp; 14254 uint32_t msize; 14255 tcp_stack_t *tcps = tcp->tcp_tcps; 14256 ip_xmit_attr_t *ixa; 14257 clock_t now; 14258 14259 /* 14260 * Try and ASSERT the minimum possible references on the 14261 * conn early enough. Since we are executing on write side, 14262 * the connection is obviously not detached and that means 14263 * there is a ref each for TCP and IP. Since we are behind 14264 * the squeue, the minimum references needed are 3. If the 14265 * conn is in classifier hash list, there should be an 14266 * extra ref for that (we check both the possibilities). 14267 */ 14268 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14269 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14270 14271 ASSERT(DB_TYPE(mp) == M_DATA); 14272 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 14273 14274 mutex_enter(&tcp->tcp_non_sq_lock); 14275 tcp->tcp_squeue_bytes -= msize; 14276 mutex_exit(&tcp->tcp_non_sq_lock); 14277 14278 /* Bypass tcp protocol for fused tcp loopback */ 14279 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 14280 return; 14281 14282 mss = tcp->tcp_mss; 14283 /* 14284 * If ZEROCOPY has turned off, try not to send any zero-copy message 14285 * down. Do backoff, now. 14286 */ 14287 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 14288 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 14289 14290 14291 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14292 len = (int)(mp->b_wptr - mp->b_rptr); 14293 14294 /* 14295 * Criteria for fast path: 14296 * 14297 * 1. no unsent data 14298 * 2. single mblk in request 14299 * 3. connection established 14300 * 4. data in mblk 14301 * 5. len <= mss 14302 * 6. no tcp_valid bits 14303 */ 14304 if ((tcp->tcp_unsent != 0) || 14305 (tcp->tcp_cork) || 14306 (mp->b_cont != NULL) || 14307 (tcp->tcp_state != TCPS_ESTABLISHED) || 14308 (len == 0) || 14309 (len > mss) || 14310 (tcp->tcp_valid_bits != 0)) { 14311 tcp_wput_data(tcp, mp, B_FALSE); 14312 return; 14313 } 14314 14315 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 14316 ASSERT(tcp->tcp_fin_sent == 0); 14317 14318 /* queue new packet onto retransmission queue */ 14319 if (tcp->tcp_xmit_head == NULL) { 14320 tcp->tcp_xmit_head = mp; 14321 } else { 14322 tcp->tcp_xmit_last->b_cont = mp; 14323 } 14324 tcp->tcp_xmit_last = mp; 14325 tcp->tcp_xmit_tail = mp; 14326 14327 /* find out how much we can send */ 14328 /* BEGIN CSTYLED */ 14329 /* 14330 * un-acked usable 14331 * |--------------|-----------------| 14332 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14333 */ 14334 /* END CSTYLED */ 14335 14336 /* start sending from tcp_snxt */ 14337 snxt = tcp->tcp_snxt; 14338 14339 /* 14340 * Check to see if this connection has been idled for some 14341 * time and no ACK is expected. If it is, we need to slow 14342 * start again to get back the connection's "self-clock" as 14343 * described in VJ's paper. 14344 * 14345 * Reinitialize tcp_cwnd after idle. 14346 */ 14347 now = LBOLT_FASTPATH; 14348 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14349 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14350 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14351 } 14352 14353 usable = tcp->tcp_swnd; /* tcp window size */ 14354 if (usable > tcp->tcp_cwnd) 14355 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14356 usable -= snxt; /* subtract stuff already sent */ 14357 suna = tcp->tcp_suna; 14358 usable += suna; 14359 /* usable can be < 0 if the congestion window is smaller */ 14360 if (len > usable) { 14361 /* Can't send complete M_DATA in one shot */ 14362 goto slow; 14363 } 14364 14365 mutex_enter(&tcp->tcp_non_sq_lock); 14366 if (tcp->tcp_flow_stopped && 14367 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14368 tcp_clrqfull(tcp); 14369 } 14370 mutex_exit(&tcp->tcp_non_sq_lock); 14371 14372 /* 14373 * determine if anything to send (Nagle). 14374 * 14375 * 1. len < tcp_mss (i.e. small) 14376 * 2. unacknowledged data present 14377 * 3. len < nagle limit 14378 * 4. last packet sent < nagle limit (previous packet sent) 14379 */ 14380 if ((len < mss) && (snxt != suna) && 14381 (len < (int)tcp->tcp_naglim) && 14382 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14383 /* 14384 * This was the first unsent packet and normally 14385 * mss < xmit_hiwater so there is no need to worry 14386 * about flow control. The next packet will go 14387 * through the flow control check in tcp_wput_data(). 14388 */ 14389 /* leftover work from above */ 14390 tcp->tcp_unsent = len; 14391 tcp->tcp_xmit_tail_unsent = len; 14392 14393 return; 14394 } 14395 14396 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14397 14398 if (snxt == suna) { 14399 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14400 } 14401 14402 /* we have always sent something */ 14403 tcp->tcp_rack_cnt = 0; 14404 14405 tcp->tcp_snxt = snxt + len; 14406 tcp->tcp_rack = tcp->tcp_rnxt; 14407 14408 if ((mp1 = dupb(mp)) == 0) 14409 goto no_memory; 14410 mp->b_prev = (mblk_t *)(uintptr_t)now; 14411 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14412 14413 /* adjust tcp header information */ 14414 tcpha = tcp->tcp_tcpha; 14415 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14416 14417 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14418 sum = (sum >> 16) + (sum & 0xFFFF); 14419 tcpha->tha_sum = htons(sum); 14420 14421 tcpha->tha_seq = htonl(snxt); 14422 14423 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14424 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14425 BUMP_LOCAL(tcp->tcp_obsegs); 14426 14427 /* Update the latest receive window size in TCP header. */ 14428 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14429 14430 tcp->tcp_last_sent_len = (ushort_t)len; 14431 14432 plen = len + connp->conn_ht_iphc_len; 14433 14434 ixa = connp->conn_ixa; 14435 ixa->ixa_pktlen = plen; 14436 14437 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14438 tcp->tcp_ipha->ipha_length = htons(plen); 14439 } else { 14440 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14441 } 14442 14443 /* see if we need to allocate a mblk for the headers */ 14444 hdrlen = connp->conn_ht_iphc_len; 14445 rptr = mp1->b_rptr - hdrlen; 14446 db = mp1->b_datap; 14447 if ((db->db_ref != 2) || rptr < db->db_base || 14448 (!OK_32PTR(rptr))) { 14449 /* NOTE: we assume allocb returns an OK_32PTR */ 14450 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14451 if (!mp) { 14452 freemsg(mp1); 14453 goto no_memory; 14454 } 14455 mp->b_cont = mp1; 14456 mp1 = mp; 14457 /* Leave room for Link Level header */ 14458 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14459 mp1->b_wptr = &rptr[hdrlen]; 14460 } 14461 mp1->b_rptr = rptr; 14462 14463 /* Fill in the timestamp option. */ 14464 if (tcp->tcp_snd_ts_ok) { 14465 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14466 14467 U32_TO_BE32(llbolt, 14468 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14469 U32_TO_BE32(tcp->tcp_ts_recent, 14470 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14471 } else { 14472 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14473 } 14474 14475 /* copy header into outgoing packet */ 14476 dst = (ipaddr_t *)rptr; 14477 src = (ipaddr_t *)connp->conn_ht_iphc; 14478 dst[0] = src[0]; 14479 dst[1] = src[1]; 14480 dst[2] = src[2]; 14481 dst[3] = src[3]; 14482 dst[4] = src[4]; 14483 dst[5] = src[5]; 14484 dst[6] = src[6]; 14485 dst[7] = src[7]; 14486 dst[8] = src[8]; 14487 dst[9] = src[9]; 14488 if (hdrlen -= 40) { 14489 hdrlen >>= 2; 14490 dst += 10; 14491 src += 10; 14492 do { 14493 *dst++ = *src++; 14494 } while (--hdrlen); 14495 } 14496 14497 /* 14498 * Set the ECN info in the TCP header. Note that this 14499 * is not the template header. 14500 */ 14501 if (tcp->tcp_ecn_ok) { 14502 SET_ECT(tcp, rptr); 14503 14504 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14505 if (tcp->tcp_ecn_echo_on) 14506 tcpha->tha_flags |= TH_ECE; 14507 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14508 tcpha->tha_flags |= TH_CWR; 14509 tcp->tcp_ecn_cwr_sent = B_TRUE; 14510 } 14511 } 14512 14513 if (tcp->tcp_ip_forward_progress) { 14514 tcp->tcp_ip_forward_progress = B_FALSE; 14515 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14516 } else { 14517 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14518 } 14519 tcp_send_data(tcp, mp1); 14520 return; 14521 14522 /* 14523 * If we ran out of memory, we pretend to have sent the packet 14524 * and that it was lost on the wire. 14525 */ 14526 no_memory: 14527 return; 14528 14529 slow: 14530 /* leftover work from above */ 14531 tcp->tcp_unsent = len; 14532 tcp->tcp_xmit_tail_unsent = len; 14533 tcp_wput_data(tcp, NULL, B_FALSE); 14534 } 14535 14536 /* 14537 * This runs at the tail end of accept processing on the squeue of the 14538 * new connection. 14539 */ 14540 /* ARGSUSED */ 14541 void 14542 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14543 { 14544 conn_t *connp = (conn_t *)arg; 14545 tcp_t *tcp = connp->conn_tcp; 14546 queue_t *q = connp->conn_rq; 14547 tcp_stack_t *tcps = tcp->tcp_tcps; 14548 /* socket options */ 14549 struct sock_proto_props sopp; 14550 14551 /* We should just receive a single mblk that fits a T_discon_ind */ 14552 ASSERT(mp->b_cont == NULL); 14553 14554 /* 14555 * Drop the eager's ref on the listener, that was placed when 14556 * this eager began life in tcp_input_listener. 14557 */ 14558 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14559 if (IPCL_IS_NONSTR(connp)) { 14560 /* Safe to free conn_ind message */ 14561 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14562 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14563 } 14564 14565 tcp->tcp_detached = B_FALSE; 14566 14567 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14568 /* 14569 * Someone blewoff the eager before we could finish 14570 * the accept. 14571 * 14572 * The only reason eager exists it because we put in 14573 * a ref on it when conn ind went up. We need to send 14574 * a disconnect indication up while the last reference 14575 * on the eager will be dropped by the squeue when we 14576 * return. 14577 */ 14578 ASSERT(tcp->tcp_listener == NULL); 14579 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14580 if (IPCL_IS_NONSTR(connp)) { 14581 ASSERT(tcp->tcp_issocket); 14582 (*connp->conn_upcalls->su_disconnected)( 14583 connp->conn_upper_handle, tcp->tcp_connid, 14584 ECONNREFUSED); 14585 freemsg(mp); 14586 } else { 14587 struct T_discon_ind *tdi; 14588 14589 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14590 /* 14591 * Let us reuse the incoming mblk to avoid 14592 * memory allocation failure problems. We know 14593 * that the size of the incoming mblk i.e. 14594 * stroptions is greater than sizeof 14595 * T_discon_ind. 14596 */ 14597 ASSERT(DB_REF(mp) == 1); 14598 ASSERT(MBLKSIZE(mp) >= 14599 sizeof (struct T_discon_ind)); 14600 14601 DB_TYPE(mp) = M_PROTO; 14602 ((union T_primitives *)mp->b_rptr)->type = 14603 T_DISCON_IND; 14604 tdi = (struct T_discon_ind *)mp->b_rptr; 14605 if (tcp->tcp_issocket) { 14606 tdi->DISCON_reason = ECONNREFUSED; 14607 tdi->SEQ_number = 0; 14608 } else { 14609 tdi->DISCON_reason = ENOPROTOOPT; 14610 tdi->SEQ_number = 14611 tcp->tcp_conn_req_seqnum; 14612 } 14613 mp->b_wptr = mp->b_rptr + 14614 sizeof (struct T_discon_ind); 14615 putnext(q, mp); 14616 } 14617 } 14618 tcp->tcp_hard_binding = B_FALSE; 14619 return; 14620 } 14621 14622 /* 14623 * This is the first time we run on the correct 14624 * queue after tcp_accept. So fix all the q parameters 14625 * here. 14626 */ 14627 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14628 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14629 14630 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14631 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14632 connp->conn_rcvbuf; 14633 14634 /* 14635 * Determine what write offset value to use depending on SACK and 14636 * whether the endpoint is fused or not. 14637 */ 14638 if (tcp->tcp_fused) { 14639 ASSERT(tcp->tcp_loopback); 14640 ASSERT(tcp->tcp_loopback_peer != NULL); 14641 /* 14642 * For fused tcp loopback, set the stream head's write 14643 * offset value to zero since we won't be needing any room 14644 * for TCP/IP headers. This would also improve performance 14645 * since it would reduce the amount of work done by kmem. 14646 * Non-fused tcp loopback case is handled separately below. 14647 */ 14648 sopp.sopp_wroff = 0; 14649 /* 14650 * Update the peer's transmit parameters according to 14651 * our recently calculated high water mark value. 14652 */ 14653 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14654 } else if (tcp->tcp_snd_sack_ok) { 14655 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14656 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14657 } else { 14658 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14659 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14660 } 14661 14662 /* 14663 * If this is endpoint is handling SSL, then reserve extra 14664 * offset and space at the end. 14665 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14666 * overriding the previous setting. The extra cost of signing and 14667 * encrypting multiple MSS-size records (12 of them with Ethernet), 14668 * instead of a single contiguous one by the stream head 14669 * largely outweighs the statistical reduction of ACKs, when 14670 * applicable. The peer will also save on decryption and verification 14671 * costs. 14672 */ 14673 if (tcp->tcp_kssl_ctx != NULL) { 14674 sopp.sopp_wroff += SSL3_WROFFSET; 14675 14676 sopp.sopp_flags |= SOCKOPT_TAIL; 14677 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14678 14679 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14680 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14681 14682 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14683 } 14684 14685 /* Send the options up */ 14686 if (IPCL_IS_NONSTR(connp)) { 14687 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14688 ASSERT(tcp->tcp_kssl_ctx != NULL); 14689 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14690 } 14691 if (tcp->tcp_loopback) { 14692 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14693 sopp.sopp_loopback = B_TRUE; 14694 } 14695 (*connp->conn_upcalls->su_set_proto_props) 14696 (connp->conn_upper_handle, &sopp); 14697 freemsg(mp); 14698 } else { 14699 /* 14700 * Let us reuse the incoming mblk to avoid 14701 * memory allocation failure problems. We know 14702 * that the size of the incoming mblk is at least 14703 * stroptions 14704 */ 14705 struct stroptions *stropt; 14706 14707 ASSERT(DB_REF(mp) == 1); 14708 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14709 14710 DB_TYPE(mp) = M_SETOPTS; 14711 stropt = (struct stroptions *)mp->b_rptr; 14712 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14713 stropt = (struct stroptions *)mp->b_rptr; 14714 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14715 stropt->so_hiwat = sopp.sopp_rxhiwat; 14716 stropt->so_wroff = sopp.sopp_wroff; 14717 stropt->so_maxblk = sopp.sopp_maxblk; 14718 14719 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14720 ASSERT(tcp->tcp_kssl_ctx != NULL); 14721 14722 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14723 stropt->so_tail = sopp.sopp_tail; 14724 stropt->so_copyopt = sopp.sopp_zcopyflag; 14725 } 14726 14727 /* Send the options up */ 14728 putnext(q, mp); 14729 } 14730 14731 /* 14732 * Pass up any data and/or a fin that has been received. 14733 * 14734 * Adjust receive window in case it had decreased 14735 * (because there is data <=> tcp_rcv_list != NULL) 14736 * while the connection was detached. Note that 14737 * in case the eager was flow-controlled, w/o this 14738 * code, the rwnd may never open up again! 14739 */ 14740 if (tcp->tcp_rcv_list != NULL) { 14741 if (IPCL_IS_NONSTR(connp)) { 14742 mblk_t *mp; 14743 int space_left; 14744 int error; 14745 boolean_t push = B_TRUE; 14746 14747 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14748 (connp->conn_upper_handle, NULL, 0, 0, &error, 14749 &push) >= 0) { 14750 tcp->tcp_rwnd = connp->conn_rcvbuf; 14751 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14752 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14753 tcp_xmit_ctl(NULL, 14754 tcp, (tcp->tcp_swnd == 0) ? 14755 tcp->tcp_suna : tcp->tcp_snxt, 14756 tcp->tcp_rnxt, TH_ACK); 14757 } 14758 } 14759 while ((mp = tcp->tcp_rcv_list) != NULL) { 14760 push = B_TRUE; 14761 tcp->tcp_rcv_list = mp->b_next; 14762 mp->b_next = NULL; 14763 space_left = (*connp->conn_upcalls->su_recv) 14764 (connp->conn_upper_handle, mp, msgdsize(mp), 14765 0, &error, &push); 14766 if (space_left < 0) { 14767 /* 14768 * We should never be in middle of a 14769 * fallback, the squeue guarantees that. 14770 */ 14771 ASSERT(error != EOPNOTSUPP); 14772 } 14773 } 14774 tcp->tcp_rcv_last_head = NULL; 14775 tcp->tcp_rcv_last_tail = NULL; 14776 tcp->tcp_rcv_cnt = 0; 14777 } else { 14778 /* We drain directly in case of fused tcp loopback */ 14779 14780 if (!tcp->tcp_fused && canputnext(q)) { 14781 tcp->tcp_rwnd = connp->conn_rcvbuf; 14782 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14783 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14784 tcp_xmit_ctl(NULL, 14785 tcp, (tcp->tcp_swnd == 0) ? 14786 tcp->tcp_suna : tcp->tcp_snxt, 14787 tcp->tcp_rnxt, TH_ACK); 14788 } 14789 } 14790 14791 (void) tcp_rcv_drain(tcp); 14792 } 14793 14794 /* 14795 * For fused tcp loopback, back-enable peer endpoint 14796 * if it's currently flow-controlled. 14797 */ 14798 if (tcp->tcp_fused) { 14799 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14800 14801 ASSERT(peer_tcp != NULL); 14802 ASSERT(peer_tcp->tcp_fused); 14803 14804 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14805 if (peer_tcp->tcp_flow_stopped) { 14806 tcp_clrqfull(peer_tcp); 14807 TCP_STAT(tcps, tcp_fusion_backenabled); 14808 } 14809 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14810 } 14811 } 14812 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14813 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14814 tcp->tcp_ordrel_done = B_TRUE; 14815 if (IPCL_IS_NONSTR(connp)) { 14816 ASSERT(tcp->tcp_ordrel_mp == NULL); 14817 (*connp->conn_upcalls->su_opctl)( 14818 connp->conn_upper_handle, 14819 SOCK_OPCTL_SHUT_RECV, 0); 14820 } else { 14821 mp = tcp->tcp_ordrel_mp; 14822 tcp->tcp_ordrel_mp = NULL; 14823 putnext(q, mp); 14824 } 14825 } 14826 tcp->tcp_hard_binding = B_FALSE; 14827 14828 if (connp->conn_keepalive) { 14829 tcp->tcp_ka_last_intrvl = 0; 14830 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14831 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14832 } 14833 14834 /* 14835 * At this point, eager is fully established and will 14836 * have the following references - 14837 * 14838 * 2 references for connection to exist (1 for TCP and 1 for IP). 14839 * 1 reference for the squeue which will be dropped by the squeue as 14840 * soon as this function returns. 14841 * There will be 1 additonal reference for being in classifier 14842 * hash list provided something bad hasn't happened. 14843 */ 14844 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14845 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14846 } 14847 14848 /* 14849 * The function called through squeue to get behind listener's perimeter to 14850 * send a deferred conn_ind. 14851 */ 14852 /* ARGSUSED */ 14853 void 14854 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14855 { 14856 conn_t *lconnp = (conn_t *)arg; 14857 tcp_t *listener = lconnp->conn_tcp; 14858 struct T_conn_ind *conn_ind; 14859 tcp_t *tcp; 14860 14861 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14862 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14863 conn_ind->OPT_length); 14864 14865 if (listener->tcp_state != TCPS_LISTEN) { 14866 /* 14867 * If listener has closed, it would have caused a 14868 * a cleanup/blowoff to happen for the eager, so 14869 * we don't need to do anything more. 14870 */ 14871 freemsg(mp); 14872 return; 14873 } 14874 14875 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14876 } 14877 14878 /* 14879 * Common to TPI and sockfs accept code. 14880 */ 14881 /* ARGSUSED2 */ 14882 static int 14883 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14884 { 14885 tcp_t *listener, *eager; 14886 mblk_t *discon_mp; 14887 14888 listener = lconnp->conn_tcp; 14889 ASSERT(listener->tcp_state == TCPS_LISTEN); 14890 eager = econnp->conn_tcp; 14891 ASSERT(eager->tcp_listener != NULL); 14892 14893 /* 14894 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14895 * use it if something failed. 14896 */ 14897 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14898 sizeof (struct stroptions)), BPRI_HI); 14899 14900 if (discon_mp == NULL) { 14901 return (-TPROTO); 14902 } 14903 eager->tcp_issocket = B_TRUE; 14904 14905 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14906 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14907 ASSERT(econnp->conn_netstack == 14908 listener->tcp_connp->conn_netstack); 14909 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14910 14911 /* Put the ref for IP */ 14912 CONN_INC_REF(econnp); 14913 14914 /* 14915 * We should have minimum of 3 references on the conn 14916 * at this point. One each for TCP and IP and one for 14917 * the T_conn_ind that was sent up when the 3-way handshake 14918 * completed. In the normal case we would also have another 14919 * reference (making a total of 4) for the conn being in the 14920 * classifier hash list. However the eager could have received 14921 * an RST subsequently and tcp_closei_local could have removed 14922 * the eager from the classifier hash list, hence we can't 14923 * assert that reference. 14924 */ 14925 ASSERT(econnp->conn_ref >= 3); 14926 14927 mutex_enter(&listener->tcp_eager_lock); 14928 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14929 14930 tcp_t *tail; 14931 tcp_t *tcp; 14932 mblk_t *mp1; 14933 14934 tcp = listener->tcp_eager_prev_q0; 14935 /* 14936 * listener->tcp_eager_prev_q0 points to the TAIL of the 14937 * deferred T_conn_ind queue. We need to get to the head 14938 * of the queue in order to send up T_conn_ind the same 14939 * order as how the 3WHS is completed. 14940 */ 14941 while (tcp != listener) { 14942 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14943 !tcp->tcp_kssl_pending) 14944 break; 14945 else 14946 tcp = tcp->tcp_eager_prev_q0; 14947 } 14948 /* None of the pending eagers can be sent up now */ 14949 if (tcp == listener) 14950 goto no_more_eagers; 14951 14952 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14953 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14954 /* Move from q0 to q */ 14955 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14956 listener->tcp_conn_req_cnt_q0--; 14957 listener->tcp_conn_req_cnt_q++; 14958 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14959 tcp->tcp_eager_prev_q0; 14960 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14961 tcp->tcp_eager_next_q0; 14962 tcp->tcp_eager_prev_q0 = NULL; 14963 tcp->tcp_eager_next_q0 = NULL; 14964 tcp->tcp_conn_def_q0 = B_FALSE; 14965 14966 /* Make sure the tcp isn't in the list of droppables */ 14967 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14968 tcp->tcp_eager_prev_drop_q0 == NULL); 14969 14970 /* 14971 * Insert at end of the queue because sockfs sends 14972 * down T_CONN_RES in chronological order. Leaving 14973 * the older conn indications at front of the queue 14974 * helps reducing search time. 14975 */ 14976 tail = listener->tcp_eager_last_q; 14977 if (tail != NULL) { 14978 tail->tcp_eager_next_q = tcp; 14979 } else { 14980 listener->tcp_eager_next_q = tcp; 14981 } 14982 listener->tcp_eager_last_q = tcp; 14983 tcp->tcp_eager_next_q = NULL; 14984 14985 /* Need to get inside the listener perimeter */ 14986 CONN_INC_REF(listener->tcp_connp); 14987 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14988 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14989 SQTAG_TCP_SEND_PENDING); 14990 } 14991 no_more_eagers: 14992 tcp_eager_unlink(eager); 14993 mutex_exit(&listener->tcp_eager_lock); 14994 14995 /* 14996 * At this point, the eager is detached from the listener 14997 * but we still have an extra refs on eager (apart from the 14998 * usual tcp references). The ref was placed in tcp_input_data 14999 * before sending the conn_ind in tcp_send_conn_ind. 15000 * The ref will be dropped in tcp_accept_finish(). 15001 */ 15002 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 15003 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 15004 return (0); 15005 } 15006 15007 int 15008 tcp_accept(sock_lower_handle_t lproto_handle, 15009 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 15010 cred_t *cr) 15011 { 15012 conn_t *lconnp, *econnp; 15013 tcp_t *listener, *eager; 15014 15015 lconnp = (conn_t *)lproto_handle; 15016 listener = lconnp->conn_tcp; 15017 ASSERT(listener->tcp_state == TCPS_LISTEN); 15018 econnp = (conn_t *)eproto_handle; 15019 eager = econnp->conn_tcp; 15020 ASSERT(eager->tcp_listener != NULL); 15021 15022 /* 15023 * It is OK to manipulate these fields outside the eager's squeue 15024 * because they will not start being used until tcp_accept_finish 15025 * has been called. 15026 */ 15027 ASSERT(lconnp->conn_upper_handle != NULL); 15028 ASSERT(econnp->conn_upper_handle == NULL); 15029 econnp->conn_upper_handle = sock_handle; 15030 econnp->conn_upcalls = lconnp->conn_upcalls; 15031 ASSERT(IPCL_IS_NONSTR(econnp)); 15032 return (tcp_accept_common(lconnp, econnp, cr)); 15033 } 15034 15035 15036 /* 15037 * This is the STREAMS entry point for T_CONN_RES coming down on 15038 * Acceptor STREAM when sockfs listener does accept processing. 15039 * Read the block comment on top of tcp_input_listener(). 15040 */ 15041 void 15042 tcp_tpi_accept(queue_t *q, mblk_t *mp) 15043 { 15044 queue_t *rq = RD(q); 15045 struct T_conn_res *conn_res; 15046 tcp_t *eager; 15047 tcp_t *listener; 15048 struct T_ok_ack *ok; 15049 t_scalar_t PRIM_type; 15050 conn_t *econnp; 15051 cred_t *cr; 15052 15053 ASSERT(DB_TYPE(mp) == M_PROTO); 15054 15055 /* 15056 * All Solaris components should pass a db_credp 15057 * for this TPI message, hence we ASSERT. 15058 * But in case there is some other M_PROTO that looks 15059 * like a TPI message sent by some other kernel 15060 * component, we check and return an error. 15061 */ 15062 cr = msg_getcred(mp, NULL); 15063 ASSERT(cr != NULL); 15064 if (cr == NULL) { 15065 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 15066 if (mp != NULL) 15067 putnext(rq, mp); 15068 return; 15069 } 15070 conn_res = (struct T_conn_res *)mp->b_rptr; 15071 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 15072 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 15073 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15074 if (mp != NULL) 15075 putnext(rq, mp); 15076 return; 15077 } 15078 switch (conn_res->PRIM_type) { 15079 case O_T_CONN_RES: 15080 case T_CONN_RES: 15081 /* 15082 * We pass up an err ack if allocb fails. This will 15083 * cause sockfs to issue a T_DISCON_REQ which will cause 15084 * tcp_eager_blowoff to be called. sockfs will then call 15085 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 15086 * we need to do the allocb up here because we have to 15087 * make sure rq->q_qinfo->qi_qclose still points to the 15088 * correct function (tcp_tpi_close_accept) in case allocb 15089 * fails. 15090 */ 15091 bcopy(mp->b_rptr + conn_res->OPT_offset, 15092 &eager, conn_res->OPT_length); 15093 PRIM_type = conn_res->PRIM_type; 15094 mp->b_datap->db_type = M_PCPROTO; 15095 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 15096 ok = (struct T_ok_ack *)mp->b_rptr; 15097 ok->PRIM_type = T_OK_ACK; 15098 ok->CORRECT_prim = PRIM_type; 15099 econnp = eager->tcp_connp; 15100 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 15101 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 15102 econnp->conn_rq = rq; 15103 econnp->conn_wq = q; 15104 rq->q_ptr = econnp; 15105 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 15106 q->q_ptr = econnp; 15107 q->q_qinfo = &tcp_winit; 15108 listener = eager->tcp_listener; 15109 15110 if (tcp_accept_common(listener->tcp_connp, 15111 econnp, cr) < 0) { 15112 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 15113 if (mp != NULL) 15114 putnext(rq, mp); 15115 return; 15116 } 15117 15118 /* 15119 * Send the new local address also up to sockfs. There 15120 * should already be enough space in the mp that came 15121 * down from soaccept(). 15122 */ 15123 if (econnp->conn_family == AF_INET) { 15124 sin_t *sin; 15125 15126 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15127 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 15128 sin = (sin_t *)mp->b_wptr; 15129 mp->b_wptr += sizeof (sin_t); 15130 sin->sin_family = AF_INET; 15131 sin->sin_port = econnp->conn_lport; 15132 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 15133 } else { 15134 sin6_t *sin6; 15135 15136 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 15137 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 15138 sin6 = (sin6_t *)mp->b_wptr; 15139 mp->b_wptr += sizeof (sin6_t); 15140 sin6->sin6_family = AF_INET6; 15141 sin6->sin6_port = econnp->conn_lport; 15142 sin6->sin6_addr = econnp->conn_laddr_v6; 15143 if (econnp->conn_ipversion == IPV4_VERSION) 15144 sin6->sin6_flowinfo = 0; 15145 else 15146 sin6->sin6_flowinfo = econnp->conn_flowinfo; 15147 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 15148 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 15149 sin6->sin6_scope_id = 15150 econnp->conn_ixa->ixa_scopeid; 15151 } else { 15152 sin6->sin6_scope_id = 0; 15153 } 15154 sin6->__sin6_src_id = 0; 15155 } 15156 15157 putnext(rq, mp); 15158 return; 15159 default: 15160 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 15161 if (mp != NULL) 15162 putnext(rq, mp); 15163 return; 15164 } 15165 } 15166 15167 /* 15168 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 15169 */ 15170 static void 15171 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 15172 { 15173 void *data; 15174 mblk_t *datamp = mp->b_cont; 15175 conn_t *connp = Q_TO_CONN(q); 15176 tcp_t *tcp = connp->conn_tcp; 15177 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 15178 15179 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 15180 cmdp->cb_error = EPROTO; 15181 qreply(q, mp); 15182 return; 15183 } 15184 15185 data = datamp->b_rptr; 15186 15187 switch (cmdp->cb_cmd) { 15188 case TI_GETPEERNAME: 15189 if (tcp->tcp_state < TCPS_SYN_RCVD) 15190 cmdp->cb_error = ENOTCONN; 15191 else 15192 cmdp->cb_error = conn_getpeername(connp, data, 15193 &cmdp->cb_len); 15194 break; 15195 case TI_GETMYNAME: 15196 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 15197 break; 15198 default: 15199 cmdp->cb_error = EINVAL; 15200 break; 15201 } 15202 15203 qreply(q, mp); 15204 } 15205 15206 void 15207 tcp_wput(queue_t *q, mblk_t *mp) 15208 { 15209 conn_t *connp = Q_TO_CONN(q); 15210 tcp_t *tcp; 15211 void (*output_proc)(); 15212 t_scalar_t type; 15213 uchar_t *rptr; 15214 struct iocblk *iocp; 15215 size_t size; 15216 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 15217 15218 ASSERT(connp->conn_ref >= 2); 15219 15220 switch (DB_TYPE(mp)) { 15221 case M_DATA: 15222 tcp = connp->conn_tcp; 15223 ASSERT(tcp != NULL); 15224 15225 size = msgdsize(mp); 15226 15227 mutex_enter(&tcp->tcp_non_sq_lock); 15228 tcp->tcp_squeue_bytes += size; 15229 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 15230 tcp_setqfull(tcp); 15231 } 15232 mutex_exit(&tcp->tcp_non_sq_lock); 15233 15234 CONN_INC_REF(connp); 15235 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 15236 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 15237 return; 15238 15239 case M_CMD: 15240 tcp_wput_cmdblk(q, mp); 15241 return; 15242 15243 case M_PROTO: 15244 case M_PCPROTO: 15245 /* 15246 * if it is a snmp message, don't get behind the squeue 15247 */ 15248 tcp = connp->conn_tcp; 15249 rptr = mp->b_rptr; 15250 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 15251 type = ((union T_primitives *)rptr)->type; 15252 } else { 15253 if (connp->conn_debug) { 15254 (void) strlog(TCP_MOD_ID, 0, 1, 15255 SL_ERROR|SL_TRACE, 15256 "tcp_wput_proto, dropping one..."); 15257 } 15258 freemsg(mp); 15259 return; 15260 } 15261 if (type == T_SVR4_OPTMGMT_REQ) { 15262 /* 15263 * All Solaris components should pass a db_credp 15264 * for this TPI message, hence we ASSERT. 15265 * But in case there is some other M_PROTO that looks 15266 * like a TPI message sent by some other kernel 15267 * component, we check and return an error. 15268 */ 15269 cred_t *cr = msg_getcred(mp, NULL); 15270 15271 ASSERT(cr != NULL); 15272 if (cr == NULL) { 15273 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 15274 return; 15275 } 15276 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 15277 cr)) { 15278 /* 15279 * This was a SNMP request 15280 */ 15281 return; 15282 } else { 15283 output_proc = tcp_wput_proto; 15284 } 15285 } else { 15286 output_proc = tcp_wput_proto; 15287 } 15288 break; 15289 case M_IOCTL: 15290 /* 15291 * Most ioctls can be processed right away without going via 15292 * squeues - process them right here. Those that do require 15293 * squeue (currently _SIOCSOCKFALLBACK) 15294 * are processed by tcp_wput_ioctl(). 15295 */ 15296 iocp = (struct iocblk *)mp->b_rptr; 15297 tcp = connp->conn_tcp; 15298 15299 switch (iocp->ioc_cmd) { 15300 case TCP_IOC_ABORT_CONN: 15301 tcp_ioctl_abort_conn(q, mp); 15302 return; 15303 case TI_GETPEERNAME: 15304 case TI_GETMYNAME: 15305 mi_copyin(q, mp, NULL, 15306 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15307 return; 15308 case ND_SET: 15309 /* nd_getset does the necessary checks */ 15310 case ND_GET: 15311 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15312 qreply(q, mp); 15313 return; 15314 } 15315 CONN_INC_IOCTLREF(connp); 15316 ip_wput_nondata(q, mp); 15317 CONN_DEC_IOCTLREF(connp); 15318 return; 15319 15320 default: 15321 output_proc = tcp_wput_ioctl; 15322 break; 15323 } 15324 break; 15325 default: 15326 output_proc = tcp_wput_nondata; 15327 break; 15328 } 15329 15330 CONN_INC_REF(connp); 15331 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15332 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15333 } 15334 15335 /* 15336 * Initial STREAMS write side put() procedure for sockets. It tries to 15337 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15338 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15339 * are handled by tcp_wput() as usual. 15340 * 15341 * All further messages will also be handled by tcp_wput() because we cannot 15342 * be sure that the above short cut is safe later. 15343 */ 15344 static void 15345 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15346 { 15347 conn_t *connp = Q_TO_CONN(wq); 15348 tcp_t *tcp = connp->conn_tcp; 15349 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15350 15351 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15352 wq->q_qinfo = &tcp_winit; 15353 15354 ASSERT(IPCL_IS_TCP(connp)); 15355 ASSERT(TCP_IS_SOCKET(tcp)); 15356 15357 if (DB_TYPE(mp) == M_PCPROTO && 15358 MBLKL(mp) == sizeof (struct T_capability_req) && 15359 car->PRIM_type == T_CAPABILITY_REQ) { 15360 tcp_capability_req(tcp, mp); 15361 return; 15362 } 15363 15364 tcp_wput(wq, mp); 15365 } 15366 15367 /* ARGSUSED */ 15368 static void 15369 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15370 { 15371 #ifdef DEBUG 15372 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15373 #endif 15374 freemsg(mp); 15375 } 15376 15377 /* 15378 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15379 */ 15380 static boolean_t 15381 tcp_zcopy_check(tcp_t *tcp) 15382 { 15383 conn_t *connp = tcp->tcp_connp; 15384 ip_xmit_attr_t *ixa = connp->conn_ixa; 15385 boolean_t zc_enabled = B_FALSE; 15386 tcp_stack_t *tcps = tcp->tcp_tcps; 15387 15388 if (do_tcpzcopy == 2) 15389 zc_enabled = B_TRUE; 15390 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15391 zc_enabled = B_TRUE; 15392 15393 tcp->tcp_snd_zcopy_on = zc_enabled; 15394 if (!TCP_IS_DETACHED(tcp)) { 15395 if (zc_enabled) { 15396 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15397 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15398 ZCVMSAFE); 15399 TCP_STAT(tcps, tcp_zcopy_on); 15400 } else { 15401 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15402 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15403 ZCVMUNSAFE); 15404 TCP_STAT(tcps, tcp_zcopy_off); 15405 } 15406 } 15407 return (zc_enabled); 15408 } 15409 15410 /* 15411 * Backoff from a zero-copy message by copying data to a new allocated 15412 * message and freeing the original desballoca'ed segmapped message. 15413 * 15414 * This function is called by following two callers: 15415 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15416 * the origial desballoca'ed message and notify sockfs. This is in re- 15417 * transmit state. 15418 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15419 * to be copied to new message. 15420 */ 15421 static mblk_t * 15422 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15423 { 15424 mblk_t *nbp; 15425 mblk_t *head = NULL; 15426 mblk_t *tail = NULL; 15427 tcp_stack_t *tcps = tcp->tcp_tcps; 15428 15429 ASSERT(bp != NULL); 15430 while (bp != NULL) { 15431 if (IS_VMLOANED_MBLK(bp)) { 15432 TCP_STAT(tcps, tcp_zcopy_backoff); 15433 if ((nbp = copyb(bp)) == NULL) { 15434 tcp->tcp_xmit_zc_clean = B_FALSE; 15435 if (tail != NULL) 15436 tail->b_cont = bp; 15437 return ((head == NULL) ? bp : head); 15438 } 15439 15440 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15441 if (fix_xmitlist) 15442 tcp_zcopy_notify(tcp); 15443 else 15444 nbp->b_datap->db_struioflag |= 15445 STRUIO_ZCNOTIFY; 15446 } 15447 nbp->b_cont = bp->b_cont; 15448 15449 /* 15450 * Copy saved information and adjust tcp_xmit_tail 15451 * if needed. 15452 */ 15453 if (fix_xmitlist) { 15454 nbp->b_prev = bp->b_prev; 15455 nbp->b_next = bp->b_next; 15456 15457 if (tcp->tcp_xmit_tail == bp) 15458 tcp->tcp_xmit_tail = nbp; 15459 } 15460 15461 /* Free the original message. */ 15462 bp->b_prev = NULL; 15463 bp->b_next = NULL; 15464 freeb(bp); 15465 15466 bp = nbp; 15467 } 15468 15469 if (head == NULL) { 15470 head = bp; 15471 } 15472 if (tail == NULL) { 15473 tail = bp; 15474 } else { 15475 tail->b_cont = bp; 15476 tail = bp; 15477 } 15478 15479 /* Move forward. */ 15480 bp = bp->b_cont; 15481 } 15482 15483 if (fix_xmitlist) { 15484 tcp->tcp_xmit_last = tail; 15485 tcp->tcp_xmit_zc_clean = B_TRUE; 15486 } 15487 15488 return (head); 15489 } 15490 15491 static void 15492 tcp_zcopy_notify(tcp_t *tcp) 15493 { 15494 struct stdata *stp; 15495 conn_t *connp; 15496 15497 if (tcp->tcp_detached) 15498 return; 15499 connp = tcp->tcp_connp; 15500 if (IPCL_IS_NONSTR(connp)) { 15501 (*connp->conn_upcalls->su_zcopy_notify) 15502 (connp->conn_upper_handle); 15503 return; 15504 } 15505 stp = STREAM(connp->conn_rq); 15506 mutex_enter(&stp->sd_lock); 15507 stp->sd_flag |= STZCNOTIFY; 15508 cv_broadcast(&stp->sd_zcopy_wait); 15509 mutex_exit(&stp->sd_lock); 15510 } 15511 15512 /* 15513 * Update the TCP connection according to change of LSO capability. 15514 */ 15515 static void 15516 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15517 { 15518 /* 15519 * We check against IPv4 header length to preserve the old behavior 15520 * of only enabling LSO when there are no IP options. 15521 * But this restriction might not be necessary at all. Before removing 15522 * it, need to verify how LSO is handled for source routing case, with 15523 * which IP does software checksum. 15524 * 15525 * For IPv6, whenever any extension header is needed, LSO is supressed. 15526 */ 15527 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15528 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15529 return; 15530 15531 /* 15532 * Either the LSO capability newly became usable, or it has changed. 15533 */ 15534 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15535 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15536 15537 ASSERT(lsoc->ill_lso_max > 0); 15538 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15539 15540 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15541 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15542 15543 /* 15544 * If LSO to be enabled, notify the STREAM header with larger 15545 * data block. 15546 */ 15547 if (!tcp->tcp_lso) 15548 tcp->tcp_maxpsz_multiplier = 0; 15549 15550 tcp->tcp_lso = B_TRUE; 15551 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15552 } else { /* LSO capability is not usable any more. */ 15553 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15554 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15555 15556 /* 15557 * If LSO to be disabled, notify the STREAM header with smaller 15558 * data block. And need to restore fragsize to PMTU. 15559 */ 15560 if (tcp->tcp_lso) { 15561 tcp->tcp_maxpsz_multiplier = 15562 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15563 ixa->ixa_fragsize = ixa->ixa_pmtu; 15564 tcp->tcp_lso = B_FALSE; 15565 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15566 } 15567 } 15568 15569 (void) tcp_maxpsz_set(tcp, B_TRUE); 15570 } 15571 15572 /* 15573 * Update the TCP connection according to change of ZEROCOPY capability. 15574 */ 15575 static void 15576 tcp_update_zcopy(tcp_t *tcp) 15577 { 15578 conn_t *connp = tcp->tcp_connp; 15579 tcp_stack_t *tcps = tcp->tcp_tcps; 15580 15581 if (tcp->tcp_snd_zcopy_on) { 15582 tcp->tcp_snd_zcopy_on = B_FALSE; 15583 if (!TCP_IS_DETACHED(tcp)) { 15584 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15585 ZCVMUNSAFE); 15586 TCP_STAT(tcps, tcp_zcopy_off); 15587 } 15588 } else { 15589 tcp->tcp_snd_zcopy_on = B_TRUE; 15590 if (!TCP_IS_DETACHED(tcp)) { 15591 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15592 ZCVMSAFE); 15593 TCP_STAT(tcps, tcp_zcopy_on); 15594 } 15595 } 15596 } 15597 15598 /* 15599 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15600 * so it's safe to update the TCP connection. 15601 */ 15602 /* ARGSUSED1 */ 15603 static void 15604 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15605 ixa_notify_arg_t narg) 15606 { 15607 tcp_t *tcp = (tcp_t *)arg; 15608 conn_t *connp = tcp->tcp_connp; 15609 15610 switch (ntype) { 15611 case IXAN_LSO: 15612 tcp_update_lso(tcp, connp->conn_ixa); 15613 break; 15614 case IXAN_PMTU: 15615 tcp_update_pmtu(tcp, B_FALSE); 15616 break; 15617 case IXAN_ZCOPY: 15618 tcp_update_zcopy(tcp); 15619 break; 15620 default: 15621 break; 15622 } 15623 } 15624 15625 static void 15626 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15627 { 15628 conn_t *connp = tcp->tcp_connp; 15629 15630 /* 15631 * Check here to avoid sending zero-copy message down to IP when 15632 * ZEROCOPY capability has turned off. We only need to deal with 15633 * the race condition between sockfs and the notification here. 15634 * Since we have tried to backoff the tcp_xmit_head when turning 15635 * zero-copy off and new messages in tcp_output(), we simply drop 15636 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15637 * is not true. 15638 */ 15639 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15640 !tcp->tcp_xmit_zc_clean) { 15641 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15642 freemsg(mp); 15643 return; 15644 } 15645 15646 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15647 (void) conn_ip_output(mp, connp->conn_ixa); 15648 } 15649 15650 /* 15651 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15652 * if the receiver shrinks the window, i.e. moves the right window to the 15653 * left, the we should not send new data, but should retransmit normally the 15654 * old unacked data between suna and suna + swnd. We might has sent data 15655 * that is now outside the new window, pretend that we didn't send it. 15656 */ 15657 static void 15658 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15659 { 15660 uint32_t snxt = tcp->tcp_snxt; 15661 15662 ASSERT(shrunk_count > 0); 15663 15664 if (!tcp->tcp_is_wnd_shrnk) { 15665 tcp->tcp_snxt_shrunk = snxt; 15666 tcp->tcp_is_wnd_shrnk = B_TRUE; 15667 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15668 tcp->tcp_snxt_shrunk = snxt; 15669 } 15670 15671 /* Pretend we didn't send the data outside the window */ 15672 snxt -= shrunk_count; 15673 15674 /* Reset all the values per the now shrunk window */ 15675 tcp_update_xmit_tail(tcp, snxt); 15676 tcp->tcp_unsent += shrunk_count; 15677 15678 /* 15679 * If the SACK option is set, delete the entire list of 15680 * notsack'ed blocks. 15681 */ 15682 if (tcp->tcp_sack_info != NULL) { 15683 if (tcp->tcp_notsack_list != NULL) 15684 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15685 } 15686 15687 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15688 /* 15689 * Make sure the timer is running so that we will probe a zero 15690 * window. 15691 */ 15692 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15693 } 15694 15695 15696 /* 15697 * The TCP normal data output path. 15698 * NOTE: the logic of the fast path is duplicated from this function. 15699 */ 15700 static void 15701 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15702 { 15703 int len; 15704 mblk_t *local_time; 15705 mblk_t *mp1; 15706 uint32_t snxt; 15707 int tail_unsent; 15708 int tcpstate; 15709 int usable = 0; 15710 mblk_t *xmit_tail; 15711 int32_t mss; 15712 int32_t num_sack_blk = 0; 15713 int32_t total_hdr_len; 15714 int32_t tcp_hdr_len; 15715 int rc; 15716 tcp_stack_t *tcps = tcp->tcp_tcps; 15717 conn_t *connp = tcp->tcp_connp; 15718 clock_t now = LBOLT_FASTPATH; 15719 15720 tcpstate = tcp->tcp_state; 15721 if (mp == NULL) { 15722 /* 15723 * tcp_wput_data() with NULL mp should only be called when 15724 * there is unsent data. 15725 */ 15726 ASSERT(tcp->tcp_unsent > 0); 15727 /* Really tacky... but we need this for detached closes. */ 15728 len = tcp->tcp_unsent; 15729 goto data_null; 15730 } 15731 15732 #if CCS_STATS 15733 wrw_stats.tot.count++; 15734 wrw_stats.tot.bytes += msgdsize(mp); 15735 #endif 15736 ASSERT(mp->b_datap->db_type == M_DATA); 15737 /* 15738 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15739 * or before a connection attempt has begun. 15740 */ 15741 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15742 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15743 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15744 #ifdef DEBUG 15745 cmn_err(CE_WARN, 15746 "tcp_wput_data: data after ordrel, %s", 15747 tcp_display(tcp, NULL, 15748 DISP_ADDR_AND_PORT)); 15749 #else 15750 if (connp->conn_debug) { 15751 (void) strlog(TCP_MOD_ID, 0, 1, 15752 SL_TRACE|SL_ERROR, 15753 "tcp_wput_data: data after ordrel, %s\n", 15754 tcp_display(tcp, NULL, 15755 DISP_ADDR_AND_PORT)); 15756 } 15757 #endif /* DEBUG */ 15758 } 15759 if (tcp->tcp_snd_zcopy_aware && 15760 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15761 tcp_zcopy_notify(tcp); 15762 freemsg(mp); 15763 mutex_enter(&tcp->tcp_non_sq_lock); 15764 if (tcp->tcp_flow_stopped && 15765 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15766 tcp_clrqfull(tcp); 15767 } 15768 mutex_exit(&tcp->tcp_non_sq_lock); 15769 return; 15770 } 15771 15772 /* Strip empties */ 15773 for (;;) { 15774 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15775 (uintptr_t)INT_MAX); 15776 len = (int)(mp->b_wptr - mp->b_rptr); 15777 if (len > 0) 15778 break; 15779 mp1 = mp; 15780 mp = mp->b_cont; 15781 freeb(mp1); 15782 if (!mp) { 15783 return; 15784 } 15785 } 15786 15787 /* If we are the first on the list ... */ 15788 if (tcp->tcp_xmit_head == NULL) { 15789 tcp->tcp_xmit_head = mp; 15790 tcp->tcp_xmit_tail = mp; 15791 tcp->tcp_xmit_tail_unsent = len; 15792 } else { 15793 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15794 struct datab *dp; 15795 15796 mp1 = tcp->tcp_xmit_last; 15797 if (len < tcp_tx_pull_len && 15798 (dp = mp1->b_datap)->db_ref == 1 && 15799 dp->db_lim - mp1->b_wptr >= len) { 15800 ASSERT(len > 0); 15801 ASSERT(!mp1->b_cont); 15802 if (len == 1) { 15803 *mp1->b_wptr++ = *mp->b_rptr; 15804 } else { 15805 bcopy(mp->b_rptr, mp1->b_wptr, len); 15806 mp1->b_wptr += len; 15807 } 15808 if (mp1 == tcp->tcp_xmit_tail) 15809 tcp->tcp_xmit_tail_unsent += len; 15810 mp1->b_cont = mp->b_cont; 15811 if (tcp->tcp_snd_zcopy_aware && 15812 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15813 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15814 freeb(mp); 15815 mp = mp1; 15816 } else { 15817 tcp->tcp_xmit_last->b_cont = mp; 15818 } 15819 len += tcp->tcp_unsent; 15820 } 15821 15822 /* Tack on however many more positive length mblks we have */ 15823 if ((mp1 = mp->b_cont) != NULL) { 15824 do { 15825 int tlen; 15826 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15827 (uintptr_t)INT_MAX); 15828 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15829 if (tlen <= 0) { 15830 mp->b_cont = mp1->b_cont; 15831 freeb(mp1); 15832 } else { 15833 len += tlen; 15834 mp = mp1; 15835 } 15836 } while ((mp1 = mp->b_cont) != NULL); 15837 } 15838 tcp->tcp_xmit_last = mp; 15839 tcp->tcp_unsent = len; 15840 15841 if (urgent) 15842 usable = 1; 15843 15844 data_null: 15845 snxt = tcp->tcp_snxt; 15846 xmit_tail = tcp->tcp_xmit_tail; 15847 tail_unsent = tcp->tcp_xmit_tail_unsent; 15848 15849 /* 15850 * Note that tcp_mss has been adjusted to take into account the 15851 * timestamp option if applicable. Because SACK options do not 15852 * appear in every TCP segments and they are of variable lengths, 15853 * they cannot be included in tcp_mss. Thus we need to calculate 15854 * the actual segment length when we need to send a segment which 15855 * includes SACK options. 15856 */ 15857 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15858 int32_t opt_len; 15859 15860 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15861 tcp->tcp_num_sack_blk); 15862 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15863 2 + TCPOPT_HEADER_LEN; 15864 mss = tcp->tcp_mss - opt_len; 15865 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15866 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15867 } else { 15868 mss = tcp->tcp_mss; 15869 total_hdr_len = connp->conn_ht_iphc_len; 15870 tcp_hdr_len = connp->conn_ht_ulp_len; 15871 } 15872 15873 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15874 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15875 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15876 } 15877 if (tcpstate == TCPS_SYN_RCVD) { 15878 /* 15879 * The three-way connection establishment handshake is not 15880 * complete yet. We want to queue the data for transmission 15881 * after entering ESTABLISHED state (RFC793). A jump to 15882 * "done" label effectively leaves data on the queue. 15883 */ 15884 goto done; 15885 } else { 15886 int usable_r; 15887 15888 /* 15889 * In the special case when cwnd is zero, which can only 15890 * happen if the connection is ECN capable, return now. 15891 * New segments is sent using tcp_timer(). The timer 15892 * is set in tcp_input_data(). 15893 */ 15894 if (tcp->tcp_cwnd == 0) { 15895 /* 15896 * Note that tcp_cwnd is 0 before 3-way handshake is 15897 * finished. 15898 */ 15899 ASSERT(tcp->tcp_ecn_ok || 15900 tcp->tcp_state < TCPS_ESTABLISHED); 15901 return; 15902 } 15903 15904 /* NOTE: trouble if xmitting while SYN not acked? */ 15905 usable_r = snxt - tcp->tcp_suna; 15906 usable_r = tcp->tcp_swnd - usable_r; 15907 15908 /* 15909 * Check if the receiver has shrunk the window. If 15910 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15911 * cannot be set as there is unsent data, so FIN cannot 15912 * be sent out. Otherwise, we need to take into account 15913 * of FIN as it consumes an "invisible" sequence number. 15914 */ 15915 ASSERT(tcp->tcp_fin_sent == 0); 15916 if (usable_r < 0) { 15917 /* 15918 * The receiver has shrunk the window and we have sent 15919 * -usable_r date beyond the window, re-adjust. 15920 * 15921 * If TCP window scaling is enabled, there can be 15922 * round down error as the advertised receive window 15923 * is actually right shifted n bits. This means that 15924 * the lower n bits info is wiped out. It will look 15925 * like the window is shrunk. Do a check here to 15926 * see if the shrunk amount is actually within the 15927 * error in window calculation. If it is, just 15928 * return. Note that this check is inside the 15929 * shrunk window check. This makes sure that even 15930 * though tcp_process_shrunk_swnd() is not called, 15931 * we will stop further processing. 15932 */ 15933 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15934 tcp_process_shrunk_swnd(tcp, -usable_r); 15935 } 15936 return; 15937 } 15938 15939 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15940 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15941 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15942 15943 /* usable = MIN(usable, unsent) */ 15944 if (usable_r > len) 15945 usable_r = len; 15946 15947 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15948 if (usable_r > 0) { 15949 usable = usable_r; 15950 } else { 15951 /* Bypass all other unnecessary processing. */ 15952 goto done; 15953 } 15954 } 15955 15956 local_time = (mblk_t *)now; 15957 15958 /* 15959 * "Our" Nagle Algorithm. This is not the same as in the old 15960 * BSD. This is more in line with the true intent of Nagle. 15961 * 15962 * The conditions are: 15963 * 1. The amount of unsent data (or amount of data which can be 15964 * sent, whichever is smaller) is less than Nagle limit. 15965 * 2. The last sent size is also less than Nagle limit. 15966 * 3. There is unack'ed data. 15967 * 4. Urgent pointer is not set. Send urgent data ignoring the 15968 * Nagle algorithm. This reduces the probability that urgent 15969 * bytes get "merged" together. 15970 * 5. The app has not closed the connection. This eliminates the 15971 * wait time of the receiving side waiting for the last piece of 15972 * (small) data. 15973 * 15974 * If all are satisified, exit without sending anything. Note 15975 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15976 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15977 * 4095). 15978 */ 15979 if (usable < (int)tcp->tcp_naglim && 15980 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15981 snxt != tcp->tcp_suna && 15982 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15983 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15984 goto done; 15985 } 15986 15987 /* 15988 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15989 * is set, then we have to force TCP not to send partial segment 15990 * (smaller than MSS bytes). We are calculating the usable now 15991 * based on full mss and will save the rest of remaining data for 15992 * later. When tcp_zero_win_probe is set, TCP needs to send out 15993 * something to do zero window probe. 15994 */ 15995 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15996 if (usable < mss) 15997 goto done; 15998 usable = (usable / mss) * mss; 15999 } 16000 16001 /* Update the latest receive window size in TCP header. */ 16002 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 16003 16004 /* Send the packet. */ 16005 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 16006 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 16007 local_time); 16008 16009 /* Pretend that all we were trying to send really got sent */ 16010 if (rc < 0 && tail_unsent < 0) { 16011 do { 16012 xmit_tail = xmit_tail->b_cont; 16013 xmit_tail->b_prev = local_time; 16014 ASSERT((uintptr_t)(xmit_tail->b_wptr - 16015 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 16016 tail_unsent += (int)(xmit_tail->b_wptr - 16017 xmit_tail->b_rptr); 16018 } while (tail_unsent < 0); 16019 } 16020 done:; 16021 tcp->tcp_xmit_tail = xmit_tail; 16022 tcp->tcp_xmit_tail_unsent = tail_unsent; 16023 len = tcp->tcp_snxt - snxt; 16024 if (len) { 16025 /* 16026 * If new data was sent, need to update the notsack 16027 * list, which is, afterall, data blocks that have 16028 * not been sack'ed by the receiver. New data is 16029 * not sack'ed. 16030 */ 16031 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16032 /* len is a negative value. */ 16033 tcp->tcp_pipe -= len; 16034 tcp_notsack_update(&(tcp->tcp_notsack_list), 16035 tcp->tcp_snxt, snxt, 16036 &(tcp->tcp_num_notsack_blk), 16037 &(tcp->tcp_cnt_notsack_list)); 16038 } 16039 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 16040 tcp->tcp_rack = tcp->tcp_rnxt; 16041 tcp->tcp_rack_cnt = 0; 16042 if ((snxt + len) == tcp->tcp_suna) { 16043 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16044 } 16045 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 16046 /* 16047 * Didn't send anything. Make sure the timer is running 16048 * so that we will probe a zero window. 16049 */ 16050 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16051 } 16052 /* Note that len is the amount we just sent but with a negative sign */ 16053 tcp->tcp_unsent += len; 16054 mutex_enter(&tcp->tcp_non_sq_lock); 16055 if (tcp->tcp_flow_stopped) { 16056 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 16057 tcp_clrqfull(tcp); 16058 } 16059 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 16060 if (!(tcp->tcp_detached)) 16061 tcp_setqfull(tcp); 16062 } 16063 mutex_exit(&tcp->tcp_non_sq_lock); 16064 } 16065 16066 /* 16067 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 16068 * with the template header, as well as other options such as time-stamp, 16069 * ECN and/or SACK. 16070 */ 16071 static void 16072 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 16073 { 16074 tcpha_t *tcp_tmpl, *tcpha; 16075 uint32_t *dst, *src; 16076 int hdrlen; 16077 conn_t *connp = tcp->tcp_connp; 16078 16079 ASSERT(OK_32PTR(rptr)); 16080 16081 /* Template header */ 16082 tcp_tmpl = tcp->tcp_tcpha; 16083 16084 /* Header of outgoing packet */ 16085 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 16086 16087 /* dst and src are opaque 32-bit fields, used for copying */ 16088 dst = (uint32_t *)rptr; 16089 src = (uint32_t *)connp->conn_ht_iphc; 16090 hdrlen = connp->conn_ht_iphc_len; 16091 16092 /* Fill time-stamp option if needed */ 16093 if (tcp->tcp_snd_ts_ok) { 16094 U32_TO_BE32((uint32_t)now, 16095 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 16096 U32_TO_BE32(tcp->tcp_ts_recent, 16097 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 16098 } else { 16099 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 16100 } 16101 16102 /* 16103 * Copy the template header; is this really more efficient than 16104 * calling bcopy()? For simple IPv4/TCP, it may be the case, 16105 * but perhaps not for other scenarios. 16106 */ 16107 dst[0] = src[0]; 16108 dst[1] = src[1]; 16109 dst[2] = src[2]; 16110 dst[3] = src[3]; 16111 dst[4] = src[4]; 16112 dst[5] = src[5]; 16113 dst[6] = src[6]; 16114 dst[7] = src[7]; 16115 dst[8] = src[8]; 16116 dst[9] = src[9]; 16117 if (hdrlen -= 40) { 16118 hdrlen >>= 2; 16119 dst += 10; 16120 src += 10; 16121 do { 16122 *dst++ = *src++; 16123 } while (--hdrlen); 16124 } 16125 16126 /* 16127 * Set the ECN info in the TCP header if it is not a zero 16128 * window probe. Zero window probe is only sent in 16129 * tcp_wput_data() and tcp_timer(). 16130 */ 16131 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 16132 SET_ECT(tcp, rptr); 16133 16134 if (tcp->tcp_ecn_echo_on) 16135 tcpha->tha_flags |= TH_ECE; 16136 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16137 tcpha->tha_flags |= TH_CWR; 16138 tcp->tcp_ecn_cwr_sent = B_TRUE; 16139 } 16140 } 16141 16142 /* Fill in SACK options */ 16143 if (num_sack_blk > 0) { 16144 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 16145 sack_blk_t *tmp; 16146 int32_t i; 16147 16148 wptr[0] = TCPOPT_NOP; 16149 wptr[1] = TCPOPT_NOP; 16150 wptr[2] = TCPOPT_SACK; 16151 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 16152 sizeof (sack_blk_t); 16153 wptr += TCPOPT_REAL_SACK_LEN; 16154 16155 tmp = tcp->tcp_sack_list; 16156 for (i = 0; i < num_sack_blk; i++) { 16157 U32_TO_BE32(tmp[i].begin, wptr); 16158 wptr += sizeof (tcp_seq); 16159 U32_TO_BE32(tmp[i].end, wptr); 16160 wptr += sizeof (tcp_seq); 16161 } 16162 tcpha->tha_offset_and_reserved += 16163 ((num_sack_blk * 2 + 1) << 4); 16164 } 16165 } 16166 16167 /* 16168 * tcp_send() is called by tcp_wput_data() and returns one of the following: 16169 * 16170 * -1 = failed allocation. 16171 * 0 = success; burst count reached, or usable send window is too small, 16172 * and that we'd rather wait until later before sending again. 16173 */ 16174 static int 16175 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 16176 const int tcp_hdr_len, const int num_sack_blk, int *usable, 16177 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 16178 { 16179 int num_burst_seg = tcp->tcp_snd_burst; 16180 int num_lso_seg = 1; 16181 uint_t lso_usable; 16182 boolean_t do_lso_send = B_FALSE; 16183 tcp_stack_t *tcps = tcp->tcp_tcps; 16184 conn_t *connp = tcp->tcp_connp; 16185 ip_xmit_attr_t *ixa = connp->conn_ixa; 16186 16187 /* 16188 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 16189 * the underlying connection is LSO capable. Will check whether having 16190 * enough available data to initiate LSO transmission in the for(){} 16191 * loops. 16192 */ 16193 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 16194 do_lso_send = B_TRUE; 16195 16196 for (;;) { 16197 struct datab *db; 16198 tcpha_t *tcpha; 16199 uint32_t sum; 16200 mblk_t *mp, *mp1; 16201 uchar_t *rptr; 16202 int len; 16203 16204 /* 16205 * Burst count reached, return successfully. 16206 */ 16207 if (num_burst_seg == 0) 16208 break; 16209 16210 /* 16211 * Calculate the maximum payload length we can send at one 16212 * time. 16213 */ 16214 if (do_lso_send) { 16215 /* 16216 * Check whether be able to to do LSO for the current 16217 * available data. 16218 */ 16219 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 16220 lso_usable = MIN(tcp->tcp_lso_max, *usable); 16221 lso_usable = MIN(lso_usable, 16222 num_burst_seg * mss); 16223 16224 num_lso_seg = lso_usable / mss; 16225 if (lso_usable % mss) { 16226 num_lso_seg++; 16227 tcp->tcp_last_sent_len = (ushort_t) 16228 (lso_usable % mss); 16229 } else { 16230 tcp->tcp_last_sent_len = (ushort_t)mss; 16231 } 16232 } else { 16233 do_lso_send = B_FALSE; 16234 num_lso_seg = 1; 16235 lso_usable = mss; 16236 } 16237 } 16238 16239 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 16240 #ifdef DEBUG 16241 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 16242 do_lso_send); 16243 #endif 16244 /* 16245 * Adjust num_burst_seg here. 16246 */ 16247 num_burst_seg -= num_lso_seg; 16248 16249 len = mss; 16250 if (len > *usable) { 16251 ASSERT(do_lso_send == B_FALSE); 16252 16253 len = *usable; 16254 if (len <= 0) { 16255 /* Terminate the loop */ 16256 break; /* success; too small */ 16257 } 16258 /* 16259 * Sender silly-window avoidance. 16260 * Ignore this if we are going to send a 16261 * zero window probe out. 16262 * 16263 * TODO: force data into microscopic window? 16264 * ==> (!pushed || (unsent > usable)) 16265 */ 16266 if (len < (tcp->tcp_max_swnd >> 1) && 16267 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 16268 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 16269 len == 1) && (! tcp->tcp_zero_win_probe)) { 16270 /* 16271 * If the retransmit timer is not running 16272 * we start it so that we will retransmit 16273 * in the case when the receiver has 16274 * decremented the window. 16275 */ 16276 if (*snxt == tcp->tcp_snxt && 16277 *snxt == tcp->tcp_suna) { 16278 /* 16279 * We are not supposed to send 16280 * anything. So let's wait a little 16281 * bit longer before breaking SWS 16282 * avoidance. 16283 * 16284 * What should the value be? 16285 * Suggestion: MAX(init rexmit time, 16286 * tcp->tcp_rto) 16287 */ 16288 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16289 } 16290 break; /* success; too small */ 16291 } 16292 } 16293 16294 tcpha = tcp->tcp_tcpha; 16295 16296 /* 16297 * The reason to adjust len here is that we need to set flags 16298 * and calculate checksum. 16299 */ 16300 if (do_lso_send) 16301 len = lso_usable; 16302 16303 *usable -= len; /* Approximate - can be adjusted later */ 16304 if (*usable > 0) 16305 tcpha->tha_flags = TH_ACK; 16306 else 16307 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16308 16309 /* 16310 * Prime pump for IP's checksumming on our behalf. 16311 * Include the adjustment for a source route if any. 16312 * In case of LSO, the partial pseudo-header checksum should 16313 * exclusive TCP length, so zero tha_sum before IP calculate 16314 * pseudo-header checksum for partial checksum offload. 16315 */ 16316 if (do_lso_send) { 16317 sum = 0; 16318 } else { 16319 sum = len + tcp_hdr_len + connp->conn_sum; 16320 sum = (sum >> 16) + (sum & 0xFFFF); 16321 } 16322 tcpha->tha_sum = htons(sum); 16323 tcpha->tha_seq = htonl(*snxt); 16324 16325 /* 16326 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16327 * set. For the case when TCP_FSS_VALID is the only valid 16328 * bit (normal active close), branch off only when we think 16329 * that the FIN flag needs to be set. Note for this case, 16330 * that (snxt + len) may not reflect the actual seg_len, 16331 * as len may be further reduced in tcp_xmit_mp(). If len 16332 * gets modified, we will end up here again. 16333 */ 16334 if (tcp->tcp_valid_bits != 0 && 16335 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16336 ((*snxt + len) == tcp->tcp_fss))) { 16337 uchar_t *prev_rptr; 16338 uint32_t prev_snxt = tcp->tcp_snxt; 16339 16340 if (*tail_unsent == 0) { 16341 ASSERT((*xmit_tail)->b_cont != NULL); 16342 *xmit_tail = (*xmit_tail)->b_cont; 16343 prev_rptr = (*xmit_tail)->b_rptr; 16344 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16345 (*xmit_tail)->b_rptr); 16346 } else { 16347 prev_rptr = (*xmit_tail)->b_rptr; 16348 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16349 *tail_unsent; 16350 } 16351 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16352 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16353 /* Restore tcp_snxt so we get amount sent right. */ 16354 tcp->tcp_snxt = prev_snxt; 16355 if (prev_rptr == (*xmit_tail)->b_rptr) { 16356 /* 16357 * If the previous timestamp is still in use, 16358 * don't stomp on it. 16359 */ 16360 if ((*xmit_tail)->b_next == NULL) { 16361 (*xmit_tail)->b_prev = local_time; 16362 (*xmit_tail)->b_next = 16363 (mblk_t *)(uintptr_t)(*snxt); 16364 } 16365 } else 16366 (*xmit_tail)->b_rptr = prev_rptr; 16367 16368 if (mp == NULL) { 16369 return (-1); 16370 } 16371 mp1 = mp->b_cont; 16372 16373 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16374 tcp->tcp_last_sent_len = (ushort_t)len; 16375 while (mp1->b_cont) { 16376 *xmit_tail = (*xmit_tail)->b_cont; 16377 (*xmit_tail)->b_prev = local_time; 16378 (*xmit_tail)->b_next = 16379 (mblk_t *)(uintptr_t)(*snxt); 16380 mp1 = mp1->b_cont; 16381 } 16382 *snxt += len; 16383 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16384 BUMP_LOCAL(tcp->tcp_obsegs); 16385 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16386 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16387 tcp_send_data(tcp, mp); 16388 continue; 16389 } 16390 16391 *snxt += len; /* Adjust later if we don't send all of len */ 16392 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16393 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16394 16395 if (*tail_unsent) { 16396 /* Are the bytes above us in flight? */ 16397 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16398 if (rptr != (*xmit_tail)->b_rptr) { 16399 *tail_unsent -= len; 16400 if (len <= mss) /* LSO is unusable */ 16401 tcp->tcp_last_sent_len = (ushort_t)len; 16402 len += total_hdr_len; 16403 ixa->ixa_pktlen = len; 16404 16405 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16406 tcp->tcp_ipha->ipha_length = htons(len); 16407 } else { 16408 tcp->tcp_ip6h->ip6_plen = 16409 htons(len - IPV6_HDR_LEN); 16410 } 16411 16412 mp = dupb(*xmit_tail); 16413 if (mp == NULL) { 16414 return (-1); /* out_of_mem */ 16415 } 16416 mp->b_rptr = rptr; 16417 /* 16418 * If the old timestamp is no longer in use, 16419 * sample a new timestamp now. 16420 */ 16421 if ((*xmit_tail)->b_next == NULL) { 16422 (*xmit_tail)->b_prev = local_time; 16423 (*xmit_tail)->b_next = 16424 (mblk_t *)(uintptr_t)(*snxt-len); 16425 } 16426 goto must_alloc; 16427 } 16428 } else { 16429 *xmit_tail = (*xmit_tail)->b_cont; 16430 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16431 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16432 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16433 (*xmit_tail)->b_rptr); 16434 } 16435 16436 (*xmit_tail)->b_prev = local_time; 16437 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16438 16439 *tail_unsent -= len; 16440 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16441 tcp->tcp_last_sent_len = (ushort_t)len; 16442 16443 len += total_hdr_len; 16444 ixa->ixa_pktlen = len; 16445 16446 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16447 tcp->tcp_ipha->ipha_length = htons(len); 16448 } else { 16449 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16450 } 16451 16452 mp = dupb(*xmit_tail); 16453 if (mp == NULL) { 16454 return (-1); /* out_of_mem */ 16455 } 16456 16457 len = total_hdr_len; 16458 /* 16459 * There are four reasons to allocate a new hdr mblk: 16460 * 1) The bytes above us are in use by another packet 16461 * 2) We don't have good alignment 16462 * 3) The mblk is being shared 16463 * 4) We don't have enough room for a header 16464 */ 16465 rptr = mp->b_rptr - len; 16466 if (!OK_32PTR(rptr) || 16467 ((db = mp->b_datap), db->db_ref != 2) || 16468 rptr < db->db_base) { 16469 /* NOTE: we assume allocb returns an OK_32PTR */ 16470 16471 must_alloc:; 16472 mp1 = allocb(connp->conn_ht_iphc_allocated + 16473 tcps->tcps_wroff_xtra, BPRI_MED); 16474 if (mp1 == NULL) { 16475 freemsg(mp); 16476 return (-1); /* out_of_mem */ 16477 } 16478 mp1->b_cont = mp; 16479 mp = mp1; 16480 /* Leave room for Link Level header */ 16481 len = total_hdr_len; 16482 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16483 mp->b_wptr = &rptr[len]; 16484 } 16485 16486 /* 16487 * Fill in the header using the template header, and add 16488 * options such as time-stamp, ECN and/or SACK, as needed. 16489 */ 16490 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16491 16492 mp->b_rptr = rptr; 16493 16494 if (*tail_unsent) { 16495 int spill = *tail_unsent; 16496 16497 mp1 = mp->b_cont; 16498 if (mp1 == NULL) 16499 mp1 = mp; 16500 16501 /* 16502 * If we're a little short, tack on more mblks until 16503 * there is no more spillover. 16504 */ 16505 while (spill < 0) { 16506 mblk_t *nmp; 16507 int nmpsz; 16508 16509 nmp = (*xmit_tail)->b_cont; 16510 nmpsz = MBLKL(nmp); 16511 16512 /* 16513 * Excess data in mblk; can we split it? 16514 * If LSO is enabled for the connection, 16515 * keep on splitting as this is a transient 16516 * send path. 16517 */ 16518 if (!do_lso_send && (spill + nmpsz > 0)) { 16519 /* 16520 * Don't split if stream head was 16521 * told to break up larger writes 16522 * into smaller ones. 16523 */ 16524 if (tcp->tcp_maxpsz_multiplier > 0) 16525 break; 16526 16527 /* 16528 * Next mblk is less than SMSS/2 16529 * rounded up to nearest 64-byte; 16530 * let it get sent as part of the 16531 * next segment. 16532 */ 16533 if (tcp->tcp_localnet && 16534 !tcp->tcp_cork && 16535 (nmpsz < roundup((mss >> 1), 64))) 16536 break; 16537 } 16538 16539 *xmit_tail = nmp; 16540 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16541 /* Stash for rtt use later */ 16542 (*xmit_tail)->b_prev = local_time; 16543 (*xmit_tail)->b_next = 16544 (mblk_t *)(uintptr_t)(*snxt - len); 16545 mp1->b_cont = dupb(*xmit_tail); 16546 mp1 = mp1->b_cont; 16547 16548 spill += nmpsz; 16549 if (mp1 == NULL) { 16550 *tail_unsent = spill; 16551 freemsg(mp); 16552 return (-1); /* out_of_mem */ 16553 } 16554 } 16555 16556 /* Trim back any surplus on the last mblk */ 16557 if (spill >= 0) { 16558 mp1->b_wptr -= spill; 16559 *tail_unsent = spill; 16560 } else { 16561 /* 16562 * We did not send everything we could in 16563 * order to remain within the b_cont limit. 16564 */ 16565 *usable -= spill; 16566 *snxt += spill; 16567 tcp->tcp_last_sent_len += spill; 16568 UPDATE_MIB(&tcps->tcps_mib, 16569 tcpOutDataBytes, spill); 16570 /* 16571 * Adjust the checksum 16572 */ 16573 tcpha = (tcpha_t *)(rptr + 16574 ixa->ixa_ip_hdr_length); 16575 sum += spill; 16576 sum = (sum >> 16) + (sum & 0xFFFF); 16577 tcpha->tha_sum = htons(sum); 16578 if (connp->conn_ipversion == IPV4_VERSION) { 16579 sum = ntohs( 16580 ((ipha_t *)rptr)->ipha_length) + 16581 spill; 16582 ((ipha_t *)rptr)->ipha_length = 16583 htons(sum); 16584 } else { 16585 sum = ntohs( 16586 ((ip6_t *)rptr)->ip6_plen) + 16587 spill; 16588 ((ip6_t *)rptr)->ip6_plen = 16589 htons(sum); 16590 } 16591 ixa->ixa_pktlen += spill; 16592 *tail_unsent = 0; 16593 } 16594 } 16595 if (tcp->tcp_ip_forward_progress) { 16596 tcp->tcp_ip_forward_progress = B_FALSE; 16597 ixa->ixa_flags |= IXAF_REACH_CONF; 16598 } else { 16599 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16600 } 16601 16602 if (do_lso_send) { 16603 /* Append LSO information to the mp. */ 16604 lso_info_set(mp, mss, HW_LSO); 16605 ixa->ixa_fragsize = IP_MAXPACKET; 16606 ixa->ixa_extra_ident = num_lso_seg - 1; 16607 16608 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16609 boolean_t, B_TRUE); 16610 16611 tcp_send_data(tcp, mp); 16612 16613 /* 16614 * Restore values of ixa_fragsize and ixa_extra_ident. 16615 */ 16616 ixa->ixa_fragsize = ixa->ixa_pmtu; 16617 ixa->ixa_extra_ident = 0; 16618 tcp->tcp_obsegs += num_lso_seg; 16619 TCP_STAT(tcps, tcp_lso_times); 16620 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16621 } else { 16622 /* 16623 * Make sure to clean up LSO information. Wherever a 16624 * new mp uses the prepended header room after dupb(), 16625 * lso_info_cleanup() should be called. 16626 */ 16627 lso_info_cleanup(mp); 16628 tcp_send_data(tcp, mp); 16629 BUMP_LOCAL(tcp->tcp_obsegs); 16630 } 16631 } 16632 16633 return (0); 16634 } 16635 16636 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16637 static void 16638 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16639 { 16640 uchar_t fval = *mp->b_rptr; 16641 mblk_t *tail; 16642 conn_t *connp = tcp->tcp_connp; 16643 queue_t *q = connp->conn_wq; 16644 16645 /* TODO: How should flush interact with urgent data? */ 16646 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16647 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16648 /* 16649 * Flush only data that has not yet been put on the wire. If 16650 * we flush data that we have already transmitted, life, as we 16651 * know it, may come to an end. 16652 */ 16653 tail = tcp->tcp_xmit_tail; 16654 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16655 tcp->tcp_xmit_tail_unsent = 0; 16656 tcp->tcp_unsent = 0; 16657 if (tail->b_wptr != tail->b_rptr) 16658 tail = tail->b_cont; 16659 if (tail) { 16660 mblk_t **excess = &tcp->tcp_xmit_head; 16661 for (;;) { 16662 mblk_t *mp1 = *excess; 16663 if (mp1 == tail) 16664 break; 16665 tcp->tcp_xmit_tail = mp1; 16666 tcp->tcp_xmit_last = mp1; 16667 excess = &mp1->b_cont; 16668 } 16669 *excess = NULL; 16670 tcp_close_mpp(&tail); 16671 if (tcp->tcp_snd_zcopy_aware) 16672 tcp_zcopy_notify(tcp); 16673 } 16674 /* 16675 * We have no unsent data, so unsent must be less than 16676 * conn_sndlowat, so re-enable flow. 16677 */ 16678 mutex_enter(&tcp->tcp_non_sq_lock); 16679 if (tcp->tcp_flow_stopped) { 16680 tcp_clrqfull(tcp); 16681 } 16682 mutex_exit(&tcp->tcp_non_sq_lock); 16683 } 16684 /* 16685 * TODO: you can't just flush these, you have to increase rwnd for one 16686 * thing. For another, how should urgent data interact? 16687 */ 16688 if (fval & FLUSHR) { 16689 *mp->b_rptr = fval & ~FLUSHW; 16690 /* XXX */ 16691 qreply(q, mp); 16692 return; 16693 } 16694 freemsg(mp); 16695 } 16696 16697 /* 16698 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16699 * messages. 16700 */ 16701 static void 16702 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16703 { 16704 mblk_t *mp1; 16705 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16706 STRUCT_HANDLE(strbuf, sb); 16707 uint_t addrlen; 16708 conn_t *connp = tcp->tcp_connp; 16709 queue_t *q = connp->conn_wq; 16710 16711 /* Make sure it is one of ours. */ 16712 switch (iocp->ioc_cmd) { 16713 case TI_GETMYNAME: 16714 case TI_GETPEERNAME: 16715 break; 16716 default: 16717 /* 16718 * If the conn is closing, then error the ioctl here. Otherwise 16719 * use the CONN_IOCTLREF_* macros to hold off tcp_close until 16720 * we're done here. 16721 */ 16722 mutex_enter(&connp->conn_lock); 16723 if (connp->conn_state_flags & CONN_CLOSING) { 16724 mutex_exit(&connp->conn_lock); 16725 iocp->ioc_error = EINVAL; 16726 mp->b_datap->db_type = M_IOCNAK; 16727 iocp->ioc_count = 0; 16728 qreply(q, mp); 16729 return; 16730 } 16731 16732 CONN_INC_IOCTLREF_LOCKED(connp); 16733 ip_wput_nondata(q, mp); 16734 CONN_DEC_IOCTLREF(connp); 16735 return; 16736 } 16737 switch (mi_copy_state(q, mp, &mp1)) { 16738 case -1: 16739 return; 16740 case MI_COPY_CASE(MI_COPY_IN, 1): 16741 break; 16742 case MI_COPY_CASE(MI_COPY_OUT, 1): 16743 /* Copy out the strbuf. */ 16744 mi_copyout(q, mp); 16745 return; 16746 case MI_COPY_CASE(MI_COPY_OUT, 2): 16747 /* All done. */ 16748 mi_copy_done(q, mp, 0); 16749 return; 16750 default: 16751 mi_copy_done(q, mp, EPROTO); 16752 return; 16753 } 16754 /* Check alignment of the strbuf */ 16755 if (!OK_32PTR(mp1->b_rptr)) { 16756 mi_copy_done(q, mp, EINVAL); 16757 return; 16758 } 16759 16760 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16761 16762 if (connp->conn_family == AF_INET) 16763 addrlen = sizeof (sin_t); 16764 else 16765 addrlen = sizeof (sin6_t); 16766 16767 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16768 mi_copy_done(q, mp, EINVAL); 16769 return; 16770 } 16771 16772 switch (iocp->ioc_cmd) { 16773 case TI_GETMYNAME: 16774 break; 16775 case TI_GETPEERNAME: 16776 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16777 mi_copy_done(q, mp, ENOTCONN); 16778 return; 16779 } 16780 break; 16781 } 16782 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16783 if (!mp1) 16784 return; 16785 16786 STRUCT_FSET(sb, len, addrlen); 16787 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16788 case TI_GETMYNAME: 16789 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16790 &addrlen); 16791 break; 16792 case TI_GETPEERNAME: 16793 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16794 &addrlen); 16795 break; 16796 } 16797 mp1->b_wptr += addrlen; 16798 /* Copy out the address */ 16799 mi_copyout(q, mp); 16800 } 16801 16802 static void 16803 tcp_use_pure_tpi(tcp_t *tcp) 16804 { 16805 conn_t *connp = tcp->tcp_connp; 16806 16807 #ifdef _ILP32 16808 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16809 #else 16810 tcp->tcp_acceptor_id = connp->conn_dev; 16811 #endif 16812 /* 16813 * Insert this socket into the acceptor hash. 16814 * We might need it for T_CONN_RES message 16815 */ 16816 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16817 16818 tcp->tcp_issocket = B_FALSE; 16819 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16820 } 16821 16822 /* 16823 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16824 * messages. 16825 */ 16826 /* ARGSUSED */ 16827 static void 16828 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16829 { 16830 conn_t *connp = (conn_t *)arg; 16831 tcp_t *tcp = connp->conn_tcp; 16832 queue_t *q = connp->conn_wq; 16833 struct iocblk *iocp; 16834 16835 ASSERT(DB_TYPE(mp) == M_IOCTL); 16836 /* 16837 * Try and ASSERT the minimum possible references on the 16838 * conn early enough. Since we are executing on write side, 16839 * the connection is obviously not detached and that means 16840 * there is a ref each for TCP and IP. Since we are behind 16841 * the squeue, the minimum references needed are 3. If the 16842 * conn is in classifier hash list, there should be an 16843 * extra ref for that (we check both the possibilities). 16844 */ 16845 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16846 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16847 16848 iocp = (struct iocblk *)mp->b_rptr; 16849 switch (iocp->ioc_cmd) { 16850 case _SIOCSOCKFALLBACK: 16851 /* 16852 * Either sockmod is about to be popped and the socket 16853 * would now be treated as a plain stream, or a module 16854 * is about to be pushed so we could no longer use read- 16855 * side synchronous streams for fused loopback tcp. 16856 * Drain any queued data and disable direct sockfs 16857 * interface from now on. 16858 */ 16859 if (!tcp->tcp_issocket) { 16860 DB_TYPE(mp) = M_IOCNAK; 16861 iocp->ioc_error = EINVAL; 16862 } else { 16863 tcp_use_pure_tpi(tcp); 16864 DB_TYPE(mp) = M_IOCACK; 16865 iocp->ioc_error = 0; 16866 } 16867 iocp->ioc_count = 0; 16868 iocp->ioc_rval = 0; 16869 qreply(q, mp); 16870 return; 16871 } 16872 16873 /* 16874 * If the conn is closing, then error the ioctl here. Otherwise bump the 16875 * conn_ioctlref to hold off tcp_close until we're done here. 16876 */ 16877 mutex_enter(&(connp)->conn_lock); 16878 if ((connp)->conn_state_flags & CONN_CLOSING) { 16879 mutex_exit(&(connp)->conn_lock); 16880 iocp->ioc_error = EINVAL; 16881 mp->b_datap->db_type = M_IOCNAK; 16882 iocp->ioc_count = 0; 16883 qreply(q, mp); 16884 return; 16885 } 16886 16887 CONN_INC_IOCTLREF_LOCKED(connp); 16888 ip_wput_nondata(q, mp); 16889 CONN_DEC_IOCTLREF(connp); 16890 } 16891 16892 /* 16893 * This routine is called by tcp_wput() to handle all TPI requests. 16894 */ 16895 /* ARGSUSED */ 16896 static void 16897 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16898 { 16899 conn_t *connp = (conn_t *)arg; 16900 tcp_t *tcp = connp->conn_tcp; 16901 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16902 uchar_t *rptr; 16903 t_scalar_t type; 16904 cred_t *cr; 16905 16906 /* 16907 * Try and ASSERT the minimum possible references on the 16908 * conn early enough. Since we are executing on write side, 16909 * the connection is obviously not detached and that means 16910 * there is a ref each for TCP and IP. Since we are behind 16911 * the squeue, the minimum references needed are 3. If the 16912 * conn is in classifier hash list, there should be an 16913 * extra ref for that (we check both the possibilities). 16914 */ 16915 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16916 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16917 16918 rptr = mp->b_rptr; 16919 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16920 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16921 type = ((union T_primitives *)rptr)->type; 16922 if (type == T_EXDATA_REQ) { 16923 tcp_output_urgent(connp, mp, arg2, NULL); 16924 } else if (type != T_DATA_REQ) { 16925 goto non_urgent_data; 16926 } else { 16927 /* TODO: options, flags, ... from user */ 16928 /* Set length to zero for reclamation below */ 16929 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16930 freeb(mp); 16931 } 16932 return; 16933 } else { 16934 if (connp->conn_debug) { 16935 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16936 "tcp_wput_proto, dropping one..."); 16937 } 16938 freemsg(mp); 16939 return; 16940 } 16941 16942 non_urgent_data: 16943 16944 switch ((int)tprim->type) { 16945 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16946 /* 16947 * save the kssl_ent_t from the next block, and convert this 16948 * back to a normal bind_req. 16949 */ 16950 if (mp->b_cont != NULL) { 16951 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16952 16953 if (tcp->tcp_kssl_ent != NULL) { 16954 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16955 KSSL_NO_PROXY); 16956 tcp->tcp_kssl_ent = NULL; 16957 } 16958 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16959 sizeof (kssl_ent_t)); 16960 kssl_hold_ent(tcp->tcp_kssl_ent); 16961 freemsg(mp->b_cont); 16962 mp->b_cont = NULL; 16963 } 16964 tprim->type = T_BIND_REQ; 16965 16966 /* FALLTHROUGH */ 16967 case O_T_BIND_REQ: /* bind request */ 16968 case T_BIND_REQ: /* new semantics bind request */ 16969 tcp_tpi_bind(tcp, mp); 16970 break; 16971 case T_UNBIND_REQ: /* unbind request */ 16972 tcp_tpi_unbind(tcp, mp); 16973 break; 16974 case O_T_CONN_RES: /* old connection response XXX */ 16975 case T_CONN_RES: /* connection response */ 16976 tcp_tli_accept(tcp, mp); 16977 break; 16978 case T_CONN_REQ: /* connection request */ 16979 tcp_tpi_connect(tcp, mp); 16980 break; 16981 case T_DISCON_REQ: /* disconnect request */ 16982 tcp_disconnect(tcp, mp); 16983 break; 16984 case T_CAPABILITY_REQ: 16985 tcp_capability_req(tcp, mp); /* capability request */ 16986 break; 16987 case T_INFO_REQ: /* information request */ 16988 tcp_info_req(tcp, mp); 16989 break; 16990 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16991 case T_OPTMGMT_REQ: 16992 /* 16993 * Note: no support for snmpcom_req() through new 16994 * T_OPTMGMT_REQ. See comments in ip.c 16995 */ 16996 16997 /* 16998 * All Solaris components should pass a db_credp 16999 * for this TPI message, hence we ASSERT. 17000 * But in case there is some other M_PROTO that looks 17001 * like a TPI message sent by some other kernel 17002 * component, we check and return an error. 17003 */ 17004 cr = msg_getcred(mp, NULL); 17005 ASSERT(cr != NULL); 17006 if (cr == NULL) { 17007 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 17008 return; 17009 } 17010 /* 17011 * If EINPROGRESS is returned, the request has been queued 17012 * for subsequent processing by ip_restart_optmgmt(), which 17013 * will do the CONN_DEC_REF(). 17014 */ 17015 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 17016 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17017 } else { 17018 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 17019 } 17020 break; 17021 17022 case T_UNITDATA_REQ: /* unitdata request */ 17023 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17024 break; 17025 case T_ORDREL_REQ: /* orderly release req */ 17026 freemsg(mp); 17027 17028 if (tcp->tcp_fused) 17029 tcp_unfuse(tcp); 17030 17031 if (tcp_xmit_end(tcp) != 0) { 17032 /* 17033 * We were crossing FINs and got a reset from 17034 * the other side. Just ignore it. 17035 */ 17036 if (connp->conn_debug) { 17037 (void) strlog(TCP_MOD_ID, 0, 1, 17038 SL_ERROR|SL_TRACE, 17039 "tcp_wput_proto, T_ORDREL_REQ out of " 17040 "state %s", 17041 tcp_display(tcp, NULL, 17042 DISP_ADDR_AND_PORT)); 17043 } 17044 } 17045 break; 17046 case T_ADDR_REQ: 17047 tcp_addr_req(tcp, mp); 17048 break; 17049 default: 17050 if (connp->conn_debug) { 17051 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 17052 "tcp_wput_proto, bogus TPI msg, type %d", 17053 tprim->type); 17054 } 17055 /* 17056 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 17057 * to recover. 17058 */ 17059 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 17060 break; 17061 } 17062 } 17063 17064 /* 17065 * The TCP write service routine should never be called... 17066 */ 17067 /* ARGSUSED */ 17068 static void 17069 tcp_wsrv(queue_t *q) 17070 { 17071 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17072 17073 TCP_STAT(tcps, tcp_wsrv_called); 17074 } 17075 17076 /* 17077 * Send out a control packet on the tcp connection specified. This routine 17078 * is typically called where we need a simple ACK or RST generated. 17079 */ 17080 static void 17081 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 17082 { 17083 uchar_t *rptr; 17084 tcpha_t *tcpha; 17085 ipha_t *ipha = NULL; 17086 ip6_t *ip6h = NULL; 17087 uint32_t sum; 17088 int total_hdr_len; 17089 int ip_hdr_len; 17090 mblk_t *mp; 17091 tcp_stack_t *tcps = tcp->tcp_tcps; 17092 conn_t *connp = tcp->tcp_connp; 17093 ip_xmit_attr_t *ixa = connp->conn_ixa; 17094 17095 /* 17096 * Save sum for use in source route later. 17097 */ 17098 sum = connp->conn_ht_ulp_len + connp->conn_sum; 17099 total_hdr_len = connp->conn_ht_iphc_len; 17100 ip_hdr_len = ixa->ixa_ip_hdr_length; 17101 17102 /* If a text string is passed in with the request, pass it to strlog. */ 17103 if (str != NULL && connp->conn_debug) { 17104 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17105 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 17106 str, seq, ack, ctl); 17107 } 17108 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17109 BPRI_MED); 17110 if (mp == NULL) { 17111 return; 17112 } 17113 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 17114 mp->b_rptr = rptr; 17115 mp->b_wptr = &rptr[total_hdr_len]; 17116 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 17117 17118 ixa->ixa_pktlen = total_hdr_len; 17119 17120 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17121 ipha = (ipha_t *)rptr; 17122 ipha->ipha_length = htons(total_hdr_len); 17123 } else { 17124 ip6h = (ip6_t *)rptr; 17125 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17126 } 17127 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17128 tcpha->tha_flags = (uint8_t)ctl; 17129 if (ctl & TH_RST) { 17130 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17131 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17132 /* 17133 * Don't send TSopt w/ TH_RST packets per RFC 1323. 17134 */ 17135 if (tcp->tcp_snd_ts_ok && 17136 tcp->tcp_state > TCPS_SYN_SENT) { 17137 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 17138 *(mp->b_wptr) = TCPOPT_EOL; 17139 17140 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 17141 17142 if (connp->conn_ipversion == IPV4_VERSION) { 17143 ipha->ipha_length = htons(total_hdr_len - 17144 TCPOPT_REAL_TS_LEN); 17145 } else { 17146 ip6h->ip6_plen = htons(total_hdr_len - 17147 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 17148 } 17149 tcpha->tha_offset_and_reserved -= (3 << 4); 17150 sum -= TCPOPT_REAL_TS_LEN; 17151 } 17152 } 17153 if (ctl & TH_ACK) { 17154 if (tcp->tcp_snd_ts_ok) { 17155 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17156 17157 U32_TO_BE32(llbolt, 17158 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17159 U32_TO_BE32(tcp->tcp_ts_recent, 17160 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17161 } 17162 17163 /* Update the latest receive window size in TCP header. */ 17164 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17165 /* Track what we sent to the peer */ 17166 tcp->tcp_tcpha->tha_win = tcpha->tha_win; 17167 tcp->tcp_rack = ack; 17168 tcp->tcp_rack_cnt = 0; 17169 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17170 } 17171 BUMP_LOCAL(tcp->tcp_obsegs); 17172 tcpha->tha_seq = htonl(seq); 17173 tcpha->tha_ack = htonl(ack); 17174 /* 17175 * Include the adjustment for a source route if any. 17176 */ 17177 sum = (sum >> 16) + (sum & 0xFFFF); 17178 tcpha->tha_sum = htons(sum); 17179 tcp_send_data(tcp, mp); 17180 } 17181 17182 /* 17183 * If this routine returns B_TRUE, TCP can generate a RST in response 17184 * to a segment. If it returns B_FALSE, TCP should not respond. 17185 */ 17186 static boolean_t 17187 tcp_send_rst_chk(tcp_stack_t *tcps) 17188 { 17189 int64_t now; 17190 17191 /* 17192 * TCP needs to protect itself from generating too many RSTs. 17193 * This can be a DoS attack by sending us random segments 17194 * soliciting RSTs. 17195 * 17196 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 17197 * in each 1 second interval. In this way, TCP still generate 17198 * RSTs in normal cases but when under attack, the impact is 17199 * limited. 17200 */ 17201 if (tcps->tcps_rst_sent_rate_enabled != 0) { 17202 now = ddi_get_lbolt64(); 17203 if (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 17204 1*SECONDS) { 17205 tcps->tcps_last_rst_intrvl = now; 17206 tcps->tcps_rst_cnt = 1; 17207 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 17208 return (B_FALSE); 17209 } 17210 } 17211 return (B_TRUE); 17212 } 17213 17214 /* 17215 * Generate a reset based on an inbound packet, connp is set by caller 17216 * when RST is in response to an unexpected inbound packet for which 17217 * there is active tcp state in the system. 17218 * 17219 * IPSEC NOTE : Try to send the reply with the same protection as it came 17220 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 17221 * That way the packet will go out at the same level of protection as it 17222 * came in with. 17223 */ 17224 static void 17225 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 17226 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 17227 { 17228 ipha_t *ipha = NULL; 17229 ip6_t *ip6h = NULL; 17230 ushort_t len; 17231 tcpha_t *tcpha; 17232 int i; 17233 ipaddr_t v4addr; 17234 in6_addr_t v6addr; 17235 netstack_t *ns = ipst->ips_netstack; 17236 tcp_stack_t *tcps = ns->netstack_tcp; 17237 ip_xmit_attr_t ixas, *ixa; 17238 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17239 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 17240 ushort_t port; 17241 17242 if (!tcp_send_rst_chk(tcps)) { 17243 TCP_STAT(tcps, tcp_rst_unsent); 17244 freemsg(mp); 17245 return; 17246 } 17247 17248 /* 17249 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 17250 * options from the listener. In that case the caller must ensure that 17251 * we are running on the listener = connp squeue. 17252 * 17253 * We get a safe copy of conn_ixa so we don't need to restore anything 17254 * we or ip_output_simple might change in the ixa. 17255 */ 17256 if (connp != NULL) { 17257 ASSERT(connp->conn_on_sqp); 17258 17259 ixa = conn_get_ixa_exclusive(connp); 17260 if (ixa == NULL) { 17261 TCP_STAT(tcps, tcp_rst_unsent); 17262 freemsg(mp); 17263 return; 17264 } 17265 need_refrele = B_TRUE; 17266 } else { 17267 bzero(&ixas, sizeof (ixas)); 17268 ixa = &ixas; 17269 /* 17270 * IXAF_VERIFY_SOURCE is overkill since we know the 17271 * packet was for us. 17272 */ 17273 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 17274 ixa->ixa_protocol = IPPROTO_TCP; 17275 ixa->ixa_zoneid = ira->ira_zoneid; 17276 ixa->ixa_ifindex = 0; 17277 ixa->ixa_ipst = ipst; 17278 ixa->ixa_cred = kcred; 17279 ixa->ixa_cpid = NOPID; 17280 } 17281 17282 if (str && tcps->tcps_dbg) { 17283 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 17284 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 17285 "flags 0x%x", 17286 str, seq, ack, ctl); 17287 } 17288 if (mp->b_datap->db_ref != 1) { 17289 mblk_t *mp1 = copyb(mp); 17290 freemsg(mp); 17291 mp = mp1; 17292 if (mp == NULL) 17293 goto done; 17294 } else if (mp->b_cont) { 17295 freemsg(mp->b_cont); 17296 mp->b_cont = NULL; 17297 DB_CKSUMFLAGS(mp) = 0; 17298 } 17299 /* 17300 * We skip reversing source route here. 17301 * (for now we replace all IP options with EOL) 17302 */ 17303 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17304 ipha = (ipha_t *)mp->b_rptr; 17305 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 17306 mp->b_rptr[i] = IPOPT_EOL; 17307 /* 17308 * Make sure that src address isn't flagrantly invalid. 17309 * Not all broadcast address checking for the src address 17310 * is possible, since we don't know the netmask of the src 17311 * addr. No check for destination address is done, since 17312 * IP will not pass up a packet with a broadcast dest 17313 * address to TCP. Similar checks are done below for IPv6. 17314 */ 17315 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 17316 CLASSD(ipha->ipha_src)) { 17317 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 17318 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17319 freemsg(mp); 17320 goto done; 17321 } 17322 } else { 17323 ip6h = (ip6_t *)mp->b_rptr; 17324 17325 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 17326 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 17327 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 17328 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 17329 freemsg(mp); 17330 goto done; 17331 } 17332 17333 /* Remove any extension headers assuming partial overlay */ 17334 if (ip_hdr_len > IPV6_HDR_LEN) { 17335 uint8_t *to; 17336 17337 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 17338 ovbcopy(ip6h, to, IPV6_HDR_LEN); 17339 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17340 ip_hdr_len = IPV6_HDR_LEN; 17341 ip6h = (ip6_t *)mp->b_rptr; 17342 ip6h->ip6_nxt = IPPROTO_TCP; 17343 } 17344 } 17345 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17346 if (tcpha->tha_flags & TH_RST) { 17347 freemsg(mp); 17348 goto done; 17349 } 17350 tcpha->tha_offset_and_reserved = (5 << 4); 17351 len = ip_hdr_len + sizeof (tcpha_t); 17352 mp->b_wptr = &mp->b_rptr[len]; 17353 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17354 ipha->ipha_length = htons(len); 17355 /* Swap addresses */ 17356 v4addr = ipha->ipha_src; 17357 ipha->ipha_src = ipha->ipha_dst; 17358 ipha->ipha_dst = v4addr; 17359 ipha->ipha_ident = 0; 17360 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17361 ixa->ixa_flags |= IXAF_IS_IPV4; 17362 ixa->ixa_ip_hdr_length = ip_hdr_len; 17363 } else { 17364 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17365 /* Swap addresses */ 17366 v6addr = ip6h->ip6_src; 17367 ip6h->ip6_src = ip6h->ip6_dst; 17368 ip6h->ip6_dst = v6addr; 17369 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17370 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17371 17372 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17373 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17374 ixa->ixa_scopeid = ira->ira_ruifindex; 17375 } 17376 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17377 } 17378 ixa->ixa_pktlen = len; 17379 17380 /* Swap the ports */ 17381 port = tcpha->tha_fport; 17382 tcpha->tha_fport = tcpha->tha_lport; 17383 tcpha->tha_lport = port; 17384 17385 tcpha->tha_ack = htonl(ack); 17386 tcpha->tha_seq = htonl(seq); 17387 tcpha->tha_win = 0; 17388 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17389 tcpha->tha_flags = (uint8_t)ctl; 17390 if (ctl & TH_RST) { 17391 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17392 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17393 } 17394 17395 /* Discard any old label */ 17396 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17397 ASSERT(ixa->ixa_tsl != NULL); 17398 label_rele(ixa->ixa_tsl); 17399 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17400 } 17401 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17402 17403 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17404 /* 17405 * Apply IPsec based on how IPsec was applied to 17406 * the packet that caused the RST. 17407 */ 17408 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17409 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17410 /* Note: mp already consumed and ip_drop_packet done */ 17411 goto done; 17412 } 17413 } else { 17414 /* 17415 * This is in clear. The RST message we are building 17416 * here should go out in clear, independent of our policy. 17417 */ 17418 ixa->ixa_flags |= IXAF_NO_IPSEC; 17419 } 17420 17421 /* 17422 * NOTE: one might consider tracing a TCP packet here, but 17423 * this function has no active TCP state and no tcp structure 17424 * that has a trace buffer. If we traced here, we would have 17425 * to keep a local trace buffer in tcp_record_trace(). 17426 */ 17427 17428 (void) ip_output_simple(mp, ixa); 17429 done: 17430 ixa_cleanup(ixa); 17431 if (need_refrele) { 17432 ASSERT(ixa != &ixas); 17433 ixa_refrele(ixa); 17434 } 17435 } 17436 17437 /* 17438 * Initiate closedown sequence on an active connection. (May be called as 17439 * writer.) Return value zero for OK return, non-zero for error return. 17440 */ 17441 static int 17442 tcp_xmit_end(tcp_t *tcp) 17443 { 17444 mblk_t *mp; 17445 tcp_stack_t *tcps = tcp->tcp_tcps; 17446 iulp_t uinfo; 17447 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17448 conn_t *connp = tcp->tcp_connp; 17449 17450 if (tcp->tcp_state < TCPS_SYN_RCVD || 17451 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17452 /* 17453 * Invalid state, only states TCPS_SYN_RCVD, 17454 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17455 */ 17456 return (-1); 17457 } 17458 17459 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17460 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17461 /* 17462 * If there is nothing more unsent, send the FIN now. 17463 * Otherwise, it will go out with the last segment. 17464 */ 17465 if (tcp->tcp_unsent == 0) { 17466 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17467 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17468 17469 if (mp) { 17470 tcp_send_data(tcp, mp); 17471 } else { 17472 /* 17473 * Couldn't allocate msg. Pretend we got it out. 17474 * Wait for rexmit timeout. 17475 */ 17476 tcp->tcp_snxt = tcp->tcp_fss + 1; 17477 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17478 } 17479 17480 /* 17481 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17482 * changed. 17483 */ 17484 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17485 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17486 } 17487 } else { 17488 /* 17489 * If tcp->tcp_cork is set, then the data will not get sent, 17490 * so we have to check that and unset it first. 17491 */ 17492 if (tcp->tcp_cork) 17493 tcp->tcp_cork = B_FALSE; 17494 tcp_wput_data(tcp, NULL, B_FALSE); 17495 } 17496 17497 /* 17498 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17499 * is 0, don't update the cache. 17500 */ 17501 if (tcps->tcps_rtt_updates == 0 || 17502 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17503 return (0); 17504 17505 /* 17506 * We do not have a good algorithm to update ssthresh at this time. 17507 * So don't do any update. 17508 */ 17509 bzero(&uinfo, sizeof (uinfo)); 17510 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17511 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17512 17513 /* 17514 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17515 * if source routed but we don't. 17516 */ 17517 if (connp->conn_ipversion == IPV4_VERSION) { 17518 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17519 return (0); 17520 } 17521 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17522 } else { 17523 uint_t ifindex; 17524 17525 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17526 &tcp->tcp_ip6h->ip6_dst))) { 17527 return (0); 17528 } 17529 ifindex = 0; 17530 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17531 ip_xmit_attr_t *ixa = connp->conn_ixa; 17532 17533 /* 17534 * If we are going to create a DCE we'd better have 17535 * an ifindex 17536 */ 17537 if (ixa->ixa_nce != NULL) { 17538 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17539 ill_phyint->phyint_ifindex; 17540 } else { 17541 return (0); 17542 } 17543 } 17544 17545 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17546 ipst); 17547 } 17548 return (0); 17549 } 17550 17551 /* 17552 * Generate a "no listener here" RST in response to an "unknown" segment. 17553 * connp is set by caller when RST is in response to an unexpected 17554 * inbound packet for which there is active tcp state in the system. 17555 * Note that we are reusing the incoming mp to construct the outgoing RST. 17556 */ 17557 void 17558 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17559 conn_t *connp) 17560 { 17561 uchar_t *rptr; 17562 uint32_t seg_len; 17563 tcpha_t *tcpha; 17564 uint32_t seg_seq; 17565 uint32_t seg_ack; 17566 uint_t flags; 17567 ipha_t *ipha; 17568 ip6_t *ip6h; 17569 boolean_t policy_present; 17570 netstack_t *ns = ipst->ips_netstack; 17571 tcp_stack_t *tcps = ns->netstack_tcp; 17572 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17573 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17574 17575 TCP_STAT(tcps, tcp_no_listener); 17576 17577 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17578 policy_present = ipss->ipsec_inbound_v4_policy_present; 17579 ipha = (ipha_t *)mp->b_rptr; 17580 ip6h = NULL; 17581 } else { 17582 policy_present = ipss->ipsec_inbound_v6_policy_present; 17583 ipha = NULL; 17584 ip6h = (ip6_t *)mp->b_rptr; 17585 } 17586 17587 if (policy_present) { 17588 /* 17589 * The conn_t parameter is NULL because we already know 17590 * nobody's home. 17591 */ 17592 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17593 ira, ns); 17594 if (mp == NULL) 17595 return; 17596 } 17597 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17598 DTRACE_PROBE2( 17599 tx__ip__log__error__nolistener__tcp, 17600 char *, "Could not reply with RST to mp(1)", 17601 mblk_t *, mp); 17602 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17603 freemsg(mp); 17604 return; 17605 } 17606 17607 rptr = mp->b_rptr; 17608 17609 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17610 seg_seq = ntohl(tcpha->tha_seq); 17611 seg_ack = ntohl(tcpha->tha_ack); 17612 flags = tcpha->tha_flags; 17613 17614 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17615 if (flags & TH_RST) { 17616 freemsg(mp); 17617 } else if (flags & TH_ACK) { 17618 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17619 ira, ipst, connp); 17620 } else { 17621 if (flags & TH_SYN) { 17622 seg_len++; 17623 } else { 17624 /* 17625 * Here we violate the RFC. Note that a normal 17626 * TCP will never send a segment without the ACK 17627 * flag, except for RST or SYN segment. This 17628 * segment is neither. Just drop it on the 17629 * floor. 17630 */ 17631 freemsg(mp); 17632 TCP_STAT(tcps, tcp_rst_unsent); 17633 return; 17634 } 17635 17636 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17637 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17638 } 17639 } 17640 17641 /* 17642 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17643 * ip and tcp header ready to pass down to IP. If the mp passed in is 17644 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17645 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17646 * otherwise it will dup partial mblks.) 17647 * Otherwise, an appropriate ACK packet will be generated. This 17648 * routine is not usually called to send new data for the first time. It 17649 * is mostly called out of the timer for retransmits, and to generate ACKs. 17650 * 17651 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17652 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17653 * of the original mblk chain will be returned in *offset and *end_mp. 17654 */ 17655 mblk_t * 17656 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17657 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17658 boolean_t rexmit) 17659 { 17660 int data_length; 17661 int32_t off = 0; 17662 uint_t flags; 17663 mblk_t *mp1; 17664 mblk_t *mp2; 17665 uchar_t *rptr; 17666 tcpha_t *tcpha; 17667 int32_t num_sack_blk = 0; 17668 int32_t sack_opt_len = 0; 17669 tcp_stack_t *tcps = tcp->tcp_tcps; 17670 conn_t *connp = tcp->tcp_connp; 17671 ip_xmit_attr_t *ixa = connp->conn_ixa; 17672 17673 /* Allocate for our maximum TCP header + link-level */ 17674 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17675 BPRI_MED); 17676 if (!mp1) 17677 return (NULL); 17678 data_length = 0; 17679 17680 /* 17681 * Note that tcp_mss has been adjusted to take into account the 17682 * timestamp option if applicable. Because SACK options do not 17683 * appear in every TCP segments and they are of variable lengths, 17684 * they cannot be included in tcp_mss. Thus we need to calculate 17685 * the actual segment length when we need to send a segment which 17686 * includes SACK options. 17687 */ 17688 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17689 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17690 tcp->tcp_num_sack_blk); 17691 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17692 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17693 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17694 max_to_send -= sack_opt_len; 17695 } 17696 17697 if (offset != NULL) { 17698 off = *offset; 17699 /* We use offset as an indicator that end_mp is not NULL. */ 17700 *end_mp = NULL; 17701 } 17702 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17703 /* This could be faster with cooperation from downstream */ 17704 if (mp2 != mp1 && !sendall && 17705 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17706 max_to_send) 17707 /* 17708 * Don't send the next mblk since the whole mblk 17709 * does not fit. 17710 */ 17711 break; 17712 mp2->b_cont = dupb(mp); 17713 mp2 = mp2->b_cont; 17714 if (!mp2) { 17715 freemsg(mp1); 17716 return (NULL); 17717 } 17718 mp2->b_rptr += off; 17719 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17720 (uintptr_t)INT_MAX); 17721 17722 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17723 if (data_length > max_to_send) { 17724 mp2->b_wptr -= data_length - max_to_send; 17725 data_length = max_to_send; 17726 off = mp2->b_wptr - mp->b_rptr; 17727 break; 17728 } else { 17729 off = 0; 17730 } 17731 } 17732 if (offset != NULL) { 17733 *offset = off; 17734 *end_mp = mp; 17735 } 17736 if (seg_len != NULL) { 17737 *seg_len = data_length; 17738 } 17739 17740 /* Update the latest receive window size in TCP header. */ 17741 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17742 17743 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17744 mp1->b_rptr = rptr; 17745 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17746 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17747 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17748 tcpha->tha_seq = htonl(seq); 17749 17750 /* 17751 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17752 * that this function was called from tcp_wput_data. Thus, when called 17753 * to retransmit data the setting of the PUSH bit may appear some 17754 * what random in that it might get set when it should not. This 17755 * should not pose any performance issues. 17756 */ 17757 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17758 tcp->tcp_unsent == data_length)) { 17759 flags = TH_ACK | TH_PUSH; 17760 } else { 17761 flags = TH_ACK; 17762 } 17763 17764 if (tcp->tcp_ecn_ok) { 17765 if (tcp->tcp_ecn_echo_on) 17766 flags |= TH_ECE; 17767 17768 /* 17769 * Only set ECT bit and ECN_CWR if a segment contains new data. 17770 * There is no TCP flow control for non-data segments, and 17771 * only data segment is transmitted reliably. 17772 */ 17773 if (data_length > 0 && !rexmit) { 17774 SET_ECT(tcp, rptr); 17775 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17776 flags |= TH_CWR; 17777 tcp->tcp_ecn_cwr_sent = B_TRUE; 17778 } 17779 } 17780 } 17781 17782 if (tcp->tcp_valid_bits) { 17783 uint32_t u1; 17784 17785 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17786 seq == tcp->tcp_iss) { 17787 uchar_t *wptr; 17788 17789 /* 17790 * If TCP_ISS_VALID and the seq number is tcp_iss, 17791 * TCP can only be in SYN-SENT, SYN-RCVD or 17792 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17793 * our SYN is not ack'ed but the app closes this 17794 * TCP connection. 17795 */ 17796 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17797 tcp->tcp_state == TCPS_SYN_RCVD || 17798 tcp->tcp_state == TCPS_FIN_WAIT_1); 17799 17800 /* 17801 * Tack on the MSS option. It is always needed 17802 * for both active and passive open. 17803 * 17804 * MSS option value should be interface MTU - MIN 17805 * TCP/IP header according to RFC 793 as it means 17806 * the maximum segment size TCP can receive. But 17807 * to get around some broken middle boxes/end hosts 17808 * out there, we allow the option value to be the 17809 * same as the MSS option size on the peer side. 17810 * In this way, the other side will not send 17811 * anything larger than they can receive. 17812 * 17813 * Note that for SYN_SENT state, the ndd param 17814 * tcp_use_smss_as_mss_opt has no effect as we 17815 * don't know the peer's MSS option value. So 17816 * the only case we need to take care of is in 17817 * SYN_RCVD state, which is done later. 17818 */ 17819 wptr = mp1->b_wptr; 17820 wptr[0] = TCPOPT_MAXSEG; 17821 wptr[1] = TCPOPT_MAXSEG_LEN; 17822 wptr += 2; 17823 u1 = tcp->tcp_initial_pmtu - 17824 (connp->conn_ipversion == IPV4_VERSION ? 17825 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17826 TCP_MIN_HEADER_LENGTH; 17827 U16_TO_BE16(u1, wptr); 17828 mp1->b_wptr = wptr + 2; 17829 /* Update the offset to cover the additional word */ 17830 tcpha->tha_offset_and_reserved += (1 << 4); 17831 17832 /* 17833 * Note that the following way of filling in 17834 * TCP options are not optimal. Some NOPs can 17835 * be saved. But there is no need at this time 17836 * to optimize it. When it is needed, we will 17837 * do it. 17838 */ 17839 switch (tcp->tcp_state) { 17840 case TCPS_SYN_SENT: 17841 flags = TH_SYN; 17842 17843 if (tcp->tcp_snd_ts_ok) { 17844 uint32_t llbolt = 17845 (uint32_t)LBOLT_FASTPATH; 17846 17847 wptr = mp1->b_wptr; 17848 wptr[0] = TCPOPT_NOP; 17849 wptr[1] = TCPOPT_NOP; 17850 wptr[2] = TCPOPT_TSTAMP; 17851 wptr[3] = TCPOPT_TSTAMP_LEN; 17852 wptr += 4; 17853 U32_TO_BE32(llbolt, wptr); 17854 wptr += 4; 17855 ASSERT(tcp->tcp_ts_recent == 0); 17856 U32_TO_BE32(0L, wptr); 17857 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17858 tcpha->tha_offset_and_reserved += 17859 (3 << 4); 17860 } 17861 17862 /* 17863 * Set up all the bits to tell other side 17864 * we are ECN capable. 17865 */ 17866 if (tcp->tcp_ecn_ok) { 17867 flags |= (TH_ECE | TH_CWR); 17868 } 17869 break; 17870 case TCPS_SYN_RCVD: 17871 flags |= TH_SYN; 17872 17873 /* 17874 * Reset the MSS option value to be SMSS 17875 * We should probably add back the bytes 17876 * for timestamp option and IPsec. We 17877 * don't do that as this is a workaround 17878 * for broken middle boxes/end hosts, it 17879 * is better for us to be more cautious. 17880 * They may not take these things into 17881 * account in their SMSS calculation. Thus 17882 * the peer's calculated SMSS may be smaller 17883 * than what it can be. This should be OK. 17884 */ 17885 if (tcps->tcps_use_smss_as_mss_opt) { 17886 u1 = tcp->tcp_mss; 17887 U16_TO_BE16(u1, wptr); 17888 } 17889 17890 /* 17891 * If the other side is ECN capable, reply 17892 * that we are also ECN capable. 17893 */ 17894 if (tcp->tcp_ecn_ok) 17895 flags |= TH_ECE; 17896 break; 17897 default: 17898 /* 17899 * The above ASSERT() makes sure that this 17900 * must be FIN-WAIT-1 state. Our SYN has 17901 * not been ack'ed so retransmit it. 17902 */ 17903 flags |= TH_SYN; 17904 break; 17905 } 17906 17907 if (tcp->tcp_snd_ws_ok) { 17908 wptr = mp1->b_wptr; 17909 wptr[0] = TCPOPT_NOP; 17910 wptr[1] = TCPOPT_WSCALE; 17911 wptr[2] = TCPOPT_WS_LEN; 17912 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17913 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17914 tcpha->tha_offset_and_reserved += (1 << 4); 17915 } 17916 17917 if (tcp->tcp_snd_sack_ok) { 17918 wptr = mp1->b_wptr; 17919 wptr[0] = TCPOPT_NOP; 17920 wptr[1] = TCPOPT_NOP; 17921 wptr[2] = TCPOPT_SACK_PERMITTED; 17922 wptr[3] = TCPOPT_SACK_OK_LEN; 17923 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17924 tcpha->tha_offset_and_reserved += (1 << 4); 17925 } 17926 17927 /* allocb() of adequate mblk assures space */ 17928 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17929 (uintptr_t)INT_MAX); 17930 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17931 /* 17932 * Get IP set to checksum on our behalf 17933 * Include the adjustment for a source route if any. 17934 */ 17935 u1 += connp->conn_sum; 17936 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17937 tcpha->tha_sum = htons(u1); 17938 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17939 } 17940 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17941 (seq + data_length) == tcp->tcp_fss) { 17942 if (!tcp->tcp_fin_acked) { 17943 flags |= TH_FIN; 17944 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17945 } 17946 if (!tcp->tcp_fin_sent) { 17947 tcp->tcp_fin_sent = B_TRUE; 17948 switch (tcp->tcp_state) { 17949 case TCPS_SYN_RCVD: 17950 case TCPS_ESTABLISHED: 17951 tcp->tcp_state = TCPS_FIN_WAIT_1; 17952 break; 17953 case TCPS_CLOSE_WAIT: 17954 tcp->tcp_state = TCPS_LAST_ACK; 17955 break; 17956 } 17957 if (tcp->tcp_suna == tcp->tcp_snxt) 17958 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17959 tcp->tcp_snxt = tcp->tcp_fss + 1; 17960 } 17961 } 17962 /* 17963 * Note the trick here. u1 is unsigned. When tcp_urg 17964 * is smaller than seq, u1 will become a very huge value. 17965 * So the comparison will fail. Also note that tcp_urp 17966 * should be positive, see RFC 793 page 17. 17967 */ 17968 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17969 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17970 u1 < (uint32_t)(64 * 1024)) { 17971 flags |= TH_URG; 17972 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17973 tcpha->tha_urp = htons(u1); 17974 } 17975 } 17976 tcpha->tha_flags = (uchar_t)flags; 17977 tcp->tcp_rack = tcp->tcp_rnxt; 17978 tcp->tcp_rack_cnt = 0; 17979 17980 if (tcp->tcp_snd_ts_ok) { 17981 if (tcp->tcp_state != TCPS_SYN_SENT) { 17982 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17983 17984 U32_TO_BE32(llbolt, 17985 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17986 U32_TO_BE32(tcp->tcp_ts_recent, 17987 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17988 } 17989 } 17990 17991 if (num_sack_blk > 0) { 17992 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17993 sack_blk_t *tmp; 17994 int32_t i; 17995 17996 wptr[0] = TCPOPT_NOP; 17997 wptr[1] = TCPOPT_NOP; 17998 wptr[2] = TCPOPT_SACK; 17999 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18000 sizeof (sack_blk_t); 18001 wptr += TCPOPT_REAL_SACK_LEN; 18002 18003 tmp = tcp->tcp_sack_list; 18004 for (i = 0; i < num_sack_blk; i++) { 18005 U32_TO_BE32(tmp[i].begin, wptr); 18006 wptr += sizeof (tcp_seq); 18007 U32_TO_BE32(tmp[i].end, wptr); 18008 wptr += sizeof (tcp_seq); 18009 } 18010 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 18011 } 18012 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 18013 data_length += (int)(mp1->b_wptr - rptr); 18014 18015 ixa->ixa_pktlen = data_length; 18016 18017 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18018 ((ipha_t *)rptr)->ipha_length = htons(data_length); 18019 } else { 18020 ip6_t *ip6 = (ip6_t *)rptr; 18021 18022 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 18023 } 18024 18025 /* 18026 * Prime pump for IP 18027 * Include the adjustment for a source route if any. 18028 */ 18029 data_length -= ixa->ixa_ip_hdr_length; 18030 data_length += connp->conn_sum; 18031 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18032 tcpha->tha_sum = htons(data_length); 18033 if (tcp->tcp_ip_forward_progress) { 18034 tcp->tcp_ip_forward_progress = B_FALSE; 18035 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18036 } else { 18037 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18038 } 18039 return (mp1); 18040 } 18041 18042 /* This function handles the push timeout. */ 18043 void 18044 tcp_push_timer(void *arg) 18045 { 18046 conn_t *connp = (conn_t *)arg; 18047 tcp_t *tcp = connp->conn_tcp; 18048 18049 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 18050 18051 ASSERT(tcp->tcp_listener == NULL); 18052 18053 ASSERT(!IPCL_IS_NONSTR(connp)); 18054 18055 tcp->tcp_push_tid = 0; 18056 18057 if (tcp->tcp_rcv_list != NULL && 18058 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 18059 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 18060 } 18061 18062 /* 18063 * This function handles delayed ACK timeout. 18064 */ 18065 static void 18066 tcp_ack_timer(void *arg) 18067 { 18068 conn_t *connp = (conn_t *)arg; 18069 tcp_t *tcp = connp->conn_tcp; 18070 mblk_t *mp; 18071 tcp_stack_t *tcps = tcp->tcp_tcps; 18072 18073 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 18074 18075 tcp->tcp_ack_tid = 0; 18076 18077 if (tcp->tcp_fused) 18078 return; 18079 18080 /* 18081 * Do not send ACK if there is no outstanding unack'ed data. 18082 */ 18083 if (tcp->tcp_rnxt == tcp->tcp_rack) { 18084 return; 18085 } 18086 18087 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 18088 /* 18089 * Make sure we don't allow deferred ACKs to result in 18090 * timer-based ACKing. If we have held off an ACK 18091 * when there was more than an mss here, and the timer 18092 * goes off, we have to worry about the possibility 18093 * that the sender isn't doing slow-start, or is out 18094 * of step with us for some other reason. We fall 18095 * permanently back in the direction of 18096 * ACK-every-other-packet as suggested in RFC 1122. 18097 */ 18098 if (tcp->tcp_rack_abs_max > 2) 18099 tcp->tcp_rack_abs_max--; 18100 tcp->tcp_rack_cur_max = 2; 18101 } 18102 mp = tcp_ack_mp(tcp); 18103 18104 if (mp != NULL) { 18105 BUMP_LOCAL(tcp->tcp_obsegs); 18106 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 18107 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 18108 tcp_send_data(tcp, mp); 18109 } 18110 } 18111 18112 18113 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 18114 static mblk_t * 18115 tcp_ack_mp(tcp_t *tcp) 18116 { 18117 uint32_t seq_no; 18118 tcp_stack_t *tcps = tcp->tcp_tcps; 18119 conn_t *connp = tcp->tcp_connp; 18120 18121 /* 18122 * There are a few cases to be considered while setting the sequence no. 18123 * Essentially, we can come here while processing an unacceptable pkt 18124 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 18125 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 18126 * If we are here for a zero window probe, stick with suna. In all 18127 * other cases, we check if suna + swnd encompasses snxt and set 18128 * the sequence number to snxt, if so. If snxt falls outside the 18129 * window (the receiver probably shrunk its window), we will go with 18130 * suna + swnd, otherwise the sequence no will be unacceptable to the 18131 * receiver. 18132 */ 18133 if (tcp->tcp_zero_win_probe) { 18134 seq_no = tcp->tcp_suna; 18135 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 18136 ASSERT(tcp->tcp_swnd == 0); 18137 seq_no = tcp->tcp_snxt; 18138 } else { 18139 seq_no = SEQ_GT(tcp->tcp_snxt, 18140 (tcp->tcp_suna + tcp->tcp_swnd)) ? 18141 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 18142 } 18143 18144 if (tcp->tcp_valid_bits) { 18145 /* 18146 * For the complex case where we have to send some 18147 * controls (FIN or SYN), let tcp_xmit_mp do it. 18148 */ 18149 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 18150 NULL, B_FALSE)); 18151 } else { 18152 /* Generate a simple ACK */ 18153 int data_length; 18154 uchar_t *rptr; 18155 tcpha_t *tcpha; 18156 mblk_t *mp1; 18157 int32_t total_hdr_len; 18158 int32_t tcp_hdr_len; 18159 int32_t num_sack_blk = 0; 18160 int32_t sack_opt_len; 18161 ip_xmit_attr_t *ixa = connp->conn_ixa; 18162 18163 /* 18164 * Allocate space for TCP + IP headers 18165 * and link-level header 18166 */ 18167 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18168 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18169 tcp->tcp_num_sack_blk); 18170 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 18171 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 18172 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 18173 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 18174 } else { 18175 total_hdr_len = connp->conn_ht_iphc_len; 18176 tcp_hdr_len = connp->conn_ht_ulp_len; 18177 } 18178 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 18179 if (!mp1) 18180 return (NULL); 18181 18182 /* Update the latest receive window size in TCP header. */ 18183 tcp->tcp_tcpha->tha_win = 18184 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 18185 /* copy in prototype TCP + IP header */ 18186 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 18187 mp1->b_rptr = rptr; 18188 mp1->b_wptr = rptr + total_hdr_len; 18189 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 18190 18191 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 18192 18193 /* Set the TCP sequence number. */ 18194 tcpha->tha_seq = htonl(seq_no); 18195 18196 /* Set up the TCP flag field. */ 18197 tcpha->tha_flags = (uchar_t)TH_ACK; 18198 if (tcp->tcp_ecn_echo_on) 18199 tcpha->tha_flags |= TH_ECE; 18200 18201 tcp->tcp_rack = tcp->tcp_rnxt; 18202 tcp->tcp_rack_cnt = 0; 18203 18204 /* fill in timestamp option if in use */ 18205 if (tcp->tcp_snd_ts_ok) { 18206 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 18207 18208 U32_TO_BE32(llbolt, 18209 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 18210 U32_TO_BE32(tcp->tcp_ts_recent, 18211 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 18212 } 18213 18214 /* Fill in SACK options */ 18215 if (num_sack_blk > 0) { 18216 uchar_t *wptr = (uchar_t *)tcpha + 18217 connp->conn_ht_ulp_len; 18218 sack_blk_t *tmp; 18219 int32_t i; 18220 18221 wptr[0] = TCPOPT_NOP; 18222 wptr[1] = TCPOPT_NOP; 18223 wptr[2] = TCPOPT_SACK; 18224 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18225 sizeof (sack_blk_t); 18226 wptr += TCPOPT_REAL_SACK_LEN; 18227 18228 tmp = tcp->tcp_sack_list; 18229 for (i = 0; i < num_sack_blk; i++) { 18230 U32_TO_BE32(tmp[i].begin, wptr); 18231 wptr += sizeof (tcp_seq); 18232 U32_TO_BE32(tmp[i].end, wptr); 18233 wptr += sizeof (tcp_seq); 18234 } 18235 tcpha->tha_offset_and_reserved += 18236 ((num_sack_blk * 2 + 1) << 4); 18237 } 18238 18239 ixa->ixa_pktlen = total_hdr_len; 18240 18241 if (ixa->ixa_flags & IXAF_IS_IPV4) { 18242 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 18243 } else { 18244 ip6_t *ip6 = (ip6_t *)rptr; 18245 18246 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 18247 } 18248 18249 /* 18250 * Prime pump for checksum calculation in IP. Include the 18251 * adjustment for a source route if any. 18252 */ 18253 data_length = tcp_hdr_len + connp->conn_sum; 18254 data_length = (data_length >> 16) + (data_length & 0xFFFF); 18255 tcpha->tha_sum = htons(data_length); 18256 18257 if (tcp->tcp_ip_forward_progress) { 18258 tcp->tcp_ip_forward_progress = B_FALSE; 18259 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 18260 } else { 18261 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 18262 } 18263 return (mp1); 18264 } 18265 } 18266 18267 /* 18268 * Hash list insertion routine for tcp_t structures. Each hash bucket 18269 * contains a list of tcp_t entries, and each entry is bound to a unique 18270 * port. If there are multiple tcp_t's that are bound to the same port, then 18271 * one of them will be linked into the hash bucket list, and the rest will 18272 * hang off of that one entry. For each port, entries bound to a specific IP 18273 * address will be inserted before those those bound to INADDR_ANY. 18274 */ 18275 static void 18276 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 18277 { 18278 tcp_t **tcpp; 18279 tcp_t *tcpnext; 18280 tcp_t *tcphash; 18281 conn_t *connp = tcp->tcp_connp; 18282 conn_t *connext; 18283 18284 if (tcp->tcp_ptpbhn != NULL) { 18285 ASSERT(!caller_holds_lock); 18286 tcp_bind_hash_remove(tcp); 18287 } 18288 tcpp = &tbf->tf_tcp; 18289 if (!caller_holds_lock) { 18290 mutex_enter(&tbf->tf_lock); 18291 } else { 18292 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 18293 } 18294 tcphash = tcpp[0]; 18295 tcpnext = NULL; 18296 if (tcphash != NULL) { 18297 /* Look for an entry using the same port */ 18298 while ((tcphash = tcpp[0]) != NULL && 18299 connp->conn_lport != tcphash->tcp_connp->conn_lport) 18300 tcpp = &(tcphash->tcp_bind_hash); 18301 18302 /* The port was not found, just add to the end */ 18303 if (tcphash == NULL) 18304 goto insert; 18305 18306 /* 18307 * OK, there already exists an entry bound to the 18308 * same port. 18309 * 18310 * If the new tcp bound to the INADDR_ANY address 18311 * and the first one in the list is not bound to 18312 * INADDR_ANY we skip all entries until we find the 18313 * first one bound to INADDR_ANY. 18314 * This makes sure that applications binding to a 18315 * specific address get preference over those binding to 18316 * INADDR_ANY. 18317 */ 18318 tcpnext = tcphash; 18319 connext = tcpnext->tcp_connp; 18320 tcphash = NULL; 18321 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 18322 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 18323 while ((tcpnext = tcpp[0]) != NULL) { 18324 connext = tcpnext->tcp_connp; 18325 if (!V6_OR_V4_INADDR_ANY( 18326 connext->conn_bound_addr_v6)) 18327 tcpp = &(tcpnext->tcp_bind_hash_port); 18328 else 18329 break; 18330 } 18331 if (tcpnext != NULL) { 18332 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18333 tcphash = tcpnext->tcp_bind_hash; 18334 if (tcphash != NULL) { 18335 tcphash->tcp_ptpbhn = 18336 &(tcp->tcp_bind_hash); 18337 tcpnext->tcp_bind_hash = NULL; 18338 } 18339 } 18340 } else { 18341 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18342 tcphash = tcpnext->tcp_bind_hash; 18343 if (tcphash != NULL) { 18344 tcphash->tcp_ptpbhn = 18345 &(tcp->tcp_bind_hash); 18346 tcpnext->tcp_bind_hash = NULL; 18347 } 18348 } 18349 } 18350 insert: 18351 tcp->tcp_bind_hash_port = tcpnext; 18352 tcp->tcp_bind_hash = tcphash; 18353 tcp->tcp_ptpbhn = tcpp; 18354 tcpp[0] = tcp; 18355 if (!caller_holds_lock) 18356 mutex_exit(&tbf->tf_lock); 18357 } 18358 18359 /* 18360 * Hash list removal routine for tcp_t structures. 18361 */ 18362 static void 18363 tcp_bind_hash_remove(tcp_t *tcp) 18364 { 18365 tcp_t *tcpnext; 18366 kmutex_t *lockp; 18367 tcp_stack_t *tcps = tcp->tcp_tcps; 18368 conn_t *connp = tcp->tcp_connp; 18369 18370 if (tcp->tcp_ptpbhn == NULL) 18371 return; 18372 18373 /* 18374 * Extract the lock pointer in case there are concurrent 18375 * hash_remove's for this instance. 18376 */ 18377 ASSERT(connp->conn_lport != 0); 18378 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18379 connp->conn_lport)].tf_lock; 18380 18381 ASSERT(lockp != NULL); 18382 mutex_enter(lockp); 18383 if (tcp->tcp_ptpbhn) { 18384 tcpnext = tcp->tcp_bind_hash_port; 18385 if (tcpnext != NULL) { 18386 tcp->tcp_bind_hash_port = NULL; 18387 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18388 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18389 if (tcpnext->tcp_bind_hash != NULL) { 18390 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18391 &(tcpnext->tcp_bind_hash); 18392 tcp->tcp_bind_hash = NULL; 18393 } 18394 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18395 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18396 tcp->tcp_bind_hash = NULL; 18397 } 18398 *tcp->tcp_ptpbhn = tcpnext; 18399 tcp->tcp_ptpbhn = NULL; 18400 } 18401 mutex_exit(lockp); 18402 } 18403 18404 18405 /* 18406 * Hash list lookup routine for tcp_t structures. 18407 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18408 */ 18409 static tcp_t * 18410 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18411 { 18412 tf_t *tf; 18413 tcp_t *tcp; 18414 18415 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18416 mutex_enter(&tf->tf_lock); 18417 for (tcp = tf->tf_tcp; tcp != NULL; 18418 tcp = tcp->tcp_acceptor_hash) { 18419 if (tcp->tcp_acceptor_id == id) { 18420 CONN_INC_REF(tcp->tcp_connp); 18421 mutex_exit(&tf->tf_lock); 18422 return (tcp); 18423 } 18424 } 18425 mutex_exit(&tf->tf_lock); 18426 return (NULL); 18427 } 18428 18429 18430 /* 18431 * Hash list insertion routine for tcp_t structures. 18432 */ 18433 void 18434 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18435 { 18436 tf_t *tf; 18437 tcp_t **tcpp; 18438 tcp_t *tcpnext; 18439 tcp_stack_t *tcps = tcp->tcp_tcps; 18440 18441 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18442 18443 if (tcp->tcp_ptpahn != NULL) 18444 tcp_acceptor_hash_remove(tcp); 18445 tcpp = &tf->tf_tcp; 18446 mutex_enter(&tf->tf_lock); 18447 tcpnext = tcpp[0]; 18448 if (tcpnext) 18449 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18450 tcp->tcp_acceptor_hash = tcpnext; 18451 tcp->tcp_ptpahn = tcpp; 18452 tcpp[0] = tcp; 18453 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18454 mutex_exit(&tf->tf_lock); 18455 } 18456 18457 /* 18458 * Hash list removal routine for tcp_t structures. 18459 */ 18460 static void 18461 tcp_acceptor_hash_remove(tcp_t *tcp) 18462 { 18463 tcp_t *tcpnext; 18464 kmutex_t *lockp; 18465 18466 /* 18467 * Extract the lock pointer in case there are concurrent 18468 * hash_remove's for this instance. 18469 */ 18470 lockp = tcp->tcp_acceptor_lockp; 18471 18472 if (tcp->tcp_ptpahn == NULL) 18473 return; 18474 18475 ASSERT(lockp != NULL); 18476 mutex_enter(lockp); 18477 if (tcp->tcp_ptpahn) { 18478 tcpnext = tcp->tcp_acceptor_hash; 18479 if (tcpnext) { 18480 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18481 tcp->tcp_acceptor_hash = NULL; 18482 } 18483 *tcp->tcp_ptpahn = tcpnext; 18484 tcp->tcp_ptpahn = NULL; 18485 } 18486 mutex_exit(lockp); 18487 tcp->tcp_acceptor_lockp = NULL; 18488 } 18489 18490 /* 18491 * Type three generator adapted from the random() function in 4.4 BSD: 18492 */ 18493 18494 /* 18495 * Copyright (c) 1983, 1993 18496 * The Regents of the University of California. All rights reserved. 18497 * 18498 * Redistribution and use in source and binary forms, with or without 18499 * modification, are permitted provided that the following conditions 18500 * are met: 18501 * 1. Redistributions of source code must retain the above copyright 18502 * notice, this list of conditions and the following disclaimer. 18503 * 2. Redistributions in binary form must reproduce the above copyright 18504 * notice, this list of conditions and the following disclaimer in the 18505 * documentation and/or other materials provided with the distribution. 18506 * 3. All advertising materials mentioning features or use of this software 18507 * must display the following acknowledgement: 18508 * This product includes software developed by the University of 18509 * California, Berkeley and its contributors. 18510 * 4. Neither the name of the University nor the names of its contributors 18511 * may be used to endorse or promote products derived from this software 18512 * without specific prior written permission. 18513 * 18514 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18515 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18516 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18517 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18518 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18519 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18520 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18521 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18522 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18523 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18524 * SUCH DAMAGE. 18525 */ 18526 18527 /* Type 3 -- x**31 + x**3 + 1 */ 18528 #define DEG_3 31 18529 #define SEP_3 3 18530 18531 18532 /* Protected by tcp_random_lock */ 18533 static int tcp_randtbl[DEG_3 + 1]; 18534 18535 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18536 static int *tcp_random_rptr = &tcp_randtbl[1]; 18537 18538 static int *tcp_random_state = &tcp_randtbl[1]; 18539 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18540 18541 kmutex_t tcp_random_lock; 18542 18543 void 18544 tcp_random_init(void) 18545 { 18546 int i; 18547 hrtime_t hrt; 18548 time_t wallclock; 18549 uint64_t result; 18550 18551 /* 18552 * Use high-res timer and current time for seed. Gethrtime() returns 18553 * a longlong, which may contain resolution down to nanoseconds. 18554 * The current time will either be a 32-bit or a 64-bit quantity. 18555 * XOR the two together in a 64-bit result variable. 18556 * Convert the result to a 32-bit value by multiplying the high-order 18557 * 32-bits by the low-order 32-bits. 18558 */ 18559 18560 hrt = gethrtime(); 18561 (void) drv_getparm(TIME, &wallclock); 18562 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18563 mutex_enter(&tcp_random_lock); 18564 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18565 (result & 0xffffffff); 18566 18567 for (i = 1; i < DEG_3; i++) 18568 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18569 + 12345; 18570 tcp_random_fptr = &tcp_random_state[SEP_3]; 18571 tcp_random_rptr = &tcp_random_state[0]; 18572 mutex_exit(&tcp_random_lock); 18573 for (i = 0; i < 10 * DEG_3; i++) 18574 (void) tcp_random(); 18575 } 18576 18577 /* 18578 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18579 * This range is selected to be approximately centered on TCP_ISS / 2, 18580 * and easy to compute. We get this value by generating a 32-bit random 18581 * number, selecting out the high-order 17 bits, and then adding one so 18582 * that we never return zero. 18583 */ 18584 int 18585 tcp_random(void) 18586 { 18587 int i; 18588 18589 mutex_enter(&tcp_random_lock); 18590 *tcp_random_fptr += *tcp_random_rptr; 18591 18592 /* 18593 * The high-order bits are more random than the low-order bits, 18594 * so we select out the high-order 17 bits and add one so that 18595 * we never return zero. 18596 */ 18597 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18598 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18599 tcp_random_fptr = tcp_random_state; 18600 ++tcp_random_rptr; 18601 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18602 tcp_random_rptr = tcp_random_state; 18603 18604 mutex_exit(&tcp_random_lock); 18605 return (i); 18606 } 18607 18608 static int 18609 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18610 int *t_errorp, int *sys_errorp) 18611 { 18612 int error; 18613 int is_absreq_failure; 18614 t_scalar_t *opt_lenp; 18615 t_scalar_t opt_offset; 18616 int prim_type; 18617 struct T_conn_req *tcreqp; 18618 struct T_conn_res *tcresp; 18619 cred_t *cr; 18620 18621 /* 18622 * All Solaris components should pass a db_credp 18623 * for this TPI message, hence we ASSERT. 18624 * But in case there is some other M_PROTO that looks 18625 * like a TPI message sent by some other kernel 18626 * component, we check and return an error. 18627 */ 18628 cr = msg_getcred(mp, NULL); 18629 ASSERT(cr != NULL); 18630 if (cr == NULL) 18631 return (-1); 18632 18633 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18634 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18635 prim_type == T_CONN_RES); 18636 18637 switch (prim_type) { 18638 case T_CONN_REQ: 18639 tcreqp = (struct T_conn_req *)mp->b_rptr; 18640 opt_offset = tcreqp->OPT_offset; 18641 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18642 break; 18643 case O_T_CONN_RES: 18644 case T_CONN_RES: 18645 tcresp = (struct T_conn_res *)mp->b_rptr; 18646 opt_offset = tcresp->OPT_offset; 18647 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18648 break; 18649 } 18650 18651 *t_errorp = 0; 18652 *sys_errorp = 0; 18653 *do_disconnectp = 0; 18654 18655 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18656 opt_offset, cr, &tcp_opt_obj, 18657 NULL, &is_absreq_failure); 18658 18659 switch (error) { 18660 case 0: /* no error */ 18661 ASSERT(is_absreq_failure == 0); 18662 return (0); 18663 case ENOPROTOOPT: 18664 *t_errorp = TBADOPT; 18665 break; 18666 case EACCES: 18667 *t_errorp = TACCES; 18668 break; 18669 default: 18670 *t_errorp = TSYSERR; *sys_errorp = error; 18671 break; 18672 } 18673 if (is_absreq_failure != 0) { 18674 /* 18675 * The connection request should get the local ack 18676 * T_OK_ACK and then a T_DISCON_IND. 18677 */ 18678 *do_disconnectp = 1; 18679 } 18680 return (-1); 18681 } 18682 18683 /* 18684 * Split this function out so that if the secret changes, I'm okay. 18685 * 18686 * Initialize the tcp_iss_cookie and tcp_iss_key. 18687 */ 18688 18689 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18690 18691 static void 18692 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18693 { 18694 struct { 18695 int32_t current_time; 18696 uint32_t randnum; 18697 uint16_t pad; 18698 uint8_t ether[6]; 18699 uint8_t passwd[PASSWD_SIZE]; 18700 } tcp_iss_cookie; 18701 time_t t; 18702 18703 /* 18704 * Start with the current absolute time. 18705 */ 18706 (void) drv_getparm(TIME, &t); 18707 tcp_iss_cookie.current_time = t; 18708 18709 /* 18710 * XXX - Need a more random number per RFC 1750, not this crap. 18711 * OTOH, if what follows is pretty random, then I'm in better shape. 18712 */ 18713 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18714 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18715 18716 /* 18717 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18718 * as a good template. 18719 */ 18720 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18721 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18722 18723 /* 18724 * The pass-phrase. Normally this is supplied by user-called NDD. 18725 */ 18726 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18727 18728 /* 18729 * See 4010593 if this section becomes a problem again, 18730 * but the local ethernet address is useful here. 18731 */ 18732 (void) localetheraddr(NULL, 18733 (struct ether_addr *)&tcp_iss_cookie.ether); 18734 18735 /* 18736 * Hash 'em all together. The MD5Final is called per-connection. 18737 */ 18738 mutex_enter(&tcps->tcps_iss_key_lock); 18739 MD5Init(&tcps->tcps_iss_key); 18740 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18741 sizeof (tcp_iss_cookie)); 18742 mutex_exit(&tcps->tcps_iss_key_lock); 18743 } 18744 18745 /* 18746 * Set the RFC 1948 pass phrase 18747 */ 18748 /* ARGSUSED */ 18749 static int 18750 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18751 cred_t *cr) 18752 { 18753 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18754 18755 /* 18756 * Basically, value contains a new pass phrase. Pass it along! 18757 */ 18758 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18759 return (0); 18760 } 18761 18762 /* ARGSUSED */ 18763 static int 18764 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18765 { 18766 bzero(buf, sizeof (tcp_sack_info_t)); 18767 return (0); 18768 } 18769 18770 /* 18771 * Called by IP when IP is loaded into the kernel 18772 */ 18773 void 18774 tcp_ddi_g_init(void) 18775 { 18776 tcp_timercache = kmem_cache_create("tcp_timercache", 18777 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18778 NULL, NULL, NULL, NULL, NULL, 0); 18779 18780 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18781 sizeof (tcp_sack_info_t), 0, 18782 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18783 18784 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18785 18786 /* Initialize the random number generator */ 18787 tcp_random_init(); 18788 18789 /* A single callback independently of how many netstacks we have */ 18790 ip_squeue_init(tcp_squeue_add); 18791 18792 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18793 18794 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18795 18796 /* 18797 * We want to be informed each time a stack is created or 18798 * destroyed in the kernel, so we can maintain the 18799 * set of tcp_stack_t's. 18800 */ 18801 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18802 } 18803 18804 18805 #define INET_NAME "ip" 18806 18807 /* 18808 * Initialize the TCP stack instance. 18809 */ 18810 static void * 18811 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18812 { 18813 tcp_stack_t *tcps; 18814 tcpparam_t *pa; 18815 int i; 18816 int error = 0; 18817 major_t major; 18818 18819 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18820 tcps->tcps_netstack = ns; 18821 18822 /* Initialize locks */ 18823 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18824 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18825 18826 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18827 tcps->tcps_g_epriv_ports[0] = 2049; 18828 tcps->tcps_g_epriv_ports[1] = 4045; 18829 tcps->tcps_min_anonpriv_port = 512; 18830 18831 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18832 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18833 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18834 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 18835 18836 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18837 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18838 MUTEX_DEFAULT, NULL); 18839 } 18840 18841 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18842 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18843 MUTEX_DEFAULT, NULL); 18844 } 18845 18846 /* TCP's IPsec code calls the packet dropper. */ 18847 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18848 18849 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18850 tcps->tcps_params = pa; 18851 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18852 18853 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18854 A_CNT(lcl_tcp_param_arr), tcps); 18855 18856 /* 18857 * Note: To really walk the device tree you need the devinfo 18858 * pointer to your device which is only available after probe/attach. 18859 * The following is safe only because it uses ddi_root_node() 18860 */ 18861 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18862 tcp_opt_obj.odb_opt_arr_cnt); 18863 18864 /* 18865 * Initialize RFC 1948 secret values. This will probably be reset once 18866 * by the boot scripts. 18867 * 18868 * Use NULL name, as the name is caught by the new lockstats. 18869 * 18870 * Initialize with some random, non-guessable string, like the global 18871 * T_INFO_ACK. 18872 */ 18873 18874 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18875 sizeof (tcp_g_t_info_ack), tcps); 18876 18877 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18878 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18879 18880 major = mod_name_to_major(INET_NAME); 18881 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18882 ASSERT(error == 0); 18883 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18884 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18885 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18886 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18887 18888 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 18889 tcps->tcps_reclaim = B_FALSE; 18890 tcps->tcps_reclaim_tid = 0; 18891 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max * 3; 18892 18893 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 18894 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 18895 offsetof(tcp_listener_t, tl_link)); 18896 18897 return (tcps); 18898 } 18899 18900 /* 18901 * Called when the IP module is about to be unloaded. 18902 */ 18903 void 18904 tcp_ddi_g_destroy(void) 18905 { 18906 tcp_g_kstat_fini(tcp_g_kstat); 18907 tcp_g_kstat = NULL; 18908 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18909 18910 mutex_destroy(&tcp_random_lock); 18911 18912 kmem_cache_destroy(tcp_timercache); 18913 kmem_cache_destroy(tcp_sack_info_cache); 18914 18915 netstack_unregister(NS_TCP); 18916 } 18917 18918 /* 18919 * Free the TCP stack instance. 18920 */ 18921 static void 18922 tcp_stack_fini(netstackid_t stackid, void *arg) 18923 { 18924 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18925 int i; 18926 18927 freeb(tcps->tcps_ixa_cleanup_mp); 18928 tcps->tcps_ixa_cleanup_mp = NULL; 18929 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18930 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18931 18932 if (tcps->tcps_reclaim_tid != 0) 18933 (void) untimeout(tcps->tcps_reclaim_tid); 18934 mutex_destroy(&tcps->tcps_reclaim_lock); 18935 18936 tcp_listener_conf_cleanup(tcps); 18937 18938 nd_free(&tcps->tcps_g_nd); 18939 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18940 tcps->tcps_params = NULL; 18941 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18942 tcps->tcps_wroff_xtra_param = NULL; 18943 18944 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18945 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18946 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18947 } 18948 18949 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 18950 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18951 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18952 } 18953 18954 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18955 tcps->tcps_bind_fanout = NULL; 18956 18957 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 18958 TCP_ACCEPTOR_FANOUT_SIZE); 18959 tcps->tcps_acceptor_fanout = NULL; 18960 18961 mutex_destroy(&tcps->tcps_iss_key_lock); 18962 mutex_destroy(&tcps->tcps_epriv_port_lock); 18963 18964 ip_drop_unregister(&tcps->tcps_dropper); 18965 18966 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18967 tcps->tcps_kstat = NULL; 18968 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18969 18970 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18971 tcps->tcps_mibkp = NULL; 18972 18973 ldi_ident_release(tcps->tcps_ldi_ident); 18974 kmem_free(tcps, sizeof (*tcps)); 18975 } 18976 18977 /* 18978 * Generate ISS, taking into account NDD changes may happen halfway through. 18979 * (If the iss is not zero, set it.) 18980 */ 18981 18982 static void 18983 tcp_iss_init(tcp_t *tcp) 18984 { 18985 MD5_CTX context; 18986 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18987 uint32_t answer[4]; 18988 tcp_stack_t *tcps = tcp->tcp_tcps; 18989 conn_t *connp = tcp->tcp_connp; 18990 18991 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18992 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18993 switch (tcps->tcps_strong_iss) { 18994 case 2: 18995 mutex_enter(&tcps->tcps_iss_key_lock); 18996 context = tcps->tcps_iss_key; 18997 mutex_exit(&tcps->tcps_iss_key_lock); 18998 arg.ports = connp->conn_ports; 18999 arg.src = connp->conn_laddr_v6; 19000 arg.dst = connp->conn_faddr_v6; 19001 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 19002 MD5Final((uchar_t *)answer, &context); 19003 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 19004 /* 19005 * Now that we've hashed into a unique per-connection sequence 19006 * space, add a random increment per strong_iss == 1. So I 19007 * guess we'll have to... 19008 */ 19009 /* FALLTHRU */ 19010 case 1: 19011 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 19012 break; 19013 default: 19014 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19015 break; 19016 } 19017 tcp->tcp_valid_bits = TCP_ISS_VALID; 19018 tcp->tcp_fss = tcp->tcp_iss - 1; 19019 tcp->tcp_suna = tcp->tcp_iss; 19020 tcp->tcp_snxt = tcp->tcp_iss + 1; 19021 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 19022 tcp->tcp_csuna = tcp->tcp_snxt; 19023 } 19024 19025 /* 19026 * Exported routine for extracting active tcp connection status. 19027 * 19028 * This is used by the Solaris Cluster Networking software to 19029 * gather a list of connections that need to be forwarded to 19030 * specific nodes in the cluster when configuration changes occur. 19031 * 19032 * The callback is invoked for each tcp_t structure from all netstacks, 19033 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 19034 * from the netstack with the specified stack_id. Returning 19035 * non-zero from the callback routine terminates the search. 19036 */ 19037 int 19038 cl_tcp_walk_list(netstackid_t stack_id, 19039 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 19040 { 19041 netstack_handle_t nh; 19042 netstack_t *ns; 19043 int ret = 0; 19044 19045 if (stack_id >= 0) { 19046 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 19047 return (EINVAL); 19048 19049 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19050 ns->netstack_tcp); 19051 netstack_rele(ns); 19052 return (ret); 19053 } 19054 19055 netstack_next_init(&nh); 19056 while ((ns = netstack_next(&nh)) != NULL) { 19057 ret = cl_tcp_walk_list_stack(cl_callback, arg, 19058 ns->netstack_tcp); 19059 netstack_rele(ns); 19060 } 19061 netstack_next_fini(&nh); 19062 return (ret); 19063 } 19064 19065 static int 19066 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 19067 tcp_stack_t *tcps) 19068 { 19069 tcp_t *tcp; 19070 cl_tcp_info_t cl_tcpi; 19071 connf_t *connfp; 19072 conn_t *connp; 19073 int i; 19074 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19075 19076 ASSERT(callback != NULL); 19077 19078 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19079 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19080 connp = NULL; 19081 19082 while ((connp = 19083 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19084 19085 tcp = connp->conn_tcp; 19086 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 19087 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 19088 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 19089 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 19090 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 19091 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 19092 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 19093 19094 /* 19095 * If the callback returns non-zero 19096 * we terminate the traversal. 19097 */ 19098 if ((*callback)(&cl_tcpi, arg) != 0) { 19099 CONN_DEC_REF(tcp->tcp_connp); 19100 return (1); 19101 } 19102 } 19103 } 19104 19105 return (0); 19106 } 19107 19108 /* 19109 * Macros used for accessing the different types of sockaddr 19110 * structures inside a tcp_ioc_abort_conn_t. 19111 */ 19112 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 19113 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 19114 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 19115 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 19116 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 19117 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 19118 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 19119 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 19120 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 19121 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 19122 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 19123 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 19124 19125 /* 19126 * Return the correct error code to mimic the behavior 19127 * of a connection reset. 19128 */ 19129 #define TCP_AC_GET_ERRCODE(state, err) { \ 19130 switch ((state)) { \ 19131 case TCPS_SYN_SENT: \ 19132 case TCPS_SYN_RCVD: \ 19133 (err) = ECONNREFUSED; \ 19134 break; \ 19135 case TCPS_ESTABLISHED: \ 19136 case TCPS_FIN_WAIT_1: \ 19137 case TCPS_FIN_WAIT_2: \ 19138 case TCPS_CLOSE_WAIT: \ 19139 (err) = ECONNRESET; \ 19140 break; \ 19141 case TCPS_CLOSING: \ 19142 case TCPS_LAST_ACK: \ 19143 case TCPS_TIME_WAIT: \ 19144 (err) = 0; \ 19145 break; \ 19146 default: \ 19147 (err) = ENXIO; \ 19148 } \ 19149 } 19150 19151 /* 19152 * Check if a tcp structure matches the info in acp. 19153 */ 19154 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 19155 (((acp)->ac_local.ss_family == AF_INET) ? \ 19156 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 19157 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 19158 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 19159 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 19160 (TCP_AC_V4LPORT((acp)) == 0 || \ 19161 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 19162 (TCP_AC_V4RPORT((acp)) == 0 || \ 19163 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 19164 (acp)->ac_start <= (tcp)->tcp_state && \ 19165 (acp)->ac_end >= (tcp)->tcp_state) : \ 19166 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 19167 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 19168 &(connp)->conn_laddr_v6)) && \ 19169 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 19170 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 19171 &(connp)->conn_faddr_v6)) && \ 19172 (TCP_AC_V6LPORT((acp)) == 0 || \ 19173 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 19174 (TCP_AC_V6RPORT((acp)) == 0 || \ 19175 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 19176 (acp)->ac_start <= (tcp)->tcp_state && \ 19177 (acp)->ac_end >= (tcp)->tcp_state)) 19178 19179 #define TCP_AC_MATCH(acp, connp, tcp) \ 19180 (((acp)->ac_zoneid == ALL_ZONES || \ 19181 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 19182 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 19183 19184 /* 19185 * Build a message containing a tcp_ioc_abort_conn_t structure 19186 * which is filled in with information from acp and tp. 19187 */ 19188 static mblk_t * 19189 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 19190 { 19191 mblk_t *mp; 19192 tcp_ioc_abort_conn_t *tacp; 19193 19194 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 19195 if (mp == NULL) 19196 return (NULL); 19197 19198 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 19199 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 19200 sizeof (uint32_t)); 19201 19202 tacp->ac_start = acp->ac_start; 19203 tacp->ac_end = acp->ac_end; 19204 tacp->ac_zoneid = acp->ac_zoneid; 19205 19206 if (acp->ac_local.ss_family == AF_INET) { 19207 tacp->ac_local.ss_family = AF_INET; 19208 tacp->ac_remote.ss_family = AF_INET; 19209 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 19210 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 19211 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 19212 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 19213 } else { 19214 tacp->ac_local.ss_family = AF_INET6; 19215 tacp->ac_remote.ss_family = AF_INET6; 19216 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 19217 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 19218 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 19219 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 19220 } 19221 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 19222 return (mp); 19223 } 19224 19225 /* 19226 * Print a tcp_ioc_abort_conn_t structure. 19227 */ 19228 static void 19229 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 19230 { 19231 char lbuf[128]; 19232 char rbuf[128]; 19233 sa_family_t af; 19234 in_port_t lport, rport; 19235 ushort_t logflags; 19236 19237 af = acp->ac_local.ss_family; 19238 19239 if (af == AF_INET) { 19240 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 19241 lbuf, 128); 19242 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 19243 rbuf, 128); 19244 lport = ntohs(TCP_AC_V4LPORT(acp)); 19245 rport = ntohs(TCP_AC_V4RPORT(acp)); 19246 } else { 19247 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 19248 lbuf, 128); 19249 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 19250 rbuf, 128); 19251 lport = ntohs(TCP_AC_V6LPORT(acp)); 19252 rport = ntohs(TCP_AC_V6RPORT(acp)); 19253 } 19254 19255 logflags = SL_TRACE | SL_NOTE; 19256 /* 19257 * Don't print this message to the console if the operation was done 19258 * to a non-global zone. 19259 */ 19260 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19261 logflags |= SL_CONSOLE; 19262 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 19263 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 19264 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 19265 acp->ac_start, acp->ac_end); 19266 } 19267 19268 /* 19269 * Called using SQ_FILL when a message built using 19270 * tcp_ioctl_abort_build_msg is put into a queue. 19271 * Note that when we get here there is no wildcard in acp any more. 19272 */ 19273 /* ARGSUSED2 */ 19274 static void 19275 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 19276 ip_recv_attr_t *dummy) 19277 { 19278 conn_t *connp = (conn_t *)arg; 19279 tcp_t *tcp = connp->conn_tcp; 19280 tcp_ioc_abort_conn_t *acp; 19281 19282 /* 19283 * Don't accept any input on a closed tcp as this TCP logically does 19284 * not exist on the system. Don't proceed further with this TCP. 19285 * For eg. this packet could trigger another close of this tcp 19286 * which would be disastrous for tcp_refcnt. tcp_close_detached / 19287 * tcp_clean_death / tcp_closei_local must be called at most once 19288 * on a TCP. 19289 */ 19290 if (tcp->tcp_state == TCPS_CLOSED || 19291 tcp->tcp_state == TCPS_BOUND) { 19292 freemsg(mp); 19293 return; 19294 } 19295 19296 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 19297 if (tcp->tcp_state <= acp->ac_end) { 19298 /* 19299 * If we get here, we are already on the correct 19300 * squeue. This ioctl follows the following path 19301 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 19302 * ->tcp_ioctl_abort->squeue_enter (if on a 19303 * different squeue) 19304 */ 19305 int errcode; 19306 19307 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 19308 (void) tcp_clean_death(tcp, errcode, 26); 19309 } 19310 freemsg(mp); 19311 } 19312 19313 /* 19314 * Abort all matching connections on a hash chain. 19315 */ 19316 static int 19317 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 19318 boolean_t exact, tcp_stack_t *tcps) 19319 { 19320 int nmatch, err = 0; 19321 tcp_t *tcp; 19322 MBLKP mp, last, listhead = NULL; 19323 conn_t *tconnp; 19324 connf_t *connfp; 19325 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19326 19327 connfp = &ipst->ips_ipcl_conn_fanout[index]; 19328 19329 startover: 19330 nmatch = 0; 19331 19332 mutex_enter(&connfp->connf_lock); 19333 for (tconnp = connfp->connf_head; tconnp != NULL; 19334 tconnp = tconnp->conn_next) { 19335 tcp = tconnp->conn_tcp; 19336 /* 19337 * We are missing a check on sin6_scope_id for linklocals here, 19338 * but current usage is just for aborting based on zoneid 19339 * for shared-IP zones. 19340 */ 19341 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 19342 CONN_INC_REF(tconnp); 19343 mp = tcp_ioctl_abort_build_msg(acp, tcp); 19344 if (mp == NULL) { 19345 err = ENOMEM; 19346 CONN_DEC_REF(tconnp); 19347 break; 19348 } 19349 mp->b_prev = (mblk_t *)tcp; 19350 19351 if (listhead == NULL) { 19352 listhead = mp; 19353 last = mp; 19354 } else { 19355 last->b_next = mp; 19356 last = mp; 19357 } 19358 nmatch++; 19359 if (exact) 19360 break; 19361 } 19362 19363 /* Avoid holding lock for too long. */ 19364 if (nmatch >= 500) 19365 break; 19366 } 19367 mutex_exit(&connfp->connf_lock); 19368 19369 /* Pass mp into the correct tcp */ 19370 while ((mp = listhead) != NULL) { 19371 listhead = listhead->b_next; 19372 tcp = (tcp_t *)mp->b_prev; 19373 mp->b_next = mp->b_prev = NULL; 19374 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19375 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19376 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19377 } 19378 19379 *count += nmatch; 19380 if (nmatch >= 500 && err == 0) 19381 goto startover; 19382 return (err); 19383 } 19384 19385 /* 19386 * Abort all connections that matches the attributes specified in acp. 19387 */ 19388 static int 19389 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19390 { 19391 sa_family_t af; 19392 uint32_t ports; 19393 uint16_t *pports; 19394 int err = 0, count = 0; 19395 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19396 int index = -1; 19397 ushort_t logflags; 19398 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19399 19400 af = acp->ac_local.ss_family; 19401 19402 if (af == AF_INET) { 19403 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19404 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19405 pports = (uint16_t *)&ports; 19406 pports[1] = TCP_AC_V4LPORT(acp); 19407 pports[0] = TCP_AC_V4RPORT(acp); 19408 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19409 } 19410 } else { 19411 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19412 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19413 pports = (uint16_t *)&ports; 19414 pports[1] = TCP_AC_V6LPORT(acp); 19415 pports[0] = TCP_AC_V6RPORT(acp); 19416 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19417 } 19418 } 19419 19420 /* 19421 * For cases where remote addr, local port, and remote port are non- 19422 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19423 */ 19424 if (index != -1) { 19425 err = tcp_ioctl_abort_bucket(acp, index, 19426 &count, exact, tcps); 19427 } else { 19428 /* 19429 * loop through all entries for wildcard case 19430 */ 19431 for (index = 0; 19432 index < ipst->ips_ipcl_conn_fanout_size; 19433 index++) { 19434 err = tcp_ioctl_abort_bucket(acp, index, 19435 &count, exact, tcps); 19436 if (err != 0) 19437 break; 19438 } 19439 } 19440 19441 logflags = SL_TRACE | SL_NOTE; 19442 /* 19443 * Don't print this message to the console if the operation was done 19444 * to a non-global zone. 19445 */ 19446 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19447 logflags |= SL_CONSOLE; 19448 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19449 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19450 if (err == 0 && count == 0) 19451 err = ENOENT; 19452 return (err); 19453 } 19454 19455 /* 19456 * Process the TCP_IOC_ABORT_CONN ioctl request. 19457 */ 19458 static void 19459 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19460 { 19461 int err; 19462 IOCP iocp; 19463 MBLKP mp1; 19464 sa_family_t laf, raf; 19465 tcp_ioc_abort_conn_t *acp; 19466 zone_t *zptr; 19467 conn_t *connp = Q_TO_CONN(q); 19468 zoneid_t zoneid = connp->conn_zoneid; 19469 tcp_t *tcp = connp->conn_tcp; 19470 tcp_stack_t *tcps = tcp->tcp_tcps; 19471 19472 iocp = (IOCP)mp->b_rptr; 19473 19474 if ((mp1 = mp->b_cont) == NULL || 19475 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19476 err = EINVAL; 19477 goto out; 19478 } 19479 19480 /* check permissions */ 19481 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19482 err = EPERM; 19483 goto out; 19484 } 19485 19486 if (mp1->b_cont != NULL) { 19487 freemsg(mp1->b_cont); 19488 mp1->b_cont = NULL; 19489 } 19490 19491 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19492 laf = acp->ac_local.ss_family; 19493 raf = acp->ac_remote.ss_family; 19494 19495 /* check that a zone with the supplied zoneid exists */ 19496 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19497 zptr = zone_find_by_id(zoneid); 19498 if (zptr != NULL) { 19499 zone_rele(zptr); 19500 } else { 19501 err = EINVAL; 19502 goto out; 19503 } 19504 } 19505 19506 /* 19507 * For exclusive stacks we set the zoneid to zero 19508 * to make TCP operate as if in the global zone. 19509 */ 19510 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19511 acp->ac_zoneid = GLOBAL_ZONEID; 19512 19513 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19514 acp->ac_start > acp->ac_end || laf != raf || 19515 (laf != AF_INET && laf != AF_INET6)) { 19516 err = EINVAL; 19517 goto out; 19518 } 19519 19520 tcp_ioctl_abort_dump(acp); 19521 err = tcp_ioctl_abort(acp, tcps); 19522 19523 out: 19524 if (mp1 != NULL) { 19525 freemsg(mp1); 19526 mp->b_cont = NULL; 19527 } 19528 19529 if (err != 0) 19530 miocnak(q, mp, 0, err); 19531 else 19532 miocack(q, mp, 0, 0); 19533 } 19534 19535 /* 19536 * tcp_time_wait_processing() handles processing of incoming packets when 19537 * the tcp is in the TIME_WAIT state. 19538 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19539 * on the time wait list. 19540 */ 19541 void 19542 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19543 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19544 { 19545 int32_t bytes_acked; 19546 int32_t gap; 19547 int32_t rgap; 19548 tcp_opt_t tcpopt; 19549 uint_t flags; 19550 uint32_t new_swnd = 0; 19551 conn_t *nconnp; 19552 conn_t *connp = tcp->tcp_connp; 19553 tcp_stack_t *tcps = tcp->tcp_tcps; 19554 19555 BUMP_LOCAL(tcp->tcp_ibsegs); 19556 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19557 19558 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19559 new_swnd = ntohs(tcpha->tha_win) << 19560 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19561 if (tcp->tcp_snd_ts_ok) { 19562 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19563 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19564 tcp->tcp_rnxt, TH_ACK); 19565 goto done; 19566 } 19567 } 19568 gap = seg_seq - tcp->tcp_rnxt; 19569 rgap = tcp->tcp_rwnd - (gap + seg_len); 19570 if (gap < 0) { 19571 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19572 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19573 (seg_len > -gap ? -gap : seg_len)); 19574 seg_len += gap; 19575 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19576 if (flags & TH_RST) { 19577 goto done; 19578 } 19579 if ((flags & TH_FIN) && seg_len == -1) { 19580 /* 19581 * When TCP receives a duplicate FIN in 19582 * TIME_WAIT state, restart the 2 MSL timer. 19583 * See page 73 in RFC 793. Make sure this TCP 19584 * is already on the TIME_WAIT list. If not, 19585 * just restart the timer. 19586 */ 19587 if (TCP_IS_DETACHED(tcp)) { 19588 if (tcp_time_wait_remove(tcp, NULL) == 19589 B_TRUE) { 19590 tcp_time_wait_append(tcp); 19591 TCP_DBGSTAT(tcps, 19592 tcp_rput_time_wait); 19593 } 19594 } else { 19595 ASSERT(tcp != NULL); 19596 TCP_TIMER_RESTART(tcp, 19597 tcps->tcps_time_wait_interval); 19598 } 19599 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19600 tcp->tcp_rnxt, TH_ACK); 19601 goto done; 19602 } 19603 flags |= TH_ACK_NEEDED; 19604 seg_len = 0; 19605 goto process_ack; 19606 } 19607 19608 /* Fix seg_seq, and chew the gap off the front. */ 19609 seg_seq = tcp->tcp_rnxt; 19610 } 19611 19612 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19613 /* 19614 * Make sure that when we accept the connection, pick 19615 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19616 * old connection. 19617 * 19618 * The next ISS generated is equal to tcp_iss_incr_extra 19619 * + ISS_INCR/2 + other components depending on the 19620 * value of tcp_strong_iss. We pre-calculate the new 19621 * ISS here and compare with tcp_snxt to determine if 19622 * we need to make adjustment to tcp_iss_incr_extra. 19623 * 19624 * The above calculation is ugly and is a 19625 * waste of CPU cycles... 19626 */ 19627 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19628 int32_t adj; 19629 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19630 19631 switch (tcps->tcps_strong_iss) { 19632 case 2: { 19633 /* Add time and MD5 components. */ 19634 uint32_t answer[4]; 19635 struct { 19636 uint32_t ports; 19637 in6_addr_t src; 19638 in6_addr_t dst; 19639 } arg; 19640 MD5_CTX context; 19641 19642 mutex_enter(&tcps->tcps_iss_key_lock); 19643 context = tcps->tcps_iss_key; 19644 mutex_exit(&tcps->tcps_iss_key_lock); 19645 arg.ports = connp->conn_ports; 19646 /* We use MAPPED addresses in tcp_iss_init */ 19647 arg.src = connp->conn_laddr_v6; 19648 arg.dst = connp->conn_faddr_v6; 19649 MD5Update(&context, (uchar_t *)&arg, 19650 sizeof (arg)); 19651 MD5Final((uchar_t *)answer, &context); 19652 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19653 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19654 break; 19655 } 19656 case 1: 19657 /* Add time component and min random (i.e. 1). */ 19658 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19659 break; 19660 default: 19661 /* Add only time component. */ 19662 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19663 break; 19664 } 19665 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19666 /* 19667 * New ISS not guaranteed to be ISS_INCR/2 19668 * ahead of the current tcp_snxt, so add the 19669 * difference to tcp_iss_incr_extra. 19670 */ 19671 tcps->tcps_iss_incr_extra += adj; 19672 } 19673 /* 19674 * If tcp_clean_death() can not perform the task now, 19675 * drop the SYN packet and let the other side re-xmit. 19676 * Otherwise pass the SYN packet back in, since the 19677 * old tcp state has been cleaned up or freed. 19678 */ 19679 if (tcp_clean_death(tcp, 0, 27) == -1) 19680 goto done; 19681 nconnp = ipcl_classify(mp, ira, ipst); 19682 if (nconnp != NULL) { 19683 TCP_STAT(tcps, tcp_time_wait_syn_success); 19684 /* Drops ref on nconnp */ 19685 tcp_reinput(nconnp, mp, ira, ipst); 19686 return; 19687 } 19688 goto done; 19689 } 19690 19691 /* 19692 * rgap is the amount of stuff received out of window. A negative 19693 * value is the amount out of window. 19694 */ 19695 if (rgap < 0) { 19696 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19697 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19698 /* Fix seg_len and make sure there is something left. */ 19699 seg_len += rgap; 19700 if (seg_len <= 0) { 19701 if (flags & TH_RST) { 19702 goto done; 19703 } 19704 flags |= TH_ACK_NEEDED; 19705 seg_len = 0; 19706 goto process_ack; 19707 } 19708 } 19709 /* 19710 * Check whether we can update tcp_ts_recent. This test is 19711 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19712 * Extensions for High Performance: An Update", Internet Draft. 19713 */ 19714 if (tcp->tcp_snd_ts_ok && 19715 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19716 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19717 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19718 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19719 } 19720 19721 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19722 /* Always ack out of order packets */ 19723 flags |= TH_ACK_NEEDED; 19724 seg_len = 0; 19725 } else if (seg_len > 0) { 19726 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19727 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19728 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19729 } 19730 if (flags & TH_RST) { 19731 (void) tcp_clean_death(tcp, 0, 28); 19732 goto done; 19733 } 19734 if (flags & TH_SYN) { 19735 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19736 TH_RST|TH_ACK); 19737 /* 19738 * Do not delete the TCP structure if it is in 19739 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19740 */ 19741 goto done; 19742 } 19743 process_ack: 19744 if (flags & TH_ACK) { 19745 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19746 if (bytes_acked <= 0) { 19747 if (bytes_acked == 0 && seg_len == 0 && 19748 new_swnd == tcp->tcp_swnd) 19749 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19750 } else { 19751 /* Acks something not sent */ 19752 flags |= TH_ACK_NEEDED; 19753 } 19754 } 19755 if (flags & TH_ACK_NEEDED) { 19756 /* 19757 * Time to send an ack for some reason. 19758 */ 19759 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19760 tcp->tcp_rnxt, TH_ACK); 19761 } 19762 done: 19763 freemsg(mp); 19764 } 19765 19766 /* 19767 * TCP Timers Implementation. 19768 */ 19769 timeout_id_t 19770 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19771 { 19772 mblk_t *mp; 19773 tcp_timer_t *tcpt; 19774 tcp_t *tcp = connp->conn_tcp; 19775 19776 ASSERT(connp->conn_sqp != NULL); 19777 19778 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19779 19780 if (tcp->tcp_timercache == NULL) { 19781 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19782 } else { 19783 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19784 mp = tcp->tcp_timercache; 19785 tcp->tcp_timercache = mp->b_next; 19786 mp->b_next = NULL; 19787 ASSERT(mp->b_wptr == NULL); 19788 } 19789 19790 CONN_INC_REF(connp); 19791 tcpt = (tcp_timer_t *)mp->b_rptr; 19792 tcpt->connp = connp; 19793 tcpt->tcpt_proc = f; 19794 /* 19795 * TCP timers are normal timeouts. Plus, they do not require more than 19796 * a 10 millisecond resolution. By choosing a coarser resolution and by 19797 * rounding up the expiration to the next resolution boundary, we can 19798 * batch timers in the callout subsystem to make TCP timers more 19799 * efficient. The roundup also protects short timers from expiring too 19800 * early before they have a chance to be cancelled. 19801 */ 19802 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19803 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19804 19805 return ((timeout_id_t)mp); 19806 } 19807 19808 static void 19809 tcp_timer_callback(void *arg) 19810 { 19811 mblk_t *mp = (mblk_t *)arg; 19812 tcp_timer_t *tcpt; 19813 conn_t *connp; 19814 19815 tcpt = (tcp_timer_t *)mp->b_rptr; 19816 connp = tcpt->connp; 19817 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19818 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19819 } 19820 19821 /* ARGSUSED */ 19822 static void 19823 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19824 { 19825 tcp_timer_t *tcpt; 19826 conn_t *connp = (conn_t *)arg; 19827 tcp_t *tcp = connp->conn_tcp; 19828 19829 tcpt = (tcp_timer_t *)mp->b_rptr; 19830 ASSERT(connp == tcpt->connp); 19831 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19832 19833 /* 19834 * If the TCP has reached the closed state, don't proceed any 19835 * further. This TCP logically does not exist on the system. 19836 * tcpt_proc could for example access queues, that have already 19837 * been qprocoff'ed off. 19838 */ 19839 if (tcp->tcp_state != TCPS_CLOSED) { 19840 (*tcpt->tcpt_proc)(connp); 19841 } else { 19842 tcp->tcp_timer_tid = 0; 19843 } 19844 tcp_timer_free(connp->conn_tcp, mp); 19845 } 19846 19847 /* 19848 * There is potential race with untimeout and the handler firing at the same 19849 * time. The mblock may be freed by the handler while we are trying to use 19850 * it. But since both should execute on the same squeue, this race should not 19851 * occur. 19852 */ 19853 clock_t 19854 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19855 { 19856 mblk_t *mp = (mblk_t *)id; 19857 tcp_timer_t *tcpt; 19858 clock_t delta; 19859 19860 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19861 19862 if (mp == NULL) 19863 return (-1); 19864 19865 tcpt = (tcp_timer_t *)mp->b_rptr; 19866 ASSERT(tcpt->connp == connp); 19867 19868 delta = untimeout_default(tcpt->tcpt_tid, 0); 19869 19870 if (delta >= 0) { 19871 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19872 tcp_timer_free(connp->conn_tcp, mp); 19873 CONN_DEC_REF(connp); 19874 } 19875 19876 return (delta); 19877 } 19878 19879 /* 19880 * Allocate space for the timer event. The allocation looks like mblk, but it is 19881 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19882 * 19883 * Dealing with failures: If we can't allocate from the timer cache we try 19884 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19885 * points to b_rptr. 19886 * If we can't allocate anything using allocb_tryhard(), we perform a last 19887 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19888 * save the actual allocation size in b_datap. 19889 */ 19890 mblk_t * 19891 tcp_timermp_alloc(int kmflags) 19892 { 19893 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19894 kmflags & ~KM_PANIC); 19895 19896 if (mp != NULL) { 19897 mp->b_next = mp->b_prev = NULL; 19898 mp->b_rptr = (uchar_t *)(&mp[1]); 19899 mp->b_wptr = NULL; 19900 mp->b_datap = NULL; 19901 mp->b_queue = NULL; 19902 mp->b_cont = NULL; 19903 } else if (kmflags & KM_PANIC) { 19904 /* 19905 * Failed to allocate memory for the timer. Try allocating from 19906 * dblock caches. 19907 */ 19908 /* ipclassifier calls this from a constructor - hence no tcps */ 19909 TCP_G_STAT(tcp_timermp_allocfail); 19910 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19911 if (mp == NULL) { 19912 size_t size = 0; 19913 /* 19914 * Memory is really low. Try tryhard allocation. 19915 * 19916 * ipclassifier calls this from a constructor - 19917 * hence no tcps 19918 */ 19919 TCP_G_STAT(tcp_timermp_allocdblfail); 19920 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19921 sizeof (tcp_timer_t), &size, kmflags); 19922 mp->b_rptr = (uchar_t *)(&mp[1]); 19923 mp->b_next = mp->b_prev = NULL; 19924 mp->b_wptr = (uchar_t *)-1; 19925 mp->b_datap = (dblk_t *)size; 19926 mp->b_queue = NULL; 19927 mp->b_cont = NULL; 19928 } 19929 ASSERT(mp->b_wptr != NULL); 19930 } 19931 /* ipclassifier calls this from a constructor - hence no tcps */ 19932 TCP_G_DBGSTAT(tcp_timermp_alloced); 19933 19934 return (mp); 19935 } 19936 19937 /* 19938 * Free per-tcp timer cache. 19939 * It can only contain entries from tcp_timercache. 19940 */ 19941 void 19942 tcp_timermp_free(tcp_t *tcp) 19943 { 19944 mblk_t *mp; 19945 19946 while ((mp = tcp->tcp_timercache) != NULL) { 19947 ASSERT(mp->b_wptr == NULL); 19948 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19949 kmem_cache_free(tcp_timercache, mp); 19950 } 19951 } 19952 19953 /* 19954 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19955 * events there already (currently at most two events are cached). 19956 * If the event is not allocated from the timer cache, free it right away. 19957 */ 19958 static void 19959 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19960 { 19961 mblk_t *mp1 = tcp->tcp_timercache; 19962 19963 if (mp->b_wptr != NULL) { 19964 /* 19965 * This allocation is not from a timer cache, free it right 19966 * away. 19967 */ 19968 if (mp->b_wptr != (uchar_t *)-1) 19969 freeb(mp); 19970 else 19971 kmem_free(mp, (size_t)mp->b_datap); 19972 } else if (mp1 == NULL || mp1->b_next == NULL) { 19973 /* Cache this timer block for future allocations */ 19974 mp->b_rptr = (uchar_t *)(&mp[1]); 19975 mp->b_next = mp1; 19976 tcp->tcp_timercache = mp; 19977 } else { 19978 kmem_cache_free(tcp_timercache, mp); 19979 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19980 } 19981 } 19982 19983 /* 19984 * End of TCP Timers implementation. 19985 */ 19986 19987 /* 19988 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19989 * on the specified backing STREAMS q. Note, the caller may make the 19990 * decision to call based on the tcp_t.tcp_flow_stopped value which 19991 * when check outside the q's lock is only an advisory check ... 19992 */ 19993 void 19994 tcp_setqfull(tcp_t *tcp) 19995 { 19996 tcp_stack_t *tcps = tcp->tcp_tcps; 19997 conn_t *connp = tcp->tcp_connp; 19998 19999 if (tcp->tcp_closed) 20000 return; 20001 20002 conn_setqfull(connp, &tcp->tcp_flow_stopped); 20003 if (tcp->tcp_flow_stopped) 20004 TCP_STAT(tcps, tcp_flwctl_on); 20005 } 20006 20007 void 20008 tcp_clrqfull(tcp_t *tcp) 20009 { 20010 conn_t *connp = tcp->tcp_connp; 20011 20012 if (tcp->tcp_closed) 20013 return; 20014 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 20015 } 20016 20017 /* 20018 * kstats related to squeues i.e. not per IP instance 20019 */ 20020 static void * 20021 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 20022 { 20023 kstat_t *ksp; 20024 20025 tcp_g_stat_t template = { 20026 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 20027 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 20028 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 20029 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 20030 }; 20031 20032 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 20033 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20034 KSTAT_FLAG_VIRTUAL); 20035 20036 if (ksp == NULL) 20037 return (NULL); 20038 20039 bcopy(&template, tcp_g_statp, sizeof (template)); 20040 ksp->ks_data = (void *)tcp_g_statp; 20041 20042 kstat_install(ksp); 20043 return (ksp); 20044 } 20045 20046 static void 20047 tcp_g_kstat_fini(kstat_t *ksp) 20048 { 20049 if (ksp != NULL) { 20050 kstat_delete(ksp); 20051 } 20052 } 20053 20054 20055 static void * 20056 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 20057 { 20058 kstat_t *ksp; 20059 20060 tcp_stat_t template = { 20061 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 20062 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 20063 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 20064 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 20065 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 20066 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 20067 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 20068 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 20069 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 20070 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 20071 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 20072 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 20073 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 20074 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 20075 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 20076 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 20077 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 20078 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 20079 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 20080 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 20081 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 20082 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 20083 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 20084 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 20085 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 20086 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 20087 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 20088 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 20089 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 20090 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 20091 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 20092 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 20093 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 20094 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 20095 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 20096 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 20097 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 20098 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 20099 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 20100 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 20101 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 20102 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 20103 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 20104 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 20105 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 20106 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 20107 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 20108 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 20109 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 20110 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 20111 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 20112 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 20113 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 20114 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 20115 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 20116 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 20117 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 20118 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 20119 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 20120 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 20121 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 20122 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 20123 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 20124 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 20125 { "tcp_listen_cnt_drop", KSTAT_DATA_UINT64 }, 20126 { "tcp_listen_mem_drop", KSTAT_DATA_UINT64 }, 20127 { "tcp_zwin_ack_syn", KSTAT_DATA_UINT64 }, 20128 { "tcp_rst_unsent", KSTAT_DATA_UINT64 } 20129 }; 20130 20131 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 20132 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 20133 KSTAT_FLAG_VIRTUAL, stackid); 20134 20135 if (ksp == NULL) 20136 return (NULL); 20137 20138 bcopy(&template, tcps_statisticsp, sizeof (template)); 20139 ksp->ks_data = (void *)tcps_statisticsp; 20140 ksp->ks_private = (void *)(uintptr_t)stackid; 20141 20142 kstat_install(ksp); 20143 return (ksp); 20144 } 20145 20146 static void 20147 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 20148 { 20149 if (ksp != NULL) { 20150 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20151 kstat_delete_netstack(ksp, stackid); 20152 } 20153 } 20154 20155 /* 20156 * TCP Kstats implementation 20157 */ 20158 static void * 20159 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 20160 { 20161 kstat_t *ksp; 20162 20163 tcp_named_kstat_t template = { 20164 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 20165 { "rtoMin", KSTAT_DATA_INT32, 0 }, 20166 { "rtoMax", KSTAT_DATA_INT32, 0 }, 20167 { "maxConn", KSTAT_DATA_INT32, 0 }, 20168 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 20169 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 20170 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 20171 { "estabResets", KSTAT_DATA_UINT32, 0 }, 20172 { "currEstab", KSTAT_DATA_UINT32, 0 }, 20173 { "inSegs", KSTAT_DATA_UINT64, 0 }, 20174 { "outSegs", KSTAT_DATA_UINT64, 0 }, 20175 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 20176 { "connTableSize", KSTAT_DATA_INT32, 0 }, 20177 { "outRsts", KSTAT_DATA_UINT32, 0 }, 20178 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 20179 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 20180 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 20181 { "outAck", KSTAT_DATA_UINT32, 0 }, 20182 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 20183 { "outUrg", KSTAT_DATA_UINT32, 0 }, 20184 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 20185 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 20186 { "outControl", KSTAT_DATA_UINT32, 0 }, 20187 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 20188 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 20189 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 20190 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 20191 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 20192 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 20193 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 20194 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 20195 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 20196 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 20197 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 20198 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 20199 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 20200 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 20201 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 20202 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 20203 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 20204 { "inClosed", KSTAT_DATA_UINT32, 0 }, 20205 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 20206 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 20207 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 20208 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 20209 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 20210 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 20211 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 20212 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 20213 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 20214 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 20215 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 20216 { "connTableSize6", KSTAT_DATA_INT32, 0 } 20217 }; 20218 20219 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 20220 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 20221 20222 if (ksp == NULL) 20223 return (NULL); 20224 20225 template.rtoAlgorithm.value.ui32 = 4; 20226 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 20227 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 20228 template.maxConn.value.i32 = -1; 20229 20230 bcopy(&template, ksp->ks_data, sizeof (template)); 20231 ksp->ks_update = tcp_kstat_update; 20232 ksp->ks_private = (void *)(uintptr_t)stackid; 20233 20234 kstat_install(ksp); 20235 return (ksp); 20236 } 20237 20238 static void 20239 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 20240 { 20241 if (ksp != NULL) { 20242 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 20243 kstat_delete_netstack(ksp, stackid); 20244 } 20245 } 20246 20247 static int 20248 tcp_kstat_update(kstat_t *kp, int rw) 20249 { 20250 tcp_named_kstat_t *tcpkp; 20251 tcp_t *tcp; 20252 connf_t *connfp; 20253 conn_t *connp; 20254 int i; 20255 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 20256 netstack_t *ns; 20257 tcp_stack_t *tcps; 20258 ip_stack_t *ipst; 20259 20260 if ((kp == NULL) || (kp->ks_data == NULL)) 20261 return (EIO); 20262 20263 if (rw == KSTAT_WRITE) 20264 return (EACCES); 20265 20266 ns = netstack_find_by_stackid(stackid); 20267 if (ns == NULL) 20268 return (-1); 20269 tcps = ns->netstack_tcp; 20270 if (tcps == NULL) { 20271 netstack_rele(ns); 20272 return (-1); 20273 } 20274 20275 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 20276 20277 tcpkp->currEstab.value.ui32 = 0; 20278 20279 ipst = ns->netstack_ip; 20280 20281 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 20282 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 20283 connp = NULL; 20284 while ((connp = 20285 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 20286 tcp = connp->conn_tcp; 20287 switch (tcp_snmp_state(tcp)) { 20288 case MIB2_TCP_established: 20289 case MIB2_TCP_closeWait: 20290 tcpkp->currEstab.value.ui32++; 20291 break; 20292 } 20293 } 20294 } 20295 20296 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 20297 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 20298 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 20299 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 20300 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 20301 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 20302 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 20303 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 20304 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 20305 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 20306 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 20307 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 20308 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 20309 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 20310 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 20311 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 20312 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 20313 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 20314 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 20315 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 20316 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 20317 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 20318 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 20319 tcpkp->inDataInorderSegs.value.ui32 = 20320 tcps->tcps_mib.tcpInDataInorderSegs; 20321 tcpkp->inDataInorderBytes.value.ui32 = 20322 tcps->tcps_mib.tcpInDataInorderBytes; 20323 tcpkp->inDataUnorderSegs.value.ui32 = 20324 tcps->tcps_mib.tcpInDataUnorderSegs; 20325 tcpkp->inDataUnorderBytes.value.ui32 = 20326 tcps->tcps_mib.tcpInDataUnorderBytes; 20327 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 20328 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 20329 tcpkp->inDataPartDupSegs.value.ui32 = 20330 tcps->tcps_mib.tcpInDataPartDupSegs; 20331 tcpkp->inDataPartDupBytes.value.ui32 = 20332 tcps->tcps_mib.tcpInDataPartDupBytes; 20333 tcpkp->inDataPastWinSegs.value.ui32 = 20334 tcps->tcps_mib.tcpInDataPastWinSegs; 20335 tcpkp->inDataPastWinBytes.value.ui32 = 20336 tcps->tcps_mib.tcpInDataPastWinBytes; 20337 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 20338 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 20339 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 20340 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 20341 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 20342 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 20343 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 20344 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 20345 tcpkp->timKeepaliveProbe.value.ui32 = 20346 tcps->tcps_mib.tcpTimKeepaliveProbe; 20347 tcpkp->timKeepaliveDrop.value.ui32 = 20348 tcps->tcps_mib.tcpTimKeepaliveDrop; 20349 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 20350 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 20351 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 20352 tcpkp->outSackRetransSegs.value.ui32 = 20353 tcps->tcps_mib.tcpOutSackRetransSegs; 20354 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 20355 20356 netstack_rele(ns); 20357 return (0); 20358 } 20359 20360 static int 20361 tcp_squeue_switch(int val) 20362 { 20363 int rval = SQ_FILL; 20364 20365 switch (val) { 20366 case 1: 20367 rval = SQ_NODRAIN; 20368 break; 20369 case 2: 20370 rval = SQ_PROCESS; 20371 break; 20372 default: 20373 break; 20374 } 20375 return (rval); 20376 } 20377 20378 /* 20379 * This is called once for each squeue - globally for all stack 20380 * instances. 20381 */ 20382 static void 20383 tcp_squeue_add(squeue_t *sqp) 20384 { 20385 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20386 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20387 20388 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20389 tcp_time_wait->tcp_time_wait_tid = 20390 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20391 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20392 CALLOUT_FLAG_ROUNDUP); 20393 if (tcp_free_list_max_cnt == 0) { 20394 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20395 max_ncpus : boot_max_ncpus); 20396 20397 /* 20398 * Limit number of entries to 1% of availble memory / tcp_ncpus 20399 */ 20400 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20401 (tcp_ncpus * sizeof (tcp_t) * 100); 20402 } 20403 tcp_time_wait->tcp_free_list_cnt = 0; 20404 } 20405 20406 /* 20407 * On a labeled system we have some protocols above TCP, such as RPC, which 20408 * appear to assume that every mblk in a chain has a db_credp. 20409 */ 20410 static void 20411 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20412 { 20413 ASSERT(is_system_labeled()); 20414 ASSERT(ira->ira_cred != NULL); 20415 20416 while (mp != NULL) { 20417 mblk_setcred(mp, ira->ira_cred, NOPID); 20418 mp = mp->b_cont; 20419 } 20420 } 20421 20422 static int 20423 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20424 boolean_t bind_to_req_port_only, cred_t *cr) 20425 { 20426 in_port_t mlp_port; 20427 mlp_type_t addrtype, mlptype; 20428 boolean_t user_specified; 20429 in_port_t allocated_port; 20430 in_port_t requested_port = *requested_port_ptr; 20431 conn_t *connp = tcp->tcp_connp; 20432 zone_t *zone; 20433 tcp_stack_t *tcps = tcp->tcp_tcps; 20434 in6_addr_t v6addr = connp->conn_laddr_v6; 20435 20436 /* 20437 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20438 */ 20439 ASSERT(cr != NULL); 20440 20441 /* 20442 * Get a valid port (within the anonymous range and should not 20443 * be a privileged one) to use if the user has not given a port. 20444 * If multiple threads are here, they may all start with 20445 * with the same initial port. But, it should be fine as long as 20446 * tcp_bindi will ensure that no two threads will be assigned 20447 * the same port. 20448 * 20449 * NOTE: XXX If a privileged process asks for an anonymous port, we 20450 * still check for ports only in the range > tcp_smallest_non_priv_port, 20451 * unless TCP_ANONPRIVBIND option is set. 20452 */ 20453 mlptype = mlptSingle; 20454 mlp_port = requested_port; 20455 if (requested_port == 0) { 20456 requested_port = connp->conn_anon_priv_bind ? 20457 tcp_get_next_priv_port(tcp) : 20458 tcp_update_next_port(tcps->tcps_next_port_to_try, 20459 tcp, B_TRUE); 20460 if (requested_port == 0) { 20461 return (-TNOADDR); 20462 } 20463 user_specified = B_FALSE; 20464 20465 /* 20466 * If the user went through one of the RPC interfaces to create 20467 * this socket and RPC is MLP in this zone, then give him an 20468 * anonymous MLP. 20469 */ 20470 if (connp->conn_anon_mlp && is_system_labeled()) { 20471 zone = crgetzone(cr); 20472 addrtype = tsol_mlp_addr_type( 20473 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20474 IPV6_VERSION, &v6addr, 20475 tcps->tcps_netstack->netstack_ip); 20476 if (addrtype == mlptSingle) { 20477 return (-TNOADDR); 20478 } 20479 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20480 PMAPPORT, addrtype); 20481 mlp_port = PMAPPORT; 20482 } 20483 } else { 20484 int i; 20485 boolean_t priv = B_FALSE; 20486 20487 /* 20488 * If the requested_port is in the well-known privileged range, 20489 * verify that the stream was opened by a privileged user. 20490 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20491 * but instead the code relies on: 20492 * - the fact that the address of the array and its size never 20493 * changes 20494 * - the atomic assignment of the elements of the array 20495 */ 20496 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20497 priv = B_TRUE; 20498 } else { 20499 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20500 if (requested_port == 20501 tcps->tcps_g_epriv_ports[i]) { 20502 priv = B_TRUE; 20503 break; 20504 } 20505 } 20506 } 20507 if (priv) { 20508 if (secpolicy_net_privaddr(cr, requested_port, 20509 IPPROTO_TCP) != 0) { 20510 if (connp->conn_debug) { 20511 (void) strlog(TCP_MOD_ID, 0, 1, 20512 SL_ERROR|SL_TRACE, 20513 "tcp_bind: no priv for port %d", 20514 requested_port); 20515 } 20516 return (-TACCES); 20517 } 20518 } 20519 user_specified = B_TRUE; 20520 20521 connp = tcp->tcp_connp; 20522 if (is_system_labeled()) { 20523 zone = crgetzone(cr); 20524 addrtype = tsol_mlp_addr_type( 20525 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20526 IPV6_VERSION, &v6addr, 20527 tcps->tcps_netstack->netstack_ip); 20528 if (addrtype == mlptSingle) { 20529 return (-TNOADDR); 20530 } 20531 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20532 requested_port, addrtype); 20533 } 20534 } 20535 20536 if (mlptype != mlptSingle) { 20537 if (secpolicy_net_bindmlp(cr) != 0) { 20538 if (connp->conn_debug) { 20539 (void) strlog(TCP_MOD_ID, 0, 1, 20540 SL_ERROR|SL_TRACE, 20541 "tcp_bind: no priv for multilevel port %d", 20542 requested_port); 20543 } 20544 return (-TACCES); 20545 } 20546 20547 /* 20548 * If we're specifically binding a shared IP address and the 20549 * port is MLP on shared addresses, then check to see if this 20550 * zone actually owns the MLP. Reject if not. 20551 */ 20552 if (mlptype == mlptShared && addrtype == mlptShared) { 20553 /* 20554 * No need to handle exclusive-stack zones since 20555 * ALL_ZONES only applies to the shared stack. 20556 */ 20557 zoneid_t mlpzone; 20558 20559 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20560 htons(mlp_port)); 20561 if (connp->conn_zoneid != mlpzone) { 20562 if (connp->conn_debug) { 20563 (void) strlog(TCP_MOD_ID, 0, 1, 20564 SL_ERROR|SL_TRACE, 20565 "tcp_bind: attempt to bind port " 20566 "%d on shared addr in zone %d " 20567 "(should be %d)", 20568 mlp_port, connp->conn_zoneid, 20569 mlpzone); 20570 } 20571 return (-TACCES); 20572 } 20573 } 20574 20575 if (!user_specified) { 20576 int err; 20577 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20578 requested_port, B_TRUE); 20579 if (err != 0) { 20580 if (connp->conn_debug) { 20581 (void) strlog(TCP_MOD_ID, 0, 1, 20582 SL_ERROR|SL_TRACE, 20583 "tcp_bind: cannot establish anon " 20584 "MLP for port %d", 20585 requested_port); 20586 } 20587 return (err); 20588 } 20589 connp->conn_anon_port = B_TRUE; 20590 } 20591 connp->conn_mlp_type = mlptype; 20592 } 20593 20594 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20595 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20596 user_specified); 20597 20598 if (allocated_port == 0) { 20599 connp->conn_mlp_type = mlptSingle; 20600 if (connp->conn_anon_port) { 20601 connp->conn_anon_port = B_FALSE; 20602 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20603 requested_port, B_FALSE); 20604 } 20605 if (bind_to_req_port_only) { 20606 if (connp->conn_debug) { 20607 (void) strlog(TCP_MOD_ID, 0, 1, 20608 SL_ERROR|SL_TRACE, 20609 "tcp_bind: requested addr busy"); 20610 } 20611 return (-TADDRBUSY); 20612 } else { 20613 /* If we are out of ports, fail the bind. */ 20614 if (connp->conn_debug) { 20615 (void) strlog(TCP_MOD_ID, 0, 1, 20616 SL_ERROR|SL_TRACE, 20617 "tcp_bind: out of ports?"); 20618 } 20619 return (-TNOADDR); 20620 } 20621 } 20622 20623 /* Pass the allocated port back */ 20624 *requested_port_ptr = allocated_port; 20625 return (0); 20626 } 20627 20628 /* 20629 * Check the address and check/pick a local port number. 20630 */ 20631 static int 20632 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20633 boolean_t bind_to_req_port_only) 20634 { 20635 tcp_t *tcp = connp->conn_tcp; 20636 sin_t *sin; 20637 sin6_t *sin6; 20638 in_port_t requested_port; 20639 ipaddr_t v4addr; 20640 in6_addr_t v6addr; 20641 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20642 zoneid_t zoneid = IPCL_ZONEID(connp); 20643 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20644 uint_t scopeid = 0; 20645 int error = 0; 20646 ip_xmit_attr_t *ixa = connp->conn_ixa; 20647 20648 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20649 20650 if (tcp->tcp_state == TCPS_BOUND) { 20651 return (0); 20652 } else if (tcp->tcp_state > TCPS_BOUND) { 20653 if (connp->conn_debug) { 20654 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20655 "tcp_bind: bad state, %d", tcp->tcp_state); 20656 } 20657 return (-TOUTSTATE); 20658 } 20659 20660 ASSERT(sa != NULL && len != 0); 20661 20662 if (!OK_32PTR((char *)sa)) { 20663 if (connp->conn_debug) { 20664 (void) strlog(TCP_MOD_ID, 0, 1, 20665 SL_ERROR|SL_TRACE, 20666 "tcp_bind: bad address parameter, " 20667 "address %p, len %d", 20668 (void *)sa, len); 20669 } 20670 return (-TPROTO); 20671 } 20672 20673 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20674 if (error != 0) { 20675 return (error); 20676 } 20677 20678 switch (len) { 20679 case sizeof (sin_t): /* Complete IPv4 address */ 20680 sin = (sin_t *)sa; 20681 requested_port = ntohs(sin->sin_port); 20682 v4addr = sin->sin_addr.s_addr; 20683 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20684 if (v4addr != INADDR_ANY) { 20685 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20686 B_FALSE); 20687 } 20688 break; 20689 20690 case sizeof (sin6_t): /* Complete IPv6 address */ 20691 sin6 = (sin6_t *)sa; 20692 v6addr = sin6->sin6_addr; 20693 requested_port = ntohs(sin6->sin6_port); 20694 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20695 if (connp->conn_ipv6_v6only) 20696 return (EADDRNOTAVAIL); 20697 20698 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20699 if (v4addr != INADDR_ANY) { 20700 laddr_type = ip_laddr_verify_v4(v4addr, 20701 zoneid, ipst, B_FALSE); 20702 } 20703 } else { 20704 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20705 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20706 scopeid = sin6->sin6_scope_id; 20707 laddr_type = ip_laddr_verify_v6(&v6addr, 20708 zoneid, ipst, B_FALSE, scopeid); 20709 } 20710 } 20711 break; 20712 20713 default: 20714 if (connp->conn_debug) { 20715 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20716 "tcp_bind: bad address length, %d", len); 20717 } 20718 return (EAFNOSUPPORT); 20719 /* return (-TBADADDR); */ 20720 } 20721 20722 /* Is the local address a valid unicast address? */ 20723 if (laddr_type == IPVL_BAD) 20724 return (EADDRNOTAVAIL); 20725 20726 connp->conn_bound_addr_v6 = v6addr; 20727 if (scopeid != 0) { 20728 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20729 ixa->ixa_scopeid = scopeid; 20730 connp->conn_incoming_ifindex = scopeid; 20731 } else { 20732 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20733 connp->conn_incoming_ifindex = connp->conn_bound_if; 20734 } 20735 20736 connp->conn_laddr_v6 = v6addr; 20737 connp->conn_saddr_v6 = v6addr; 20738 20739 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20740 20741 error = tcp_bind_select_lport(tcp, &requested_port, 20742 bind_to_req_port_only, cr); 20743 if (error != 0) { 20744 connp->conn_laddr_v6 = ipv6_all_zeros; 20745 connp->conn_saddr_v6 = ipv6_all_zeros; 20746 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20747 } 20748 return (error); 20749 } 20750 20751 /* 20752 * Return unix error is tli error is TSYSERR, otherwise return a negative 20753 * tli error. 20754 */ 20755 int 20756 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20757 boolean_t bind_to_req_port_only) 20758 { 20759 int error; 20760 tcp_t *tcp = connp->conn_tcp; 20761 20762 if (tcp->tcp_state >= TCPS_BOUND) { 20763 if (connp->conn_debug) { 20764 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20765 "tcp_bind: bad state, %d", tcp->tcp_state); 20766 } 20767 return (-TOUTSTATE); 20768 } 20769 20770 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20771 if (error != 0) 20772 return (error); 20773 20774 ASSERT(tcp->tcp_state == TCPS_BOUND); 20775 tcp->tcp_conn_req_max = 0; 20776 return (0); 20777 } 20778 20779 int 20780 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20781 socklen_t len, cred_t *cr) 20782 { 20783 int error; 20784 conn_t *connp = (conn_t *)proto_handle; 20785 squeue_t *sqp = connp->conn_sqp; 20786 20787 /* All Solaris components should pass a cred for this operation. */ 20788 ASSERT(cr != NULL); 20789 20790 ASSERT(sqp != NULL); 20791 ASSERT(connp->conn_upper_handle != NULL); 20792 20793 error = squeue_synch_enter(sqp, connp, NULL); 20794 if (error != 0) { 20795 /* failed to enter */ 20796 return (ENOSR); 20797 } 20798 20799 /* binding to a NULL address really means unbind */ 20800 if (sa == NULL) { 20801 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20802 error = tcp_do_unbind(connp); 20803 else 20804 error = EINVAL; 20805 } else { 20806 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20807 } 20808 20809 squeue_synch_exit(sqp, connp); 20810 20811 if (error < 0) { 20812 if (error == -TOUTSTATE) 20813 error = EINVAL; 20814 else 20815 error = proto_tlitosyserr(-error); 20816 } 20817 20818 return (error); 20819 } 20820 20821 /* 20822 * If the return value from this function is positive, it's a UNIX error. 20823 * Otherwise, if it's negative, then the absolute value is a TLI error. 20824 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20825 */ 20826 int 20827 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20828 cred_t *cr, pid_t pid) 20829 { 20830 tcp_t *tcp = connp->conn_tcp; 20831 sin_t *sin = (sin_t *)sa; 20832 sin6_t *sin6 = (sin6_t *)sa; 20833 ipaddr_t *dstaddrp; 20834 in_port_t dstport; 20835 uint_t srcid; 20836 int error; 20837 uint32_t mss; 20838 mblk_t *syn_mp; 20839 tcp_stack_t *tcps = tcp->tcp_tcps; 20840 int32_t oldstate; 20841 ip_xmit_attr_t *ixa = connp->conn_ixa; 20842 20843 oldstate = tcp->tcp_state; 20844 20845 switch (len) { 20846 default: 20847 /* 20848 * Should never happen 20849 */ 20850 return (EINVAL); 20851 20852 case sizeof (sin_t): 20853 sin = (sin_t *)sa; 20854 if (sin->sin_port == 0) { 20855 return (-TBADADDR); 20856 } 20857 if (connp->conn_ipv6_v6only) { 20858 return (EAFNOSUPPORT); 20859 } 20860 break; 20861 20862 case sizeof (sin6_t): 20863 sin6 = (sin6_t *)sa; 20864 if (sin6->sin6_port == 0) { 20865 return (-TBADADDR); 20866 } 20867 break; 20868 } 20869 /* 20870 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20871 * make sure that the conn_ipversion is IPV4_VERSION. We 20872 * need to this before we call tcp_bindi() so that the port lookup 20873 * code will look for ports in the correct port space (IPv4 and 20874 * IPv6 have separate port spaces). 20875 */ 20876 if (connp->conn_family == AF_INET6 && 20877 connp->conn_ipversion == IPV6_VERSION && 20878 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20879 if (connp->conn_ipv6_v6only) 20880 return (EADDRNOTAVAIL); 20881 20882 connp->conn_ipversion = IPV4_VERSION; 20883 } 20884 20885 switch (tcp->tcp_state) { 20886 case TCPS_LISTEN: 20887 /* 20888 * Listening sockets are not allowed to issue connect(). 20889 */ 20890 if (IPCL_IS_NONSTR(connp)) 20891 return (EOPNOTSUPP); 20892 /* FALLTHRU */ 20893 case TCPS_IDLE: 20894 /* 20895 * We support quick connect, refer to comments in 20896 * tcp_connect_*() 20897 */ 20898 /* FALLTHRU */ 20899 case TCPS_BOUND: 20900 break; 20901 default: 20902 return (-TOUTSTATE); 20903 } 20904 20905 /* 20906 * We update our cred/cpid based on the caller of connect 20907 */ 20908 if (connp->conn_cred != cr) { 20909 crhold(cr); 20910 crfree(connp->conn_cred); 20911 connp->conn_cred = cr; 20912 } 20913 connp->conn_cpid = pid; 20914 20915 /* Cache things in the ixa without any refhold */ 20916 ixa->ixa_cred = cr; 20917 ixa->ixa_cpid = pid; 20918 if (is_system_labeled()) { 20919 /* We need to restart with a label based on the cred */ 20920 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20921 } 20922 20923 if (connp->conn_family == AF_INET6) { 20924 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20925 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20926 sin6->sin6_port, sin6->sin6_flowinfo, 20927 sin6->__sin6_src_id, sin6->sin6_scope_id); 20928 } else { 20929 /* 20930 * Destination adress is mapped IPv6 address. 20931 * Source bound address should be unspecified or 20932 * IPv6 mapped address as well. 20933 */ 20934 if (!IN6_IS_ADDR_UNSPECIFIED( 20935 &connp->conn_bound_addr_v6) && 20936 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20937 return (EADDRNOTAVAIL); 20938 } 20939 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20940 dstport = sin6->sin6_port; 20941 srcid = sin6->__sin6_src_id; 20942 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20943 srcid); 20944 } 20945 } else { 20946 dstaddrp = &sin->sin_addr.s_addr; 20947 dstport = sin->sin_port; 20948 srcid = 0; 20949 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20950 } 20951 20952 if (error != 0) 20953 goto connect_failed; 20954 20955 CL_INET_CONNECT(connp, B_TRUE, error); 20956 if (error != 0) 20957 goto connect_failed; 20958 20959 /* connect succeeded */ 20960 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20961 tcp->tcp_active_open = 1; 20962 20963 /* 20964 * tcp_set_destination() does not adjust for TCP/IP header length. 20965 */ 20966 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20967 20968 /* 20969 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20970 * to the nearest MSS. 20971 * 20972 * We do the round up here because we need to get the interface MTU 20973 * first before we can do the round up. 20974 */ 20975 tcp->tcp_rwnd = connp->conn_rcvbuf; 20976 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20977 tcps->tcps_recv_hiwat_minmss * mss); 20978 connp->conn_rcvbuf = tcp->tcp_rwnd; 20979 tcp_set_ws_value(tcp); 20980 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20981 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20982 tcp->tcp_snd_ws_ok = B_TRUE; 20983 20984 /* 20985 * Set tcp_snd_ts_ok to true 20986 * so that tcp_xmit_mp will 20987 * include the timestamp 20988 * option in the SYN segment. 20989 */ 20990 if (tcps->tcps_tstamp_always || 20991 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20992 tcp->tcp_snd_ts_ok = B_TRUE; 20993 } 20994 20995 /* 20996 * tcp_snd_sack_ok can be set in 20997 * tcp_set_destination() if the sack metric 20998 * is set. So check it here also. 20999 */ 21000 if (tcps->tcps_sack_permitted == 2 || 21001 tcp->tcp_snd_sack_ok) { 21002 if (tcp->tcp_sack_info == NULL) { 21003 tcp->tcp_sack_info = kmem_cache_alloc( 21004 tcp_sack_info_cache, KM_SLEEP); 21005 } 21006 tcp->tcp_snd_sack_ok = B_TRUE; 21007 } 21008 21009 /* 21010 * Should we use ECN? Note that the current 21011 * default value (SunOS 5.9) of tcp_ecn_permitted 21012 * is 1. The reason for doing this is that there 21013 * are equipments out there that will drop ECN 21014 * enabled IP packets. Setting it to 1 avoids 21015 * compatibility problems. 21016 */ 21017 if (tcps->tcps_ecn_permitted == 2) 21018 tcp->tcp_ecn_ok = B_TRUE; 21019 21020 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21021 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21022 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 21023 if (syn_mp != NULL) { 21024 /* 21025 * We must bump the generation before sending the syn 21026 * to ensure that we use the right generation in case 21027 * this thread issues a "connected" up call. 21028 */ 21029 SOCK_CONNID_BUMP(tcp->tcp_connid); 21030 tcp_send_data(tcp, syn_mp); 21031 } 21032 21033 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21034 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21035 return (0); 21036 21037 connect_failed: 21038 connp->conn_faddr_v6 = ipv6_all_zeros; 21039 connp->conn_fport = 0; 21040 tcp->tcp_state = oldstate; 21041 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 21042 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 21043 return (error); 21044 } 21045 21046 int 21047 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 21048 socklen_t len, sock_connid_t *id, cred_t *cr) 21049 { 21050 conn_t *connp = (conn_t *)proto_handle; 21051 squeue_t *sqp = connp->conn_sqp; 21052 int error; 21053 21054 ASSERT(connp->conn_upper_handle != NULL); 21055 21056 /* All Solaris components should pass a cred for this operation. */ 21057 ASSERT(cr != NULL); 21058 21059 error = proto_verify_ip_addr(connp->conn_family, sa, len); 21060 if (error != 0) { 21061 return (error); 21062 } 21063 21064 error = squeue_synch_enter(sqp, connp, NULL); 21065 if (error != 0) { 21066 /* failed to enter */ 21067 return (ENOSR); 21068 } 21069 21070 /* 21071 * TCP supports quick connect, so no need to do an implicit bind 21072 */ 21073 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 21074 if (error == 0) { 21075 *id = connp->conn_tcp->tcp_connid; 21076 } else if (error < 0) { 21077 if (error == -TOUTSTATE) { 21078 switch (connp->conn_tcp->tcp_state) { 21079 case TCPS_SYN_SENT: 21080 error = EALREADY; 21081 break; 21082 case TCPS_ESTABLISHED: 21083 error = EISCONN; 21084 break; 21085 case TCPS_LISTEN: 21086 error = EOPNOTSUPP; 21087 break; 21088 default: 21089 error = EINVAL; 21090 break; 21091 } 21092 } else { 21093 error = proto_tlitosyserr(-error); 21094 } 21095 } 21096 21097 if (connp->conn_tcp->tcp_loopback) { 21098 struct sock_proto_props sopp; 21099 21100 sopp.sopp_flags = SOCKOPT_LOOPBACK; 21101 sopp.sopp_loopback = B_TRUE; 21102 21103 (*connp->conn_upcalls->su_set_proto_props)( 21104 connp->conn_upper_handle, &sopp); 21105 } 21106 done: 21107 squeue_synch_exit(sqp, connp); 21108 21109 return ((error == 0) ? EINPROGRESS : error); 21110 } 21111 21112 /* ARGSUSED */ 21113 sock_lower_handle_t 21114 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 21115 uint_t *smodep, int *errorp, int flags, cred_t *credp) 21116 { 21117 conn_t *connp; 21118 boolean_t isv6 = family == AF_INET6; 21119 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 21120 (proto != 0 && proto != IPPROTO_TCP)) { 21121 *errorp = EPROTONOSUPPORT; 21122 return (NULL); 21123 } 21124 21125 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 21126 if (connp == NULL) { 21127 return (NULL); 21128 } 21129 21130 /* 21131 * Put the ref for TCP. Ref for IP was already put 21132 * by ipcl_conn_create. Also Make the conn_t globally 21133 * visible to walkers 21134 */ 21135 mutex_enter(&connp->conn_lock); 21136 CONN_INC_REF_LOCKED(connp); 21137 ASSERT(connp->conn_ref == 2); 21138 connp->conn_state_flags &= ~CONN_INCIPIENT; 21139 21140 connp->conn_flags |= IPCL_NONSTR; 21141 mutex_exit(&connp->conn_lock); 21142 21143 ASSERT(errorp != NULL); 21144 *errorp = 0; 21145 *sock_downcalls = &sock_tcp_downcalls; 21146 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 21147 SM_SENDFILESUPP; 21148 21149 return ((sock_lower_handle_t)connp); 21150 } 21151 21152 /* ARGSUSED */ 21153 void 21154 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 21155 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 21156 { 21157 conn_t *connp = (conn_t *)proto_handle; 21158 struct sock_proto_props sopp; 21159 21160 ASSERT(connp->conn_upper_handle == NULL); 21161 21162 /* All Solaris components should pass a cred for this operation. */ 21163 ASSERT(cr != NULL); 21164 21165 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 21166 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 21167 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 21168 21169 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 21170 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 21171 sopp.sopp_maxpsz = INFPSZ; 21172 sopp.sopp_maxblk = INFPSZ; 21173 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 21174 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 21175 sopp.sopp_maxaddrlen = sizeof (sin6_t); 21176 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 21177 tcp_rinfo.mi_minpsz; 21178 21179 connp->conn_upcalls = sock_upcalls; 21180 connp->conn_upper_handle = sock_handle; 21181 21182 ASSERT(connp->conn_rcvbuf != 0 && 21183 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 21184 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 21185 } 21186 21187 /* ARGSUSED */ 21188 int 21189 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 21190 { 21191 conn_t *connp = (conn_t *)proto_handle; 21192 21193 ASSERT(connp->conn_upper_handle != NULL); 21194 21195 /* All Solaris components should pass a cred for this operation. */ 21196 ASSERT(cr != NULL); 21197 21198 tcp_close_common(connp, flags); 21199 21200 ip_free_helper_stream(connp); 21201 21202 /* 21203 * Drop IP's reference on the conn. This is the last reference 21204 * on the connp if the state was less than established. If the 21205 * connection has gone into timewait state, then we will have 21206 * one ref for the TCP and one more ref (total of two) for the 21207 * classifier connected hash list (a timewait connections stays 21208 * in connected hash till closed). 21209 * 21210 * We can't assert the references because there might be other 21211 * transient reference places because of some walkers or queued 21212 * packets in squeue for the timewait state. 21213 */ 21214 CONN_DEC_REF(connp); 21215 return (0); 21216 } 21217 21218 /* ARGSUSED */ 21219 int 21220 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 21221 cred_t *cr) 21222 { 21223 tcp_t *tcp; 21224 uint32_t msize; 21225 conn_t *connp = (conn_t *)proto_handle; 21226 int32_t tcpstate; 21227 21228 /* All Solaris components should pass a cred for this operation. */ 21229 ASSERT(cr != NULL); 21230 21231 ASSERT(connp->conn_ref >= 2); 21232 ASSERT(connp->conn_upper_handle != NULL); 21233 21234 if (msg->msg_controllen != 0) { 21235 freemsg(mp); 21236 return (EOPNOTSUPP); 21237 } 21238 21239 switch (DB_TYPE(mp)) { 21240 case M_DATA: 21241 tcp = connp->conn_tcp; 21242 ASSERT(tcp != NULL); 21243 21244 tcpstate = tcp->tcp_state; 21245 if (tcpstate < TCPS_ESTABLISHED) { 21246 freemsg(mp); 21247 /* 21248 * We return ENOTCONN if the endpoint is trying to 21249 * connect or has never been connected, and EPIPE if it 21250 * has been disconnected. The connection id helps us 21251 * distinguish between the last two cases. 21252 */ 21253 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 21254 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 21255 } else if (tcpstate > TCPS_CLOSE_WAIT) { 21256 freemsg(mp); 21257 return (EPIPE); 21258 } 21259 21260 msize = msgdsize(mp); 21261 21262 mutex_enter(&tcp->tcp_non_sq_lock); 21263 tcp->tcp_squeue_bytes += msize; 21264 /* 21265 * Squeue Flow Control 21266 */ 21267 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 21268 tcp_setqfull(tcp); 21269 } 21270 mutex_exit(&tcp->tcp_non_sq_lock); 21271 21272 /* 21273 * The application may pass in an address in the msghdr, but 21274 * we ignore the address on connection-oriented sockets. 21275 * Just like BSD this code does not generate an error for 21276 * TCP (a CONNREQUIRED socket) when sending to an address 21277 * passed in with sendto/sendmsg. Instead the data is 21278 * delivered on the connection as if no address had been 21279 * supplied. 21280 */ 21281 CONN_INC_REF(connp); 21282 21283 if (msg->msg_flags & MSG_OOB) { 21284 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 21285 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21286 } else { 21287 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 21288 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 21289 } 21290 21291 return (0); 21292 21293 default: 21294 ASSERT(0); 21295 } 21296 21297 freemsg(mp); 21298 return (0); 21299 } 21300 21301 /* ARGSUSED2 */ 21302 void 21303 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21304 { 21305 int len; 21306 uint32_t msize; 21307 conn_t *connp = (conn_t *)arg; 21308 tcp_t *tcp = connp->conn_tcp; 21309 21310 msize = msgdsize(mp); 21311 21312 len = msize - 1; 21313 if (len < 0) { 21314 freemsg(mp); 21315 return; 21316 } 21317 21318 /* 21319 * Try to force urgent data out on the wire. Even if we have unsent 21320 * data this will at least send the urgent flag. 21321 * XXX does not handle more flag correctly. 21322 */ 21323 len += tcp->tcp_unsent; 21324 len += tcp->tcp_snxt; 21325 tcp->tcp_urg = len; 21326 tcp->tcp_valid_bits |= TCP_URG_VALID; 21327 21328 /* Bypass tcp protocol for fused tcp loopback */ 21329 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21330 return; 21331 21332 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 21333 if (DB_TYPE(mp) != M_DATA) { 21334 mblk_t *mp1 = mp; 21335 ASSERT(!IPCL_IS_NONSTR(connp)); 21336 mp = mp->b_cont; 21337 freeb(mp1); 21338 } 21339 tcp_wput_data(tcp, mp, B_TRUE); 21340 } 21341 21342 /* ARGSUSED3 */ 21343 int 21344 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21345 socklen_t *addrlenp, cred_t *cr) 21346 { 21347 conn_t *connp = (conn_t *)proto_handle; 21348 tcp_t *tcp = connp->conn_tcp; 21349 21350 ASSERT(connp->conn_upper_handle != NULL); 21351 /* All Solaris components should pass a cred for this operation. */ 21352 ASSERT(cr != NULL); 21353 21354 ASSERT(tcp != NULL); 21355 if (tcp->tcp_state < TCPS_SYN_RCVD) 21356 return (ENOTCONN); 21357 21358 return (conn_getpeername(connp, addr, addrlenp)); 21359 } 21360 21361 /* ARGSUSED3 */ 21362 int 21363 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21364 socklen_t *addrlenp, cred_t *cr) 21365 { 21366 conn_t *connp = (conn_t *)proto_handle; 21367 21368 /* All Solaris components should pass a cred for this operation. */ 21369 ASSERT(cr != NULL); 21370 21371 ASSERT(connp->conn_upper_handle != NULL); 21372 return (conn_getsockname(connp, addr, addrlenp)); 21373 } 21374 21375 /* 21376 * tcp_fallback 21377 * 21378 * A direct socket is falling back to using STREAMS. The queue 21379 * that is being passed down was created using tcp_open() with 21380 * the SO_FALLBACK flag set. As a result, the queue is not 21381 * associated with a conn, and the q_ptrs instead contain the 21382 * dev and minor area that should be used. 21383 * 21384 * The 'issocket' flag indicates whether the FireEngine 21385 * optimizations should be used. The common case would be that 21386 * optimizations are enabled, and they might be subsequently 21387 * disabled using the _SIOCSOCKFALLBACK ioctl. 21388 */ 21389 21390 /* 21391 * An active connection is falling back to TPI. Gather all the information 21392 * required by the STREAM head and TPI sonode and send it up. 21393 */ 21394 void 21395 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21396 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21397 { 21398 conn_t *connp = tcp->tcp_connp; 21399 struct stroptions *stropt; 21400 struct T_capability_ack tca; 21401 struct sockaddr_in6 laddr, faddr; 21402 socklen_t laddrlen, faddrlen; 21403 short opts; 21404 int error; 21405 mblk_t *mp; 21406 21407 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21408 connp->conn_minor_arena = WR(q)->q_ptr; 21409 21410 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21411 21412 connp->conn_rq = RD(q); 21413 connp->conn_wq = WR(q); 21414 21415 WR(q)->q_qinfo = &tcp_sock_winit; 21416 21417 if (!issocket) 21418 tcp_use_pure_tpi(tcp); 21419 21420 /* 21421 * free the helper stream 21422 */ 21423 ip_free_helper_stream(connp); 21424 21425 /* 21426 * Notify the STREAM head about options 21427 */ 21428 DB_TYPE(stropt_mp) = M_SETOPTS; 21429 stropt = (struct stroptions *)stropt_mp->b_rptr; 21430 stropt_mp->b_wptr += sizeof (struct stroptions); 21431 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21432 21433 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21434 tcp->tcp_tcps->tcps_wroff_xtra); 21435 if (tcp->tcp_snd_sack_ok) 21436 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21437 stropt->so_hiwat = connp->conn_rcvbuf; 21438 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21439 21440 putnext(RD(q), stropt_mp); 21441 21442 /* 21443 * Collect the information needed to sync with the sonode 21444 */ 21445 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21446 21447 laddrlen = faddrlen = sizeof (sin6_t); 21448 (void) tcp_getsockname((sock_lower_handle_t)connp, 21449 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21450 error = tcp_getpeername((sock_lower_handle_t)connp, 21451 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21452 if (error != 0) 21453 faddrlen = 0; 21454 21455 opts = 0; 21456 if (connp->conn_oobinline) 21457 opts |= SO_OOBINLINE; 21458 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21459 opts |= SO_DONTROUTE; 21460 21461 /* 21462 * Notify the socket that the protocol is now quiescent, 21463 * and it's therefore safe move data from the socket 21464 * to the stream head. 21465 */ 21466 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21467 (struct sockaddr *)&laddr, laddrlen, 21468 (struct sockaddr *)&faddr, faddrlen, opts); 21469 21470 while ((mp = tcp->tcp_rcv_list) != NULL) { 21471 tcp->tcp_rcv_list = mp->b_next; 21472 mp->b_next = NULL; 21473 /* We never do fallback for kernel RPC */ 21474 putnext(q, mp); 21475 } 21476 tcp->tcp_rcv_last_head = NULL; 21477 tcp->tcp_rcv_last_tail = NULL; 21478 tcp->tcp_rcv_cnt = 0; 21479 } 21480 21481 /* 21482 * An eager is falling back to TPI. All we have to do is send 21483 * up a T_CONN_IND. 21484 */ 21485 void 21486 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21487 { 21488 tcp_t *listener = eager->tcp_listener; 21489 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21490 21491 ASSERT(listener != NULL); 21492 ASSERT(mp != NULL); 21493 21494 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21495 21496 /* 21497 * TLI/XTI applications will get confused by 21498 * sending eager as an option since it violates 21499 * the option semantics. So remove the eager as 21500 * option since TLI/XTI app doesn't need it anyway. 21501 */ 21502 if (!direct_sockfs) { 21503 struct T_conn_ind *conn_ind; 21504 21505 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21506 conn_ind->OPT_length = 0; 21507 conn_ind->OPT_offset = 0; 21508 } 21509 21510 /* 21511 * Sockfs guarantees that the listener will not be closed 21512 * during fallback. So we can safely use the listener's queue. 21513 */ 21514 putnext(listener->tcp_connp->conn_rq, mp); 21515 } 21516 21517 int 21518 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21519 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21520 { 21521 tcp_t *tcp; 21522 conn_t *connp = (conn_t *)proto_handle; 21523 int error; 21524 mblk_t *stropt_mp; 21525 mblk_t *ordrel_mp; 21526 21527 tcp = connp->conn_tcp; 21528 21529 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21530 NULL); 21531 21532 /* Pre-allocate the T_ordrel_ind mblk. */ 21533 ASSERT(tcp->tcp_ordrel_mp == NULL); 21534 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21535 STR_NOSIG, NULL); 21536 ordrel_mp->b_datap->db_type = M_PROTO; 21537 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21538 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21539 21540 /* 21541 * Enter the squeue so that no new packets can come in 21542 */ 21543 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21544 if (error != 0) { 21545 /* failed to enter, free all the pre-allocated messages. */ 21546 freeb(stropt_mp); 21547 freeb(ordrel_mp); 21548 /* 21549 * We cannot process the eager, so at least send out a 21550 * RST so the peer can reconnect. 21551 */ 21552 if (tcp->tcp_listener != NULL) { 21553 (void) tcp_eager_blowoff(tcp->tcp_listener, 21554 tcp->tcp_conn_req_seqnum); 21555 } 21556 return (ENOMEM); 21557 } 21558 21559 /* 21560 * Both endpoints must be of the same type (either STREAMS or 21561 * non-STREAMS) for fusion to be enabled. So if we are fused, 21562 * we have to unfuse. 21563 */ 21564 if (tcp->tcp_fused) 21565 tcp_unfuse(tcp); 21566 21567 /* 21568 * No longer a direct socket 21569 */ 21570 connp->conn_flags &= ~IPCL_NONSTR; 21571 tcp->tcp_ordrel_mp = ordrel_mp; 21572 21573 if (tcp->tcp_listener != NULL) { 21574 /* The eager will deal with opts when accept() is called */ 21575 freeb(stropt_mp); 21576 tcp_fallback_eager(tcp, direct_sockfs); 21577 } else { 21578 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21579 quiesced_cb); 21580 } 21581 21582 /* 21583 * There should be atleast two ref's (IP + TCP) 21584 */ 21585 ASSERT(connp->conn_ref >= 2); 21586 squeue_synch_exit(connp->conn_sqp, connp); 21587 21588 return (0); 21589 } 21590 21591 /* ARGSUSED */ 21592 static void 21593 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21594 { 21595 conn_t *connp = (conn_t *)arg; 21596 tcp_t *tcp = connp->conn_tcp; 21597 21598 freemsg(mp); 21599 21600 if (tcp->tcp_fused) 21601 tcp_unfuse(tcp); 21602 21603 if (tcp_xmit_end(tcp) != 0) { 21604 /* 21605 * We were crossing FINs and got a reset from 21606 * the other side. Just ignore it. 21607 */ 21608 if (connp->conn_debug) { 21609 (void) strlog(TCP_MOD_ID, 0, 1, 21610 SL_ERROR|SL_TRACE, 21611 "tcp_shutdown_output() out of state %s", 21612 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21613 } 21614 } 21615 } 21616 21617 /* ARGSUSED */ 21618 int 21619 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21620 { 21621 conn_t *connp = (conn_t *)proto_handle; 21622 tcp_t *tcp = connp->conn_tcp; 21623 21624 ASSERT(connp->conn_upper_handle != NULL); 21625 21626 /* All Solaris components should pass a cred for this operation. */ 21627 ASSERT(cr != NULL); 21628 21629 /* 21630 * X/Open requires that we check the connected state. 21631 */ 21632 if (tcp->tcp_state < TCPS_SYN_SENT) 21633 return (ENOTCONN); 21634 21635 /* shutdown the send side */ 21636 if (how != SHUT_RD) { 21637 mblk_t *bp; 21638 21639 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21640 CONN_INC_REF(connp); 21641 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21642 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21643 21644 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21645 SOCK_OPCTL_SHUT_SEND, 0); 21646 } 21647 21648 /* shutdown the recv side */ 21649 if (how != SHUT_WR) 21650 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21651 SOCK_OPCTL_SHUT_RECV, 0); 21652 21653 return (0); 21654 } 21655 21656 /* 21657 * SOP_LISTEN() calls into tcp_listen(). 21658 */ 21659 /* ARGSUSED */ 21660 int 21661 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21662 { 21663 conn_t *connp = (conn_t *)proto_handle; 21664 int error; 21665 squeue_t *sqp = connp->conn_sqp; 21666 21667 ASSERT(connp->conn_upper_handle != NULL); 21668 21669 /* All Solaris components should pass a cred for this operation. */ 21670 ASSERT(cr != NULL); 21671 21672 error = squeue_synch_enter(sqp, connp, NULL); 21673 if (error != 0) { 21674 /* failed to enter */ 21675 return (ENOBUFS); 21676 } 21677 21678 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21679 if (error == 0) { 21680 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21681 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21682 } else if (error < 0) { 21683 if (error == -TOUTSTATE) 21684 error = EINVAL; 21685 else 21686 error = proto_tlitosyserr(-error); 21687 } 21688 squeue_synch_exit(sqp, connp); 21689 return (error); 21690 } 21691 21692 static int 21693 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21694 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21695 { 21696 tcp_t *tcp = connp->conn_tcp; 21697 int error = 0; 21698 tcp_stack_t *tcps = tcp->tcp_tcps; 21699 21700 /* All Solaris components should pass a cred for this operation. */ 21701 ASSERT(cr != NULL); 21702 21703 if (tcp->tcp_state >= TCPS_BOUND) { 21704 if ((tcp->tcp_state == TCPS_BOUND || 21705 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21706 /* 21707 * Handle listen() increasing backlog. 21708 * This is more "liberal" then what the TPI spec 21709 * requires but is needed to avoid a t_unbind 21710 * when handling listen() since the port number 21711 * might be "stolen" between the unbind and bind. 21712 */ 21713 goto do_listen; 21714 } 21715 if (connp->conn_debug) { 21716 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21717 "tcp_listen: bad state, %d", tcp->tcp_state); 21718 } 21719 return (-TOUTSTATE); 21720 } else { 21721 if (sa == NULL) { 21722 sin6_t addr; 21723 sin_t *sin; 21724 sin6_t *sin6; 21725 21726 ASSERT(IPCL_IS_NONSTR(connp)); 21727 /* Do an implicit bind: Request for a generic port. */ 21728 if (connp->conn_family == AF_INET) { 21729 len = sizeof (sin_t); 21730 sin = (sin_t *)&addr; 21731 *sin = sin_null; 21732 sin->sin_family = AF_INET; 21733 } else { 21734 ASSERT(connp->conn_family == AF_INET6); 21735 len = sizeof (sin6_t); 21736 sin6 = (sin6_t *)&addr; 21737 *sin6 = sin6_null; 21738 sin6->sin6_family = AF_INET6; 21739 } 21740 sa = (struct sockaddr *)&addr; 21741 } 21742 21743 error = tcp_bind_check(connp, sa, len, cr, 21744 bind_to_req_port_only); 21745 if (error) 21746 return (error); 21747 /* Fall through and do the fanout insertion */ 21748 } 21749 21750 do_listen: 21751 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21752 tcp->tcp_conn_req_max = backlog; 21753 if (tcp->tcp_conn_req_max) { 21754 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21755 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21756 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21757 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21758 /* 21759 * If this is a listener, do not reset the eager list 21760 * and other stuffs. Note that we don't check if the 21761 * existing eager list meets the new tcp_conn_req_max 21762 * requirement. 21763 */ 21764 if (tcp->tcp_state != TCPS_LISTEN) { 21765 tcp->tcp_state = TCPS_LISTEN; 21766 /* Initialize the chain. Don't need the eager_lock */ 21767 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21768 tcp->tcp_eager_next_drop_q0 = tcp; 21769 tcp->tcp_eager_prev_drop_q0 = tcp; 21770 tcp->tcp_second_ctimer_threshold = 21771 tcps->tcps_ip_abort_linterval; 21772 } 21773 } 21774 21775 /* 21776 * We need to make sure that the conn_recv is set to a non-null 21777 * value before we insert the conn into the classifier table. 21778 * This is to avoid a race with an incoming packet which does an 21779 * ipcl_classify(). 21780 * We initially set it to tcp_input_listener_unbound to try to 21781 * pick a good squeue for the listener when the first SYN arrives. 21782 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21783 * first SYN. 21784 */ 21785 connp->conn_recv = tcp_input_listener_unbound; 21786 21787 /* Insert the listener in the classifier table */ 21788 error = ip_laddr_fanout_insert(connp); 21789 if (error != 0) { 21790 /* Undo the bind - release the port number */ 21791 tcp->tcp_state = TCPS_IDLE; 21792 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21793 21794 connp->conn_laddr_v6 = ipv6_all_zeros; 21795 connp->conn_saddr_v6 = ipv6_all_zeros; 21796 connp->conn_ports = 0; 21797 21798 if (connp->conn_anon_port) { 21799 zone_t *zone; 21800 21801 zone = crgetzone(cr); 21802 connp->conn_anon_port = B_FALSE; 21803 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21804 connp->conn_proto, connp->conn_lport, B_FALSE); 21805 } 21806 connp->conn_mlp_type = mlptSingle; 21807 21808 tcp_bind_hash_remove(tcp); 21809 return (error); 21810 } else { 21811 /* 21812 * If there is a connection limit, allocate and initialize 21813 * the counter struct. Note that since listen can be called 21814 * multiple times, the struct may have been allready allocated. 21815 */ 21816 if (!list_is_empty(&tcps->tcps_listener_conf) && 21817 tcp->tcp_listen_cnt == NULL) { 21818 tcp_listen_cnt_t *tlc; 21819 uint32_t ratio; 21820 21821 ratio = tcp_find_listener_conf(tcps, 21822 ntohs(connp->conn_lport)); 21823 if (ratio != 0) { 21824 uint32_t mem_ratio, tot_buf; 21825 21826 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 21827 KM_SLEEP); 21828 /* 21829 * Calculate the connection limit based on 21830 * the configured ratio and maxusers. Maxusers 21831 * are calculated based on memory size, 21832 * ~ 1 user per MB. Note that the conn_rcvbuf 21833 * and conn_sndbuf may change after a 21834 * connection is accepted. So what we have 21835 * is only an approximation. 21836 */ 21837 if ((tot_buf = connp->conn_rcvbuf + 21838 connp->conn_sndbuf) < MB) { 21839 mem_ratio = MB / tot_buf; 21840 tlc->tlc_max = maxusers / ratio * 21841 mem_ratio; 21842 } else { 21843 mem_ratio = tot_buf / MB; 21844 tlc->tlc_max = maxusers / ratio / 21845 mem_ratio; 21846 } 21847 /* At least we should allow two connections! */ 21848 if (tlc->tlc_max <= tcp_min_conn_listener) 21849 tlc->tlc_max = tcp_min_conn_listener; 21850 tlc->tlc_cnt = 1; 21851 tlc->tlc_drop = 0; 21852 tcp->tcp_listen_cnt = tlc; 21853 } 21854 } 21855 } 21856 return (error); 21857 } 21858 21859 void 21860 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21861 { 21862 conn_t *connp = (conn_t *)proto_handle; 21863 tcp_t *tcp = connp->conn_tcp; 21864 mblk_t *mp; 21865 int error; 21866 21867 ASSERT(connp->conn_upper_handle != NULL); 21868 21869 /* 21870 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21871 * is currently running. 21872 */ 21873 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21874 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21875 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21876 return; 21877 } 21878 tcp->tcp_rsrv_mp = NULL; 21879 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21880 21881 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21882 ASSERT(error == 0); 21883 21884 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21885 tcp->tcp_rsrv_mp = mp; 21886 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21887 21888 if (tcp->tcp_fused) { 21889 tcp_fuse_backenable(tcp); 21890 } else { 21891 tcp->tcp_rwnd = connp->conn_rcvbuf; 21892 /* 21893 * Send back a window update immediately if TCP is above 21894 * ESTABLISHED state and the increase of the rcv window 21895 * that the other side knows is at least 1 MSS after flow 21896 * control is lifted. 21897 */ 21898 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21899 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21900 tcp_xmit_ctl(NULL, tcp, 21901 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21902 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21903 } 21904 } 21905 21906 squeue_synch_exit(connp->conn_sqp, connp); 21907 } 21908 21909 /* ARGSUSED */ 21910 int 21911 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21912 int mode, int32_t *rvalp, cred_t *cr) 21913 { 21914 conn_t *connp = (conn_t *)proto_handle; 21915 int error; 21916 21917 ASSERT(connp->conn_upper_handle != NULL); 21918 21919 /* All Solaris components should pass a cred for this operation. */ 21920 ASSERT(cr != NULL); 21921 21922 /* 21923 * If we don't have a helper stream then create one. 21924 * ip_create_helper_stream takes care of locking the conn_t, 21925 * so this check for NULL is just a performance optimization. 21926 */ 21927 if (connp->conn_helper_info == NULL) { 21928 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21929 21930 /* 21931 * Create a helper stream for non-STREAMS socket. 21932 */ 21933 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21934 if (error != 0) { 21935 ip0dbg(("tcp_ioctl: create of IP helper stream " 21936 "failed %d\n", error)); 21937 return (error); 21938 } 21939 } 21940 21941 switch (cmd) { 21942 case ND_SET: 21943 case ND_GET: 21944 case _SIOCSOCKFALLBACK: 21945 case TCP_IOC_ABORT_CONN: 21946 case TI_GETPEERNAME: 21947 case TI_GETMYNAME: 21948 ip1dbg(("tcp_ioctl: cmd 0x%x on non streams socket", 21949 cmd)); 21950 error = EINVAL; 21951 break; 21952 default: 21953 /* 21954 * If the conn is not closing, pass on to IP using 21955 * helper stream. Bump the ioctlref to prevent tcp_close 21956 * from closing the rq/wq out from underneath the ioctl 21957 * if it ends up queued or aborted/interrupted. 21958 */ 21959 mutex_enter(&connp->conn_lock); 21960 if (connp->conn_state_flags & (CONN_CLOSING)) { 21961 mutex_exit(&connp->conn_lock); 21962 error = EINVAL; 21963 break; 21964 } 21965 CONN_INC_IOCTLREF_LOCKED(connp); 21966 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21967 cmd, arg, mode, cr, rvalp); 21968 CONN_DEC_IOCTLREF(connp); 21969 break; 21970 } 21971 return (error); 21972 } 21973 21974 sock_downcalls_t sock_tcp_downcalls = { 21975 tcp_activate, 21976 tcp_accept, 21977 tcp_bind, 21978 tcp_listen, 21979 tcp_connect, 21980 tcp_getpeername, 21981 tcp_getsockname, 21982 tcp_getsockopt, 21983 tcp_setsockopt, 21984 tcp_sendmsg, 21985 NULL, 21986 NULL, 21987 NULL, 21988 tcp_shutdown, 21989 tcp_clr_flowctrl, 21990 tcp_ioctl, 21991 tcp_close, 21992 }; 21993 21994 /* 21995 * Timeout function to reset the TCP stack variable tcps_reclaim to false. 21996 */ 21997 static void 21998 tcp_reclaim_timer(void *arg) 21999 { 22000 tcp_stack_t *tcps = (tcp_stack_t *)arg; 22001 22002 mutex_enter(&tcps->tcps_reclaim_lock); 22003 tcps->tcps_reclaim = B_FALSE; 22004 tcps->tcps_reclaim_tid = 0; 22005 mutex_exit(&tcps->tcps_reclaim_lock); 22006 } 22007 22008 /* 22009 * Kmem reclaim call back function. When the system is under memory 22010 * pressure, we set the TCP stack variable tcps_reclaim to true. This 22011 * variable is reset to false after tcps_reclaim_period msecs. During this 22012 * period, TCP will be more aggressive in aborting connections not making 22013 * progress, meaning retransmitting for some time (tcp_early_abort seconds). 22014 * TCP will also not accept new connection request for those listeners whose 22015 * q or q0 is not empty. 22016 */ 22017 /* ARGSUSED */ 22018 void 22019 tcp_conn_reclaim(void *arg) 22020 { 22021 netstack_handle_t nh; 22022 netstack_t *ns; 22023 tcp_stack_t *tcps; 22024 extern pgcnt_t lotsfree, needfree; 22025 22026 if (!tcp_do_reclaim) 22027 return; 22028 22029 /* 22030 * The reclaim function may be called even when the system is not 22031 * really under memory pressure. 22032 */ 22033 if (freemem >= lotsfree + needfree) 22034 return; 22035 22036 netstack_next_init(&nh); 22037 while ((ns = netstack_next(&nh)) != NULL) { 22038 tcps = ns->netstack_tcp; 22039 mutex_enter(&tcps->tcps_reclaim_lock); 22040 if (!tcps->tcps_reclaim) { 22041 tcps->tcps_reclaim = B_TRUE; 22042 tcps->tcps_reclaim_tid = timeout(tcp_reclaim_timer, 22043 tcps, MSEC_TO_TICK(tcps->tcps_reclaim_period)); 22044 } 22045 mutex_exit(&tcps->tcps_reclaim_lock); 22046 netstack_rele(ns); 22047 } 22048 netstack_next_fini(&nh); 22049 } 22050 22051 /* 22052 * Given a tcp_stack_t and a port (in host byte order), find a listener 22053 * configuration for that port and return the ratio. 22054 */ 22055 static uint32_t 22056 tcp_find_listener_conf(tcp_stack_t *tcps, in_port_t port) 22057 { 22058 tcp_listener_t *tl; 22059 uint32_t ratio = 0; 22060 22061 mutex_enter(&tcps->tcps_listener_conf_lock); 22062 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22063 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22064 if (tl->tl_port == port) { 22065 ratio = tl->tl_ratio; 22066 break; 22067 } 22068 } 22069 mutex_exit(&tcps->tcps_listener_conf_lock); 22070 return (ratio); 22071 } 22072 22073 /* 22074 * Ndd param helper routine to return the current list of listener limit 22075 * configuration. 22076 */ 22077 /* ARGSUSED */ 22078 static int 22079 tcp_listener_conf_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22080 { 22081 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22082 tcp_listener_t *tl; 22083 22084 mutex_enter(&tcps->tcps_listener_conf_lock); 22085 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22086 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22087 (void) mi_mpprintf(mp, "%d:%d ", tl->tl_port, tl->tl_ratio); 22088 } 22089 mutex_exit(&tcps->tcps_listener_conf_lock); 22090 return (0); 22091 } 22092 22093 /* 22094 * Ndd param helper routine to add a new listener limit configuration. 22095 */ 22096 /* ARGSUSED */ 22097 static int 22098 tcp_listener_conf_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22099 cred_t *cr) 22100 { 22101 tcp_listener_t *new_tl; 22102 tcp_listener_t *tl; 22103 long lport; 22104 long ratio; 22105 char *colon; 22106 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22107 22108 if (ddi_strtol(value, &colon, 10, &lport) != 0 || lport <= 0 || 22109 lport > USHRT_MAX || *colon != ':') { 22110 return (EINVAL); 22111 } 22112 if (ddi_strtol(colon + 1, NULL, 10, &ratio) != 0 || ratio <= 0) 22113 return (EINVAL); 22114 22115 mutex_enter(&tcps->tcps_listener_conf_lock); 22116 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22117 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22118 /* There is an existing entry, so update its ratio value. */ 22119 if (tl->tl_port == lport) { 22120 tl->tl_ratio = ratio; 22121 mutex_exit(&tcps->tcps_listener_conf_lock); 22122 return (0); 22123 } 22124 } 22125 22126 if ((new_tl = kmem_alloc(sizeof (tcp_listener_t), KM_NOSLEEP)) == 22127 NULL) { 22128 mutex_exit(&tcps->tcps_listener_conf_lock); 22129 return (ENOMEM); 22130 } 22131 22132 new_tl->tl_port = lport; 22133 new_tl->tl_ratio = ratio; 22134 list_insert_tail(&tcps->tcps_listener_conf, new_tl); 22135 mutex_exit(&tcps->tcps_listener_conf_lock); 22136 return (0); 22137 } 22138 22139 /* 22140 * Ndd param helper routine to remove a listener limit configuration. 22141 */ 22142 /* ARGSUSED */ 22143 static int 22144 tcp_listener_conf_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22145 cred_t *cr) 22146 { 22147 tcp_listener_t *tl; 22148 long lport; 22149 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22150 22151 if (ddi_strtol(value, NULL, 10, &lport) != 0 || lport <= 0 || 22152 lport > USHRT_MAX) { 22153 return (EINVAL); 22154 } 22155 mutex_enter(&tcps->tcps_listener_conf_lock); 22156 for (tl = list_head(&tcps->tcps_listener_conf); tl != NULL; 22157 tl = list_next(&tcps->tcps_listener_conf, tl)) { 22158 if (tl->tl_port == lport) { 22159 list_remove(&tcps->tcps_listener_conf, tl); 22160 mutex_exit(&tcps->tcps_listener_conf_lock); 22161 kmem_free(tl, sizeof (tcp_listener_t)); 22162 return (0); 22163 } 22164 } 22165 mutex_exit(&tcps->tcps_listener_conf_lock); 22166 return (ESRCH); 22167 } 22168 22169 /* 22170 * To remove all listener limit configuration in a tcp_stack_t. 22171 */ 22172 static void 22173 tcp_listener_conf_cleanup(tcp_stack_t *tcps) 22174 { 22175 tcp_listener_t *tl; 22176 22177 mutex_enter(&tcps->tcps_listener_conf_lock); 22178 while ((tl = list_head(&tcps->tcps_listener_conf)) != NULL) { 22179 list_remove(&tcps->tcps_listener_conf, tl); 22180 kmem_free(tl, sizeof (tcp_listener_t)); 22181 } 22182 mutex_destroy(&tcps->tcps_listener_conf_lock); 22183 list_destroy(&tcps->tcps_listener_conf); 22184 } 22185